

COMPUTATIONAL DESIGN FOR ELECTROMAGNETIC SIMULATIONS

By

Ryan Steven Glasby

Approved:

_______________________________ _______________________________

W. Kyle Anderson David L. Whitfield

Professor Director of Graduate School

(Director of Thesis) of Computational Engineering

 (Committee Member)

_______________________________ _______________________________

Lafayette K. Taylor Daniel G. Hyams

Research Professor Associate Professor

(Committee Member) (Committee Member)

_______________________________ _______________________________

John V. Matthews, III Will Sutton

Assistant Professor of Mathematics Dean of College of Engineering and

(Committee Member) Computer Science

A. Jerald Ainsworth

Dean of the Graduate School

ii

COMPUTATIONAL DESIGN FOR ELECTROMAGNETIC SIMULATIONS

By

Ryan Steven Glasby

A Thesis

Submitted to the Faculty of the

University of Tennessee at Chattanooga

in Partial Fulfillment of the Requirements

for the Doctoral Degree in

Computational Engineering

The University of Tennessee at Chattanooga

Chattanooga, Tennessee

August 2011

iii

ABSTRACT

 An automatic computational procedure has been developed to efficiently and accurately

design the shape of complicated electromagnetic objects. These electromagnetic objects can be

simulated for operation at high frequencies (~10 GHz), and can be comprised of dissimilar

materials. The automated design procedure consists of linking together an original

electromagnetic field simulation tool, an original adjoint routine for obtaining sensitivity

derivatives, and an original grid-smoothing tool with an existing optimization package. The

electromagnetic field simulation software employs a temporally and spatially higher-order

accurate Streamline Upwind/Petrov-Galerkin finite-element method that numerically solves

Maxwell’s equations in the time domain using implicit time stepping. The software for

computing sensitivity derivatives employs a reverse-mode time-accurate discrete adjoint

methodology that is formulated to automatically maintain consistency with the electromagnetic

field simulation software. Grid smoothing is achieved using a spatially higher-order accurate

Galerkin finite-element method that generates a numerical solution to the linear elastic equations.

All computational solutions to the linear systems present in each software tool are obtained using

the Generalized Minimum Residual algorithm with block diagonal preconditioning. Each

software tool is implemented using a parallel processing paradigm and is therefore capable of

being executed on a distributed memory supercomputer.

The order of accuracy of the electromagnetic field simulation software has been determined by

using comparisons with exact solutions. The field software’s results were compared to the exact

iv

solution of a rectangular resonant cavity. In all cases, the order properties of the field software

exceed theoretical expectations when linear, quadratic, and cubic tetrahedral elements are

employed to discretize the field.

 To demonstrate the consistency of the adjoint-based sensitivity derivates with those

obtained directly from the field solver, derivatives have been extracted from the field software

using a complex variable technique. The sensitivity derivatives from the reverse-mode time-

accurate discrete adjoint method were then compared and demonstrated to agree to at least seven

decimal places.

 As a demonstration of the assembled technologies, the optimization procedure

successfully and efficiently modified the shape of two electromagnetic objects to reduce a

specified cost function. A dielectric cube, under the influence of a propagating plane wave, was

repositioned within a larger free space volume so that the field variables on the surface of the

cube match desired values at a specified time. A similar demonstration case has also been

conducted to modify the shape of a dielectric ellipsoid, under the same conditions as the cube.

v

DEDICATION

Dedicated to Alicia and Scarlett

vi

ACKNOWLEDGEMENTS

 The author expresses his sincere appreciation to his principal advisor, committee, and to

the rest of the SimCenter staff and students. First of all, I give sincere gratitude to Dr. W. Kyle

Anderson who spent endless hours disseminating his incredible wealth of knowledge on the topic

of this dissertation. I also give expressed appreciation to the other members of my committee,

namely, Dr. Whitfield, Dr. Taylor, Dr. Hyams, and Dr. Matthews who have passed on much of

their vast knowledge of computational engineering through their superb teaching styles. I thank

the SimCenter staff and students for their support and interesting discussions. I thank Dr. Briley

and Dr. Karman for passing along their expertise of viscous flow fields and grid generation. I

also thank Dr. Burdyshaw for passing along his proficiency and experience base in

computational design methodologies. Lastly, I especially thank Mr. Wally Edmondson whose

know-how in systems administration in unparalleled.

vii

TABLE OF CONTENTS

DEDICATION v

ACKNOWLEDGMENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

NOMENCLATURE xii

CHAPTER

I. INTRODUCTION 1

II. ELECTROMAGNETIC FIELD SIMULATION SOFTWARE

 METHODOLOGY AND IMPLEMENTATION 11

Electromagnetic Field Simulation Software Formulation 11

Governing Equations 11

Finite Element Formulation 13

Parent Element: Gaussian Quadrature, Shape Functions and

 Derivatives, Element Jacobian 15

Derivation of Stabilization Matrix 21

Finite Element Implementation 26

Boundary Conditions 29

Implicit Time Stepping 33

Linearization Matrix 34

Linear System Solver 36

Procedure to Execute the Software on a Distributed Memory

 Supercomputer 37

III. TIME ACCURATE SHAPE SENSITIVITY ANALYSIS AND DESIGN 41

Forward and Reverse Modes 41

Forward Mode, Finite-Difference Method 42

Forward Mode, Complex Taylor Series Expansion (CTSE) 42

viii

Forward Mode, Direct Differentiation 42

Reverse Mode, Discrete-Adjoint Method 44

Software to Generate Higher-Order Numerical Solutions to the Linear Elastic

 Equations 49

Design Optimization 54

IV. RESULTS AND DISCUSSION 55

Electromagnetic Field Simulation Software Accuracy 55

Field Simulation Software Timing Comparison 64

Field Simulation Software Applications 65

Verification of Shape Sensitivity Derivatives for a Dielectric Cube 77

Verification of Shape Sensitivity Derivatives for a Dielectric Ellipsoid 78

Shape Design Optimization Applications 80

V. CONCLUSION 89

BIBLIOGRAPHY 93

VITA 97

ix

LIST OF TABLES

4.1 Comparison of Sensitivity Derivatives Obtained using the Complex-Variable

 Approach, Direct Differentiation, and the Adjoint Method for a Dielectric

 Cube 78

4.2 Comparison of Sensitivity Derivatives Obtained using the Complex-Variable

 Approach, Direct Differentiation, and the Adjoint Method for a Dielectric

 Ellipsoid 79

4.3 Design Cycle for the Positioning of a Dielectric Cube 81

4.4 Design Cycle for the Shape Design of a Dielectric Ellipsoid 85

x

LIST OF FIGURES

2.1 Linear Tetrahedron 17

2.2 Quadratic Tetrahedron 17

2.3 Cubic Tetrahedron 18

2.4 Split Quadratic Tetrahedron over Processes 1 and 2 38

2.5 Product of Linearization Matrix and Solution Vector before Message Passing 39

2.6 Product of Linearization Matrix and Solution Vector after Message Passing 40

3.1 Form of the Linear Element (4 nodes) Sub-matrix 53

4.1 Rectangular Resonant Cavity Computational Grid Discretized with Tetrahedra 57

4.2 Rectangular Resonant Cavity, Contours, Quadratic Elements 58

4.3 Rectangular Resonant Cavity, Contours, Quadratic Elements 59

4.4 Rectangular Resonant Cavity, Contours, Quadratic Elements 60

4.5 Rectangular Resonant Cavity, Contours, Quadratic Elements 61

4.6 Rectangular Resonant Cavity, Contours, Quadratic Elements 62

4.7 Order of Accuracy Study 63

4.8 Computational Grid for Electromagnetic Scattering from a Sphere 66

4.9 Electromagnetic Scattering from a Sphere 67

4.10 Electromagnetic Scattering from a Notional Business Jet 68

4.11 Computational Grid for Dielectric Cube Case 70

xi

4.12 Contours for Dielectric Cube Case 71

4.13 Contours for Dielectric Cube Case 72

4.14 Computational Grid for Dielectric Ellipsoid Case 74

4.15 Contours for Dielectric Ellipsoid Case 75

4.16 Contours for Dielectric Ellipsoid Case 76

4.17 Movement of the Dielectric Cube during the Design Cycle (3D view) 82

4.18 Movement of the Dielectric Cube during the Design Cycle (2D view) 83

4.19 Computational Grid for Dielectric Sphere Case 86

4.20 Contours for Dielectric Sphere Case 87

4.21 Contours for Dielectric Sphere Case 88

xii

NOMENCLATURE

 Derivative of flux in the x-direction with solution vector

 Term in residual equation

 multiplied by

 Inverse of wave impedance

 Ellipsoid length, width, and height

 Coefficient in linear elastic equations

 Derivative of flux in the y-direction with solution vector

 Term in residual equation

 multiplied by

 Magnetic flux density

 Design variable

 Mode wave numbers for rectangular resonant cavity

 Derivative of flux in the z-direction with solution vector

 Term in residual equation

 multiplied by

 Speed of light

 Relative speed of light

 Electric flux density

xiii

 Ratio of electric flux density and inverse of wave impedance

 Term in residual equation

 Displacement

 Electric field

 Permittivity

 Relative permittivity

 Flux in the x-direction

 Flux in the x-direction for the linear elastic equations

 Flux in the y-direction

 Flux in the y-direction for the linear elastic equations

 Element surface

 Magnetic field, flux in the z-direction

 Flux in the z-direction for the linear elastic equations

 Cost function

 Electric current density

 Element Jacobian

 Characteristic length

 Left Eigenvector

 Eigenvalue vector

 Adjoint variable

 Adjoint variable

 Adjoint variable

xiv

 Derivative of solution vector with respect to field variables for jump condition

 Submatrix for the linear elastic equations

 Permeability

 Relative permeability

 Number of nodes contained within an element

 Shape function/Lagrange polynomial

 Cartesian unit normal vectors

 Cartesian non-unit normal vectors

 Element volume

 Frequency

 Solution vector

 Residual

 Right Eigenvector

 Source terms

 Conductivity

 Conductivity multiplied by characteristic length

 Right Eigenvector matrix

 Left Eigenvector matrix

 Nondimensionalized time

 Stabilization matrix

 Nondimensional time increment

 Coefficient in linear elastic equations

xv

 Gaussian weight

 Weighting function

 Field variables for jump condition

 Nondimensionalized position

 Nondimensionalized Cartesian coordinate directions

 Parent element coordinate directions

1

CHAPTER I

INTRODUCTION

 James Clerk Maxwell corrected Ampere’s law and combined it with Faraday’s law and

Gauss’s law in the early 1860’s, which gave rise to Maxwell’s equations [1]. These equations,

which link electricity and magnetism, were derived from experimental observations. Faraday’s

law states that a time varying magnetic field induces an electric field, and Ampere’s law with

Maxwell’s correction, states that an electric current and/or a time varying electric field can

generate a magnetic field [1]. Assuming the material properties of the field do not depend on the

electromagnetic field quantities, Maxwell’s equations are a set of linear hyperbolic differential

equations. Since the equation set is linear, numerous analytic solutions exist. These analytic

solutions have been instrumental to the generation of numerous simple electromagnetic devices.

