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ABSTRACT 

 

 

              Dwindling fossil fuels coupled with changes in global climate intensified the drive to 

make use of renewable energy resources that have negligible impact on the environment. In this 

attempt, the industrial community produced various devices and systems to make use of solar 

energy for heating and cooling of building space as well as generate electric power. The most 

common components employed for collection of solar energy are the flat plate and evacuated 

tube collectors that produce hot water that can be employed for heating the building space.  

In order to cool the building, the absorption chiller is commonly employed that requires 

hot water at high temperatures for its operation. This thesis deals with economic analysis of solar 

collector and absorption cooling system to meet the building loads of a commercial building 

located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly 

building loads and performance of the flat plate and evacuated tube solar collectors using the 

hourly weather data. The key variables affecting the economic evaluation of such system are 

identified and the influence of these parameters is presented. The results of this investigation 

show that the flat plate solar collectors yield lower payback period compared to the evacuated 

tube collectors and economic incentives offered by the local and federal agencies play a major 

role in lowering the payback period. 
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NOMENCLATURE 

 
A Area         [m

2
] 

Ac Solar Collector Surface Area      [m
2
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COP Coefficient of Performance 

cp  Specific Heat        [kJ/kgK] 

Idir Direct Solar Radiation      [W/m
2
] 

Idif  Diffuse Solar Radiation     [W/m
2
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Idif,hor Diffuse Horizontal Solar Radiation    [W/m
2
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Iglo,hor Global Horizontal Radiation     [W/m
2
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2
] 

M Mass        [kg] 

Q Heat capacity       [kW] 
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T Temperature       [
o
C] 

Ta Ambient Temperature      [
o
C] 

Tc Temperature cold input fluid     [
o
C] 

Tg Temperature of generator fluid    [
o
C] 

Ts,t Temperature of storage tank fluid    [
o
C] 

U Overall heat transfer coefficient    [W/m
2
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2
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CHAPTER I 

 

INTRODUCTION 

 

 

During the summer months of year 2012, numerous parts in the United States experience 

drought due to insufficient rain and excess heat. The farmers reported loss of crops due to 

drought. There was a foreseeable rise in food prices due to reduction in transportation in our 

major water ways due to lower water levels. These were not a sudden unexpected event, but a 

gradually increasing effect of global warming, a phenomenon described as a rise in temperature 

of planet earth, the rise sea water.  Scientific community attributed the release of greenhouse 

gases such as CO2, NOx, and CH4 as primary cause of global warming.  These gases are released 

due to increased use of fossil fuels to generate electric power and heat energy.   

The energy demand is an increasing trend due to extreme warm or extreme cold 

conditions.  Greater consumption of fossil fuels results in greater amount of greenhouse gases, 

exacerbating the global phenomenon.  In order to prevent further rise in global warming 

phenomenon, drastic changes in energy use should be made or shift from use of fossil fuels to 

renewable energy resources such as solar or wind energy.   

It was found that nearly 72 percent of electric power produced in the U.S. is employed in 

energy needs of buildings.  One way to reduce such a large chunk of electric power demand is 

the use of solar energy for heating and cooling of the buildings.  Solar energy is typically 

captured by use of solar collectors such as evacuated tube or flat plate solar collectors, through 

which air or water is passed through.  The collector fluid then can be directly employed to heat 
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the building space by passing through the heating coils a device similar to the radiator of ta car.  

In order to cool the building, chilled water is necessary which is typically produced by use of 

solar absorption refrigeration cycle. 

There are two types of solar absorption chillers, namely single-effect and double-effect 

absorption chillers.  Single-effect absorption chillers are less efficient with COP values in the 

range of 0.4 – 0.72, but requires hot water at a temp range of 70-95 
o
C as input energy resource, 

which is easily obtained from use of flat plate or evacuated tube solar collectors.  Double-effect 

absorption chillers have COP range of 1.2 – 1.3, but requires use of hot water at temperatures 

around 200
o
C.   

 

Literature Survey 

 

Saman, N. F and Sa’id, W. K [1] developed a simple model of small capacity absorption 

chiller, based on first law of thermodynamics with lithium bromide -Water solution absorption 

system and concluded that COP can reach up to 0.8 for a single-effect chiller.  Ghaddar, N. K, 

Shihab, M,and Bdeir, F [2] conducted a simulation with lithium bromide - water solution solar 

absorption system for a small residential application at all climatic conditions of Beirut, 

Lebanon. They concluded that the solar cooling system is marginally competitive only when 

combined with domestic water heating, which corresponded to a solar fraction of 20% to 26% 

for constant load extraction and 38% to 44% for a variable load extraction. 

Li, Z. F and Sumathy, K [3] conducted a simulation of lithium bromide - water solution 

solar absorption system and concluded that the COP of the system is higher for partitioned hot 

water storage tank connected to the solar collectors. Assilzadeh et al [4] presented a simulation 

of a LiBr solar absorption system with evacuated tube collectors, in Malaysia. They concluded 

that for optimum performance of 3.5kW (1Ton) capacity system, to meet the peak cooling load 
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of 7150 MJ in the month of February, 0.8m
3
 hot water storage tank is essential. The solar 

collector area should be 35m
2
, with the collectors sloped at 20

o
. 

Lazzarin, R. M [5] modeled a solar absorption chiller system to improve the seasonal 

performance of the system, where the on-off control capacity mode can be very penalizing.  In 

his model, the load for the chiller can be supplemented by adding a cold storage tank.  Instead of 

a steady operating COP of 0.6-0.7, the seasonal COP can be lower than 0.2.  A cold storage tank 

properly sized and operated can be of great help to improve the seasonal performance of the 

cooling plant. 

Boehm, R. F [6] developed a model of single-effect solar absorption system with 0.45 m
3
 

storage tank, 63.7 m
2
 collector area, and a 35 kW chiller. Economic cost benefits analysis of the 

model showed an annual savings from $3,448 to $1,737 over the traditional 28 kW vapor 

compression system, with simple payback periods of 18 to 36 years depending on collector 

efficiencies and electrical rate variations. The model also proved that the system can supply over 

20 kW of continuous cooling for 8 hours on a typical summer day.  Bahman, A [7] presented a 

model of single-effect solar absorption system, for the weather conditions of Tampa, FL.  His 

model proved that for lower lithium bromide concentration in the lithium bromide - water 

solution, the COP can reach up to 0.94. 

Present investigation considers a 70’ x 70’ commercial building located in Chattanooga, 

Tennessee, and is heated and cooled by two types of solar collectors, in conjunction with single-

effect absorption chillers. 

 

Mechanical Vapor Compression Cycle vs Absorption Cycle 

Absorption chillers use heat, instead of electrical or shaft power, to provide cooling.  The 

mechanical vapor compressor is replaced by a thermal compressor (as seen in the Figure 1.1) that 
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consists of an absorber, a generator, a pump, and a throttling device.  The refrigerant vapor from 

the evaporator is absorbed by a solution mixture in the absorber.  This solution is then pumped at 

significantly less power to the generator where the refrigerant is re-vaporized using a waste 

steam or hot water heat source.  The refrigerant-depleted solution is then returned to the absorber 

via a throttling device. The two most common refrigerant/absorbent mixtures used in absorption 

chillers are water/lithium bromide and ammonia/water. 

Compared to mechanical chillers, absorption chillers have a low coefficient of 

performance (COP = chiller load/heat input).  Nonetheless, they can substantially reduce 

operating costs because they are energized by low-grade waste heat, while vapor compression 

chillers must be motor or engine driven.  Low-pressure, steam-driven absorption chillers are 

available in capacities ranging from 10 to 1,500 tons. Absorption chillers come in two 

commercially available designs: single-effect and double-effect. 

 

Figure 1.1 Mechanical Vapor Cycle vs Absorption Cycle 
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Single-effect machines provide a thermal COP of 0.7 and require about 18 pounds of 15-

pounds-per-square-inch-gauge (psig) steam per ton-hour of cooling.  Double-effect machines are 

about 40 percent more efficient, but require a higher grade of thermal input, using about 10 

pounds of 100- to 150-psig steam per ton-hour. 

 

Double Effect Absorption Cycle  

 

Absorption chillers are generally classified as direct- or indirect-fired, and as single, 

double – or triple-effect.  In direct-fired units, the heat source can be gas or some other fuel that 

is burned in the unit.  Indirect-fired units use steam or some other transfer fluid that brings in 

heat from a separate source, such as a boiler or heat recovered from an industrial process.   

Hybrid systems, which are relatively common with absorption chillers, combine gas systems and 

electric systems for load optimization and flexibility.  The single-effect cycle refers to the  

transfer of fluids through the four major components of the refrigeration machine - evaporator, 

absorber, generator and condenser, as seen in the Pressure-Temperature diagram in Figure 1.2. 

 

                             

Figure 1.2 Single Effect Absorption Cycle 
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Single-effect absorption chillers have COPs of approximately 0.6-0.8 out of an ideal 1.0.  

Since the COPs are less than one, the single-effect chillers are normally used in applications that 

recover waste heat such as waste steam from power plants or boilers. 

The desire for higher efficiencies in absorption chillers led to the development of double-

effect LiBr/H2O systems.  The double-effect chiller differs from the single-effect in that there 

are two condensers and two generators to allow for more refrigerant boil-off from the absorbent 

solution. 

