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ABSTRACT 

Electronic cigarettes, or e-cigarettes, have been scrutinized by the Food and 

Drug Administration and other public health organizations for issues related to 

quality control and efficacy. Erratic nicotine delivery and numerous toxic compounds 

in refill solutions have been reported. The ultimate goal of this research is to add to 

the growing amount of knowledge regarding e-cigarette ingredient content, safety, 

and quality. Standards of the tobacco alkaloids nicotine, anabasine, cotinine, and 

myosmine were prepared and quantified using high performance liquid 

chromatography (HPLC). Various elution schemes were tested and adjusted for 

optimal analyte resolution, and a final elution scheme was developed to characterize 

e-cigarette alkaloids.  
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INTRODUCTION 

Purpose 

 Due to the small number of studies regarding the safety and efficacy of 

electronic cigarettes, full ingredient content and concentrations remain uncertain in 

many varieties of electronic cigarette refill solutions. These products have only 

existed for sale in the U.S. for a relatively short time; very little comprehensive 

research has been conducted regarding their long-term health effects or associated 

risks. Further investigation is needed to address possible inconsistencies in the 

labeling of e-cigarette refill solutions. The objectives for this project are: 

• to study the alkaloids found in electronic cigarettes, 

• to study mobile phase theory as it pertains to the elution of nicotine and 

related alkaloids using high performance liquid chromatography (HPLC), and 

• to develop an elution scheme capable of quantifying the alkaloids nicotine, 

anabasine, cotinine, and myosmine found in electronic cigarette filling 

solutions with HPLC.   

What’s an E-Cigarette? 

Electronic cigarettes, also known as electronic nicotine delivery systems 

(ENDS), e-cigarettes, or e-cigs, are devices designed to deliver nicotine in a manner 

that mimics traditional tobacco smoking. Most e-cigarettes consist of a mouthpiece, a 

cartridge containing nicotine in solution, a heating element, an airflow sensor, a 

rechargeable lithium ion battery, and an LED. Upon inhalation, the sensor is triggered 

by negative pressure, activating the heating element which vaporizes the liquid 
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contained in the cartridge and heats air as it is inhaled. The LED located at the tip also 

lights up to imitate the burning of a traditional cigarette. The resulting aerosol made 

from the vaporized liquid and water vapor from the air creates an observable fog that 

is released upon exhalation.1 Designs may vary according to brand; some e-cigarettes 

contained a fused cartridge and heating element called a “cartomizer” that is meant to 

be disposable. A diagram showing the inner components of a typical electronic 

cigarette is given in Figure 1.  

 

 
Figure 1: Electronic Cigarette Diagram. 1 = light-emitting diode (LED); 2 = lithium 

ion rechargeable battery; 3 = airflow sensor; 4 = heating element; 5 = filling solution 

cartridge; 6 = mouthpiece. 

E-Cigarettes Vs. Traditional Cigarettes  

While e-cigarettes superficially resemble traditional tobacco cigarettes, they 

are more closely related in internal design and operation to drug delivery systems 

such as inhalers and nebulizers.1  The method of release for conventional cigarettes 

versus e-cigarettes is quite different: unlike conventional cigarettes, which release 

compounds in the form of smoke from combustion of tobacco, e-cigarettes release 

compounds in vapor form due to evaporation; for this reason, the term ‘vaping’ has 

been made analogous to smoking by e-cigarette industries and users alike.2  
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Once used, empty e-cigarette cartridges may either be disposed or refilled 

with liquid purchased from the manufacturer. These liquids contain nicotine marketed 

in a variety of concentrations, as well as food-grade flavorings and a humectant 

(typically propylene glycol and/or vegetable glycerin) with some variability 

depending on manufacturer and flavor of liquid purchased. Other ingredients may 

include ethanol along with other complex alcohols, diols, nicotine-related alkaloids 

and colorings.3 Ethanol is often present as a flavoring component, or may be related 

to nicotine extraction from tobacco leaves.4 Refill solutions come in a variety of 

flavors such as waffles, whiskey, pina colada, blueberry, and popcorn. Flavors other 

than tobacco and menthol are banned for conventional cigarettes under the Family 

Smoking Prevention and Tobacco Control Act of 2009 to prevent targeting tobacco 

products to youth; this ruling does not apply to any other tobacco products.5 Other 

detected ingredients have included herbal preparations designed to have a therapeutic 

effect, or medications such as rimonabant and amino-tadalafil.6 Some e-cigarette 

consumers even choose to prepare their own refill solutions by extracting nicotine 

from used tobacco cigarettes; a variety of homemade formulations containing 

ingredients similar to those listed above may be found online through electronic 

cigarette forums.  

Production & Sales of E-Cigarettes  

 E-cigarette technology was first patented in 2003 by Hon Lik, a Chinese 

pharmacist who developed the atomization device that vaporizes nicotine in 

electronic cigarettes, cigars, and pipes.7-8 The products were first marketed in China 
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by the company Ruyan (meaning ‘like smoke’) in 2004. 7,9-10 Ruyan received an 

international patent in 20077, and the e-cigarette has since been marketed worldwide 

in countries such as Brazil, Canada, Finland, Israel, Lebanon, the Netherlands, 

Sweden, Turkey, the United Kingdom, and the United States.8,11   

 Though mechanical electronic cigarette components such as the sensor, 

heating element, and cartridge are manufactured predominantly in China7, refill fluids 

are produced domestically. One popular manufacturer produces refill liquids in 

Wisconsin for Blu, a company which maintains a significant portion of the American 

e-cigarette market.12 Nicotine strength of refill solutions and cartridges vary from 

brand to brand in terms of reported equivalency to traditional cigarettes. Veppo states 

that one 10 mL bottle of refill fluid used over time is roughly equal to smoking ten 

packs of cigarettes13. In contrast, Vapor4Life equates 30 mL of its refill fluid to 25-30 

replacement cartridges, each of which corresponds to approximately three-fourths to 

one whole pack of cigarettes. A single 30 mL bottle from Vapor4Life would therefore 

be comparable to smoking roughly 24 packs of cigarettes.14   

 E-cigarettes represent a rapidly growing industry. The market has doubled in 

size every year since 2008, and was projected to reach one billion dollars in sales in 

