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ABSTRACT

A new mesh adaptation method for unstructured grids is presented. The technique uses

virtual control volumes that are iteratively manipulated to conform the mesh to match either

a Riemannian metric tensor field or an equal distribution of scalar weights. Forcing functions

similar to those used for structured grids are employed such that the resulting meshes can

be compared with those generated using the new adaptation method. Several test cases

using analytic functions to drive the mesh adaptation are also presented and compared with

the new method. Mesh adaptation results driven by computed flow field information are

also compared to those adapted using analytical functions as well as those adapted using

the virtual control volume approach. Strengths and weaknesses of the various adaptation

methods are investigated, and suggestions for further research are discussed.
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CHAPTER 1

INTRODUCTION

Importance

Adapting a grid and increasing point density at areas with high solution gradients can be

desirable when numerically solving partial di↵erential equations. In the typical adaptation

cycle, a mesh by analysis codes to numerically solve the problem. That solution can then be

used to modify or adapt the mesh to resolve more detail in choice areas producing, hopefully,

a more refined result. The modified mesh is used to run the next step in the simulation.

This cycle requires not only robust and accurate simulation code, but also a way to adapt

the mesh.

There is still limited control in unstructured meshing to adapt an already generated mesh

to change spacing in a desired region of the mesh. Refinement or coarsening methods where

edges or cells in a mesh are subdivided or removed have been used in the past, but often

they leave a mesh with poor element quality that can cause instability in computational

fluid dynamics (CFD) analysis codes. To avoid this once a mesh has undergone refinement,

it must then undergo optimization to increase element quality. Since the mesh smoothing

is conducted with its only goal being to increase element quality, the increased resolution

gained through refinement is often smeared or sometimes moved to surrounding regions of the

mesh. Obtaining a suitable mesh can require more cycles of refinement to increase resolution

required and can increase the computational resources demanded of the simulation code. A

more elegant approach can combine the goals of both of these steps into one step, coupling

the desire for good quality elements and control over resolution.
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Adaptive point distribution during elliptic mesh generation has been used for decades,

with notable early contributions from Winslow [1] and Anderson [2] who each used forcing

functions to obtain adaptation. Anderson expanded on earlier work by Thompson [3] and

Dwyer[4] to suggest a form of forcing functions for the Winslow equations that resulted in

high quality meshes adapted to solution data.

Until recently the success of elliptic smoothing has been limited in unstructured grid

generation due to the lack of an implied computational domain. Knupp has shown

unstructured Winslow mesh smoothing on unstructured quadrilateral meshes using a locally

defined computational domain[5]. Solution adaptation with Anderson-style forcing functions

has been presented by Karman on unstructured meshes using an initial physical mesh as

the computational mesh. Sahasrabudhe has had great success in unstructured smoothing by

creating local optimized computational domains called “virtual control volumes”[6]. Masters

then showed that iterative manipulation of virtual control volumes could be used to create

viscous layers [7].

This document will compare two methods for mesh control on unstructured meshes that

preserve good element quality. The first method replaces Winslow forcing functions with

functions introduced by Anderson in structured meshes. The second is a novel method for

solution based mesh adaptation by manipulating the computational domain to gain control

over grid spacing. It is the comparison of these two methods that is of particular interest,

as their strengths and weaknesses may drive the direction of future research.

In the following sections, an overview of elliptic mesh smoothing on unstructured two-

dimensional meshes using virtual control volumes is presented, as well as a review of

generation of solution gradient based forcing functions. The idea of virtual control volume

manipulation is reintroduced with the goal of adapting an unstructured mesh to match a

desired spacing. This is done by iteratively adapting virtual control volumes to achieve

equal weights across stencil edges with the weights determined by a stationary scalar field.
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Results are compared between adaptive meshes as solutions to Winslow equations with

forcing functions and Winslow equations with iteratively adapted virtual control volumes.

Chapter Summaries

In Chapter 2, Winslow smoothing is discussed. The Winslow equations are introduced

and a disjoint computational domain is described. The movement of boundary nodes within

a Winslow solver is also described. Finally, the basic algorithm for a Winslow solver is shown.

In Chapter 3, forcing functions for the Winslow equations are reintroduced with the

goal of achieving solution adaptation on unstructured meshes. Additional restraints on the

computational domain required for forcing functions are discussed and a modified algorithm

for a Winslow solver with forcing functions is shown.

In Chapter 4, the procedure for mesh adaptation by manipulating local computational

domains, a method named central point o↵set, is described. The scheme to describe spacing

using Riemannian metric tensors is introduced. The iterative nature of the central point

o↵set method is discussed as are some thoughts on the local robustness of the scheme.

In Chapter 5, results of adaptation using forcing function adaptation and adaptation

obtained through central point o↵set are presented. Some exploration is made on e↵ects of

scaling parameters present in both methods to compare the level of control each method

allows. The performance of the two methods are compared on more complex problems using

flow field information from an Euler solver.