Figure 1.3 shows the double effect absorption cycle on a Pressure-Temperature diagram.  

The higher temperature generator uses the externally supplied steam to boil the refrigerant from 

the weak absorbent.  The refrigerant vapor from the high temperature generator is condensed and 

the heat produced is used to provide heat to the low temperature generator. 

 

 

Figure 1.3 Double Effect Absorption Cycle 

 

Double-effect absorption chillers are used for air-conditioning and process cooling in 

regions where the cost of electricity is high relative to natural gas.  Double-effect absorption 

chillers are also used in applications where high pressure steam, such as district heating, is 
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readily available. Although the double-effect machines are more efficient than single-effect 

machines, they have a higher initial manufacturing cost.  There are special materials 

considerations, because of increased corrosion rates (higher operating temperatures than single-

effect machines), larger heat exchanger surface areas, and more complicated control systems. 

Double-effect absorption chillers have COPs of approximately 1.0 out of an ideal 2.0.  

While not yet commercially available, prototype triple effect absorption chillers have calculated 

COPs from 1.4 to 1.6.
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CHAPTER II 

 

MODELING OF ABSORPTION CHILLERS AND SOLAR COLLECTORS 

 

 

 Modeling of  Absorption Chillers  

               The absorption chillers produce chilled water by use of hot water or steam to power it. 

A simple schematic of the single-effect absorption chiller is shown in Figure 2.1. In a solar 

powered absorption chiller, hot water produced from solar collector is supplied to the generator  

of the chiller at temperature Tg, while the cooling water from the cooling tower (not shown in the 

Figure) is supplied to the absorber and condenser of the chiller at temperature Tc.    

 

heat exchanger
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Evaporator Absorber
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Cooling Water

Hot Water, 
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Cooling Water

                                  
Figure 2.1 Schematic of Single-Effect Absorption Chiller 
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The cooling capacity of the absorption chiller is primarily dependent upon two key 

variables the temperature of the hot water (Tg) supplied to power the chiller and temperature of 

the cooling water (Tc) employed from the cooling tower to the absorber and condenser of the 

chiller as shown in the Figure 2.1. The rated refrigeration capacity (qc), which is the rate of heat 

absorbed in the evaporator of the chiller, the rated heat supplied to the generator (qg) at 

temperature Tg at rated conditions of Tc = 85
0
F(31

0
C), Tg = 190.4

0
F (88

0
C) with a mass flow 

rates of mc = 5.1 kg/s,      mh = 2.4 kg/s are for a ten ton capacity chiller are qc = 35.2 kW, qg = 

50.2 kW. 

However, the temperature of the entering cooling water temperature Tc and entering hot 

water temperature Tg to the generator of the chiller are dependent upon the ambient conditions 

for a given system. In order to estimate the performance of the chiller for an arbitrary values of 

the Tc  and Tg are obtained by the manufacturers of the absorption chiller and are typically shown 

in charts as shown in Figure A.1 in the Appendix. Based on this experimental data, the 

performance of the  absorption chiller can be modeled as follows: 

The cooling capacity of the absorption chiller qcc  is given by  

                            

                                qcc  =  ccf *(35.2 kW * 3413 Btu/hr.kW)                              (2.1) 

  

where, 35.2 kW is the rated capacity of the 10 ton capacity absorption chiller  

and ccf is the cooling capacity factor derived from the manufacturers catalog graphical data and 

is given by 

22

322

000122903.00208588.070000026817.000106584.01

50000018717.000034409.0017467725.00000021632.000094052.023834566.0

ccgg

cccgg

TTTT

TTTTT
ccf






                                                                                                                                                    (2.2)
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The energy supplied qg to the absorption chiller in the form of hot water, typically supplied from 

the storage tank is given by 

                                                 qg  =  hif (50.2 kW)                                                                   (2.3) 

 

where, 50.2 kW is the rated heat supplied to the absorption chiller of 10 ton capacity. 

and hif is the heating input factor and is given by  

 

cggg

cccgg

TTTT

TTTTT
hif

00034889.030000001886.00000973525.001697269.01

40000001225.0000016538.0001044284.0000011292.0003078753.025913779.0
32

322




  

                                                                                                                                                   ( 2.4) 

 

The COP of the absorption refrigeration chiller then would be given as  

 

                                                         COP  =  
gq
cq

                                                                      (2.5) 

 

             Since, the qc is related to ccf in turn to the Tc and Tg, from Equation (2.2) and qg is 

related to hcf which in turn is related again to the Tc and Tg, from Equation (2.4)  it may be 

concluded that the COP of the absorption chiller is also related to the key variables Tc and Tg.   

The hot water supplied to the absorption chiller is provided by the solar collectors. The 

solar collectors are typically made of copper plates embedded with copper tubes typically placed 

on the plate in serpentine form through which collector fluid such as glycol solution is circulated 

to get heated up by the black coated absorber copper plate. The absorber plate is encased in a 

steel frame backed by the insulation to reduce the thermal loss from the back plate and the front 

of the absorber plate is covered by one or two glass cover to reduce the thermal loss due to 

convection and radiation. The performance of the solar collectors is typically expressed in terms 

of useful energy gained by the collector fluid and is typically dependent upon key variables such 
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as the magnitude of incident solar flux called solar insolation It, and others. In order to determine 

the It, one must determine the following solar angles.               

 

Determination of Solar Angles  

The solar energy arriving on the surface of the earth consists of two components, namely 

the beam or direct solar energy and the diffuse energy. The direct component is the one that 

exists predominantly on a clear sky conditions coming directly from the Sun in the form of 

beam. Due to presence of dust particles and gases such as CO2, NOx , H2O and the clouds the 

beam radiation is scattered in several directions and results into the diffuse radiation, which 

exists predominantly on a cloudy day. In the deep space beyond the earth’s atmosphere, the solar 

energy exists only in the direct  or beam form. 

 

Estimation of Total Incident Solar Irradiance on a Surface on the Earth 

Due to rotation of the earth about its own axis as well around the Sun, the estimate of 

incident solar irradiance, It consisting of beam and diffuse components involves determining 

various solar angles namely: 

 Declination angle (δ) is the angle made by the equator with sun’s rays as shown in  

Figure 2.2 

 Surface latitude angle (λ) is the angle between the radius vector of the location from the 

center of the earth and equatorial plane as indicated in the Figure 2.2 

 Hour angle () is the angle between the meridian of plane of sun’s rays make with local 

meridian at the center of the earth in an equatorial plane as shown in Figure 2.2 
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Figure 2.2 Illustration of Latitude, hour angle and solar declination 

 

The magnitude this extra-terristrial solar radiation Io is given by 

                          

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
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25.365

360
033.012.435

.

0

2
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Cos

fthr

Btu
I o                                            (2.6) 

 Solar azimuth angle (ϕs) is the angle between the projection of the sun’s rays on a local 

horizontal plane and the south direction as shown in Figure 2.3a 

 

                

                                       Figure 2.3 Solar Angles for a Tilted Surface 
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 Solar zenith angle (θs) is the angle between the sun’s rays and the normal on the local 

horizontal plane as shown in Figure 2.3a 

 Surface azimuth angle (ϕp) is the angle between the normal to the surface with south 

direction as shown in Figure 2.3b 

 Surface tilt angle (θp) is the angle between the surface and the local horizontal as shown  

in Figure 2.3b 

 Solar incident angle (θi) is the angle between the normal to the surface with sun’s rays as 

shown in Figure 2.3b 

 The declination angle (δ) can be given as, 

                             
25.365

)10(360
45.23

0
0 


n

CosSinSin                                       (2.7) 

where, n is the day of the year with January 1 being n = 1.  

 The hour angle (ω) can be estimated in terms of solar time (tsol) from, 

                                 
h

htsol

24

)12(3600 
                                                               (2.8) 

 The solar time, tsol is related to the local standard time, tstd as 

                               
hr

E

hr

LL
tt t

o

locstd

stdsol
/min60/15




                                                   (2.9) 

where  tstd = local standard time 

           Lstd = longitude of the standard time, for United States, Eastern = 75
0
, Central = 90

0
,  

                     Mountain =  105
0
, Pacific = 120

0
. 

           Lloc = longitude of the location in degrees. 

          

 Et   = equation of time is the difference between the solar noon and noon time based  
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                     on local Time and it varies over the year. 

It may be noted that solar noon refers to the time when sun reaches the highest point in the sky. 

 The equation of time Et is obtained from 

           



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 The solar zenith angle (θs) as shown in the Figure 2.3 can be estimated from, 

                     Cos θs  =   Cos λ  Cos δ  Cos ω   +  Sin λ  Sin δ                                       (2.11) 

 Now, the solar azimuth angle (ϕs) in terms of solar zenith angle (θs) is obtained as follows 

                                     
s

s
Sin

SinCos
Sin




 )(                                                         (2.12) 

Finally, the solar incident angle (θi) is given by 

                    Cos θi  =   Sin θs Sin θp Cos (ϕs – ϕp)  +  Cos θs  Cos θp                             (2.13) 

where, ϕs is the solar azimuth angle given by Equation (4.7) while the surface azimuth angle ϕp 

as shown in the Figure 4.2 is the angle made by the surface normal with south direction. The tilt 

angle of the surface θp is the angle of inclination of the surface with local horizontal surface as 

shown in Figure 4.3b. 

