
An Unstructured Grid Incompressible Navier-Stokes Algorithm for Convective Heat

Transfer Based on Artificial Compressibility

By

Jessica Elaine Kress

Approved:

Lafayette Taylor
Professor of Computational Engineering
(Director of Thesis)

Daniel Hyams
Associate Professor of Computational
Engineering
(Committee Member)

Timothy Swafford
Research Assistant Professor of
Computational Engineering
(Committee Member)

William Sutton
Dean of College of Engineering and Computer
Science

Jerald Ainsworth
Dean of the Graduate School

An Unstructured Grid Incompressible Navier-Stokes Algorithm for Convective Heat

Transfer Based on Artificial Compressibility

By

Jessica Elaine Kress

A Thesis
Submitted to the faculty of

The University of Tennessee, Chattanooga
in Partial Fulfillment of the Requirements

for the Degree of Master of Science
in Computational Engineering

The University of Tennessee, Chattanooga
Chattanooga, Tennessee

December 2012

ii

Copyright c© 2012,

By Jessica Elaine Kress

All Rights Reserved.

iii

ABSTRACT

The development of an explicit unstructured grid finite-volume scheme for solving the

full incompressible Navier-Stokes equations along with the energy equation in a strongly

coupled manner is presented. The Boussinesq approximation is utilized to account for

thermal buoyancy. The method of artificial compressibility is used to solve the resulting

equations in a time marching fashion. Roe’s approximate Riemann solver is used for the

construction of the numerical flux. An eigensystem is derived for the flux Jacobian matrix,

which is used in the evaluation of the numerical flux and the characteristic variable boundary

conditions. The resulting algorithm is validated by simulating canonical test cases from the

three regimes of convective heat transfer. The computed solutions are in close agreement

with analytical solutions and other benchmark computations.

iv

DEDICATION

This is for you, Daddy.

v

ACKNOWLEDGEMENTS

The author would like to sincerely thank her major professor Dr. Lafayette Taylor for

his patience and guidance throughout the course of the research. Further thanks go to Dr.

Daniel Hyams and Dr. Kidambi Sreenivas for assistance in understanding of and guidance

in the research. Also, the author wishes to thank Dr. Timothy Swafford and all others at

the SimCenter for the continued display of kindness and sharing of wisdom.

The parents of the author also deserve a sincerest appreciation for their support and

encouragement throughout the earning of this degree. Last, but certainly not least, the

author very especially would like to thank Peter Maginnis and Cheryl Kress for their patience

and understanding.

vi

TABLE OF CONTENTS

ABSTRACT . iv

DEDICATION . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF SYMBOLS . xiii

CHAPTER

1 INTRODUCTION . 1

2 GOVERNING EQUATIONS . 5

Tensor Invariant Form . 5
Artificial Compressibility . 7
Nondimensionalization . 7
Vector, Integral Form . 9

3 NUMERICAL FORMULATION . 12

Inviscid Terms . 13
Viscous Terms . 14
Higher Order Accuracy . 15

4 BOUNDARY CONDITIONS . 17

Inflow . 18
Outflow . 19
Impermeable Surface with Inviscid Flow 20

vii

Symmetry Plane Boundary Conditions 20
Impermeable Surface with Viscous Flow 21

5 RESULTS . 23

Inviscid Flow Over a Cylinder . 23
Forced Flow Over a Heated Plate . 27
Natural Convection in a Differentially Heated Square Cavity 32
Mixed Convection in a Square Cavity 35

6 CONCLUSIONS . 43

APPENDIX

A GOVERNING EQUATIONS . 44

B EIGENSYSTEM . 47

C LEAST-SQUARES GRADIENT COMPUTATION 56

Orthogonalization . 59
QR Factorization . 60
Solution of QR System . 61
Implementation . 62

REFERENCES . 66

VITA . 68

viii

LIST OF TABLES

5.1 Comparison between Benchmark Solutions and Current Velocity 35

ix

LIST OF FIGURES

3.1 Diagram of a Median Dual Control Volume 12

4.1 Depiction of Ghost Nodes . 17

5.1 Diagram of Grid, Boundary, and Initialization Information 24

5.2 Contour Plot of Steady State Pressure . 25

5.3 Contour Plot of Steady State Horizontal Velocity 25

5.4 Contour Plot of Steady State Vertical Velocity 26

5.5 Plot of Computed and Theoretical Surface CP versus Angle around Cylinder 26

5.6 Plot of L2 Norm of Residual Terms for β = 5, 10, 15 27

5.7 Diagram of Grid, Boundary, and Initialization Information 29

5.8 Contour Plot of Steady State Horizontal Velocity 29

5.9 Contour Plot of Steady State Temperature 30

5.10 Plot of Computed Horizontal Velocity, 1-Temperature, and Blasius Solution . 30

5.11 Plot of Theoretical and Computed Nusselt Number versus Non-Dimensionalized

X Distance along Plate . 31

x

5.12 Plot of L2 Norm of Residual Terms Versus Time Step 31

5.13 Diagram of Grid, Boundary, and Initialization Information 33

5.14 Contour Plot of Steady State Temperature 33

5.15 Plot of Vertical Velocity along y-Axis Center Line Compared to Results of Er

[6] . 34

5.16 Plot of Horizontal Velocity along x-Axis Center Line Compared to Results of

Er [6] . 34

5.17 Plot of L2 Norm of Residual Terms Versus Time Step 35

5.18 Diagram of Grid, Boundary, and Initialization Information 36

5.19 Plot of Vertical Velocity along y-Axis Center Line Compared to Results of

Ghia [10] . 37

5.20 Plot of Horizontal Velocity along x-Axis Center Line Compared to Results of

Ghia [10] . 37

5.21 Plot of Steady State Velocity Vectors . 38

5.22 Plot of L2 Norm of Residual Terms Versus Time Step 38

5.23 Diagram of Grid, Boundary, and Initialization Information 40

5.24 Plot of Vertical Velocity along y-Axis Center Line Compared to Results of

Iwatsu et al. [12] . 40

xi

5.25 Plot of Horizontal Velocity along x-Axis Center Line Compared to Results of

Iwatsu et al. [12] . 41

5.26 Plot of Steady State Temperature . 41

5.27 Plot of Steady State Velocity Vectors . 42

5.28 Plot of L2 Norm of Residual Terms for Varying Grids Versus Time Step . . . 42

xii

LIST OF SYMBOLS

A, flux Jacobian matrix

αT , coefficient of thermal expansion

b, body force per unit mass β, artificial compressibility parameter

CFL, Courant number

CP , pressure coefficient

cp, specific heat at constant pressure

~F , inviscid flux vector

F , directed invisicd flux vector, ~F · ~n

~Fv, viscous flux vector

Fv, directed viscous flux vector, ~Fv · ~n

Fr, Froude number

g, acceleration due to gravity

Gr, Grashof number

Ĩ, identity matrix

î, ĵ, k̂, unit vectors in the Cartesian coordinate directions x, y, z

k, thermal conductivity

L, characteristic length

L̃, left eigenvalue matrix

Λ̃, diagonal matrix with eigenvalues as diagonal

µ, viscosity

Nu, Nusselt number

~n, normal vector associated with a control volume face

η, direction normal to boundary

ν, kinematic viscosity

xiii

ω, volume domain of integration

p, pressure

p̂, combined pressure

Pe, Peclet number

Pr, Prandtl number

Φ, Roe flux approximation for inviscid flux vector

Φv, a numerical approximation for the viscous flux vector

Q, solution variable vector

R̃, right eigenvalue matrix

Re, Reynolds number

Ri, Richardson number

ρ, density

σ̃, deviatoric part of the Stokes tensor

t, time

T , temperature

Tw, reference wall temperature

τ , shear stress

θ, velocity normal to control volume face, unx + vny + wnz

Υ, temperature vector

u, inertial velocity

W , characteristic variable vector

~xi, coordinate location of node i

x, y, z, Cartesian coordinate directions

xiv

CHAPTER 1

INTRODUCTION

The primary goal of this work is to implement an explicit, three-dimensional flow solver

capable of modeling problems dealing with laminar, incompressible, convective heat transfer

flow. The physical conditions leading to incompressible flow occur as a property of the fluid

or when the velocity of the fluid is low enough that the variation of density is negligible,

thus allowing density to be modeled as a constant. A key aspect of incompressible flow is

that of pressure being not a thermodynamic variable, but instead a primitive variable. It

becomes a problem of some interest to determine a method with which to correctly model the

dependency between pressure and the velocity [1]. One approach that has been developed

to deal with this issue is the insertion of an artificial time derivative of pressure in the

mass conservation equation. This method, termed artificial compressibility, has several

advantages, one being the coupling of pressure and velocity so that the resulting system

of equations is hyperbolic and can be solved in the same time marching manner as that of

most compressible algorithms [1]. As stated above, an additional consideration in this work

is convective heat transfer, which occurs when there is a temperature difference between a

surface and the surrounding fluid. Convection has three main subsets which consist of forced,

natural, and mixed. Forced convection occurs when fluid flows over a heated or cooled object.

