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ABSTRACT 
 
 

Mechanical Embolus Removal in Cerebral Ischemia (MERCI) has been 

supported by medical trials as an improved method of treating ischemic stroke past the 

safe window of time for administering clot-busting drugs, and was released for medical 

use in 2004.  The importance of analyzing real-world data collected from MERCI clinical 

trials is key to providing insights on the effectiveness of MERCI. Most of the existing 

data analysis on MERCI results has thus far employed conventional statistical analysis 

techniques.  To the best of the knowledge acquired in preliminary research, advanced 

data analytics and data mining techniques have not yet been systematically applied.  To 

address the issue in this thesis, a comprehensive study on employing state of the art 

machine learning algorithms was conducted to generate prediction criteria for the 

outcome of MERCI patients. Specifically, the issue of how to choose the most 

significant attributes of a data set with limited instance examples was investigated. A 

few search algorithms to identify the significant attributes of the data set are proposed, 

followed by a performance analysis for each algorithm. Finally, this approach is applied 

to the real-world medical data provided by Southeast Regional Stroke Center at 

Erlanger Hospital of Chattanooga, Tennessee. Our experimental results have 

demonstrated that our proposed approach performs well.   
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CHAPTER I 

INTRODUCTION 

 
Mechanical Embolus Removal in Cerebral Ischemia (MERCI) is a relatively new 

medical procedure released by the Food and Drug Administration (FDA) in 2004, which 

widens the operational window for removing deadly blood clots from the brain to eight 

hours after the onset of acute ischemic stroke (AIS).  Activase, a drug released in 1996 

for dissolving the clots without mechanical operation, is highly effective but usable for 

only three hours after stroke onset.   Although its use improves survivability by 30%, 

only a tiny fraction of patients (2-3%) actually qualify for dosage.  This expansion of time 

offered by MERCI can be critical to the patient’s outcome. [1] 

While the usage of mechanical extraction is growing and test results are positive, 

it is not yet the most common of stroke-fighting tools.  Receiving criticism at its initial 

approval in late 2004 and early 2005 due to alleged weaknesses in the FDA test 

requirements [2], MERCI has since been found to be “cost effective” by controlled 

medical experiments and practice results, when compared to other extraction 

methods.[3] 

Erlanger Hospital of Chattanooga, Tennessee has produced a study strictly 

confined to stroke patients treated by MERCI, including a generous collection of detail 

with regards to procedure analysis, including patient diagnosis coming in the door, 

surgical procedure data, patient status after the procedure, and 90-day follow-ups. [4]  



2 
 

By introducing data mining techniques to this study, it is the hope of this project to 

advance surgical outcome prediction machine learning with the ultimate goal of 

predicting outcomes at incremental points in treatment.  To this end, techniques will be 

used which produce training results that can be readily compared to conventional 

statistical analysis. 

Much larger collections of data exist in state or national stroke registries, but 

these sources were found to be difficult to access for the purposes of this project.  It is 

also is not guaranteed that these registries would contain specific details regarding 

MERCI, or easily discernable qualifications for patients who would be eligible.[5]  The 

smaller collection of data provided by Erlanger represents a more specific study of 

patients in the Chattanooga area, as opposed to a general collection of stroke patients 

of various types over a large geographical area.  Furthermore, working with a smaller 

data set with many attributes per instance is an issue that we have not seen addressed 

as frequently in our search for other data mining studies, and a new study on this 

subject might open another area of discourse in Information Science on solving some 

real problems. [6,7]
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CHAPTER II 

DATA 

 
Erlanger’s study consists of a total of 115 patients meeting the following criteria: 

 Each patient was diagnosed with acute ischemic stroke 

 Arrival for treatment was between 3 and 8 hours after stroke onset. 

 Each patient was over 18 years of age. 

 Each patient suffered from hypo-density in less than 1/3 middle cerebral 

arteries. 

Because this data set is exclusively made up of MERCI patients, our study is 

specifically limited to gauging factors for patient health and mortality given MERCI 

treatment.  Therefore, without a strict control group our goal becomes not that of 

measuring the effectiveness of MERCI itself in relation to other treatments or little to no 

treatment at all, but rather a search for relations among more specific factors within the 

MERCI process itself. 

This data set had already been thoroughly analyzed with conventional statistics 

prior to our having received it. [4]  This provides some gauge with which to measure the 

progress of machine learning, and to recognize how reasonable new discoveries are.  

Our goal is specifically to create a successful automated prediction system, which 

predicts the outcomes associated with subsequent input data of a similar sort and is 
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easily discernable by analysts both inside and out of the Information Science discipline 

to determine the most significant prediction sources. 