 Now the total incident solar load It is the sum of  

(i) the solar direct radiation (Idir) incident normal to the surface 

(ii) the solar diffuse radiation (Idif), the diffuse radiation is the radiation scattered from the  

            surroundings and the dust particles present in the atmosphere.  

(iii) the solar radiation reflected from the ground 
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where, Iglo,hor is the global horizontal radiation incident on the horizontal surface. 

The weather stations in many major cities record hourly data consisting of Idir, Idif,hor, 

Iglo,hor , the ambient air temperature, the dew point temperature, the relative humidity, wind speed 

and direction, cloud cover factor and many other data. The meteorologists obtained the average 

of 25 to 30 years of such data and designated this data as the typical meteorological year (TMY) 

for that city.  Use of such data allows a more detailed and accurate estimate of solar loads. 

 

Modeling of Solar Collectors 

Flat plate solar collectors are employed in majority of the solar energy installations in the 

world. They are relatively cheap and easy to maintain compared to other types of solar 

collectors. A typical flat plate solar collector as shown in Figure 2.4, consists of a flat box 

containing a black coated copper plate embedded with tubes placed in serpentine fashion or in 

parallel tubes as shown in Figure 2.5, and the plate is lined with the insulation at the bottom of 

the plate and with one or two glass or plastic covers on the top.  The following derivations are 

presented based on the references from Duffie and Beckman and from Dhamshala’s handouts 

presented in the class [8 and 9].   

         Thermal analysis of these collectors starts with recognizing the modes of heat transfer 

occurring at different components of the collector. The solar radiation striking the top glass cover 

is transmitted through the glass covers and eventually gets absorbed by the black coated absorber 

plate. Tiny fractions of energy striking the glass covers and absorber plate gets reflected, but the 

majority of the energy is absorbed by the absorber plate causing its temperature to rise. The 

major portion of the absorbed energy by the plate is convected to the collector fluid passing 

through the tubes bonded to the plate, while the remaining absorbed energy is dissipated to the 
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ambient air from top and bottom of the collector. The heat loss from the back is essentially 

controlled and reduced by the insulation placed in the back, while the heat loss from the top of 

the absorber plate involves natural convection and radiation between the plates. The heat transfer 

coefficient hw  (W/m
2
.K) due to convection between the wind with velocity V (m/s) and the top 

glass cover plate of the solar flat plate collector is given by 

                                                            hw  =   5.7  +  3.8 V                                       (2.15) 

 

                  

Figure 2.4  Flat Plate Collector                       Figure 2.5 A Flat Plate Collector with Glass Covers 

 

The net heat transfer due to radiation between two surfaces of areas A1 and A2 is given by 
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where 

      q1   =   net heat transfer between surface 1 and surface 2, in W or Btu/hr 

      q2   =   net heat transfer between surface 2 and surface 1, in W or Btu/hr 
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      T1   =  absolute temperature of surface 1, in K or R 

      T2   =  absolute temperature of surface 2, in K or R 

      ε1    =  emissivity of surface 1 

      ε2    =  emissivity of surface 2 

      F12  =  view (shape) factor of surface with respect to surface 2 

 

If the surfaces are parallel to each other and the space between these surfaces is relatively small 

compared to their areas, a typical case with glass covers of a flat solar collector,  

then A1 = A2 = A and F12 = 1 for this case the Equation (2.16) reduces to  
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The equation (2.17) can be expressed in a linear form in terms of radiational heat transfer  

coefficient hr as follows. 

                                               q1  =  -q2  =  hr A ( T1 – T2 )                                       (2.18) 

    

where,                        
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The fraction (τα) of incident energy on the solar collector is absorbed by the abosober plate and a 

fraction of (1 - α) τ is reflected back to the cover system, which is probably more diffuse than 

specular. The fraction that is reflected back to the absorber plate is (1 - α) τ ρd. The multiple 
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reflection of diffuse radiation continues so that the energy ultimately absorbed is expressed in 

terms of the transmittance-absorptance product of the plate cover system (τα)cs  and is given by 

                                               (
d

cs





)1(1
)


                                           (2.20) 

where 

             τ    =  transmittance of the glass cover 

             α    =  absorptance of the plate 

and       ρd   =  diffuse reflectance of the glass cover system is found to be approximately equal  

                        to 0.16, 0.24, 0.29 and 0.32 for one, two, three and four glass cover systems,  

                        respectively. 

The actual solar energy absorbed S (W/m
2
) by the absorber plate of the solar collector is  

given by 

                                   S (W/m
2
, or Btu/hr.ft

2
)  =  [ It (τα) ]beam +  [It (τα) ]diffuse        (2.21) 

 

Typically the combined value for (τα) for beam and diffuse components range from 0.7 to 0.8 

 The thermal circuit of a three glass cover system is represented in Figure 2.6. 
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Figure 2.6. Thermal Circuit of a Flat Plate 

Solar Collector 

where 

           R1  =  the thermal resistance due to conduction of the back insulation = kins/Lins  

           R2  =  thermal resistance due to convection and radiation to the ambient air from back 

           R3  =  thermal resistance due to convection and radiation between the absorber plate  

                     and the glass cover 1                      

           R4  =  thermal resistance due to convection and radiation between the glass  

                     covers 1& 2 

           R5  =  thermal resistance due to convection and radiation between the glass  

                     covers 2& 3 

           R6  =  thermal resistance due to convection and radiation between the glass  

                     covers 3, ambient air and the sky 
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The magnitude of the resistance R2 is very small compared to the R1 and therefore the overall 

heat transfer coefficient  Ub for the back loss can be approximated as 

                                                  Ub  =  1 / R1  =  kins / Lins                                      (2.22)  

where,     kins  = coefficient of thermal conductivity of the insulation, W/m.K or Btu/hr.ft.R 

               Lins  =  thickness of insulation, m or ft 

The thermal resistances R4 is approximately equal to R5 , and these resistances are not 

generally equal to  R3, since R3 is dependent upon the absorber plate emittance, which is not 

equal to that of the glass. The absorber plate is coated with selective coating with high value of 

absorptance for the solar energy and low emittance for the long wave radiation loss from the 

plate. 

 Practical limit for number of glass covers is three with most systems use only one or two. 

 The thermal resistance R3 can be given as 

                                                             
rc hh

R



1

3                                                (2.23) 

where 

                    hc  =  coefficient of heat transfer due to convection, W/m
2
.K or Btu/hr.ft

2
.R 

                    hrp  =  coefficient of heat transfer due to radiation, W/m
2
.K or Btu/hr.ft

2
.R 

 The air between the absorber plate and the glass cover is practically stagnant and 

therefore it involves natural convection, which is controlled by the magnitude of Grashof 

number. A convenient relation for hc for an air space at 45
0
 tilt angle is given by 
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                                             hc  =  1.14 
07.0

31.0

)(

)(

L

T
                                                          (2.24)             

where 

              ∆T =  temperature difference between the parallel plates in 
0
C 

               L  =  plate spacing in cm 

the hr  can be estimated from Equation (2.19) by substituting the Tp for T1 and εp = ε1 and Tg1 = 

T2 and εg = ε2  

 Similar procedure is employed in determining the thermal resistances, R4 and R5 by 

substituting the temperatures of glass covers 1, 2 and 3.  

 The thermal resistance R6 can be given as 

                                                         
6

6

1

rw hh
R


                                                (2.25) 

The hw is obtained from Equation 1 and the the hr6 can be estimated from Equation (5) by 

substituting the Tg3 for T1 and εg = ε1 and Ta = T2 and εg = ε2.  

The overall heat transfer coefficient Ut for the top can be estimated from 

                                               
6543

1

RRRR
U t


                                      (2.26) 

More than 98 percent of solar energy is within the wavelength band of 0.2 to 3.0 μm 

(microns, 1 μm = 10
-6

 m), while the heat radiated at ordinary room temperatures is mostly 

infrared or long wave radiation. Normal window glass is practically opaque to long wave 

radiation while it allows transmission of more than 80 percent of sunlight. In order to have 

favorable thermal characteristics, the absorber plates have selective low e- coatings that have low 

emiitance (< 0.1) for long-wave radiation and high absorptance (>0.90)  for solar radiation. 
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Optical characteristics of the commonly employed glazing (glass cover) materials are shown in 

Table 2.1. 