However, analytic methods do not exist to solve complex electromagnetic problems.

Traditionally, complex electromagnetic problems have been solved in an experimental

laboratory. The scattering parameters of non-radiating devices can be experimentally obtained by

a network analyzer, and the radiation pattern of an antenna can be experimentally obtained by a

field scanner within an anechoic chamber. Design of complex electromagnetic devices has been

based on experimental knowledge. However, costs to gain experimental knowledge is very high;

therefore, since the 1960’s, scientific researchers have been trying to obtain solutions to

Maxwell’s equations using numerical simulations.

2

 Maxwell’s equations can be cast in the time domain or the frequency domain. The time

domain solution of the electromagnetic field can be transferred to the frequency domain by a

Fourier transform. The time domain solution can capture all frequencies within a range, but the

frequency domain solution has to be generated for each frequency as determined by a pulse

within a pre-specified range of interest. Because of the numerical work associated with obtaining

solutions in the frequency domain, for the current study, the time-domain formulation of

Maxwell’s equations is used.

 The generation of approximate solutions to Maxwell’s equations in the time domain has

many difficulties associated with it. The equation set is hyperbolic, and an approximation

method that employs upwinding is essential for numerical stability. Complicated electromagnetic

devices are often operated at frequencies on the order of ten gigahertz (GHz) where the

wavelength in air is approximately one inch. For many applications, the physical size of the

relevant device is such that the wavelengths are disproportionately small, thereby making

simulations very costly due to the large number of grid points required to adequately resolve all

waves. Higher-order finite-element approximation methods can significantly reduce the number

of grid points because waveforms can be accurately represented with fewer grid points. This is

accomplished by distributing the data within the computational element with higher than first

order (linear) polynomials. Even with higher-order elements, some problems are so large that

they will not fit within the memory of a single computer, and it can take a significant amount of

wall-clock time to generate a meaningful solution. To alleviate this problem, the computational

domain is typically divided into numerous partitions which are distributed amongst multiple

processes to significantly reduce wall-clock time. An electromagnetic field can contain multiple

materials, and at the interface of each material a jump condition is necessary to properly

3

approximate the electromagnetic field quantities. Two of the eigenvalues of Maxwell’s equations

are identically zero, and the others are on the order of the speed of light. This has the propensity

to make the matrix that represents the linear systems stiff. The use of higher order elements

makes the linear system less diagonally dominant which also makes it more challenging to solve.

A powerful, memory intensive linear system solver coupled with a preconditioning algorithm

can be utilized to generate the time accurate approximate solution of the electromagnetic field.

 Historically computer generated approximate solutions to Maxwell’s equations utilize the

finite-difference time-domain (FDTD) methodology of Yee [2]. For the FDTD methodology the

spatial and temporal derivatives are approximated with finite-difference approximations. This

leads to the volume of the three dimensional field being discretized with hexahedral elements.

These elements are unable to accurately represent curved surfaces, and actually approximate

curves with a stair step estimate. Also large computational stencils are needed to approximate the

field with higher order accuracy. The FDTD methodology can solve for the electromagnetic field

across dissimilar materials, but the stability of the method is constrained by the time step utilized

[2].

 Another way to approximate the solution to Maxwell’s equations is to employ the finite-

element time-domain (FETD) methodology. The FETD method approximates Maxwell’s

equations with higher-order accuracy both spatially and temporally, and is capable of

conforming to curved surfaces by discretizing the volume of the three-dimensional field with

isoparametric tetrahedral elements. This is accomplished by prescribing the field values within

each computational cell with a polynomial distribution. The finite element method is thoroughly

discussed by Hughes [3] and Zienkiewicz [4]. The finite element method solves Maxwell’s

equations in weak form by multiplying the governing equations by a weighting function and

4

integrating over the volume. The most popular implementation of this method for

electromagnetic field simulations is to apply it to a second order wave equation for either the

electric or magnetic field variables [5]. The other field variables are obtained in a post-

processing step that involves numerical differentiation of the primary variables, and is therefore

one order of accuracy less. Since the spatial derivatives of this equation are Laplacian operators,

a Galerkin finite element method can generate a solution of the electric or magnetic field with

numerical stability. However, one way to generate a higher-order solution for both the electric

and magnetic fields that is made up of multiple materials is to utilize a stabilized finite-element

method. The two stabilized finite-element methods available are the streamline upwind/Petrov-

Galerkin (SU/PG) and the Discontinuous Galerkin (DG) approaches. The SU/PG approach

stabilizes the algorithm by adding an artificial stream-wise dissipation term to the weighting

function [6] to effectively add a degree of upwinding to the algorithm. The DG approach

stabilizes the algorithm by assuming that the field variables for each cell are discontinuous from

the field variables for adjacent cells. A Riemann solver [7] is used at the boundary between

adjacent cells to obtain the solution to the electromagnetic field. In order to implement this

approach, the storage requirements correspond to that obtained by representing the field

variables in each tetrahedron independently, without sharing data between elements. For a three-

dimensional field discretized with tetrahedra, the number of unknowns is approximately 24.0

times greater for linear elements than a SU/PG scheme, is approximately 7.5 times greater for

quadratic elements, and is approximately 7.06 times greater for cubic elements [8]. This fact is a

major drawback for the DG method because it takes significantly more computational resources

to generate a numerical solution.

5

 Traditionally, radiating and non-radiating electromagnetic objects have been designed

from principles learned from analytic solutions to Maxwell’s equations and from experimental

knowledge gained from experience. The use of automatic computational shape design

optimization is a novel alternative for designing electromagnetic objects. Automatic

computational shape design couples electromagnetic field simulation software, a numerical

routine that obtains sensitivity derivatives, and an optimization package to generate the optimal

shape of an object that minimizes a cost function. The sensitivity derivatives are the derivatives

of the cost function with respect to the design variables. The sensitivity derivatives can be

obtained by either forward or reverse mode methods. The forward mode methods are either

Taylor-series approximations or direct-differentiation methods for generating the sensitivity

derivatives, and the reverse-mode methods are adjoint based methods. Jameson conducted the

ground-breaking practical application of the reverse-mode adjoint based sensitivity analysis in

1988 [9], and applied this technique to aerodynamic optimization. The forward mode methods

are inefficient for problems with multiple design variables because a linear system has to be

solved for each design variable. Reverse mode methods do not have this inefficiency, and are

discussed further in the next paragraph.

 Two types of reverse mode adjoint methods exist for computing the shape-sensitivity

derivatives. They are the continuous-adjoint and the discrete-adjoint methods. The continuous-

adjoint approach takes derivatives of the governing differential equation set with respect to the

design variables before the equation set is discretized [10]. A new differentiated equation set is

generated and the sensitivity derivates are solved for numerically. However, if the cost function

is changed, the process to compute the sensitivity derivatives is repeated to reflect the change.

For the discrete-adjoint approach, the discretized field simulation software is differentiated and

6

the sensitivity derivates can be numerically obtained. The accuracy of these derivatives is

directly dependent on the implementation of the field solver, but modifications to the cost

function can be easily applied. An example of the implementation of the discrete adjoint method

for steady-state problems is shown in [11], and an example of the implementation for time-

dependent problems is shown in [12].

 In regards to computing adjoint based sensitivity derivatives for electromagnetic

problems, the first effort is attributed to Director and Rohrer in 1969 [13] and [14]. They

conducted sensitivity analysis for networks, and derived a sensitivity expression based on

Tellegen’s theorem [15] and [16]. More recently, Sabbagh, Bakr, and Nikolova used the adjoint

network method to conduct sensitivity analysis of the scattering parameters of microwave filters

in 2005 [17]. They used the full-wave mode-matching technique to simulate an original network,

generated sensitivities of scattering parameters with respect to design parameters, and applied the

adjoint network method to the generalized scattering matrices of different filter components.

 Kang, Chung, Cheon, and Jung implemented a 2-D numerical algorithm to reconstruct

the complex permittivity profile of unknown scatterers in 2002 [18]. They simulated the

electromagnetic field with the FDTD method, and computed the sensitivity derivates with a

continuous adjoint approach. The adjoint variables are solved with the FDTD method, and they

used a steepest descent method for optimization. With this methodology, they were able to

successfully reconstruct the dielectric constant and the electric conductivity of a 2-D object.

 Chung and Cheon partnered with Park and Hahn and developed a continuous adjoint

FDTD approach for shape design [19] in 2000. They applied this approach to design the shape of

a band unilateral fin line to obtain the broad-band transition taper shape. The unilateral fin

line lies within a rectangular waveguide. Their optimization procedure produced, after 18 design

7

cycles, a band unilateral fin line transition shape that is similar to exponential taper. In

2001, they used this approach to optimize the design of a two-dimensional parallel-plate

waveguide antenna [20]. They applied 40 design cycles and found that reflected energy

decreased over a broadband of frequencies.

 Rickard, Georgieva, and Tam implemented absorbing boundary conditions (ABC’s) for

adjoint problems with a backwards time variable using the FDTD method in 2003 [21]. They

found that the form of the ABC’s for the adjoint backwards time problem is the same as for the

original forward time problem, but that the sign before the spatial derivatives is opposite. The

ABC’s for the forward time problem were originally derived by Berenger in [22]. Rickard,

Georgieva, and Tam’s method was verified by comparing the reflections generated from solving

the reverse-time adjoint problem for a microstrip line as compared to a forward-time method.

They concluded that the reflections for the forward and backward time schemes are identical.

 Chung, Ryu, Cheon, Park, and Hahn coupled the FETD method with design sensitivity

analysis using the adjoint-variable method to obtain the optimal design of microwave devices in

2001 [23]. They took the curl of Maxwell’s equations, and transformed them into the second-

order wave equation. They then applied the FETD method to the second-order wave equation,

and solved for the electric field that is assumed to be made up of one material property. They

applied the adjoint-variable method to modify the design of a waveguide with a two-dimensional

T-junction shape in 27 design cycles to obtain better performance over a broadband of

frequencies.

 Akcelik, Biros, Ghattas, Keyes, Ko, Lee, and Ng implemented a continuous-adjoint

approach to design the shape of end caps of a low-loss cavity for the International Linear

Collider in 2005 [24]. They numerically computed solutions to the Maxwell eigenvalues problem

8

which generates the magnetic field in the frequency domain with a finite-element method. In

addition to solving the Maxwell eigenvalues problem, they had to solve an additional set of

partial differential equations – an adjoint eigenvalue problem – for each function of interest.

