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ABSTRACT 

 

 An automatic computational procedure has been developed to efficiently and accurately 

design the shape of complicated electromagnetic objects. These electromagnetic objects can be 

simulated for operation at high frequencies (~10 GHz), and can be comprised of dissimilar 

materials. The automated design procedure consists of linking together an original 

electromagnetic field simulation tool, an original adjoint routine for obtaining sensitivity 

derivatives, and an original grid-smoothing tool with an existing optimization package. The 

electromagnetic field simulation software employs a temporally and spatially higher-order 

accurate Streamline Upwind/Petrov-Galerkin finite-element method that numerically solves 

Maxwell’s equations in the time domain using implicit time stepping. The software for 

computing sensitivity derivatives employs a reverse-mode time-accurate discrete adjoint 

methodology that is formulated to automatically maintain consistency with the electromagnetic 

field simulation software. Grid smoothing is achieved using a spatially higher-order accurate 

Galerkin finite-element method that generates a numerical solution to the linear elastic equations. 

All computational solutions to the linear systems present in each software tool are obtained using 

the Generalized Minimum Residual algorithm with block diagonal preconditioning. Each 

software tool is implemented using a parallel processing paradigm and is therefore capable of 

being executed on a distributed memory supercomputer.  

The order of accuracy of the electromagnetic field simulation software has been determined by 

using comparisons with exact solutions. The field software’s results were compared to the exact 
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solution of a rectangular resonant cavity. In all cases, the order properties of the field software 

exceed theoretical expectations when linear, quadratic, and cubic tetrahedral elements are 

employed to discretize the field.  

 To demonstrate the consistency of the adjoint-based sensitivity derivates with those 

obtained directly from the field solver, derivatives have been extracted from the field software 

using a complex variable technique. The sensitivity derivatives from the reverse-mode time- 

accurate discrete adjoint method were then compared and demonstrated to agree to at least seven 

decimal places. 

 As a demonstration of the assembled technologies, the optimization procedure 

successfully and efficiently modified the shape of two electromagnetic objects to reduce a 

specified cost function.  A dielectric cube, under the influence of a propagating plane wave, was 

repositioned within a larger free space volume so that the field variables on the surface of the 

cube match desired values at a specified time. A similar demonstration case has also been 

conducted to modify the shape of a dielectric ellipsoid, under the same conditions as the cube. 
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CHAPTER I 

INTRODUCTION 

 

 James Clerk Maxwell corrected Ampere’s law and combined it with Faraday’s law and 

Gauss’s law in the early 1860’s, which gave rise to Maxwell’s equations [1]. These equations, 

which link electricity and magnetism, were derived from experimental observations. Faraday’s 

law states that a time varying magnetic field induces an electric field, and Ampere’s law with 

Maxwell’s correction, states that an electric current and/or a time varying electric field can 

generate a magnetic field [1]. Assuming the material properties of the field do not depend on the 

electromagnetic field quantities, Maxwell’s equations are a set of linear hyperbolic differential 

equations. Since the equation set is linear, numerous analytic solutions exist. These analytic 

solutions have been instrumental to the generation of numerous simple electromagnetic devices. 

However, analytic methods do not exist to solve complex electromagnetic problems. 

Traditionally, complex electromagnetic problems have been solved in an experimental 

laboratory. The scattering parameters of non-radiating devices can be experimentally obtained by 

a network analyzer, and the radiation pattern of an antenna can be experimentally obtained by a 

field scanner within an anechoic chamber. Design of complex electromagnetic devices has been 

based on experimental knowledge. However, costs to gain experimental knowledge is very high; 

therefore, since the 1960’s, scientific researchers have been trying to obtain solutions to 

Maxwell’s equations using numerical simulations. 
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 Maxwell’s equations can be cast in the time domain or the frequency domain. The time 

domain solution of the electromagnetic field can be transferred to the frequency domain by a 

Fourier transform. The time domain solution can capture all frequencies within a range, but the 

frequency domain solution has to be generated for each frequency as determined by a pulse 

within a pre-specified range of interest. Because of the numerical work associated with obtaining 

solutions in the frequency domain, for the current study, the time-domain formulation of 

Maxwell’s equations is used.   

 The generation of approximate solutions to Maxwell’s equations in the time domain has 

many difficulties associated with it. The equation set is hyperbolic, and an approximation 

method that employs upwinding is essential for numerical stability. Complicated electromagnetic 

devices are often operated at frequencies on the order of ten gigahertz (GHz) where the 

wavelength in air is approximately one inch. For many applications, the physical size of the 

relevant device is such that the wavelengths are disproportionately small, thereby making 

simulations very costly due to the large number of grid points required to adequately resolve all 

waves. Higher-order finite-element approximation methods can significantly reduce the number 

of grid points because waveforms can be accurately represented with fewer grid points. This is 

accomplished by distributing the data within the computational element with higher than first 

order (linear) polynomials. Even with higher-order elements, some problems are so large that 

they will not fit within the memory of a single computer, and it can take a significant amount of 

wall-clock time to generate a meaningful solution. To alleviate this problem, the computational 

domain is typically divided into numerous partitions which are distributed amongst multiple 

processes to significantly reduce wall-clock time. An electromagnetic field can contain multiple 

materials, and at the interface of each material a jump condition is necessary to properly 
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approximate the electromagnetic field quantities. Two of the eigenvalues of Maxwell’s equations 

are identically zero, and the others are on the order of the speed of light. This has the propensity 

to make the matrix that represents the linear systems stiff. The use of higher order elements 

makes the linear system less diagonally dominant which also makes it more challenging to solve. 

A powerful, memory intensive linear system solver coupled with a preconditioning algorithm 

can be utilized to generate the time accurate approximate solution of the electromagnetic field.  

 Historically computer generated approximate solutions to Maxwell’s equations utilize the 

finite-difference time-domain (FDTD) methodology of Yee [2]. For the FDTD methodology the 

spatial and temporal derivatives are approximated with finite-difference approximations. This 

leads to the volume of the three dimensional field being discretized with hexahedral elements. 

These elements are unable to accurately represent curved surfaces, and actually approximate 

curves with a stair step estimate. Also large computational stencils are needed to approximate the 

field with higher order accuracy. The FDTD methodology can solve for the electromagnetic field 

across dissimilar materials, but the stability of the method is constrained by the time step utilized 

[2].   

 Another way to approximate the solution to Maxwell’s equations is to employ the finite-

element time-domain (FETD) methodology. The FETD method approximates Maxwell’s 

equations with higher-order accuracy both spatially and temporally, and is capable of 

conforming to curved surfaces by discretizing the volume of the three-dimensional field with 

isoparametric tetrahedral elements. This is accomplished by prescribing the field values within 

each computational cell with a polynomial distribution. The finite element method is thoroughly 

discussed by Hughes [3] and Zienkiewicz [4]. The finite element method solves Maxwell’s 

equations in weak form by multiplying the governing equations by a weighting function and 
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integrating over the volume. The most popular implementation of this method for 

electromagnetic field simulations is to apply it to a second order wave equation for either the 

electric or magnetic field variables [5]. The other field variables are obtained in a post-

processing step that involves numerical differentiation of the primary variables, and is therefore 

one order of accuracy less. Since the spatial derivatives of this equation are Laplacian operators, 

a Galerkin finite element method can generate a solution of the electric or magnetic field with 

numerical stability. However, one way to generate a higher-order solution for both the electric 

and magnetic fields that is made up of multiple materials is to utilize a stabilized finite-element 

method. The two stabilized finite-element methods available are the streamline upwind/Petrov-

Galerkin (SU/PG) and the Discontinuous Galerkin (DG) approaches. The SU/PG approach 

stabilizes the algorithm by adding an artificial stream-wise dissipation term to the weighting 

function [6] to effectively add a degree of upwinding to the algorithm. The DG approach 

stabilizes the algorithm by assuming that the field variables for each cell are discontinuous from 

the field variables for adjacent cells. A Riemann solver [7] is used at the boundary between 

adjacent cells to obtain the solution to the electromagnetic field. In order to implement this 

approach, the storage requirements correspond to that obtained by representing the field 

variables in each tetrahedron independently, without sharing data between elements. For a three-

dimensional field discretized with tetrahedra, the number of unknowns is approximately 24.0 

times greater for linear elements than a SU/PG scheme, is approximately 7.5 times greater for 

quadratic elements, and is approximately 7.06 times greater for cubic elements [8]. This fact is a 

major drawback for the DG method because it takes significantly more computational resources 

to generate a numerical solution.   
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 Traditionally, radiating and non-radiating electromagnetic objects have been designed 

from principles learned from analytic solutions to Maxwell’s equations and from experimental 

knowledge gained from experience. The use of automatic computational shape design 

optimization is a novel alternative for designing electromagnetic objects. Automatic 

computational shape design couples electromagnetic field simulation software, a numerical 

routine that obtains sensitivity derivatives, and an optimization package to generate the optimal 

shape of an object that minimizes a cost function. The sensitivity derivatives are the derivatives 

of the cost function with respect to the design variables. The sensitivity derivatives can be 

obtained by either forward or reverse mode methods. The forward mode methods are either 

Taylor-series approximations or direct-differentiation methods for generating the sensitivity 

derivatives, and the reverse-mode methods are adjoint based methods. Jameson conducted the 

ground-breaking practical application of the reverse-mode adjoint based sensitivity analysis in 

1988 [9], and applied this technique to aerodynamic optimization. The forward mode methods 

are inefficient for problems with multiple design variables because a linear system has to be 

solved for each design variable. Reverse mode methods do not have this inefficiency, and are 

discussed further in the next paragraph.  

 Two types of reverse mode adjoint methods exist for computing the shape-sensitivity 

derivatives. They are the continuous-adjoint and the discrete-adjoint methods. The continuous-

adjoint approach takes derivatives of the governing differential equation set with respect to the 

design variables before the equation set is discretized [10]. A new differentiated equation set is 

generated and the sensitivity derivates are solved for numerically. However, if the cost function 

is changed, the process to compute the sensitivity derivatives is repeated to reflect the change. 

For the discrete-adjoint approach, the discretized field simulation software is differentiated and 
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the sensitivity derivates can be numerically obtained. The accuracy of these derivatives is 

directly dependent on the implementation of the field solver, but modifications to the cost 

function can be easily applied. An example of the implementation of the discrete adjoint method 

for steady-state problems is shown in [11], and an example of the implementation for time-

dependent problems is shown in [12].  

 In regards to computing adjoint based sensitivity derivatives for electromagnetic 

problems, the first effort is attributed to Director and Rohrer in 1969 [13] and [14]. They 

conducted sensitivity analysis for networks, and derived a sensitivity expression based on 

Tellegen’s theorem [15] and [16]. More recently, Sabbagh, Bakr, and Nikolova used the adjoint 

network method to conduct sensitivity analysis of the scattering parameters of microwave filters 

in 2005 [17]. They used the full-wave mode-matching technique to simulate an original network, 

generated sensitivities of scattering parameters with respect to design parameters, and applied the 

adjoint network method to the generalized scattering matrices of different filter components.   