 

                                  Table 2.1 Radiational Characteristics of Glazing Materials 

Materials Thickness 

(mm) 

Solar 

Transmittance 

Long-wave 

Transmittance 

Float glass (normal window glass) 3.9 0.83 0.02 

 

Low-iron glass 3.2 0.9  

0.02 

Perspex 3.1 0.82  

0.02 

Ploy vinyl fluride (tedlar) 0.1 0.92  

0.22 

Polyster (mylar) 0.1 0.87  

0.18 

 

 

For a plate temperature of 100
0
C with ambient and sky temperatures of 10

0
C, plate spacing of 

2.5 cm, tilt of 45
0
 and wind speed of 5 m/s (11 mph) the Ut value varies as follows: 

(i) one cover, εp = 0.95;  Ut = 8.1 W/m
2
.K 

(ii) one cover, εp = 0.10;  Ut = 4.0 W/m
2
.K 

(iii) two covers, εp = 0.95;  Ut = 4.3 W/m
2
.K 

(iv) two covers, εp = 0.10;  Ut = 2.6 W/m
2
.K 

 Finally, the overall heat transfer coefficient UL for the solar collector can be estimated 

from 

                                               UL  =  Ut  +  Ub  +  Ue                                                 (2.27) 

where,  Ue  =  overall heat transfer coefficient for the edges of the collector, which can be 

insignificant for a large size solar collector. 
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Performing the energy balance on the absorber plate gives 

                                           S  =  qu  +  qt  +  qb  +  qe                                                 (2.28) 

where      

                qu  =  the rate of energy gained by the collector fluid, W, Btu/hr 

                qt  =  the rate of energy loss by the collector from top, W, Btu/hr 

                qb  =  the rate of energy loss by the collector from bottom, W, Btu/hr 

                qe  =  the rate of energy loss by the collector from the edges, W, Btu/hr 

 For the case of negligible edge loss from the collector, the total loss from the collector 

would be from the top and bottom, given by 

                                                     qloss  =   UL (Tp -  Ta)                                              (2.29) 

                                                  qu  =   S  -  UL (Tp -  Ta)                                            (2.30)  

The equivalent thermal circuit for the case of negligible edge loss is as shown in Figure 3b.  

Typically the Ub is 7 to 10 times lower than that of Ut. On observing the Equation (2.30), 

one can obtain greater useful energy qu for low values of UL. Recently produced windows 

employ heavy gases in place of air space to minimize the heat convection loss and low E- 

coatings to reduce the radiation heat loss. Impact of these techniques on UL can be seen from the 

data presented in Table 2.2. 

It may be noted that the useful energy gained by the collector is related to the mean 

temperature of the absorber plate, which is very inconvenient to determine. In order to eliminate 

this parameter, one has to perform the thermal analysis of the absorber plate treating it as a fin 

between the centerlines of two adjacent tubes, as shown in Figure 2.7. 
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Figure 2.7 Equivalent Thermal Circuit 

 

 

Table 2.2 Impact of Glazing and Gas on UL 

Ref: Renewable Energy, Power for a Sustainable Future, by Godfrey Boyle 

Window Type U-Value (W/m
2
.K) 

 

Single glazed window 6 

 

Double glazed window  

3 

Double glazed window with low-E-coating  

1.8 

Double glazed window with low-E-coating plus heavy 

gas filling 

 

1.5 

Three plastic films with low-E-coating plus heavy gas  

0.35 

Evacuated space with low-E-coating  

1.0 

Fiberglass insulation (10 cm thick) for comparison  

0.4 

 

 

It may be noted that the useful energy gained by the collector is related to the mean 

temperature of the absorber plate, which is very inconvenient to determine. In order to eliminate 

this parameter, one has to perform the thermal analysis of the absorber plate treating it as a fin 

between the centerlines of two adjacent tubes, as shown in Figure 2.8. 
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                                               qu  =   W F
’
 [ S  -  UL ( Tcm  -  Ta ) ]                                 (2.31) 

where       

             W  =  width between tqo adjacent tubes in the absorber plate, m or ft 

             Ta  =  ambient temperature, 
0
C or 

0
F 

             Tcm  =  mean collector fluid temperature, 
0
C or 

0
F 

             F
’
  =  dimensionless parameter representing the ratio of the overall thermal resistance  

                      of the collector to that of the collector fluid to the ambient air and is given by 
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                     (2.32) 

where  

Di, D  =  inner and outer diameter of the tube attached to the absorber plate, m or ft 

     Cb =  thermal conductance of the bond employed to attach the tube to the absorber plate,  

              for a good fabricated plate with well bonded tube, the bond resistance i.e 1/Cb is  

              negligible 

      hc,i = the heat transfer coefficient between the collector fluid and inner surface of the  

               tube, W/m
2
.K or Btu/hr.ft

2
.R 

      F  =  the fin efficiency and is given by 

                                                    
  

 2/)

2/)tan

DWm

DWmh
F




                                       (2.33) 

where,                                                        m
2
  =  UL / k δ                                              (2.34) 

               k  =  coefficient of thermal conductivity of the absorber plate, W/m.K or Btu/hr.ft.R 

               δ  =  thickness of the absorber plate, m or ft 

The heat transfer coefficient for the collector fluid can be found from 
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                                            Nui  =  
f

iic

k

Dh ,
 =  0.023 

4.08.0

red PR                                       (2.35) 

where 

                kf  =  coefficient of heat transfer due to convection, W/m
2
.K or Btu/hr.ft

2
.R 

                Red =  Reynold’s number based on inner diameter = 
 iD

m
.

4
 

                
.

m   =  mass flow rate of the collector fluid, kg/s or lb/hr 

               

                 μ   =  dynamic viscosity of the fluid, kg/m.s or lb/ft.hr 

                Pr  =  Prandtl number of the fluid  = μ cp/kf 

                cp = specific heat at constant pressure of collector fluid, J/kg.K or Btu/lb.R 

 

                                Figure 2.8 Absorber Plate and Bonded Tube Dimensions 

 

However, the useful energy gained by the collector fluid, qu is related to the mean fluid 

temperature Tc,m which may be inconvenient to obtain. Performing the energy balance on a 

differential fluid element along the fluid flow direction as shown in Figure 2.9, one can 

determine qu as 

                                           qu  =  Ac FR [ S  -  UL(Tc,i  -  Ta) ]                                    (2.36) 
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where 

                Tc,i  =  the inlet temperature of the collector fluid, 
0
C or 

0
F 

                Ac  =  the solar collector surface area, m
2
, ft

2
 

                FR  =  the heat removal factor and is given by 
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where,  G =  mass flow rate of the collector fluid per unit area =  




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Figure 2.9 Energy Balance on a Fluid Element Within a Tube 

 

The performance of flat plate solar collector is expressed in terms of energy collected (qc) by the 

collector fluid as given by 

                                    qc  =  Ac FR [ IT ηo  -  UL ( Tci  -  Ta ) ]
+
                                   (2.38) 

where  

            Ac  = collector surface area, m
2
 or ft

2
 

            IT  =  total radiation intensity on the plane of the collector (W/m
2
 or Btu/hr.ft

2
) 
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            ηo  =  optical efficiency or the product of the transmittance and absorptance (τα) of the  

                      cover and absorber plate.   

            UL  =  overall heat transfer coefficient of the collector (W/m
2
.K or Btu/hr.ft

2
.R) 

            FR  = heat removal factor ( = actual heat transfer / max heat transfer) 

            Tci  =  fluid inlet temperature to the collector (
0
C or 

0
F) 

            +  sign denotes that negative value in the square parenthesis is set to zero indicating  

                that collector loses more heat energy than it can collect. 

Flat plate solar collector efficiency (ηc) is given as  
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or alternatively, 
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The ASHRAE Standard 93-77 (1978) is the most widely used test procedure to test the solar flat 

plate collectors and the test data is best curve fitted and displayed as a linear equation form as 

shown in Figure 2.10. 

 The equation (2.40) reduces to a simplified linear form based on the SRCC certification 

document as shown in Appendix Figure A.2  

                                    
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
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

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TT
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                                    (2.41) 
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Figure 2.10 Thermal Performance Curve for a Double-Glazed Flat Plate Liquid Collector 

 

where, Kθ   =  Incident angle modifier and is given by  =  (1 / Cos θ)  -  1                (2.42) 

            θ  =  angle of incident of the beam radiation with the normal to the solar collector  

           Tci  =  temperature of the collector fluid at the inlet to the collector, 
0
C 

           Ta  = ambient temperature, 
0
C 

           It  =  total incident solar flux on the tilted solar collector, W/m
2
 

Efficiency expression as given by Equation (2.41) is used in the computer simulations code. 

 

Evacuated Tube Solar Collectors 

Evacuated tube solar collector consists of a black coated copper tube containing a heat 

pipe fluid enclosed in an evacuated glass tube. Typically either 20 or 30 tubes are placed in  row 

and the top of the copper tubes is connected to a heat exchanger placed in the top header of the 

collector as shown in the Figure 2.11. The collector fluid is passed through the header where its 

gets heated when the tubes are exposed to the solar energy.  
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Figure 2.11 Evacuated Tube Solar Collector (Courtesy of SunMaxx Co.) 

