

MEASURING MERCI: EXPLORING DATA MINING TECHNIQUES FOR EXAMINING

SURGICAL OUTCOMES OF STROKE PATIENTS

By

Matthew Ronald McNabb

Approved:

______________________________ ______________________________
Yu Cao Joseph Dumas
Assistant Professor of UC Foundation Professor of
Computer Science and Engineering Computer Science and Engineering
(Director of Thesis) (Committee Member)

Jack Thompson
Professor of Computer Science
(Committee Member)

______________________________ ______________________________
Herbert Burhenn A. Jerald Ainsworth
Dean of the College of Arts and Sciences Dean of the Graduate School

ii

MEASURING MERCI: EXPLORING DATA MINING TECHNIQUES FOR EXAMINING

SURGICAL OUTCOMES OF STROKE PATIENTS

By

Matthew Ronald McNabb

A Thesis
Submitted to the Faculty of the

University of Tennessee at Chattanooga
in Partial Fulfillment of the Requirements

for the Degree of Master of Science
in Computer Science

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

August 2012

iii

ABSTRACT

Mechanical Embolus Removal in Cerebral Ischemia (MERCI) has been

supported by medical trials as an improved method of treating ischemic stroke past the

safe window of time for administering clot-busting drugs, and was released for medical

use in 2004. The importance of analyzing real-world data collected from MERCI clinical

trials is key to providing insights on the effectiveness of MERCI. Most of the existing

data analysis on MERCI results has thus far employed conventional statistical analysis

techniques. To the best of the knowledge acquired in preliminary research, advanced

data analytics and data mining techniques have not yet been systematically applied. To

address the issue in this thesis, a comprehensive study on employing state of the art

machine learning algorithms was conducted to generate prediction criteria for the

outcome of MERCI patients. Specifically, the issue of how to choose the most

significant attributes of a data set with limited instance examples was investigated. A

few search algorithms to identify the significant attributes of the data set are proposed,

followed by a performance analysis for each algorithm. Finally, this approach is applied

to the real-world medical data provided by Southeast Regional Stroke Center at

Erlanger Hospital of Chattanooga, Tennessee. Our experimental results have

demonstrated that our proposed approach performs well.

iv

DEDICATION

This work is dedicated to he who is my life and length of days, and to my lovely

wife Megan, who endured many lonely nights to see the completion of this research.

v

ACKNOWLEDGEMENTS

A sincere thanks is due to the researchers at Erlanger Hospital for provision of

data, to Dr. Yu Cao for his guidance, and to Dr. Joseph Dumas and Dr. Jack Thompson

for their timely and cordial response to this thesis committee on short notice.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

DEDICATION .. iv

ACKNOWLEDGEMENTS .. v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER

I. INTRODUCTION .. 1

II. DATA .. 3

Detail Size .. 4
Sample Set Size ... 6
Balance .. 6

III. PROPOSED APPROACH ... 10

Choosing Classifiers ... 10
“White Box” Classification .. 10
Initial Naïve Analysis .. 10
Flexibility with Missing Data ... 11

Searching for Significant Attributes... 12
Depth First Search (DFS) .. 13
Naïve Smart Search ... 14
Weight-Based Search ... 15
Weight-Based Smart Search .. 18

IV. IMPLEMENTATION .. 21

V. RESULTS ... 24

VI. SUGGESTED FUTURE WORK .. 30

vii

Solution Layering ... 30
Attribute Significance Layering .. 32
Logical Group Layering ... 34
Other Suggested Enhancements.. 35

VII. CONCLUSIONS ... 37

REFERENCES CITED .. 38

APPENDIX A – DATA ATTRIBUTES .. 39

 VITA .. 42

viii

LIST OF TABLES

1 MRS Ratings ... 6

2 Considered Machine Learning Algorithms ... 12

3 Time Requirements for Mortality Prediction Searches 25

4 Time Requirements for MRS Prediction Searches 27

ix

LIST OF FIGURES

1 90-day Mortality Outcome Distribution ... 7

2 90-day MRS Outcome Distribution .. 8

3 Naïve Smart Search (r=5) ... 14

4 Weight-Based Top-Down Attribute Elimination 17

5 State Machine for Weight-Based Smart Search 18

6 Tracking GUI for Attribute Finding and Logistic Training
 Application ... 23

7 Mortality Prediction Success .. 26

8 Single-Layer MRS Prediction Success .. 27

9 Solution Layering for 90-day MRS .. 31

10 Attribute Significance Layering .. 33

11 Logical Group Layering ... 35

1

CHAPTER I

INTRODUCTION

Mechanical Embolus Removal in Cerebral Ischemia (MERCI) is a relatively new

medical procedure released by the Food and Drug Administration (FDA) in 2004, which

widens the operational window for removing deadly blood clots from the brain to eight

hours after the onset of acute ischemic stroke (AIS). Activase, a drug released in 1996

for dissolving the clots without mechanical operation, is highly effective but usable for

only three hours after stroke onset. Although its use improves survivability by 30%,

only a tiny fraction of patients (2-3%) actually qualify for dosage. This expansion of time

offered by MERCI can be critical to the patient’s outcome. [1]

