WIRELESS ENERGY MONITORING SYSTEM

By

Federico Alejandro Foglia

Approved:

Stephen D. Craven

Assistant Professor of Electrical Engineering
Engineering

(Director of Thesis)

Abdul Ofoli
Assistant Professor of Electrical Engineering
(Committee Member)

William H. Sutton
Dean of the College of Engineering and
Computer Science

Raziq Yaqub
Associate Professor of Electrical

(Committee Member)

Jerald Ainsworth
Dean of the Graduate School

WIRELESS ENERGY MONITORING SYSTEM

By

Federico Alejandro Foglia

A Thesis
Submitted to the College of the
University of Tennessee at Chattanooga
in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Engineering,
Concentration in Electrical
Engineering

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

May 2012

ii

ABSTRACT

Monitoring, controlling, and managing the energy usage in houses or buildings are tasks
that not many electric power companies can do with the exception of a few. This sort of
operations may be important to households who want to monitor and possibly even control and
manage their own electrical energy usage. For this thesis, an open source Wireless Energy
Monitoring System was implemented, primarily based on the OpenEnergyMonitor project. The
goal of this thesis is to provide a very simple, scalable, and reliable monitoring system that is
capable of reading current and voltage from any electrical panel of any building. The system is
based on Arduino Fio boards for reading and processing the data (current and voltage) and Xbee
Series 2 radio frequency (RF) modules. The circuit that allows the voltage and current readings is
based on the schematics provided by the OpenEnergyMonitor project, but with small

modifications.

iii

DEDICATION

I would like to dedicate this thesis to my parents, Luis Foglia and Olga Ghiglione, and to
my siblings Andrés Foglia and Julieta Foglia. Thank you for your wholehearted support you

have given to me all these years.

iv

ACKNOWLEDGEMENTS

I would like to thank the Electrical Engineering faculty at UTC for their help, experience,
and excellent work in each class that I attended. I would specially like to thank Dr. Stephen
Craven for his time, help, valuable knowledge, advice, and for giving me the opportunity to
study a Master's program under his supervision. You were a great mentor to me.

I would also like to thank my family for their continuous support in good and bad
moments. You mean everything to me and I will always be indebted to you.

Finally, I would like to thank to all my friends for their help and support throughout these

years.

DEDICATION ...ttt ettt ettt ettt ea et e e st e ss e e bt eneeebeenbeentesaeenseeneenseenee v
ACKNOWLEDGEMENTS ...ttt ettt et ettt et nee s enee v
LIST OF TABLES ...ttt ettt ettt et e e bt et e st esbeentesneenaeensens viil
LIST OF FIGURES ...ttt ettt ettt et et b et et esaeeseeneeeseenee X
LIST OF ABBREVIATIONS ...ttt ettt ettt et X1
CHAPTER
[INTRODUGCTIONoiiiiiiiiieeee sttt sttt ettt et sae e bt et esaee bt et e eneenseensesneans 1
Need for the SYSIEM ...cc.viiieiiiee e e e 1
I[I. BACKGROUNDoiiiiiiiteeeeee ettt sttt sttt et ettt s seesseenaeeneesseenee 3
OpenEnergyMonitor PIOJECT.........iiiiiiiiieeiie ettt 3
Wireless SenSOr NEtWOTKSc...eiruiiiiiiiieiieeie ettt 5
Single-hop Wireless Sensor NetWorksccccveeeeiiieiiiieiiieeieeeieceee e 6
Multi-hop Wireless Sensor NEetWOrKSc.cceecvireriieeniieeerieeeieeeiie e 7
Event-driven, Periodic, and On-demand Reportingcccceeevvveecveenciieenneenns 8
Prototyping Platformis.c..eeeuiiiiiiieeie e 9
Radio Frequency MoOdUIES...........cccuiiiiiiiiiiiicciie et 10
CIrCUIt INTEITACE ..ottt e 10
III. WIRELESS ENERGY MONITORING SYSTEM: ANALYSIScooiiiiiieieieeieeees 11
F N 1 F:1)£ TSRS 11
PIEI@QUISIEES ..ouvvieeiiieeiiee ettt e et e et e e et e e e ebeeetaeeesareeesneeessseeensnees 11
Lo@ICAl DESIZN....cciiiiiiiiieeiiie et et ae e et e e e e e e en 12
IV. WIRELESS ENERGY MONITORING SYSTEM: DESIGNccccoeviiinieiinieeeieeene 14
Hardware DESIZNcc.uviiiiiiieiie ettt et et e e et e e et e e et e e nreeennnes 14
Radio Frequency Modules...........cocuiiiiiiiiiiieiiie e 14

TABLE OF CONTENTS

Prototyping Platforms...........ooeoviiiiiiiieeiece e 16

CIrCUIt INTEITACE ... vvieiiie ettt e et e et e e et e e s saae e e sbeeenes 19

Current Measurement CIrCUILcecveeeiiieeriiieeniieesieeeseeeeeeeeveeesaee e 21

Voltage Measurement CIrCUIL........c.eeerveeeriieeeriieeiieeeieeeireeeveeesvee e 23

SOTIWATE DESIZN ...veeeeiiieeiiieeiie ettt e st e e stae e e steeesaeeesaaeesssaeessseeennnes 24

Front-end INterfaceooouivieiiieeieeeee e 24

Back-end SYSteMcccciiiiiiiiciiecee e en 25

A4 2 < SRR 25

NetWOrk TOPOIOZY....vviiiiiieiieeiie et 26

AAIESSINGeeeeiieeiiieeee et et e e et e e e aee e ebaeeenree s 28

Pan AdATeSS ...ccuveeeeiieeiiieceeee et e 28

CRANNEIS ... et e e e e e rae e sbee e s aeeenes 28

APT MO ...t 29

V. WIRELESS ENERGY MONITORING SYSTEM: IMPLEMENTATION

AND TESTS et sttt sttt et st sae e 32

Hardware Implementationcoccueeiiiieeiiieeiieeeiee e e ere e e e aee e evee e 32

System INTEETAtIONeeeiiieeiiieeciie ettt et e e e e e sbeeesnaeeeenseeenes 32

Software IMplementationcceeeeiiiiiiiieeiiie ettt e e e e e e e e e e seneeenens 34