According to [24], each additional set of partial differential equations has “somewhat different

structure from the original Maxwell eigenvalues problem and may require different

discretizations, solvers, and preconditioners.” They implemented their numerical software in the

parallel processing paradigm with an effort to run on a large number of processors. They

parameterized the shape of the end cells with analytic expressions and optimized the shape with

regards to their cost function. Their goal for their specific application was to minimize a cost

function that would improve the trapped energy in the end cell, and they do that by 58% while

maintaining their constraint with 5 design cycles.

 Georgieva, Glavic, Bakr, and Bandler implemented what they called a “feasible adjoint

sensitivity technique” (FAST) for electromagnetic design optimization in the frequency domain

in 2002 [25]. Their objective was to develop a versatile technique to extract sensitivities from

any frequency domain solver, regardless of its discretization scheme. They attached FAST to a

full-wave method of moments frequency-domain analysis tool and optimized the shape of a

Yagi-Uda array and a regular patch antenna.

 Nair and Webb implemented a higher-order finite-element method to numerically

compute solutions to Maxwell’s equations in the frequency domain, and simulated microwave

devices over a frequency band in 2010 [26]. They employed an adaptive optimization procedure,

called direct optimization [27], to locally increase accuracy by increasing mesh points and

increasing the order of the finite elements. They chose a cost function that is directly related to

scattering parameters. In 2001, Webb described a way to compute the design sensitivities using

9

high-order tetrahedral vector elements [28]. They simulated a 2-port rectangular waveguide with

an E-plane bend over a frequency band of 8.25 GHz- 13.25 GHz with their higher-order adaptive

optimizer procedure, and achieved their desired cost function five times faster than when an

adaptive optimizer procedure that does not utilize higher-order elements was employed.

 Toivanen, Makinen, Rahola, Jarvenpaa, and Yla-Oijala implemented a gradient based

shape optimization scheme for ultra-wideband antennas in 2010 [29]. They used a discrete-

adjoint approach to compute the sensitivity derivates. They computed derivatives of their field

simulation software with automatic differentiation. Their field simulation software solves the

electric field integral equation with the method of moments approach in the frequency domain.

They noted that the method of moments approach generates a linear system that is a dense

complex valued system. They parameterized the boundary of the antenna with B-splines. They

used a radial basis function interpolation scheme to deform the mesh which does not have to

solve an additional set of partial differential equations. Their cost function is the absolute value

of the scattering parameter squared, and their frequency band is 3-10 GHz. They spanned

this band with 30 frequency sweeps, and optimized the antenna shape so that is below -12 dB

over the whole frequency band. Their optimized antenna shape can be generated from two initial

configurations, and they concluded that their shape optimization procedure does not depend on

initial shape.

 With past computational explorations in mind, the objective of the current study is to

develop simulation software to accurately approximate time-domain electromagnetic fields

surrounding and within large complicated electromagnetic structures, and to develop numerical

techniques to automatically optimize the shape of complicated electromagnetic structures. The

time-domain electromagnetic fields are approximated with the spatially and temporally higher

10

order accurate SU/PG finite element scheme, and the shape sensitivity derivatives that are the

crux of shape design optimization are computed with the time-accurate discrete-adjoint method.

The algorithms are written in the message passing paradigm, and are capable of being executed

on a distributed memory supercomputer. Implicit time stepping is employed, and a time step that

is based on the physics of the problem is used.

11

CHAPTER II

ELECTROMAGNETIC FIELD SIMULATION SOFTWARE

METHODOLOGY AND IMPLEMENTATION

2.1 Electromagnetic Field Simulation Software Formulation

The three-dimensional Maxwell’s equations are numerically computed using the

Streamline Upwind/Petrov-Galerkin finite element method in the time domain. This

methodology provides a framework to numerically approximate Maxwell’s equations that is

higher order spatially and temporally, and is numerically stable on unstructured grids. Generally,

complicated objects can be more accurately and more easily discretized on unstructured grids.

Implicit backward difference time stepping is employed for this scheme. This, for the cost of

solving a linear system at every time step, allows the use of a time step that is based on the

physics of the problem instead of stability considerations. The field software can be executed on

a distributed memory super-computer.

2.2 Governing Equations

The governing equations for the field simulation software are the six equations that make

up Ampere’s law with Maxwell’s correction and Faraday’s law. The solution of these equations

generates the time history of the electric and magnetic fields within a volume. The six equations

are a coupled set of linear, hyperbolic partial differential equations.

Maxwell’s equation set in differential form [1]:

12

 (2.1)

 (2.2)

 (2.3)

 (2.4)

 (2.5)

 (2.6)

 (2.7)

 (2.8)

 (2.9)

 (2.10)

Equations 2.1 and 2.2 are transformed to be solved for and by defining the following

quantities and by applying Equations 2.3, 2.4, and 2.10:

*
* *, ,otcx

x t L
L L

    (2.11)

The * is dropped for convenience, and the governing equations (Equations 2.1 and 2.2) are

solved in conservative, differential form as follows:

 0
q F G H

S
t x y z

   
    

   
 (2.12)

13

0

0

0
, , , ,

0

0
0

0 0

0

x

r o
x y rz r

yz ry x r

r o
y r x rz

zz yr rx
r o

z r xy r

xy rrz

D
aBBD

B B DD
a

B BD
q F G H S

DD DB a
DB D

DDB




 


 


 


 



       
      

      
      
          
      
      

      
           

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.13)

2.3 Finite Element Formulation

The first step of the finite element formulation is to consider the governing equations in

weak form [3]:

 0
q F G H

w S
t x y z



    
     

    
 (2.14)

The weighting function w is represented in Equation 2.15.

 (2.15)

In the above equation,  , ,N    is the set of shape functions for a three-dimensional element,

 is arbitrary, and is the number of degrees of freedom (number of nodes) in the element.

The shape functions are Lagrange polynomials. The application of Green’s theorem to Equation

2.14 transforms the equation to Galerkin form. The Galerkin form of the governing equation is as

follows:

14

 

0

x y z

q
w S w Fn Gn Hn

t

w w w
F G H

x y z

 



 
      

 

   
    

   

 



 (2.16)

Solving this hyperbolic equation set in Galerkin form is unstable for coarse grids because it does

not provide sufficient dissipation to prevent the field variables from oscillating, and is equivalent

to solving the equation set with central differencing. A generally stable way to discretize a

hyperbolic equation is to use upwinding. In order to stabilize the finite element approximation

method, the Streamline Upwind/Petrov-Galerkin method is utilized [6]. The Petrov-Galerkin

method adds a stream-wise upwind stabilization term to the weighting function [6], and is shown

in Equation 2.17 as

 . The Petrov-Galerkin weak form of the governing

equations is:

 0
w w w q F G H

w A B C S
x y z t x y z




         
          

          
 (2.17)

After applying Green’s theorem, this statement becomes:

  

0

x y z

w w w q
w A B C S

x y z t

w w w
w Fn Gn Hn F G H

x y z

w w w F G H
A B C

x y z x y z







 



      
       

       

   
       

   

        
        

         



 



 (2.18)

15

     , ,F G HA B C
q q q

                     
 (2.19)

The matrices and are as follows:

 (2.20)

 (2.21)

 (2.22)

2.4 Parent Element: Gaussian Quadrature, Shape Functions and Derivatives, Element

Jacobian

 The tetrahedra present within the computational grid are mapped to parent tetrahedra for

integration. The linear parent tetrahedron has the coordinates in non-dimensional space

of (0,0,0), (1,0,0), (0,1,0), and (0,0,1). There are specified quadrature rules for integrating a

16

function over a parent tetrahedron which are traditionally tabulated such that the weights sum to

one. A quadrature table is available in [30]. A function can be integrated over a tetrahedron with

the following relation:

 (2.23)

For this thesis, in the above equation are Gauss points given in a table in [31], are

Gauss weights given in the same table, and is the Jacobian. As long as the quadrature scheme

is of higher order accuracy than the polynomial in the integrand, the integration is exact to

machine precision. However, if higher order curved elements are employed the Jacobian is also a

polynomial, and the integrand is made up of a rational polynomial. For the parent tetrahedron,

the shape functions are Lagrange polynomials written in terms of the isoparametric

coordinates [4]. The number of shape functions matches the number of nodes in the

element. A linear tetrahedral element has four nodes, a quadratic tetrahedral element has ten

nodes, and a cubic tetrahedral element has twenty nodes. Each of these elements is shown in the

following Figures 2.1, 2.2, and 2.3 [4].

17

Figure 2.1 Linear Tetrahedron

Figure 2.2 Quadratic Tetrahedron

18

Figure 2.3 Cubic Tetrahedron

19

The Lagrangian shape functions and their derivatives for the isoparametric linear tetrahedron are

[4]:

 (2.24)

 (2.25)

 (2.26)

 (2.27)

The shape functions for the higher order tetrahedra can be found in [4]. For a given element, if

information is known at the nodes it can be computed for the element by summing the

multiplication of the value of the variable by the value of the shape function over all the nodes in

the element at a given Gauss point [3]. For instance, the values of and for the element are

evaluated by computing Equations 2.28-2.30.

 (2.28)

 (2.29)

 (2.30)

20

In the above equations, and are the values at the nodes. In order to compute the Jacobian

of the element, the following matrix must be computed [3]:

 (2.31)

Each variable in the above matrix is computed as follows [3]:

 (2.32)

 (2.33)

 (2.34)

 (2.35)

 (2.36)

 (2.37)

 (2.38)

 (2.39)

 (2.40)

The Jacobian is defined as [3]:

 (2.41)

21

In order to compute and at each Gauss point of the element Equation 2.31 is inverted

to generate the following matrix:

 (2.42)

Once Equation 2.42 is evaluated the values of and are computed at a given node that

is interpolated to a Gauss point of the element as follows [3]:

 (2.43)

 (2.44)

 (2.45)

2.5 Derivation of Stabilization Matrix

The element based six by six stabilization matrix  has dimensions of time and is defined as

[31]:

 (2.46)

For a linear element, the stabilization matrix is of the form:

 (2.47)

22

Since the above equation contains the absolute value function, each term in the above equation of

the form
N N N

A B C
x y z

  
 

  
 is quantified by evaluating the eigensystem. In the following

equations the derivatives of the shape function are written in a condensed form (

 is). A

representative term from the stabilization matrix (Equation 2.47) is

evaluated as follows:

 (2.48)

In the above equation, is the matrix of right eigenvectors, is the matrix of the eigenvalues,

and is the matrix of left eigenvectors. The eigenvalues are derived from

 as follows:

23

 (2.49)

 (2.50)

The right eigenvectors that make up the right eigenvector matrix are defined as follows:

 (2.51)

Each one dimensional array, , is six values long. However, there are only four distinct equations

for six unknowns. Hence, two of the values of are specified. The right eigenvector matrix is:

 (2.52)

24

 (2.53)

 (2.54)

The left eigenvectors that make up the left eigenvector matrix are defined as follows:

 (2.55)

The left eigenvector matrix is:

 (2.56)

In the following equations,

 .