In natural or free convection, however, the velocity within the fluid develops naturally from

the effects of thermal buoyancy. Mixed convection is the term for the occurrence of both

types of convection.

1

Current work being done in this area can be seen in the implementation done by Koblitz

et al. [2]. In this case, the goal was to improve the existing in-house code in order to

create better models for wind resource assessment on complex terrain. According to Koblitz

et al. [2] few current models for wind related problems show the effects of temperature

stratification, which is a drawback since thermal buoyancy can have a significant effect on

the flow. A primitive variable approach was used with artificial compressibility, while the

Boussinesq approximation is implemented for buoyancy. In addition, the code utilized a finite

volume method. Several variations on the lid-driven square cavity test case were investigated

in order to validate their work. This case is a prime choice for validation since almost all of

the fluid mechanical phenomena are exhibited [2], and a good deal of benchmark data is in

existence. All test cases considered were steady, laminar, and two-dimensional. The various

dimensionless parameters used are as follows 316 < Re < 5000, Gr = 106, and 0.1 < Ri < 10.

The three sub-test cases consisted of a thermally neutral case, a gravitationally stable case,

and a gravitationally unstable case. The computed results obtained by Koblitz et al. [2]

were excellent, and the first two sub-cases in [2] will be repeated in this work and the results

compared.

Other work utilizing artificial-compressibility and heat transfer is being done by

Kameyama et al. [3] in order to model the mantle of the earth. This case is much different

than that of more common fluids, like water and air, due to the extremely high viscosity of

the fluid. Due to this fact, the non-linear terms as well as the time-derivative terms in the

momentum equation can be neglected, making the system a set of elliptic equations instead

of hyperbolic. Although the method utilized by Kameyama et al. [3] incorporates pseudo-

compressibility, a finite-volume cell-centered approach, local time stepping, and treats the

Navier-Stokes equations as a whole, the elliptical nature of the equations fits well with

the application of a multigrid iteration method. The test cases by Kameyama et al. [3] are

similar to those to be examined in this work when the fluid considered has the same viscosity

2

throughout. One such test case is implemented in a hexahedral shaped domain. The fluid

is isoviscous, the bottom and top walls are heated, and the vertical walls are adiabatic. The

results obtained by Kameyama et al. [3] compare very well with previous benchmark data.

The work done by Agrawal et al. [4] is more similar in nature to that of Koblitz et al.

[2]. According to Agrawal et al. [4] work dealing with mixed convection in a closed cavity

is fairly scarce, although it is quite useful in modeling situations such as heat exchange

between a container and a laterally flowing stream as well as a lubricating groove between

sliding plates. The numerical method used in [4] is also based on artificial compressibility,

the reasons for the choice being, robustness in three dimensions (as opposed to the stream-

vorticity approach), the relative simplicity in comparison to the pressure method, and an

identical approach being possible for both the convective and diffusive terms. Agrawal et al.

[4] also considered the effects of turbulence, which is accomplished using an SST model [5].

The code used in the study was finite-volume discretized, cell-centered, and explicit. Previous

validation was done for cases of flow including inviscid, viscous, and natural convection. The

key test case validated in [4] is that of mixed convection. The first test case presented in

[4] is the lid-driven cavity, like that shown in [2] and which will also be repeated in the

current work. Agrawal et al. [4] performed this case for Re = 103 and Gr = 102 and 106, in

addition to doing further cases in which turbulence was considered. For the former case the

results obtained were excellent relative to previous benchmark data. Other cases, for which

no benchmark data existed, were shown to be almost entirely grid independent.

The overall goal for the present work is to study similar problems like those described

above by extending the earlier work of Taylor [1] and Er [6]. The artificial compressibility

approach was successfully implemented by Taylor [1] in an incompressible flow solver utilizing

a primitive variable approach. Taylor [1] obtained excellent results relative to benchmark

solutions and theoretical data. The test case of inviscid flow over a cylinder performed in

his work will be repeated here, and the results compared. Subsequently, Er [6] successfully

3

added the energy equation to the existing work of Taylor [1], and this combined approach,

especially the use of the Bousinesq approximation, will be followed here as well. The results

obtained by Er [6] were also excellent, and the test case of natural buoyancy used in his

work will be repeated here as well. An additional goal of this work is to extend previous

work, developed for use on structured grids, to a flow solver suitable for unstructured,

multi-element grid topologies. Modern computational fluid dynamics has moved in the

direction of using unstructured grids as they have several advantages over their structured

counterparts, including their ease in implementation for highly complex geometries, and

their ease in incorporation with automated grid generation. One drawback to unstructured

grids is additional node to node connectivity, thus requiring greater computer memory and

necessitating solving a matrix of an unknown sparse structure [7]. However, the ease of grid

generation combined with more optimally placed nodes outweighs the disadvantages, and

illustrates why the use of unstructured grids is now so widespread.

The contents of this work are summarized below. First, the governing equations of the

physical phenomena will be presented, and explanations of various approximations made

shall be given, after which the numerical discretization of the equations will be shown. An

explanation of the various boundary conditions implemented will then be given, followed by

a breakdown of the various test cases investigated for validation. These test cases include

inviscid flow over a cylinder, forced convection over a flat plate, natural convection in a

cavity, lid-driven cavity with neutral heat transfer, and mixed convection in a lid-driven

cavity. The objective is to generate results matching closely with previous benchmark data,

and a summary of results will be given in the conclusion of the work.

4

CHAPTER 2

GOVERNING EQUATIONS

This work deals with laminar convective heat transfer flow. The equations governing

this situation are the three-dimensional incompressible Navier-Stokes equations including

the energy equation. This chapter will begin by presenting the equations in tensor invariant

form. The Boussinesq approximation will then be applied and an artificial compressibility

parameter added. After non-dimensionalization, the equations will be presented in final

vector, integral form. These equations are also written in expanded form for clarification in

Appendix A.

Tensor Invariant Form

Continuity

div u = 0 (2.1)

Momentum

ρ
∂u

∂t
+ ρ div(uu) = −div(pĨ) + div σ̃ + ρb (2.2)

Energy

ρ cp
∂T

∂t
+ ρ cpdiv(uT) = div(k gradT) (2.3)

where ρ is density, p is pressure, u is inertial velocity, T is temperature, t is time, σ̃ is

the deviatoric part of the Stokes tensor, Ĩ is the identity matrix, b is the body force per

unit mass, cp is the specific heat at constant pressure, and k is the thermal conductivity.

An underscore below a variable signifies that it is a vector and tilde above indicates it is a

5

tensor. Also, div(·) = ∂(·)
∂xm
· im ,m = 1, 2, 3 and grad(·) = ∂(·)

∂xm
im ,m = 1, 2, 3. Gravity is the

only body force taken into account in this work; therefore, the body force per unit mass is

defined below as

b = −grad(gx2) = −div(gx2Ĩ) (2.4)

where g is acceleration due to gravity and x2 the coordinate direction opposite that of the

force of gravity. In this work, the effects of thermal buoyancy are considered, consequently

the density in the momentum equation must be carefully approximated. An approach for

dealing with this issue is to use the Boussinesq approximation, in which the density will

be treated as a constant in all terms except for the body force term. It is known that the

change in density due to temperature is indeed very small but still significant to the problem

[8]; therefore, the density in the body force term is treated as a function of temperature.

Letting ρ∞ be the density of the fluid at temperature T∞, then the truncated Taylor series

expansion of density is

ρ(T) = ρ∞ +

(
∂ρ

∂T

)
p

(T − T∞) (2.5)

= ρ∞ [1− αT (T − T∞)] (2.6)

where αT is the coefficient of thermal expansion for a fluid at constant pressure defined as

αT = − 1

ρ∞

(
∂ρ

∂T

)
p

It should be noted that the effect of pressure is neglected in Equation 2.5, which can be

rewritten in the following way

ρ = ρ∞(1 + ρ′) (2.7)

6

where

ρ′ = −αT (T − T∞)

Replacing density in the body force term of the momentum equation with the definition in

Equation 2.7 , and rearranging somewhat, gives the following

∂u

∂t
+ div(uu) +

1

ρ∞
div(p̂Ĩ − σ̃) = −ρ′div(gx2Ĩ) (2.8)

where p̂ = p + ρ∞gx2, which simply absorbs hydrostatic pressure into the definition of

pressure.

Artificial Compressibility

Since this work deals with the incompressible regime, a numerical approach of modeling

incompressibility is needed. Following Taylor [1], among others, the chosen approach here

is addiing to the continuity equation a fictitious time derivative of pressure, which then

becomes

1

β

∂p̂

∂t
+ div u = 0 (2.9)

where β is the artificial compressibility parameter and is often set in a range from 5 to 15

[7]. It should be noted that p̂, as defined in the previous section, is used as suggested by

Beddhu et. al [8] and also by Er [6]. Using p̂ allows the body force potential term to be

integrated into the eigensystem [6].