Front-end INterfacecooouviieiiieeieeceee e 34

Back-end SYStEMcociiiiiiiieciiece e s 36

B <] £ USRS PPPRRRP 37

Problems ENCOUNLETE..........ooeuiiiiiiieciii e 42

VI CONCLUSIONS L.ttt ettt et h bttt e st s e e saeeebeenae 44

Future IMpProvemMeENtS..........viiiiiiiiee ettt e e et e e st e e e aaeeeeas 44

REFERENCESottt ettt ettt e st e bt et e e bt et e eneesseebeeneenneenee 47
APPENDIX

A. FRONT-END INTERFACE AND BACK-END SYSTEM SOURCE CODES.............. 48

VT A ettt et e h e et e s bt et e e e bt e e bt e s bt e et e e sbeeeabeenbaeeanean 57

vii

LIST OF TABLES

. BasiC API fTAmE SIIUCTULIE .eevveneee et e e e e e e e eeeeeeaeeeeeeeeeeaeaaeaaaaaees 29

. API format for ZigBee TX reqUEST......cccutieriiiiiieeiiiieeiie et e e eeere e e saee s 31
. Costs of the hardware IMplementationccueeeiiieiiieeniie e 32
. Readings from sensor node and error calculations.............ccceeevieeriieeiiieciieeceeee e 40

. Average of the readings and their €ITOTcccvviiiiiiiiiiee e 41

viii

LIST OF FIGURES

1. Simple WSN CONTIGUIAtION.......ccoiiiiiiiieiiieeciie et etee et e et eeeaaeeetaeesaeeesseeeseseeesnseeenenes 2
2. OpenENergyMONITOr OVETVIEWccccveeeiuieeriuieeriieenieeesseeessseeessseesssseeessseesssseessssesssseesssseesnnnes 4
3. Diagram 0f @ SENSOT NOAEceecuiiiiiiiieiiie et e et eereaeeeeaeeeaaeeensaeesnseeennsees 6
4. Single-hop SENSOT NEtWOTK.......cciiiiieiiiiiiieceece e e e e 7
5. Multi-hop SENSOT NEEWOTKeeiieiiiiiiiieiie e e e s 8
6. Event-driven mode eXamPIecccoviiiiiiiiiiieiiiieeieeee et en 9
7. Xbee Series 1 RF MOAUIEcocooiiiiiiiii s 14
8. Xbee Series 2 RF MOAUIEcocuoiiiiiiiiii e 15
9. ArdUINO Pro MINT..cc.eiiiiiiiiiiieeeee ettt ettt ettt e eaaeas 16
1O, ATAUINO IMINT .ttt ettt eb e ettt et e bt e et e sbeeeabeesbeesnbeeaee 17
L1, Arduino UNO ..ottt sttt et ettt ettt e bt e e abeesaeesnbeenaee 17
12, ATAUINO FIO ittt ettt et ettt et e s 18
13. Arduino Fio with socket for Xbee RF modules...........ccocoiiiiiiiiiiniiiiiicecee 19
L RSP SPSORPRSPRRRPRR 20
15. Wall transformer or AC-AC adaptorceccueeeriiieriieeiiee ettt e ereeeireesaeeeeaeeesreeesseeenenes 21
16. Current MEASUTEMENT CITCUIT. ..ceu.teruttetieeiteetieete et et e et e ste e bt e ettt esbee st e e sbeeeabeesbeeebeesaeeesbeeneee 22
17. Voltage MeasuremMENt CITCUILcvvieriieeriieertieerieeesieeesireeeeaeeesreeesreeeseeessseeessseeessseesssseesnsses 24
18. ZigBee NetwWork tOPOLOZICSceciiieiiieeeiie ettt et e e e et e e s e e e aeeesbeeesaseeennes 27
19. Coordinator node connected to the FTDI USB wire (left) and

ix

sensor Node With the CIFCUIL INTETTACEceeeeeeeeeiee e eeeeeeeeeaeees 33

20. CT connected from the circuit interface to ground wire on the

OMICRON 2560 38
21. Execution of the user interface and reCeiVe dataoooeveeneeeeeeeeeeeeeeeee e 39
22. Closing program and saving readings in @ CSV file.......c.ccooouvieiiiieiiiiiiiiieieeeecee e 39

LIST OF ABBREVIATIONS

API, Application Programming Interface
CSV, Comma Format File

CT, Current Transformer

EPB, Electric Power Board

FPGA, Field Programmable Gate Array
FTDI, Future Technology Devices International
IDE, Integrated Development Environment
PAN, Personal Area Network

POSIX, Portable Operating System Interface
PRET, Precision Timed

RF, Radio Frequency

TX, Transmission

WSN, Wireless Sensor Networks

Xi

CHAPTER 1

INTRODUCTION

Households find it important to manage and control their use of electrical energy in order
to lower their electric bills and help protect the environment. This objective is not always easy to
achieve, unless households are given information about their electrical energy usage from their
electricity providers. Some power companies provide this kind of service to their customers, but
still customers might not receive all the information they might need.

In order to provide a simple and reliable way for households to be able to monitor their
electrical energy use a Wireless Energy Monitoring System was implemented in this thesis based
on the OpenEnergyMonitor project [1] and using a Wireless Sensor Network (WSN). The WSN
is composed by Arduino Fio boards for the sensors and 2.4GHz Xbee RF modules, for the
wireless communication. Each node is capable of reading the voltage and current from an
electrical panel through a circuit attached to the sensor, a current transformer (CT), and a 9V

AC-to-AC power adapter.