 Kang, Chung, Cheon, and Jung implemented a 2-D numerical algorithm to reconstruct 

the complex permittivity profile of unknown scatterers in 2002 [18]. They simulated the 

electromagnetic field with the FDTD method, and computed the sensitivity derivates with a 

continuous adjoint approach. The adjoint variables are solved with the FDTD method, and they 

used a steepest descent method for optimization. With this methodology, they were able to 

successfully reconstruct the dielectric constant and the electric conductivity of a 2-D object. 

 Chung and Cheon partnered with Park and Hahn and developed a continuous adjoint 

FDTD approach for shape design [19] in 2000. They applied this approach to design the shape of 

a     band unilateral fin line to obtain the broad-band transition taper shape. The unilateral fin 

line lies within a rectangular waveguide. Their optimization procedure produced, after 18 design 
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cycles, a     band unilateral fin line transition shape that is similar to exponential taper. In 

2001, they used this approach to optimize the design of a two-dimensional parallel-plate 

waveguide antenna [20]. They applied 40 design cycles and found that reflected energy 

decreased over a broadband of frequencies.  

 Rickard, Georgieva, and Tam implemented absorbing boundary conditions (ABC’s) for 

adjoint problems with a backwards time variable using the FDTD method in 2003 [21]. They 

found that the form of the ABC’s for the adjoint backwards time problem is the same as for the 

original forward time problem, but that the sign before the spatial derivatives is opposite. The 

ABC’s for the forward time problem were originally derived by Berenger in [22]. Rickard, 

Georgieva, and Tam’s method was verified by comparing the reflections generated from solving 

the reverse-time adjoint problem for a microstrip line as compared to a forward-time method. 

They concluded that the reflections for the forward and backward time schemes are identical. 

 Chung, Ryu, Cheon, Park, and Hahn coupled the FETD method with design sensitivity 

analysis using the adjoint-variable method to obtain the optimal design of microwave devices in 

2001 [23]. They took the curl of Maxwell’s equations, and transformed them into the second-

order wave equation. They then applied the FETD method to the second-order wave equation, 

and solved for the electric field that is assumed to be made up of one material property. They 

applied the adjoint-variable method to modify the design of a waveguide with a two-dimensional 

T-junction shape in 27 design cycles to obtain better performance over a broadband of 

frequencies.  

 Akcelik, Biros, Ghattas, Keyes, Ko, Lee, and Ng implemented a continuous-adjoint 

approach to design the shape of end caps of a low-loss cavity for the International Linear 

Collider in 2005 [24]. They numerically computed solutions to the Maxwell eigenvalues problem 
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which generates the magnetic field in the frequency domain with a finite-element method. In 

addition to solving the Maxwell eigenvalues problem, they had to solve an additional set of 

partial differential equations – an adjoint eigenvalue problem – for each function of interest. 

According to [24], each additional set of partial differential equations has “somewhat different 

structure from the original Maxwell eigenvalues problem and may require different 

discretizations, solvers, and preconditioners.” They implemented their numerical software in the 

parallel processing paradigm with an effort to run on a large number of processors. They 

parameterized the shape of the end cells with analytic expressions and optimized the shape with 

regards to their cost function. Their goal for their specific application was to minimize a cost 

function that would improve the trapped energy in the end cell, and they do that by 58% while 

maintaining their constraint with 5 design cycles. 

 Georgieva, Glavic, Bakr, and Bandler implemented what they called a “feasible adjoint 

sensitivity technique” (FAST) for electromagnetic design optimization in the frequency domain 

in 2002 [25]. Their objective was to develop a versatile technique to extract sensitivities from 

any frequency domain solver, regardless of its discretization scheme.  They attached FAST to a 

full-wave method of moments frequency-domain analysis tool and optimized the shape of a 

Yagi-Uda array and a regular patch antenna.  

 Nair and Webb implemented a higher-order finite-element method to numerically 

compute solutions to Maxwell’s equations in the frequency domain, and simulated microwave 

devices over a frequency band in 2010 [26]. They employed an adaptive optimization procedure, 

called direct optimization [27], to locally increase accuracy by increasing mesh points and 

increasing the order of the finite elements. They chose a cost function that is directly related to 

scattering parameters. In 2001, Webb described a way to compute the design sensitivities using 
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high-order tetrahedral vector elements [28]. They simulated a 2-port rectangular waveguide with 

an E-plane bend over a frequency band of 8.25 GHz- 13.25 GHz with their higher-order adaptive 

optimizer procedure, and achieved their desired cost function five times faster than when an 

adaptive optimizer procedure that does not utilize higher-order elements was employed.   

  Toivanen, Makinen, Rahola, Jarvenpaa, and Yla-Oijala implemented a gradient based 

shape optimization scheme for ultra-wideband antennas in 2010 [29]. They used a discrete-

adjoint approach to compute the sensitivity derivates. They computed derivatives of their field 

simulation software with automatic differentiation. Their field simulation software solves the 

electric field integral equation with the method of moments approach in the frequency domain. 

They noted that the method of moments approach generates a linear system that is a dense 

complex valued system. They parameterized the boundary of the antenna with B-splines. They 

used a radial basis function interpolation scheme to deform the mesh which does not have to 

solve an additional set of partial differential equations. Their cost function is the absolute value 

of the     scattering parameter squared, and their frequency band is 3-10 GHz. They spanned 

this band with 30 frequency sweeps, and optimized the antenna shape so that     is below -12 dB 

over the whole frequency band. Their optimized antenna shape can be generated from two initial 

configurations, and they concluded that their shape optimization procedure does not depend on 

initial shape.  

 With past computational explorations in mind, the objective of the current study is to 

develop simulation software to accurately approximate time-domain electromagnetic fields 

surrounding and within large complicated electromagnetic structures, and to develop numerical 

techniques to automatically optimize the shape of complicated electromagnetic structures. The 

time-domain electromagnetic fields are approximated with the spatially and temporally higher 
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order accurate SU/PG finite element scheme, and the shape sensitivity derivatives that are the 

crux of shape design optimization are computed with the time-accurate discrete-adjoint method. 

The algorithms are written in the message passing paradigm, and are capable of being executed 

on a distributed memory supercomputer. Implicit time stepping is employed, and a time step that 

is based on the physics of the problem is used.  
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CHAPTER II 

ELECTROMAGNETIC FIELD SIMULATION SOFTWARE  

 

METHODOLOGY AND IMPLEMENTATION 

 

2.1 Electromagnetic Field Simulation Software Formulation 

The three-dimensional Maxwell’s equations are numerically computed using the 

Streamline Upwind/Petrov-Galerkin finite element method in the time domain. This 

methodology provides a framework to numerically approximate Maxwell’s equations that is 

higher order spatially and temporally, and is numerically stable on unstructured grids. Generally, 

complicated objects can be more accurately and more easily discretized on unstructured grids. 

Implicit backward difference time stepping is employed for this scheme. This, for the cost of 

solving a linear system at every time step, allows the use of a time step that is based on the 

physics of the problem instead of stability considerations. The field software can be executed on 

a distributed memory super-computer.  

 

2.2 Governing Equations 

The governing equations for the field simulation software are the six equations that make 

up Ampere’s law with Maxwell’s correction and Faraday’s law. The solution of these equations 

generates the time history of the electric and magnetic fields within a volume. The six equations 

are a coupled set of linear, hyperbolic partial differential equations.  

Maxwell’s equation set in differential form [1]: 
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Equations 2.1 and 2.2 are transformed to be solved for       and     by defining the following 

quantities and by applying Equations 2.3, 2.4, and 2.10: 
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The * is dropped for convenience, and the governing equations (Equations 2.1 and 2.2) are 

solved in conservative, differential form as follows: 

 

 0
q F G H

S
t x y z

   
    

   
 (2.12) 



13 

 

 

0

0

0
, , , ,

0

0
0

0 0

0

x

r o
x y rz r

yz ry x r

r o
y r x rz

zz yr rx
r o

z r xy r

xy rrz

D
aBBD

B B DD
a

B BD
q F G H S

DD DB a
DB D

DDB




 


 


 


 



       
      

      
      
          
      
      

      
           

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.13) 

 

2.3 Finite Element Formulation 

The first step of the finite element formulation is to consider the governing equations in 

weak form [3]: 

 

 0
q F G H

w S
t x y z



    
     

    
  (2.14) 

 

The weighting function w  is represented in Equation 2.15. 

 

               
      
    (2.15) 

 

In the above equation,  , ,N     is the set of shape functions for a three-dimensional element, 

   is arbitrary, and        is the number of degrees of freedom (number of nodes) in the element. 

The shape functions are Lagrange polynomials. The application of Green’s theorem to Equation 

2.14 transforms the equation to Galerkin form. The Galerkin form of the governing equation is as 

follows: 
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 

0

x y z

q
w S w Fn Gn Hn

t

w w w
F G H

x y z

 



 
      

 

   
    

   

 



 (2.16) 

 

Solving this hyperbolic equation set in Galerkin form is unstable for coarse grids because it does 

not provide sufficient dissipation to prevent the field variables from oscillating, and is equivalent 

to solving the equation set with central differencing. A generally stable way to discretize a 

hyperbolic equation is to use upwinding. In order to stabilize the finite element approximation 

method, the Streamline Upwind/Petrov-Galerkin method is utilized [6]. The Petrov-Galerkin 

method adds a stream-wise upwind stabilization term to the weighting function [6], and is shown 

in Equation 2.17 as  
  

  
  

  

  
  

  

  
   . The Petrov-Galerkin weak form of the governing 

equations is: 

 

 0
w w w q F G H

w A B C S
x y z t x y z




         
          

          
  (2.17) 

  

After applying Green’s theorem, this statement becomes: 

 

  

0

x y z

w w w q
w A B C S

x y z t

w w w
w Fn Gn Hn F G H

x y z

w w w F G H
A B C

x y z x y z







 



      
       

       

   
       

   

        
        

         



 



 (2.18) 
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     , ,F G HA B C
q q q

                     
 (2.19) 

 

The matrices      and   are as follows: 

 

   

 
 
 
 
 
 
 
 
 
      

     
 

  

    
  

  
 

      

  
  

  
   

 
 

  
     

 
 
 
 
 
 
 
 

 (2.20) 

   

 
 
 
 
 
 
 
 
      

  

  

      

   
 

  
  

  
 

  
   

      
  

  
      

 
 
 
 
 
 
 
 

 (2.21) 

   

 
 
 
 
 
 
 
 
     

 

  
 

   
  

  
  

      

 
  

  
    

 

  
     

       
 
 
 
 
 
 
 
 

 (2.22) 

 

2.4 Parent Element:  Gaussian Quadrature, Shape Functions and Derivatives, Element 

Jacobian 

   

 The tetrahedra present within the computational grid are mapped to parent tetrahedra for 

integration. The linear parent tetrahedron has the coordinates in non-dimensional         space 

of (0,0,0), (1,0,0), (0,1,0), and (0,0,1). There are specified quadrature rules for integrating a 
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function over a parent tetrahedron which are traditionally tabulated such that the weights sum to 

one. A quadrature table is available in [30]. A function can be integrated over a tetrahedron with 

the following relation: 

 

            
 

 
 

 
                               

      

   
    (2.23) 

 

For this thesis, in the above equation         are Gauss points given in a table in [31],    are 

Gauss weights given in the same table, and   is the Jacobian. As long as the quadrature scheme 

is of higher order accuracy than the polynomial in the integrand, the integration is exact to 

machine precision. However, if higher order curved elements are employed the Jacobian is also a 

polynomial, and the integrand is made up of a rational polynomial. For the parent tetrahedron, 

the shape functions          are Lagrange polynomials written in terms of the isoparametric 

coordinates         [4]. The number of shape functions matches the number of nodes in the 

element. A linear tetrahedral element has four nodes, a quadratic tetrahedral element has ten 

nodes, and a cubic tetrahedral element has twenty nodes. Each of these elements is shown in the 

following Figures 2.1, 2.2, and 2.3 [4]. 
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Figure 2.1 Linear Tetrahedron 

 

 

 

 

Figure 2.2 Quadratic Tetrahedron 
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Figure 2.3 Cubic Tetrahedron 
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The Lagrangian shape functions and their derivatives for the isoparametric linear tetrahedron are 

[4]: 

 

           

       
 
 
 

  (2.24) 

 
         

  
  

  
 
 
 

  (2.25) 

 
         

  
  

  
 
 
 

  (2.26) 

 
         

  
  

  
 
 
 

  (2.27) 

 

The shape functions for the higher order tetrahedra can be found in [4]. For a given element, if 

information is known at the nodes it can be computed for the element by summing the 

multiplication of the value of the variable by the value of the shape function over all the nodes in 

the element at a given Gauss point [3]. For instance, the values of      and   for the element are 

evaluated by computing Equations 2.28-2.30. 