Nondimensionalization

The equations are now ready to be non-dimensionalized using the following relations:

x∗ =
x

L
, y∗ =

y

L
, z∗ =

z

L
, t∗ = t

u∞
L
,

7

u∗ =
u

u∞
, p∗ =

p− p∞
ρ∞u2

∞
, T ∗ =

T − T∞
∆T

, where ∆T = Tw − T∞ ,

ρ∗ =
ρ

ρ∞
, µ∗ =

µ

µ∞
, k∗ =

k

k∞

div∗(·) =
1

L

∂(·)
∂x∗m

· im ,m = 1, 2, 3 , grad∗(·) =
1

L

∂(·)
∂x∗m

im ,m = 1, 2, 3 , and

σ̃∗ =
L

µ∞u∞
σ̃

where L is a characteristic length and Tw is the reference wall temperature. All the quantities

subscripted with ∞ refer to the freestream values, while the superscript * signifies that

the variable is non-dimensional. Reynolds number (Re∞), Prandtl number (Pr∞), Peclet

number (Pe∞), Grashof number (Gr∞), and Froude number (Fr∞) are the non-dimensional

parameters that appear in the equations. They are defined as follows

Re∞ =
ρ∞u∞L

µ∞
, P r∞ =

µ∞cp
k∞

, P e∞ = Re∞Pr∞ =
ρ∞cpu∞L

k∞
,

Gr∞ =
gαT∆TL3

ν2
∞

, F r∞ =
u∞√
gL

After non-dimensionalizing, and dropping the * superscript for clarity, the equations are as

follows

8

Continuity

1

β

∂p̂

∂t
+ div u = 0 (2.10)

Momentum

∂u

∂t
+ div(uu) + div(p̂Ĩ − 1

Re∞
σ̃) =

αT (Tw − T∞)

Fr2
∞

T div(x2Ĩ) (2.11)

Energy

∂T

∂t
+ div(uT) = div(

k

Pe∞
gradT) (2.12)

where p̂ = p + x2
Fr2∞

. It can be shown that the right hand side of Equation 2.11 can be

rewritten as

αT (Tw − T∞)

Fr2
∞

Tdiv(x2Ĩ) =
Gr∞
Re2
∞
T div(x2Ĩ)

Vector, Integral Form

The unsteady three-dimensional nondimensional incompressible Navier-Stokes equations

in Cartesian coordinates and in conservative form can be written in integral form as

∂

∂t

∫
Ω

QdV +

∫
∂Ω

~F · ~n dA−
∫
∂Ω

~Fv · ~n dA−
Gr∞
Re2
∞

∫
Ω

Υ dV = 0 (2.13)

9

where,

Q =



p̂

u

v

w

T


, F = ~F · ~n



βθ

uθ + p̂ nx

ρ

vθ + p̂ ny

ρ

wθ + p̂ nz

ρ

Tθ


=



βu βv βw

u2 + p̂
ρ

uv uw

uv v2 + p̂
ρ

vw

uw vw w2 + p̂
ρ

Tu Tv Tw




nx

ny

nz

 ,

Fv = ~Fv · ~n =
1

ρ



0

τxxnx + τxyny + τxznz

τxynx + τyyny + τyznz

τxznx + τyzny + τzznz

qxnx + qyny + qznz


=

1

ρ



0 0 0

τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

qx qy qz




nx

ny

nz

 ,

Υ =



0

0

T

0

0


and

τxx =
2µ

Re∞

∂u

∂x
, τyy =

2µ

Re∞

∂v

∂y
, τzz =

2µ

Re∞

∂w

∂z
,

10

τxy = τyx =
µ

Re∞
(
∂u

∂y
+
∂v

∂x
), τxz = τzx =

µ

Re∞
(
∂u

∂z
+
∂w

∂x
), τyz = τzy =

µ

Re∞
(
∂v

∂z
+
∂w

∂y
),

qx =
k

Pe∞

∂T

∂x
, qy =

k

Pe∞

∂T

∂y
, qz =

k

Pe∞

∂T

∂z
, and

θ = unx + vny + wnz

11

CHAPTER 3

NUMERICAL FORMULATION

These nondimensional equations are discretized in a finite volume formulation using an

eplicit Euler method and median dual control volumes. Figure shows a cutaway depiction

of an example of a median dual control volume surrounding a node.

Figure 3.1 Diagram of a Median Dual Control Volume

Although the figure shows all hexahedral elements, the code is capable of handling multi-

element grids including tetrahedrons, pyramids, and prisms as well. The method follows

the one used in [7] and yields the following discretized equation for a general node i and its

corresponding control volume:

Vi
∆Qi

∆ti
+
∑
j

(Φij · n̂ij)Sij −
∑
j

(Φvij · n̂ij)Sij −
Gr∞
Re2
∞
ViΥi = 0

12

where Vi is the volume (assumed stationary and non-deforming), ∆ti is the timestep, and

Υi is the source term vector, all associated with the particular node i. Φij and Φvij are the

discretized invsicid and viscous flux contributions respectively, n̂ij is the outward pointing

unit normal vector, and Sij is the area vector all associated with the edge between node i

and j, where the summation over j includes all the nodes surrounding i.

Inviscid Terms

As indicated in the second term on the left hand side of the discretized formula above,

the integration of the inviscid flux is approximated by a summation. This approximation is

done by a Riemann flux using the values of the dependent variables at each node on an edge.

The midpoints of the edges function as the quadrature points. This method is the Roe flux

scheme and has the following formula for the numerical inviscid flux [7]

ΦRL =
1

2

[
(F (QL) + F (QR))− Ã(QR, QL)(QR −QL)

]

where QR and QL are the dependent variable vectors evaluated at the node on the right

hand side of the edge and the left hand side of the edge, respectively. F (QR) and F (QL) are

the inviscid flux vectors evaluated using the values from the dependent variable vectors. Ã

is a matrix constructed from the flux Jacobian and has the following formula

Ã = R̃Λ̃L̃

where R̃ and L̃ are the right and left eigenvector matrices, R̃L̃ = I, and Λ̃ is a diagonal

matrix with the absolute values of the eigenvalues as its diagonal elements. The tilde here

denotes that the matrices are constructed using a dependent variable vector which is an

averaged vector of the two dependent variable vectors from each node. For an incompressible

13

flow solver this vector is formed using the simple arithmetic average. The derivation of the

eigensystem of the flux Jacobian matrix is contained in Appendix B.

Viscous Terms

There are several methods which can be used for determining the approximation of the

viscous flux vector. The method employed here is the directional derivative method which is

used in [7]. The viscous terms are linear, thus the numerical approximation has the following

formula:

Φvij =
1

Re∞

∑
j

Cj(Qj −Qi)

where Cj is a matrix of coefficients used to emulate the viscous nature of the fluid and j

represents the index of a node connected to node i. This coefficient matrix is unique for each

node and depends only on the geometry of the mesh. The directional derivative method is

used to determine this matrix. The main goal is to use the numerical gradients at each node

of the edge along with the edge’s local information in order to construct the necessary edge

gradient for the viscous calculation [14]. The general formula for the edge gradient is

∇Qij = ∇Qij,norm +∇Qij,tan

where the normal component of the gradient is constructed by a directional derivative and

the tangential component is constructed as an average of the gradients at each node. The

formula for each of these components is as follows

(∇Qij · ŝ)ŝ ≈ Qj −Qi

|∆~s |
ŝ

(∇Qij · t̂)t̂ ≈ ∇Qij − (∇Qij · ŝ)ŝ

14

where ŝ is the unit vector in the direction of the edge, t̂ is the unit vector perpendicular to

the edge, ∇Qij = 1
2
(∇Qi +∇Qj), ∆~s = ~xj − ~xi, and ~xj is the coordinate vector associated

with node j. Using the above two approximations the final formula used to approximate the

gradient at the edge is

∇Qij ≈ ∇Qij +
(
Qj −Qi −∇Qij ·∆~s

) ∆~s

|∆~s |2

A weighted least squares method is commonly used to calculate the numerical approximation

of the gradient at each node. This is the method chosen for this work, and the corresponding

weight used is the inverse of the distance between the two nodes. Further details on the least

squares method are given in Appendix C.

Higher Order Accuracy

In a typical upwind flux formulation the flux terms depend upon the solution variables

on the left and right hand sides of the given control volume face. For a first order spatially

accurate scheme, the usual formula is to take QL = Qi and QR = Qj, where the L and R

subscripts refer to the dependent variables on the left and right hand sides of the control

volume face respectively and the i and j subscripts refer to the nodes on either end of an

edge. In order to achieve higher accuracy for the inviscid terms, the dependent variables can

be extrapolated out to the face of the control volume instead of simply using the values at

the given nodes. This type of extrapolation is done to create a scheme that is second order

in space. These higher order formulas for the dependent variables on the left and right hand

side of the control face are:

QL = Qi +∇Qi · (~xf − ~xi)

QR = Qj +∇Qj · (~xf − ~xj)

15

where ~xf is the coordinate vector of the midpoint of the edge, and ~xi and ~xj are the coordinate

vectors of each node. As seen in the above formulas, in order to extrapolate the solution,

the nodal gradients are needed. Although Green’s Theorem is a reasonable method of

approximating these gradients, it is shown in [16] that an unweighted least squares method

gives a better approximation when using the gradients to extrapolate the solution to the

control volume face. The least squares method is shown in further detail in Appendix C.