Need for the System

Owners of buildings usually need to be informed about the way their energy is being
used. Nowadays, there is no easy way to control and manage the usage of the energy (e.g.: read
the current and voltage, calculate the real power, apparent power, or power factor) at a building

besides using the procedures or tools used by the electric power company, which sometimes are

not available for the regular user. This thesis created a Wireless Energy Monitoring System that
is reliable, easy to use, and easy to install. Figure 1 shows an overall idea of how the system
works.

Some utility companies, such as Chattanooga’s Electric Power Board (EPB), provide
reliable information to users about energy usage at their homes or buildings. These are normally
web-based systems or reports showing the consumption of energy each day or month, but they
do not provide readings for each element, room, or place in the building [2]. These reports
usually are general readings from the whole building or house, or in other words, these do not
differentiate the energy usage at a certain room in a building. This issue does not apply to the
system that was developed in this thesis. In using WSN, each room or floor of a building can be

monitored separately, as well as the entire building.

Sensor node Sensor node
(router) (router)

Base station
radio

Computer

Figure 1. Simple WSN configuration [3]
2

CHAPTER II

BACKGROUND

An overview of the OpenEnergyMonitor project, WSN, and different types of
prototyping platforms, RF modules, and methods of performing readings (voltage and current) is

presented in this chapter.

OpenEnergyMonitor Project

As stated in Chapter I, this thesis is based on the OpenEnergyMonitor project [1] that was
developed and still supported by a large group of engineers from all around the world. The
project provides a reliable, simple, and affordable way to measure current, voltage, and power
from any electrical panel of any building. The final goal of this project is to give households a
way to control and manage their electrical energy use. The OpenEnergyMonitor system is based
on Arduino boards and has three main components, as seen in Figure 2:

1. emonTX: It is a low power wireless energy monitoring node. It is designed to sense data
from multiple CT current sensors (3 maximum), optically from a pulse-output utility
meter and from multiple one-wire temperature sensors.

2. emonBase: It is a web-connected base-station that receives energy monitoring data from
the emonTx and posts to a remote or local server for web-based logging and
visualization.

3. emonGLCD: It is an open-source general purpose wireless graphical LCD display unit.

Pulse output utility meter

energymonitor

Figure 2. OpenEnergyMonitor overview [1].

This Wireless Energy Monitoring System uses similar components, like the ones used in
the OpenEnergyMonitor project. However, there are substantial differences: the central node,
which is the analogous of the emonBase device, sends the readings to the computer, which
finally shows the information on the command line screen and saves it to a file for future
analysis. This information is not available through a web system, like in the emonBase, for
simplicity of the system, although this is considered for future work and explained later on in
Chapter VI. Also, there is no emonGLCD device in the monitoring system, the information is
only shown in the computer and no LCD display is used. Lastly, each sensor node, which is the
analogous of the emonTX device, only read current and voltage from one CT and one power
adaptor. The sensor nodes do not support multiple CTs, neither temperature nor utility meter

readings.

Moreover, this Wireless Energy Monitoring System uses the same schematics for the
current and voltage circuit interface that allows the Arduino Fio to perform the readings, but with
small modifications: the Arduino boards used in the OpenEneryMonitor project operate at SV
and the Arduino Fio boards used for this thesis operate at 3.3V. Also, the chosen CT for this
thesis includes a burden resistor, therefore there is no need to perform the required calculations
to select one and include it in the circuit. These small modifications are explained later in

Chapter IV.

Wireless Sensor Networks

WSN are composed of small distributed and autonomous sensors used to read different
variables, like temperature, humidity, sound, etc., of an environment condition.

These nodes are composed of microcontrollers (with an external limited memory and
transceiver to send and receive data) and sensors to monitor the different variables just
mentioned. These microcontrollers usually consume very low power and run at a low speed
(typically at 4 to 5 MHz). Figure 3 shows how these elements interconnect [3].

The following are the most important or known issues related to WSN. Some of these
still do not have a definite solution [3]:

* Power consumption: The sensor nodes are normally powered by batteries. Power
conservation and careful use of available energy is something to be taken into account.

* Time synchronization: Some applications for WSN are required to be extremely accurate
regarding the reading or monitoring of data through the sensors. Synchronizing the
clocks regularly means that the sensor needs to use a lot of energy to relay clock-

synchronizing messages. Therefore, there is no perfect solution to this day for this issue.

* Security: The information going across the wireless network is susceptible to different
active or passive attacks, such as eavesdropping or altering the readings. Wireless
connectivity is less secure than wired connections since data travels everywhere through

the wireless space.

Transciever

::> Sensors...

Microcontroller { 1 A/D conversion
N—

T |

Sensors...

POWER SOURCE

JExternal RAM memory

Figure 3. Diagram of a sensor node [3]

Single-hop Wireless Sensor Networks
Most of the applications in WSN are single-hop, where a single node reaches a central
node that collects and processes the data that was measured by this single node. These
applications are commonly used in the health care industry, where for example, sensors can be
embedded into watches that are attached to patients in order to monitor their blood pressure and
pulse (as shown in Figure 4). This information can be sent to a central node, which can analyze

the data and send alarm messages to the patient or the doctor in case of anomalies [4].

6

(1))™ Data acquisition
TS at laptop

Figure 4. Single-hop sensor network [4].

Multi-hop Wireless Sensor Networks

WSNs normally operate in a multi-hop fashion (see Figure 5), especially when there is a
large number of sensor devices in the network. This provides a more powerful and scalable way
to "sense" the physical world [4], allowing sensors to retransmit the data that was read and
received from other sensors (neighbors or not) to the central node. This data can be just
retransmitted, it can be combined with other data received from other sensors, or it can be read
from the sensor itself.

This thesis follows an approach where the sensor nodes transmit or route the information

to the central node, resulting in a more scalable and reliable system.