 
Detail Size 

The detail size of this sample set provides for a variety of choices from which to 

draw statistical trends.  These details can be categorized a number of ways, but for 

machine learning the following categories split the data according to their logical 

functions in discovery: 

 Static data – Information that does not involve any choice in the medical 

process.  Examples: 

o Personal information:  age, gender, etc. 

o Diagnosis information 

o Location of clot 

 Non-static data – information that could be affected by decisions in treatment.  

Examples: 

o Procedural information 

o Device usage 

o Onset to puncture – time between stroke onset to insertion of device 

o Procedure duration 

 “Negligible” or repetitive institutional data – Some details are simply listings of 

facilities, patient numbers, etc.  It could be argued that not all of these are 

irrelevant, but we have discarded them for this study, either by lack of relevance, 

or due to repetition in values. 
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 Outcomes and post-procedure data – There are a number of outcome 

components, which reflect the condition of the patient both immediately after the 

procedure and after a 90-day follow up.  Life vs. death is the most basic 

outcome to predict, but other measurements can provide a more accurate 

picture of a living patient’s condition.  Also, some outcomes might serve as 

useful inputs for future conditions of the patient—some machine training can be 

done using measures of the patients’ condition immediately after the procedure 

to predict conditions after a 90-day follow-up with increased accuracy.  To fairly 

measure the machine learning algorithm’s success, however, we emphasize its 

performance with most post-procedural data removed, particularly those with a 

direct and obvious correlation to the status of the 90-day follow-up. 

Ultimately, 40 useful instance attributes were identified for input, eliminating most 

attributes occurring later than immediately after the procedure.  Of the attributes 

identified as possible outcome gauges, two were chosen for class attributes:  90-day 

mortality, a check for patient survivability 90 days after the surgery, and 90-day MRS 

(Modified Rankin Scale), a more precise measurement of the patients’ health in terms 

disability.  Table 1 briefly describes each MRS score. 
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Table 1 [8] 

MRS Ratings 

MRS Rating Description 

0 No symptoms found. 

1 Patient suffers from some symptoms, but is not significantly 
disabled. 

2 Some slight disabilities.  Patient is capable of caring for 
his/herself. 

3 Disabilities are moderate.  Patient requires assistance but is still 
able to walk on his/her own. 

4 Patient suffers from moderate to severe disabilities, and requires 
assistance to walk. 

5 Patient is bedridden and in need of continuous care. 

6 Patient is deceased. 

 
 
Sample set size   

Because three patients had no result attributes recorded, they were eliminated 

from the data set, leaving 112 instances for training and testing.  Many modern data 

mining efforts use massive amounts of data to sharpen weights and render detail size 

maxima negligible for their algorithms, so this number could be said to be small by 

relation, although it represents a great deal of gathering work and is over three times 

the size of the typical medical trials examined in preliminary research.[1] [2] [3]  This set 

is still large enough to establish trends, but the marginal return of all 40 attributes may 

be limited due to insufficient instances to train them. 

 
Balance 

In terms of 90-day mortality, the data set is well balanced, with 53 deaths and 59 

survivors.  The 90-day MRS benchmark, however, is unbalanced by nature.  Figure 1 

and Figure 2 show the outcome distributions for 90-day mortality and 90-day MRS, 

respectively.   
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As a set of numbers, the MRS outcome distribution is heavily unbalanced to a 

rating of 6, and drives most classifiers to overestimation.  When an understanding of its 

semantics is applied, however, the skewed weight towards 6 is simply a result of 6 

representing death.  Life, then, is divided among ratings 0-5.   

 

Figure 1 

90-day Mortality Outcome Distribution 

 

Deaths, 53 

Survivors, 59 

90-day Mortality 

Deaths

Survivors
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Figure 2 

90-day MRS outcome distribution 

 
It would be beneficial for data mining if it were possible to be able to divide death 

into similar sub-categories to represent varying levels of how close each patient’s 

demise was to recoverability.  Perhaps one patient was completely un-savable, 

regardless of any intervention at all, but another might have been saved with different 

choices made.  This falls into the realm of speculation, however, and death is, in reality, 

a condition without levels – dead is dead, and one cannot become better or worse after 

dying. 

Nonetheless, applying the fact that MRS = 6 refers to death, this apparently 

unbalanced data set rather becomes a two-layered classification problem with sub-

problems of a much more balanced nature. Without rating 6, while we have no 

instances of 5 or 0, the distribution still has a somewhat reasonable bell-curve shape.  