Chapter 6 is a summary of the benefits and pitfalls of both adaptation methods as well

as some final thoughts on Winslow smoothing and thoughts on further research using these

methods.
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CHAPTER 2

BACKGROUND

Winslow Smoothing

All adaptation methods explored in this document are modifications on Winslow

smoothing for unstructured meshes. The Winslow equations were described by Thompson

et al. [8] with forcing functions P,Q as

r2
⇠ = P

r2
⌘ = Q (2.1)

or in �, form

r2
⇠ = (r⇠ ·r⇠)�

r2
⌘ = (r⌘ ·r⌘) (2.2)

The Winslow equations describe a smooth variation of the computational coordinates (⇠, ⌘)

with respect to the physical coordinates (x, y). However, it is the computational domain

that is known and the physical location of the points that is desired to increase mesh

quality. Therefore, the equations must be transformed onto the physical domain. A complete

description of this process is given in Appendix A and the Winslow equations for solving

physical locations x, y are

4



↵(x
⇠⇠

+ �x
⇠

)� 2�x
⇠⌘

+ �(x
⌘⌘

+ x
⌘

) = 0

↵(y
⇠⇠

+ �y
⇠

)� 2�y
⇠⌘

+ �(y
⌘⌘

+ y
⌘

) = 0 (2.3)

with

↵ = x

2
⌘

+ y

2
⌘

� = x

⇠

x

⌘

+ y

⇠

y

⌘

� = x

2
⇠

+ y

2
⇠

(2.4)

By solving these equations numerically new locations for the physical points can be obtained

that satisfy the smoothness condition and yield higher quality elements more suitable for

use in simulation codes. Below is an explanation of the discretization of this system using a

finite volume methodology. Later the concept of the virtual control volume, a disjoint and

locally optimized computational domain, is reintroduced. This chapter closes by addressing

the topic of boundary node movement and a summary of the anatomy of a Winslow solver.

Finite Volume Discretization of the Winslow Equations

To numerically solve the Winslow equations, the system must first be discretized into a

linear system. The chosen method of discretization has been a finite volume formulation.

In the finite volume formulation it is necessary to analyze derivatives on a stencil or control

volume.

A finite volume discretization of derivatives on a stencil can be done by exploiting Gauss’

divergence theorem. Given some scalar function f on the element, we can treat f as a vector

function in two dimensions.

~

f =< f, 0 >
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Then by the use of the divergence theorem on a control volume⇤:

ZZ

⌦

rf@⌦ =

I

�

~

f · n̂@�.

@f

@x

=
eX

i

f

i

n̂

x

i

�
i

⌦�1 (2.5)

where e is the number of edges, � the length of an outside edge and ⌦ the area of the control

volume. The normal vector point out of the control volume is ~n. And derivatives @

@y

done

similarly,

~

f =< 0, f >

@f

@y

=
eX

i

f

i

n̂

y

i

�
i

⌦�1

For an implementation on a triangle, such as the one shown in Figure 2.1. the derivatives

3

1 2

n1
n2

n3

Figure 2.1 Triangle and naming conventions.

⇤
Where the subscripts x and y denote components of the vector in the x and y directions and should not

be confused with partial derivatives.
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can be computed as

@f

@x

=
1

2A
(f1(n2x + n3x) + f2(n1x + n3x) + f3(n1x + n2x))

@f

@y

=
1

2A
(f1(n2y + n3y) + f2(n1x + n3y) + f3(n1x + n2y))

Noting that:

0 = n1x + n2x + n3x

0 = n1y + n2y + n3y

and from this substitutions can be made in the form

� n1x = n2x + n3x

�n1y = n2y + n3y

The derivative of the function f over the triangle is given by

@f

@x

=
1

2A
(�f1n1x � f2n2x � f3n3x)

@f

@y

=
1

2A
(�f1n1y � f2n2y � f3n3y)

Winslow Discretization

Armed with a method for computing derivatives on an unstructured stencil, the method

can proceed to the system of equations. Starting with the integral form of the Winslow

equations, second derivatives are replaced by first derivatives applied to the terms above for

derivatives x
⇠

, x

⌘

, y

⇠

, y

⌘

of the form in shown in equation 2.6.

ZZ

⌦

↵(x
⇠⇠

+ �x
⇠

)� 2�(x
⇠⌘

) + �(x
⌘⌘

+ x
⌘

)@⌦ = 0
ZZ

⌦

↵(y
⇠⇠

+ �y
⇠

)� 2�(y
⇠⌘

) + �(y
⌘⌘

+ y
⌘

)@⌦ = 0. (2.6)

7



After making these substitutions, the Winslow equations are

ZZ

⌦

1
2A↵(

@

@⇠

(�x1n1⇠ � x2n2⇠ � x3n3⇠) + �x⇠

)

� 1
A

�( @

@⌘

(�x1n1⇠ � x2n2⇠ � x3n3⇠))

+ 1
2A�(

@

@⌘

(�x1n1⌘ � x2n2⌘ � x3n3⌘) + x⌘

)@⌦ = 0
ZZ

⌦

1
2A↵(

@

@⇠

(�y1n1⇠ � y2n2⇠ � y3n3⇠) + �x⇠

)

� 1
A

�( @

@⌘

(�y1n1⇠ � y2n2⇠ � y3n3⇠))

+ 1
2A�(

@

@⌘

(�y1n1⌘ � y2n2⌘ � y3n3⌘) + y⌘)@⌦ = 0

Finally, using the divergence theorem once again, the finite volume discretization of the

Winslow equations on a stencil of triangles.