The major advantage of evacuated tube collectors the heat loss due to convection from 

the hot absorber surface to the surroundings is eliminated due to vacuum conditions and the only 

loss is due to the radiation, which is typically not significant. Higher collector fluid temperatures 

can be achieved from this collector as compared to the flat plate unit and also high efficiency is 

possible even at a very low surroundings temperature. A copy of the SRCC document for such 

collector is shown in the Appendix Figure A.3 and the collector efficiency for this unit can be 

given as 

                                    
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where, Kθ   =  Incident angle modifier and is given by  =  (1 / Cos θ)  -  1                (2.42) 

            θ  =  angle of incident of the beam radiation with the normal to the solar collector  

           Tci  =  temperature of the collector fluid at the inlet to the collector, 
0
C 

           Ta  = ambient temperature, 
0
C   

http://www.sunmaxxsolar.com/thermosyphon-evacuated-tube-solar-collectors.php
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CHAPTER III 

 

ESTIMATION OF BUILDING LOADS  

 

 

                 The transient ambient conditions of temperature, humidity and intensity of solar 

energy causes varying rates of heat and moisture transfer across the building envelop throughout 

the year. The moisture diffusion occurs due to difference in vapor pressure of the moisture 

present in the outside and indoor air that leaks through the cracks present in the building envelop 

or along the edges of doors and windows.  The space in an air conditioned building is maintained 

at desirable conditions either for the comfort of the occupants. The desirable conditions are 

typically characterized by the specification of space humidity, temperature, air movement and air 

free from impurities, dust particles, viruses and other pollutants. A relative humidity range of 

around 35-55 percent and a space temperature of about 23-26
0
C (72-78

0
F) are considered to be 

comfortable for most of the occupants and these conditions are commonly referred to as the 

design indoor air conditions. A certain amount of outside air is ventilated through the space in 

order to maintain indoor air quality (IAQ) free of impurities and excess amounts of carbon 

dioxide. In most cases, during summers, the accumulated moisture due to perspiration of the 

occupants and other moisture and heat releasing sources such as occupants, appliances, and 

lights is mixed with the outside ventilation air of high humidity and temperature causing the 

space temperature and humidity to rise above the desired levels. Under these circumstances, the 

desirable indoor air conditions are often maintained at near constant values by supply of 

relatively dry chilled air to absorb the excess heat and moisture. During winters, the direction of 
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moisture and heat transfer would be from inside to the outside air. The difference in humidity of 

indoor air from the desirable level contributes to the building load known as latent load as 

opposed to the sensible load that refers to the heat transfer due to temperature difference across 

the building envelop or that produced from the indoor heat sources. The space heat gain from 

solar energy transmitted through windows, and the heat released from the internal sources such 

as occupants, lights and appliances are absorbed by the building envelope and furnishings 

causing their temperature to rise. Due to thermal capacitance of the envelope and its contents, 

there exists a time lag before these heated walls of the enclosure and furnishings dissipate heat 

by convection to the air in the space.  The required rate of heat removal from the space air to 

maintain it at the summer design indoor air conditions for the given hour is called the hourly 

cooling load. Similarly, the required rate of heat to be supplied to the space air to maintain it at 

the winter design indoor air conditions for the given hour is called the hourly heating load. The 

maximum rate of heat removal from the indoor air to keep it at the summer design indoor air 

conditions during a year depends upon the characteristics of the building, its location and the 

extent of internal load sources the building has. The magnitude of this maximum rate of heat 

removal is commonly referred to as peak cooling load while the peak heating load refers to the 

magnitude of the maximum rate of heat supplied to the indoor air to keep it at the winter design 

indoor air conditions. Typically, the sizes of the cooling and heating system of the building are 

determined from the peak cooling and heating loads.     

The weather stations in many major cities record hourly data consisting of Idir, Idif,hor, 

Iglo,hor , the ambient air temperature, the dew point temperature, the relative humidity, wind speed 

and direction, cloud cover factor and many other data. The meteorologists obtained the average 

of 25 to 30 years of such data and designated this data as the typical meteorological year (TMY) 
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for that city.  Use of such data allows a more detailed and accurate estimate of hourly building 

loads. 

 Sol-Air Temperature 

As presented in the last chapter that the outside air temperature (to) and the total solar 

energy incident on a unit area of a surface (It) on the earth are functions of time, location, day of 

the year, and titlt angle of the surface. These two variables directly affect the amount of heat gain 

through a wall or glass window of a building. In order to couple the effect of these two variables 

into a single parameter, sol-air temperature, te is defined to represent the outdoor air that in the 

absence of all radiation effects gives the same heat gain into the surface as would be the 

combination of incident solar radiation exchange with the sky and other outdoor surroundings, 

and convective heat exchange with outdoor air. Heat flux, q
”
 into sunlit external surface can be 

given as 

                                            q
”
 = q/A  =  α It + ho (to – ts) - ε ∆R                            (3.1) 

Based on the definition of the sol-air temperature, te the same heat flux can be given as 

                                            q
”
  =  q/A = ho (te – ts)                                                 (3.2) 

Equating the above two equations, one can get 

                      
oo

t
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h
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I
tt





                        (3.3) 

      where te = sol-air temperature 

to = current hour dry-bulb temperature  

 = absorptance of surface for solar radiation 

ε = emittance of the surface  

It = total incident solar irradiation (W/m
2
 or Btu/hr.ft

2
) 
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ho = heat transfer coefficient by long-wave radiation and convection at the outer surface 

(W/m
2
.K or Btu/hr.ft

2
.R) 

∆R =   difference between the long-wave radiation incident on the surface from the  

           sky and the surroundings and the radiation emitted by the black surface at  

           the outdoor air temperature. 

oh

R
 = long wave radiation factor = 3.7

0
C (6.7F) for horizontal surfaces;  

         =  0
0
C (0F) for vertical surfaces 

oh


 =   surface color factor = 0.026 for light colors and 0.052 for dark colors 

It may be noted that for horizontal surfaces that receive long-wave radiation from sky only, an 

appropriate value for ∆R ≈ 63.07 W/m
2
 (20 Btu/hr.ft

2
 ) and if  ε ≈ 1.0 and ho ≈ 17.0 W/m

2
.K (3.0 

Btu/hr.ft
2
.
0
F) then 

oh

R
 = 3.7

0
C (6.7F). 

 Vertical surfaces receive radiation energy from the ground, sky and the surrounding 

walls. Typically during the day the temperature of the ground and surrounding walls may greater 

than that of the outdoor air. The sky temperature is relatively low, therefore the net radiation 

exchange may be considered to be approximately zero giving the value of ∆R ≈ 0 

In the above relations, the solar irradiance incident on a surface of a roof or wall as well 

as a relation to obtain the solar heat gain through a fenestration. In addition, the heat transfers by 

conduction through the wall, roof or glass window due to temperature difference between the 

outdoor and indoor air. The sol-air temperature has been defined in the previous section to 

couple the contributions of incident solar energy and outdoor air temperature. 
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The heat energy is also gained by indoor air from the heat releasing sources such as 

incoming solar energy, lights, appliances and occupants. The instantaneous heat gain to the 

space is the sum of instantaneous heat gain from all these sources. The variation of cooling load 

contributed by the lights with time is shown as thick lines in Figure 3.1. It may be noted from 

this figure that the thermal capacitance of the envelope and the space furnishings will continue to 

add to the cooling load even after the lights are turned off. Similar trends in thermal lag of the 

cooling loads occur from the incoming solar heat gain through windows and heat released due to 

appliances and occupants. 

But the heat gain to the space air is contributed through heat and mass transfer i.e 

sensible and latent loads from air infiltration and ventilation, occupants, appliances, lights, solar 

heat gain through windows and heat conduction through walls, roofs, floors and windows. 

 

                          

                      Figure 3.1 Thermal Storage Effect in Cooling Load from Lights 

 

After adjusting for the time delay due to thermal capacitance of envelope and furnishings 

as seen in Figure 4.4, one may estimate the current cooling load, which is the rate of heat 

stored heat removed 

heat stored  

actual cooling load 

lights off lights on 

Time, hours 

   W 

Btu/hr 

instantaneous heat gain 

cooling load had lights being on 
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removal from the space air in order to keep it at desired conditions. Typically this heat transfer is 

provided at the coil located in the duct serving the space. However, the coil capacity or the coil 

load may not exactly match the cooling load of the space at that moment causing slight 

oscillations in humidity and temperature of the indoor air. It is also to be noted that the 

conditioned air is brought to the building space from the air-conditioning equipment located 

outdoors through the ducts. The heat gain in the duct will occur from the fan motor as well as 

from the surrounding air which may not be conditioned. Thus the thermal capacity of the 

equipment or the equipment load sometimes it is called the rate of extraction will be sum of the 

cooling load and heat gain in ducts from outside air and fans.  

 

Mathematical Formulation for Heat transfer through walls, roofs, and windows 

The transient heat transfer in a composite wall is shown in Figure 3.2.  The governing 

differential equations for a transient heat transfer a one-dimensional heat transfer due to 

conduction through the walls and roofs can be expressed as 

                                                          
t

T

x

T












1

2

2

                              (3.4) 
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q”

                               

Figure 3.2 Transient Heat Transfer in a Composite Wall 
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The boundary conditions are of 3
rd

 kind at x = 0 and at x= L1 + L2 + L3 while at the interfaces. 

The boundary conditions have same heat transfer rates on either side of the interfaces.  The exact 

solution to such a system of partial differential equations are difficult to obtain, a reasonably 

accurate solution can be obtained from transfer function method, which is described below: 

 

Transfer Function Method 

The estimation of the annual or monthly energy requirements of a building to maintain it 

at comfortable conditions require the knowledge of building for each hour of the year. Hourly 

loads are done typically, since the weather data is available for most of the cities on a an hourly 

basis. The weather data collected for each city reflects the historical average for a period of 20 to 

30 years.  

Transfer function method takes into account the thermal storage effect of the solar 

energy, occupants, lights and equipment. For instance, the heating or cooling load Q  can be 

considered as the response of a building or room to the effects that the temperature of the space (

iT ), the temperature of the environment outside ( oT ), or adjoining spaces, and the solar heat 

transfer rate ( solQ ), etc. have on that building or room. The temperature of the space, the 

temperature of the environment outside, or adjoining spaces, the solar heat transfer rate, heat 

energy from occupants, equipment, and lighting  etcQTT soloi ,,,   are known as the driving terms. 

