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We consider the boundary value problem consisting of the fractional di↵erential

equation

�D

↵
0+z + aD

�
0+z = w(t)f(t, z), 0 < t < 1, (1)

and the boundary conditions

z(0) = z

0(0) = ... = z

(n�2)(0) = 0, z(1) = k, (2)

where k 2 R, a 2 R, n 2 N, 0  �  n� 2, n� 1 < ↵ < n, w 2 L[0, 1] with w(t) � 0,

and f 2 C([0, 1] ⇥ R,R). Here, D�
0+h is the �-th left Riemann-Liouville fractional

derivative of h : [0, 1] ! R defined by

(D�
0+h)(t) =

1

�(l � �)

d

l

dt

l

Z t

0

(t� s)l���1
h(s)ds, l = b�c+ 1,

whenever the right-hand side exists with �(·) being the Gamma function.

Fractional di↵erential equation models such as this are relevant in various science

and engineering fields. Problems like this have been solved by first finding the Green’s

function for z in similar equations such as

�D

↵
0+z = f(t, z).

The Green’s function (denoted byG) was developed as a method to solve boundary

value problems with linear homogeneous equations (i.e. when f(t, z) = 0). However,

when the right side of equation is a function of t, say w(t)f(t, z(t)), the unique solution

to the problem is given by

u(t) =

Z 1

0

G(t, s)w(s)f(s, z(s))ds,

where G is the solution to the similar problem with the right hand side equal to zero.
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We try to solve problem (1)-(2) by splitting it into the two following problems:

8
>><

>>:

�D

↵
0+u+ aD

�
0+u = w(t)f(t, u), 0 < t < 1,

u(0) = u

0(0) = ... = u

(n�2)(0) = 0, u(1) = 0,

(3)

8
>><

>>:

�D

↵
0+v + aD

�
0+v = 0, 0 < t < 1,

v(0) = v

0(0) = ... = v

(n�2)(0) = 0, v(1) = k.

(4)

Note that if u(t) is a solution of (3) and v(t) is a solution of (4), then z(t) = u(t)+v(t)

is a solution of (1)-(2).

The solution of (3) is found by using the Green’s Function: G : [0, 1]⇥ [0, 1] ! R,

which was obtained in [3]:

G(t, s) =

8
>>>>>>><

>>>>>>>:

[t(1� s)]↵�1
E↵��,↵[at↵��]E↵��,↵[a(1� s)↵��]

E↵��,↵[a]
, 0  t  s  1,

[t(1� s)]↵�1
E↵��,↵[at↵��]E↵��,↵[a(1� s)↵��]

E↵��,↵[a]

�(t� s)↵�1
E↵��,↵[a(t� s)↵��], 0  s  t  1,

(5)

with |a| < �(↵ � � + 1). Here, the Green’s Function is given in terms of the known

Mittag-Le✏er function E�,� : C ! C:

E�,�[z] =
1X

n=0

z

n

�(�n+ �)
.

Using this function, we find the solution to (3) to have the form:

u(t) =

Z 1

0

G(t, s)w(s)f(s, u(s))ds

3



The solution to (4) is easily seen to be:

v(t) =
kt

↵�1
E↵��,↵(at↵��)

E↵��,↵(a)
.

Note that by Lemma 4.3 of [3], the Mittag-Le✏er function, E, is increasing, so |v(t)| 

k for t 2 [0, 1].

The solution to (1)-(2) is therefore z(t) = u(t) + v(t).

Remark: As found in [3], for G defined in (5), when |a| < �(↵ � � + 1),

G(0, ·) = G(1, ·) = G(·, 0) = G(·, 1) = 0, and |G(t, s)|  G(s) on [0, 1]⇥ [0, 1] where

G(s) =

8
>><

>>:

(1� s)↵�1
E↵��,↵[a(1� s)↵��], a 2 [0,�(↵� � + 1)),

(1� s)↵�1
E↵��,↵[a(1� s)↵��]

�(↵)E↵��,↵[a]
, a 2 (��(↵� � + 1), 0).

(6)

We need to define the constant

U =

Z 1

0

G(s)w(s)ds (7)

with G defined in (6). We take X = C[0, 1] with the norm kuk = maxt2[0,1] |u(t)|,

u 2 X, to be our Banach space.

We have developed two main theorems on the existance and uniqueness of solutions

for our problem.

Theorem 1: Let |a| < �(↵� � + 1). Assume there exists r > 0 such that

|f(t, x)|  r � k

U

for (t, x) 2 [0, 1]⇥ [�r, r], (8)

where k is the constant given in the right hand boundary condition given in (2).

Then, BVP (1)-(2) has at least one solution z with kzk  r.

Theorem 2: Let |a| < �(↵ � � + 1). Assume that f satisfies the Lipschitz
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condition in x

|f(t, x1)� f(t, x2)|  B|x1 � x2| for (t, x1), (t, x2) 2 [0, 1]⇥ R,

with B 2 (0, 1/U). Then, BVP (1)-(2) has a unique solution.