2013.15 The majority of electronic cigarette sales are from online, with a portion of 

sales attributed to mall kiosks and convenience stores where they may be sold without 

a tobacco license in certain parts of the U.S.7, 16-17  In a study designed to collect 

information regarding e-cigarette product preferences and opinions, those who 

responded to surveys online were more likely to be aware of electronic cigarettes.17  
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Internet sales of electronic cigarettes have generated concern regarding their 

availability to minors who could not otherwise purchase tobacco or other nicotine 

delivery products. One study found that awareness of electronic cigarettes was 

inversely related to age, suggesting that young adults in the age range of 18-29 are 

most likely to try e-cigarettes.18 Similarly, the awareness of e-cigarettes has been 

found highest among white, high-income, educated males from the ages of 18-24 who 

were self-reported nondaily smokers.17 A study which compared the volume of 

internet searches for terms related to e-cigarettes with those of approved nicotine 

replacement methods found that e-cigarette searches first exceeded those of FDA-

approved nicotine replacement therapy in 2008, and has since continued to rapidly 

outpace other forms of nicotine replacement.19  

Advertising campaigns for electronic cigarettes resemble those of traditional 

cigarettes before they were banned in the U.S.—physically attractive men and women 

are shown vaping, with slogans such as “Cigarettes, You’ve Met Your Match” and 

“Rise from the Ashes”.20-21  Celebrity endorsements are also becoming increasingly 

prominent.7 Commercials have aired on popular cable stations in the U.S., though 

broadcast channels have refrained from airing e-cigarette ads.21  

The cost of e-cigarettes has decreased dramatically in conjunction with their 

rising popularity in the U.S.—companies which once sold units for as much as $200 

in 2009 were as little as $21 as of 2012.22 The devices are often advertised as cost-

effective alternatives to traditional cigarettes. One survey found that users spent $33 

per month for e-cigarette supplies as compared to an average of $150 to $200 per 
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month to smoke one pack of traditional cigarettes per day. The study suggests that 

cost is a major contributing factor to the popularity of the e-cigarette.23  

Public Opinion & Regulation 

A multitude of surveys have been performed and published regarding the 

general opinions of e-cigarette users with regards to perceived health benefits, 

awareness, satisfaction, and user demographics.16-19, 23-31 Popular cited reasons for 

using e-cigarettes include a desire to quit smoking, reduced cost, the perceived ability 

to vape in places where smoking is normally prohibited, to avoid disturbing others 

while smoking, and a perceived reduction in health risks when compared to 

traditional cigarettes.16 A majority of e-cigarette users reported in one survey that the 

product helped them quit or cut down on smoking and that e-cigarettes “feel healthier 

than smoking”. Only about a third of respondents had tried to reduce e-cigarette 

consumption, however, and a majority of those who made attempts were self-reported 

as “not very successful”.24 These results suggest that while e-cigarettes may have the 

potential to reduce cigarette use among current smokers, they may not be effective at 

reducing nicotine dependence and carry a risk for abuse.  

Despite their ubiquity in the U.S. market, formal regulatory classification for 

the e-cigarette is still under consideration. In 2008, the World Health Organization 

issued a warning to e-cigarette manufacturers stating that e-cigarettes should not be 

marketed as a smoking cessation tool. “WHO knows of no evidentiary basis for the 

marketers' claim that the electronic cigarette helps people quit smoking. Indeed, as far 
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as WHO is aware, no rigorous, peer-reviewed studies have been conducted showing 

that the electronic cigarette is a safe and effective nicotine replacement therapy”.11  

The American e-cigarette regulation dispute began when the U.S. Food and 

Drug Administration first attempted to halt Smoking Everywhere e-cigarette imports 

from China in 2008 on the grounds that the products were unapproved drug delivery 

systems under Federal Food, Drug, and Cosmetic Act. A U.S. District Court in 

Washington D.C. overruled the FDA’s attempt to regulate e-cigarettes as drug 

delivery devices in 2010 and instead suggested that they fall under the regulatory 

description of tobacco products, defined as “any product made or derived from 

tobacco that is intended for human consumption”.32-35 This ruling directed the FDA to 

regulate e-cigarettes under the Family Smoking Prevention and Tobacco Control Act 

signed under the Obama administration in 2009. FDA representatives have stated that 

they would prefer regulating the products as drug delivery devices as it would offer 

greater control, allowing the administration to fully evaluate each electronic cigarette 

and refill solution for consumer safety and efficacy prior to sale.33 While this recent 

ruling does not grant the FDA the power to block e-cigarette imports, it does grant the 

administration some control over marketing and quality control practices. Available 

options for the FDA to regulate e-cigarettes include removal from the consumer 

market for a premarket review, higher taxation, limitation of different flavors in 

tobacco products other than cigarettes, the introduction and/or expansion of warning 

labels, and restriction of manufacturer health claims.5 
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Other countries are currently evaluating similar approaches to the regulation 

of electronic cigarettes. The United Kingdom’s Medicines and Healthcare Products 

Regulatory Agency cited an FDA study which found carcinogenic nitrosamines and 

diethylene glycol in refill solutions in its decision to try regulating e-cigarettes as 

medical products. This form of regulation would result in a similar testing and 

approval process prior to allowing the sale of different electronic cigarettes in the 

U.K.36  

E-Cigarette Alkaloids: General Properties 

Existing patents for e-cigarette refill formulations and the presence of 

tobacco-specific impurities suggest that the nicotine added to some refill solutions is 

not chemically pure but is rather an extract from tobacco. An alkaloid is generally 

defined as a naturally occurring, basic, nitrogen-containing compound that exhibits a 

pharmacological effect. Alkaloids can be found in food such as potatoes, tomatoes, 

coffee, tea, cocoa, and pepper.37 Common tobacco alkaloids include: nicotine, 

cotinine, nicotine-1’-N-oxide, nornicotine, nicotyrine, nornicotyrine, myosmine, 2’,3-

bipyridyl, anabasine, and anatabine; over 20 pyridyl-type alkaloids have been found 

in tobacco.37-38 Minor tobacco alkaloids have been found to amplify the physiological 

effects of nicotine.39 Nicotine, anabasine, cotinine, and myosmine were chosen for 

this study both for their cost and in response to preexisting research conducted by the 

FDA which detected the presence of these alkaloids in e-cigarette refill solutions.6 

The tobacco alkaloids are all structurally based around pyridine and are substituted at 

the 3-position with an alicyclic base; nicotine, cotinine, and myosmine all contain a 
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modified pyrrolidine ring, whereas anabasine contains a piperidine ring. Most are 

weakly basic and thus have the capacity to ionize in an acidic solvent. The structures 

of tobacco alkaloids of interest and estimated pKa values are listed in Figure 2. 