6, 53 
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 If the data set is first analyzed in terms of life and death, a second set of weights 

could be trained for MRS ratings 0-5, using only the 59 survivors.  A new instance, then, 

would first be evaluated for mortality.  With the prediction of death, its predicted MRS 

rating would automatically be set to 6.  If predicted to live, the patient’s condition would 

then be evaluated by the second set of weights. 
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CHAPTER III 

PROPOSED APPROACH 
 

Choosing Classifiers 

Ultimately, a variety of machine learning algorithms could be used for an 

exhaustive study of this data, since automated test processes can run day and night for 

further analysis.  For this stage in examining the data, however, we were most 

interested in a more limited set of criteria: 

“White Box” Classification 

Ideally, we would like the end results to be easily understandable by analysts 

outside of the Information Science discipline.  Multi-layered approaches, such as neural 

networks, use a system of derived weights which may train well, but do not present a 

clear and easily traceable line of significance back to the original attributes.  Single-

layered weights can convey the significance of each attribute more plainly, and are thus 

encouraged.  This exclusion of machine learning complexity, of course, may eliminate 

algorithms that might perform better, but similar complexities can be added with more 

easily traceable layering, as will be explained later in Attribute Layering. 

Initial Naïve Analysis 

Initially, we would like our algorithm to make no automatic assertions that any 

attributes are related to one another, allowing weights to be derived as independently as 
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possible.  In the end, however, this may not be a proper constraint of the optimal 

solution, since we know already that major groupings of attributes exist:  patient vitals, 

procedure data, and post-procedure data.  Any predetermined relationships that seem 

appropriate can be inserted afterwards with Attribute Layering.  

Flexibility with Missing Data 

Technology that handles missing data values is a must, as the data set is small 

and instance loss must be kept to a minimum. 

At the beginning of our study, we began manual experimentation with several 

datamining approaches, using the University of Waikato’s Weka GUI [7], to find a 

suitable candidate for programmatic refinement.  Table 2 shows a brief synopsis of the 

three algorithms which performed best, along with a Feed-Forward Neural Network, 

which might be useful in the future for performance comparisons, but does not satisfy 

our “white box” constraint as well as the others.  

Logistic Regression proved to be the best performing approach meeting the 

above criteria in the experimental stage.  For this reason, coding for the remainder of 

our proposed approach focused mainly on Logistic Regression as the training algorithm.  

More success in the manual experiment stage does not, however, indicate that Logistic 

Regression will be the best choice once all other parts of our solution are implemented, 

so a return to other algorithms is far from out of question in future work. 
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Table 2 [9] 

Considered Machine Learning Algorithms 

Algorithm Description Pros Cons 

Naïve Bayes Derives rules for 
each attribute 
based on 
independent 
probabilities  

Known for good 
performance with 
small data sets 

Best with Boolean 
input.   

Linear Regression Models data with 
linear functions 

Handles scalar 
values well 

Not conducive for 
nominal attribute 
prediction 

Logistic Regression Models 
probability of 
Boolean output 
via a Logistic 

function 
  

    
 

where   is 
defined as a sum 
of weights 
combined with 
attribute values 

Increased 
improvement as 
more instances 
are added  

Overestimates 
weights with 
disproportioned 
attributes/instances 
ratio 

Feed-Forward 
Neural Network 

Layered Logistic 
Regression 
models with the 
output of each 
attribute node 
tied to input of 
intermediate 
nodes, predicting 
final outputs 

Built-in automatic 
layering 
complexity 

Relationship of 
prediction to 
original attributes 
can be clouded 

 
 
Searching for Significant Attributes 

Although Logistic Regression proved to be the best of the white-box methods 

evaluated in initial experimentation, it suffers from a tendency to overestimate weights in 

data sets where the number of detail variables is relatively large with respect to the 

number of instance samples provided.[9]  This tendency is in the nature of variable 
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estimation, as particularly demonstrated in Gaussian Elimination solutions to algebraic 

systems by “free variables.” [10]   

Unlike the equations of a linear system in a mathematics textbook, a data set is 

an abridged representative of its universe – if we do not have enough samples to pin 

down the significance of each attribute provided, the significance of every attribute can 

be skewed on the whole. [9]  During initial experimentation, it was found that Logistic 

Regression performed better after some attributes were removed from the data set.  