 

         
      
    (2.28) 

        
      
    (2.29) 

        
      
    (2.30) 
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In the above equations,        and    are the values at the nodes. In order to compute the Jacobian 

of the element, the following matrix must be computed [3]: 

 

 

 
 
 
 
 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   
 
 
 
 

 (2.31) 

 

Each variable in the above matrix is computed as follows [3]:  

 

 
  

  
  

   

  
  

      
    (2.32) 

 
  

  
  

   

  
  

      
    (2.33) 

 
  

  
  

   

  
  

      
    (2.34) 

 
  

  
  

   

  
  

      
    (2.35) 

 
  

  
  

   

  
  

      
    (2.36) 

 
  

  
  

   

  
  

      
    (2.37) 

 
  

  
  

   

  
  

      
    (2.38) 

 
  

  
  

   

  
  

      
    (2.39) 

 
  

  
  

   

  
  

      
    (2.40) 

 

The Jacobian is defined as [3]: 

 

   
  

  

  

  

  

  
 

  

  

  

  

  

  
 

  

  

  

  

  

  
 

  

  

  

  

  

  
 

  

  

  

  

  

  
 

  

  

  

  

  

  
 (2.41) 
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In order to compute        and    at each Gauss point of the element Equation 2.31 is inverted 

to generate the following matrix: 

 

 

 
 
 
 
 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   
 
 
 
 

 
 

 

 
 
 
 
 
  

  

  

  
 

  

  

  

  

  

  

  

  
 

  

  

  

  

  

  

  

  
 

  

  

  

  

  

  

  

  
 

  

  

  

  

  

  

  

  
 

  

  

  

  

  

  

  

  
 

  

  

  

  

  

  

  

  
 

  

  

  

  

  

  

  

  
 

  

  

  

  

  

  

  

  
 

  

  

  

   
 
 
 
 

 (2.42) 

 

Once Equation 2.42 is evaluated the values of        and    are computed at a given node that 

is interpolated to a Gauss point of the element as follows [3]: 

 

 
   

  
 

   

  

  

  
 

   

  

  

  
 

   

  

  

  
 (2.43) 

 
   

  
 

   

  

  

  
 

   

  

  

  
 

   

  

  

  
 (2.44) 

 
   

  
 

   

  

  

  
 

   

  

  

  
 

   

  

  

  
 (2.45) 

 

2.5 Derivation of Stabilization Matrix 

The element based six by six stabilization matrix   has dimensions of time and is defined as 

[31]: 

 

      
   

   
   

      
    

  

         (2.46) 

 

For a linear element, the stabilization matrix is of the form: 

 

    
 
   

  
  

   

  
  

   

  
    

   

  
  

   

  
  

   

  
   

 
   

  
  

   

  
  

   

  
    

   

  
  

   

  
  

   

  
  

 

  

 (2.47) 
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Since the above equation contains the absolute value function, each term in the above equation of 

the form 
N N N

A B C
x y z

  
 

  
 is quantified by evaluating the eigensystem. In the following 

equations the derivatives of the shape function are written in a condensed form (
  

  
 is   ). A 

representative term               from the stabilization matrix (Equation 2.47) is 

evaluated as follows: 

 

 
  

  
  

  

  
  

  

  
    

 

 

 

 

 

    
  

  
 

   
  

 

   
   

  
  

  
  

 

   
  

  
    

  
  

 
   

  
 

  
  

    

  
  

  
   

  
    

   
  

   
  

     
 

 

 

 

         (2.48) 

 

In the above equation,   is the matrix of right eigenvectors,   is the matrix of the eigenvalues, 

and     is the matrix of left eigenvectors. The eigenvalues are derived from 

     
  

  
  

  

  
  

  

  
        as follows: 
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   (2.49) 

   

 
 
 
 
 
 
 

 

     
    

    
 

      
    

    
 

 

     
    

    
 

      
    

    
  
 
 
 
 
 
 

 (2.50) 

 

The right eigenvectors    that make up the right eigenvector matrix   are defined as follows: 

 

                         (2.51) 

 

Each one dimensional array,   , is six values long. However, there are only four distinct equations 

for six unknowns. Hence, two of the values of    are specified. The right eigenvector matrix is: 

 

                        (2.52) 
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 (2.53) 

     

 
 
 
 
 
 
 
 
 
  

  

   
 
 
 
 
 

     

 
 
 
 
 
 
 
 
 
 
 
 

  

       
    

    
 

   

       
    

    
 

 
    

   
    

    
  

    

   
    

    
  

  
 

   
    

    
  

  
 
 
 
 
 
 
 
 
 
 
 
 

     

 
 
 
 
 
 
 
 
 
 
 
 

  

       
    

    
 

   

       
    

    
 

 
     

   
    

    
  

     

   
    

    
  

  
  

 

   
    

    
   

 
 
 
 
 
 
 
 
 
 
 

 (2.54) 

 

The left eigenvectors    that make up the left eigenvector matrix     are defined as follows: 

 

               
 

          (2.55) 

 

The left eigenvector matrix is: 

 

     

 
 
 
 
 
 
 
  
 
 
 

   
 

   
 

   
 

   
 

   
  
 
 
 
 
 
 
 

 (2.56) 

 

In the following equations,         
    

    
  . 
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  (2.61) 

    
   

         

   
 

            

     

  

   

   
    

 

     

 

 
  (2.62) 

 

The representative matrix               or         is shown in Equation 2.63. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
    

  

   
    

    
 

       

   
    

    
 

       

   
    

    
 

   

       

   
    

    
 

     
    

  

   
    

    
 

       

   
    

    
 

   

       

   
    

    
 

       

   
    

    
 

     
    

  

   
    

    
 

   

   
     

    
  

   
    

    
 

       

   
    

    
 

       

   
    

    
 

   
       

   
    

    
 

     
    

  

   
    

    
 

       

   
    

    
 

   
       

   
    

    
 

       

   
    

    
 

     
    

  

   
    

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.63) 

 

The stabilization matrix   is the inverse of the summation of the above equation at each node for 

a given Gauss point. The three by three nonzero matrices in Equation 2.63 are denoted as    and 

are inverted analytically with Kramer’s rule as follows [32]: 
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  (2.64) 

     
 

   

 
 
 
 
 
  
      

      
  

      

      
  

      

      
 

 
      

      
  

      

      
  

      

      
 

 
      

      
  

      

      
  

      

      
 
 
 
 
 
 
 

 (2.65) 

 

2.6 Finite Element Implementation 

The finite element method is implemented by applying Equation 2.18 to each element 

within the discretized electromagnetic field. This procedure generates a residual vector that is 

number of nodes long, and has six equations at each node. Equation 2.18 can be broken up into 

four terms (       and  ) as follows: 

 

        
  

  
  

  

  
  

  

  
     

    

  
      

 
 (2.66) 

      
  

  
   

  

  
   

  

  
     

 
   (2.67) 

        
  

  
  

  

  
  

  

  
     

   

  
 

   

  
 

     

  
   

 
 (2.68) 

                         
 

 (2.69) 

 

To evaluate the integrals in Equations 2.66-2.68, the    values, which are stored at the nodes of an 

element, are interpolated to the Gauss points by the following procedure [3]: 

 

             
      
    (2.70) 

 

       and      are computed at the Gauss points in the following manner: 
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          (2.71) 

          (2.72) 

            (2.73) 

 

The derivatives of    with respect to      and   are computed at a Gauss point as follows [3]: 

 

 
    

  
  

   

  
      

      
    (2.74) 

 
    

  
  

   

  
      

      
    (2.75) 

 
    

  
  

   

  
      

      
    (2.76) 

 

The derivatives of        and      with respect to      and   are computed at a Gauss point as 

follows: 

 

 
   

  
    

    

  
 (2.77) 

 
   

  
    

    

  
 (2.78) 

 
     

  
    

    

  
 (2.79) 

 

The integrand for a given node,    within the element has six equations (Maxwell’s equations), 

and is made up of four terms. The integrand for terms     (Equations 2.66-2.68) is shown in 

Equations 2.80-2.82 for the Maxwell equation    For convenience, the matrix   times   is 

denoted   , the matrix   times   is denoted   , and the matrix   times   is denoted   . 
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  (2.80) 

   
 
   

   

  
   

   

  
   

   

  
    (2.81) 
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(2.82) 

 

The derivative of the    values with respect to time is approximated with a stable second order 

backward finite difference equation as follows [33]: 

 

 

 
    

  
 

                    

   
        (2.83) 

 

2.7 Boundary Conditions 

 The boundary conditions are applied by modifying the fluxes when evaluating Equation 

2.69. Three types of boundary conditions are implemented for this solution procedure. These are 

perfect electric conducting (PEC) walls, material jump conditions, and Dirichlet boundary 

conditions.  
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 Triangular face elements are used to describe the boundaries. Similar to the tetrahedra, 

the triangles are mapped to parent space. The linear isoparametric triangle has the coordinates in 

non-dimensional       space of (0,0), (1,0), and (0,1). As with the isoparametric tetrahedra, 

Gaussian quadrature rules are employed for the integration of a function over a triangle. The 

quadrature table is available in [34]. A function can be integrated over a triangle with the 

following relation: 

 

            
 

 
 

 
                         

      

   
    (2.84) 

 

In Equation 2.84,         are Gauss points,    are associated Gauss weights, and   is the 

Jacobian. For the isoparametric triangles, the shape functions        are Lagrange polynomials 

written in terms of the parental coordinates      . In order to obtain the element unit normal 

vector and Jacobian, the terms 
  

  
 

  

  
 

  

  
 

  

  
 

  

  
  and 

  

  
 are computed. These terms are 

computed as follows [3]: 
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The components of the non-normalized element normal vector are [35]: 

 

       
  

  

  

  
 

  

  

  

  
          

  

  

  

  
 

  

  

  

  
          

  

  

  

  
 

  

  

  

  
 (2.91) 

 

The Jacobian,  , is the square root of the sum of the squares of the non-normalized element 

normal vector which is shown as: 

 

                         (2.92) 

 

The normalized element normal vector is the non-normalized element normal vector divided by 

the Jacobian which is shown as: 

 

    
      

 
       

      

 
       

      

 
 (2.93) 

 

In Equation 2.69        and      are computed from Equations 2.71-2.73.  