Tobacco alkaloids affect the body by binding to nicotinic acetylcholine receptors at 

the protonated alicyclic base; compounds such as cotinine whose pKa values are 

below physiological pH are regarded as inactive under these conditions.38 

Nicotine       

Nicotine is the primary alkaloid found in tobacco (Nicotiana tobacum). While 

it is generally known as the addictive agent found in recreational tobacco products, it 

has been studied for its potential to treat Alzheimer’s disease, Parkinson’s disease, 

and ulcerative colitis.40 (S)-(-)-nicotine predominates in its natural state and possesses 

biological activity, though the enantiomer (R)-(+)-nicotine may form due to added 

heat while smoking.38, 40 Nicotine is regarded as one of the most heavily abused 

substances of all time—smoking is the top preventable cause of death in the world, 

and is estimated to cause one in every five U.S. deaths through both direct and 

indirect smoke exposure.41-42 It behaves as a stimulant in the body, acting on nicotinic 

acetylcholine receptors in the brain and triggering the release of dopamine along with 

a variety of other neurotransmitters.40 Nicotine increases the heart rate, metabolism, 

and memory, as well as suppressing appetite.38, 43-44 Although nicotine is very toxic, 

nicotine poisoning from cigarettes is rare, and occurs most often from cutaneous 

exposure or ingestion of tobacco leaves or pesticides. The estimated lethal adult oral 
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dose of nicotine is between 40 and 60 mg, or approximately 0.6 to 0.9 mg/kg; the 

average tobacco cigarette contains 0.8 to 1.1 mg of nicotine.38, 45  

 
Figure 2: Structures of the Tobacco Alkaloids Nicotine, Anabasine, Cotinine, and 

Myosmine With Predicted pKa Values46 

Anabasine 

Anabasine is perhaps best known for its historical use as an insecticide.47 It is 

thought that nicotine alkaloids are produced by the tobacco plant as a natural insect 

repellant.48 Anabasine may also be detected in cigarette smoke and body fluids of 

smokers. Due to its structural similarity, anabasine is thought to react similarly to 
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nicotine in the body. The median lethal dose for anabasine in mice is estimated 

between 11 and 16 mg/kg.47 Anabasine and similar alkaloids containing piperidine 

are known to be teratogenic to livestock, resulting in defects such as cleft palate and 

multiple congenital contractures.49 

Cotinine 

Between 70 and 80% of nicotine in the body is oxidized in the liver with the 

addition of a carbonyl group on the pyrrolidine ring to form cotinine, a major tobacco 

alkaloid and nicotine metabolite, before undergoing further oxidation to other 

compounds.50-51 The long half-life of cotinine (16 to 20 hours) compared to that of 

nicotine (1 to 4 hours) makes cotinine a good candidate for detection in analytical 

studies to determine a subject’s nicotine intake.52 Cotinine is suspected to have its 

own reactive mechanism distinct from nicotine in the body, though it has been shown 

to cause behavioral responses similar to that of nicotine.53-54 It is less toxic than 

nicotine, and does not produce withdrawal symptoms.  

Myosmine 

 Myosmine is found in very small quantities in tobacco; amounts found in 

cigarette smoke are 50 to 100 times less than nicotine.55  It is genotoxic and has the 

potential to form carcinogenic intermediates such as N’-nitrosonornicotine in the 

body. Interestingly, myosmine has been detected not only in tobacco, but also in a 

variety of foods such as cereals, nuts, and milk.56 Myosmine has been detected in 

non-smokers’ plasma and saliva at levels as much as 5 ng/mL; these results indicate 

that myosmine is entering the body through additional routes besides passive 
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smoking.55 The cutoff alkaloid concentration used to determine if a subject has been 

smoking is above 5 ng/mL. Tests measuring nicotine intake therefore remain valid 

even if myosmine is present in the body from sources unrelated to smoking.57 

Existing E-Cigarette Research 

Common e-cigarette refill solution ingredients and exhalation byproducts have 

been identified and quantified by both high performance and ultra-performance liquid 

chromatography, gas chromatography, and NMR spectroscopy.2-3, 6, 58-62 

Concentrations of ingredients vary widely according to the manufacturer of the refill 

solutions; for example, humectants may be found in a mixture or one may be omitted 

in favor of another, i.e. vegetable glycerin instead of propylene glycol or vice versa. 

Water content has also been found to vary from less than 1% to as much as 20%.62  

 Pre-existing research has indicated a need for further studies regarding the 

safety and efficacy of e-cigarettes. Quality control studies have found inconsistent or 

unclear labeling of nicotine and full ingredient content in refill solutions; nicotine 

content is often simply listed in milligrams, with no indication of whether this volume 

is per container or per milliliter.9 As stated previously, the median lethal dose of 

nicotine is 40 to 60 mg.38, 45 Several of the products among the samples tested claim 

to contain well above the lethal dose of nicotine in a single bottle; a 15-mL bottle 

with a reported strength of 36 mg/mL, for example, would contain as much as 540 mg 

of nicotine. A study which measured aerosol generation from e-cigarettes found that 

nicotine delivery and vapor production is often erratic between brands of the same 

strength and even from puff to puff of the same e-cigarette.63 Studies measuring 
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carbon monoxide exhalation, heart rate, and/or nicotine levels in the blood plasma of 

e-cigarette users all demonstrate that nicotine delivery and absorption is less than that 

of conventional cigarettes, suggesting that e-cigarettes may be inefficient nicotine 

delivery devices.64-65 Other research indicated that nicotine is present in e-cigarette 

vapor, presenting a secondhand risk of absorbing alkaloids that is currently not 

addressed by e-cigarette manufacturers.2 Nicotine related impurities have been found 

in refill solutions, including the toxin diethylene glycol, as well as carcinogenic 

nitrosamines that are formed from tobacco alkaloids.60, 66 Furthermore, ‘vaping’ an e-

cigarette has adverse short-term effects on the pulmonary system.67 E-cigarette vapor 

is also reported to contain volatile organic compounds present in tobacco smoke; 

other vapor constituents include flavorings and glycerin.2 Finally, since e-cigarettes 

have existed in the U.S. for less than 10 years, there have been no studies assessing 

the long-term health risks or effects associated with electronic cigarette use or direct 

exposure to refill solutions. The ultimate goal of this e-cigarette research is to add to 

the growing amount of knowledge regarding content and quality of filling solutions. 
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CHROMATOGRAPHIC THEORY 

Liquid Chromatography 

Liquid chromatography is a type of chemical separation that occurs between a 

liquid mobile phase (known as the eluent) and a solid stationary phase, or adsorbent, 

contained in a column. The sample containing the compound(s) of interest mixed 

with impurities, solvent(s), and/or unknown compounds is placed on the column via 

an injection port. While passing through the column, compounds in the sample 

separate from each other due to their chemical properties such as molecular weight, 

polarity, and pKa. The sample then passes through a detector that displays each 

detectable compound in the sample as peaks on a chromatogram. Peaks may be 

interpreted by their retention times and area—each compound possesses a unique 

retention time, and peak area is related to the amount of each compound. A diagram 

depicting a typical HPLC apparatus is given in Figure 3.  