↵(
1

2A
(�x1n1⇠ � x2n2⇠ � x3n3⇠)t⇠ + (

x2 + x3

2
)�t

⇠

)

�(
1

A

(�x1n1⇠ � x2n2⇠ � x3n3⇠)t⌘ +

�(
1

2A
(�x1n1⌘ � x2n2⌘ � x3n3⌘)t⌘ + (

x2 + x3

2
) t

⌘

) = 0

↵(
1

2A
(�y1n1⇠ � y2n2⇠ � y3n3⇠)t⇠ + (

y2 + y3

2
)�t

⇠

)

�(
1

A

(�y1n1⇠ � y2n2⇠ � y3n3⇠)t⌘ +

�(
1

2A
(�y1n1⌘ � y2n2⌘ � y3n3⌘)t⌘ + (

y2 + y3

2
) t

⌘

) = 0 (2.7)

It should be noted that when applying the divergence theorem on the entire stencil, only

the outer most integration path contributes. All integration paths along triangle edges that

are shared within the stencil cancel. For this reason, only the outward facing edge vector t

needs to be used.

At each stencil, these equations are valid using the locally defined node numbers; however,

the goal is to find physical locations of nodes that satisfy the Winslow equations globally.
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To that end equation 2.7 can be rearranged to the form

m1x1 +m2x2 +m3x3 = 0

m1y1 +m2y2 +m3y3 = 0 (2.8)

with weights

m1 =
1

2A

"
� ↵n1⇠t⇠ + 2�n1⌘t⇠ � �n1⌘t⌘

#

m2 =
1

2A

"
� ↵n2⇠t⇠ + 2�n2⌘t⇠ � �n2⌘t⌘

#
+

1

2
(↵�t

⇠

+ � t
⌘

)

m3 =
1

2A

"
� ↵n3⇠t⇠ + 2�n3⌘t⇠ � �n3⌘t⌘

#
+

1

2
(↵�t

⇠

+ � t
⌘

) (2.9)

which solves for the physical location of (x1, y1). When solving this system globally, the

coe�cients need to be periodically updated to recompute ↵, � and � since they are also

functions of the physical locations and constitute a non-linearity. To build and solve the

global system it may help to look at a an example mesh, such as that in figure 2.2. The

four cells that make up the stencil for the center node are labeled. To build the row of the

linear system for this central node, the weights from cells, 1 through 4, would have to be

computed then summed into the columns corresponding the node that each weight a↵ects.

Since the central node appears in every cell, there will be more weights on the diagonal entry

of a row than any o↵ diagonal entry which will only have a maximum of 4 weights, two from

each triangle shared with the center. When forcing functions � and  are small or zero, as

the case in general smoothing where adaptation is not the goal, this distribution of weights

allows for a very well conditioned linear system that is well suited for a point-iterative linear

solver. Before that can happen though, there must be a valid computational domain.
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1

2

3

4

Figure 2.2 A small test mesh

Computational Domain

The Winslow equations enforce a smoothness condition between the spacing in the

computational domain (⇠, ⌘) and the physical (x, y). In structured meshes, the computational

domain is a simple matter, a mesh containing the same topology but ideal spacing. For

an unstructured mesh there is not a universal computational domain that matches every

unstructured topology; therefore, for each unstructured mesh a computational domain must

be generated that matches the topology of the physical mesh. One obvious way of obtaining

a computational mesh would be to simply copy the existing physical mesh. However, if the

two meshes physical and computational were identical to start the smoothness condition

would be satisfied, almost by definition, and no points would be moved. The resulting mesh,

being identical to the initial mesh, would not have improved quality. The key to optimizing a

mesh through the use of the Winslow equations lies in using an ideal computational domain.

10



Disjoint Computational Domain

Simply using a copy of the physical mesh as a computational mesh will not increase

mesh quality, but if an ideal computational mesh matching the physical mesh were known

then there would be no need to smooth, simply use the computational mesh as the physical

mesh. This circular problem can be solved by Sahasrabudhe with the introduction of ideal

computational domains that are only defined locally [9]. For a stencil of elements surrounding

a single node an ideal mesh can be defined by placing all connected points on the unit circle

and equal distance apart. These stencils, called virtual control volumes, are locally defined

and are su�cient to use as an optimal computational mesh that can be used to drive the

solution of the Winslow equations.

The location of points for a virtual control volume can be computed by

if nt = 0 ✓

q

= 2⇡
nq

if nq = 0 ✓

t

= 2⇡
nt

if nq = 1 and nt > 1 ✓

t

= 3⇡
2nt , ✓q =

⇡

2

if nq >1 and nt = 1 ✓

t

= ⇡

2 , ✓q =
3⇡
2nq

if nq > 1 and nt > 1 ✓

t

= ⇡

nt

, ✓

q

= ⇡

nq

(2.10)

The bottom of Fig. (2.3) shows three example virtual control volumes for three stencils with

di↵erent arrangement of elements. The top meshes are example physical meshes. Notice

that all triangles are used in the virtual control volumes. Sahasrabudhe also showed that the

orientation of the virtual control volumes does not a↵ect Laplacian Winslow smoothing[9].

The node of a quadrilateral that is not directly connected to the central node is cut out of

the stencil. Since only directly connected edges are in the computational stencil the entire

stencil consists of only triangle elements. The virtual control volumes are optimized for each

node’s particular stencil and is not required to agree globally, and indeed will not in all but

11



an ideal case. This set of virtual control volumes can be quickly generated and stored since

it will not change unless the topology of the mesh changes. The ideal spacing and angles of

the virtual control volume allow for a computational domain that can be used to untangle

or optimize a mesh.