16

CHAPTER 4

BOUNDARY CONDITIONS

In most cases of solving for the dependent variables at the boundary node, it is necessary

to create an imaginary node outside of the boundary, commonly termed a ghost node. This

node is given certain requirements in order to satisfy the necessary boundary conditions. It

is not actually a part of the mesh, but is created for the sole purpose of providing information

to the node on the boundary. Figure 4.1 shows a depiction of nodes on a two-dimensional

boundary with ghost nodes.

Figure 4.1 Depiction of Ghost Nodes

Characteristic variable boundary conditions are used primarily for farfield boundaries

and also for inviscid flow impermeable surfaces. These boundary conditions are formed by

beginning with the quasi-linear form of the system and writing the equations in the direction

normal to boundary, η:

∂Q

∂t
+ A

∂Q

∂η
= 0

17

where A is defined above as A = ∂F
∂Q

. A can be written as A = RΛL where Λ is the matrix of

eigenvalues and R and L are the right and left eigenvector matrices of A respectively. The

quasi-linear system then becomes

∂Q

∂t
+RΛL

∂Q

∂η
= 0

multiplying by L and recalling that L = R−1 gives

R−1∂Q

∂t
+ ΛR−1∂Q

∂η
= 0

Evaluating R−1 at some reference state (i.e., R−1
0 is a constant matrix), it can be placed in

the derivative giving

∂R−1
0 Q

∂t
+ Λ

∂R−1
0 Q

∂η
= 0

where the 0 subscript indicates evaluation as a constant. Then, the characteristic variable

vector W is defined as W = R−1
0 Q, and W can be evaluated depending on the sign of

the eigenvalues on the boundary to determine the values of Qb, which are then used in the

evaluation of the numerical flux through the boundary.

Inflow

As shown in Appendix B, the eigenvalues for the system of equations are λ1 = λ2 = λ3 =

θ, λ4 = θ + c, and λ5 = θ − c. Inflow is characterized by the first three eigenvalues being

negative, the fourth being positive, and the fifth being negative. The dependent variables

18

for the ghost node at such a boundary are then given by



l10

l20

l30

l40

l50





P

u

v

w

T


b

=



l10 ·Qa

l20 ·Qa

l30 ·Qa

l40 ·Ql

l50 ·Qa


where l10, l

2
0, l

3
0, l

4
0 and l50 are the left eigenvectors evaluated as constant (Note these are the

rows of matrix R−1
0). Vectors Qa and Ql are the dependent variable vectors, a subscript of a

denotes evaluation from a freestream location and a subscript of l denotes evaluation from

directly inside the boundary. The b subscript denotes that these are to be the ghost node

values.

Outflow

Outflow is characterized by the first four eigenvalues being positive and the fifth being

negative. The dependent variables for the ghost node at this boundary are then given by



l10

l20

l30

l40

l50





P

u

v

w

T


b

=



l10 ·Ql

l20 ·Ql

l30 ·Ql

l40 ·Ql

l50 ·Qa



19

Impermeable Surface with Inviscid Flow

For an impermeable surface in inviscid flow, the temperature and the pressure are taken

to be the same as directly inside the boundary, while the velocity vector is forced to be

tangent to the surface. To fulfill this requirement the following formula is used to compute

the velocity for the ghost node:

ub = ul − θnx

vb = vl − θny

wb = wl − θnz

where again the b subscript denotes the ghost node value and the l subscript denotes the

value is taken from directly inside the domain. Recall that θ is defined as θ = unx+vny+wnz

.

Symmetry Plane Boundary Conditions

In this work the chosen method of dealing with symmetry planes is to utilize a mirrored

boundary condition. In this method phantom nodes are created outside of the symmetry

surface which are a mirror image of the nodes directly interior to the surface. The mirrored

plane goes one element deep. When this is done, the solver can essentially ignore any

boundary conditions that would be associated with the symmetry surface and treat these

nodes in the same manner which the interior nodes are treated. Since the interior nodes are

mirrored to the outside of the domain, the surface nodes have closed control volumes and are

essentially interior nodes. It is critical when implementing this method to ensure that scalars

are copied and vectors and tensors mirrored correctly to these fictitious mirrored nodes in

order to enforce the requirement that no fluxes penetrate the symmetry plane.

20

Impermeable Surface with Viscous Flow

The impermeable surfaces in a viscous flow, in this work, are given either Dirichlet

boundary conditions, Neumann boundary conditions, or a combination of both. A Dirichlet

boundary condition is enforced by the value of the given variable being set a priori and

then being kept constant throughout the simulation. This condition is used mainly for

nondimensional temperature at the boundary, for cases where a wall will be constantly

heated or cooled; for these cases, T = 0 or T = 1, respectively, throughout the entire

simulation. In addition, the velocity is most often given a no-slip condition, which is a

subset of the Dirichlet condition. A no-slip condition is fulfilled by forcing the fluid to have

a zero velocity at the surface (for a fixed surface) at all times. For example, the following

variables could be set and then kept constant



Tl

ul

vl

wl


=



1

0

0

0


It should be noted that these values are set for the variables of the nodes directly on the

boundary. The ghost nodes in this condition simply receive a direct copy of the variables

from the boundary. 

Tb

ub

vb

wb


=



Tl

ul

vl

wl


where b subscript again denotes the ghost node variables and the l subscript denotes the

boundary node variables.

21

The second boundary condition used for impermeable surfaces in viscous flow is the

Neumann boundary condition, which specifies the value of the gradient for the variable at

the surface. The two Neumann boundary conditions used here are one enforcing a zero

gradient off the wall, used for both temperature and pressure, and another requiring the

pressure gradient off the wall to be equal to the source term when buoyancy is considered;

i.e.,

Zero gradient

∂T

∂η
= 0 ,

∂P

∂η
= 0

Source term gradient

∂P

∂η
=

Gr

Re2
T

These equations are discretized as

Zero gradient

Tl − Ti
ηl − ηi

= 0 ⇒ Tl = Ti

Pl − Pi
ηl − ηi

= 0 ⇒ Pl = Pi

Source term gradient

Pl − Pi
ηl − ηi

=
Gr

Re2
Ti ⇒ Pl = Pi +

Gr

Re2
Ti(ηl − ηi)

where the l subscript again denotes the variables of the node on the boundary and an i

subscript now denotes the variables of the node directly interior of the boundary. As above,

the values of the ghost node variables in this case are set to be equal to those of the node

directly on the boundary. In the case that a node has multiple edges in the direction normal

to the boundary, a tolerance is used to select the node with coordinates closest to that of

the boundary node, but extruded off the boundary.

22

CHAPTER 5

RESULTS

Inviscid Flow Over a Cylinder

This case was accomplished to demonstrate that the code can perform a simulation

of incompressible, inviscid flow. Therefore, successfully executing this case will show that

the mass and momentum equations are being solved correctly without having to solve the

temperature equation. For this case an unstructured grid is used with a spacing of 1.0e-3

(distances are expressed in units of cylinder radii) coming off the cylinder wall along the x

and y axes. The far field boundary is located at a distance of 10 times the radius of the

cylinder. In order to simulate a two-dimensional case, three planes are created in the z-

direction, with the outer two having mirror symmetry conditions. For this case, all variables

are initialized to 0.0, except for horizontal velocity which is initialized to 1.0. Also, a CFL

of 0.6 is used with local time stepping. Characteristic variable boundary conditions are used

at the farfield boundary and a no pressure gradient with tangential velocity is enforced on

the cylinder. Figure 5.1 shows a diagram of the set up for this case for clarity. As shown in

figures 5.2 - 5.5, this test case shows excellent agreement between the present calculations

and the results of Taylor [1]. Figures 5.2, 5.3, 5.4, and 5.5 are plots of the pressure,

x-direction velocity, y-direction velocity, and surface Cp respectively, each of which show

the expected symmetry. The pressure increase on the downstream side of the cylinder is a

key feature of this simulation and only develops when higher order accuracy of inviscid flux

terms is implemented. In addition, three variations of this case were run with the artificial

compressibility parameter, β, set to 5, 10, and 15. Figure 5.5 shows the computed surface

23

CP from each β relative to the theoretical answer, and figure 5.6 shows the L2 norm of the

residual for each β as well. It is interesting to note that lower values of β tend to converge

more quickly and achieve results closer to the theoretical answer, while the higher β values

aid in the stability of the algorithm.