High performance liquid chromatography, or HPLC, is a common separation 

method used in analytical chemistry. It is often chosen for its sensitivity, adaptability 

to both identification and quantification, and for its ability to separate a variety of 

organic, inorganic, and organometallic compounds.68 It is able to detect micrograms 

of a sample without the decomposition of analytes that is encountered in gas 

chromatography.69 HPLC uses pressures of up to 6000 psi mediated by a 

reciprocating pump to push liquids through the column; the pressure is often 

maintained using a pulse dampener, which allows for reproducibility and fine control 

of the eluent flow rate, typically between 0.1 and 10 mL/min.68 Samples ranging 
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between less than 1µL and 500 µL in volume are introduced to the column at high 

pressures using a sampling loop. Columns contain a tightly packed adsorbent 

designed to slow down the sample in the mobile phase for separation. Common 

column packing materials range from 3 to 10 micrometers in diameter. In reversed 

phase liquid chromatography (RP-HPLC), a polar solvent such as water or 

acetonitrile is pushed through a nonpolar column material such as organically-

modified silica. Reversed-phase chromatography is vastly preferred over other forms 

of HPLC: almost 90% of all liquid chromatographic analyses feature RP-HPLC. The 

main reasons in favor of RP-HPLC are the ability to distinguish between very closely 

related compounds and the extent to which the mobile phase may be manipulated to 

optimize the elution profile.70 RP-HPLC was therefore chosen as the instrumental 

method for this study.  
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Figure 3: Block Diagram of HPLC Instrument Components 

Compound Identification & Detectors 

Identification of compounds in a sample may be achieved through a 

combination of their retention times and detector output. The UV absorbance and 

retention of the compounds were used for identification in this experiment. The 

retention time is defined as the time measured from the initial injection of sample to 

the peak absorption time. The void time, or TM, is the time required for unretained 

compounds to pass through the column and reach the detector following injection. 

Retention times should be adjusted such that analytes do not co-elute with the small 

peak corresponding to TM. A Thermo Finnigan chromatograph was used for 

preliminary analysis and featured a UV detector with a deuterium lamp wherein the 

displayed amount of absorbed ultraviolet light is related to the amount of compound 

passing through the detector. The wavelength of maximum absorbance, or λmax, is 

unique to the compound being studied. The λmax may be estimated by identifying 

different functional groups known as chromophores in the compound that absorb 

ultraviolet light. Depending on the detector model, the wavelength of detection may 

be adjusted on the HPLC according to the λmax of the organic compound of interest. 

Diode array detectors such as the one found in the Agilent 1220 chromatograph are 

capable of simultaneous detection at multiple wavelengths, allowing the experimenter 

to study mixed samples containing compounds with different λmax  values. The λmax is 

generally chosen as the wavelength of detection for a compound because it yields the 

strongest signal, resulting in improved peak shape and a higher signal-to-noise ratio.68 
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The General Elution Problem 

Due to the different chemical properties of compounds found in a mixed 

sample, achieving good resolution in conjunction with a reasonable retention time 

often proves to be difficult. A single set of conditions is rarely ideal for all 

components that one may find in a sample. This is commonly known as the general 

elution problem, and knowledge of the factors influencing separation is required to 

overcome this issue. Often, gradient elution schemes in which the proportions of 

solvents are changed with respect to time are used so that the appropriate conditions 

may be met to elute a particular component at the desired time. This method can be 

used to prevent overlapping peaks, broad peaks, and/or long run times.68  

Mobile Phase Theory 

The liquid mobile phase used in HPLC may be easily manipulated at 

relatively low cost through a variety of factors to optimize retention time and 

resolution. Mobile phase adjustment is therefore the primary tool for controlling the 

elution profile—eluent composition, organic solvent, pH, and the buffer may all be 

changed in creating a unique separation mode.  The vast majority of mobile phases in 

RP-HPLC when added to a column are hydro-organic mixtures, or mixtures of an 

organic solvent and water. Mobile phases must be very pure (HPLC grade or filtered) 

to prevent the appearance of background signals or deposition of impurities on the 

column. Solubility, pH, stability, and polarity should be considered among other 

factors when choosing an appropriate mixture for the mobile phase.70  
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Choosing the appropriate organic solvent to be mixed with water as well as 

adjusting its concentration has a large impact on the mobile phase strength, i.e. the 

degree to which the mobile phase causes the sample components to elute. Depending 

on the solubility of the analyte in the organic component of the mobile phase, 

increasing the organic solvent concentration may greatly improve or reduce the 

quality of peaks.70 

Methanol and acetonitrile are preferred organic solvents due to their 

miscibility in water, availability, and relatively low UV absorption cutoff (less than 

205 nm). Of the organic solvents studied, acetonitrile is considered a stronger solvent 

than methanol, meaning that a smaller added percentage of acetonitrile would be 

needed to influence the retention of a compound than methanol in a hydro-organic 

mixture.70  

When organic solvents are added to the mobile phase, a shift in pH is often 

observed, even in buffered systems. Leveling effects should be considered when 

working with very strong acids or bases mixed in water—bases stronger than OH- or 

acids stronger than H3O
+ will not remain stable in aqueous solutions.71 Shifts in pH 

observed with the addition of organic solvents are commonly due to multiple factors 

that affect the interpretation of pH. When a nonaqueous solvent is added, the 

conventional definition of pH as it relates to hydrogen ion activity α no longer applies 

to the solution. Glass electrodes such as the one used in this study are designed to 

make measurements relative to a standard, aqueous buffer as shown in Equation 1 

 �� � ���� � 
�	
	��
�

�� �� ��
 Eq. 1 
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where pHst is the pH of the standard buffer solution (this is often set manually while 

calibrating the pH electrode), E is the cell voltage of the sample solution, Est is the 

cell voltage of the standard buffer solution, F is the Faraday constant,  R is the gas 

constant,  and T is the temperature.72 When the pH is measured using a glass 

electrode, the voltages are entered into the above equation to receive a digitally 

displayed pH reading. In order for this equation to be accurate and report a pH value 

that corresponds to α, the solution must be dilute, aqueous, and in the mid-pH range. 