Therefore, a means of automatically choosing a combination of attributes which best 

affects prediction performance is needed.  Four methods of doing so were examined, 

with varying reliance on estimated weights: 

 
Depth First Search (DFS) 

 
A DFS approach was employed to exhaustively search every possible attribute 

combination for the most effective.  The complexity of this algorithm is a sum of 

combinations, with 40 attributes to choose from.  While this may ultimately find the best 

combination given enough time, the complexity of the search skyrockets as more 

attributes are added. [11] 

 

              ∑        ∑         ∑
   

         

  

   

  

   

 

   

             

 
Some technological approaches could be used to make DFS faster, such as 

multiprocessing or more robust and/or dedicated machines, but these innovations would 

be unlikely to shrink the completion of DFS to a reasonable runtime.  If it were possible 
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to accomplish 1,000 training iterations per second, DFS for this attribute set would still 

require nearly 35 years to complete 

 
Naïve Smart Search 

 
To improve on the runtime of DFS, the simplest employed approach uses a 

saved-progress function related to dynamic programming.  As with DFS, the number of 

attributes to be chosen is set up in a batch. 

Given a pre-chosen attribute selection  , the algorithm begins with a simple 

selection of the first   attributes in the set, calculating their prediction success.  For 

example, representing hypothetical attributes with numeric names for simplicity, with a 

given     and an initial prediction success rate of 60%: 

Attributes Score 
12345  60% 
 
Being the first evaluation made, this score is saved as the “best” evaluation.  The 

search continues by examining the 6th attribute.  An evaluation is made of   sets of 

attributes, with the new attribute replacing one of the attributes in the current “best” 

evaluation. 

 

Figure 3 

Naïve Smart Search (r=5) 

12345    60%

23456    57%
13456    49%
12456    52%
12356    61%
12346    63%

12345    60% 12346    63%

23467    60%
13467    64%
12467    59%
12367    61%
12347    53%
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After the accuracy of each new evaluation is calculated, all     (in the case of 

our example, 6) evaluations are compared, and the best of those becomes the new 

“best.”  This process is repeated until all attributes have been processed.   

Given one combination for the first   attributes, followed by   combinations for 

each of the remaining     attributes, we have          complexity for each  , 

resulting in the following complexity for calculating all  : 

                       ∑        

 

   

  ∑         

  

   

        

By eliminating attributes that perform less accurately, Smart Search runs with a 

computational complexity of             percent of that required by DFS.  Apart from 

using no direct heuristic to further eliminate search branches, the disadvantage of using 

this algorithm to build a combination set, starting from attribute 1 and traversing to 

attribute  , is that, by design, many correlations between attributes from one side of the 

set to the other are eliminated from evaluation.   

 

Weight-Based Search 
 

The particularly crippling reality for any attribute-choosing algorithm is that each 

unit of complexity represents a training session, which is expensive in its own right.  

With 112 examples, our data set’s training session will require a relatively short period 

of machine time, but as the dataset grows further elimination of complexity may play a 

key role in investigating larger data sets. 

Like DFS, the Naïve Smart Search algorithm does not use any individual 

heuristic as a criterion for attribute elimination, but rather eliminates attribute 
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combinations based on the performance of the combination itself.  While a drastic 

improvement on DFS’s       complexity, Naïve Smart Search still operates at       

complexity for a complete search. 

Naturally, the magnitude of the weight assigned to each attribute is a measure of 

that attribute’s estimated significance to the outcome of the current combination.  Thus, 

it is a natural and automatic heuristic for eliminating less effective attributes – this 

eliminates the need to evaluate each attribute in a combination as a drop candidate, 

reducing complexity by a factor of  , if following the pattern of Naïve Smart Search. 

                          ∑     

 

   

  

 

                                           
          

                                               
                  

  ∑ 

 

   

 

  
      

 
 

 
 

While this application significantly reduces the complexity of Naïve Smart Search 

in its steps, it still retains       complexity in its upper bound.  Carrying reliance on the 

heuristic further, it would be possible to begin with all 40 attributes, eliminating them one 

at a time according to the lowest weight, until the outcome of the machine’s prediction 

ceased to improve, coming to an estimated set of “most significant attributes” in      

time. 
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Figure 4 

Weight-Based Top-Down Attribute Elimination 

 
However, this heuristic is not exact, and becomes potentially less exact as the 

initial set of attributes becomes larger. [9]  If Logistic Regression optimally assigns 

weights at the dataset’s highest level of attributes, there is no need for an attribute-

choosing algorithm in the first place, except to prove the fact.  On the other hand, 

building a set from 1 to   requires more training iterations, and may miss some 

important hidden relationships between attributes that beginning at   may spot.   