While the usage of mechanical extraction is growing and test results are positive,

it is not yet the most common of stroke-fighting tools. Receiving criticism at its initial

approval in late 2004 and early 2005 due to alleged weaknesses in the FDA test

requirements [2], MERCI has since been found to be “cost effective” by controlled

medical experiments and practice results, when compared to other extraction

methods.[3]

Erlanger Hospital of Chattanooga, Tennessee has produced a study strictly

confined to stroke patients treated by MERCI, including a generous collection of detail

with regards to procedure analysis, including patient diagnosis coming in the door,

surgical procedure data, patient status after the procedure, and 90-day follow-ups. [4]

2

By introducing data mining techniques to this study, it is the hope of this project to

advance surgical outcome prediction machine learning with the ultimate goal of

predicting outcomes at incremental points in treatment. To this end, techniques will be

used which produce training results that can be readily compared to conventional

statistical analysis.

Much larger collections of data exist in state or national stroke registries, but

these sources were found to be difficult to access for the purposes of this project. It is

also is not guaranteed that these registries would contain specific details regarding

MERCI, or easily discernable qualifications for patients who would be eligible.[5] The

smaller collection of data provided by Erlanger represents a more specific study of

patients in the Chattanooga area, as opposed to a general collection of stroke patients

of various types over a large geographical area. Furthermore, working with a smaller

data set with many attributes per instance is an issue that we have not seen addressed

as frequently in our search for other data mining studies, and a new study on this

subject might open another area of discourse in Information Science on solving some

real problems. [6,7]

3

CHAPTER II

DATA

Erlanger’s study consists of a total of 115 patients meeting the following criteria:

 Each patient was diagnosed with acute ischemic stroke

 Arrival for treatment was between 3 and 8 hours after stroke onset.

 Each patient was over 18 years of age.

 Each patient suffered from hypo-density in less than 1/3 middle cerebral

arteries.

Because this data set is exclusively made up of MERCI patients, our study is

specifically limited to gauging factors for patient health and mortality given MERCI

treatment. Therefore, without a strict control group our goal becomes not that of

measuring the effectiveness of MERCI itself in relation to other treatments or little to no

treatment at all, but rather a search for relations among more specific factors within the

MERCI process itself.

This data set had already been thoroughly analyzed with conventional statistics

prior to our having received it. [4] This provides some gauge with which to measure the

progress of machine learning, and to recognize how reasonable new discoveries are.

Our goal is specifically to create a successful automated prediction system, which

predicts the outcomes associated with subsequent input data of a similar sort and is

4

easily discernable by analysts both inside and out of the Information Science discipline

to determine the most significant prediction sources.

Detail Size

The detail size of this sample set provides for a variety of choices from which to

draw statistical trends. These details can be categorized a number of ways, but for

machine learning the following categories split the data according to their logical

functions in discovery:

 Static data – Information that does not involve any choice in the medical

process. Examples:

o Personal information: age, gender, etc.

o Diagnosis information

o Location of clot

 Non-static data – information that could be affected by decisions in treatment.

Examples:

o Procedural information

o Device usage

o Onset to puncture – time between stroke onset to insertion of device

o Procedure duration

 “Negligible” or repetitive institutional data – Some details are simply listings of

facilities, patient numbers, etc. It could be argued that not all of these are

irrelevant, but we have discarded them for this study, either by lack of relevance,

or due to repetition in values.

5

 Outcomes and post-procedure data – There are a number of outcome

components, which reflect the condition of the patient both immediately after the

procedure and after a 90-day follow up. Life vs. death is the most basic

outcome to predict, but other measurements can provide a more accurate

picture of a living patient’s condition. Also, some outcomes might serve as

useful inputs for future conditions of the patient—some machine training can be

done using measures of the patients’ condition immediately after the procedure

to predict conditions after a 90-day follow-up with increased accuracy. To fairly

measure the machine learning algorithm’s success, however, we emphasize its

performance with most post-procedural data removed, particularly those with a

direct and obvious correlation to the status of the 90-day follow-up.

Ultimately, 40 useful instance attributes were identified for input, eliminating most

attributes occurring later than immediately after the procedure. Of the attributes

identified as possible outcome gauges, two were chosen for class attributes: 90-day

mortality, a check for patient survivability 90 days after the surgery, and 90-day MRS

(Modified Rankin Scale), a more precise measurement of the patients’ health in terms

disability. Table 1 briefly describes each MRS score.

6

Table 1 [8]

MRS Ratings

MRS Rating Description

0 No symptoms found.

1 Patient suffers from some symptoms, but is not significantly
disabled.

2 Some slight disabilities. Patient is capable of caring for
his/herself.

3 Disabilities are moderate. Patient requires assistance but is still
able to walk on his/her own.

4 Patient suffers from moderate to severe disabilities, and requires
assistance to walk.

5 Patient is bedridden and in need of continuous care.

6 Patient is deceased.

Sample set size

Because three patients had no result attributes recorded, they were eliminated

from the data set, leaving 112 instances for training and testing. Many modern data

mining efforts use massive amounts of data to sharpen weights and render detail size

maxima negligible for their algorithms, so this number could be said to be small by

relation, although it represents a great deal of gathering work and is over three times

the size of the typical medical trials examined in preliminary research.[1] [2] [3] This set

is still large enough to establish trends, but the marginal return of all 40 attributes may

be limited due to insufficient instances to train them.