An increase in pH is typically found when adding an organic solvent such as 

methanol to an aqueous buffer.73 This was observed in our study when we were 

forced to pre-mix solvents due to pump failure. The factors leading to this increase 

are expounded below:  

• pH shifts may be caused by a change in the junction potential between the 

outer glass electrode and the inner reference electrode in combination pH 

probes such as the one used in this study. When an organic solvent is added, 

the junction potentials between the reference and the sample are unequal, 

leading to errors in pH measurements.  

• A change in the autoprotolysis constant Kw can lead to pH shifts in organic 

solvents. In water, this constant is equal to [H+][OH-] ≈ 10-14. In hydro-

organic mixtures, however, this is shifted due to the presence of additional 

ions—in the case of added methanol, for example, the CH3O
- ion is 

responsible for additional anions in equilibrium with the hydrogen ion, 

leading to an apparent increase in basicity.  
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• The conventional pH scale ranging from 0 to 14 is altered when organic 

solvents are added to aqueous solutions. This change is related to the 

concentration of organic solvent. In methanol-water mixtures, for example, 

the apparent pH shift due to this effect is less than 0.1 pH units when the ratio 

of methanol to water is 50/50; however, in 100% methanol, this effect 

contributes to greater than 2 units in the overall pH shift of the solution.  

• Finally, the buffer pKa is altered in organic solvents due to different abilities 

to dissolve hydrogen ions under these conditions (see Buffers in RP-HPLC).72 

These factors have led scientists to adopt a naming convention regarding the 

solution in which a pH sensor is calibrated as it compares to the solution in which the 

pH is actually measured. The term ���
�  is used when the pH sensor is calibrated in 

the same hydro-organic mixture as the sample solvent, whereas ���
�  refers to the pH 

measured when the electrode was calibrated in an aqueous solution and the sample 

pH measurement was taken in a hydro-organic mixture.74 In this study, the measured 

pH of mixed mobile phases refers to the ���
� . 

Buffers in RP-HPLC 

Even slight changes in the degree to which a compound exists in its ionized 

state can lead to profound changes in its selectivity on a chromatography column.75 

When compounds in a sample are capable of ionization, it is therefore important to 

include a buffer in the mobile phase to prevent erratic results due to pH shifts that 

could lead to different ionized species in the column. Due to the nature of the 

reversed-phase column, compounds buffered at ionized states tend to elute first in a 
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mixed sample followed by non-ionized components.70 Considerations for buffers in 

HPLC studies include the buffer identity, the buffer pH, the buffering capacity, and 

the effects of dilution and/or mixing of buffers with other solvents.  

The buffer capacity is an important factor to consider when selecting the 

appropriate buffer for HPLC analysis. Buffer capacity β is defined as a buffer’s 

ability to resist a change in pH when incremental amounts of acid or base are added to 

the solution.76 It may be described using Equation 2 

 � �  
���

����

�  


���

����

   Eq. 2 

where dCb is the change in concentration of base, dCa is the change in concentration 

of acid, and dpH is the shift in pH.77 This equation demonstrates that the value for 

buffer capacity remains positive regardless of the respective positive or negative pH 

shift experienced when base or acid is added. β is proportional to both the 

concentration of the buffer and to its pKa . The buffering capacity is strongest when 

the pH of the buffer is equal to the pKa  ± 1; specifically, this is obtained at the pH 

corresponding to the buffer’s titration midpoint where the concentration of acid is 

equal to that of the conjugate base, or vice versa. It is therefore recommended to 

select buffers with pKa values close to the target pH. This phenomenon is shown with 

Equation 3, known as the Henderson-Hasselbalch equation 

 �� � ��� � � !
"#$%

"�#%
  Eq. 3 
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where [A-] is the concentration of the conjugate base and [HA] is the concentration of 

the acidic species. As the ratio [A-]/[HA] approaches unity, the term is simplified to 

zero and the pH is equal to the pKa.
78 

Deviations from the buffer pKa can have drastic effects on the buffer capacity: 

when a buffer’s pH is one unit from the pKa, the buffer capacity is reduced by one-

third; however, when the pH is two units from the pKa, the capacity is reduced by a 

factor of 25.77 Shifts in buffer pKa can occur for ionic buffer species due to deviations 

from pKa value listed in most literature sources. This is because simple pKa 

calculations made from the Henderson-Hasselbalch equation do not normally account 

for shifts ionic strength due to the addition of H+ or OH- ions. Anionic acids such as 

hydrogen phosphate therefore experience an unexpected shift in the optimal buffering 

pH as the concentration of buffer is increased.79 

Despite this, the addition of a buffer with a pH within two units of the pKa is 

often sufficient to separate compounds when using HPLC. This is because analytes 

are often present at very low concentrations once they are separated, making even low 

buffer capacities adequate for controlling analyte ionization.76 

EXPERIMENTAL 

Materials 

Cotinine lot 10165472 and nicotine lot 10139194 were purchased from Alfa 

Aesar. Myosmine lot 072M4114V and anabasine lot MKBN2341V were purchased 

from Sigma Aldrich. The HPLC-grade eluents water, acetonitrile, and methanol were 

purchased from Fisher. Phosphate buffers were prepared using monobasic sodium 
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phosphate monohydrate and dibasic sodium phosphate purchased from J.T. Baker 

Chemical Company.  

Standard Preparation 

Nicotine, anabasine, cotinine, and myosmine were diluted with HPLC-grade 

water to concentrations of 1 mg/mL to make stock solutions of each alkaloid. These 

stock solutions were further diluted with HPLC-grade water to a range of 

concentrations appropriate for the HPLC. These concentrations were selected to fall 

within the reported concentration range of e-cigarette filling solutions when diluted 

by a factor of 1000. Common e-cigarette filling solutions allegedly range in strength 

from 0 to 36 mg/mL; the pure alkaloids were therefore chosen to be diluted to 

strengths of 5, 15, 25, and 40 µg/mL. This range allows the presumed concentrations 

of the filling solution samples to fall within the calibration curves for the standards. 

Once the alkaloids were successfully identified using HPLC, mixed samples 

containing all four alkaloids of the same concentration were similarly prepared with 

HPLC-grade water in order to develop an elution scheme that would successfully 

elute all four compounds.  