To cover both lines of thought, it would be beneficial to use the heuristic to 

develop an algorithm which builds a most-significant-attribute combination, starting with 

one attribute and traversing  , with a complexity closer to linear time. 
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Weight-Based Smart Search 

To take full advantage of a weight-based heuristic with a 1 to   algorithm, adding 

and removing attributes on the fly can eliminate the summation property of Naïve Smart 

Search.  The state machine in Figure 5 illustrates three different phases for adding and 

removing attributes in a Weight-Based Smart Search.  The algorithm begins by adding 

attributes and evaluating Logistic Regression after each add.  As long as the 

performance of our combination improves, we continue adding. 

 

Figure 5 

State Machine for Weight-Based Smart Search 

 
When adding an additional attribute harms our data mining performance, we then 

move to a second state, which removes a single attribute at a time, starting with the 

attribute holding the smallest weight, that is, the “least significant” attribute.  If this 
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removal improves our data mining performance beyond that of the current best 

combination, the machine moves to a 3rd state.  If this removal does not improve 

performance, the attribute is replaced and the “next least significant” attribute is similarly 

removed.  If this state finds itself evaluating the current best combination by one of 

these removals, it returns to the 1st state. 

In the 3rd state, the least significant attribute in the current best combination is 

removed.  If there is an improvement in performance, this action is repeated.  If not, the 

attribute is replaced, and the machine returns to the 1st state.  When all attributes have 

been evaluated, the machine finishes in the 1st state. 

Unlike the previously mentioned algorithms, Weight-Based Smart Search is more 

stochastic in its complexity, but reasonably follows some multiple of   in the average 

case.  In the best case – that is, the case where the best combination is that of all 

attributes, and a choosing algorithm is least needed – this algorithm runs with exactly   

iterations.  The worst case exists via a course of events exploiting an unlikely blunder in 

training: 

1. After building a large combination of attributes in state 1 by adding half of  , an 

attempt to add the next attribute moves the algorithm to state 2. 

2. While the new attribute is of no relation to the class attribute, Logistic Regression 

falsely assigns greatest significance to the new attribute. 

3. State 2 traverses the entire combination with training sessions without improvement, 

until finally removing the new attribute and returning to state 1. 

4. Repeat for the remainder of the set. 
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While such a course of events could lead to  
 

 
   performance, a data set would 

almost certainly need to be engineered to trick the training algorithm into making such 

poor weight estimations, and the prediction outcome for such training would be unlikely 

to be fruitful in the first place.  Events of a similar nature, however, are not impossible 

when this algorithm is evaluating data sets, which are only filled with droves of attributes 

with no relation to the class attribute, where prediction outcome is poor across the board 

and improvements are sporadic and coincidental.   
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CHAPTER IV 

IMPLEMENTATION 

 
As general data mining technologies already exist, it was surmised early in the 

project that there was no need to reinvent the wheel with respect to implementing the 

chosen data mining techniques.  The Weka project, from the Machine Learning Group 

at the University of Waikato, provides a library implementing a range of classically 

defined data mining algorithms, which handle missing values.  [4] 

After some preliminary experimentation using the Weka software itself, our 

attribute choosing algorithms were implemented in Java, utilizing Weka object imports.  

A new class, LogisticCombiner, contains the attribute searching algorithms combined 

with utilities for integrating this data with Weka. 

Because some of these algorithms have potential to run for hours (in the case of 

DFS, thousands of years), with a significant usage of the heap, a tracking interface was 

constructed for ease of reference and for tracking algorithms as they run.   

We used 10-fold cross validation to train the weights for Logistic Regression.  For 

each training session, prediction training was repeated 10 times (for 10 folds) with a 

randomly selected testing partition of 10 instances per fold. [9] 

While the use of Weka’s libraries saved a considerable amount of time for 

constructing data mining algorithms that have already been built, over the course of 

working with their Logistic Regression function it was found that it only works with 
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nominal (non-numeric) values.  Numeric values must be converted into a list of 

nominals, essentially destroying the advantage of training according to magnitude.  This 

method makes for fast, efficient training, particularly when data attributes are not 

numeric, but there is no recognition of marginal differences between attributes.   

Age 35, for instance, is evaluated as being equally different from age 80 as is 

age 72 – a considerable drawback for evaluating the scalar magnitude of numeric 

attributes.  To address this problem, a second data set was created by adding series of 

threshold Boolean attributes.  Rather than simply listing the age as a list of nominal 

values, we attempted to force the machine learning algorithm to recognize the 

magnitude of differences between ages and other numeric attributes by adding several 

other attributes:  “Age < 20,” “Age < 30,” “Age < 35,” etc.  