Figure S. Multi-hop sensor network [4].

Event-driven, Periodic, and On-demand Reporting

The applications of WSN can be placed into three different groups, each having its own

data communication mode:

I.

Event-driven mode: Sensors report the sensing information to the sink once a specified
event has been detected. For example, as shown in Figure 6, a fire detection system will
report the fire station as soon as it detects fire in a room. Note. 4 sink is any node, central
node, to which the information must be reported.

Periodic mode: Sensors collect sensing information from the environment at
predetermined times and report it periodically to the sink or central node. This mode is
used in the WSN of this thesis; each node collects the data from the electrical panels at
predetermined times, performs calculations, and then reports it to the central node

periodically.

Internet and
satellite

Sink

Take manager
node

User

Sensor field Sensor nodes

Figure 6. Event-driven mode example [4]

3. On-demand mode: Users decide when to collect the sensing information. They send
commands to the WSN indicating they want the data to be reported, and then wait for it
to be sent and received. Users may even specify future reporting periods, therefore
switching to a periodic mode. An example of the on-demand mode could be when a user
sends a report command to a WSN that is collecting the humidity information of a

cornfield.

Prototyping Platforms

There are many prototyping boards options that fit well into this system that are available
in the market, but the ones considered for this thesis were the Arduino platforms [5], which are
provided in a list in Chapter II1. These platforms were chosen upon the following main
characteristics: size, energy consumption, open source, sufficient number of I/O pins, low cost,
and available connectivity to radio modules (or available information on how to interface radio
modules and the board). It is also important to mention that the Arduino project provides an

Integrated Development Environment (IDE), which uses a C-based language.

9

Radio Frequency Modules

There are many options for radio modules that could be used for this system. Some of
them are well-known, and a lot of information and projects are available online to understand
how they work and what their capabilities are. The most often-used RF modules are the ones
built by Digi [6], called Xbee. These were previously used for different projects, and provided
good range, low energy consumption, reliability, and ease of use. A list of RF modules is

provided in Chapter II1.

Circuit Interface

A circuit provides the interface between the prototyping board and the electrical panel. It
allows the board to perform the voltage and current readings from an electrical panel. It was
mentioned in the introduction of Chapter I that this Wireless Energy Monitoring System is based
on an open source project called OpenEnergyMonitor [1]. This project provides all the required
elements that allow the system to read the voltage and the current. The circuit that is needed is
the same one provided in this open source project, but with a small change (this is explained in
detail in Chapter IV). It is essentially composed of two voltage dividers (one for the current
readings and one for the voltage readings) and two capacitors to get rid of any AC components
that might be left and that could create some noise, resulting in less accurate readings. The circuit
is connected to a CT that through inductance is capable of reading the current flowing in a wire.
Also, it is connected to an AC-AC power adapter that provides step-down (usually to 9VAC) the

voltage from the panel in order to be read in a more safe way.

10

CHAPTER III

WIRELESS ENERGY MONITORING SYSTEM: ANALYSIS

This chapter explains how the monitoring system was designed and the tools or
components used to complete it. In order to give a more accurate description of the system, this
chapter is divided into five main sections: analysis, hardware design, software design, hardware

implementation, and software implementation.

Analysis
Prerequisites
The following prerequisites were needed to successfully build a reliable, simple, and
affordable Wireless Energy Monitoring System:
* The nodes in the WSN must provide an accurate reading.
* Low cost components.
* The RF modules must have enough transmission power to send/receive data between
adjacent floors.
* The readings or data received need to be shown to the user and at the same time saved in
a comma format file (CSV) [7] since it is widely supported by consumer, business, and
scientific applications (e.g.: ETAP, Excel, etc.).
* The front-end interface is required to be easy to use.

* The overall system must be reliable, fully scalable, and easy to use.

11

Logical Design
The logical design provides a high level view of the components or parts of which the
system is composed. This view needs to be divided into two, hardware and software components:
1. Hardware

a. Sensor nodes: This is a microcontroller board that provides many digital and
analog I/O pins in order to read or write data from or to any device connected to
it. The sensor node is capable of establishing a connection to a RF module that
will send the data to the central node. Also, it could be battery powered and is low
energy-consuming.

There are two types of sensor nodes: nodes (or frequently called just
sensor nodes) and central nodes. This system is composed of many nodes (or
sensor nodes) that read the data and then forward it to the central node. The
central node collects and saves the data, and also shows it to the user.

b. RF modules: These are in charge of sending and receiving (or routing) the
information to the central node from each node in the network. They have enough
transmission power to traverse thin walls or floors.

c. Circuit interface: This circuit allows the voltage and current readings from an
electrical panel. It is directly connected to the sensor node, which performs these
readings.

d. CT: This is used to measure the electrical current of the panel and it must be
connected to the circuit in order to allow the readings.

e. Power adapter: This device is connected to the circuit interface and to the wall. It

steps-down the voltage provided so it can be read in safe manner.

12

2. Software

a. Front-end interface: This software is in charge of interfacing the central node (the
one that receives the information from other sensor nodes in the network). It
displays the readings to the user and, at the same time, saves it in a CSV file.

b. Back-end system: This is the code that controls the sensor nodes and central node.
It is in charge of interfacing the RF modules with the sensor itself (prototyping
board), so the nodes can receive and send any data. In short, it is in charge of the
overall behavior of the sensor, (e.g.: perform readings, prepare a frame to be sent,

sent/receive frames).

13

CHAPTER IV

WIRELESS ENERGY MONITORING SYSTEM: DESIGN

Hardware Design
Radio Frequency Modules
The following list provides the two RF modules that were taken into consideration to be
used in the monitoring system:
* Xbee Series 1 [6] (see Figure 7): This module costs less than USD $23. It operates in the
2.4 GHz frequency, its power output is ImW, it has a maximum range indoor of 30 m
and a maximum range outdoor of 90 m, its RF data rate is 250 kbps, it follows the
protocol IEEE 802.15.4, and finally the network topology it supports is multipoint (mesh

not supported).