Instrument Conditions 

  A Thermo Finnigan SpectraSystem chromatograph was used for preliminary 

determination of the elution scheme in this study. This chromatograph features a 

deuterium lamp for spectroscopic UV detection and a reversed phase Thermo 

Hypersil C-18 column with a manual injection system. The majority of attempted 

elution schemes were developed on this instrument.  
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 An Agilent 1220 Infinity Series chromatograph was purchased during the 

course of this research. It includes a diode array detector capable of simultaneous 

detection at a variety of wavelengths, and a 15-cm long reversed phase Poroshell 120 

C-18 column with attached amides.80 This instrument and column allowed for 

improved reproducibility, better detection limits, and included an automated injection 

system. For both the Thermo Finnigan and Agilent instruments, injection volumes 

were 5 µL and the flow rate was set to 1.0 mL/min.  A final successful elution scheme 

was developed on this instrument.  

 In order to ensure the presence and accuracy of the concentrations of prepared 

standards, ultraviolet-visible spectrometry (UV-vis) was used for each alkaloid 

concentration. A Varian Cary 100 Bio UV-vis spectrophotometer was used to scan 

the ultraviolet-visible spectrum for each compound, allowing for the determination of 

λmax needed for detection using the chromatograph.  
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RESULTS & DISCUSSION 

UV-Visible Spectra 

 Absorption spectra for the alkaloids are given in Figures 4-7. Analysis of the 

alkaloids using UV-vis absorption spectrometry found an expected λmax value of 260 

nm for nicotine, anabasine, and cotinine.81 The displayed absorption spectra for some 

of the compounds indicate a negative absorption value for the lowest tested 

concentration (5 µg/mL); this is due to instrument drift.  

Interestingly, myosmine had two distinct absorption peaks at both 234 nm and 

260 nm. A shift in λmax towards lower wavelengths (the blue end of the spectrum) is 

known as a hypsochromic shift.68 The structure of myosmine reveals an additional 

double bond in the pyrrolidine ring (see Figure 2)—contrary to the observed results, 

the extended conjugation of the pyridine ring found in this molecule would typically 

indicate a red, or bathochromic, shift in absorption.82 The unexpected additional peak 

at 234 nm is in fact thought to be due to a bathochromic shift in the absorption 

spectrum of the pyridine ring that would normally exist below 200 nm.81  
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Figure 4: UV-vis Absorption Spectrum of Nicotine  

 

 
Figure 5: UV-vis Absorption Spectrum of Anabasine 
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Figure 6: UV-vis Absorption Spectrum of Cotinine 

 

 
Figure 7: UV-vis Absorption Spectrum of Myosmine. Note the presence of 

two absorbance peaks located at 234 nm and 260 nm. 

 
 The existence of two absorbance peaks for myosmine proved to be a valuable 

tool for identification of this compound when studied as part of a mixed sample for 

HPLC. By using the Agilent instrument’s diode array detector, the mixed sample 

could be injected once and reported using wavelengths of detection set to both 260 

nm and 234 nm. This enabled myosmine to be quickly and easily differentiated from 

the other alkaloids present in a sample. This is shown in Figure 12. 
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Mobile Phase Development 

 During the course of this project, the conditions of the HPLC eluent such as 

buffer pH, buffer identity, solvent ratio, and solvent identity were adjusted in order to 

achieve well-defined peaks and/or good resolution in mixed samples. The various 

attempted mobile phases are given in Table 1.  

The first attempted elution scheme for this project was taken from an HPLC 

analysis of e-cigarette alkaloids funded by the FDA. According to Table 1, eluent A 

consisted of 100% acetonitrile and eluent B consisted of 10% acetonitrile in 20 mM 

ammonium formate buffered to a pH of 8.7. This elution scheme featured a complex 

gradient that consisted of multiple adjustments over an extended period of time: from 

0 to 10 minutes, the elution scheme was programmed to transition from 100% eluent 

B to 80% eluent B and 20% eluent A; from 10 to 20 minutes, the scheme transitioned 

to 10% eluent B and 90% eluent A; from 20 to 21 minutes, the scheme transitioned to 

100% B; and from 21 to 30 minutes, the scheme remained constant at 100% B.6 

 One possible reason for the inability of this elution scheme to resolve the 

alkaloids in this study was the rapid transition from 20 to 21 minutes in the relative 

amount of eluent B—it is possible that this did not allow enough time for the column 

to equilibrate to eluent B before the next sample was introduced to the instrument. 

Another reason may be the condition of the Thermo Finnigan instrument at the time 

of the study. Variable pressure and issues regarding reproducibility of results were 

observed prior to the failure of one of the eluent pumps. This restricted the Thermo 

Finnigan instrument to the use of a single eluent.  
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Table 1: Attempted Elution Schemes 

 Eluent(s) Method 

Mobile 
Phase 
No. 

A B A/B 
pH of 
Buffer 

Gradient/ 
 Isocratic 

Instrument 

1 
ACN 

10% ACN in  
20 mM formate  

8.7 
Gradient 
 (Trehy) 

Thermo Finnigan 

2 
MeOH HPLC H2O 25/75 NA 

Isocratic 
(Kubica) 

Thermo Finnigan 

3 
MeOH 10 mM phosphate 65/35 6.8 

Isocratic 
(Tambwekar) 

Thermo Finnigan 

4 MeOH 10 mM phosphate 80/20 6.8 Isocratic Thermo Finnigan 

5 MeOH 50 mM phosphate 80/20 7.9 Isocratic Thermo Finnigan 

6 MeOH 50 mM phosphate 65/35 8.2 Isocratic Thermo Finnigan 

7 ACN none NA NA Isocratic Thermo Finnigan 

8 ACN 50 mM phosphate 50/50 8.5 Isocratic Thermo Finnigan 

9 ACN 25 mM phosphate 80/20 4.0 Isocratic Thermo Finnigan 

10 ACN 25 mM phosphate 50/50 4.0 Isocratic Thermo Finnigan 

11 ACN 25 mM phosphate 35/65 4.0 Isocratic Thermo Finnigan 

12 ACN 25 mM phosphate 60/40 7.0 Isocratic Thermo Finnigan 

13 ACN 25 mM acetate 50/50 6.0 Isocratic Thermo Finnigan 

14 ACN 25 mM acetate 35/65 6.0 Isocratic Thermo Finnigan 

15 ACN 25 mM phosphate 35/65 7.9 Isocratic Agilent 

16 MeOH 25 mM phosphate 35/65 7.9 Isocratic Agilent 

17 MeOH 25 mM phosphate 20/80 7.9 Isocratic Agilent 

18 MeOH 25 mM phosphate 50/50 7.9 Isocratic Agilent 

19 MeOH 25 mM phosphate 35/65 7.9 Gradient* Agilent 

MeOH = methanol, ACN = acetonitrile. Elution schemes are listed in the order they 

were attempted. *Multiple adjustments were made to this gradient scheme.  
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As a result, many mixed hydro-organic eluents were prepared when attempting later 

elution schemes on this instrument by combining the buffer and the organic eluent 

prior to analysis. 