Figure 2.3 Example physical and computational control volumes

Boundary Node Movement

Smoothing by use of the Winslow equations is a boundary value problem. Dirichlet

boundary conditions can be employed by simply not allowing boundary movement, taking the

initial node distribution on the boundaries. But it can become necessary to allow boundary

movement especially in adaptation where the spacing of nodes on a boundary may become

very important either to capture rapidly changing phenomena across a boundary, or to allow

correct spacing on interior points close to the boundary. To solve the Winslow equations on

the boundary, each boundary node must have a closed control volume in both the physical

and computational domains.

Consider node 2 on the small test mesh shown in figure 2.4 with adjacent cells 1, 2 and

3 and neighboring nodes 1, 3, 5 and 6. To complete the computational stencil, two ghost

cells and a single ghost node are inserted between cells 1 and 3 before the virtual control

volume is created. For the purposes of node distribution for the computational stencil, the

12



ghost cells are treated as quadrilaterals. The computational stencil for node 2 is shown in

2.5 where the influence of the two inserted ghost cells can be seen as the two larger triangle

to the left of the central node. As can be seen here it is not necessary to align the virtual

control volumes for general smoothing.

21 3 4

5
6

1

2

3

7

Figure 2.4 Boundary test mesh

To close the physical stencil, it is important to start by noting that by only adding one

additional point to the virtual control volume exactly one point must be added in the physical

stencil. Furthermore, since all gradient calculations for the Winslow weights are computed

with respect to the computational domain, the type of cells inserted into the physical mesh

makes no di↵erence. The only requirement that is important is the location (x, y) of this

ghost point.

There are a myriad of locations that can be chosen for the ghost point and the only

restriction is that the ghost point must allow for good quality cells on the boundary. Only

one scheme is used to compute the ghost point location throughout this document.
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Figure 2.5 Completed boundary virtual control volume

The scheme computes the average distance to all the strictly interior nodes directly

connected to the boundary node. The ghost point is then placed that average distance

away perpendicular to the boundary. If a boundary node has no directly connected interior

nodes, such as on a corner in a triangular mesh, then the average distance to the adjacent

boundary nodes is used instead. On boundaries with curvature, the perpendicular direction

is used by creating a straight line between the two adjacent boundary nodes and computing

a perpendicular direction from that line. Figure 2.6 shows a topology with both cases.

When allowing boundary points to move the Winslow equations will often move boundary

nodes o↵ their boundaries. This type of boundary motion is clearly unacceptable. To allow

boundary movement while preserving boundaries, a moved boundary node must be projected

back onto the boundary during each point iterative solver step. This requires description

of the boundary that is highly accurate and does not move during mesh smoothing. The

Winslow solver written during this research made use of a C++ geometry “class” developed
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Figure 2.6 Ghost node location for corner topology

by Dr. Steve Karman Jr of the University of Tennessee at Chattanooga (UTC). This class

stores a discrete representation of a boundary accurate to user specification read from a

Pointwise segment file [10]. Boundary nodes are associated with their specific boundary and

are placed back onto that boundary in the nearest location to that of the smoothed location.

Points that cannot be moved under any circumstance are labeled as critical points. These

points occur by default at the intersection of boundaries but can also be user defined.

With all steps described, the procedure for Laplacian Winslow smoothing is described

below with a flowchart in figure 2.7.
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1: Read in mesh

2: Build virtual control volumes

3: for i  max iterations do

4: Compute ghost node locations

5: Compute Winslow weights

6: Build Global linear system

7: for j  point iterative max do

8: Point iterative step

9: Snap boundary nodes back onto boundary using the geometry class

10: end for

11: end for
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Figure 2.7 Winslow flowchart.
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CHAPTER 3

ADAPTION BY FORCING FUNCTIONS

In both structured and unstructured mesh generation, non-zero functions for � and  have

been used to achieve mesh adaptation to increase point density where scalar functions rapidly

change. Anderson showed that this solution adaptation could be achieved by using weights

given by[2]:

� =
1

w1

@w1

@⇠

 =
1

w2

@w2

@⌘

. (3.1)

w1 = 1 + a

⇣
@f

@⇠

⌘2

w2 = 1 + b

⇣
@f

@⌘

⌘2
(3.2)

In this way, weights are guaranteed to be positive and will be large in areas of high gradients

in the adaptation variable f . In either structured or unstructured meshes, using a globally

defined computational domain these functions can be used with little modification. However,

since the calculation of weights require gradients of the adaptation function with respect to

the computational domain, one needs to have a consistent computational domain. To achieve

some consistency, the VCV can be rotated so that at least one edge is guaranteed to have

the same orientation in both the computational and physical domains. This local mapping

is still not globally valid, but it does allow for some level of consistency between each of

the virtual control volumes. Furthermore, as the mesh is smoothed by a Winslow solver,
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the inconsistencies will lessen as the physical mesh begins to mimic angles described in the

computational mesh.

When solving the Winslow equations, the forcing functions � and  contribute to weights

corresponding to the external nodes in a stencil. These external nodes make up the o↵-

diagonal entries in the global linear system. For stability these weights cannot grow relatively

large, else they will weaken the diagonal dominance of the system. For this reason an

additional relaxation parameter u is added, making the forcing functions

� = u

"
1

w1

@w1

@⇠

#

 = u

"
1

w2

@w2

@⌘

#
(3.3)

This factor is user defined and can scale up or down the size of the forcing functions. In

Chapter 6, examples are shown where u is used to scale forcing functions.