Figure 7. Xbee Series 1 RF module [6]

14

* Xbee Series 2 [6] (see Figure 8): This module cost less than USD $26. It operates in the
2.4 GHz frequency, its power output is 1.25/2mW, it has a maximum range indoor of 40
m and a maximum range outdoor of 120 m, its RF data rate is 250 kbps, it follows the

ZigBee protocol, and finally the network topology it supports is mesh.

Figure 8. Xbee Series 2 RF module [6]

These modules were selected upon the following characteristics: ease of use, available
information about their use and configuration, low cost, good range, no operation license needed,
high data rate, and low energy consumption.

There are other modules available on the market, for example, the IQRF wireless
modules [8]. These modules cost in the range of USD $20, but there is not enough information
available on the Internet about their reliability, usage in projects, ease of use, etc.

Finally, from the list of modules given above, the Xbee Series 2 RF modules were chosen
as preferred for this thesis. They provide good in-door range (40 meters), good data rate (250

kbps), they are cheap, easy to use, low energy-consuming (3.3V, 40, or 45 mA), and they support

15

mesh (or tree-based) networks. This last characteristic is very important, since one of the
prerequisites of this thesis is that the system needs to be scalable and reliable. Therefore, the
sensor nodes should be connected in a mesh fashion: if one sensor node cannot connect to the
central node because of the distance between them, then the node will be able to connect to any
other node in the network and this will forward or route the data to the central node.
Furthermore, these RF modules are supported by the Arduino platform and there exists a

large amount of information and projects online on how to use them.

Prototyping Platform
The following list includes the different platforms that were taken into consideration for
this system:
* Arduino Pro Mini [9] (see Figure 9): The size of this board is 0.7" x 1.3", its price is less
than USD $19 [5], the operating voltage is 3.3V or 5V (depending on model), its input
voltage is 3.35 - 12 V (3.3V model) or 5 - 12V (5V model), and the DC current per 1/O

pin is 40mA.

(=]
z
(L)
Q
O
b J
—
>
[+ 4
o
>
=

. @ Mini
_ﬁrdumq Pro

Figure 9. Arduino Pro Mini [9]

16

* Arduino Mini [9] (see Figure 10): The price of this board is less than USD $34, its size is
0.7" x 1.3", the operating voltage is 5V, the input voltage is 7 - 9V, and its DC current per

I/O pin is 40mA.

Figure 10. Arduino Mini [9]

* Arduino UNO [9] (see Figure 11): The size of this board is 2.7" x 2.1", its price is less
than USD $30, the operating voltage is 5V, the recommended input voltage is 7 - 12V,

and its DC current per I/O pin is 40mA and 50mA for 3.3V.

N NOMNTMNHS
1 v [

DIGITAL (PWM~) E &

rxumw - ARDUINO

O w0
60 mrsiwem) G

ﬁ' : . W
= ((mimwas) 2o

Figure 11. Arduino UNO [9]

17

* Arduino Fio [9] (see Figure 12): This board has a size of 1.1" x 2.6", its price is under
USD $25, it provides a socket for Xbee RF modules on the back of the board, its
operating voltage is 3.3V, the input voltage: 3.35 - 12V, and its DC current per I/O pin is

40mA.

e
-
-
-
-
—-
-
=

=
=

|

™

o

Figure 12. Arduino Fio [9]

All these platforms are from the Arduino open source project. Some of their boards were
used in many different projects resulting in very reliable, easy to use, and low cost systems.
There are also other prototyping boards, for example, the BeagleBone board (ARM7) from
Texas Instruments [10], which provides a lot of computational capabilities (although for this
system this is not a need), but it is a much more expensive device compared to the ones listed
above.

The chosen board for this system of all the Arduino boards provided in the list above is
the Arduino Fio. This board is powered with 3.3VDC, which is perfect since the Xbee RF
modules are also powered with 3.3VDC. At the same time, the Fio board physically supports the
RF modules since an Xbee socket is available in the back of the board, as shown in the following

figure:

18

Figure 13. Arduino Fio with socket for Xbee RF modules [9].

The Arduino Fio has a clock speed of 8 MHz, which is enough for the purpose of this
system. Also, the Fio board is easy to program due to the C-based language provided by the
Arduino Integrated Development Environment (IDE) and it is compact, which makes it suitable

for WSN applications, like this system.

Circuit Interface
There are many CTs in the market, like the one shown in Figure 14, that can be used to
perform the current readings, some of them come with a burden resistor (which transforms the
AC current to AC voltage), and some others do not. The following list gives in detailed the ones
are taken into consideration for this system:
* Efergy CT [1] supports a maximum current of 100 Amps and gives an output of
approximately 74 mA @ 100A (output type: current).
* SCT-013-000 [1] supports a maximum current of 100 Amps and gives an output of

approximately 50 mA @ 100A (output type: current).

19

¢ SCT-013-030 [1] supports a maximum current of 30 Amps and gives an output of
approximately 1 V @ 30A (output type: voltage).

Furthermore, this circuit interface is entirely based on the OpenEnergyMonitor [1], with
two small modifications: first, the chosen CT for this system is the SCT-013-030. It provides a
burden resistor; therefore there is no need to perform the calculations to choose a burden resistor
and place it in the circuit. And second, the circuit for this system is fed with 3.3VDC instead of
5VDC, since the Arduino Fio provides lower output voltage.

The burden resistor converts the current into voltage, and it is needed since the CT
provides a certain amount of current when hooked to the ground wire that is proportional to the
current flowing in this wire [11].

Finally, reading the voltage requires a wall transformer (see Figure 15). For this system, a
120VAC to 9V AC-AC adaptor was chosen. This power adaptor steps down the voltage and then

feeds it to the circuit, resulting in a safer method of measurement.