Figure 5.1 Diagram of Grid, Boundary, and Initialization Information

24

Figure 5.2 Contour Plot of Steady State Pressure

Figure 5.3 Contour Plot of Steady State Horizontal Velocity

25

Figure 5.4 Contour Plot of Steady State Vertical Velocity

Figure 5.5 Plot of Computed and Theoretical Surface CP versus Angle around Cylinder

26

Figure 5.6 Plot of L2 Norm of Residual Terms for β = 5, 10, 15

Forced Flow Over a Heated Plate

The second case considered is that of laminar forced flow over a heated flat plate. The two

main distinctions between this case and the previous is the addition of the viscous terms in

the equations (meaning the flow considered is now viscous) and of the temperature equation.

Essentially, a successful execution of this case illustrates the capability of the code to perform

a simulation of forced convection with viscous flow. A Reynolds number of 10,000 and a

Prandtl number of 1.0 are used for this case, along with β = 10.0, a CFL of 0.6 and local

time stepping. The grid created has a flat plate of nondimensional length unity and a farfield

boundary a distance of 5 nondimensional units away. The viscous spacing off the plate wall

is 1.0e-3. The plate is given a neglible amount of height in order to create a grid that has

flow on both sides of the plate. As in the previous case, three grid planes are created in the

z-plane with the outer two having mirror symmetry conditions. The flat plate is given no-slip

27

boundary conditions, and the temperature is kept at 1.0. All other variables are initialized

to 0.0 except horizontal velocity, which is initialized to 1.0 everywhere. Figure 5.7 shows a

diagram of the grid, boundary, and initialization parameters for clarity. Figures 5.8 and 5.9

show contour plots of the horizontal velocity and the temperature respectively, which show

the expected build-up of velocity and thermal boundary layers near the heated plate. The

boundary layer velocity profile is shown in figure 5.10 and is compared to the theoretical

results from the Blasius equation [9], showing excellent agreement. This plot compares the

current results of horizontal velocity versus η, which is a simple linear mapping of the y

coordinate values taken at nondimensional x = 0.2 distance along the plate, with the known

theoretical results of horizontal velocity versus η. The quantity 1.0−T along this line is also

plotted, which shows good agreement with the theoretical results as well. Figure 5.11 is a

plot of the computed Nusselt number along the plate versus the theoretical Nusselt number

along a heated plate; again, there is good agreement. The discrepancy at the end of the plate

between the computed and theoretical Nusselt number is due to the fact that the theory is

established for an infinite plate and the plate in the simulation is finite. Figure 5.12 shows

the convergence rate for this simulation using the L2 norm of the residual terms plotted

against time step.

28

Figure 5.7 Diagram of Grid, Boundary, and Initialization Information

Figure 5.8 Contour Plot of Steady State Horizontal Velocity

29

Figure 5.9 Contour Plot of Steady State Temperature

Figure 5.10 Plot of Computed Horizontal Velocity, 1-Temperature, and Blasius Solution

30

Figure 5.11 Plot of Theoretical and Computed Nusselt Number versus Non-Dimensionalized
X Distance along Plate

Figure 5.12 Plot of L2 Norm of Residual Terms Versus Time Step

31

Natural Convection in a Differentially Heated Square Cavity

The purpose of this test case is to validate the treatment of buoyancy in the code. A

simple square grid of nondimensional unit length that is 81x81x3 is used, with an off-wall

spacing of 1.0e-3. A Raleigh number of 1.0e4 and a Prandtl number of 0.71 are used.

Stability was an issue in this case, so all nodes were given the same time step equal to

that of the minimum time step over all the nodes. Every wall in this case has no slip

boundary conditions, so velocity is initialized to zero at each point in the grid. The artificial

compressibility parameter used is 5. The horizontal walls have an imposed zero normal

temperature gradient boundary condition, while the vertical walls have an imposed zero

pressure gradient boundary condition. The horizontal walls, however, have the normal

pressure gradient equal to the source term in order to properly deal with buoyancy effects.

The leftmost vertical wall is kept at a temperature of 1.0, while the rightmost wall is always

kept at temperature of 0.0 (both temperatures being nondimensional). The temperature is

initialized to 1.0 elsewhere in the grid. Figure 5.13 shows a diagram of the initialization,

grid, and boundary information for clarity. Figure 5.14 shows a plot of the steady state

temperature, which agrees very well with the results of Er [6] and shows the expected

stratification of the fluid when thermal buoyancy is considered. Figure 5.15 shows a plot of

the vertical velocity along the y-axis center line compared to the results of Er [6]. Figure 5.16,

then has the current results of horizontal velocity along the x-axis center line compared to

the results of Er [6] as well. Table 5.1 then compares the values of the maximum components

of velocity along the axes for the current results, those of Er [6], and those for the benchmark

solution done by Davis [11]. The table illustrates excellent agreement of the current solution

to the benchmark solutions. Figure 5.17 shows the convergence plot for this case, with the

L2 norm of the residual terms plotted versus the time steps.

32

Figure 5.13 Diagram of Grid, Boundary, and Initialization Information

Figure 5.14 Contour Plot of Steady State Temperature

33

Figure 5.15 Plot of Vertical Velocity along y-Axis Center Line Compared to Results of Er
[6]

Figure 5.16 Plot of Horizontal Velocity along x-Axis Center Line Compared to Results of Er
[6]

34

Table 5.1 Comparison between Benchmark Solutions and Current Velocity

Variable Davis [11] Er [6] Current

Maximum Horizontal Velocity on Vertical Centerline 0.192 0.192 0.191

Y Location of Maximum Horiztonal Velocity 0.823 0.850 0.816

Maximum Vertical Velocity on Horizontal Centerline 0.233 0.232 0.232

X Location of Maximum Vertical Velocity 0.119 0.125 0.119

Figure 5.17 Plot of L2 Norm of Residual Terms Versus Time Step

Mixed Convection in a Square Cavity

The objective of this test case is to verify the code’s ability to perform a simulation that

contains both forced convection and natural convection. A canonical case for testing this is

that of a lid driven cavity. The grid from the previous test case was used. The Reynolds

number is now 1.0e3, the Grashof number is now 1.0e2, and the Richardson number is

35

1.0e − 4. A CFL of 0.6 is used with local time stepping, and β is set to 5. First, the code

is executed with the temperature set equal to 0.0 everywhere as a check. All walls are set

with no slip conditions, except the top horizontal wall which is moving with a horizontal

velocity of 1.0. The vertical walls are also adiabatic, i.e., ∂T
∂η

= 0. Again a diagram is

illustrates the initialization, grid, and boundary information in figure 5.18. After running

this case, it is seen that the results match well with previous results of the benchmark case

done by Ghia [10] (used as the benchmark for both Koblitz et al. [2] and Agrawal et al.

[4]). Figures 5.19 and 5.20 show the current results of the vertical velocity along the y-axis

centerline and the horizontal velocity along the x-axis centerline compared to the results

of Ghia [10]. Figure 5.21 shows an image of the steady state velocity vectors shaded by

velocity magnitude, which show the expected vortex throughout the majority of the cavity,

as seen in [2] as well. Figure 5.22 shows the convergence plot for this case, where the L2

norm of the residual term is plotted against the time steps.

Figure 5.18 Diagram of Grid, Boundary, and Initialization Information

36

Figure 5.19 Plot of Vertical Velocity along y-Axis Center Line Compared to Results of Ghia
[10]

Figure 5.20 Plot of Horizontal Velocity along x-Axis Center Line Compared to Results of
Ghia [10]

37

Figure 5.21 Plot of Steady State Velocity Vectors

Figure 5.22 Plot of L2 Norm of Residual Terms Versus Time Step

After this initial check was verified, a case is executed to investigate both natural and

forced convection. In order to perform this simulation, the same initialization is used as in

38

the previous case, except the moving lid now is kept at a constant temperature of 1.0. Also,

the two horizontal walls include the source term restriction on the gradient of pressure. The

Reynolds number is again 1.0e3, but the Grashof number is now 1.0e6, and the Richardson

number now 1.0. A CFL of 0.6 is used with local time stepping, and β is set to 5. Figure

5.23 shows a diagram of the initialization, grid, and boundary information for clarity. For

this case a grid refinement study was also done with three structured grids of dimensions

61x61x3, 81x81x3, and 101x101x3. Figures 5.24 and 5.25 show the current results for each

grid of the vertical velocity along the y-axis centerline and the horiztonal velocity along the

x-axis centerline compared to the benchmark results of Iwatsu et al [12], (the benchmark

data used in both [2] and [4]). These figures show a slight improvement relative to the

benchmark solutions due to grid refinement. It should be noted that no experimental data

exists for this case, and the slight discrepancy in the current computed velocities and the

benchmark velocities of Iwatsu et al, [12] are similar to the discrepancies in the solutions

obtained by Koblitz et al. [2]. Figures 5.26 and 5.27 show images of the steady state

temperature and velocity vectors for the case with grid size 81x81x3, both of which show

good qualitative agreement with the results in [2] and [4]. The diffusion of the temperature

from the forced convection of the heated lid is restricted to the upper portion of the cavity

due to buoyancy effects, which also affect the thermal stratification in the lower portion of

the cavity. Figure 5.28 shows the convergence based on the L2 norm of the residual term

for each grid case. Slower convergence occurs as grid size increases as expected.