Backgrounding Adaptation Function

Mesh adaptation using these forcing functions completely relies on the adaptation

function. When adapting a mesh using solution field data from a numerical solver, the data

is typically connected to nodes or cells. Using this storage in adaptation creates a problem;

when nodes move, the solution field data associated with the nodes should not move. The

data must be separated from the nodes and frozen to the physical domain. Storing data

to the physical domain was done using a C++ class, Quadtree, developed by Dr. Karman

of UTC with modifications added by David Collao to allow for no overlap domains. The

Quadtree class takes data and an extent box in 2D space that the data is located. The

data is stored in a tree data structure with the root node representing the entire domain.

Subsequent children split the remaining domain into quarters. This sorted tree allows for

relatively fast retrieval of data across a 2D domain. Solution data is stored to the x, y plane
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as data along with the dualed cell that that node represents, before any adaptation occurs.

When adaptation function values are required during the calculation of the forcing function

the new location of the node is sent as a query to the Quadtree and data pertaining to that

region of the mesh is retrieved.

Algorithm

Adding mesh adaptation using forcing functions requires only small changes in a Winslow

solver. Below is a basic outline for a Winslow solver with forcing functions and figure 3.1

shows a flowchart for the method.

1: Read in mesh

2: Build Virtual control volumes

3: Store adaptation function in the background Quadtree storage

4: for i  max iterations do

5: Compute ghost node locations

6: Populate adaptation function values at each node

7: Compute forcing functions �, 

8: Compute Winslow weights

9: Build global linear system

10: for j  point iterative max do

11: Point iterative step

12: Snap boundary nodes back onto boundary using the geometry class

13: end for

14: end for
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Figure 3.1 Forcing function flowchart.
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CHAPTER 4

ADAPTATION BY VIRTUAL CONTROL VOLUME MANIPULATION

While solving the Winslow equations, the physical mesh will mimic changes in the

computational mesh. Therefore, manipulating the virtual control volumes will cause changes

in the resulting physical mesh. This can be exploited to obtain mesh adaptation. It has been

determined that the scaling of the control volume seems to have no e↵ect on the outcome

of the physical mesh. Instead it is the relative length di↵erences that are important [7]. For

example, if edges are greater in length on one side of a virtual control volume then the other

side, the physical mesh will show a di↵erence in relative edge sizes accordingly. Since it is

only the relative edge lengths that are important, manipulating the location of the center

point in a control volume is a straightforward way to create these di↵erences. It is then a

problem of describing desired edge lengths and automating the o↵set of the central point.

Figure 4.1 Manipulated VCV and resulting physical adaptation
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Figure (4.1) shows an example of an all quadrilateral mesh and the manipulated virtual

control volume for the interior point. The physical mesh reflects the alteration made in the

computational domain.

Spacing Matching Adaptation

In Winslow based smoothing, Riemannian tensor fields have been used to describe spacing

in a computational mesh. When the Winslow equations are satisfied, the physical spacing

mimics the computational spacing. A Riemannian metric tensor (M) is a symmetric positive

definite matrix that is the product of a rotation matrix R and a scaling matrix �. The scaling

matrix � contains inverse square of desired distances along the directions described by R.

The construction of M can be seen in equation 4.1.

M = R�R

�1 (4.1)

M =


~e1 ~e2
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2
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Edges in the physical mesh can be measured by how well they match the desired spacing.

Given an edge in the mesh, the metric length in the tensor space for that edge can be

computed. An edge that exactly matches the spacing in � has a metric length of 1.0. An

edge that is smaller is less than 1.0; a larger edge is greater than 1.0. Computing the metric

length of an edge between points A and B are show in equation 4.2.

l

ab

=

q
��!
AB

T

M

�!
AB (4.2)

To more closely match the spacing described by the Riemannian metric field, virtual control

volumes can be manipulated by measuring the metric length of each directly connected
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physical edge and adjusting the location of the central point of the virtual control volume

by a metric length weighted average. Equation (4.4) describes the perturbation vector of a

central point.

�~r = s

eX

i=0

l

i

~v

i

(4.3)

p

new

= p

old

+�~r (4.4)

with ~v

i

being the vector in the computational domain that points from the central point to

the node i. A relaxation factor (s) can be used to control the pace at which central points

can be o↵set. Since the computational domain must remain valid, the total o↵set of the

central point must be restricted. Checks can be put in place to ensure that each triangle in

the virtual control volume still has area larger than a tolerance. Figure (4.2) shows a virtual

control volume of a node in a mesh that has a spacing in the x-direction smaller on the right

side of the node than the left side. As the central point is adjusted, the edge vectors also

adjust so that they are always pointing precisely from the central point to the corresponding

outer point. The weighted average scheme only uses data from directly connected nodes.

Figure 4.2 Perturbed control volume

If there is no gradient of the spacing field over a virtual control volume, the central point

will only be moved to equalize edge lengths. This local control of the spacing field also gives
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“built in” robustness to high gradients, as will be seen in Chapter 5, but also leads to an

iterative process for determining how the virtual control volumes for each node need to be

manipulated. Mesh adaptation by manipulating the central point to equalize gradients will

not be able to always match spacing defined from a spacing field. Instead the method aims

to equalize the metric edge lengths of each edge in the mesh.

Figure 4.3 shows a test mesh with 51 nodes initialized equally spaced along the x axis.