25

 (2.57)

 (2.58)

 (2.59)

 (2.60)

 (2.61)

 (2.62)

The representative matrix or is shown in Equation 2.63.

 (2.63)

The stabilization matrix is the inverse of the summation of the above equation at each node for

a given Gauss point. The three by three nonzero matrices in Equation 2.63 are denoted as and

are inverted analytically with Kramer’s rule as follows [32]:

26

 (2.64)

 (2.65)

2.6 Finite Element Implementation

The finite element method is implemented by applying Equation 2.18 to each element

within the discretized electromagnetic field. This procedure generates a residual vector that is

number of nodes long, and has six equations at each node. Equation 2.18 can be broken up into

four terms (and) as follows:

 (2.66)

 (2.67)

 (2.68)

 (2.69)

To evaluate the integrals in Equations 2.66-2.68, the values, which are stored at the nodes of an

element, are interpolated to the Gauss points by the following procedure [3]:

 (2.70)

 and are computed at the Gauss points in the following manner:

27

 (2.71)

 (2.72)

 (2.73)

The derivatives of with respect to and are computed at a Gauss point as follows [3]:

 (2.74)

 (2.75)

 (2.76)

The derivatives of and with respect to and are computed at a Gauss point as

follows:

 (2.77)

 (2.78)

 (2.79)

The integrand for a given node, within the element has six equations (Maxwell’s equations),

and is made up of four terms. The integrand for terms (Equations 2.66-2.68) is shown in

Equations 2.80-2.82 for the Maxwell equation For convenience, the matrix times is

denoted , the matrix times is denoted , and the matrix times is denoted .

28

 (2.80)

 (2.81)

29

(2.82)

The derivative of the values with respect to time is approximated with a stable second order

backward finite difference equation as follows [33]:

 (2.83)

2.7 Boundary Conditions

 The boundary conditions are applied by modifying the fluxes when evaluating Equation

2.69. Three types of boundary conditions are implemented for this solution procedure. These are

perfect electric conducting (PEC) walls, material jump conditions, and Dirichlet boundary

conditions.

30

 Triangular face elements are used to describe the boundaries. Similar to the tetrahedra,

the triangles are mapped to parent space. The linear isoparametric triangle has the coordinates in

non-dimensional space of (0,0), (1,0), and (0,1). As with the isoparametric tetrahedra,

Gaussian quadrature rules are employed for the integration of a function over a triangle. The

quadrature table is available in [34]. A function can be integrated over a triangle with the

following relation:

 (2.84)

In Equation 2.84, are Gauss points, are associated Gauss weights, and is the

Jacobian. For the isoparametric triangles, the shape functions are Lagrange polynomials

written in terms of the parental coordinates . In order to obtain the element unit normal

vector and Jacobian, the terms

 and

 are computed. These terms are

computed as follows [3]:

 (2.85)

 (2.86)

 (2.87)

 (2.88)

 (2.89)

 (2.90)

31

The components of the non-normalized element normal vector are [35]:

 (2.91)

The Jacobian, , is the square root of the sum of the squares of the non-normalized element

normal vector which is shown as:

 (2.92)

The normalized element normal vector is the non-normalized element normal vector divided by

the Jacobian which is shown as:

 (2.93)

In Equation 2.69 and are computed from Equations 2.71-2.73.

 For a PEC boundary, and is solved for [1]. This is enforced by solving

Equation 2.69 with and as:

 (2.94)

For the material jump boundary condition, Equation 2.69 is solved by using Roe’s scheme,

which is a flux-difference splitting scheme that is designed to solve the Riemann problem. Roe’s

32

scheme is implemented by Equation 2.95 [36]. Anderson et al. [8] applied an identical procedure

to evaluate the material jump boundary condition.

 (2.95)

In order to implement this scheme each node on the boundary is duplicated and denoted as either

a left state or a right state . The average of the left and right states is denoted by . In

order to compute the eigensystem derived before (Equation 2.63) is

employed with two modifications. The first is the derivatives of the shape functions and

 are replaced with the normalized unit normal vector components and , and the

second is the reference speed of light is replaced with . The terms and are computed

as follows:

 (2.96)

 Dirichlet boundary conditions are implemented by setting the value at each node on the

boundary. Since is set explicitly, it is not necessary to solve Equation 2.69.

33

2.8 Implicit Time Stepping

Implicit time stepping with Newton’s method [33] is employed to obtain the time history

of the electromagnetic field. Implicit time stepping allows for the use of a time step that depends

on the physics of the problem. Implicit time stepping schemes are more numerically stable than

explicit time stepping schemes. For an explicit time stepping scheme, the numerical stability of

the scheme is governed by the time step, and generally the time step has to be less than or equal

to the grid spacing divided by the wave speed. This is a serious limitation because in an

unstructured grid topology the grid spacing can vary drastically, and the time step for the whole

field must be in direct relation to the smallest tetrahedron. However, if an implicit time stepping

scheme is employed, the time step does not depend on the grid spacing for numerical stability.

The unsteady residual is linearized with Newton’s method, and an implicit time stepping

algorithm is developed. This algorithm is robust enough to handle nonlinear problems, but since

Maxwell’s equations are linear, only one Newton step is needed at each time step. The first step

in the Newton linearized implicit time stepping algorithm is to introduce a Newton iteration

index, and calculate an iterative sequence, until it satisfies the following relation:

 (2.97)

34

Next, introduce a Newton linearization about (Taylor series expansion of), and the

unsteady residual becomes:

 (2.98)

 (2.99)

The left hand side of Equation 2.98 is set to zero, and the algorithm is:

 (2.100)

The solution of Equation 2.100 is the perturbation of the time accurate electromagnetic field

from one time step to the next, and the procedure to solve Equation 2.100 is discussed in the next

two sections.

2.9 Linearization Matrix

In Equation 2.100 the term

 is the linearization matrix [33]. The linearization matrix

is a sparse block matrix that is the square of the number of nodes in the overall computational

mesh. Each block in the overall sparse matrix is six by six. The derivatives of the unsteady

residual with respect to the field variables are computed with a complex Taylor series expansion

(CTSE) [37]. The CTSE for a function is shown in Equation 2.101.

 (2.101)

35

The derivative of the function with respect to is computed by dividing the imaginary part of the

complex perturbed function by the perturbation. The derivative of the function with respect

to is shown in Equation 2.102.

 (2.102)

The derivative evaluated in Equation 2.102 is second order accurate for the cost of one function

evaluation. Because of Equation 2.102 is not subject to subtractive cancellation errors, and it can

be computed with an exceptionally small . The value of is chosen as the square root of

machine zero, which means that the accuracy of the evaluated derivative is of the order of

machine zero. Filling the linearization matrix can be accomplished in a few nested steps. The

first step is to loop through all of the nodes in the overall computational mesh. While looping

through all of the nodes, at each node perturb in the complex plane by machine zero. After the

node is perturbed, loop through the tetrahedra connected to that node, and compute the nodal

values of the residual at each tetrahedron. For each tetrahedron, add the nodal value of the

derivative of the residual (imaginary part of the residual divided by the perturbation) to the

proper place in the linearization matrix. The proper place in the linearization matrix is the

perturbed node’s row and the corresponding appropriate column.

 The linearization matrix is large and only the nonzero components are stored in memory.

Instead of the linearization matrix being stored as a two dimensional array dimensioned to be the

square of the number of nodes in the overall computational mesh, the linearization matrix is

stored as a one dimensional array that is the number of nonzero components long. However, it

should be noted that each entry in the one-dimensional array represents a six-by-six matrix to

36

accommodate all six equations. Compressed row storage is used to access the specific instances

of the one dimensional array.

2.10 Linear System Solver

At each time step the linear system, Equation 2.100, is solved. The solution of Equation

2.100 is a follows:

 (2.103)

Since the linearization matrix is large, it cannot be efficiently inverted directly, and an iterative

solver must be employed. Typical iterative solvers are Jacobi and Gauss-Seidel, which both

converge quickly for strongly diagonally-dominant systems and have limited memory

requirements. However, these methods only converge if the matrix on the left hand side of the

linear system is diagonally dominant. The Petrov-Galerkin solution procedure can have non-

diagonally dominant matrices if higher-order elements or large time steps are employed. Higher

order elements provide a higher-order solution at the cost of adding more nonzero off-diagonal

columns to the rows of the linearization matrix. Hence, a linear system solver that is robust

enough to solve a non-diagonally dominant system must be employed. For this solution

procedure, the Generalized Minimal RESidual method (GMRES) [38] is utilized. This method

uses the Arnoldi iteration to find the approximate solution vector in a Krylov subspace with

minimal iterative linear system residual. The GMRES method yields the exact solution to

machine accuracy when the dimension of the Krylov subspace equals the dimension of the

system or one of the search directions becomes linearly dependent on one of the previous ones.

However, each Krylov search vector is the same size as the overall solution vector stored at each

37

node, and storing each Krylov search vector is not practical due to computational memory

constraints. In order to speed converge of the GMRES scheme and limit the number of search

directions, a diagonal preconditioner is used. The diagonal preconditioner loosely approximates

the inverse of the matrix, and takes minimal computational effort to solve. A direct-solve LU

elimination method is used to solve the block six by six matrix problems in conjunction with the

diagonal preconditioner.

2.11 Procedure to Execute the Software on a Distributed Memory Supercomputer

The solution procedure outlined in the previous sections has been implemented for a

parallel distributed memory computing environment. The implemented procedure uses the

message passing paradigm to pass data between processes.

The adapted procedure involves the following steps: decompose the computational grid,

build sub-domains, generate send/receive lists, package data to be sent, send/receive data, unpack

received data, and put it in its proper place in memory [39]. The unstructured mesh is

decomposed with the METIS library [40]. METIS efficiently partitions an unstructured mesh and

works to decrease the ratio of communication to computation or surface area to volume ratio for

each sub-domain. METIS outputs a partition array that tells each node which domain it belongs

to. Once the partition array is generated, subdomains are built. Subdomains are volumetric

portions of the overall computational mesh that each process is assigned to work on. Each sub-

domain is made up of a portion of the overall number of tetrahedra and boundary triangles, and is

built from the nodes it owns. If a tetrahedron contains nodes that belong to difference processes,

the tetrahedron belongs to multiple processes. For instance, Figure 2.4 shows a tetrahedron that

is split over two processes.