Figure 14. CT [1]
20

x
o
E
<
>
0
~
<
3
o
S
(]

>
"0
~

AC - AC
ADAPTOR

1
(4]
o
>
o
2o
o
)
o~
n .
1 ©
1%
89
g
0
=0
xw
an

NS7AT

Figure 15. Wall transformer or AC-AC adaptor [1]
The following sections explain how these circuits work, the chosen components, and their

schematics [1].

Current Measurement Circuit
In this section, an explanation of the current schematic (see Figure 16) is given. The

current circuit is divided into two parts: the CT (SCT-013-030 that includes current sensor and

burden resistor of 62 Ohms) and the biasing voltage divider

The sensor produces a current (Isens) that is proportional to the instantaneous one (/inst)

flowing in the ground wire by:

Isens = CT turns_ratio x linst (calculated in Amps)

21

oto Arduino 3.3V

ato Arduino GND

-to Arduino Analog in

Figure 16. Current measurement circuit [1]

The burden resistor (in the case of the SCT-013-030 CT, this resistor is included in the
CT) converts the current Isens into a voltage (Vsensl):

Vsensl = burden_resistor x Isens (calculated in Volts)

The two "Rvd" resistors are part of the voltage divider, which outputs a voltage at half
the Arduino Fio supply voltage of 3.3V. This voltage (bias_voltage) biases the Vsensl AC
voltage (produced by the CT) by 1.65V. This is needed since the analog input of the Arduino
requires a positive voltage:

Voltage to analog input = bias voltage + Vsensl (calculated in Volts)

Furthermore, it is important to mention that the capacitor, C1, stabilizes the DC bias,

eliminating any possible source of noise that could be fed into the circuit and affect the readings.

22

Finally, the chosen size for the "Rvd" resistors was 100K ohms (usually between 10K
ohms and 100K ohms). Higher resistance lowers energy consumption but generates more noise

fed into the circuit. For the C1 capacitor, the chosen value was 10uF.

Voltage Measurement Circuit

In this section, an explanation of the voltage schematic (see Figure 17) is given. The
voltage circuit is divided into two main parts: the step-down voltage divider and the biasing
voltage divider

The chosen AC-AC power adapter provides the circuit with an AC voltage of 9VAC. The
step-down voltage divider scales down this AC voltage from 9VAC to around 1VAC peak to
peak (VsensV).

The resistors R3 and R4 are part of the voltage divider that outputs a voltage at half the
Arduino Fio supply voltage of 3.3V. This voltage (bias_voltage) biases the AC voltage produced
by the step-down voltage divider (VsensV) by 1.65V, needed since the analog inputs of the Fio
board requires a positive voltage:

Voltage at analog input = bias voltage + VsensV (calculated in Volts)

For this circuit, another capacitor was added (C1) in order to stabilize the DC bias and
eliminate any source of noise.

Finally, the chosen value for the R3 and R4 resistors was 100K ohms (usually between
10K ohms and 100K ohms). The chosen values for the R1 and R2 resistors were 10K ohms and

100K ohms, respectively. Moreover, the chosen size for the C1 capacitor was 10uF.

23

~

«to Arduino GND

«to Arduino Analog
in

Figure 17. Voltage measurement circuit [1]

Software Design
This section lists and explains the two main software components of this monitoring

system: the front-end interface and the back-end system.

Front-end Interface

This is a command line interface that was implemented in C POSIX (Portable Operative
System Interface) language and it shows the user the voltage and current readings the central
node receives from other sensor nodes in the network. This is achieved due to the serial
communication that is established between this front-end interface and the central node.

The interface also saves all the received data in a CSV for further analysis with any other
software (e.g.: ETAP or Excel). This file is saved into the folder where the interface is executed
from once the user exits the interface.

The information shown to the user is formatted in the following way:

Sensor node, Current (A), Voltage (V), Timestamp: mm-dd-yy(HH:MM:SS)

24

Where:
* Sensor node is the sensor number or sensor name given in the network. This information
1s important in order to be able to identify where the readings are coming from.
* Current (A) and Voltage (V) are the readings performed by that sensor node.
* Timestamp (in the given format) is the data and time the readings are registered. This

stamp is given to the readings by the interface.

Back-end System

This system is in charge of controlling all the nodes: sensor and central nodes. It provides
a serial communication between the Arduino Fio and the Xbee Series 2 RF module. This way,
each node can send or receive data using this serial connection. In order to explain how this
serial communication works, it is important to understand the different modes the Xbees provide
and how these modules work.

The following sections give a detailed explanation on how Xbee Series 2 RF modules
work. These sections are divided into: ZigBee, Network topology, Addressing, PAN address,

Channels, and API mode.

ZigBee
The Xbee Series 2 RF modules work using a standard communication protocol called
ZigBee, which is based on the IEEE 802.15.4. This protocol is for low-power, wireless mesh
networking. Xbee is the brand of the RF module or radio that supports these protocols [12].
ZigBee is a set of layers that work on top of the IEEE 802.15.4 protocol. These layers add
three very important features to the protocol [12], which are: Routing - the routing tables define

how a radio passes messages through a series of other radios along the way to their final

25

destination, Ad-Hoc network creation - this automated process creates an entire network of RF
radios (or modules) on the fly, without any human intervention, and self-healing mesh - if one or
more RF modules are missing or fail, the network is automatically reconfigured in order to repair
any broken routes.

Moreover, there are three types of Xbee Series 2 RF modules that have different roles in
the network. These are the coordinators: Each ZigBee network must have a single (always one-
per-network) coordinator device that is responsible of forming the network, handing out the
addresses, and managing other functions that define the network. The routers: ZigBee networks
can also have routers connected to them. These can join existing networks, send and/or receive
information, and route information. Since these modules are routers, they are usually powered
from an electrical outlet because they must be turned on all the time. And finally, the end
devices: these are stripped-down versions of a router. They have fewer capabilities, and they are
normally used for sensing the information, sending and/or receiving this information, and joining

existing ZigBee networks.