Balance

In terms of 90-day mortality, the data set is well balanced, with 53 deaths and 59

survivors. The 90-day MRS benchmark, however, is unbalanced by nature. Figure 1

and Figure 2 show the outcome distributions for 90-day mortality and 90-day MRS,

respectively.

7

As a set of numbers, the MRS outcome distribution is heavily unbalanced to a

rating of 6, and drives most classifiers to overestimation. When an understanding of its

semantics is applied, however, the skewed weight towards 6 is simply a result of 6

representing death. Life, then, is divided among ratings 0-5.

Figure 1

90-day Mortality Outcome Distribution

Deaths, 53

Survivors, 59

90-day Mortality

Deaths

Survivors

8

Figure 2

90-day MRS outcome distribution

It would be beneficial for data mining if it were possible to be able to divide death

into similar sub-categories to represent varying levels of how close each patient’s

demise was to recoverability. Perhaps one patient was completely un-savable,

regardless of any intervention at all, but another might have been saved with different

choices made. This falls into the realm of speculation, however, and death is, in reality,

a condition without levels – dead is dead, and one cannot become better or worse after

dying.

Nonetheless, applying the fact that MRS = 6 refers to death, this apparently

unbalanced data set rather becomes a two-layered classification problem with sub-

problems of a much more balanced nature. Without rating 6, while we have no

instances of 5 or 0, the distribution still has a somewhat reasonable bell-curve shape.

6, 53

1, 13

2, 17

3, 15

4, 11

90-day MRS

6

1

2

3

4

9

 If the data set is first analyzed in terms of life and death, a second set of weights

could be trained for MRS ratings 0-5, using only the 59 survivors. A new instance, then,

would first be evaluated for mortality. With the prediction of death, its predicted MRS

rating would automatically be set to 6. If predicted to live, the patient’s condition would

then be evaluated by the second set of weights.

10

CHAPTER III

PROPOSED APPROACH

Choosing Classifiers

Ultimately, a variety of machine learning algorithms could be used for an

exhaustive study of this data, since automated test processes can run day and night for

further analysis. For this stage in examining the data, however, we were most

interested in a more limited set of criteria:

“White Box” Classification

Ideally, we would like the end results to be easily understandable by analysts

outside of the Information Science discipline. Multi-layered approaches, such as neural

networks, use a system of derived weights which may train well, but do not present a

clear and easily traceable line of significance back to the original attributes. Single-

layered weights can convey the significance of each attribute more plainly, and are thus

encouraged. This exclusion of machine learning complexity, of course, may eliminate

algorithms that might perform better, but similar complexities can be added with more

easily traceable layering, as will be explained later in Attribute Layering.

Initial Naïve Analysis

Initially, we would like our algorithm to make no automatic assertions that any

attributes are related to one another, allowing weights to be derived as independently as

11

possible. In the end, however, this may not be a proper constraint of the optimal

solution, since we know already that major groupings of attributes exist: patient vitals,

procedure data, and post-procedure data. Any predetermined relationships that seem

appropriate can be inserted afterwards with Attribute Layering.

Flexibility with Missing Data

Technology that handles missing data values is a must, as the data set is small

and instance loss must be kept to a minimum.

At the beginning of our study, we began manual experimentation with several

datamining approaches, using the University of Waikato’s Weka GUI [7], to find a

suitable candidate for programmatic refinement. Table 2 shows a brief synopsis of the

three algorithms which performed best, along with a Feed-Forward Neural Network,

which might be useful in the future for performance comparisons, but does not satisfy

our “white box” constraint as well as the others.

Logistic Regression proved to be the best performing approach meeting the

above criteria in the experimental stage. For this reason, coding for the remainder of

our proposed approach focused mainly on Logistic Regression as the training algorithm.

More success in the manual experiment stage does not, however, indicate that Logistic

Regression will be the best choice once all other parts of our solution are implemented,

so a return to other algorithms is far from out of question in future work.

12

Table 2 [9]

Considered Machine Learning Algorithms

Algorithm Description Pros Cons

Naïve Bayes Derives rules for
each attribute
based on
independent
probabilities

Known for good
performance with
small data sets

Best with Boolean
input.

Linear Regression Models data with
linear functions

Handles scalar
values well

Not conducive for
nominal attribute
prediction

Logistic Regression Models
probability of
Boolean output
via a Logistic

function

where is
defined as a sum
of weights
combined with
attribute values

Increased
improvement as
more instances
are added

Overestimates
weights with
disproportioned
attributes/instances
ratio

Feed-Forward
Neural Network

Layered Logistic
Regression
models with the
output of each
attribute node
tied to input of
intermediate
nodes, predicting
final outputs

Built-in automatic
layering
complexity

Relationship of
prediction to
original attributes
can be clouded

Searching for Significant Attributes

Although Logistic Regression proved to be the best of the white-box methods

evaluated in initial experimentation, it suffers from a tendency to overestimate weights in

data sets where the number of detail variables is relatively large with respect to the

number of instance samples provided.[9] This tendency is in the nature of variable

13

estimation, as particularly demonstrated in Gaussian Elimination solutions to algebraic

systems by “free variables.” [10]

Unlike the equations of a linear system in a mathematics textbook, a data set is

an abridged representative of its universe – if we do not have enough samples to pin

down the significance of each attribute provided, the significance of every attribute can

be skewed on the whole. [9] During initial experimentation, it was found that Logistic

Regression performed better after some attributes were removed from the data set.