 For a PEC boundary,         and     is solved for [1]. This is enforced by solving 

Equation 2.69 with        and      as: 

 

    

 
 
 
 
 
 

 
     

      

 
 
  

 
 
 
 
 

    

 
 
 
 
 
 
      

 
     

 
 
  

 
 
 
 
 

      

 
 
 
 
 
 

     

      
 
 
 
  

 
 
 
 
 

 (2.94) 

 

For the material jump boundary condition, Equation 2.69 is solved by using Roe’s scheme, 

which is a flux-difference splitting scheme that is designed to solve the Riemann problem. Roe’s 
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scheme is implemented by Equation 2.95 [36]. Anderson et al. [8] applied an identical procedure 

to evaluate the material jump boundary condition.  

 

                    
 

 
                                                 (2.95) 

 

In order to implement this scheme each node on the boundary is duplicated and denoted as either 

a left state     or a right state    . The average of the left and right states is denoted by  . In 

order to compute                  the eigensystem derived before (Equation 2.63) is 

employed with two modifications. The first is the derivatives of the shape functions        and 

   are replaced with the normalized unit normal vector components        and   , and the 

second is the reference speed of light    is replaced with    . The terms       and    are computed 

as follows: 

 

       

 
 
 
 
 
 
 
 
 
 
 
        

  

        

  

        

  

  

    

  

    

  

     
 
 
 
 
 
 
 
 
 
 

    
    

      
 

 
 
 
 
 
 
 
 
  

  
     

 
  

  
    

  
  

  
   

         
         
          

 
 
 
 
 
 
 

  (2.96) 

 

 Dirichlet boundary conditions are implemented by setting the    value at each node on the 

boundary. Since     is set explicitly, it is not necessary to solve Equation 2.69. 
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2.8 Implicit Time Stepping 

Implicit time stepping with Newton’s method [33] is employed to obtain the time history 

of the electromagnetic field. Implicit time stepping allows for the use of a time step that depends 

on the physics of the problem. Implicit time stepping schemes are more numerically stable than 

explicit time stepping schemes. For an explicit time stepping scheme, the numerical stability of 

the scheme is governed by the time step, and generally the time step has to be less than or equal 

to the grid spacing divided by the wave speed. This is a serious limitation because in an 

unstructured grid topology the grid spacing can vary drastically, and the time step for the whole 

field must be in direct relation to the smallest tetrahedron. However, if an implicit time stepping 

scheme is employed, the time step does not depend on the grid spacing for numerical stability.  

The unsteady residual is linearized with Newton’s method, and an implicit time stepping 

algorithm is developed. This algorithm is robust enough to handle nonlinear problems, but since 

Maxwell’s equations are linear, only one Newton step is needed at each time step.  The first step 

in the Newton linearized implicit time stepping algorithm is to introduce a Newton iteration 

index,    and calculate an iterative sequence,           until it satisfies the following relation: 

 

      
  

  
       

  

  
       

  

  
          

    

  
           

 
  

                                     

 

  

  
  

  
        

  

  
        

  

  
             

 

 

   
  

  
       

  

  
       

  

  
         

        

  
 

        

  
 

          

  
            

 
 

  (2.97) 
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Next, introduce a Newton linearization about         (Taylor series expansion of       ), and the 

unsteady residual becomes: 

 

                  
  

    
 
     

    
           

  (2.98) 

     
                      (2.99) 

 

The left hand side of Equation 2.98 is set to zero, and the algorithm is: 

 

  
  

    
 
     

    
            (2.100) 

 

The solution of Equation 2.100 is the perturbation of the time accurate electromagnetic field 

from one time step to the next, and the procedure to solve Equation 2.100 is discussed in the next 

two sections.  

 

2.9 Linearization Matrix 

In Equation 2.100 the term  
  

    
  is the linearization matrix [33]. The linearization matrix 

is a sparse block matrix that is the square of the number of nodes in the overall computational 

mesh. Each block in the overall sparse matrix is six by six. The derivatives of the unsteady 

residual with respect to the field variables are computed with a complex Taylor series expansion 

(CTSE) [37]. The CTSE for a function   is shown in Equation 2.101. 

 

                  
     

  
 

   

  

      

   
   (2.101) 
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The derivative of the function with respect to   is computed by dividing the imaginary part of the 

complex perturbed function by the perturbation. The derivative of the function      with respect 

to   is shown in Equation 2.102. 

 

 
     

  
 

            

  
        (2.102) 

 

The derivative evaluated in Equation 2.102 is second order accurate for the cost of one function 

evaluation. Because of Equation 2.102 is not subject to subtractive cancellation errors, and it can 

be computed with an exceptionally small   . The value of    is chosen as the square root of 

machine zero, which means that the accuracy of the evaluated derivative is of the order of 

machine zero. Filling the linearization matrix can be accomplished in a few nested steps. The 

first step is to loop through all of the nodes in the overall computational mesh. While looping 

through all of the nodes, at each node perturb    in the complex plane by machine zero. After the 

node is perturbed, loop through the tetrahedra connected to that node, and compute the nodal 

values of the residual at each tetrahedron. For each tetrahedron, add the nodal value of the 

derivative of the residual (imaginary part of the residual divided by the perturbation) to the 

proper place in the linearization matrix. The proper place in the linearization matrix is the 

perturbed node’s row and the corresponding appropriate column.  

 The linearization matrix is large and only the nonzero components are stored in memory. 

Instead of the linearization matrix being stored as a two dimensional array dimensioned to be the 

square of the number of nodes in the overall computational mesh, the linearization matrix is 

stored as a one dimensional array that is the number of nonzero components long. However, it 

should be noted that each entry in the one-dimensional array represents a six-by-six matrix to 
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accommodate all six equations. Compressed row storage is used to access the specific instances 

of the one dimensional array. 

  

2.10 Linear System Solver 

At each time step the linear system, Equation 2.100, is solved. The solution of Equation 

2.100 is a follows: 

 

      
  

    
 
  

      (2.103) 

 

Since the linearization matrix is large, it cannot be efficiently inverted directly, and an iterative 

solver must be employed. Typical iterative solvers are Jacobi and Gauss-Seidel, which both 

converge quickly for strongly diagonally-dominant systems and have limited memory 

requirements. However, these methods only converge if the matrix on the left hand side of the 

linear system is diagonally dominant. The Petrov-Galerkin solution procedure can have non-

diagonally dominant matrices if higher-order elements or large time steps are employed. Higher 

order elements provide a higher-order solution at the cost of adding more nonzero off-diagonal 

columns to the rows of the linearization matrix. Hence, a linear system solver that is robust 

enough to solve a non-diagonally dominant system must be employed. For this solution 

procedure, the Generalized Minimal RESidual method (GMRES) [38] is utilized. This method 

uses the Arnoldi iteration to find the approximate solution vector in a Krylov subspace with 

minimal iterative linear system residual. The GMRES method yields the exact solution to 

machine accuracy when the dimension of the Krylov subspace equals the dimension of the 

system or one of the search directions becomes linearly dependent on one of the previous ones. 

However, each Krylov search vector is the same size as the overall solution vector stored at each 
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node, and storing each Krylov search vector is not practical due to computational memory 

constraints. In order to speed converge of the GMRES scheme and limit the number of search 

directions, a diagonal preconditioner is used. The diagonal preconditioner loosely approximates 

the inverse of the matrix, and takes minimal computational effort to solve. A direct-solve LU 

elimination method is used to solve the block six by six matrix problems in conjunction with the 

diagonal preconditioner.   

  

2.11 Procedure to Execute the Software on a Distributed Memory Supercomputer 

The solution procedure outlined in the previous sections has been implemented for a 

parallel distributed memory computing environment. The implemented procedure uses the 

message passing paradigm to pass data between processes.  

The adapted procedure involves the following steps:  decompose the computational grid, 

build sub-domains, generate send/receive lists, package data to be sent, send/receive data, unpack 

received data, and put it in its proper place in memory [39]. The unstructured mesh is 

decomposed with the METIS library [40]. METIS efficiently partitions an unstructured mesh and 

works to decrease the ratio of communication to computation or surface area to volume ratio for 

each sub-domain. METIS outputs a partition array that tells each node which domain it belongs 

to. Once the partition array is generated, subdomains are built. Subdomains are volumetric 

portions of the overall computational mesh that each process is assigned to work on. Each sub-

domain is made up of a portion of the overall number of tetrahedra and boundary triangles, and is 

built from the nodes it owns. If a tetrahedron contains nodes that belong to difference processes, 

the tetrahedron belongs to multiple processes. For instance, Figure 2.4 shows a tetrahedron that 

is split over two processes. 



38 

 

 

 

 

Figure 2.4 Split Quadratic Tetrahedron over Processes 1 and 2 

 

In Figure 2.4, the quadratic tetrahedron is split over processes 1 and 2. Nodes 1, 3, 4, 6, 7, and 9 

are owned by process 1, and nodes 2, 5, 8, and 10 are owned by process 2. The tetrahedron 

belongs to the sub-domain for processes 1 and 2. The nodes that are not owned by each process 

are phantom nodes, and their information must be passed. In order for information to be passed, 

send and receive lists must be generated. A send list for a given process is made up of two pieces 

of information. These pieces are the node numbers of the current process that are phantom nodes 

on another process, and the other process to which nodal information needs to be sent. A receive 

list for a given process is made up of the inverse of the information present in the send list. A 

receive list states each node on a current process that is a phantom node, and from where each 

phantom node receives its information. Once the send and receive lists are generated, each 

process packs up its owned data so that each process only sends and receives data once. The data 

is sent and received by using the message passing interface (MPI) library [41]. Each send and 
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receive call is nonblocking, which means that each process can compute on parts of the sub-

domain that are not dependent on passed information while the send/receive process takes place. 

Once the data is received by a given process it is unpacked and put into its proper place in 

memory.  

 At each time step, messages have to be sent between sub-domains to update the solution 

vector at the phantom nodes for each subdomain before the residual and linearization matrix are 

computed. A matrix vector product between the linearization matrix and the solution vector on a 

given sub-domain would be as follows: 

 

 

 
 
 
 
 
 
 
 
 
 
          
          
          
          
          
          
          
          
          
           

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

 

Figure 2.5 Product of Linearization Matrix and Solution Vector before Message Passing 

 

In Figure 2.5 the     are known quantities for the given sub-domain and the 0’s are unknown 

quantities for the sub-domain. The information denoted by 0’s in the solution vector must be 

passed from the subdomain that owns that data, and Figure 2.6 shows the correct matrix-vector 

product implementation.  
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Figure 2.6 Product of Linearization Matrix and Solution Vector after Message Passing 
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CHAPTER III 

TIME ACCURATE SHAPE SENSITIVITY ANALYSIS AND DESIGN 

 

 A shape design cycle is implemented that couples the electromagnetic field simulation 

software, time accurate adjoint based method for computing the sensitivity derivatives, software 

that smoothes the computational mesh by computing the linear elastic equations, and 

optimization package. The shape design cycle modifies the shape of an electromagnetic object 

such that a cost function is minimized. The subsequent methods for computing the sensitivity 

derivatives and the design cycle are discussed in the following sections.  