38

Figure 2.4 Split Quadratic Tetrahedron over Processes 1 and 2

In Figure 2.4, the quadratic tetrahedron is split over processes 1 and 2. Nodes 1, 3, 4, 6, 7, and 9

are owned by process 1, and nodes 2, 5, 8, and 10 are owned by process 2. The tetrahedron

belongs to the sub-domain for processes 1 and 2. The nodes that are not owned by each process

are phantom nodes, and their information must be passed. In order for information to be passed,

send and receive lists must be generated. A send list for a given process is made up of two pieces

of information. These pieces are the node numbers of the current process that are phantom nodes

on another process, and the other process to which nodal information needs to be sent. A receive

list for a given process is made up of the inverse of the information present in the send list. A

receive list states each node on a current process that is a phantom node, and from where each

phantom node receives its information. Once the send and receive lists are generated, each

process packs up its owned data so that each process only sends and receives data once. The data

is sent and received by using the message passing interface (MPI) library [41]. Each send and

39

receive call is nonblocking, which means that each process can compute on parts of the sub-

domain that are not dependent on passed information while the send/receive process takes place.

Once the data is received by a given process it is unpacked and put into its proper place in

memory.

 At each time step, messages have to be sent between sub-domains to update the solution

vector at the phantom nodes for each subdomain before the residual and linearization matrix are

computed. A matrix vector product between the linearization matrix and the solution vector on a

given sub-domain would be as follows:

Figure 2.5 Product of Linearization Matrix and Solution Vector before Message Passing

In Figure 2.5 the are known quantities for the given sub-domain and the 0’s are unknown

quantities for the sub-domain. The information denoted by 0’s in the solution vector must be

passed from the subdomain that owns that data, and Figure 2.6 shows the correct matrix-vector

product implementation.

40

Figure 2.6 Product of Linearization Matrix and Solution Vector after Message Passing

41

CHAPTER III

TIME ACCURATE SHAPE SENSITIVITY ANALYSIS AND DESIGN

 A shape design cycle is implemented that couples the electromagnetic field simulation

software, time accurate adjoint based method for computing the sensitivity derivatives, software

that smoothes the computational mesh by computing the linear elastic equations, and

optimization package. The shape design cycle modifies the shape of an electromagnetic object

such that a cost function is minimized. The subsequent methods for computing the sensitivity

derivatives and the design cycle are discussed in the following sections.

3.1 Forward and Reverse Modes

 Forward mode and reverse mode are the two methodologies used to compute time

accurate shape sensitivity derivatives [11]. The time accurate shape sensitivity derivatives are

used to design an object with a minimized cost function. The shape sensitivity derivatives are the

derivatives of the cost function with respect to design variables that describe the shape of the

object in computational space. The forward mode methodology can be used to compute the

shape sensitivity derivatives with the following methods: finite difference method, complex

Taylor series expansion, and direct differentiation [11]. The reverse mode methodology uses an

adjoint method to approximate the shape sensitivity derivatives [11]. Each of these methods is

discussed below where the cost function is denoted as and the design variables are denoted

as .

42

3.2 Forward Mode, Finite-Difference Method

 The first derivative of the cost function with respect to the design variables can be

approximated with the central-difference method given as:

 (3.1)

The central-difference method is subject to subtractive cancellation, and should be used with

caution especially when employing small perturbations. When subtractive cancellation is present,

the truncation error increases as decreases. Subtractive cancellation is present when is

reduced to a point that the computer cannot discriminate between the terms in the numerator of

Equation 3.1. This method is not practical if multiple are used to design an object because it

would have to be computed for each design variable.

3.3 Forward Mode, Complex Taylor Series Expansion (CTSE)

 Another way to approximate the shape sensitivity derivatives via forward mode is to

employ the CTSE method. The CTSE method is discussed in Section 2.9. Even though this

method is not subject to subtractive cancellation errors, it again is not practical for shape design

if the object is described by a large number of . However, because of the high level of

accuracy of this methodology, it can be used as a comparison tool with direct differentiation and

the discrete adjoint method.

3.4 Forward Mode, Direct Differentiation

 The last way to approximate the shape sensitivity derivatives via forward mode is to

utilize direct differentiation. Here, the derivative of the cost function with respect to the

43

design variable is computed by summing the derivatives from all time steps, and the sum is over

 time steps that influence the cost function.

 (3.2)

In Equation 3.2 the arrays

 and

 are computed by the CTSE method described in section 2.9.

The array,

 is second order accurate in time, and is evaluated at a time step by Equation 3.3.

 (3.3)

In Equation 3.3, the derivative of the unsteady residual (Equation 2.97) with respect to the design

variables,

, is evaluated as follows:

 (3.4)

The matrix

 is generated the same way the linearization matrix is generated in section 2.9

except that is perturbed instead of . Also,

 and

 are computed in a similar

fashion. The mesh sensitivity arrays

 are computed by an auxiliary solver that computes the

linear elastic equations, and they are imported into the direct method solver. The linear system

shown in Equation 3.3 is solved with the GMRES linear system solver described in section 2.10,

and the direct method solver can be executed on a distributed memory supercomputer as

described in section 2.11. As with the other forward mode methods, the direct method is not

practical for shape design problems with a large number of . For each Equation 3.3 would

44

have to be computed with a linear system solver. However, the direct method is an excellent

comparison tool for the reverse mode discrete adjoint method, and, as will be seen in the next

section, some of the arrays and matrices needed for the direct method are needed for the discrete

adjoint method.

3.5 Reverse Mode, Discrete-Adjoint Method

 The reverse mode discrete adjoint method is optimal for computing the shape sensitivity

derivatives when there are a large number of design variables. This methodology does not

necessitate solving a linear system for each design variable considered. This is accomplished by

summing the contributions of

 in reverse order from the last time step to the first time step

and not explicitly solving for

 at the current time step. At each step,

 is expanded by

Equation 3.3. Equation 3.2 is rewritten as Equation 3.5 to show this change.

 (3.5)

Next, Equation 3.5 is transposed, and is shown as Equation 3.6.

 (3.6)

An algorithm is developed to compute Equation 3.6 by expanding the first three terms of the

summation and grouping terms together. When

Equation 3.6 becomes:

45

 (3.7)

 (3.8)

 (3.9)

 (3.10)

In Equation 3.10 the terms

 and

 are not evaluated at , but

are evaluated at . At Equation 3.6 with the added terms from 3.10 becomes

Equation 3.11. In order to derive Equation 3.11 the term

 is expanded from Equation

3.3.

46

 (3.11)

The following terms can be pulled out of Equation 3.11:

 (3.12)

 (3.13)

 (3.14)

After applying Equations 3.12 – 3.14, Equation 3.11 becomes Equation 3.15.

 (3.15)

In Equation 3.15 the terms

 and

 are not

evaluated at time step , but are added to the contribution of

at the next time step

 . At time step the term

 is expanded from Equation 3.3, and the

contribution to

 from the time step is shown in Equation 3.16.

47

 (3.16)

The following terms can be pulled out of Equation 3.16:

 (3.17)

 (3.18)

 (3.19)

After applying Equations 3.17 - 3.19, Equation 3.16 becomes Equation 3.20.

48

 (3.20)

Equations 3.10, 3.15 and 3.20 provide the basis for the algorithm that is capable of solving the

sensitivity derivatives with the reverse mode discrete adjoint method. The second order accurate

in time algorithm is as follows:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

49

11.

12.

13.

14.

15.

16. Go back to 11 until

When ,

 and

 both equal zero, and the time accurate sensitivity derivatives

are computed without having to solve a linear system for each design variable. This algorithm is

implemented for a parallel computing environment as discussed in section 2.11. At each step the

transpose of the linearization matrix is computed, and the linear system that computes is

solved with the GMRES algorithm discussed in section 2.10.

3.6 Software to Generate Higher-Order Numerical Solutions to the Linear Elastic Equations

 To design the shape of an electromagnetic object, the computational mesh volume

surrounding the object must be deformed during the design cycle to accommodate changes in the

geometry. A methodology for obtaining a numerical solution to the linear elastic equations has

been developed to smooth the mesh during each step of the design cycle [42]. Because of the

linearity of the linear elastic equations, mesh sensitivity derivatives can be calculated by

replacing the displacement at the boundaries with the sensitivity derivatives of the surface points.

 The linear elastic equations are as follows (see e.g. [42]):

50

 (3.21)

In Equation 3.21 and are the displacements along the and coordinates. The

linear elastic solver updates the coordinates at each node via Equation 3.22.

 (3.22)

The and are defined as follows:

 (3.23)

 (3.24)

 (3.25)

 (3.26)

51

In Equations 3.23-3.26, is Young’s modulus of elasticity, and is Poisson’s ratio. For this

implementation, Young’s modulus for each tetrahedron is the tetrahedron’s aspect ratio divided

by its volume and [43].

 The linear elastic equations are solved with the Galerkin finite element scheme. The

equations are rewritten as follows:

 (3.27)

The and vectors for the linear elastic equations are as follows:

 (3.28)

 (3.29)

 (3.30)

 (3.31)

The governing equations in weak form are shown in Equation 3.32.

52

 (3.32)

The Galerkin form of the equations is shown in Equation 3.33.

 (3.33)

The function within each element is integrated with Gaussian quadrature as described in section

2.4. The element shape functions, shape function derivatives, and Jacobians are computed for

each element as also described in section 2.4. The boundary conditions for the linear elastic

equations are Dirichlet which means that the first term in Equation 3.33 does not have to be

evaluated. The linear elastic equations are solved in matrix form as follows:

 (3.34)

The matrix is sparse and is composed of three by three blocks. For a given element, the

second term of Equation 3.33 can be described as an element sub-matrix. If linear elements are

employed, the element sub-matrix has the following form:

53

Figure 3.1 Form of the Linear Element (4 nodes) Sub-matrix

The integrand for each three by three block in Figure 3.1 is as follows (where denotes the

 row and column of the element submatrix):

 (3.35)

 (3.36)

 (3.37)

 (3.38)

 (3.39)

 (3.40)

 (3.41)

 (3.42)

 (3.43)

54

The submatrix is used to fill the global matrix by adding the blocks in each row of the sub-matrix

to the corresponding row’s columns in the global matrix. The linear elastic solver is implemented

for computations on a distributed memory supercomputer, and the linear system (Equation 3.34)

is solved by the procedures discussed in sections 2.11 and 2.10. In order to smooth a grid with

the linear elastic equations, Equation 3.34 is solved with the values on the boundary

specified. The linear elastic equations are used also to generate the mesh sensitivity derivatives,

. This is accomplished by replacing the with mesh sensitivities, and setting the mesh

sensitivity boundary value to one for a boundary that is being shape optimized and to zero for a

stationary boundary.