Therefore, a means of automatically choosing a combination of attributes which best

affects prediction performance is needed. Four methods of doing so were examined,

with varying reliance on estimated weights:

Depth First Search (DFS)

A DFS approach was employed to exhaustively search every possible attribute

combination for the most effective. The complexity of this algorithm is a sum of

combinations, with 40 attributes to choose from. While this may ultimately find the best

combination given enough time, the complexity of the search skyrockets as more

attributes are added. [11]

 ∑ ∑ ∑

Some technological approaches could be used to make DFS faster, such as

multiprocessing or more robust and/or dedicated machines, but these innovations would

be unlikely to shrink the completion of DFS to a reasonable runtime. If it were possible

14

to accomplish 1,000 training iterations per second, DFS for this attribute set would still

require nearly 35 years to complete

Naïve Smart Search

To improve on the runtime of DFS, the simplest employed approach uses a

saved-progress function related to dynamic programming. As with DFS, the number of

attributes to be chosen is set up in a batch.

Given a pre-chosen attribute selection , the algorithm begins with a simple

selection of the first attributes in the set, calculating their prediction success. For

example, representing hypothetical attributes with numeric names for simplicity, with a

given and an initial prediction success rate of 60%:

Attributes Score
12345 60%

Being the first evaluation made, this score is saved as the “best” evaluation. The

search continues by examining the 6th attribute. An evaluation is made of sets of

attributes, with the new attribute replacing one of the attributes in the current “best”

evaluation.

Figure 3

Naïve Smart Search (r=5)

12345 60%

23456 57%
13456 49%
12456 52%
12356 61%
12346 63%

12345 60% 12346 63%

23467 60%
13467 64%
12467 59%
12367 61%
12347 53%

15

After the accuracy of each new evaluation is calculated, all (in the case of

our example, 6) evaluations are compared, and the best of those becomes the new

“best.” This process is repeated until all attributes have been processed.

Given one combination for the first attributes, followed by combinations for

each of the remaining attributes, we have complexity for each ,

resulting in the following complexity for calculating all :

 ∑

 ∑

By eliminating attributes that perform less accurately, Smart Search runs with a

computational complexity of percent of that required by DFS. Apart from

using no direct heuristic to further eliminate search branches, the disadvantage of using

this algorithm to build a combination set, starting from attribute 1 and traversing to

attribute , is that, by design, many correlations between attributes from one side of the

set to the other are eliminated from evaluation.

Weight-Based Search

The particularly crippling reality for any attribute-choosing algorithm is that each

unit of complexity represents a training session, which is expensive in its own right.

With 112 examples, our data set’s training session will require a relatively short period

of machine time, but as the dataset grows further elimination of complexity may play a

key role in investigating larger data sets.

Like DFS, the Naïve Smart Search algorithm does not use any individual

heuristic as a criterion for attribute elimination, but rather eliminates attribute

16

combinations based on the performance of the combination itself. While a drastic

improvement on DFS’s complexity, Naïve Smart Search still operates at

complexity for a complete search.

Naturally, the magnitude of the weight assigned to each attribute is a measure of

that attribute’s estimated significance to the outcome of the current combination. Thus,

it is a natural and automatic heuristic for eliminating less effective attributes – this

eliminates the need to evaluate each attribute in a combination as a drop candidate,

reducing complexity by a factor of , if following the pattern of Naïve Smart Search.

 ∑

 ∑

While this application significantly reduces the complexity of Naïve Smart Search

in its steps, it still retains complexity in its upper bound. Carrying reliance on the

heuristic further, it would be possible to begin with all 40 attributes, eliminating them one

at a time according to the lowest weight, until the outcome of the machine’s prediction

ceased to improve, coming to an estimated set of “most significant attributes” in

time.

17

Figure 4

Weight-Based Top-Down Attribute Elimination

However, this heuristic is not exact, and becomes potentially less exact as the

initial set of attributes becomes larger. [9] If Logistic Regression optimally assigns

weights at the dataset’s highest level of attributes, there is no need for an attribute-

choosing algorithm in the first place, except to prove the fact. On the other hand,

building a set from 1 to requires more training iterations, and may miss some

important hidden relationships between attributes that beginning at may spot.

To cover both lines of thought, it would be beneficial to use the heuristic to

develop an algorithm which builds a most-significant-attribute combination, starting with

one attribute and traversing , with a complexity closer to linear time.

Use All
Attributes

Train & Test

Remove
least

significant
attribute

Train & Test

Performance
Improves?

START

Replace
last

removed
attribute

STOP

NO YES

18

Weight-Based Smart Search

To take full advantage of a weight-based heuristic with a 1 to algorithm, adding

and removing attributes on the fly can eliminate the summation property of Naïve Smart

Search. The state machine in Figure 5 illustrates three different phases for adding and

removing attributes in a Weight-Based Smart Search. The algorithm begins by adding

attributes and evaluating Logistic Regression after each add. As long as the

performance of our combination improves, we continue adding.