Network Topology
ZigBee network topologies indicate how the radios are logically connected to each other.
There are four major ZigBee topologies [12], illustrated in Figure 18:

1. Pair: This is the simplest network possible. It requires just two radios or nodes. One of
these nodes must be the coordinator so the network can be formed. The other node can be
configured as a router or an end device.

2. Star: In this topology, a coordinator is placed in the center of the topology and connects

to a circle of end devices. Every message in the network passes through the coordinator

26

(which routes them as needed) to reach destination; therefore, end devices do not
communicate with each other directly.

Mesh: This configuration required router nodes in addition of the coordinator RF module.
These radios can pass messages along to other routers and end devices as needed. The
coordinator manages the network and also routes messages between devices. End devices
may be attached to any router or to the coordinator. They send and/or receive messages
to/from other end devices, but they always need their parents' help to establish this
communication.

Cluster tree: This topology is very similar to the mesh one. Here, routers form a backbone

of sorts, with end devices clustered around each router.

Star
Mesh

Pair

(luster tree

Figure 18. ZigBee network topologies [12].

27

Addressing

In order to send a ZigBee message from one radio to another, the address of the
destination is needed. Each radio has a unique and permanently assigned 64-bit serial address
(there are no other ZigBee radio with the same address). However, radios also
have a 16-bit address that is dynamically assigned by the coordinator when it sets up the
network. This 16-bit address is unique within the network created by this coordinator and since it
is shorter, more of them can be manipulated in the limited memory available in the Xbee chip.
Finally, each Xbee radio can be assigned a short string of text called "node identifier". This

allows the radio to be identifier with a more human-friendly name.

PAN Address
Each ZigBee network that is created has another 16-bit address called Personal Area
Network (PAN). There are 65.536 different PAN addresses available, each having the capability
to generate another 16-bit radio address below it. In theory, there is room for more than 4 billion

radios [12].

Channels
All radios in the network need to be turned to the same frequency (or channel) in order to
be able to communicate with other devices. When the coordinator selects a network PAN
address, it also scans for all the available channels, typically 12 different ones, and picks one of
them for the network's communications. The coordinator tells the rest of the radios in the
network what channel to use when they join the network, otherwise they will not be able to

communicate with each other.

28

API Mode
The Application Programming Interface (API) mode in the Xbee modules is used to
transmit highly structured data quickly, predictably, and reliably [12]. The Xbee API consists of
a series of bytes, each new one building on the information already transmitted. The following

table shows the basic structure of an API frame:

Table 1. Basic API frame structure [12].

Start delimiter Length Frame data Checksum
Byte 1 Byte 2 Byte 3 Byte 4 ... Byte n Byten + 1
0x7E MSB LSB API-specified structure Single byte

* Start delimiter: This byte indicates where or when a frame starts, so Xbee RF modules
wait for this byte (0x7E) to know when the frame start.

* Length: These two bytes (MSB and LSB) that are received after the start delimiter
indicate the overall length of the data frame. Usually, the MSB byte is zero and the LSB
contains the entire length.

* Frame data: This is specific to each type of message received in the Xbee radio. Some
messages will contain a lot of data, while others will contain just two bytes of data.

* Checksum: This is always the very last byte of the frame. The checksum is the sum of all
the bytes that made up the frame, used at the receiving end to check for errors in the
transmission of the message. To calculate the checksum, not including the frame
delimiter and length, add all bytes, keeping only the lowest 8 bits of the result, and
subtract this result from OxFF. To verify the checksum add all bytes, including the
checksum but not the delimiter and the length bytes. If the checksum is correct, the sum

will equal OxFF.
29

Inside this general frame structure, there are also substructures that cover all the different
kinds of data that an Xbee radio is able to send or receive. There more than a dozen of different
API frame types currently defined for the Xbee ZigBee modules.

In the first four bytes of an Xbee API frame are the most important ones, since they
describe the following information [12]:

* Where the frame begins (start byte)
* How long the frame is going to be (length bytes)
* What kind of frame the radio is looking at (frame type)

Although there are more than a dozen API frame types, the Xbee ZigBee radios used for
this system will only use the transmission (TX) request frame (represented by the code 0x10 in
hexadecimal). Therefore, no explanation of the other frame types is given.

The TX request frame is used whenever an Xbee RF radio wants to send data to another
Xbee RF radio. The frame is composed by the bytes described in Table 2.

Using the 64-bit address requires broadcast transmissions to discover the 16-bit address
of the device [12]. Therefore, the system has a limit when using 64-bit address to send
information in a network with more than 10 nodes (radios). It is important to migrate the
application toward either discovering and using the 16-bit addresses in advance via the API or
saving them off-board on the computer or device when it receives incoming data from this
remote node. However, the network formed by this Wireless Energy Monitoring System is
generally small (less than 10 nodes); therefore the system is still scalable, but it would be
required to migrate to one of the solutions given above if more than 10 nodes are used in the

network.

30

Table 2. API format for ZigBee TX request [12].