Finally, a Graphical User Interface (GUI) was constructed to provide a user-

friendly means to set up new searches, and track the results.  Since some of these 

algorithms can run for a considerable amount of time, feedback was multi-threaded to 

maintain a reliable status on the current best find of the algorithm at any given point in 

the search.  Figure 6 shows a screen shot of the GUI amid a Naïve Smart Search of 

attributes to predict 90-day mortality. 



23 
 

 

Figure 6. 

Tracking GUI for Attribute Finding and Logistic Training Application 
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CHAPTER V 

RESULTS 

Due to constraints of time, a complete measurement of attribute finding with 

Depth First Search was impossible.  Searching with a constraint of 3 attributes for 

single-layered Logistic Regression required 8 hours on an Intel i7 system with 1 GB 

dedicated to the heap, yielding a success rate of 63% for 90-day mortality training.  

Time prevented testing with larger sets of  . 

Naïve Smart Search was able to reduce the runtime for a single attribute 

constraint to minutes, and completed the entire batch of constraints in 40 minutes, with 

a success rate averaging at roughly 74+-0.5% in single-layer Logistic Regression. False 

negatives vs. false positives were balanced. 

Top-down weight-based attribute choosing, while finishing very quickly in a few 

seconds, only managed to yield a 63% success rate.  As this algorithm is not novel to 

this project, it might be said to be a control on the other end of the spectrum to DFS.   

Weight-based Smart Search, executing in less than 30 seconds, yields a success 

rate averaging around 70%.  Table 3 shows the time requirements of each search 

algorithm for mortality prediction.  
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Table 3 

Time Requirements for Mortality Prediction Searches 

Algorithm Time, raw data Time, Threshold Booleans 

DFS Arbitrarily Large Arbitrarily Large 

Naïve Smart Search 40 minutes Several Days 

Top-Down Elimination 2-3 seconds 3 seconds 

Weight-based Smart Search 30 seconds 30 seconds 

 
 
Adding threshold Boolean values significantly increased prediction success rates, 

but also added more attributes to the data set.  This did not greatly affect the run times 

of our Weight-based algorithms, which complete in a matter of seconds in the first 

place, but it considerably multiplied the run time required for Naïve Smart Search.  

Figure 7 shows a graphic representation of all four algorithms, along with 

performance without attribute elimination. Since we were unable to run through DFS 

completely, we do not know how well its best attribute selection would perform.  

Because all of our other search algorithms are subsets of DFS, however, we know that 

the final pick of DFS would perform at least as well as the best values of the others, if it 

were given time to finish.  With threshold Booleans, Naïve Smart Search ran for three 

days without completion – its best score prior to termination is recorded, explaining the 

disparity in its displayed marginal success over Weight-based Smart Search. 
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Figure 7 

Mortality Prediction Success 

 
MRS prediction, being a more complicated problem, required more time to 

process and was not as successful.  While Naïve Smart Search ultimately finds better 

performing attribute sets than the weight-based algorithms, its computational 

disadvantage to them becomes more apparent as more complicated training sessions 

are required, or larger data sets examined.   
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Table 4 

Time Requirements for MRS Prediction Searches 

Algorithm Time, raw data Time, Threshold Booleans 

DFS Arbitrarily Large Arbitrarily Large 

Naïve Smart Search Days Days 

Top-Down Elimination 6 minutes 3-4 minutes 

Weight-based Smart Search 76 seconds 69 seconds 

 
 
 

 
Figure 8 

Single-Layer MRS Prediction Success 
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As seen in Table 4, an interesting shift in time requirements occurs between the 

results for 90-day mortality and 90-day MRS. When predicting mortality, Weight-based 

Top-down Elimination completed within 3 seconds for raw data and threshold Boolean 

sets.  Weight-based Smart Search finished in 30 seconds for both, while Naïve Smart 

Search saw a considerable swell in run time required for the larger threshold Boolean 

set, due to its O(n2) complexity. 

 When evaluating 90-day MRS, however, Weight-based Top-down Elimination 

surpasses Weight-based Smart Search in time required, as training for raw data 

surpasses the training needed for the threshold Boolean set for both of these.  The 

former can be explained by the extended time needed for MRS training – Weight based 

Top-down Elimination begins with all 40 attributes and eliminates them one at a time, 

while Weight-based Smart Search begins with only 1 attribute, and adds additional 

attributes one at a time, continually eliminating those which harm performance.  The 

larger configurations of Weight-based Top-down search in the beginning require a great 

deal more time to train than the smaller configurations of Weight-based Smart Search 

throughout. 

 The latter might be explained by how Weka’s implementation assigns weights.  