Figure 5

State Machine for Weight-Based Smart Search

When adding an additional attribute harms our data mining performance, we then

move to a second state, which removes a single attribute at a time, starting with the

attribute holding the smallest weight, that is, the “least significant” attribute. If this

19

removal improves our data mining performance beyond that of the current best

combination, the machine moves to a 3rd state. If this removal does not improve

performance, the attribute is replaced and the “next least significant” attribute is similarly

removed. If this state finds itself evaluating the current best combination by one of

these removals, it returns to the 1st state.

In the 3rd state, the least significant attribute in the current best combination is

removed. If there is an improvement in performance, this action is repeated. If not, the

attribute is replaced, and the machine returns to the 1st state. When all attributes have

been evaluated, the machine finishes in the 1st state.

Unlike the previously mentioned algorithms, Weight-Based Smart Search is more

stochastic in its complexity, but reasonably follows some multiple of in the average

case. In the best case – that is, the case where the best combination is that of all

attributes, and a choosing algorithm is least needed – this algorithm runs with exactly

iterations. The worst case exists via a course of events exploiting an unlikely blunder in

training:

1. After building a large combination of attributes in state 1 by adding half of , an

attempt to add the next attribute moves the algorithm to state 2.

2. While the new attribute is of no relation to the class attribute, Logistic Regression

falsely assigns greatest significance to the new attribute.

3. State 2 traverses the entire combination with training sessions without improvement,

until finally removing the new attribute and returning to state 1.

4. Repeat for the remainder of the set.

20

While such a course of events could lead to

 performance, a data set would

almost certainly need to be engineered to trick the training algorithm into making such

poor weight estimations, and the prediction outcome for such training would be unlikely

to be fruitful in the first place. Events of a similar nature, however, are not impossible

when this algorithm is evaluating data sets, which are only filled with droves of attributes

with no relation to the class attribute, where prediction outcome is poor across the board

and improvements are sporadic and coincidental.

21

CHAPTER IV

IMPLEMENTATION

As general data mining technologies already exist, it was surmised early in the

project that there was no need to reinvent the wheel with respect to implementing the

chosen data mining techniques. The Weka project, from the Machine Learning Group

at the University of Waikato, provides a library implementing a range of classically

defined data mining algorithms, which handle missing values. [4]

After some preliminary experimentation using the Weka software itself, our

attribute choosing algorithms were implemented in Java, utilizing Weka object imports.

A new class, LogisticCombiner, contains the attribute searching algorithms combined

with utilities for integrating this data with Weka.

Because some of these algorithms have potential to run for hours (in the case of

DFS, thousands of years), with a significant usage of the heap, a tracking interface was

constructed for ease of reference and for tracking algorithms as they run.

We used 10-fold cross validation to train the weights for Logistic Regression. For

each training session, prediction training was repeated 10 times (for 10 folds) with a

randomly selected testing partition of 10 instances per fold. [9]

While the use of Weka’s libraries saved a considerable amount of time for

constructing data mining algorithms that have already been built, over the course of

working with their Logistic Regression function it was found that it only works with

22

nominal (non-numeric) values. Numeric values must be converted into a list of

nominals, essentially destroying the advantage of training according to magnitude. This

method makes for fast, efficient training, particularly when data attributes are not

numeric, but there is no recognition of marginal differences between attributes.

Age 35, for instance, is evaluated as being equally different from age 80 as is

age 72 – a considerable drawback for evaluating the scalar magnitude of numeric

attributes. To address this problem, a second data set was created by adding series of

threshold Boolean attributes. Rather than simply listing the age as a list of nominal

values, we attempted to force the machine learning algorithm to recognize the

magnitude of differences between ages and other numeric attributes by adding several

other attributes: “Age < 20,” “Age < 30,” “Age < 35,” etc.

Finally, a Graphical User Interface (GUI) was constructed to provide a user-

friendly means to set up new searches, and track the results. Since some of these

algorithms can run for a considerable amount of time, feedback was multi-threaded to

maintain a reliable status on the current best find of the algorithm at any given point in

the search. Figure 6 shows a screen shot of the GUI amid a Naïve Smart Search of

attributes to predict 90-day mortality.

23

Figure 6.

Tracking GUI for Attribute Finding and Logistic Training Application

24

CHAPTER V

RESULTS

Due to constraints of time, a complete measurement of attribute finding with

Depth First Search was impossible. Searching with a constraint of 3 attributes for

single-layered Logistic Regression required 8 hours on an Intel i7 system with 1 GB

dedicated to the heap, yielding a success rate of 63% for 90-day mortality training.

Time prevented testing with larger sets of .

Naïve Smart Search was able to reduce the runtime for a single attribute

constraint to minutes, and completed the entire batch of constraints in 40 minutes, with

a success rate averaging at roughly 74+-0.5% in single-layer Logistic Regression. False

negatives vs. false positives were balanced.