Frame fields (%t;izt) Description
Start delimiter 0 Indicates beginning of the frame.
Length MSB 1 | Number of bytes between the length and the
LSB 2 | checksum.
Frame type 3 This is the type of frame. In this case, this would be
0x10 since it is a TX request frame.
Identifies the UART data frame for the host to
Frame ID 4 correlate with a subsequent acknowledgment. If set
to 0, no response is sent.
Sets the 64-bit address of the destination device.
64-bit MSB 5 | The following addresses are also supported:
destination 0x0000000000000000 — Reserved 64-bit address
address LSB 12 | for the coordinator.
0x000000000000FFFF — Broadcast address.
lé_bl‘.[Sets the 16-bit address of the destination device, if
destination | MSB 13 . i
network LSB 14 known: Set to OXFFFE if the address is unknown, or
if sending a broadcast.
address
Sets maximum number of hops a broadcast
Broadcast 15 transmission can take.
Frame- radius If set to 0, the broadcast radius will be set to the
specific data maximum hops value.
Supported transmission options, which include:
0x01 — Disable ACK
0x20 — Enable APS encryption (if EE=1)
0x40 — Use the extended transmission timeout for
this destination
Options 16 Enabling APS encryption decreases the maximum
number of RF payload bytes by 4 (below the value
reported by NP).
Setting the extended timeout bit causes the stack to
set the extended transmission timeout for the
destination address.
All unused and unsupported bits must be set to 0.
17
RF data Data that is sent to the destination RF module.
24
Checksum 25 O0xFF — the 8-bit sum of bytes from offset 3 to this

byte.

31

CHAPTER V

WIRELESS ENERGY MONITORING SYSTEM: IMPLEMENTATION AND TESTS

Hardware Implementation

The hardware for this system was relatively easy to implement, since the researcher had

previous experience with the components of the system. The hardware implementation costs are

explained in the following table.

Table 3. Costs of the hardware implementation.

Part Cost (in USD dollars)
Arduino Fio Platform 25
Xbee Series 2 26
Power Adapter 6
CT 10
FTDI USB Wire 18
1 Cell Li-Po Battery 8
Circuit Interface 7

In the following section, a detailed explanation on how the system works and how it is

connected is given.

System Integration

The connection between all the components is very simple. The Xbee Series RF modules

are connected to the backside of the Arduino Fio boads. The RF modules should be facing down.

The circuit interface that allows the Fio board to perform the readings is plugged to the

front of the Fio board (pins: GND, 3.3V, A0, and Al). At the same time, from the circuit, both

the CT and the AC-AC power adaptor are connected to the electrical panel. The CT is connected
to ground wire of the panel; the other end of it is connected to the circuit. The power adaptor is
also connected to the panel and the end of it is connected to the circuit.

Finally, the coordinator or central node is connected to the FTDI (3.3V) cable on one end
(black wire of FTDI wire goes to GND pin of the Fio board); the other end of it is connected to

the computer that executes the front-end interface, as shown in Figure 19.

Figure 19. Coordinator node connected to the FTDI USB wire (left) and sensor node with
the circuit interface.

Furthermore, Figure 19 also shows the system up and running. The CT of sensor node 1
(on the right) is connected to the Omicron CMC 256-6 relay test set current output wire (output

A-1 to N), while the power adaptor is connected to a wall plug. The Omicron CMC 256-6 is used
33

for testing relays and provides electrical energy in a safe and easy way through its outputs.
Therefore, this device was ideal for testing the sensor nodes and verifying that the current and
voltage readings were correct.

All the Arduino Fio boards can be powered from a 1-cell Li-Po battery (with a nominal
voltage of 3.7V per cell). Any other source of power (e.g.: another FTDI 3.3V wire) that does not

exceed this voltage is also suitable to power the Arduino Fio boards with the Xbees RF modules.

Software Implementation
Sections of the most important parts of the code for both the front-end interface and the
back-end system are shown and explained. In order to have full access to the source code, please

refer to Appendix A.

Front-end Interface
This interface is implemented in the "main.c" file. As indicated, it is programmed in C
language and is in charge of the serial communication between the central node and the
computer. Also, this program saves all the readings and gives them a timestamp before it is
exited. The functions used by the interface are:

* int serialport init(const char* serialport, int baud): This function is in charge of
opening the specific port (serialport) in fully raw mode and at a certain baud rate (baud)
in order to receive and/or send data using this serial port. It returns a valid serial
connection or -1 if an error is encountered.

* int serialport read(): This function allows the user to read the data available in the
serial port in a "char by char" (character by character) fashion. The data is displayed to

the user in the command line and saved in a CSV file at the same time. The function

34

returns -1 if it encounters any problem whenever it attempts to read, otherwise it
returns 0O;

* void exiting_program(int sig): This function is executed whenever a user (using the
command line) wishes to terminate the process that is being executed. Therefore, if the
user presses CTRL + C, it will mean he/she wishes to stop the execution of the
interface, for which the function will close the serial port and save the information in
the CSV file.

In order to execute the interface, the user must first compile the C code using any C
compiler and then execute it with the default options, using different ones, or if needed he/she
can execute the help option. This process is covered in the following example (Mac OS X v. 10.6
operative system was used in this example):

1. Compile interface: sudo gcc -o interface ./main.c
2. Execute default port interface, different port interface, or help:

a. Execute interface with default options (which is the default port named

"/dev/tty.usbserial-A800I8KA"):
Jinterface
b. Execute interface with different serial port:
Jinterface <serial port name>
c. Execute help option of the interface:
Jinterface -help
3. Exitinterface: CTRL + C. This will stop the executing of the interface, close the port and
save all the information shown in the command line in a CSV file. This file will be

available in the same path from where the interface was executed.

35

Back-end System
This system controls the Arduino boards and the Xbee Series 2 modules. It is written in a
C-based language supported by the Arduino IDE. There are two files that compose this system:
* "EnergyMonitor Coordinator.ino" (it controls the central node or coordinator). This file
includes two functions:

o void setup(): This function is specific to the Arduino language. It is used to
initialize pins, create serial communications, call any function before running the
main (loop) function, etc. It is only executed once, and as stated before, it is used
for initialization processes. In this case, the setup function for the coordinator
initializes a serial communication between the Arduino, the Xbee modules, and
the computer at a baud rate of 57600 bps.

o void loop(): This is the main function of the program. It executes the part of the
code that is in charge of reading from the serial port all the data that is received
with the Xbee radio module. This data is also sent through the serial
communication to the computer, with the following format:
"node,current,voltage,\n". This will allow the interface running at the computer to
know when to separate each field and each reading. This main functi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>