39

Figure 5.23 Diagram of Grid, Boundary, and Initialization Information

Figure 5.24 Plot of Vertical Velocity along y-Axis Center Line Compared to Results of Iwatsu
et al. [12]

40

Figure 5.25 Plot of Horizontal Velocity along x-Axis Center Line Compared to Results of
Iwatsu et al. [12]

Figure 5.26 Plot of Steady State Temperature

41

Figure 5.27 Plot of Steady State Velocity Vectors

Figure 5.28 Plot of L2 Norm of Residual Terms for Varying Grids Versus Time Step

42

CHAPTER 6

CONCLUSIONS

The goal of this work was to implement a three-dimensional, explicit, incompressible

flow solver that is also capable of dealing with convection and handling multi-element

unstructured grids. Based upon comparing the results to previous benchmark solutions and

exact theoretical data this goal was successfully met. The constructed numerical formulation

and corresponding code can handle a variety of convective flow problems giving accurate

results. The limitations of this code are clearly its speed and subsequent inability to handle

large amounts of data in a timely fashion. The next step to be taken is to implement

this formulation in the existing in house code, Tenasi, which is both implicit, parallel,

and includes turbulence models. Hopefully after such an implementation, problems of a

significant magnitude dealing with thermal buoyancy can be solved.

43

APPENDIX A

GOVERNING EQUATIONS

44

In this appendix the governing equations are written in expanded form for clarity.

Continuity

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

x-direction Momentum

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
=
−1

ρ

∂p

∂x
− 1

ρ

∂τxx
∂x
− 1

ρ

∂τxy
∂y
− 1

ρ

∂τxz
∂z

y-direction Momentum

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
=
−1

ρ

∂p

∂y
− 1

ρ

∂τxy
∂x
− 1

ρ

∂τyy
∂y
− 1

ρ

∂τyz
∂z

z-direction Momentum

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂w2

∂z
=
−1

ρ

∂p

∂z
− 1

ρ

∂τxz
∂x
− 1

ρ

∂τyz
∂y
− 1

ρ

∂τzz
∂z

Energy

∂T

∂t
+
∂uT

∂x
+
∂vT

∂y
+
∂wT

∂z
= − 1

ρcp

∂qx
∂x
− 1

ρcp

∂qy
∂y
− 1

ρcp

∂qz
∂z

where

τxx = −2µ
∂u

∂x
, τyy = −2µ

∂v

∂y
, τzz = −2µ

∂w

∂z
,

45

τxy = τyx = −µ(
∂u

∂y
+
∂v

∂x
), τxz = τzx = −µ(

∂u

∂z
+
∂w

∂x
), τyz = τzy = −µ(

∂v

∂z
+
∂w

∂y
)

qx = −k∂T
∂x

, qy = −k∂T
∂y

, and qz = −k∂T
∂z

46

APPENDIX B

EIGENSYSTEM

47

In order to develop the eigensystem for these equations the flux Jacobian matrix must

first be determined. This matrix is defined as A = ∂F
∂Q

where F and Q are as defined in

Chapter 2. The entries of A can be calculated by Aij = ∂Fi

∂Qj
. Performing these calculations

gives the following:

A =



0 βnx βny βnz 0

nx

ρ
θ + unx uny unz 0

ny

ρ
vnx θ + vny vnz 0

nz

ρ
wnx wny θ + wnz 0

0 Tnx Tny Tnz θ



In order to facilitate the computation of the eigenvalues a similarity transformation is

performed on A by the following matrix

M =



1 0 0 0 0

u
β

1 0 0 0

v
β

0 1 0 0

w
β

0 0 1 0

0 0 0 0 1


, with M−1 =



1 0 0 0 0

−u
β

1 0 0 0

− v
β

0 1 0 0

−w
β

0 0 1 0

0 0 0 0 1



The resulting matrix κ is below:

κ = M−1AM =



θ βnx βny βnz 0

nx

ρ
+ uθ

β
θ 0 0 0

ny

ρ
+ vθ

β
0 θ 0 0

nz

ρ
+ wθ

β
0 0 θ 0

Tθ
β

Tnx Tny Tnz θ


48

In order to find the eigenvalues, the characteristic equation, det(κ−Iλ) = 0, must be solved:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ − λ βnx βny βnz 0

nx

ρ
+ uθ

β
θ − λ 0 0 0

ny

ρ
+ vθ

β
0 θ − λ 0 0

nz

ρ
+ wθ

β
0 0 θ − λ 0

Tθ
β

Tnx Tny Tnz θ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Expanding the determinant along the fourth column gives

(θ − λ)3

(
(θ − λ)2 − θ2 − β

ρ
(nx

2 + ny
2 + nz

2)

)
= 0

Solving for λ results in:

λ1, λ2, λ3 = θ

λ4 = θ + c

λ5 = θ − c

49

where,

c =

√
θ2 +

β

ρ
(n2

x + n2
y + n2

z)

To finish the eigensystem, the right eigenvectors will be solved for first, using (κ−λiI)Ri = 0,

where Ri is the right eigenvector corresponding to λi and has the following form:

Ri =



r1
i

r2
i

r3
i

r4
i

r5
i



The equation is written out for clarity below:



θ − λi βnx βny βnz 0

nx

ρ
+ uθ

β
θ − λi 0 0 0

ny

ρ
+ vθ

β
0 θ − λi 0 0

nz

ρ
+ wθ

β
0 0 θ − λi 0

Tθ
β

Tnx Tny Tnz θ − λi





r1
i

r2
i

r3
i

r4
i

r5
i


= 0

Substituting in θ for λi and performing the matrix vector multiplication gives the following

equations for λ1, λ2, and λ3 (i=1,2, or 3 below):

βnxr
2
i + βnyr

3
i + βnzr

4
i = 0 (B.1)

50

(
nx
ρ

+
uθ

β

)
r1
i = 0 (B.2)

(
ny
ρ

+
vθ

β

)
r1
i = 0 (B.3)

(
nz
ρ

+
wθ

β

)
r1
i = 0 (B.4)

Tθ

β
r1
i + Tnxr

2
i + Tnyr

3
i + Tnzr

4
i = 0 (B.5)

By observing these equations, it is seen that r5
i can be arbitrarily assigned. Equation B.1

can be rewritten as

nxr
2
i + nyr

3
i + nzr

4
i = 0

and equation B.5 can be rewritten as

θ

β
r1
i + nxr

2
i + nyr

3
i + nzr

4
i = 0

Subsituting equation B.1 into equation B.5 gives

θ

β
r1
i = 0 ⇒ r1

i = 0

The only remaining requirement is

nxr
2
i + nyr

3
i + nzr

4
i = 0 ⇒ 〈nx, ny, nz〉 ·

〈
r2
i , r

3
i , r

4
i

〉
= 0

51

meaning that r2
i , r

3
i , and r4

i can be assigned as desired as long as the vector 〈r2
i , r

3
i , r

4
i 〉 is

orthogonal to the ~n area vector. This requirement is fairly simple to enforce. For R1 a

vector is created that fulfills this requirement by simply beginning with e1, e2, or e3 and then

altering it to force the dot product with ~n to be 0. This first vector will be called v1. For

R2, v1 is simply crossed with ~n to form v2. Since r5
i can be arbitrarily assigned, r5

1,2 = 0.

For R3, r2,3,4
3 = 0 and r5

3 = 1 which fulfills the requirement that the eigenvectors be linearly

independent and the other requirement that 〈nx, ny, nz〉 · 〈r2
i , r

3
i , r

4
i 〉 = 0.

R4 and R5 are still needed. Using λ4 = θ + c in (κ − λ4I)R4 = 0 gives the following

equations:

− cr1
4 + βnxr

2
4 + βnyr

3
4 + βnzr

4
4 = 0 (B.6)

(
nx
ρ

+
uθ

β
)r1

4 − cr2
4 = 0 (B.7)

(
ny
ρ

+
vθ

β
)r1

4 − cr3
4 = 0 (B.8)

(
nz
ρ

+
wθ

β
)r1

4 − cr4
4 = 0 (B.9)

Tθ

β
r1

4 + Tnxr
2
4 + Tnyr

3
4 + Tnzr

4
4 − cr5

4 = 0 (B.10)

Through observation, it is noted that equations B.7, B.8, B.9 can be satisfied by the

following relations:

r1
4 = c

r2
4 =

nx
ρ

+
uθ

β

r3
4 =

ny
ρ

+
vθ

β

52

r4
4 =

nz
ρ

+
wθ

β

To check these relations, they are plugged into equation B.6, which shows that they hold.