With the development of new elution schemes, adjustments to the buffer pH, 

hydro-organic solvent ratio, and buffer concentration were made incrementally 

according to the observed retention characteristics of the alkaloids tested. The most 

successful elution scheme developed for the Thermo Finnigan HPLC is given below 

in Figures 8-11. This elution scheme consisted of 35% phosphate buffered at a pH of 

6.8 and 65% methanol run isocratically for 6 minutes (see mobile phase number 3 in 

Table 1). This result led to the development of a final successful elution scheme with 

similar specifications using the Agilent HPLC.  
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Figure 8: HPLC Chromatogram of Cotinine Using Thermo Finnigan HPLC. 

Retention time = 2.632 min. 
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Figure 9: HPLC Chromatogram of Myosmine Using Thermo Finnigan HPLC. 

Retention time = 3.327 min. 
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Figure 10: HPLC Chromatogram of Nicotine Using Thermo Finnigan HPLC. 

Retention time = 4.390 min. 



40 

 

 
Figure 11: HPLC Chromatogram of Anabasine Using Thermo Finnigan HPLC. 

Retention time = 5.595 min. 

 
Figures 10 and 11 effectively demonstrate some of the difficulties encountered 

during this project while working with the alkaloids nicotine and anabasine: these 

alkaloids in particular tended to have stronger retention characteristics on the column. 

This was evident by the broader peaks as the retention time was increased when using 

the Thermo Finnigan instrument. This is possibly due to the molecular structures 

and/or pKa values of these molecules. Both molecules have relatively high pKa values 

compared to the alkaloids cotinine and myosmine (see Figure 2). An equilibrium 

between the ionized and unionized forms of these molecules located at the alicyclic 

base (that is, the nitrogen located in the non-aromatic ring) may exist at the specified 
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buffer pH, leading to broadened peaks. In addition, nicotine and anabasine yielded 

unusually low signals with peak heights of less than 2 mAU—this result indicates a 

low signal-to-noise ratio for these compounds. 

In contrast, cotinine and myosmine demonstrate desirable retention 

characteristics with this elution scheme. As shown in Figures 8 and 9, the compounds 

exhibit sharp, well-defined peaks which appear after the void time indicated by the 

small peaks which appear first on the chromatogram.68 

Adjustments to the percentage of organic solvent were attempted following 

the development of this scheme in an effort to improve the retention characteristics of 

anabasine and nicotine; however, this was often accompanied by little to no retention 

of the more acidic compounds myosmine and cotinine. Further adjustments to buffer 

pH, buffer concentration, and organic solvent composition were similarly made as 

further schemes were developed. The quantitative characteristics of these elution 

schemes are given in Table 2; qualitative comments regarding these schemes are 

given in Table 3.   
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Table 2: Quantitative Data for Attempted Elution Schemes using Thermo Finnigan 
HPLC 

Mobile 
Phase  
No.* 

Retention Times (min) 
Correlation Coefficient 

(R2) Value 
λ 

(nm) 
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1 
        

260 

2 
        

260 

3 2.632 
3.392† 
3.305‡ 

 
4.384 5.502 0.9787 

0.3662† 
0.9956‡ 

 
0.9971 0.9172 

260 
& 234 

4 
  

3.729 4.167 
    

260 

5 2.536 3.042 3.806 3.767 
    

260 

6 2.720 3.711 5.563 5.431 0.9999 0.9999 
  

260 

7 
  

2.533 2.651 
   

0.9854 260 

8 2.54 3.505 8.802 13.631 
    

260 

9 
  

2.263 2.233 
    

260 

10 
  

2.042 2.07 
  

0.9786 0.9892 260 

11 
  

2.072 2.085 
    

260 

12 
  

7.218 3.662 
    

260 

13 
  

2.955 2.356 
    

260 

14 2.843 4.6185 2.986 2.396 
    

260 

*The mobile phase number refers to those listed in Table 1.  

†These retention times refer to those obtained at a detection wavelength of 260 nm. 

‡These retention times refer to those obtained at a detection wavelength of 234 nm.  

For mobile phases 1 and 2, the alkaloids could not be resolved from the 

chromatogram. 
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Table 3: Qualitative Data for Attempted Elution Schemes using Thermo Finnigan 
HPLC 

Mobile 
Phase 
No.* 

Comments 

1 No resolution 

2 No resolution 

3 
Well-defined for cotinine and myosmine; broad nicotine and anabasine 

peaks 

4 significant tailing and split peaks for nicotine and anabasine 

5 Tailing nicotine peak; broad anabasine peak 

6 
Well-defined for cotinine and myosmine; poor for nicotine and 

anabasine 

7 Well-defined peaks but poor retention 

8 
Well-defined for cotinine and myosmine; broad peaks for nicotine and 

anabasine 

9 Well-defined peaks but poor retention 

10 Well-defined peaks but poor retention 

11 Well-defined peaks but poor retention 

12 Broad and poorly defined peaks 

13 Well-defined with some tailing; poor retention 

14 Split peaks for all analytes 

*The mobile phase number refers to those listed in Table 1.  
 

Upon purchasing the Agilent HPLC, gradient schemes could again be 

developed in order to counter the general elution problem. A combination of the 

previously attempted elution schemes with the best retention characteristics using the 

Thermo Finnigan instrument led to those attempted on the Agilent instrument.  

The initial scheme used 35% acetonitrile and 65 % 25 mM pH 7.9 phosphate 

buffer run isocratically. Though peaks were narrow and well-defined for all alkaloids, 

poor retention of cotinine and myosmine was observed—these compounds were 

detected almost immediately after injection.   
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To combat this problem and avoid an overlap with the column’s void time, the 

organic solvent was switched from acetonitrile to methanol. This resulted in greater 

retention without sacrificing the overall peak shape. Figure 12 demonstrates the 

retention characteristics of myosmine and cotinine in 35% methanol and 65% 25 mM 

pH 7.9 phosphate buffer. Calibration curves were constructed for all four alkaloids 

using this isocratic method; these are given in Figures 13-16.  