With raw data, each possible value for a nominal attribute is converted into a Boolean 

attribute, and then each derived Boolean is assigned 7 weights for 90-day MRS 

outcomes 0-6.  Since the threshold Boolean set contains Boolean values which are 

usually chosen over the nominal attributes from which they were derived prior to any 

attribute searching, they are fewer in number than each nominal possibility and are only 
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assigned 7 weights each.  This means that, while more training sessions may be 

required, each training session can be faster than those using the raw data. 
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CHAPTER VI 

SUGGESTED FUTURE WORK 

 
While attribute choosing has increased the prediction success of Logistic 

Regression for this data set, the following concepts are suggested as explorations for 

future enhancements of this project. 

Solution Layering 

As examined before, the distribution of results for 90-day MRS is initially 

unbalanced, because it is the result of taking the distribution of a balanced Boolean 

outcome – 90-day mortality – and splitting one of its results into 6 sub-groups, while the 

other remains intact under a different semantic.  Since our mortality prediction has an 

80% success rate, we could enhance our MRS prediction by using our mortality 

algorithm to predict MRS = 6.  All of those patients who were predicted to survive could 

then be evaluated using a set of weights, which were only trained using instances 

where the 90-day MRS outcome was 0-5. 

Figure 9 shows a graphical representation of Solution Layering for a hypothetical 

90-day MRS prediction with 5 attributes.  After using a choosing algorithm to optimize a 

mortality prediction (by eliminating attributes 3 and 5), a prediction of death becomes a 

prediction of MRS=6.  Each patient that is predicted to survive is then re-evaluated with 

a 90-day MRS prediction system that is trained only with instances with values 0-5. 
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Because the false positives resulting from training for 90-day mortality prediction 

are consistently balanced, its 80% success rate can be combined with the 53.7% 

success rate found for the 0-5 90-day MRS training algorithm to project a likely success 

rate for 2-layered 90-day MRS prediction: 

SuccessMortality x (Death (%) + Survivors (%) x SuccessMRS=0-5) 

= 80% x (48% + 52% x 53.7%) 

= 60.7% 

 

 

Figure 9 

Solution Layering for 90-day MRS 
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Attribute Significance Layering 

While eliminating less-significant attributes can improve the performance of 

Logistic Regression, the unfortunate fact remains that many of those eliminated 

attributes may still have a significant influence on each respective outcome – they are 

eliminated, simply because we do not have enough samples to pinpoint their 

significance, and their presence therefore skews more significant attributes.  If we could 

somehow include them in our estimations for an improvement in prediction 

performance, we could both put their significance to use, and better prepare for 

predictions where the most significant attributes are not present. 

Addressing the latter issue can be done simply by removing more significant 

attributes from the dataset and running our attribute finding algorithms again, finding 

successively significant attributes and setting up prediction criteria with them.  This can 

make for a robust classification system, which makes the best prediction for a new 

instance based on the most significant data provided, without violating our white-box 

constraint. 

To address the former, a layering of Logistic Regression training might be used, 

at the cost of adding further repetitions of search time.  Once the most significant 

attributes are found, we can use their weights to combine them into a single attribute of 

the same class type as the class attribute, with its value set at the predicted outcome.  

Replacing the most significant attributes in the original data set with the new attribute 

could then create a new data set. Those attributes having been reduced to one single 

attribute, a new search could then be conducted to find the most significant attributes of 
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the new dataset, to see if there is any improvement in our prediction.  When a point is 

reached where no new improvements can be made, the search is over. 

Figure 10 displays a graphic representation of Significance Layering in a 

hypothetical 5-attribute group, where attributes 3 and 5 are ruled out by our Attribute 

Search in the first layer, while attributes 1, 2, and 4 are combined in initial trained 

predictor P1.  Attributes 3 and 5 are then evaluated in a second predictor P2, along with 

predictor P1 as an additional attribute. 

 

Figure 10 

Attribute Significance Layering 

 
It is important to note that, unlike the layers in a Feed-Forward Neural Network, 

this second layer of weights does not cloud our understanding of the first layer.  P1 is the 

result of using the algorithms already implemented in this project.  P2 is the result of 

using P1’s predictions to form a new set of data with the remaining attributes, and then 
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running the same algorithms.  We still have the same level of information obtained by 

previous efforts through P1, but by adding a second layer we are now potentially adding 

more details to our understanding of how significant the other attributes are.  Layering in 

this fashion strengthens our White-Box standard. 

 
Logical Group Layering 

Attribute Layering also provides us with a means of associating attributes into 

logical groups.   Rather than simply converging attributes according to their significance 

via our attribute finding algorithms, we might group attributes into logical categories.  