3.7 Design Optimization

 The shape of an electromagnetic object is optimized by modifying the shape until a cost

function is minimized. This task is accomplished by following this procedure:

1. Execute the field solver to a specified time step, and compute the cost function.

2. Execute the linear elastic solver to generate the mesh sensitivity derivatives.

3. Execute the time accurate adjoint sensitivity analysis solver to compute the sensitivity

derivatives.

4. Import the cost function and the sensitivity derivatives to the PORT [43] optimization

library, and the PORT optimization library outputs the modifications to the shape of the

body in the form of values for the surface.

5. Execute the linear elastic solver to modify the shape of the object and smooth the mesh.

6. Go back to 1 until the cost function is minimized.

55

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Electromagnetic Field Simulation Software Accuracy

 The field software has been implemented with linear, quadratic, and cubic elements. The

field software should theoretically provide an answer that is second order accurate when linear

elements are employed, third order accurate when quadratic elements are employed, and fourth

order accurate when cubic elements are employed. To attain order of accuracy, the norm of

the error between the numerical solution and the exact solution is computed for multiple

computational grid sizes. The order of accuracy is the slope of the line generated from evaluating

the error for multiple grid sizes on a log-log plot. The exact solution is the electromagnetic field

within a rectangular resonant cavity [1], which is shown in Equations 4.1-4.6:

 (4.1)

 (4.2)

 (4.3)

 (4.4)

 (4.5)

 (4.6)

56

In the above equations, the following parameters are defined as:

 (4.7)

 (4.8)

 (4.9)

The grid and the simulated field contours with quadratic elements for a rectangular resonant

cavity after one period are shown in Figures 4.1-4.6. For this case, and the

nondimensional lengths of each edge of the cavity () are equal to 1.0.

Each of the walls of the cavity are assumed to be PEC.

57

Figure 4.1 Rectangular Resonant Cavity Computational Grid Discretized with Tetrahedra

58

Figure 4.2 Rectangular Resonant Cavity, Contours, Quadratic Elements

59

Figure 4.3 Rectangular Resonant Cavity, Contours, Quadratic Elements

60

Figure 4.4 Rectangular Resonant Cavity, Contours, Quadratic Elements

61

Figure 4.5 Rectangular Resonant Cavity, Contours, Quadratic Elements

62

Figure 4.6 Rectangular Resonant Cavity, Contours, Quadratic Elements

Figure 4.7 shows the order of accuracy of the field solver when linear, quadratic, and cubic

elements are employed to discretize the field.

63

Figure 4.7 Order of Accuracy Study

From Figure 4.7 it is seen that the order of accuracy when linear elements are employed is 2.76,

when quadratic elements are employed is 3.04, and when cubic elements are employed is 4.23.

When linear elements are employed the order of accuracy is greater than theoretically expected,

but when quadratic and cubic elements are employed the order of accuracy is what is

theoretically expected.

64

4.2 Field Simulation Software Timing Comparison

 A timing study has been conducted that compares the wall-clock time spent to generate a

solution that has a specific RMS error when linear, quadratic, and cubic elements are employed.

For this comparison, the specific RMS error is approximately equal to after ten steps with

 . For the baseline case (linear elements), the average time for each of the 64

processes employed to generate this solution is approximately 56.193 seconds, when quadratic

elements are employed, the average time per process is approximately 48.040 seconds, and when

cubic elements are employed, the average time per process is approximately 33.139 seconds. The

computational mesh when linear elements are employed is made up of 595,725 nodes, when

quadratic elements are employed is made up of 203,541 nodes, and when cubic elements are

employed is made up of 63,519 nodes. When linear elements are employed 4 Gauss points are

utilized to integrate over the tetrahedral volume elements, 36 search directions are necessary to

drive the residual of the linear system to machine zero at every time step, and the linearization

matrix is made up of 8,706,389 non-zeroes. When quadratic elements are employed 16 Gauss

points are utilized, 61 search directions are necessary, and the linearization matrix is made up of

4,925,278 non-zeroes. When cubic elements are employed 29 Gauss points are utilized, 65

search directions are necessary, and the linearization matrix is made up of 2,934,931 non-zeroes.

This study shows that when higher-order elements are employed to discretize the field, less

computational effort is needed to generate a solution at a pre-specified level of accuracy.

However, the benefits of employing higher-order elements are somewhat detracted because of

the following reasons: as the order of the elements is increased the order of the integration

routine has to be increased correspondingly, their linearization matrices are made up of a

65

relatively large number of non-zeroes, and a comparatively large number of search directions are

needed to drive the residual of the linear system to machine zero at every time step.

4.3 Field Simulation Software Applications

 Since the order of accuracy study shows that the software is capable of accurately

simulating electromagnetic fields, the software can be applied to more complicated problems.

The field software can attain the scattering profile of a PEC sphere (grid shown in Figure 4.8,

and solution shown in Figure 4.9) or a notional business jet (solution shown in Figure 4.10).

Quadratic tetrahedral elements are utilized to discretize both of these electromagnetic fields. For

each of these simulations a TE
x
 plane wave collides with a PEC body. Time dependent field

variables corresponding to a TE
x
 plane wave are enforced in the far field, while the sphere and

the business jet are assumed to be PEC. The analytic field equations for a TE
x
 plane wave are as

follows [44]:

 (4.10)

 (4.11)

 (4.12)

 (4.13)

 (4.14)

 (4.15)

 (4.16)

66

Figure 4.8 Computational Grid for Electromagnetic Scattering from a Sphere

67

Figure 4.9 Electromagnetic Scattering from a Sphere

68

Figure 4.10 Electromagnetic Scattering from a Notional Business Jet

69

 The field simulation software is capable of generating a higher order approximation for a

field where the geometries are comprised of dissimilar materials. The following case is the

simulation of a TE
x
 plane wave impinging on a cube with relative permittivity () and

permeability () of 5.0 and 2.0 respectively. The computational mesh for this case is shown in

Figure 4.11. Figures 4.12 and 4.13 show the field contours for the and fields generated

with quadratic elements. The jump condition discussed in section 2.7 is employed at the

boundary between the dielectric cube and free space. According to the theory, at the face of the

cube that is perpendicular to the incoming TE
x

plane wave the jump in equals the ratio of

relative permittivities between the dielectric material and free space, and the jump in equals

the ratio of relative permeabilities between the dielectric material and free space. The accuracy

of the jump condition implemented relies on the values of these ratios, and it can be assessed in a

post processing step. The post processing step shows that at the center of the face of the cube that

is perpendicular to the incoming TE
x

plane wave at a distance that is 0.0001 before and aft the

face of the cube the interpolated ratio of is approximately 5.05, and the interpolated ratio of

 is approximately 2.02. Also, according to theory, the field contour lines extending from the

top and bottom faces of the cube into free space are continuous. Figures 4.12 and 4.13 and the

post processing step show that the computed field closely matches the analytical solution;

therefore, the jump boundary condition is a proper boundary condition between dissimilar

materials.

70

Figure 4.11 Computational Grid for Dielectric Cube Case

71

Figure 4.12 Contours for Dielectric Cube Case

72

Figure 4.13 Contours for Dielectric Cube Case

73

The following case is the simulation of a TE
x
 plane wave impinging on an ellipsoid with relative

permittivity () and permeability () of 5.0 and 2.0 respectively. The equation for the ellipsoid

is as follows:

 (4.17)

For this case, , , and . The computational mesh for this case is

shown in Figure 4.14. Figures 4.15 and 4.16 show the field contours for the and fields

generated with linear elements after the wave-front has propagated downstream of the ellipsoid.

The jump condition discussed in Section 2.7 is employed at the boundary between the dielectric

ellipsoid and free space.

74

Figure 4.14 Computational Grid for Dielectric Ellipsoid Case

75

Figure 4.15 Contours for Dielectric Ellipsoid Case

76

Figure 4.16 Contours for Dielectric Ellipsoid Case

77

4.4 Verification of Shape Sensitivity Derivatives for a Dielectric Cube

 For the case of the TE
x

plane wave propagating through a volume that is made up of free

space and a cube of dielectric material, the time accurate sensitivity derivatives are computed

with three methods to verify the correctness of implementation. The cost function is selected to

provide an opportunity to optimize the shape or location of the dielectric cube. For this

verification study, the cost function is the normal component of field the integrated over the

surface of the cube.

 (4.18)

For this case, there is one design variable that simultaneously controls 500 nodes on the

surface of the cube. For the forward mode complex Taylor series expansion, the and

values of the 500 nodes are perturbed in the complex plane by machine epsilon. For the forward

mode direct differentiation method and the reverse mode adjoint method the mesh sensitivity

derivatives

 and

 for the 500 nodes are prescribed a value of machine epsilon. The

sensitivity derivative is computed after 500 time steps with a nondimensionalized equal to

0.001. After 500 time steps at a nondimensionalized equal to 0.001, the wave front has

propagated to the center of the cube. Table 4.1 shows the comparison of the sensitivity derivative

generated from the complex Taylor series approach, the direct differentiation approach, and the

discrete adjoint approach.

78

Table 4.1 Comparison of Sensitivity Derivatives Obtained using the Complex-Variable

Approach, Direct Differentiation, and the Adjoint Method for a Dielectric Cube

Approach

, Linear Elements

CTSE -3.831764909581178E-002

Direct Differentiation -3.831764939491016E-002

Adjoint -3.831764939452845E-002

Table 4.1 shows that the direct and adjoint approaches match the CTSE approach to eight

decimal places when linear elements are employed. This verifies that the adjoint approach is

implemented correctly and can be used to reposition a dielectric cube.

4.5 Verification of Shape Sensitivity Derivatives for a Dielectric Ellipsoid

 A similar verification study was conducted for the case of the TE
x

plane wave

propagating through a volume that is made up of free space and an ellipsoid of dielectric

material. The cost function is shown in Equation 4.18. There is also one design variable for this

case, and it is from Equation 4.17. For the forward mode CTSE, is perturbed in the complex

plane by machine epsilon. That change in the shape of the surface is propagated through the

mesh from the usage of software that solves the linear elastic equations in complex variable

form. For the direct differentiation method and the adjoint method, the mesh sensitivity

derivatives are computed with the software that solves the linear elastic equations. The

sensitivity derivative is computed after 10 time steps with a non-dimensionalized equal to

0.001. The sensitivity derivative is computed with linear, quadratic, and cubic elements

employed, and the results are shown in Table 4.2.