 

3.1 Forward and Reverse Modes 

 Forward mode and reverse mode are the two methodologies used to compute time 

accurate shape sensitivity derivatives [11]. The time accurate shape sensitivity derivatives are 

used to design an object with a minimized cost function. The shape sensitivity derivatives are the 

derivatives of the cost function with respect to design variables that describe the shape of the 

object in computational space. The forward mode methodology can be used to compute the 

shape sensitivity derivatives with the following methods:  finite difference method, complex 

Taylor series expansion, and direct differentiation [11]. The reverse mode methodology uses an 

adjoint method to approximate the shape sensitivity derivatives [11]. Each of these methods is 

discussed below where the cost function is denoted as    and the design variables are denoted 

as    . 
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3.2 Forward Mode, Finite-Difference Method 

 The first derivative of the cost function with respect to the design variables can be 

approximated with the central-difference method given as: 

 

 
     

  
 

               

   
        (3.1) 

 

The central-difference method is subject to subtractive cancellation, and should be used with 

caution especially when employing small perturbations. When subtractive cancellation is present, 

the truncation error increases as    decreases. Subtractive cancellation is present when    is 

reduced to a point that the computer cannot discriminate between the terms in the numerator of 

Equation 3.1. This method is not practical if multiple     are used to design an object because it 

would have to be computed for each design variable.  

 

3.3 Forward Mode, Complex Taylor Series Expansion (CTSE) 

 Another way to approximate the shape sensitivity derivatives via forward mode is to 

employ the CTSE method. The CTSE method is discussed in Section 2.9. Even though this 

method is not subject to subtractive cancellation errors, it again is not practical for shape design 

if the object is described by a large number of    . However, because of the high level of 

accuracy of this methodology, it can be used as a comparison tool with direct differentiation and 

the discrete adjoint method.  

 

3.4 Forward Mode, Direct Differentiation 

 The last way to approximate the shape sensitivity derivatives via forward mode is to 

utilize direct differentiation. Here, the derivative of the cost function with respect to the     
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design variable is computed by summing the derivatives from all time steps, and the sum is over 

   time steps that influence the cost function. 

 

 
  

   
   

  

       

       

   
 

  

   

   

   
 

  
    (3.2) 

 

In Equation 3.2 the arrays 
  

       
 and 

  

   
 are computed by the CTSE method described in section 2.9. 

The array, 
       

   
 is second order accurate in time, and is evaluated at a time step   by Equation 3.3. 

  

 
       

   
   

   

       
 
  

 
   

   
  

   

       
 

       

   
  

   

       
 

       

   
  (3.3) 

 

In Equation 3.3, the derivative of the unsteady residual (Equation 2.97) with respect to the design 

variables, 
   

   
, is evaluated as follows: 

 

 
   

   
  

   

   
 

   

   
 (3.4) 

 

The matrix  
   

   
  is generated the same way the linearization matrix is generated in section 2.9 

except that    is perturbed instead of   . Also,  
   

       
  and  

   

       
  are computed in a similar 

fashion. The mesh sensitivity arrays 
   

   
 are computed by an auxiliary solver that computes the 

linear elastic equations, and they are imported into the direct method solver.  The linear system 

shown in Equation 3.3 is solved with the GMRES linear system solver described in section 2.10, 

and the direct method solver can be executed on a distributed memory supercomputer as 

described in section 2.11. As with the other forward mode methods, the direct method is not 

practical for shape design problems with a large number of     . For each   Equation 3.3 would 
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have to be computed with a linear system solver. However, the direct method is an excellent 

comparison tool for the reverse mode discrete adjoint method, and, as will be seen in the next 

section, some of the arrays and matrices needed for the direct method are needed for the discrete 

adjoint method.  

 

3.5 Reverse Mode, Discrete-Adjoint Method 

 The reverse mode discrete adjoint method is optimal for computing the shape sensitivity 

derivatives when there are a large number of design variables. This methodology does not 

necessitate solving a linear system for each design variable considered. This is accomplished by 

summing the contributions of 
  

   
 in reverse order from the last time step to the first time step 

and not explicitly solving for 
       

   
 at the current time step. At each step, 

       

   
  is expanded by 

Equation 3.3. Equation 3.2 is rewritten as Equation 3.5 to show this change.  

   

 
  

   
    

  

     
  

   

     
 
  

 
   

   
  

   

       
 

       

   
  

   

       
 

       

   
   

  

   

   

   
  

    
 (3.5) 

 

Next, Equation 3.5 is transposed, and is shown as Equation 3.6. 

 

 
  

   
 
 

      
   

   
 

       

   
 

   

       
  

       

   
 

   

       
  

 

 
   

     
 
  

  
  

     
 
 

 
  

   

   

   
  

    
 (3.6) 

 

An algorithm is developed to compute Equation 3.6 by expanding the first three terms of the 

summation                       and grouping terms together. When      

Equation 3.6 becomes: 
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 (3.9) 

  
  

   
 
 

    
    

   
 
 

   
  

        

   
 
 

  
    

        

   
 
 

  
   

  

   

   

   
 (3.10) 

 

In Equation 3.10 the terms   
        

   
 
 

   and   
        

   
 
 

   are not evaluated at     , but 

are evaluated at       . At        Equation 3.6 with the added terms from 3.10 becomes 

Equation 3.11. In order to derive Equation 3.11 the term  
        

   
 
 

 is expanded from Equation 

3.3. 
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  (3.11) 

 

The following terms can be pulled out of Equation 3.11: 

 

        
      

        
 
  

  
  

        
    

   
 

 (3.12) 

   
      

      

        
 
 

      (3.13) 

   
      

      

        
 
 

      (3.14) 

 

After applying Equations 3.12 – 3.14, Equation 3.11 becomes Equation 3.15. 

 

  
  

   
 
 

    
      

   
 
 

       
        

   
 
 

   
       

     
        

   
 
 

  
     

  

   

   

   
 

  (3.15) 

 

In Equation 3.15 the terms   
        

   
 
 

   
       

    and   
        

   
 
 

  
    

 are not 

evaluated at time step     , but are added to the contribution of  
  

   
 
 

at the next time step 

    . At time step      the term  
        

   
 
 

 is expanded from Equation 3.3, and the 

contribution to  
  

   
 
 

 from the time step      is shown in Equation 3.16. 
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  (3.16) 

 

The following terms can be pulled out of Equation 3.16: 

 

        
      

        
 
  

  
  

        
    

       
   

 

 (3.17) 

   
      

      

        
 
 

      (3.18) 

   
      

      

        
 
 

      (3.19) 

 

After applying Equations 3.17 - 3.19, Equation 3.16 becomes Equation 3.20. 
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  (3.20) 

 

Equations 3.10, 3.15 and 3.20 provide the basis for the algorithm that is capable of solving the 

sensitivity derivatives with the reverse mode discrete adjoint method. The second order accurate 

in time algorithm is as follows: 

 

1.      
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11.       

12.     
   

     
 
  

  
  

     
    

      
    

 

 

13.  
  

   
 
 

    
   

   
 
 

   
  

   

   

   
 

14.   
   

   

       
 
 

   

15.   
   

   

       
 
 

   

16. Go back to 11 until     

 

When    ,  
       

   
 
 

 and  
       

   
 
 

 both equal zero, and the time accurate sensitivity derivatives 

are computed without having to solve a linear system for each design variable.  This algorithm is 

implemented for a parallel computing environment as discussed in section 2.11. At each step the 

transpose of the linearization matrix is computed, and the linear system that computes    is 

solved with the GMRES algorithm discussed in section 2.10.  

 

3.6 Software to Generate Higher-Order Numerical Solutions to the Linear Elastic Equations 

 To design the shape of an electromagnetic object, the computational mesh volume 

surrounding the object must be deformed during the design cycle to accommodate changes in the 

geometry. A methodology for obtaining a numerical solution to the linear elastic equations has 

been developed to smooth the mesh during each step of the design cycle [42]. Because of the 

linearity of the linear elastic equations, mesh sensitivity derivatives can be calculated by 

replacing the displacement at the boundaries with the sensitivity derivatives of the surface points.   

 The linear elastic equations are as follows (see e.g. [42]): 
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   (3.21) 

 

In Equation 3.21        and    are the displacements along the      and   coordinates. The 

linear elastic solver updates the coordinates at each node via Equation 3.22. 

 

                  (3.22) 

 

The     and     are defined as follows: 

 

              
      

           
 (3.23) 

                          
 

      
 (3.24) 

              
  

           
 (3.25) 

                          
 

      
 (3.26) 
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In Equations 3.23-3.26,   is Young’s modulus of elasticity, and   is Poisson’s ratio. For this 

implementation, Young’s modulus for each tetrahedron is the tetrahedron’s aspect ratio divided 

by its volume and       [43].  

 The linear elastic equations are solved with the Galerkin finite element scheme. The 

equations are rewritten as follows: 

 

  
     

  
 

     

  
 

       

  
   (3.27) 

 

The                  and        vectors for the linear elastic equations are as follows: 
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 (3.29) 

       

 
 
 
 
    

   

  
    

   

  

   
   

  
     

   

  
 

   

  
 

   
   

  
    

   

   
 
 
 
 

 (3.30) 

         

 
 
 
 
    

   

  
    

   

  

   
   

  
    

   

  

   
   

  
     

   

  
 

   

  
  
 
 
 
 

 (3.31) 

 

The governing equations in weak form are shown in Equation 3.32. 
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 (3.32) 

 

The Galerkin form of the equations is shown in Equation 3.33. 

 

                             
     

  

  
     

  

  
     

  

  
       

 
     (3.33) 

 

The function within each element is integrated with Gaussian quadrature as described in section 

2.4. The element shape functions, shape function derivatives, and Jacobians are computed for 

each element as also described in section 2.4. The boundary conditions for the linear elastic 

equations are Dirichlet which means that the first term in Equation 3.33 does not have to be 

evaluated. The linear elastic equations are solved in matrix form as follows: 

 

                  (3.34) 

 

The matrix   is sparse and is composed of three by three blocks. For a given element, the 

second term of Equation 3.33 can be described as an element sub-matrix. If linear elements are 

employed, the element sub-matrix has the following form: 
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Figure 3.1 Form of the Linear Element (4 nodes) Sub-matrix 

 

The integrand for each three by three block in Figure 3.1 is as follows (where     denotes the 

    row and     column of the element submatrix): 
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The submatrix is used to fill the global matrix by adding the blocks in each row of the sub-matrix 

to the corresponding row’s columns in the global matrix. The linear elastic solver is implemented 

for computations on a distributed memory supercomputer, and the linear system (Equation 3.34) 

is solved by the procedures discussed in sections 2.11 and 2.10. In order to smooth a grid with 

the linear elastic equations, Equation 3.34 is solved with the     values on the boundary 

specified. The linear elastic equations are used also to generate the mesh sensitivity derivatives, 

   

   
. This is accomplished by replacing the      with mesh sensitivities, and setting the mesh 

sensitivity boundary value to one for a boundary that is being shape optimized and to zero for a 

stationary boundary.  