The Transfer Function Method calculates the response of a system by making the following three 

assumptions [10, 11]: 

1. Discrete time steps: all functions of time are represented as series of values at 

regular time steps. ( Hourly in this case). 
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2. Linearity: the response of a system is a linear function of the driving terms and of 

the state of the system. 

3. Causality: the response at time t can depend only on the past, not on the future. 

Take into consideration, for example, the following driving term  tu  (or sometimes represented  

as ut) and its response  ty  (or sometimes represented as yt) . To indicate the time dependence of  

the driving term and its response to make it more readable, a linear series relationship between  

the response and the driving term is assumed to be in the form: 

   tmtmttttttntnttttt ububububyayayay    221102211    (3.5) 

where the time step t = 1 hour and mn btobandatoa 01 are coefficients that characterize the  

system.  

 The coefficients mn btobandatoa 01 are independent of the driving term or response.  

 

Equation (3.5) satisfies the assumption of causality because ty  depends only upon the past  

 

values of the response ( tnttt ytoy 1 ) and on present and past values of the driving terms  

 

( tntt utou  ).  

 

 The thermal inertia of the system is taken into account with the coefficients 

mn btobandatoa 01 . If these coefficients are zero, then the response is instantaneous. The greater 

the number and magnitude of the coefficients, the greater the weight of the past has with the 

system. And, the accuracy of the model increases as the number of coefficients increases and as 

the time step is reduced. Hourly time resolution and a handful of coefficients per driving term 

will be enough for load calculations. The coefficients are called transfer function coefficients.  

 In the symmetric form, the relationship between u and y, as seen above, in equation (3.5)  

becomes: 
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tmtmtttotntnttto ubububyayaya    1111                               (3.6) 

 

Equation (3.6) can be generalized to the case where there are many driving terms. For example,  

in the case of heating and cooling load calculations, if the response of the indoor temperature iT   

is determined by two driving terms, heat input into the space Q , and the temperature outside oT ,  

then the transfer function model can be written as follows: 

trtrQttQttQtQ

tmtomottototootntinittiitii

QaQaQaQa

TaTaTaTaTaTa













,22,11,0,

,,1,,,0,,,1,1,,0,
                      (3.7)  

 

Equation (3.7) can be considered as an algorithm for calculating tiT , , hour by hour, given the  

 

previous value of iT  and the driving terms oT  and Q . Likewise, Q  could be calculated as the  

 

response if iT  and oT were given as the driving terms.  

 

 Any set of response and driving terms can be handled as above. In other-words, for any 

driving terms such as meteorological data, building occupancy, heat gain schedules, etc: the 

cooling and heating loads can be calculated hour by hour.  Once the necessary numerical values 

of the transfer function coefficients have been calculated, the calculation of the peak loads is 

simple enough for a spreadsheet. 

The Transfer Function Method applies a series of weighting factors, or conduction 

transfer function (CTF) coefficients to the various exterior opaque surfaces and to differences 

between sol-air temperature and inside space temperature to determine the heat gain with the 

appropriate reflection of thermal inertia of such surfaces. 

These CTF coefficients relate an output function at a given time to the value of one or 

more driving functions at a given time and at a set time immediately preceding. The TFM applies 
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a second series of weighting factors known as Room Transfer Functions (RTF) to heat gain and 

cooling load values from all load elements that have radiant components. The purpose is to 

account for the thermal storage effect in converting heat gain to cooling load. RTF coefficients 

relate specifically to the special geometry, configuration, mass, and other characteristics of the 

defined space in order to reflect weighted variations in thermal storage effect on a time basis 

rather than a straight-line average. 

 Calculating the conductive heat gain ( or loss), tcondQ ,
  at time t through the roof and walls 

can be done with the following relationship: 

 

                 






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
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
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
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0 0

,

1

,,

n n

nitntosn

n

tntcondntcond cTTbAQdQ                        (3.8) 

 

  where: A = area of the roof or wall, can be in units of m
2
 or ft

2
. 

    

     t  =  time step, which is 1 hour. 

    

tntosT ,    =  sol-air temperature of outside surface at time t - ∆t 

   

bn, cn, dn are the coefficients of conduction transfer function 

 

The following equations are used in calculating the cooling loads utilizing the Transfer Function  

Method: 

 For walls, the layers of wall construction can be identified from a table like the example 

above and with the R-value of the dominant material, can identify the R-value Range Number 

from the corresponding Wall Group Number Tables.  

 

External Heat Gain from Roofs and Walls 
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where: qe,t = the rate of heat gain through the wall or roof at time t 

            bn,cn and dn = conduction transfer coefficients with units (Btu/hr.ft
2
.
0
F; Btu/hr.

 0
F; ft

2
 ), 

respectively and are generally given in separate tables one for roofs, and the other 

for walls. 

t = hour for which calculation was made 

 = time interval (1 hr) 

m = number of hours for which the values are significant 

e = element under analysis, roof or wall assembly 

A = area of element under analysis 

Tot,t = sol-air temperature at time t 

Trc  = room or space air temperature at time t 

With the specification of materials that make up the roof, one can substitute the 

conduction transfer coefficients appropriate for each roof or wall group. The Equation (3.9) 

estimates the heat gain through a wall or roof for any hour during the year for which the ambient 

air temperature and solar flux are available for that hour. 

In the detailed approach, the hourly weather data is employed to determine the sol-air 

temperature for the hour and this sol-air temperature is applied in the above equation to estimate 

the heat gain and later this hourly heat gain is transformed to obtain the hourly cooling load. A 

detailed method using transform function method is presented in the references [10,11] 

The reference [11] also presents the detailed procedure to evaluate the cooling load contributed 

by lights, solar gain through the windows, heat release from equipment and occupants. Total 

contributed all of these components are added for each hour and the HVAC equipment would 
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match the supply air conditions to the building space to the hourly load in order to keep the space 

at temperature at the set value of the thermostat. 

As shown in the Figure 3.3, a typical solar heating and cooling system consists of solar 

collectors, thermal storage tank, absorption refrigeration systems and a heating/cooling coil.  The 

thermal storage is employed to store the heat energy during the day to meet the loads during the 

hours of night when no solar energy is available.                  
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Figure 3.3 A Typical Solar Heating and Cooling System 

 

 

Mathematical Model for the Thermal Storage Tank 

The following equation can be employed to estimate the temperature of the mixed 

storage fluid of the storage tank at time (t + ∆ t). 

 

               Ts
t+∆t

  =  Ts
t
  +  ∆t [ Qu -  Ql  -  (UA)s ( Ts

t
  -  Ta ) ] / (M Cp)               (3.10) 

 

where, 

             Ql       =  the building load for the hour (kJ) obtained from software TABLET 
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             Qu       =  the useful energy gain by the solar collector for the hour (kJ) obtained from   

                             Equation (2.39) 

(UA)s =  product of overall heat transfer coefficient and surface area of the storage  

                            tank, assume it to be 0.86 W/
0
C or (0.86 x 3600/1000) kJ/

0
C  

             Ts       =  the temperature of the storage tank at time t, in 
0
C  

             M       =  mass of the storage tank fluid, assume it to be 795 kg 

             Cp      =   the specific heat of the storage fluid, 4.18 kJ/kg.K, 

Based on the Equation (3.10), the hourly thermal storage temperature is obtained. 
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CHAPTER IV 

 

RESULTS 

 

             The energy demand for heating and cooling of the building space is obtained from the 

transient analysis of the building envelope using the hourly weather data by use of the      

software TABLET developed by Professor Dhamshala. A 70’x70’ commercial building with 10 

occupants, an equipment load of 5 kW, a lighting load of 2 W/ft
2
, an infiltration of 0.3 ACH and 

a ventilation load of 15 cfm/occupant is assumed. The roof is made of 4” low weight concrete 

deck, 6” of insulation and suspended ceiling with an overall heat transfer coefficient of 0.036 

Btu/hr.ft
2
.
0
F, while the walls are made up of face brick, 6” low weight concrete block, and 6” of 

insulation with an overall heat transfer coefficient of 0.038 Btu/hr.ft
2
.
0
F. The south and north 

walls, each have a window area of 200 ft
2
. The office has electrical equipment such as 

computers, copiers and others with an equivalent load of 5 kW and the lighting load during the 

office hours are about 2 W/ft
2
 of floor area of 4,900 ft

2
. The infiltration of outside air is assumed 

to be 0.3 ACH, a ventilation load of 15 cfm/occupant, electrical power cost of $0.12/kWh, an 

electrical demand cost of $10/kW in excess of 10 kW limit, the gas cost of $0.90/ therm, and the 

state/federal subsidies of 40% of the total cost of the solar equipment are assumed for this 

investigation. 

A building with the above characteristics with no solar equipment is considered as a base 

case. The base case system uses an air-conditioner to cool the building space, while a natural gas 

powered furnace to heat the space with an electric water heater for producing the domestic hot 

water. The operating cost to heat and cool the building and to meet the electrical power 
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requirements of operating the HVAC equipment, electrical equipment and the lighting for the 

space is evaluated for each hour of the year by taking into account the variation of building 

loads, the efficiency of the HVAC equipment for the given weather conditions of the hour. This 

estimation is repeated for each hour of the year as shown in the computational flow chart shown 

in Figure 4.1. A summary of the yearly computer simulation is as shown in Figure 4.2.  