Top-down weight-based attribute choosing, while finishing very quickly in a few

seconds, only managed to yield a 63% success rate. As this algorithm is not novel to

this project, it might be said to be a control on the other end of the spectrum to DFS.

Weight-based Smart Search, executing in less than 30 seconds, yields a success

rate averaging around 70%. Table 3 shows the time requirements of each search

algorithm for mortality prediction.

25

Table 3

Time Requirements for Mortality Prediction Searches

Algorithm Time, raw data Time, Threshold Booleans

DFS Arbitrarily Large Arbitrarily Large

Naïve Smart Search 40 minutes Several Days

Top-Down Elimination 2-3 seconds 3 seconds

Weight-based Smart Search 30 seconds 30 seconds

Adding threshold Boolean values significantly increased prediction success rates,

but also added more attributes to the data set. This did not greatly affect the run times

of our Weight-based algorithms, which complete in a matter of seconds in the first

place, but it considerably multiplied the run time required for Naïve Smart Search.

Figure 7 shows a graphic representation of all four algorithms, along with

performance without attribute elimination. Since we were unable to run through DFS

completely, we do not know how well its best attribute selection would perform.

Because all of our other search algorithms are subsets of DFS, however, we know that

the final pick of DFS would perform at least as well as the best values of the others, if it

were given time to finish. With threshold Booleans, Naïve Smart Search ran for three

days without completion – its best score prior to termination is recorded, explaining the

disparity in its displayed marginal success over Weight-based Smart Search.

26

Figure 7

Mortality Prediction Success

MRS prediction, being a more complicated problem, required more time to

process and was not as successful. While Naïve Smart Search ultimately finds better

performing attribute sets than the weight-based algorithms, its computational

disadvantage to them becomes more apparent as more complicated training sessions

are required, or larger data sets examined.

53

74 74

63

70
68

80 80

71

80

50

55

60

65

70

75

80

85

No attribute
elimination

DFS Naïve Smart
Search

Weight-based Top
Down Elimination

Weight-based
Smart Search

Mortality Prediction Success (%)

raw data Threshold Boolean

27

Table 4

Time Requirements for MRS Prediction Searches

Algorithm Time, raw data Time, Threshold Booleans

DFS Arbitrarily Large Arbitrarily Large

Naïve Smart Search Days Days

Top-Down Elimination 6 minutes 3-4 minutes

Weight-based Smart Search 76 seconds 69 seconds

Figure 8

Single-Layer MRS Prediction Success

24

49 49

30

49

25

54 54

30

53

0

10

20

30

40

50

60

No attribute
elimination

DFS Naïve Smart
Search

Weight-based Top
Down Elimination

Weight-based
Smart Search

Single-Layer MRS Prediction Success (%)

raw data Threshold Boolean

28

As seen in Table 4, an interesting shift in time requirements occurs between the

results for 90-day mortality and 90-day MRS. When predicting mortality, Weight-based

Top-down Elimination completed within 3 seconds for raw data and threshold Boolean

sets. Weight-based Smart Search finished in 30 seconds for both, while Naïve Smart

Search saw a considerable swell in run time required for the larger threshold Boolean

set, due to its O(n2) complexity.

 When evaluating 90-day MRS, however, Weight-based Top-down Elimination

surpasses Weight-based Smart Search in time required, as training for raw data

surpasses the training needed for the threshold Boolean set for both of these. The

former can be explained by the extended time needed for MRS training – Weight based

Top-down Elimination begins with all 40 attributes and eliminates them one at a time,

while Weight-based Smart Search begins with only 1 attribute, and adds additional

attributes one at a time, continually eliminating those which harm performance. The

larger configurations of Weight-based Top-down search in the beginning require a great

deal more time to train than the smaller configurations of Weight-based Smart Search

throughout.

 The latter might be explained by how Weka’s implementation assigns weights.

With raw data, each possible value for a nominal attribute is converted into a Boolean

attribute, and then each derived Boolean is assigned 7 weights for 90-day MRS

outcomes 0-6. Since the threshold Boolean set contains Boolean values which are

usually chosen over the nominal attributes from which they were derived prior to any

attribute searching, they are fewer in number than each nominal possibility and are only

29

assigned 7 weights each. This means that, while more training sessions may be

required, each training session can be faster than those using the raw data.

30

CHAPTER VI

SUGGESTED FUTURE WORK

While attribute choosing has increased the prediction success of Logistic

Regression for this data set, the following concepts are suggested as explorations for

future enhancements of this project.

Solution Layering

As examined before, the distribution of results for 90-day MRS is initially

unbalanced, because it is the result of taking the distribution of a balanced Boolean

outcome – 90-day mortality – and splitting one of its results into 6 sub-groups, while the

other remains intact under a different semantic. Since our mortality prediction has an

80% success rate, we could enhance our MRS prediction by using our mortality

algorithm to predict MRS = 6. All of those patients who were predicted to survive could

then be evaluated using a set of weights, which were only trained using instances

where the 90-day MRS outcome was 0-5.

Figure 9 shows a graphical representation of Solution Layering for a hypothetical

90-day MRS prediction with 5 attributes. After using a choosing algorithm to optimize a

mortality prediction (by eliminating attributes 3 and 5), a prediction of death becomes a

prediction of MRS=6. Each patient that is predicted to survive is then re-evaluated with

a 90-day MRS prediction system that is trained only with instances with values 0-5.