 

3.7 Design Optimization  

 The shape of an electromagnetic object is optimized by modifying the shape until a cost 

function is minimized. This task is accomplished by following this procedure: 

 

1. Execute the field solver to a specified time step, and compute the cost function. 

2. Execute the linear elastic solver to generate the mesh sensitivity derivatives. 

3. Execute the time accurate adjoint sensitivity analysis solver to compute the sensitivity 

derivatives. 

4. Import the cost function and the sensitivity derivatives to the PORT [43] optimization 

library, and the PORT optimization library outputs the modifications to the shape of the 

body in the form of     values for the surface. 

5. Execute the linear elastic solver to modify the shape of the object and smooth the mesh. 

6. Go back to 1 until the cost function is minimized. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Electromagnetic Field Simulation Software Accuracy 

 The field software has been implemented with linear, quadratic, and cubic elements. The 

field software should theoretically provide an answer that is second order accurate when linear 

elements are employed, third order accurate when quadratic elements are employed, and fourth 

order accurate when cubic elements are employed. To attain order of accuracy, the    norm of 

the error between the numerical solution and the exact solution is computed for multiple 

computational grid sizes. The order of accuracy is the slope of the line generated from evaluating 

the error for multiple grid sizes on a log-log plot. The exact solution is the electromagnetic field 

within a rectangular resonant cavity [1], which is shown in Equations 4.1-4.6: 
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In the above equations, the following parameters are defined as: 

 

     
  

       
    

  

       
        

  

       
 (4.7) 

        
    

    
  (4.8) 

           (4.9) 

 

The grid and the simulated field contours with quadratic elements for a rectangular resonant 

cavity after one period are shown in Figures 4.1-4.6. For this case,          and the 

nondimensional lengths of each edge of the cavity (                       ) are equal to 1.0. 

Each of the walls of the cavity are assumed to be PEC. 
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Figure 4.1 Rectangular Resonant Cavity Computational Grid Discretized with Tetrahedra 
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Figure 4.2 Rectangular Resonant Cavity,     Contours, Quadratic Elements 
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Figure 4.3 Rectangular Resonant Cavity,     Contours, Quadratic Elements 
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Figure 4.4 Rectangular Resonant Cavity,    Contours, Quadratic Elements 



61 

 

 

 

Figure 4.5 Rectangular Resonant Cavity,    Contours, Quadratic Elements 
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Figure 4.6 Rectangular Resonant Cavity,    Contours, Quadratic Elements 

 

Figure 4.7 shows the order of accuracy of the field solver when linear, quadratic, and cubic 

elements are employed to discretize the field.  
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Figure 4.7 Order of Accuracy Study 

 

From Figure 4.7 it is seen that the order of accuracy when linear elements are employed is 2.76, 

when quadratic elements are employed is 3.04, and when cubic elements are employed is 4.23. 

When linear elements are employed the order of accuracy is greater than theoretically expected, 

but when quadratic and cubic elements are employed the order of accuracy is what is 

theoretically expected.  
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4.2 Field Simulation Software Timing Comparison 

 A timing study has been conducted that compares the wall-clock time spent to generate a 

solution that has a specific RMS error when linear, quadratic, and cubic elements are employed. 

For this comparison, the specific RMS error is approximately equal to      after ten steps with 

        . For the baseline case (linear elements), the average time for each of the 64 

processes employed to generate this solution is approximately 56.193 seconds, when quadratic 

elements are employed, the average time per process is approximately 48.040 seconds, and when 

cubic elements are employed, the average time per process is approximately 33.139 seconds. The 

computational mesh when linear elements are employed is made up of 595,725 nodes, when 

quadratic elements are employed is made up of 203,541 nodes, and when cubic elements are 

employed is made up of 63,519 nodes. When linear elements are employed 4 Gauss points are 

utilized to integrate over the tetrahedral volume elements, 36 search directions are necessary to 

drive the residual of the linear system to machine zero at every time step, and the linearization 

matrix is made up of 8,706,389 non-zeroes. When quadratic elements are employed 16 Gauss 

points are utilized, 61 search directions are necessary, and the linearization matrix is made up of 

4,925,278 non-zeroes. When cubic elements are employed 29 Gauss points are utilized, 65 

search directions are necessary, and the linearization matrix is made up of 2,934,931 non-zeroes. 

This study shows that when higher-order elements are employed to discretize the field, less 

computational effort is needed to generate a solution at a pre-specified level of accuracy. 

However, the benefits of employing higher-order elements are somewhat detracted because of 

the following reasons:  as the order of the elements is increased the order of the integration 

routine has to be increased correspondingly, their linearization matrices are made up of a 
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relatively large number of non-zeroes, and a comparatively large number of search directions are 

needed to drive the residual of the linear system to machine zero at every time step.      

 

4.3 Field Simulation Software Applications 

 Since the order of accuracy study shows that the software is capable of accurately 

simulating electromagnetic fields, the software can be applied to more complicated problems. 

The field software can attain the scattering profile of a PEC sphere (grid shown in Figure 4.8, 

and solution shown in Figure 4.9) or a notional business jet (solution shown in Figure 4.10). 

Quadratic tetrahedral elements are utilized to discretize both of these electromagnetic fields. For 

each of these simulations a TE
x
 plane wave collides with a PEC body. Time dependent field 

variables corresponding to a TE
x
 plane wave are enforced in the far field, while the sphere and 

the business jet are assumed to be PEC. The analytic field equations for a TE
x
 plane wave are as 

follows [44]: 

 

        (4.10) 

      
  

  
             (4.11) 

        (4.12) 

       (4.13) 

       (4.14) 

       
  

  
             (4.15) 

       (4.16) 
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Figure 4.8 Computational Grid for Electromagnetic Scattering from a Sphere 
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Figure 4.9 Electromagnetic Scattering from a Sphere 
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Figure 4.10 Electromagnetic Scattering from a Notional Business Jet 
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 The field simulation software is capable of generating a higher order approximation for a 

field where the geometries are comprised of dissimilar materials. The following case is the 

simulation of a TE
x
 plane wave impinging on a cube with relative permittivity (  ) and 

permeability (  ) of 5.0 and 2.0 respectively. The computational mesh for this case is shown in 

Figure 4.11. Figures 4.12 and 4.13 show the field contours for the     and    fields generated 

with quadratic elements. The jump condition discussed in section 2.7 is employed at the 

boundary between the dielectric cube and free space. According to the theory, at the face of the 

cube that is perpendicular to the incoming TE
x 

plane wave the jump in     equals the ratio of 

relative permittivities between the dielectric material and free space, and the jump in     equals 

the ratio of relative permeabilities between the dielectric material and free space. The accuracy 

of the jump condition implemented relies on the values of these ratios, and it can be assessed in a 

post processing step. The post processing step shows that at the center of the face of the cube that 

is perpendicular to the incoming TE
x 

plane wave at a distance that is 0.0001 before and aft the 

face of the cube the interpolated ratio of     is approximately 5.05, and the interpolated ratio of 

   is approximately 2.02. Also, according to theory, the    field contour lines extending from the 

top and bottom faces of the cube into free space are continuous. Figures 4.12 and 4.13 and the 

post processing step show that the computed field closely matches the analytical solution; 

therefore, the jump boundary condition is a proper boundary condition between dissimilar 

materials.  
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Figure 4.11 Computational Grid for Dielectric Cube Case 
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Figure 4.12     Contours for Dielectric Cube Case 
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Figure 4.13    Contours for Dielectric Cube Case 
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The following case is the simulation of a TE
x
 plane wave impinging on an ellipsoid with relative 

permittivity (  ) and permeability (  ) of 5.0 and 2.0 respectively. The equation for the ellipsoid 

is as follows: 

 

  
     

 
 

     

 
 

     

 
   (4.17) 

 

For this case,        ,       , and        . The computational mesh for this case is 

shown in Figure 4.14. Figures 4.15 and 4.16 show the field contours for the     and    fields 

generated with linear elements after the wave-front has propagated downstream of the ellipsoid. 

The jump condition discussed in Section 2.7 is employed at the boundary between the dielectric 

ellipsoid and free space. 
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Figure 4.14 Computational Grid for Dielectric Ellipsoid Case 
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Figure 4.15     Contours for Dielectric Ellipsoid Case 
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Figure 4.16    Contours for Dielectric Ellipsoid Case 
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4.4 Verification of Shape Sensitivity Derivatives for a Dielectric Cube 

 For the case of the TE
x 

plane wave propagating through a volume that is made up of free 

space and a cube of dielectric material, the time accurate sensitivity derivatives are computed 

with three methods to verify the correctness of implementation. The cost function is selected to 

provide an opportunity to optimize the shape or location of the dielectric cube. For this 

verification study, the cost function is the normal component of    field the integrated over the 

surface of the cube. 

 

                  
 

 (4.18) 

 

For this case, there is one design variable    that simultaneously controls 500 nodes on the 

surface of the cube. For the forward mode complex Taylor series expansion, the      and   

values of the 500 nodes are perturbed in the complex plane by machine epsilon. For the forward 

mode direct differentiation method and the reverse mode adjoint method the mesh sensitivity 

derivatives 
  

  
 
  

  
  and 

  

  
 for the 500 nodes are prescribed a value of machine epsilon. The 

sensitivity derivative is computed after 500 time steps with a nondimensionalized    equal to 

0.001. After 500 time steps at a nondimensionalized    equal to 0.001, the wave front has 

propagated to the center of the cube. Table 4.1 shows the comparison of the sensitivity derivative 

generated from the complex Taylor series approach, the direct differentiation approach, and the 

discrete adjoint approach.  
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Table 4.1 Comparison of Sensitivity Derivatives Obtained using the Complex-Variable 

Approach, Direct Differentiation, and the Adjoint Method for a Dielectric Cube 

   

Approach   

   
, Linear Elements 

CTSE -3.831764909581178E-002 

Direct Differentiation -3.831764939491016E-002 

Adjoint -3.831764939452845E-002 

 

 

Table 4.1 shows that the direct and adjoint approaches match the CTSE approach to eight 

decimal places when linear elements are employed. This verifies that the adjoint approach is 

implemented correctly and can be used to reposition a dielectric cube.  