In this chart, the name of the city, where the building is located along with the latitude, 

longitude and the angle for the standard time is shown on the top of this Figure followed by the 

building envelope data containing the area of roof, walls, windows and  overall heat transfer 

coefficient (‘U”) factors. The other input data such the number of occupants, electrical load, 

night thermostat set-backs and energy cost profiles are presented.  Based on this input data, the 

TABLET software provides the output data as shown in the middle of the Figure 4.1. The 

summary of the output data falls into two categories, the first one is the building load profiles for 

heating and cooling of the building space on the respective Peak Heating Day and Peak Cooling 

Day of the year for the 24 hours on these days. The second part of the output consists of Utility 

Cost Analysis that presents the monthly expenses for air-conditioning (ac), the equipment 

operation, auxiliary heating (aux), lighting (lit), electrical demand (edmd) and for water heating 

(wat) followed by the total electrical costs (telc) for each month and total for the year for each  
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Figure 4.1 Flow Chart for Computer Simulations 
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category. Just below this line represents the expenses for space heating (heat) for each month and 

the total for the year. The term (tuty) represents the total utility cost for each month. 

 

Figure 4.2 Results of Computer Simulations Produced by TABLET for the Base Case 
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As an alternative to the base case, a solar system typically consists of either flat plate or 

evacuated tube solar collector with a storage tank equipped with an auxiliary back up heater, an 

absorption chiller and a heating/cooling coil as shown in Figure 4.3. The solar collectors produce 

the hot water during.  the day and store it in the thermal storage tank and power the absorption 

chiller that produces the chilled water typically supplied to the cooling coil across which a 

mixture of outside air plus recirculated air from the building is blown to obtain the chilled air. 

This chilled air is then circulated throughout the building to cool the building space. During the 

winter, the hot water from the thermal storage tank by-passes the absorption chiller and is 

directly sent to the heating coil, across which a mixture of outside air plus recirculated air from 

the building is blown to obtain the warm air. This warm air is then circulated throughout the 

building to heat the building space.  
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    Figure 4.3 Typical Operation of Solar Heating and Cooling Systems for Different Seasons 
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                  Typically, the single-effect absorption refrigeration systems require hot water 

supplied to it at a temperature within the range of 70 to 95
0
C. Anytime the temperature of the 

storage tank goes beyond the 95
0
C, the heat energy need to be dissipated from the storage tank 

for a satisfactory operation of absorption chiller. The heat energy thus dissipated is wasted or 

termed as dumped. Although the minimum temperature of operation of the chiller is 70
0
C, 

auxiliary back up heater is activated whenever the temperature of the tank falls below 75
0
C for 

the computer simulations. In this investigation, three different sizes of thermal storage tanks are 

considered with diameters of 0.5, 1.0 and 1.5 m with the height of the tank in each case to be 

twice that of the diameter. The number of solar collector panels are varied from 10, 30 to 50 for 

the evacuated tube and flat plate solar collector systems. It is assumed that the panels are 

installed at a tilt angle of 36
0
 from the horizontal facing the south direction for best results of 

solar gains during the summer and winters.  

              A typical summary of computer simulations obtained from the TABLET program for an 

evacuated tube solar panel system is as shown in Figure 4.4. The description of the output data is 

already discussed for Figure 4.2.  However, for a system consisting of solar system additional 

data is presented such as number of solar collector panels, the diameter of the storage tank, 

capital cost of the storage tank, surface area of the storage tank for the selected diameter, the 

volume of the storage tank, the total thermal energy gained by the solar system over the year in 

terms of therms along with the total heat dissipated over the year in order to keep the fluid 

temperature within the tank below the 95
0
C limit. The payback period of the system as presented 

in the Figure 4.4 is obtained by dividing the total cost of the solar system by the difference in 

total annual operating cost compared to the base case with no solar installation. The total cost of 

the solar system includes the capital cost of the solar panels, storage tank, additional cost of the 
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absorption chiller over that of the conventional air-conditioner (assumed to be $ 100/ton of 

cooling capacity) and the installation cost ((assumed to be 10% of total capital cost of solar 

system).  

               

Figure 4.4 Results of Computer Simulations Produced by TABLET for Evacuated Tube Solar System 
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After repeating the computer simulations using TABLET software for different sizes of 

thermal storage tank and for the various solar collector panel sizes, a summary table for the  

evacuated tube collector is developed as shown in Table 4.1. A similar table for the flat plate 

collector is developed as shown in Table 4.2. A comparison table for both types of solar 

collectors is prepared and is as shown in Table 4.3. 

           Figures 4.5 and Figure 4.6 are obtained based on the results presented in Tables 4.1 and 

Table 4.2.  The capital cost of the thermal storage tank is primarily dependent upon the volume 

of the storage tank typically expressed in gallons. The installation cost of the solar system varies 

from case to case, however in this research it is expressed as the percentage of the total capital 

cost of the solar system including that of the storage tank. The formulation to determine the 

payback period is shown at the bottom portion of the Tables 4.1 - 4.3. Figures 4.7 shows the 

variation of payback period with solar system size for evacuated tube solar collector system, 

while the Figure 4.8 shows the variation of payback period with solar system size for flat plate 

solar collector system. 
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Table 4.1 Evacuated Tube Solar Collector Performance  

70’x70’ Building; Ur = 0.036, Uw = 0.038 Btu/hr.ft
2
.
0
F; Occupants: 10; ACH: 0.3; Ventilation: 15 cfm/occupant; Lighting: 2 W/ft

2
; Summer Peak Load: 10.3 

tons, 

Windows: 200 ft
2
 on South and North Walls 

Energy Cost = $0.12/kWh;  Demand Cost = $10/kW;  Elect Demand limit = 10 kW;  Gas Cost = $0.90/therm;  Solar Panel Cost =  $ 

1500 /panel 

  

Diameter of Storage Tank, D =0.5 m 

 

Diameter of Storage Tank, D =1.0 m 

 

Diameter of Storage Tank, D =1.5 m 

 

# 

Panel

s 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr) 

Heat 

dump 

(thr/yr) 

Pay 

back 

(yrs) 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr) 

Heat 

dump 

(thr/yr) 

Pay 

back 

(yrs) 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr) 

Heat 

dump 

(thr/yr) 

Pay 

back 

(yrs) 

 

0 

 

11,135 797 - - - 11,135 797 - - - 11,135 797 - - - 

10 

 

8,540 2.732 1,263 111 4.46 8,558 2.750 1,263 77.5 5.42 8,597 2,789 1,263 30.7 8.06 

30 

 

7,365 1,557 3,787 1,461 5.64 7,250 1,442 3,787 1,293 8.69 6,914 1,106 3,787 866 9.52 

50 

 

7,053 1,245 6,312 3,672 8.87 6,912 1,104 6,312 3,479 12.61 6,503 695 6,312 2,979 12.89 

The numbers in italics refers to the base case with no solar installation, the other numbers are for the evacuated solar tube collector system.  

Formulation for Economic Analysis 

Total Capital Cost of Solar System , Cs = [{( # panels x Cost/panel)} + {(Additional cost of Absorption Chiller/ton) x (cooling capacity in tons)} + {Cost of Storage Tank}] 

Additional cost of Absorption Chiller = $ 100/ton of chiller capacity. 

Cost of Storage Tank, ($) = 6000 + {10 [V (gal)  -  500] } , where, V = volume of storage tank in gallons 

Cost of Installation ($)  =  typically, it is expressed as  certain percentage of the total capital cost of the system  without installation = (1+Cs) {1+(iinstal/100)} 

 Total Installed cost of Solar system = [{(# panels x Cost/panel)} + {(Additional cost of Absorption Chiller/ton) x (cooling capacity in tons)} + {Cost of Storage Tank}] x {1+(iinstal/100)} 

where, iinstall represents the installation costs as percentage of the total capital cost of the solar panels systems Cs as given in the above equation. 

Payback Period, PB (yrs)  =  
 SystemSolarofOperationofCostAnnualSystemalConventionofOperationofCostAnnual

SytemalConventionovermSolarSysteofCostCapitalInstalledTotal


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Table 4.2 Flat Plate Solar Collector Performance Evaluation Data Sheet 

70’x70’ Building; Ur = 0.036, Uw = 0.038 Btu/hr.ft
2
.
0
F; Occupants: 10; ACH: 0.3; Ventilation: 15 cfm/occupant; Lighting: 2 W/ft

2
; Summer Peak Load: 10.3 tons, 

Windows: 200 ft
2
 on South and North Walls 

Energy Cost = $0.12/kWh;  Demand Cost = $10/kW;  Elect Demand limit = 10 kW;  Gas Cost = $0.90/therm;  Solar Panel Cost =  $ 500 /panel; Cost of 

Installation = 10% 

  

Diameter of Storage Tank, D =0.5 m 

 

Diameter of Storage Tank, D =1.0 m 

 

Diameter of Storage Tank, D =1.5 m 

 

# 

Panel

s 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr) 

Heat 

dump 

(thr/yr

) 

Pay 

back 

(yrs) 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr

) 

Heat 

dump 

(thr/yr

) 

Pay 

back 

(yrs) 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr

) 

Heat 

dump 

(thr/yr

) 

Pay 

back 

(yrs) 

 

0 

 

11,135 797 - - - 11,135 797 - - - 11,135 797 - - - 

10 

 

7,667 2.888 879 47 1.43 7,692 2.913 877 20 2.14 7,762 2,983 877 7.1 4.11 

30 

 

6,482 1,703 2,631 651 2.48 6,409 1,630 2,631 489 2.95 6,302 1,523 2,631 295 4.23 

50 

 

6,035 1,256 4,384 1,921 3.56 5,885 1,106 4,384 1,718 3.92 5,551 772 4,384 1,293 4.85 

The numbers in the italics refers to the base case with no solar installation, the other numbers are for the flat pale solar collector system.  