31

Because the false positives resulting from training for 90-day mortality prediction

are consistently balanced, its 80% success rate can be combined with the 53.7%

success rate found for the 0-5 90-day MRS training algorithm to project a likely success

rate for 2-layered 90-day MRS prediction:

SuccessMortality x (Death (%) + Survivors (%) x SuccessMRS=0-5)

= 80% x (48% + 52% x 53.7%)

= 60.7%

Figure 9

Solution Layering for 90-day MRS

1 2 3 54

Mortality

MRS = 6

DEATH

1 2 3 54

MRS = 0-5

LIFE

32

Attribute Significance Layering

While eliminating less-significant attributes can improve the performance of

Logistic Regression, the unfortunate fact remains that many of those eliminated

attributes may still have a significant influence on each respective outcome – they are

eliminated, simply because we do not have enough samples to pinpoint their

significance, and their presence therefore skews more significant attributes. If we could

somehow include them in our estimations for an improvement in prediction

performance, we could both put their significance to use, and better prepare for

predictions where the most significant attributes are not present.

Addressing the latter issue can be done simply by removing more significant

attributes from the dataset and running our attribute finding algorithms again, finding

successively significant attributes and setting up prediction criteria with them. This can

make for a robust classification system, which makes the best prediction for a new

instance based on the most significant data provided, without violating our white-box

constraint.

To address the former, a layering of Logistic Regression training might be used,

at the cost of adding further repetitions of search time. Once the most significant

attributes are found, we can use their weights to combine them into a single attribute of

the same class type as the class attribute, with its value set at the predicted outcome.

Replacing the most significant attributes in the original data set with the new attribute

could then create a new data set. Those attributes having been reduced to one single

attribute, a new search could then be conducted to find the most significant attributes of

33

the new dataset, to see if there is any improvement in our prediction. When a point is

reached where no new improvements can be made, the search is over.

Figure 10 displays a graphic representation of Significance Layering in a

hypothetical 5-attribute group, where attributes 3 and 5 are ruled out by our Attribute

Search in the first layer, while attributes 1, 2, and 4 are combined in initial trained

predictor P1. Attributes 3 and 5 are then evaluated in a second predictor P2, along with

predictor P1 as an additional attribute.

Figure 10

Attribute Significance Layering

It is important to note that, unlike the layers in a Feed-Forward Neural Network,

this second layer of weights does not cloud our understanding of the first layer. P1 is the

result of using the algorithms already implemented in this project. P2 is the result of

using P1’s predictions to form a new set of data with the remaining attributes, and then

34

running the same algorithms. We still have the same level of information obtained by

previous efforts through P1, but by adding a second layer we are now potentially adding

more details to our understanding of how significant the other attributes are. Layering in

this fashion strengthens our White-Box standard.

Logical Group Layering

Attribute Layering also provides us with a means of associating attributes into

logical groups. Rather than simply converging attributes according to their significance

via our attribute finding algorithms, we might group attributes into logical categories.

Consider the directional problem between symptoms, treatments, and disease.

Symptoms and treatments are both indicators that a patient has a particular disease,

and could be used by machine learning algorithms to predict or classify a patient’s

health – a person who has been treated for cancer, for example, is more likely to suffer

from the effects of cancer than any randomly selected person who has not been treated.

A machine learning algorithm would rightly use cancer treatment to predict whether a

patient will suffer from the effects of cancer.

Using treatments to predict the effects of a disease, however, is actually a

reliance of the algorithm upon the patient’s doctor for diagnosis. It would be more

useful if the algorithm could predict a patient’s outcome with symptoms only, and then

re-evaluate patients with treatment attributes, to see if treatment attributes might affect

the patient’s projected likelihood of encountering symptoms.

Figure 11 shows a graphical example of this process. First, symptoms S1, S2,

and S3 are examined by an attribute finding algorithm and predictor Ps is trained using

selected attributes S1 and S2. The predictions of Ps are added as an attribute to a new

35

set with treatments T1, T2, and T3. The attribute finding algorithm eliminates T2, and a

new predictor Pst is trained with Ps, T1, and T3.

Figure 11

Logical Group Layering

Other Suggested Enhancements

In addition to layering, an examination of attribute finding with other classical

machine-learning algorithms might have a worthwhile cost-benefit ratio. More benefits

might be found with the same practices applied to other algorithms.

An implementation of a patient outcome prediction tool, using the findings of

machine learning, could add a useful real-world application to this list of assets. The

use of post-procedure data could also increase its success rate when available. While

using death on the operating table to predict 90-day mortality would be a completely

36

useless (although unvaryingly successful) implementation of machine learning, use of

post-procedure MRS evaluations of 0-5 could significantly improve prediction criteria for

90-day mortality and 90-day MRS. A patient outcome prediction tool, of course, would

need to be robust enough to work with users who do not have post-procedure data as

well.

37

CHAPTER VII

CONCLUSIONS

The attribute finding algorithms employed in this project successfully increased

the prediction performance of Logistic Regression significantly in both chosen

outcomes. The ultimate success results produced by these algorithms leave

considerable room for improvement, particularly for MRS prediction.