 

4.5 Verification of Shape Sensitivity Derivatives for a Dielectric Ellipsoid 

 A similar verification study was conducted for the case of the TE
x 

plane wave 

propagating through a volume that is made up of free space and an ellipsoid of dielectric 

material. The cost function is shown in Equation 4.18. There is also one design variable for this 

case, and it is   from Equation 4.17. For the forward mode CTSE,   is perturbed in the complex 

plane by machine epsilon. That change in the shape of the surface is propagated through the 

mesh from the usage of software that solves the linear elastic equations in complex variable 

form. For the direct differentiation method and the adjoint method, the mesh sensitivity 

derivatives are computed with the software that solves the linear elastic equations. The 

sensitivity derivative is computed after 10 time steps with a non-dimensionalized    equal to 

0.001. The sensitivity derivative is computed with linear, quadratic, and cubic elements 

employed, and the results are shown in Table 4.2.  
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Table 4.2 Comparison of Sensitivity Derivatives Obtained using the Complex-Variable 

Approach, Direct Differentiation, and the Adjoint Method for a Dielectric Ellipsoid 

   

Approach   

   
, Linear Elements 

CTSE 1.245565539259534E-010 

Direct Differentiation 1.245564904407576E-010 

Adjoint 1.245564904185009E-010 

Approach   

   
, Quadratic Elements 

CTSE 5.092297186846612E-013 

Direct Differentiation 5.092296542609352E-013 

Adjoint 5.092296655362702E-013 

Approach   

   
, Cubic Elements 

CTSE -6.399429387536681E-009 

Direct Differentiation -6.399428369219613E-009 

Adjoint -6.399429126136743E-009 

 

 

Table 4.2 shows that the direct and adjoint approaches match the CTSE approach to seven 

decimal places when linear, quadratic, and cubic elements are employed. This verifies that the 

adjoint approach is implemented correctly and can be used to modify the shape of a dielectric 

ellipsoid.  
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4.6 Shape Design Optimization Applications 

 The shape design optimization process discussed in Section 3.7 is applied to determine 

the placement of a dielectric cube within a volume of free space discretized with linear elements 

so that the electric flux density of the surface corresponds to the electric flux density computed at 

the same time but in a different position. The cost function is: 

 

                           
 

 (4.19) 

 

In Equation 4.19,       is the electric flux density on the surface at the current step in the design 

cycle, and        is the target electric flux density on the surface.  

 There is one design variable,   , and it is the surface of the dielectric cube. The outer 

volume of free space is a cube that has a non-dimensional length, width, and height of 1.0, and 

the dielectric cube has a non-dimensional length, width, and height of 0.25. The “*” location of 

the dielectric cube is at the center of the volume of free space. When the dielectric cube is at the 

“*” location it spans from 0.375 – 0.625 in the      and   directions. The dielectric cube has an 

   equal to 5.0 and an    equal to 2.0, and the field contours for the “*” location are shown in 

Figures 4.12 and 4.13. The purpose of the design optimization routine is to move the dielectric 

cube from a starting location to the “*” location. Initially, the cube is displaced -0.1 in the   

direction from the “*” location. When the dielectric cube is at the starting location it spans from 

0.275 – 0.525 in the   direction, and from 0.375 – 0.625 in the   and   directions. Table 4.3 

shows the cost function, sensitivity derivative, and   location of the start of the dielectric cube at 

each step of the design cycle as output by the PORT optimization library. The cost function is 

generated with the electromagnetic field simulation software, and the sensitivity derivative is 
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generated with the time accurate discrete adjoint solver. The cost function and the sensitivity 

derivative are generated after 800 time steps with a nondimensional time step of 0.001. At each 

time step the unsteady residual from the field solver and the adjoint variable from the adjoint 

solver are below machine zero. The   location of the start of the dielectric cube is computed with 

the Port optimization library with the cost function and sensitivity derivative as inputs.  

 

Table 4.3 Design Cycle for the Positioning of a Dielectric Cube 

 

Cycle # Cost Function,   Sensitivity Derivative, 
  

   
 Cube starting location,   

1 6.622883818E-004 -1.033402E-003 0.2760334 

2 6.604531451E-004 -1.308094E-003 0.2891143 

3 6.036303621E-004 -4.436365E-003 0.395 

4 2.970814484E-005 1.776709E-003 0.36472 

5 9.987271703E-006 -1.378919E-003 0.37795 

6 3.014413579E-008 3.616012E-004 0.375203 

7 2.055952198E-008 4.026902E-005 0.3748585 

8 2.053529086E-008 -1.652856E-006 0.3748721 

9 2.053529086E-008 6.795675E-009 0.3748721 

 

Table 4.3 shows that after 9 design cycles the shape design optimization routine has moved the 

dielectric cube to the “*” location. Figures 4.17 and 4.18 graphically show the movement of the 

dielectric cube during the design cycle. In Figures 4.17 and 4.18 the initial position of the 
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dielectric cube is shown in red, the position after 3 cycles is shown in black, and the final 

position is shown in blue.  

 

 

 

Figure 4.17 Movement of the Dielectric Cube during the Design Cycle (3D view) 
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Figure 4.18 Movement of the Dielectric Cube during the Design Cycle (2D view) 
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 The shape design optimization process is also applied to determine the shape of a 

dielectric ellipsoid within a volume of free space discretized with linear elements so that the 

electric flux density of the surface corresponds to the electric flux density computed at the same 

time but in a different position. The cost function is shown in Equation 4.19.  

 There are three design variables,          , and     . Initially,           

      and        . The “*” shape is a sphere where      and   are all equal to 0.1. The 

computational mesh and the field contours for the initial shape are shown in Figures 4.14-4.16. 

Table 4.4 shows the cost function, sensitivity derivatives, and value of the total change of the 

design variables at each step of the design cycle as output by the PORT optimization library. The 

cost function is generated with the electromagnetic field simulation software, and the sensitivity 

derivatives are generated with the time accurate discrete adjoint method. The cost function and 

the sensitivity derivatives are generated after 800 time steps with a non-dimensional time step of 

0.001. The design variables are computed with the PORT optimization library with the cost 

function and sensitivity derivative as inputs.  
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Table 4.4 Design Cycle for the Shape Design of a Dielectric Ellipsoid 

 
Cycle #     

  

   
 Total     

  

   
 Total     

  

   
 Total    

1 4.29087E-4 6.09286E-3 0 -5.9749E-3 0 2.835579E-3 0 

2 3.23724E-4 5.29928E-3 -6.09286E-3 -5.84851E-3 5.9749E-3 2.153622E-3 -2.835579E-3 

3 2.18947E-6 -5.0770E-4 -3.00000E-2 5.81361E-4 4.9351E-2 1.54296E-4 -1.930157E-2 

4 1.26281E-6 1.49737E-4 -2.80751E-2 -2.98902E-4 4.5971E-2 1.4319E-4 -1.834881E-2 

5 8.66984E-7 -7.1478E-5 -2.86343E-2 3.25383E-7 4.7189E-2 1.3886E-4 -1.884832E-2 

6 8.16032E-7 -8.1779E-5 -2.85694E-2 1.68155E-5 4.7332E-2 1.34527E-4 -1.905373E-2 

7 3.01985E-7 -1.0085E-4 -2.73548E-2 7.92124E-5 4.8632E-2 7.7104E-5 -2.16354E-2 

8 1.94025E-8 -5.0392E-5 -2.56484E-2 5.72931E-5 4.9847E-2 9.98986E-6 -2.46875E-2 

9 2.15284E-9 -1.6505E-5 -2.52923E-2 1.89020E-5 4.9902E-2 -8.7488E-7 -2.51363E-2 

 

Table 4.4 shows that after 9 design cycles, the cost function is minimized and 

                       and            . This means that the shape design process 

morphed the ellipsoid to the “*” shape, which is the shape of a sphere. Figures 4.19-4.21 show 

the computational mesh and the field contours for the final design outputted from the design 

cycle.  
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Figure 4.19 Computational Grid for Dielectric Sphere Case 
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Figure 4.20     Contours for Dielectric Sphere Case 
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Figure 4.21    Contours for Dielectric Sphere Case 
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CHAPTER V 

CONCLUSION 

 

 A novel approach to the optimization of the shape of large electromagnetic structures has 

been implemented. Through the course of this implementation, a temporally and spatially 

numerical electromagnetic field simulation software, a software that uses the reverse-mode time-

accurate discrete-adjoint method to compute the sensitivity derivatives, and a software that 

generates a higher-order numerical solution to the linear elastic equations have been developed 

from scratch and coupled together with an optimization library in order to automatically design 

the shape of large electromagnetic objects. The pieces of software developed have been written 

in a parallel message passing paradigm, and are capable of being executed on a distributed 

memory supercomputer. Because of this, larger complicated electromagnetic objects can be 

stored in memory and designed at a faster rate.  

 The electromagnetic field simulation software developed can accurately and efficiently 

approximate the electromagnetic field inside of and outside of complicated, large, 3D 

electromagnetic objects. Many complicated electromagnetic systems are operated at very high 

frequencies (~10 GHz), and higher-order elements can be utilized to lessen the grid requirements 

necessary to approximate an electromagnetic wave at high frequencies. To that end, the higher 

order accurate SU/PG method is utilized to simulate the electromagnetic field in a volume that is 

discretized with tetrahedra. The usage of tetrahedra to discretize the field leads to easier mesh 
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generation, and the ability to properly discretize the surface of curved electromagnetic objects. 

The mesh generation process discretizes the volume of the field with linear tetrahedra, and 

special care is taken to add the extra edge and face nodes used for spatial higher-order accuracy 

in a fast and efficient manner. This is accomplished by generating edge to element maps that for 

a given node added to an edge, gives a list of elements that own that edge and need to be notified 

of the added node. Implicit time stepping is utilized, and it has two benefits. The first is the 

ability to use a time step that depends on the physics of the problem, rather than a time step used 

that governs the numerical stability of the solver. The second is the linearization matrix 

generated for the implicit time stepping routine is also used in the software that computes the 

sensitivity derivatives with the time-accurate discrete-adjoint method. A special boundary 

condition, called a jump condition, is employed to allow for the simulation of a field that is made 

up of dissimilar materials. Through the usage of a grid study the field software’s accuracy has 

been verified to match or exceed theoretical orders of accuracy for the elements employed. The 

grid study was the comparison of the computed solution, generated with linear, quadratic, and 

cubic elements, of the electromagnetic field within a rectangular resonant cavity with the exact 

solution with multiple grid sizes. The field software also properly simulated the propagation of a 

3D wave through dissimilar materials, and the scattering of a 3D wave from large complicated 

PEC objects.  

 The sensitivity derivatives are computed with a reverse-mode time-accurate discrete-

adjoint method that can accurately generate shape sensitivity derivatives of large, curved, 3D 

electromagnetic objects. The time accurate sensitivity derivatives are computed and can be used 

to quickly design an object that operates at a wide band of frequencies. The time accurate 

sensitivity derivatives have to be computed once for a frequency range while frequency domain 
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sensitivity derivatives would have to be computed for each frequency in the range. Because the 

discrete-adjoint method is used to compute the sensitivity derivatives, the software can be 

quickly adapted to generate the shape sensitivity derivatives of multiple cost functions, and is 

capable of generating the sensitivity derivatives for a large set of design variables without having 

to solve a linear system for each design variable considered. The sensitivity derivatives software 

is automatically concurrent with the field software because it generates the derivatives that make 

up its linear systems by the complex Taylor series expansion method. The sensitivity derivatives 

generated from the reverse-mode discrete-adjoint method have been verified to match the 

sensitivity derivatives generated from the forward-mode complex Taylor series expansion 

method and direct method to at least seven decimal places.  

 The software that generates a higher-order numerical solution to the 3D linear elastic 

equations can smooth a mesh that is subject to large deformations from the design process, and 

can generate the mesh sensitivity derivatives that are used by the sensitivity derivatives software 

to generate the overall shape sensitivity derivatives. The motion of the higher order edge and 

face nodes is solved for, rather than simply interpolating their motion. The linear elastic 

equations software has been used to smooth meshes with deformations up to 10% of the overall 

length of the mesh. After the smoothing process is complete, the mesh generated has well formed 

elements and is capable of being used by the other software to generate the electromagnetic field 

and the sensitivity derivatives.  