The background tensor field is Cartesian aligned e1 = x and e2 = y, h2 = 1.0 everywhere

and the h1 spacing is

h1 =

8
><

>:

0.2 , 0.4  x  0.6

0.4 , otherwise

Since there is no change in the spacing in the y direction, there will be no adaptation in the

y direction. The central point perturbations occur in the region between these two spacings,

a node that initially has central point manipulation is marked and followed as iterations

progress. Four iterations later the central point of the marked node has to now decrease

as it enters a zero gradient area but nodes behind it that previously had no manipulation

are now seeing o↵sets. In the final mesh the marked node and many nodes behind it have

gone through perturbation region and the mesh has settled down. Figure 4.4 shows the

range of metric lengths on the mesh as computed by an average for each node of the metric

length of each edge connected to the node. Notice that the range decreases between jumps.

These jumps are caused by a new layer of nodes being moved from the outside region to the

inner region. It is worth noting that even for this topology that should be able to match

the metric length at each edge perfectly, the mesh does not converge to equal metric edge

lengths everywhere, instead settling on a metric length range near 0.03.
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Figure 4.3 Slow central point adaptation
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Figure 4.4 Progression of the metric length range
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Calculation of Riemannian Metric Tensor Field

Riemannian metric tensor fields can be determined by a practitioner to gain some desired

spacing. It can also be computed automatically to meet an equidistribution of gradients in

some function. A simple two part equidistribution scheme is shown in equations 4.5 and 4.6.

wd

p = C (4.5)

dnew =
p

r
C̄

w

(4.6)

In this scheme w is some weight function valid across the mesh, d the length of an edge

and the power p can control smoothness C field. Using this an average value of C is computed

across the entire mesh. By substituting C̄ back into 4.6 and solving for length, a new length

for each edge in the mesh can be computed using local values of w. Choosing the weights

w to be based on gradients of some adaptation function will result in equally distributing

the amount of change in the adaptation field between any two connected nodes in the mesh.

The weights used are very similar to the weights proposed by Anderson [2].

w = 1 + a

s

|rf |2 (4.7)

where gradients are computed at node points and d is an edge length. A Riemannian metric

tensor is computed in a region by aligning e1 to the gradient vector and using values of

dnew for h1. The perpendicular spacing also be set to this spacing or chosen as an average

distance between nodes in that region. The procedure for adaptation with central point

o↵set is described below, followed by a flowchart in figure 4.5
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1: Read in mesh

2: Build virtual control volumes

3: Store adaptation function into Quadtree storage, or Riemannian metric tensor field in

the Spacing Library

4: for k  max outer iterations do

5: Evaluate metric lengths of edges

6: Perturb the central point of virtual control volumes

7: for i  Winslow max iterations do

8: Compute ghost node locations

9: Compute Winslow weights

10: Build global linear system

11: for j  point iterative max do

12: Point iterative step

13: Snap boundary nodes back onto boundary using the geometry class

14: end for

15: end for

16: end for
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Figure 4.5 Central Point method flowchart.
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CHAPTER 5

COMPARISON

The central point o↵set method and the method using forcing functions have been described.

This chapter documents the comparison of the two methods. The first section compares some

of the features and characteristics that each method has by exploring simple test adaptation

functions on a small all quadrilateral mesh. In this section each method will be tested for

control in adaptation in specified directions and for the level of adaptation capable of each

method.

The second section focuses on comparing the performance of each method on more

complex problems. First using a complex adaptation function, then using solution data

from an Euler flow solver on a NACA 0012 airfoil.

Analytic Cases

For these cases, analytic functions are used as test adaptation functions that work to

drive adaptation using either the central point o↵set method or the forcing function method.

In all cases, the initial mesh is an equally spaced all quadrilateral mesh. The central point is

restricted to a total o↵set of 0.7 to ensure that the virtual control volumes remain valid. The

first example is a rapidly changing scalar field over a diagonal region. The analytic function

adapted is on the following page.
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f =

8
>>>><

>>>>:

1 : x <

y+10
2

7�x

2 + y

4 : y+10
2  x  y+14

2

0 : x >

y+14
2

This case is well suited for adaptation only in the x direction and the level of mesh refinement

will be a measure of the number of points inside this shock region and ± 0.5 in the horizontal

direction. The second case is adapted using scalar function:

f =

8
>>>><

>>>>:

0 : 0  y  11 + 4sin(⇡x/12)

0.5(y � 11� 4sin(⇡x/12)) : 11 + 4sin(⇡x/12)  y  13 + 4sin(⇡x/12)

1.0 : 13 + 4sin(⇡x/12)  y  24

The many parameters described in Chapters 3 and 4 are explored here to determine their

overall e↵ect on the final mesh. Specifically, each method has a means to control the level of

adaptation in a desired direction. For central point o↵set the orientation of the Riemannian

metric tensor at a point is usually determined by the orientation of the gradient, however

it can just as easily be forced to any specified direction. The two cases below do just that,

forcing the alignment of e1 to the x direction in the case of the diagonal shock, and the y

direction for the sine wave case. The method using forcing functions has scaling parameters

a, b which scale the gradient contribution in the ⇠ and ⌘ directions as shown in equation 3.2.

Forcing a or b to be zero allows the construction of � and  with no contributions from the

gradient in that direction.