Proofs:

For the purpose of these proofs, we need to define an operator T : X ! X by

(Tz)(t) =

Z 1

0

G(t, s)w(s)f(s, u(s))ds+
kt

↵�1
E↵��,↵(at↵��)

E↵��,↵(a)
,

where G is the Green’s function used to solve for u(t). It is clear that z is a solution of

BVP (1)-(2) if and only if z 2 X is a fixed point of T . There is a standard argument

to show that T is completely continuous.

Proof of Theorem 1: Let ⌦ ⇢ X be the set defined by

⌦ = {z 2 X | kzk  r},

where r is given in Theorem 1.

For any z 2 ⌦, we have kz(t)k  r on [0, 1], and so

|(Tz)(t)| =
����
Z 1

0

G(t, s)w(s)f(s, u(s))ds+
kt

↵�1
E↵��,↵(at↵��)

E↵��,↵(a)

����


����
Z 1

0

G(t, s)w(s)f(s, u(s))ds

����+
����
kt

↵�1
E↵��,↵(at↵��)

E↵��,↵(a)

����


Z 1

0

|G(t, s)|w(s)|f(s, u(s))|ds+ k


Z 1

0

G(s)w(s)(r � k)

U

ds+ k =
r � k

U

U + k

=r � k + k = r, t 2 [0, 1].

Hence, kTuk  r. Therefore, T⌦ ⇢ ⌦.
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By Schauder fixed point theorem, T has a fixed point z in ⌦. Hence, our BVP

has at least one solution z(t) with kzk  r. ⇤

Proof of Theorem 2: Let z1, z2 2 X be solutions of (0.1). Then z1 = u1+v1

and z2 = u2 + v2, where u1, u2 are solutions of (0.3) and v1, v2 are solutions of (0.4).

For t 2 [0, 1],

|(Tz1 � Tz2)(t)| =
����
Z 1

0

G(t, s)w(s)f(s, u1(s)))ds+
kt

↵�1
E↵��,↵(at↵��)

E↵��,↵(a)

�
Z 1

0

G(t, s)w(s)f(s, u2(s)))ds�
kt

↵�1
E↵��,↵(at↵��)

E↵��,↵(a)

����

=

����
Z 1

0

G(t, s)w(s)f(s, u1(s)))ds�
Z 1

0

G(t, s)w(s)f(s, u2(s)))ds

����

=

����
Z 1

0

G(t, s)w(s) (f(s, u1(s))� f(s, u2(s))) ds

����


Z 1

0

G(s)w(s) |f(s, u1(s))� f(s, u2(s))| ds


Z 1

0

G(s)w(s)B |u1(s)� u2(s)| ds  BUku1 � u2k.

Since BU < 1, T is a contraction mapping. By the contraction mapping principle,

T has a unique fixed point. Therefore, our BVP has a unique solution. ⇤

Examples:

Example 1: Consider the BVP

8
>><

>>:

�D

3.6
0+z + aD

1.4
0+z =

⇥
cos(20t) + 1 + e

sin(100t)
⇤ ⇥

1
2 sin(z) +

z
z+1 + e

t
⇤

z(0) = z

0(0) = · · · = z

(n�2) = 0, z(1) = 0.01

(9)

Here, f(t, z) = 1
2 sin(z)+

z
z+1 +e

t and w(t) = cos(20t)+1+e

sin(100t). Furthermore,

�(3.2) = 2.424. The following figure represents the solution to this problem using an

iterative process with a = 2.4 shown in green, a = 0.4 shown in red, and a = �2.4

shown in blue.

6



Example 2: Consider the BVP

8
>><

>>:

�D

4.5
0+z + 1.32D2.7

0+z =
h

z2

z2+1

i
[cos(t) + 1]

z(0) = z

0(0) = · · · = z

(n�2) = 0, z(1) = 10�13

(10)

Here, f(t, z) = z2

z2+1 and w(t) = cos(t)+1. Note that |a| = 1.32 < 1.6765 ⇡ �(2.8).

We claim that this problem has a unique solution. By (0.6) and (0.7), 1/U ⇡ 24.5834.

Then, for (t, z1), (t, z2) 2 [0, 1]⇥ R:

|f(t, z1)� f(t, z2)| =
����

z

2
1

z

2
1 + 1

� z

2
2

z

2
2 + 1

����

=

����
z

2
1(z

2
2 + 1)� z

2
2(z

2
1 + 1)

(z21 + 1)(z22 + 1)

����

=

����
z

2
1 � z

2
2

(z21 + 1)(z22 + 1)

����

=

����
(z1 � z2)(z1 + z2)

(z21 + 1)(z22 + 1)

����

=|z1 � z2|
����

z1 + z2

(z21 + 1)(z22 + 1)

����

7



=|z1 � z2|
����

z1

(z21 + 1)(z22 + 1)
+

z2

(z21 + 1)(z22 + 1)

����

<|z1 � z2|
����

z1

z

2
1 + 1

+
z2

z

2
2 + 1

����

<|z1 � z2||1 + 1|

=2|z1 � z2|.

Therefore, f satisfies the Lipschitz condition with B = 2 2 (0, 1/U). Hence by

Theorem 2, BVP (0.10) has a unique solution. The numerical solution is given below.

8



References

AOS [1] R. Agarwal, D. O’Regan, and S. Staněk, Positive solutions for Dirichlet problems
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