The relations are then used in equation B.10 in order to solve for r5
4, which gives

r5
4 =

T

c

(
1

ρ
(n2

x + n2
y + n2

z) +
θ

β
(c+ θ)

)
=
T

c

(
1

ρ
(n2

x + n2
y + n2

z) +
θ

β
λ4

)

Repeating this process with λ5 gives R5. The resulting matrix with the right eigenvectors as

columns is below:

E =



0 0 0 c −c

x1 x2 0 nx

ρ
+ uθ

β
nx

ρ
+ uθ

β

y1 y2 0 ny

ρ
+ vθ

β

ny

ρ
+ vθ

β

z1 z2 0 nz

ρ
+ wθ

β
nz

ρ
+ wθ

β

0 0 1 T
c
φ1

−T
c
φ2



where v1 = 〈x1, y1, z1〉, v2 = 〈x2, y2, z2〉, c is as defined above, and

φ1 =
1

ρ
(n2

x + n2
y + n2

z) +
θ

β
λ4

φ2 =
1

ρ
(n2

x + n2
y + n2

z) +
θ

β
λ5

53

Now that the right eigenvector matrix has been obtained, the left eigenvector matrix can

be computed as E−1 and is shown below:

E−1 =
1

det(E)



0 2c(y2φ5 − z2φ4) 2c(z2φ3 − x2φ5) 2c(x2φ4 − y2φ3) 0

0 2c(z1φ4− y1φ5) 2c(x1φ5 − z1φ3) 2c(y1φ3 − x1φ4) 0

−T
2c2

(φ1 + φ2)det(E) Tnx(φ2 − φ1) Tny(φ2 − φ1) Tnz(φ2 − φ1) det(E)

det(E)
2c

cnx cny cnz 0

−det(E)
2c

cnx cny cnz 0



where variables are defined as above except for φ3, φ4, and φ5, which are defined below:

φ3 =
nx
ρ

+
uθ

β
, φ4 =

ny
ρ

+
vθ

β
, φ5 =

nz
ρ

+
wθ

β
, and

det(E) = 2c

[
(x1y2 − y1x2)

(
nz
ρ

+
wθ

β

)
+ (z1x2 − x1z2)

(
ny
ρ

+
vθ

β

)
+ (y1z2 − z1y2)

(
nx
ρ

+
uθ

β

)]

Recall that E and E−1 are the eigenvector matrices for κ. R and L, the right and left

eigenvector matrices for A respectively, are still needed and can be computed simply using

R = M*E and L = E−1M−1. These matrices are written out below:

R =



0 0 0 c −c

x1 x2 0 uc
β

+ φ3 −uc
β

+ φ3

y1 y2 0 vc
β

+ φ4 −vc
β

+ φ4

z1 z2 0 wc
β

+ φ5 −wc
β

+ φ5

0 0 1 T
c
φ1

−T
c
φ2



54

L =
1

det(E)



−2c
β

(u(y2φ5 − z2φ4)

+v(z2φ3 − x2φ5) 2c(y2φ5 − z2φ4) 2c(z2φ3 − x2φ5) 2c(x2φ4 − y2φ3) 0

+w(x2φ4 − y2φ3))

−2c
β

(u(z1φ4− y1φ5)

+v(x1φ5 − z1φ3) 2c(z1φ4− y1φ5) 2c(x1φ5 − z1φ3) 2c(y1φ3 − x1φ4) 0

+w(y1φ3 − x1φ4))

− T
2c2

(φ1 + φ2)det(E)

−T
β

(φ2 − φ1)θ Tnx(φ2 − φ1) Tny(φ2 − φ1) Tnz(φ2 − φ1) det(E)

det(E)
2c
− cθ

β
cnx cny cnz 0

−det(E)
2c
− cθ

β
cnx cny cnz 0



55

APPENDIX C

LEAST-SQUARES GRADIENT COMPUTATION

56

The gradients of the solution at the nodes are needed in order to achieve higher order

accuracy for the inviscid flux terms and for the computation of the viscous flux terms when

a directional derivative method is used for their computation. In order to approximate

these gradients, this work uses a least squares method, following [7]. Below, this method

will be formulated and a set of precomputable coeffecients will be determined in order to

facilitate the computation of the gradients in code. The reason for determining a set of

coeffecients is to allow for the calculation of each nodal gradient by a simple loop over the

surrounding edges. These coeffecients depend only upon the geometry and can be computed

a priori. They then can be stored at each edge or each node. Storing the coeffecients at each

edge is computationally more efficient, but due to the high cost in memory the coeffecients

will be stored at each node in this work. The corresponding edge coeffecients can then be

recalculated when needed from looping over the nodes surrounding one another. The idea

behind the least squares method begins with a Taylor series approximation of the solution

vector u at a particular node j. Note that the gradient approximation that is actually desired

is for neighboring node i, not j.

uj = ui + (~xj − ~xi) · ∇ui (C.1)

where ~xj is the coordinate vector of node j. The above formula has truncated the higher

order terms, making it a linearly accurate approximation. As stated, the gradient at node

i is desired. Using the above formula for each node 1, 2, ..., N surrounding i the following

57

linear system is created.



∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

...
...

...

∆xN ∆yN ∆zN




uxi

uyi

uzi

 =



u1 − ui

u2 − ui
...

uN − ui


(C.2)

where ∆xj = xj − xi, ~xj = 〈xj, yj, zj〉, and ∇ui = 〈uxi , uyi , yzi〉. If a weighted least squares

method is being used then the left and right hand side of the above equations are multiplied

by an arbitrary constant, which can be unique for the each equation.



∆x̄1 ∆ȳ1 ∆z̄1

∆x̄2 ∆ȳ2 ∆z̄2

...
...

...

∆x̄N ∆ȳN ∆z̄N




uxi

uyi

uzi

 =



ū1 − ūi

ū2 − ūi
...

ūN − ūi


(C.3)

where ∆x̄j = αj∆xj and αj is the weight for the equation. If unweighted least squares is used

then αj = 1, and if an inverse distance weight is used then αj = 1
∆sj

where ∆sj = ~xj − ~xi.

In this work, unweighted least squares is used for computing higher order accuracy for the

inviscid terms, and the inverse distance weighted least squares is used when computing the

viscous terms. Rewriting equation C.3 with the columns of the left and right hand side

matrices as vectors gives

[
L1 L2 L3

]
uxi

uyi

uzi

 = [U] (C.4)

58

This system is over constrained since there are more equations than there are unknowns.

Let A =

[
L1 L2 L3

]
. Multiplying both sides of the equation by AT gives a square system

with one solution.

Orthogonalization

In order to solve this new linear system QR factorization will be utilized, and in order

to do QR factorization a set of orthonormal vectors needs to be made from the columns of

matrix A. Using Gram-Schmidt on the columns of A gives

q1 =
L1

||L1||

q2 =
L2 − (q1

TL2)q1

||L2 − (q1
TL2)q1||

q3 =
L3 − (q1

TL3)q1 − (q2
TL3)q2

||L3 − (q1
TL3)q1 − (q2

TL3)q2||

To simplify these equations let

r11 = ||L1||2 , r12 = L1
TL2 , r13 = L1

TL3 ,

r22 =
∣∣∣∣L2 − (q1

TL2)q1

∣∣∣∣2 , r23 = (L2 −
r12

r11

L1)TL3 ,

and r33 =
∣∣∣∣L3 − (q1

TL3)q1 − (q2
TL3)q2

∣∣∣∣2
then

q1 =
L1√
r11

q2 =
L2 − r12

r11
L1

√
r22

59

q3 =
L3 − r13

r11
L1 − r23

r22
(L2 − r12

r11
L1)

√
r33

QR Factorization

Now A must be factored in two matrices Q and R, where Q has columns that are

orthonormal to one another and R is upper triangular. Once A is factored into Q and

R the system of equations can be easily solved using back substitution. Since the columns

of A have been orthogonalized and normalized in the previous section, it remains to find R.

Rewriting the columns of A in terms of their orthonormal counterparts gives

L1 = (q1
TL1)q1

L2 = (q1
TL2)q1 + (q2

TL2)q2

L3 = (q1
TL3)q1 + (q2

TL3)q2 + (q3
TL3)q3

Taking the above equations and putting them into matrix form gives

[
L1 L2 L3

]
=

[
q1 q2 q3

]
q1
TL1 q1

TL2 q1
TL3

0 q2
TL2 q2

TL3

0 0 q3
TL3


thus giving the needed A = QR form. Using QR instead of A makes equation (C.4) have

the following form

QRx = b

and this equation can be solved by doing the following

(QR)TQRx = (QR)T b

60

RTQTQRx = RTQT b

RT IRx = RTQT b

Rx = QT b

Since R is upper triangular x can now be easily solved for using backward substitution.