Figure 5.1 shows four meshes, each the result of the central point o↵set adaptation scheme

on the diagonal shock test case, quality metrics and refinement metrics are shown in table 5.1
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For the first mesh (5.1a) aligned e1 with the direction of the gradient vector, the result is less

skewed elements in the adapted region. With second mesh (5.1b) the principal direction (e1)

of each Riemannian metric tensor was aligned with the positive x direction. This resulted in

minimal point movement in the y direction and the horizontal lines remain level. The third

(5.1c) mesh forced the perpendicular spacing (h2) to be the same as the principal spacing

but actually increases the maximum and average aspect ratios. The final mesh (5.1d) shows

the e↵ects of increasing the scaling weight a
s

, first described in equation 4.7. In this case a
s

was set to 300 where as all other cases used a

s

= 100. Increasing the scaling did noticeably

increase the amount of adaptation, but not to a great extent, adding only 16 points to the

adapted shock region.

Table 5.1 Mesh quality metrics for central point adapted shock wave meshes

mesh adapted points max aspect ratio avg aspect ratio max angle max skew avg skew
a) 117 1.65 1.64 99.25 1.19 1.05
b) 117 1.49 1.41 109.42 1.37 1.08
c) 133 1.71 1.43 122.97 1.75 1.17
d) 127 1.63 1.19 113.97 1.42 1.10
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(a) Baseline adaptation values used. (b) Principal vector is forced to align

with the x direction.

(c) Perpendicular spacing is the

same as principal spacing.

(d) Scaling parameter is increased to

300.

Figure 5.1 Adapted meshes using central point o↵set

The forcing function adaptation of the diagonal shock case is shown in Figure 5.2 with

quality metrics and refinement metrics in table 5.2. The first mesh (5.2a) is a baseline mesh

using scaling parameters a, b, w = 5.0. The second mesh (5.2b) is with b= 0 to allow no

contribution of the gradient in the y direction to a↵ect the forcing functions. Successfully

limiting adaptation in this way suggests that the alignment of the virtual control volumes

was successful, and also may be desirable to simply control the level of adaptation along just

one cardinal direction. The result is almost no adaptation in the y direction. Mesh (5.2c)
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scales up a, b = 30 and scales down the relaxation scaling to w = 0.5. The refinement in the

adapted region increases throughout a wide band. The final mesh (5.2d) with a, b =1.0, w =

10 has very fine resolution inside a more narrow adapted region almost doubling the number

of points in the adapted region.

(a) Baseline values, a, b = 5.0 w =

1.0.

(b) b = 0

(c) a, b = 30 w = 0.5 (d) a, b = 1.0 w = 10

Figure 5.2 Adapted meshes using forcing functions for a diagonal shock

For this diagonal shock case central point o↵set could produce lower aspect ratio elements

than the forcing function method, and each method was able to reasonably limit the spacing

in the y direction. The forcing function method was able to greatly increase the level of

refinement inside the adapted region.

35



Table 5.2 Mesh quality metrics for forcing function shock wave meshes

mesh adapted points max aspect ratio avg aspect ratio max angle max skew avg skew
a) 120 1.89 1.17 109.26 1.30 1.05
b) 120 1.95 1.17 104.78 1.22 1.04
c) 170 2.89 1.52 116.30 1.32 1.09
d) 236 7.40 2.88 123.72 1.32 1.09

The next analytical test case uses an adaptation function with more curvature than the

diagonal shock case. Figure 5.3 shows meshes resulting from central point o↵set adaptation.

The first mesh (5.3a) is again using baseline values a
s

= 100 with the principal vector aligned

locally with the direction of the gradient vector. The second mesh (5.3b) forces the principal

to be aligned with the y direction. Though there is some point movement in the x direction.

The third mesh (5.3c) keeps the perpendicular spacing equal to the principal spacing which

actually increases the maximum aspect ratio and maximum angle. The final mesh (5.3d)

increases the scaling coe�cient to 300, again having a small e↵ect on the level of refinement

in the adapted region, only 7 nodes more than the baseline case.

Table 5.3 Mesh quality metrics for central point adaptation for sine wave meshes

mesh adapted points max aspect ratio avg aspect ratio max angle max skew avg skew
a) 115 1.68 1.10 118.23 1.63 1.11
b) 112 1.56 1.12 118.21 1.59 1.10
c) 135 2.03 1.14 130.78 1.95 1.20
d) 122 1.87 1.16 122.08 1.722 1.13
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(a) Mesh with baseline adaptation

values.

(b) Principal vector is forced to align

in the y direction.

(c) Perpendicular spacing equal to

principal spacing.

(d) Principal vector is forced to align

in the y direction and the scaling

parameter is set to 300.

Figure 5.3 Adapted meshes using central point o↵set for a sine wave
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(a) Baseline values a, b = 5.0w = 1.0 (b) a = 0.0 b = 5.0 w = 1.0

(c) a, b = 30.0 w = 0.5 (d) a, b = 1.0 w = 10.0

Figure 5.4 Adapted meshes using forcing functions for a sine wave

Adaptation using forcing functions is shown in figure 5.4. The baseline values for this

case were again a, b = 5.0 w = 1.0 and the results of this configuration are shown in the first

mesh (5.4a). Adaptation in the x direction is successfully restricted by setting the scaling

parameter a = 0 in the second mesh (5.4b). The level of adaptation in the adapted region

was increased by increasing scaling parameters a and b to 30 in the third mesh (5.4c), but

not as much as by increasing the overall scaling parameter from w = 1.0 to w = 10.0.