79

Table 4.2 Comparison of Sensitivity Derivatives Obtained using the Complex-Variable

Approach, Direct Differentiation, and the Adjoint Method for a Dielectric Ellipsoid

Approach

, Linear Elements

CTSE 1.245565539259534E-010

Direct Differentiation 1.245564904407576E-010

Adjoint 1.245564904185009E-010

Approach

, Quadratic Elements

CTSE 5.092297186846612E-013

Direct Differentiation 5.092296542609352E-013

Adjoint 5.092296655362702E-013

Approach

, Cubic Elements

CTSE -6.399429387536681E-009

Direct Differentiation -6.399428369219613E-009

Adjoint -6.399429126136743E-009

Table 4.2 shows that the direct and adjoint approaches match the CTSE approach to seven

decimal places when linear, quadratic, and cubic elements are employed. This verifies that the

adjoint approach is implemented correctly and can be used to modify the shape of a dielectric

ellipsoid.

80

4.6 Shape Design Optimization Applications

 The shape design optimization process discussed in Section 3.7 is applied to determine

the placement of a dielectric cube within a volume of free space discretized with linear elements

so that the electric flux density of the surface corresponds to the electric flux density computed at

the same time but in a different position. The cost function is:

 (4.19)

In Equation 4.19, is the electric flux density on the surface at the current step in the design

cycle, and is the target electric flux density on the surface.

 There is one design variable, , and it is the surface of the dielectric cube. The outer

volume of free space is a cube that has a non-dimensional length, width, and height of 1.0, and

the dielectric cube has a non-dimensional length, width, and height of 0.25. The “*” location of

the dielectric cube is at the center of the volume of free space. When the dielectric cube is at the

“*” location it spans from 0.375 – 0.625 in the and directions. The dielectric cube has an

 equal to 5.0 and an equal to 2.0, and the field contours for the “*” location are shown in

Figures 4.12 and 4.13. The purpose of the design optimization routine is to move the dielectric

cube from a starting location to the “*” location. Initially, the cube is displaced -0.1 in the

direction from the “*” location. When the dielectric cube is at the starting location it spans from

0.275 – 0.525 in the direction, and from 0.375 – 0.625 in the and directions. Table 4.3

shows the cost function, sensitivity derivative, and location of the start of the dielectric cube at

each step of the design cycle as output by the PORT optimization library. The cost function is

generated with the electromagnetic field simulation software, and the sensitivity derivative is

81

generated with the time accurate discrete adjoint solver. The cost function and the sensitivity

derivative are generated after 800 time steps with a nondimensional time step of 0.001. At each

time step the unsteady residual from the field solver and the adjoint variable from the adjoint

solver are below machine zero. The location of the start of the dielectric cube is computed with

the Port optimization library with the cost function and sensitivity derivative as inputs.

Table 4.3 Design Cycle for the Positioning of a Dielectric Cube

Cycle # Cost Function, Sensitivity Derivative,

 Cube starting location,

1 6.622883818E-004 -1.033402E-003 0.2760334

2 6.604531451E-004 -1.308094E-003 0.2891143

3 6.036303621E-004 -4.436365E-003 0.395

4 2.970814484E-005 1.776709E-003 0.36472

5 9.987271703E-006 -1.378919E-003 0.37795

6 3.014413579E-008 3.616012E-004 0.375203

7 2.055952198E-008 4.026902E-005 0.3748585

8 2.053529086E-008 -1.652856E-006 0.3748721

9 2.053529086E-008 6.795675E-009 0.3748721

Table 4.3 shows that after 9 design cycles the shape design optimization routine has moved the

dielectric cube to the “*” location. Figures 4.17 and 4.18 graphically show the movement of the

dielectric cube during the design cycle. In Figures 4.17 and 4.18 the initial position of the

82

dielectric cube is shown in red, the position after 3 cycles is shown in black, and the final

position is shown in blue.

Figure 4.17 Movement of the Dielectric Cube during the Design Cycle (3D view)

83

Figure 4.18 Movement of the Dielectric Cube during the Design Cycle (2D view)

84

 The shape design optimization process is also applied to determine the shape of a

dielectric ellipsoid within a volume of free space discretized with linear elements so that the

electric flux density of the surface corresponds to the electric flux density computed at the same

time but in a different position. The cost function is shown in Equation 4.19.

 There are three design variables, , and . Initially,

 and . The “*” shape is a sphere where and are all equal to 0.1. The

computational mesh and the field contours for the initial shape are shown in Figures 4.14-4.16.

Table 4.4 shows the cost function, sensitivity derivatives, and value of the total change of the

design variables at each step of the design cycle as output by the PORT optimization library. The

cost function is generated with the electromagnetic field simulation software, and the sensitivity

derivatives are generated with the time accurate discrete adjoint method. The cost function and

the sensitivity derivatives are generated after 800 time steps with a non-dimensional time step of

0.001. The design variables are computed with the PORT optimization library with the cost

function and sensitivity derivative as inputs.

85

Table 4.4 Design Cycle for the Shape Design of a Dielectric Ellipsoid

Cycle #

 Total

 Total

 Total

1 4.29087E-4 6.09286E-3 0 -5.9749E-3 0 2.835579E-3 0

2 3.23724E-4 5.29928E-3 -6.09286E-3 -5.84851E-3 5.9749E-3 2.153622E-3 -2.835579E-3

3 2.18947E-6 -5.0770E-4 -3.00000E-2 5.81361E-4 4.9351E-2 1.54296E-4 -1.930157E-2

4 1.26281E-6 1.49737E-4 -2.80751E-2 -2.98902E-4 4.5971E-2 1.4319E-4 -1.834881E-2

5 8.66984E-7 -7.1478E-5 -2.86343E-2 3.25383E-7 4.7189E-2 1.3886E-4 -1.884832E-2

6 8.16032E-7 -8.1779E-5 -2.85694E-2 1.68155E-5 4.7332E-2 1.34527E-4 -1.905373E-2

7 3.01985E-7 -1.0085E-4 -2.73548E-2 7.92124E-5 4.8632E-2 7.7104E-5 -2.16354E-2

8 1.94025E-8 -5.0392E-5 -2.56484E-2 5.72931E-5 4.9847E-2 9.98986E-6 -2.46875E-2

9 2.15284E-9 -1.6505E-5 -2.52923E-2 1.89020E-5 4.9902E-2 -8.7488E-7 -2.51363E-2

Table 4.4 shows that after 9 design cycles, the cost function is minimized and

 and . This means that the shape design process

morphed the ellipsoid to the “*” shape, which is the shape of a sphere. Figures 4.19-4.21 show

the computational mesh and the field contours for the final design outputted from the design

cycle.

86

Figure 4.19 Computational Grid for Dielectric Sphere Case

87

Figure 4.20 Contours for Dielectric Sphere Case

88

Figure 4.21 Contours for Dielectric Sphere Case

89

CHAPTER V

CONCLUSION

 A novel approach to the optimization of the shape of large electromagnetic structures has

been implemented. Through the course of this implementation, a temporally and spatially

numerical electromagnetic field simulation software, a software that uses the reverse-mode time-

accurate discrete-adjoint method to compute the sensitivity derivatives, and a software that

generates a higher-order numerical solution to the linear elastic equations have been developed

from scratch and coupled together with an optimization library in order to automatically design

the shape of large electromagnetic objects. The pieces of software developed have been written

in a parallel message passing paradigm, and are capable of being executed on a distributed

memory supercomputer. Because of this, larger complicated electromagnetic objects can be

stored in memory and designed at a faster rate.

 The electromagnetic field simulation software developed can accurately and efficiently

approximate the electromagnetic field inside of and outside of complicated, large, 3D

electromagnetic objects. Many complicated electromagnetic systems are operated at very high

frequencies (~10 GHz), and higher-order elements can be utilized to lessen the grid requirements

necessary to approximate an electromagnetic wave at high frequencies. To that end, the higher

order accurate SU/PG method is utilized to simulate the electromagnetic field in a volume that is

discretized with tetrahedra. The usage of tetrahedra to discretize the field leads to easier mesh

90

generation, and the ability to properly discretize the surface of curved electromagnetic objects.

The mesh generation process discretizes the volume of the field with linear tetrahedra, and

special care is taken to add the extra edge and face nodes used for spatial higher-order accuracy

in a fast and efficient manner. This is accomplished by generating edge to element maps that for

a given node added to an edge, gives a list of elements that own that edge and need to be notified

of the added node. Implicit time stepping is utilized, and it has two benefits. The first is the

ability to use a time step that depends on the physics of the problem, rather than a time step used

that governs the numerical stability of the solver. The second is the linearization matrix

generated for the implicit time stepping routine is also used in the software that computes the

sensitivity derivatives with the time-accurate discrete-adjoint method. A special boundary

condition, called a jump condition, is employed to allow for the simulation of a field that is made

up of dissimilar materials. Through the usage of a grid study the field software’s accuracy has

been verified to match or exceed theoretical orders of accuracy for the elements employed. The

grid study was the comparison of the computed solution, generated with linear, quadratic, and

cubic elements, of the electromagnetic field within a rectangular resonant cavity with the exact

solution with multiple grid sizes. The field software also properly simulated the propagation of a

3D wave through dissimilar materials, and the scattering of a 3D wave from large complicated

PEC objects.

 The sensitivity derivatives are computed with a reverse-mode time-accurate discrete-

adjoint method that can accurately generate shape sensitivity derivatives of large, curved, 3D

electromagnetic objects. The time accurate sensitivity derivatives are computed and can be used

to quickly design an object that operates at a wide band of frequencies. The time accurate

sensitivity derivatives have to be computed once for a frequency range while frequency domain

91

sensitivity derivatives would have to be computed for each frequency in the range. Because the

discrete-adjoint method is used to compute the sensitivity derivatives, the software can be

quickly adapted to generate the shape sensitivity derivatives of multiple cost functions, and is

capable of generating the sensitivity derivatives for a large set of design variables without having

to solve a linear system for each design variable considered. The sensitivity derivatives software

is automatically concurrent with the field software because it generates the derivatives that make

up its linear systems by the complex Taylor series expansion method. The sensitivity derivatives

generated from the reverse-mode discrete-adjoint method have been verified to match the

sensitivity derivatives generated from the forward-mode complex Taylor series expansion

method and direct method to at least seven decimal places.

 The software that generates a higher-order numerical solution to the 3D linear elastic

equations can smooth a mesh that is subject to large deformations from the design process, and

can generate the mesh sensitivity derivatives that are used by the sensitivity derivatives software

to generate the overall shape sensitivity derivatives. The motion of the higher order edge and

face nodes is solved for, rather than simply interpolating their motion. The linear elastic

equations software has been used to smooth meshes with deformations up to 10% of the overall

length of the mesh. After the smoothing process is complete, the mesh generated has well formed

elements and is capable of being used by the other software to generate the electromagnetic field

and the sensitivity derivatives.