While this project is dedicated to predicting the surgical outcomes of stroke

patients, the fruits of this research are more generally applicable to Information Science

as a whole. These solutions are not particular to medical data mining – machine

learning for any dataset with the same concerns for data Instances vs. data attributes

can benefit from attribute choosing algorithms.

38

REFERENCES CITED

[1] Ellen Barker. modernmedicine.com. [Online].
http://www.modernmedicine.com/modernmedicine/article/articleDetail.jsp?id=3105
63

[2] Kyra J., Thomas G. Brott Becker. (2005) Approval of the MERCI Clot Retriever: A
Critical View.

[3] T.G., B.W. Baxter, T.A. Feintuch, N.A. Desbiens Devlin. (2007) The Merci
Retrieval System for Acute Stroke: The Southeast Region Stroke Center
Experience.

[4] TG, MM Rymer, RF Budzik, TG Devlin, HL Lutsep, WS Smith Jovin,
"INTERVENTIONAL ACUTE STROKE THERAPY WITH THE MERCI
RETRIEVER EMBOLECTOMY DEVICE," Erlanger Hospital, Chattanooga, TN,
2010.

[5] Tennessee Stroke Registry, "Stroke in Tennessee," TN Advisory Counsel for
Heart Disease and Stroke Prevention, 2011.

[6] Zeno Gantner, Lars Schmidt-Thieme Thai-Nghe, "A New Evaluation Measure for
Learning from Imbalanced Data," in The 2011 International Joint Converence on
Neural Networks.

[7] Charles X., Chenghui Li Ling. Data Mining for Direct Marketing: Problems and
Solutions.

[8] Cowen and Company. Rankinscale.org. [Online].
http://www.rankinscale.org/docs/Section_2-Extract_SG_Cowen-
Therapeutic_Outlook-02102007.pdf

[9] Ian H., Eibe Frank Witten, Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition. San Francisco, CA, USA: Elsevier, Inc., 2005.

[10] Jim Hefferon, Linear Algebra. Colchester, VM, USA: Saint Michael's College.

[11] Jerome H. Klotz, A Computational Approach to Statistics. Madison, WN, USA:
University of Wisconsin at Madison.

[12] The University of Waikato. [Online]. http://www.cs.waikato.ac.nz/ml/weka/

http://www.modernmedicine.com/modernmedicine/article/articleDetail.jsp?id=310563%20
http://www.modernmedicine.com/modernmedicine/article/articleDetail.jsp?id=310563%20
http://www.rankinscale.org/docs/Section_2-Extract_SG_Cowen-Therapeutic_Outlook-02102007.pdf
http://www.rankinscale.org/docs/Section_2-Extract_SG_Cowen-Therapeutic_Outlook-02102007.pdf
http://www.cs.waikato.ac.nz/ml/weka/

39

APPENDIX A

DATA ATTRIBUTES

40

Data Attribute Brief Explanation

Patient Data

Gender Male/female

Age 18+

Baseline MRS Patient’s known MRS condition prior to stroke

Baseline NIHSS Known NIHSS condition prior to stroke – another
measure of circulatory health, like MRS

TICI – Pre Thrombolysis in Cerebral Infarction – drug-
induced clot busting success TICI – Post

Suspected Stroke Etiology Diagnosis

R-Anterior Clot location(s)

L-Anterior

Posterior

Internal Carotid Artery

Middle Cerebral Artery

Procedure data

Intubation Yes/No

Number of Retriever Passes

Total MCs used

IV Lytic Yes/No Intravenous thrombolytic therapy (activase)

IA Lytic Yes/No Intra-arterial thrombolytic therapy

IA Vasodilator yes/no Arterial muscle relaxer

Interventionalist Last Name Name of surgeon

Type of Proc Steps

Number of Steps

L4 devices used Quantity of each device used in procedure.

L5 devices used

L6 devices used

Kmini device used

Count of V2.5 Firm

Count of V2.5 Soft

Count of V3.0 Firm

Count of V3.0 Soft

Count of V2.0 Firm

Count of V2.0 Soft

Onset to arterial puncture Time between onset of stroke to entrance of
device

Length of procedure

41

Data Attribute Brief Explanation

Patient Data during or immediately post-procedure

Recan (TICI 2a, 2b, 3) Recanalization

Recan (TICI 2b, 3)

Systolic Blood Pressure

Diastolic Blood Pressure

Length of stay

Outcomes (used for class attributes)

90-day mortality Patient is living or dead at 90-day follow-up

90-day MRS MRS after 90-day follow-up

42

VITA

Matthew McNabb was born in Fort Oglethorpe, GA to Terry and Mary McNabb,

the younger of two children. After graduating Marion County High School in Jasper, TN,

he attended the University of Tennessee at Chattanooga as a student of Music, and

later double-majored in Computer Science. After graduation, he worked for a semester

under a graduate assistantship with the University, jointly developing the “Music

Therapy Gateway in Communication” project. Later, he was hired by Blue Cross Blue

Shield of Tennessee as a software developer while continuing a Master of Science

degree in Computer Science at UTC. Still employed by BCBST, he is awaiting

graduation in August of 2012.