Formulation for Economic Analysis 

Total Capital Cost of Solar System , Cs = [{( # panels x Cost/panel)} + {(Additional cost of Absorption Chiller/ton) x (cooling capacity in tons)} + {Cost of Storage Tank}] 

Additional cost of Absorption Chiller = $ 100/ton of chiller capacity. 

Cost of Storage Tank, ($) = 6000 + {10 [V (gal)  -  500] } , where, V = volume of storage tank in gallons 

Cost of Installation ($)  =  typically, it is expressed as  certain percentage of the total capital cost of the system  without installation = (1+Cs) {1+(iinstal/100)} 

 Total Installed cost of Solar system = [{(# panels x Cost/panel)} + {(Additional cost of Absorption Chiller/ton) x (cooling capacity in tons)} + {Cost of Storage Tank}] x {1+(iinstal/100)} 

where, iinstall represents the installation costs as percentage of the total capital cost of the solar panels systems Cs as given in the above equation. 

Payback Period, PB (yrs)  =  
 SystemSolarofOperationofCostAnnualSystemalConventionofOperationofCostAnnual

SytemalConventionovermSolarSysteofCostCapitalInstalledTotal


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Table 4.3 Comparison of Evacuated Tube Collector and Flat Plate Solar Collector Performance Evaluation Data Sheet 

70’x70’ Building; Ur = 0.036, Uw = 0.038 Btu/hr.ft
2
.
0
F; Occupants: 10; ACH: 0.3; Ventilation: 15 cfm/occupant; Lighting: 2 W/ft

2
; Summer Peak Load: 10.3 tons, 

Windows: 200 ft
2
 on South and North Walls 

Energy Cost = $0.12/kWh;  Demand Cost = $10/kW;  Elect Demand limit = 10 kW;  Gas Cost = $0.90/therm;  Solar Panel Cost =  $ 1500 (ETC) and $500 (FP) 

/panel 

  

Diameter of Storage Tank, D =0.5 m 

 

Diameter of Storage Tank, D =1.0 m 

 

Diameter of Storage Tank, D =1.5 m 

 

# 

Panel

s 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr) 

Heat 

dump 

(thr/yr

) 

Pay 

back 

(yrs) 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr

) 

Heat 

dump 

(thr/yr

) 

Pay 

back 

(yrs) 

Opr 

Cost 

($/yr) 

Gas 

Cost 

($/yr) 

Heat 

S.Coll 

(thr/yr

) 

Heat 

dump 

(thr/yr

) 

Pay 

back 

(yrs) 

 

0 

 

11,135 797 - - - 11,135 797 - - - 11,135 797 - - - 

10 

 
7,667 

8,540 
2.888 

2,732 
879 

1,263 
47 

111 
1.43 

4.46 
7,692 

8,558 
2,913 

2,750 
877 

1,263 
20 

77.5 
2.14 

5.42 
7,762 

8,597 
2,983 

2,789 
877 

1,263 
7.1 

30.7 
4.11 

8.06 

30 

 
6,482 

7,365 
1,703 

1,557 
2,631 

3,787 
651 

1,461 
2.48 

5.64 
6,409 

7,250 
1,630 

1,442 
2,631 

3,787 
489 

1,293 
2.95 

8.69 
6,302 

6.914 
1,523 

1,106 
2,631 

3,787 
295 

866 
4.23 

9.52 

50 

 
6,035 

7,053 
1,256 

1,245 
4,384 

6,312 
1,921 

3,672 
3.56 

8.87 
5,885 

6,912 
1,106 

1,104 
4,384 

6,312 
1,718 

3,479 
3.92 

12.6

1 

5,551 

6,503 
772 

695 
4,384 

6,312 
1,293 

2,979 
4.85 

12.8

9 
The numbers in the boldface shown in the above Table refers to the flat plate collector system, while those in italics refers to the base case with no solar installation, the other numbers are for the 

evacuated solar tube collector system.  

Formulation for Economic Analysis 

Total Capital Cost of Solar System , Cs = [{( # panels x Cost/panel)} + {(Additional cost of Absorption Chiller/ton) x (cooling capacity in tons)} + {Cost of Storage Tank}] 

Additional cost of Absorption Chiller = $ 100/ton of chiller capacity. 

Cost of Storage Tank, ($) = 6000 + {10 [V (gal)  -  500] } , where, V = volume of storage tank in gallons 

Cost of Installation ($)  =  typically, it is expressed as  certain percentage of the total capital cost of the system  without installation = (1+Cs) 

{1+(iinstal/100)} 
 Total Installed cost of Solar system = [{(# panels x Cost/panel)} + {(Additional cost of Absorption Chiller/ton) x (cooling capacity in tons)} + {Cost of Storage Tank}] x {1+(iinstal/100)} 

where, iinstall represents the installation costs as percentage of the total capital cost of the solar panels systems Cs as given in the above equation. 

Payback Period, PB (yrs)  =  
 SystemSolarofOperationofCostAnnualSystemalConventionofOperationofCostAnnual

SytemalConventionovermSolarSysteofCostCapitalInstalledTotal

  
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Figure 4.5 Variation of Operating Cost, Heat Gained, Heat Wasted with Size of Evacuated Tube Solar Collectors and Storage Tank 
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Figure 4.6 Variation of Operating Cost, Heat Gained, Heat Wasted with Size of Flat Plate Solar Collectors and Storage Tank 
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              Figure 4.7 Variation of Payback Period with Size of Evacuated Tube Solar Collectors and Storage Tank 
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        Figure 4.8 Variation of Payback Period with Size of Flat Plate Solar Collectors and Storage Tank 
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CHAPTER V 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

                 The computer simulations of solar assisted absorption chiller performance is evaluated 

based on the hourly weather data. The evaluation is carried out for a 4900 square foot floor area 

of a commercial building located in Chattanooga, Tennessee. The building is chosen to reflect 

the typical electrical, and occupancy load profile. The transient nature of weather as typified by 

the variation of ambient temperature, humidity, solar flux and that of electrical load profile pose 

difficult task in evaluating the hourly building loads. In order to overcome this problem Transfer 

Function Method (TFM) is employed to determine the hourly variation of the buildings. The 

computer code (TABLET) as developed by Dr. Dhamshala [8] is employed to determine the 

hourly loads for each hour of the year. The performance parameters of the solar collectors and 

that of the absorption chiller are obtained based on the manufacturers specifications and 

performance data. In order to meet the building loads at evening and night hours, a single node 

thermal storage is employed to store the energy during the day time. During the hours, when 

sufficient energy is not available in the storage tank, an auxiliary heater is activated to meet the 

load.   

               A computer simulation is carried out for base case of a conventional system consisting 

of a gas furnace and an air-conditioner. It was found that the operating energy cost of the 

building comes to $ 11, 135 per year that includes $ 797 per year of gas cost used for space 
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heating. Based on the results obtained from computer simulations for an evacuated tube solar 

collector and a flat plate solar collectors, the following conclusions can be made: 

1. The smaller number of panels yield lower payback period for both flat plate and 

evacuated tube solar collectors. However, the operating cost and gas cost decrease as the 

number of panels are increased for both the cases. 

2. The payback period tends to rise as the size of the thermal storage is increased. 

3. The payback period also tends to rise as the size of the thermal storage is increased for a 

given panel size. 

4. The cost of auxiliary gas used reduces as expected for rise in panel size and size of the 

thermal storage that has a profound positive impact on the environment due to reduction 

in greenhouse gas emissions. 

5. The supply hot water temperature for absorption chillers are in the range of 70 to 95
0
C 

for a single effect absorption chiller for satisfactory operation. In order to limit the 

temperature rise in thermal storage to below 95
0
C during hot summer hours, there is a 

need to dissipate (dump) the heat energy form the storage tank. The magnitude of heat 

wasted (dumped) increases as the size of the panels is increased or as the size of the 

thermal storage is decreased for a given size of the panels. 

6. It is suggested that a flat plate collectors are more favorable compared to the evacuated 

tube collectors. 

                It is recommended that a multi-node thermal storage model may be employed to 

obtain more accurate predictions for a future research project. It is also recommended that a 

more elaborate economic analysis may be carried out that takes into account the drop in 
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collector costs, variable energy costs and the latest in panels such as PV/T panels that are 

capable of providing electric power and thermal energy at a premium costs.                   
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APPENDIX A 

VARIOUS RATED CAPACITIES OF YAZAKI’S CHILLERS 
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Table A.1 Various Rated Capacities of Yazaki’s Chillers 
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APPENDIX B 

PERFORMANCE DATA OF YAZAKI ABSORPTION CHILLERS 
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Figure B.1 Performance Data of Yazaki Absorption Chillers 
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APPENDIX C 

SOLAR COLLECTOR CERTIFICATION AND RATING 
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