Figure 12: Chromatogram of Cotinine and Myosmine, 65/35 pH 7.9 Phosphate 

Buffer/MeOH. Cotinine = 2.303 min., Myosmine = 4.157 min. 
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Figure 13: Calibration Curve of Cotinine at 260 nm, 65/35 pH 7.9 Phosphate 

Buffer/MeOH 

 

 
Figure 14: Calibration Curve of Anabasine at 260 nm, 65/35 pH 7.9 Phosphate 

Buffer/MeOH 
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Figure 15: Calibration Curve of Myosmine at 260 nm, 65/35 pH 7.9 Phosphate 

Buffer/MeOH 

 

 
Figure 16: Calibration Curve of Nicotine at 260 nm, 65/35 pH 7.9 Phosphate 

Buffer/MeOH 
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injected under same solvent conditions. The results are shown in Figure 17. 

According to the figure, myosmine and cotinine again demonstrate excellent narrow 

peaks with this method. Though anabasine and nicotine (eluted at 4.017 minutes and 

5.811 minutes, respectively) exhibit broader peaks in comparison, the reproducibility 

and overall peak shape was greatly improved when compared to results from the 

Thermo Finnigan instrument. A significant overlap in retention between anabasine 

and myosmine exists with this method, however—further adjustment was needed to 

resolve these compounds. 

 

Figure 17: Chromatogram of Alkaloids, 65/35 pH 7.9 Phosphate Buffer/MeOH 

Cotinine = 2.334 min., Anabasine = 4.017 min., Myosmine = 4.263 min., Nicotine = 

5.811 min. Note the co-elution of myosmine and anabasine. 
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In order to resolve the peaks corresponding to anabasine and myosmine, the 

percentage of methanol in the mobile phase was increased to 50%. An isocratic 

method of 50% 25 mM pH 7.9 phosphate buffer and 50% methanol was used to elute 

a mixed standard containing myosmine and anabasine. The results are shown in 

Figure 18.  

Figure 18: Chromatogram of Anabasine and Myosmine, 50/50 pH 7.9 Phosphate 

Buffer/MeOH. 

Myosmine = 2.252 min., Anabasine = 2.510 min. The top chromatogram used a 

wavelength of detection of 260 nm; the bottom chromatogram used a wavelength of 

detection of 234 nm.  
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In order to gauge the efficacy of this method, the resolution between these 

peaks was calculated. Chromatographic resolution may be calculated using Equation 

4: 

 &� �
'∆)

�*+,*-

   Eq. 4 

where Rs is resolution, ∆Z is the difference in time between the peaks of interest, WA 

is the width of the first eluted peak, and WB is the width of the second eluted peak.68 

Since the widths W and the time difference Z are both given in units of time, Rs is a 

unitless quantity. The average resolution measured between these peaks was 

measured as 3.421 ± 0.022. A resolution greater than or equal to 1.5 is typically 

deemed adequate for baseline separation between two peaks.70 

Following these results, a gradient scheme was adapted by combining the two 

above methods—the concentration of the organic solvent methanol was gradually 

increased prior to the elution of the compounds myosmine, anabasine, and nicotine. 

This resulted in a shift in retention order between anabasine and myosmine, causing 

the more acidic alkaloid myosmine to elute before anabasine. Separation between 

myosmine and anabasine was achieved, resulting in a simple gradient scheme only 

6.5 minutes in length. This scheme is much shorter in comparison to the 30 minute 

run time required to separate alkaloids in the FDA-funded study discussed 

previously.6 The results of this method are demonstrated in Figure 19.  
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Figure 19: Chromatogram of Alkaloids:  

Cotinine = 1.685 min., Myosmine = 3.204 min., Anabasine = 3.706 min., Nicotine = 

4.314 min. Alkaloids were analyzed using the following scheme: Gradient of 65/35 

pH 7.9 Phosphate Buffer/MeOH to 50/50 pH 7.9 Phosphate Buffer/MeOH from 0 to 

3 minutes; Isocratic 50/50 pH 7.9 Phosphate Buffer/MeOH from 3 to 6.5 min. 

 

The overall peak shapes shown in Figure 15 suffered due to the presence of 

contaminants on the chromatographic column. Repeated washings of the column with 

HPLC-grade water and methanol led to a gradual improvement from split, broad 

peaks to those shown above in Figure 19. Research was suspended in October of 

2013 following maintenance on the chromatograph injection port and a need to clear 

obstructions from the eluent lines and column. 
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FUTURE WORK 

The developed elution scheme may be improved by reducing the effects seen 

from ionization of analytes due to a shift in pH. The addition of the mobile phase 

buffer to the alkaloid samples prior to injection may enhance separation as well as 

allow the alkaloids to equilibrate to the buffered portion of the mobile phase before 

analysis. Existing literature demonstrates that low concentrations (approximately 

0.1%) of strong acids such as trifluoroacetic acid may be added to the alkaloids prior 

to injection to control the pH.83 This has limited efficacy for more basic analytes; 

however, it has been used to control the mobile phase pH and selectivity for some 

slightly ionizable compounds such as proteins. Care must be taken when pursuing this 

option so as not to lower the mobile phase pH below the acceptable range for the 

column (for the Agilent Poroshell column, this range is 2.0 – 9.0).80, 84  

The original goal of this study was to test a variety of e-cigarette filling 

solutions using a predetermined HPLC elution scheme found in the literature. During 

the course of this work, instrument issues such as those discussed previously led to a 

shift in focus from a quality control study regarding the alkaloid content in e-

cigarettes to a study in method development for e-cigarette alkaloids using mixed 

standards. In the future, e-cigarette filling solutions will be diluted to 1/1000 of their 

original concentrations and run using the HPLC elution scheme described in Figure 

19. The concentrations of each alkaloid in the refill solutions will be reported along 

with their statistical significance. Attention will be given to the concentration of 
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nicotine found experimentally as it compares to the concentration advertised by the 

manufacturer and amounts reported by pre-existing research. 
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CONCLUSION 

The goal of this work was to add to the growing amount of knowledge 

regarding e-cigarette quality, safety, and efficacy by developing an HPLC elution 

scheme capable of separating and quantifying nicotine and the related e-cigarette 

alkaloids anabasine, cotinine, and myosmine. A simple gradient elution scheme was 

developed with the following specifications: a transition from 65% to 50% 25 mM 

pH 7.9 phosphate buffer was accompanied by an increase from 35% to 50% methanol 

from 0 to 3 minutes, followed by isocratic elution from 3 to 6.5 minutes with 50% 25 

mM pH 7.9 phosphate buffer and 50% methanol. This elution scheme was sufficient 

to resolve all alkaloids with reasonable peak shape and separation. The method will 

be used to quantify the amount of nicotine and related alkaloids in e-cigarette filling 

solutions purchased from online vendors. The experimental nicotine concentrations 

may then be compared to the manufacturers’ reported nicotine concentrations to 

provide an assessment of the quality control surrounding e-cigarette filling solutions. 
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