Using the Q and R matrices that have already been formed and placing them in the above

form gives 
q1
TL1 q1

TL2 q1
TL3

0 q2
TL2 q2

TL3

0 0 q3
TL3



uxi

uyi

uzi

 =


q1
TU

q2
TU

q3
TU

 (C.5)

Solution of QR System

Now the QR system in equation C.5 can be solved. The following definitions are made

to ease in notation

ro22 = q2
TL2

√
r22

ro33 = q3
TL3

√
r33

Using the above definitions and the definitions of r11, r12, r13, r22, r23, and r33 from the

previous sections equation (C.5) becomes


r11√
r11

r12√
r11

r13√
r11

0
ro22√
r22

r23√
r22

0 0
ro33√
r33



uxi

uyi

uzi

 =


q1
TU

q2
TU

q3
TU



61

Using backward substitution to solve the above system, and replacing q1, q2, and q3 with

their definitions gives the following formulas for the components of the solution gradient

uzi =

[
L3 − r13

r11
L1 − r23

r22
(L2 − r12

r11
L1)
]T

ro33

U = (W z)TU (C.6)

uyi =

[
L2 − r12

r11
L1 − r23W

z
]T

ro22

U = (W y)TU (C.7)

uxi =
[L1 − r12W

y − r13W
z]T

r11

U = (W x)TU (C.8)

Implementation

Equations C.6 - C.8 can be rewritten in summation form

uxi =
N∑
e=1

W x
e (ūj(e) − ūi)

uyi =
N∑
e=1

W y
e (ūj(e) − ūi)

uzi =
N∑
e=1

W z
e (ūj(e) − ūi)

where e represents each edge surrounding node i and j(e) is the node j connected to node i

by edge e. Also, W x
e , W y

e , W z
e are essentially the same as W x, W y, W z except they contain

only a single row of each L1, L2, and L3 vector. They are defined below

W x
e =

1

r11

[∆x̄e − r12W
y
e − r13W

z
e]

W y
e =

1

ro22

[
∆ȳe −

r12

r11

∆x̄e − r23W
z
e

]

62

W z
e =

1

ro33

[
∆z̄e −

r13

r11

∆x̄e −
r23

r22

(∆ȳe −
r12

r11

∆x̄e)

]
The constants in the above equations are rewritten out below in summation form as well

r11 =
N∑
e=1

(∆x̄e)
2

r12 =
N∑
e=1

(∆x̄e∆ȳe)

r13 =
N∑
e=1

(∆x̄e∆z̄e)

r22 =
N∑
e=1

[
∆ȳe −

r12

r11

∆x̄e

]2

r23 =
N∑
e=1

[
∆ȳe −

r12

r11

∆x̄e

]
∆z̄e

r33 =
N∑
e=1

[
∆z̄e −

r13

r11

∆x̄e −
r23

r22

(∆ȳe −
r12

r11

∆x̄e)

]2

ro22 =
N∑
e=1

[
∆ȳe −

r12

r11

∆x̄e

]
∆ȳe

ro33 =
N∑
e=1

[
∆z̄e −

r13

r11

∆x̄e −
r23

r22

(∆ȳe −
r12

r11

∆x̄e)

]
∆z̄e

Recall that

∆x̄e = αj(e)(xj(e) − xi)

∆ȳe = αj(e)(yj(e) − yi)

∆z̄e = αj(e)(zj(e) − zi)

as defined in a previous section, and αj(e) is the unique weight for each edge.

63

The formulas are now in a state that precomputable coeffecients can easily be defined for

each node. Let these be

s11 =
N∑
e=1

(∆x̄e)
2

s12 =
N∑
e=1

(∆x̄e∆ȳe)

s13 =
N∑
e=1

(∆x̄e∆z̄e)

s22 =
N∑
e=1

(∆ȳe)
2

s23 =
N∑
e=1

(∆ȳe∆z̄e)

s33 =
N∑
e=1

(∆z̄e)
2

This set of data can be calculated and stored at each node before the code enters any

solution loop. Then, when the gradients are needed the constants can be computed using

these coeffecients as follows

r11 = s11

r12 = s12

r13 = s13

r22 = s22 −
r2

12

r11

r23 = s23 −
r12

r11

r13

r33 = s33 −
r2

13

r11

− r2
23

r22

64

Thus, the formulation of precomputable coeffecients is completed, and the gradients can be

calculated using a simple loop of nodes surrounding a node.

65

REFERENCES

[1] Taylor, L. K., Unsteady Three-Dimensional Incompressible Algorithm Based on
Artificial Compressibility , Ph.D. Dissertation, Mississippi State University, May 1991.
1, 3, 4, 23

[2] Koblitz, T. W., Bechmann, A., Sorenson, N. N., “The 2D Lid-Driven Cavity - Validation
of CFD Code to Model Non-Neutral Atmospheric Boundary Layer Conditions,”
Proceedings 6th PhD Seminar on Wind Energy in Europe, 2010, pp. 157-160. 2, 3,
36, 39

[3] Kameyama, M., Kageyama, A., and Sato, T., “Multigrid Iterative Algorithm
Using Pseudo-Compressibility for Three-Dimensional Mantle Convection with Strongly
Variable Viscosity,” Journal of Computational Physics , 206, 1, June 2005, pp. 162-181.
2, 3

[4] Agrawal, L., Mandal, J. C., and Marathe, A. G., “Computations of Laminar
and Turbulent Mixed Convection in a Driven Cavity using Pseudo-Compressibility
Approach,” Computers & Fluids , 30, 5, June 2001, pp. 607-620. 3, 36, 39

[5] Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering
Applications,” AIAA Journal , 32, 8, pp. 1598-1605. 3

[6] Er, C. S., Numerical Simulation of Laminar Incompressible Convective Heat Transfer
Flow , M.S. Thesis, Mississippi State University, December 1995. xi, 3, 4, 7, 32, 34, 35

[7] Hyams, D. G., An Investigation of Parallel Implicit Solution Algorithms for
Incompressible Flows on Unstructured Topologies , Ph.D. Dissertation, Mississippi State
University, May 2000. 4, 7, 12, 13, 14, 57

[8] Beddhu, M., Taylor, L. K., and Whitfield, D. L., “A Time Accurate Calculation
Procedure for Flows with a Free Surface Using a Modified Artificial Compressibility
Formulation,” Applied Mathematics and Computation, 65, 1994, pp. 33-48. 7

[9] Fox, R. W., and McDonald, A. T., Introduction to Fluid Mechanics , New York: Wiley,
1985. 28

66

[10] Ghia, U., Ghia, K. N., and Shin, C. T., “High-resolutions for Incompressible Navier-
Stokes Equation and a Multigrid Method,” Journal of Computational Physics , 48, 1982,
pp. 387-411. xi, 36, 37

[11] Davis, G. D. V., “Natural Convection of Air in a Square Cavity: A Bench Mark
Numerical Solution,” International Journal for Numerical Methods in Fluids , 3, 1983,
pp. 249-164. 32, 35

[12] Iwatsu, R., Hyun J. M., “Three-dimensional Driven-cavity Flows with a Vertical
Temperature Gradient,” International Journal of Heat Mass Transfer , 38, 3, 1995,
pp.319-328. xi, xii, 39, 40, 41

67

VITA

Jessica Kress was born in Tucson, Arizona to the parents of Reid and Ann Kress. She

moved with her parents to Oak Ridge, Tennessee as an infant, where she later enrolled in

public education. After graduation from Oak Ridge High School, she attended the University

of Tennessee at Knoxville where she completed her bachelor’s degree in Mathematics. Jessica

then accepted a graduate research assistantship with the SimCenter at the University of

Tennessee at Chattanooga and completed her master’s degree in Computational Engineering

in December 2012. She is currently employed as a Research Engineer for Illinois Rocstar in

Champaign, Illinois.

68

	Front Matter
	Title
	Abstract

	ABSTRACT
	Dedication

	DEDICATION
	Acknowledgements

	ACKNOWLEDGEMENTS
	Table of Contents

	LIST OF TABLES
	LIST OF FIGURES
	Nomenclature

	LIST OF SYMBOLS
	1 INTRODUCTION
	2 Governing Equations
	Tensor Invariant Form
	Artificial Compressibility
	Nondimensionalization
	Vector, Integral Form

	3 Numerical Formulation
	Inviscid Terms
	Viscous Terms
	Higher Order Accuracy

	4 Boundary Conditions
	Inflow
	Outflow
	Impermeable Surface with Inviscid Flow
	Symmetry Plane Boundary Conditions
	Impermeable Surface with Viscous Flow

	5 Results
	Inviscid Flow Over a Cylinder
	Forced Flow Over a Heated Plate
	Natural Convection in a Differentially Heated Square Cavity
	Mixed Convection in a Square Cavity

	6 Conclusions
	A GOVERNING EQUATIONS
	B EIGENSYSTEM
	C LEAST-SQUARES GRADIENT COMPUTATION
	Orthogonalization
	QR Factorization
	Solution of QR System
	Implementation

	REFERENCES
	VITA