 The shape design optimization procedure has been implemented to automatically place a

dielectric cube and modify the shape of a dielectric ellipsoid. Both objects are within a larger

volume of free space, and are subjected to the propagation of an unsteady plane wave. The cost

function is defined as dielectric object’s surface integration of the current electric flux density

92

field minus the electric flux density field of the predetermined location/shape dotted with the unit

normal vector of the surface. For each step of the design cycle, the cost function is generated

with the field simulation software, the sensitivity derivatives are generated with the time accurate

discrete adjoint method, and the mesh is smoothed by software that generates a numerical

solution to the linear elastic equations. The dielectric cube was automatically placed by the

optimization procedure to its predetermined location in nine design cycles, and the dielectric

ellipsoid was automatically morphed by the optimization procedure to its predetermined shape in

nine design cycles as well. The execution of this optimization procedure shows that it is capable

of automatically designing in the time domain any large, curved 3D electromagnetic shape,

including one that operates at high frequencies or is made of dissimilar materials, in an efficient

manner.

93

BIBLIOGRAPHY

1. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York,

1989.

2. Yee, K. S., “Numerical Solution of Initial Boundary Value Problem Involving Maxwell’s
Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation, Vol.

14, No. 3, pp. 302-307, 1966.

3. Hughes, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Element

Analysis, Prentice-Hall, Inc., New Jersey, 1987.

4. Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill Book Company (UK)

Limited, London, 1977.

5. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2
nd

 Ed.,

New York, 2002.

6. Hughes, T. J. R. and Mallet, M., “A New Finite Element Formulation for Computational

Fluid Dynamics III. The Generalized Streamline Operator for Multidimensional

Advective-Diffusive Systems,” Computer Methods in Applied Mechanics and

Engineering, Vol. 58, No. 3, pp. 305-328, 1986.

7. Venkatakrishnan, V., Allmaras, S. R., Johnson, F. T., and Kamenetskii, D. S., “Higher
Order Schemes for the Compressible Navier-Stokes Equations,” AIAA 2003-3987,

Presented at the 16
th

 AIAA Computational Fluid Dynamics Conference, Orlando, FL,

June 23-26, 2003.

8. Anderson, W. K., Wang, L., Kapakia, S., Tanis, C., and Hilbert B., “Petrov-Galerkin and

Discontinuous-Galerkin Methods for Time-Domain and Frequency-Domain

Electromagnetic Simulations,” UTC-CECS-SimCenter-2011-01, February 2011.

9. Jameson, A., “Aerodynamic Design Via Control Theory,” J. Sci. Computing, Vol. 3, pp.

233-260, 1988.

10. Anderson, W. K. and Venkatakrishnan, V., “Aerodynamic Design Optimization on
Unstructured Grid with a Continuous Adjoint Formulation,” 35

th
 Aerospace Science

Meeting & Exhibit, AIAA 97-0643, 1997.

94

11. Burdyshaw, C. E., “Achieving Automatic Concurrency Between Computational Field
Solvers and Adjoint Sensitivity Codes,” Ph. D. Thesis, University of Tennessee at

Chattanooga, May 2006.

12. Li, S. and Petzold, L., “Adjoint Sensitivity Analysis for Time-Dependent Partial

Differential Equations with Adaptive Mesh Refinement,” J. of Computational Physics,

Vol. 198, pp. 310-325, 2004.

13. Director, S. W. and Rohrer, R. A., “The Generalized Adjoint Network and Network

Sensitivities,” IEEE Trans. Circuit Theory, vol. CT-16, pp. 318-323, Aug. 1969.

14. Director, S. W. and Rohrer, R. A., “Automated Network Design-The Frequency-Domain

Case,” IEEE Trans. Circuit Theory, vol. CT-16, pp. 330-337, Aug. 1969.

15. Tellegen, B. D. H., “A General Network Theorem with Applications,” Philips Res. Rep.,

vol. 7, pp. 259-269, 1959.

16. Penfield, Jr., P., Spence, R., Duinker, S., “A Generalized Form of Tellegen’s Theorem,”
IEEE Trans. Circuit Theory, vol. CT-17, pp. 302-305, Aug. 1970.

17. Sabbagh, M. A., Bakr M. H., and Nikolova, N., K., “Sensitivity Analysis of the

Scattering Parameters of Microwave Filters using the Adjoint Network Method,” Int. J.

RF and Microwave CAE 16: 596-606, 2006.

18. Kang, N., Chung, Y., Cheon, C., and Jung, H., “A New 2-D Image Reconstruction

Algorithm Based on FDTD and Design Sensitivity Analysis,” IEEE MTT-S Digest, pp.

1143-1146, 2002.

19. Chung, Y., Cheon, C., Park, I., and Hahn, S., “Optimal Shape Design of Microwave
Device Using FDTD and Design Sensitivity Analysis,” IEEE Transactions on Microwave

Theory and Techniques, Vol. 48, No. 12, pp. 2289-2296, 2000.

20. Chung, Y., Cheon, C., Park, I., Hahn, S., “Optimal Design Method for Microwave

Device Using Time Domain Method and Design Sensitivity Analysis-Part II: FDTD

Case,” IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3255-3259, 2001.

21. Rickard, Y., Georgieva, N., and Tam, H., “Absorbing Boundary Conditions for Adjoint

Problems in the Design Sensitivity Analysis with the FDTD Method,” IEEE Transactions

on Microwave Theory and Techniques, Vol. 51, No. 2, pp. 526-529, 2000.

22. Berenger, J., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,”

J. Computational Phys., vol. 114, pp. 185-200, Oct. 1994.

23. Chung, Y., Cheon, C., Park, I., Hahn, S., “Optimal Design Method for Microwave
Device Using Time Domain Method and Design Sensitivity Analysis-Part I: FETD

Case,” IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3289-3293, 2001.

95

24. Akcelik, V., Biros, G., Ghattas, O., Keyes, D., Ko, K., Lee, L., and Ng, E. G., “Adjoint
Methods for Electromagnetic Shape Optimization of the Low-Loss Cavity for the

International Linear Collider,” Journal of Physics: Conference Series 16, pp. 435-445,

2005.

25. Georgieva, N., Glavic, S., Bakr, M., and Bandler, J., “Feasible Adjoint Sensitivity
Technique for EM Design Optimization,” IEEE Transactions on Microwave Theory and

Techniques, Vol. 50, No. 12, pp. 2751-2758, 2001.

26. Nair, D. and Webb, J., “Adaptive Optimization of Microwave Devices over a Frequency
Band,” Electromagnetics, Vol. 30, pp. 177-189, 2010.

27. Nair, D. and Webb, J., “Optimization of Microwave Devices Using 3-D Finite Elements

and the Design Sensitivity of the Frequency Response,” IEEE Transactions on

Magnetics, Vol. 39, No. 3, pp. 1325-1328, 2003.

28. Webb, J., “Design Sensitivities Using High-Order Tetrahedral Vector Elements,” IEEE

Transactions on Magnetics, Vol. 37, No. 5, pp. 3600-3603, 2001.

29. Toivanen, J. I., Makinen, R. A. E., Rahola, J., Jarvenpaa, S., and Yla-Oijala, P.,

“Gradient-Based Shape Optimization of Ultra-Wideband Antennas Parameterized Using

Splines,” IET Microwaves, Antennas & Propagation, Vol. 4, Is. 9, pp. 1406-1414, 2010.

30. Jinyun, Y., “Symmetric Gaussian Quadrature Formulae for Tetrahedral Regions,”
Computer Methods in Applied Mechanics and Engineering, Vol. 43, pp. 349-353, 1984.

31. Barth, T. J., “Numerical Methods for Gasdynamic Systems on Unstructured Meshes,” An

Introduction to Recent Developments in Theory and Numerics for Conservation Laws,

Vol. 5, Springer, pp. 195-285, 1998.

32. http://mathworld.wolfram.com/MatrixInverse.html .

33. Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., Computational Fluid Mechanics

and Heat Transfer, 2
nd

 Ed., Taylor & Francis, Philadelphia, 1997.

34. Cowper, G. R., “Gaussian Quadrature Formulas for Triangles,” International Journal of

Numerical Methods in Engineering, Vol. 7, pp. 405-408, 1973.

35. Bonhaus, D. L., “A Higher Order Accurate Finite Element Method for Viscous
Compressible Flows,” Ph. D. Thesis, Virginia Polytechnic Institute and State University,

November 1998.

36. Roe, P. L., “The Use of the Riemann Problem in Finite-Difference Schemes,” Lect. Notes

Phys., Vol. 141, Springer-Verlag, New York, pp. 354-359, 1980.

http://mathworld.wolfram.com/MatrixInverse.html

96

37. Newman, J. C., Anderson, W. K., and Whitfield, D. L., “Multidisciplinary Sensitivity
Derivatives Using Complex Variables,” MSSU-COE-ERC-98-08, June 1998.

38. Saad, Y. and Schultz, M. H., “GMRES: A Generalized Minimum Residual Algorithm for
Solving Nonsymmetric Linear Systems,” SIAM Journal of Scientific and Statistical

Computing, Vol. 7, pp. 856-869, 1986.

39. Hyams, D. G., “An Investigation of Parallel Implicit Solution Algorithms for
Incompressible Flows on Unstructured Topologies,” Ph. D. Thesis, Mississippi State

University, May 2000.

40. http://glaros.dtc.umn.edu/gkhome/views/metis .

41. Message Passing Interface Forum, “MPI: A Message Passing Interface Standard,”
Technical Report UT-CS-94-230, 1994.

42. Karman, S. L., “Unstructured Viscous Layer Insertion Using Linear-Elastic Smoothing,”
AIAA Journal, Vol. 45, No. 1, pp. 168-180, 2007.

43. http://www.netlib.org/port/ .

44. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University,

www.ece.rutgers.edu/~orfanidi/ewa , 1999-2010.

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.netlib.org/port/
http://www.ece.rutgers.edu/~orfanidi/ewa

97

VITA

 Ryan S. Glasby was born January 12, 1981 in Boise, Idaho. He graduated from Maumee

High School in May of 1999. He received a B.S. and M.S. in Aeronautical and Astronautical

Engineering from The Ohio State University in June of 2003 and March of 2006. In January of

2006, he began working on his Ph. D. in computational engineering at the UTC SimCenter:

National Center for Computational Engineering. In February of 2011, he began working at

Arnold Engineering and Development Center in the Computational Simulation Modeling and

Analysis Section. Ryan currently works at AEDC.