 The shape design optimization procedure has been implemented to automatically place a 

dielectric cube and modify the shape of a dielectric ellipsoid. Both objects are within a larger 

volume of free space, and are subjected to the propagation of an unsteady plane wave. The cost 

function is defined as dielectric object’s surface integration of the current electric flux density 
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field minus the electric flux density field of the predetermined location/shape dotted with the unit 

normal vector of the surface. For each step of the design cycle, the cost function is generated 

with the field simulation software, the sensitivity derivatives are generated with the time accurate 

discrete adjoint method, and the mesh is smoothed by software that generates a numerical 

solution to the linear elastic equations. The dielectric cube was automatically placed by the 

optimization procedure to its predetermined location in nine design cycles, and the dielectric 

ellipsoid was automatically morphed by the optimization procedure to its predetermined shape in 

nine design cycles as well. The execution of this optimization procedure shows that it is capable 

of automatically designing in the time domain any large, curved 3D electromagnetic shape, 

including one that operates at high frequencies or is made of dissimilar materials, in an efficient 

manner.  

 

 

 

 

 

 

 

 

 

 

 



93 

 

BIBLIOGRAPHY 

 

1. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 

1989. 

 

2. Yee, K. S., “Numerical Solution of Initial Boundary Value Problem Involving Maxwell’s 
Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation, Vol. 

14, No. 3, pp. 302-307, 1966. 

 

3. Hughes, T. J. R., The Finite Element Method:  Linear Static and Dynamic Finite Element 

Analysis, Prentice-Hall, Inc., New Jersey, 1987. 

 

4. Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill Book Company (UK) 

Limited, London, 1977. 

 

5. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, 2
nd

 Ed., 

New York, 2002. 

 

6. Hughes, T. J. R. and Mallet, M., “A New Finite Element Formulation for Computational 

Fluid Dynamics III. The Generalized Streamline Operator for Multidimensional 

Advective-Diffusive Systems,” Computer Methods in Applied Mechanics and 

Engineering, Vol. 58, No. 3, pp. 305-328, 1986. 

  

7. Venkatakrishnan, V., Allmaras, S. R., Johnson, F. T., and Kamenetskii, D. S., “Higher 
Order Schemes for the Compressible Navier-Stokes Equations,” AIAA 2003-3987, 

Presented at the 16
th

 AIAA Computational Fluid Dynamics Conference, Orlando, FL, 

June 23-26, 2003. 

 

8. Anderson, W. K., Wang, L., Kapakia, S., Tanis, C., and Hilbert B., “Petrov-Galerkin and 

Discontinuous-Galerkin Methods for Time-Domain and Frequency-Domain 

Electromagnetic Simulations,” UTC-CECS-SimCenter-2011-01, February 2011. 

 

9. Jameson, A., “Aerodynamic Design Via Control Theory,” J. Sci. Computing, Vol. 3, pp. 

233-260, 1988. 

 

10. Anderson, W. K. and Venkatakrishnan, V., “Aerodynamic Design Optimization on 
Unstructured Grid with a Continuous Adjoint Formulation,” 35

th
 Aerospace Science 

Meeting & Exhibit, AIAA 97-0643, 1997. 



94 

 

11. Burdyshaw, C. E., “Achieving Automatic Concurrency Between Computational Field 
Solvers and Adjoint Sensitivity Codes,” Ph. D. Thesis, University of Tennessee at 

Chattanooga, May 2006. 

 

12. Li, S. and Petzold, L., “Adjoint Sensitivity Analysis for Time-Dependent Partial 

Differential Equations with Adaptive Mesh Refinement,” J. of Computational Physics, 

Vol. 198, pp. 310-325, 2004. 

 

13. Director, S. W. and Rohrer, R. A., “The Generalized Adjoint Network and Network 

Sensitivities,” IEEE Trans. Circuit Theory, vol. CT-16, pp. 318-323, Aug. 1969. 

14. Director, S. W. and Rohrer, R. A., “Automated Network Design-The Frequency-Domain 

Case,” IEEE Trans. Circuit Theory, vol. CT-16, pp. 330-337, Aug. 1969. 

 

15. Tellegen, B. D. H., “A General Network Theorem with Applications,” Philips Res. Rep., 

vol. 7, pp. 259-269, 1959. 

 

16. Penfield, Jr., P., Spence, R., Duinker, S., “A Generalized Form of Tellegen’s Theorem,” 
IEEE Trans. Circuit Theory, vol. CT-17, pp. 302-305, Aug. 1970. 

 

17. Sabbagh, M. A., Bakr M. H., and Nikolova, N., K., “Sensitivity Analysis of the 

Scattering Parameters of Microwave Filters using the Adjoint Network Method,” Int. J. 

RF and Microwave CAE 16:  596-606, 2006. 

 

18. Kang, N., Chung, Y., Cheon, C., and Jung, H., “A New 2-D Image Reconstruction 

Algorithm Based on FDTD and Design Sensitivity Analysis,” IEEE MTT-S Digest, pp. 

1143-1146, 2002. 

  

19. Chung, Y., Cheon, C., Park, I., and Hahn, S., “Optimal Shape Design of Microwave 
Device Using FDTD and Design Sensitivity Analysis,” IEEE Transactions on Microwave 

Theory and Techniques, Vol. 48, No. 12, pp. 2289-2296, 2000. 

 

20. Chung, Y., Cheon, C., Park, I., Hahn, S., “Optimal Design Method for Microwave 

Device Using Time Domain Method and Design Sensitivity Analysis-Part II:  FDTD 

Case,” IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3255-3259, 2001. 

 

21. Rickard, Y., Georgieva, N., and Tam, H., “Absorbing Boundary Conditions for Adjoint 

Problems in the Design Sensitivity Analysis with the FDTD Method,” IEEE Transactions 

on Microwave Theory and Techniques, Vol. 51, No. 2, pp. 526-529, 2000. 

 

22. Berenger, J., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” 

J. Computational Phys., vol. 114, pp. 185-200, Oct. 1994. 

  

23. Chung, Y., Cheon, C., Park, I., Hahn, S., “Optimal Design Method for Microwave 
Device Using Time Domain Method and Design Sensitivity Analysis-Part I:  FETD 

Case,” IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3289-3293, 2001. 



95 

 

24. Akcelik, V., Biros, G., Ghattas, O., Keyes, D., Ko, K., Lee, L., and Ng, E. G., “Adjoint 
Methods for Electromagnetic Shape Optimization of the Low-Loss Cavity for the 

International Linear Collider,” Journal of Physics: Conference Series 16, pp. 435-445, 

2005. 

 

25. Georgieva, N., Glavic, S., Bakr, M., and Bandler, J., “Feasible Adjoint Sensitivity 
Technique for EM Design Optimization,” IEEE Transactions on Microwave Theory and 

Techniques, Vol. 50, No. 12, pp. 2751-2758, 2001. 

 

26. Nair, D. and Webb, J., “Adaptive Optimization of Microwave Devices over a Frequency 
Band,” Electromagnetics, Vol. 30, pp. 177-189, 2010. 

 

27. Nair, D. and Webb, J., “Optimization of Microwave Devices Using 3-D Finite Elements 

and the Design Sensitivity of the Frequency Response,” IEEE Transactions on 

Magnetics, Vol. 39, No. 3, pp. 1325-1328, 2003. 

 

28. Webb, J., “Design Sensitivities Using High-Order Tetrahedral Vector Elements,” IEEE 

Transactions on Magnetics, Vol. 37, No. 5, pp. 3600-3603, 2001. 

 

29. Toivanen, J. I., Makinen, R. A. E., Rahola, J., Jarvenpaa, S., and Yla-Oijala, P., 

“Gradient-Based Shape Optimization of Ultra-Wideband Antennas Parameterized Using 

Splines,” IET Microwaves, Antennas & Propagation, Vol. 4, Is. 9, pp. 1406-1414, 2010. 

  

30. Jinyun, Y., “Symmetric Gaussian Quadrature Formulae for Tetrahedral Regions,” 
Computer Methods in Applied Mechanics and Engineering, Vol. 43, pp. 349-353, 1984. 

 

31. Barth, T. J., “Numerical Methods for Gasdynamic Systems on Unstructured Meshes,” An 

Introduction to Recent Developments in Theory and Numerics for Conservation Laws, 

Vol. 5, Springer, pp. 195-285, 1998. 

 

32. http://mathworld.wolfram.com/MatrixInverse.html . 

 

33. Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., Computational Fluid Mechanics 

and Heat Transfer, 2
nd

 Ed., Taylor & Francis, Philadelphia, 1997.  

 

34. Cowper, G. R., “Gaussian Quadrature Formulas for Triangles,” International Journal of 

Numerical Methods in Engineering, Vol. 7, pp. 405-408, 1973. 

 

35. Bonhaus, D. L., “A Higher Order Accurate Finite Element Method for Viscous 
Compressible Flows,” Ph. D. Thesis, Virginia Polytechnic Institute and State University, 

November 1998.  

 

36. Roe, P. L., “The Use of the Riemann Problem in Finite-Difference Schemes,” Lect. Notes 

Phys., Vol. 141, Springer-Verlag, New York, pp. 354-359, 1980. 

http://mathworld.wolfram.com/MatrixInverse.html


96 

 

37. Newman, J. C., Anderson, W. K., and Whitfield, D. L., “Multidisciplinary Sensitivity 
Derivatives Using Complex Variables,” MSSU-COE-ERC-98-08, June 1998. 

 

38. Saad, Y. and Schultz, M. H., “GMRES: A Generalized Minimum Residual Algorithm for 
Solving Nonsymmetric Linear Systems,” SIAM Journal of Scientific and Statistical 

Computing, Vol. 7, pp. 856-869, 1986. 

 

39. Hyams, D. G., “An Investigation of Parallel Implicit Solution Algorithms for 
Incompressible Flows on Unstructured Topologies,” Ph. D. Thesis, Mississippi State 

University, May 2000.  

 

40. http://glaros.dtc.umn.edu/gkhome/views/metis . 

 

41. Message Passing Interface Forum, “MPI: A Message Passing Interface Standard,” 
Technical Report UT-CS-94-230, 1994.  

 

42. Karman, S. L., “Unstructured Viscous Layer Insertion Using Linear-Elastic Smoothing,” 
AIAA Journal, Vol. 45, No. 1, pp. 168-180, 2007. 

 

43. http://www.netlib.org/port/ . 

 

44. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 

www.ece.rutgers.edu/~orfanidi/ewa , 1999-2010.  

 

 

 

 

 

 

 

 

 

 

 

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.netlib.org/port/
http://www.ece.rutgers.edu/~orfanidi/ewa


97 

 

VITA 

 

 Ryan S. Glasby was born January 12, 1981 in Boise, Idaho. He graduated from Maumee 

High School in May of 1999. He received a B.S. and M.S. in Aeronautical and Astronautical 

Engineering from The Ohio State University in June of 2003 and March of 2006. In January of 

2006, he began working on his Ph. D. in computational engineering at the UTC SimCenter: 

National Center for Computational Engineering. In February of 2011, he began working at 

Arnold Engineering and Development Center in the Computational Simulation Modeling and 

Analysis Section. Ryan currently works at AEDC.  