Consider the directional problem between symptoms, treatments, and disease.  

Symptoms and treatments are both indicators that a patient has a particular disease, 

and could be used by machine learning algorithms to predict or classify a patient’s 

health – a person who has been treated for cancer, for example, is more likely to suffer 

from the effects of cancer than any randomly selected person who has not been treated.  

A machine learning algorithm would rightly use cancer treatment to predict whether a 

patient will suffer from the effects of cancer. 

Using treatments to predict the effects of a disease, however, is actually a 

reliance of the algorithm upon the patient’s doctor for diagnosis.  It would be more 

useful if the algorithm could predict a patient’s outcome with symptoms only, and then 

re-evaluate patients with treatment attributes, to see if treatment attributes might affect 

the patient’s projected likelihood of encountering symptoms.   

Figure 11 shows a graphical example of this process.  First, symptoms S1, S2, 

and S3 are examined by an attribute finding algorithm and predictor Ps is trained using 

selected attributes S1 and S2.  The predictions of Ps are added as an attribute to a new 
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set with treatments T1, T2, and T3.  The attribute finding algorithm eliminates T2, and a 

new predictor Pst is trained with Ps, T1, and T3. 

 

 

Figure 11 

Logical Group Layering 

 
Other Suggested Enhancements  

In addition to layering, an examination of attribute finding with other classical 

machine-learning algorithms might have a worthwhile cost-benefit ratio. More benefits 

might be found with the same practices applied to other algorithms. 

An implementation of a patient outcome prediction tool, using the findings of 

machine learning, could add a useful real-world application to this list of assets.  The 

use of post-procedure data could also increase its success rate when available.  While 

using death on the operating table to predict 90-day mortality would be a completely 
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useless (although unvaryingly successful) implementation of machine learning, use of 

post-procedure MRS evaluations of 0-5 could significantly improve prediction criteria for 

90-day mortality and 90-day MRS. A patient outcome prediction tool, of course, would 

need to be robust enough to work with users who do not have post-procedure data as 

well. 
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CHAPTER VII 

CONCLUSIONS 

 

The attribute finding algorithms employed in this project successfully increased 

the prediction performance of Logistic Regression significantly in both chosen 

outcomes.  The ultimate success results produced by these algorithms leave 

considerable room for improvement, particularly for MRS prediction. 

While this project is dedicated to predicting the surgical outcomes of stroke 

patients, the fruits of this research are more generally applicable to Information Science 

as a whole.  These solutions are not particular to medical data mining – machine 

learning for any dataset with the same concerns for data Instances vs. data attributes 

can benefit from attribute choosing algorithms. 
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APPENDIX A 

DATA ATTRIBUTES 
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Data Attribute Brief Explanation 

  
Patient Data 

Gender Male/female 

Age 18+ 

Baseline MRS Patient’s known MRS condition prior to stroke 

Baseline NIHSS Known NIHSS condition prior to stroke – another 
measure of circulatory health, like MRS 

TICI – Pre Thrombolysis in Cerebral Infarction – drug-
induced clot busting success TICI – Post 

Suspected Stroke Etiology Diagnosis 

R-Anterior Clot location(s) 

L-Anterior 

Posterior 

Internal Carotid Artery 

Middle Cerebral Artery 

  

Procedure data 

Intubation Yes/No 

Number of Retriever Passes  

Total MCs used  

IV Lytic Yes/No Intravenous thrombolytic therapy (activase) 

IA Lytic Yes/No Intra-arterial thrombolytic therapy  

IA Vasodilator yes/no Arterial muscle relaxer 

Interventionalist Last Name Name of surgeon 

Type of Proc Steps  

Number of Steps  

L4 devices used Quantity of each device used in procedure. 

L5 devices used 

L6 devices used 

Kmini device used 

Count of V2.5 Firm 

Count of V2.5 Soft 

Count of V3.0 Firm 

Count of V3.0 Soft 

Count of V2.0 Firm 

Count of V2.0 Soft 

Onset to arterial puncture Time between onset of stroke to entrance of 
device 

Length of procedure  
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Data Attribute Brief Explanation 

  

Patient Data during or immediately post-procedure 

Recan (TICI 2a, 2b, 3) Recanalization 

Recan (TICI 2b, 3)  

Systolic Blood Pressure  

Diastolic Blood Pressure  

Length of stay  

  
Outcomes (used for class attributes) 

90-day mortality Patient is living or dead at 90-day follow-up 

90-day MRS MRS after 90-day follow-up 
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