The adaptation given by the sine wave test case is consistent with the first case. The

forcing function method allows for greater control over the amount of spacing in an adapted
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Table 5.4 Mesh quality metrics for forcing function sine wave meshes

mesh adapted points max aspect ratio avg aspect ratio max angle max skew avg skew
a) 120 2.27 1.14 127.09 1.87 1.08
b) 120 1.95 1.17 104.78 1.22 1.04
c) 170 2.89 1.52 116.30 1.32 1.09
d) 229 9.51 2.40 159.22 3.02 1.25

region. As a surprising result from the central point scheme, attempting to refine edges in

the x and y directions simultaneously decreases overall mesh quality in terms of skewness

and aspect ratio.

Supersonic Shocktube

Analytic adaptation functions are useful for exploration, but ultimately mesh adaptation

is meant to be used to adapt using field data determined from a simulation. For the following

cases, the adaptation function used is Mach number from an Euler CFD solver. The solver

used was written by the Author. The solver has not been validated, but still proves to be

an adequate source for solution gradients for the purpose of testing. The geometry is a tube

with flow constricted by a forward ramp and released by a backward ramp. The initial mesh

is an all triangle mesh with just over 10,000 nodes. The mesh was generated using Pointwise

[10] with no refined areas.

Figure 5.5 Mach number computed on the initial mesh for a supersonic tube case
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Figure 5.6 shows the mesh adapted after using central point o↵set. The relaxation factor

used was 0.01 ramped to 0.05 for 60 iterations and the scaling factor was 3.0. To speed up

the method, only one inner point iterative step was taken at each outer iteration except the

final iteration where 100 point iterative steps were taken. The mesh shows good adaptation

and cell quality as shown by mesh quality and refinement metrics in table 5.5.

Figure 5.6 Shocktube mesh adapted with central point o↵set

Adaptation using forcing functions was not so easy. If the relaxation parameter was too

small then no noticeable adaptation was produced. If the relaxation factor was too large
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than the solution did not converge and quickly yielded invalid cells. There did not appear

to be any middle ground. The reason for this volatile behavior the l can be seen in Figure

5.7 when looking at the values of � across the mesh. Two locations of the domain had

forcing functions over 10 times greater than any other in the mesh,  was similar. The

gradient at these two locations were much larger than the rest of the domain, causing the

forcing function variation. Scaling the forcing functions up causes instability from these two

locations, and too small doesn’t allow the rest of the mesh to become large enough to create

meaningful adaptation.

Figure 5.7 � for the shocktube test adapting to Mach number
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This demonstrates the lack of robustness against high gradients that is a weakness of the

forcing function method. The magnitude of the gradient of the adaptation function is shown

in Figure 5.8. The flow field has very high gradients of Mach number at the bottom of the

ramps causing very large variation in the forcing function through the mesh.

The central point o↵set method did not have di�culty with this large variation because

the limitation placed on the virtual control volume to keep the central point inside the

stencil. This hard limit e↵ectively ignores all contributions of relatively high gradients past

a threshold value. To achieve similar results using forcing functions, an artificial limit was

placed on gradients. Nodes with gradient values more than some multiple of the standard

deviation away from the average were clipped, forcing the range of the gradient to be smaller

and more manageable. The resulting magnitude is shown in figure 5.9. To further manage

the range of forcing functions, scaling of gradient magnitudes and hard limits on the values of

forcing functions can also be used either in place of or in addition to the gradient magnitude

range manipulation.

Figure 5.8 Magnitude of gradients in Mach number before range restraint

Figure 5.9 Magnitude of gradients in Mach number after range restraint

42



Because the large variations in forcing functions cannot, be used subtle changes in a flow

field cannot be adapted to using the forcing function method as well as the central point

o↵set method. This can be seen by the level of refinement in the adapted region marked as

the green box in figures 5.6 and 5.10. Table 5.5 shows some mesh quality metrics and the

number of nodes in the adapted region for all three meshes.

Figure 5.10 Shocktube mesh adapted with forcing functions after gradient range adjustment

Table 5.5 Mesh quality metrics and level of refinement for the three shocktube meshes

mesh adapted points max aspect ratio avg aspect ratio max angle max skew avg skew
Initial 257 1.97 1.08 116.67 2.07 1.30
CP 280 3.68 1.08 135.86 2.84 1.31
FF 258 2.52 1.07 125.10 2.75 1.27
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NACA 0012 Airfoil

The two following cases used the numerical solution obtained from an Euler flow solver,

on a 6,300 node, all triangular mesh. The test cases were run for two steady state cases of

a NACA 0012 airfoil. Though these test cases are much more complex than the previous

tests. These cases should test each methods ability to adapt large regions of a solution field

simultaneously, especially with problems that have large variations in the magnitude of the

solution gradient.

The first case has freestream Mach number is 0.75 with an angle of attack of 4.0 degrees.

A plot of the Mach number in the numerical solution is shown in figure 5.11. There is shock

developing about 2
3 down the chord can be seen in this solution, but it is of considerably

poor quality.

Figure 5.11 NACA 0012 airfoil numerical solution
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The solution data run on this initial mesh was stored in the 2D spacing library developed

by David Collao of UTC [11]. As points were adapted, the adaptation function remained

fixed rather than moving as the points moved. Figure 5.12 shows the meshes that were

adapted using both the central point o↵set method (top) and the forcing function method

(bottom). The meshes were then used in the Euler solver to compute the flow solution again.

The central o↵set point method led to the solution of a straighter shock o↵ the airfoil, but

the shock developed upstream of the majority of the adaptation intended for the shock.

The forcing function method originally produced no adaptation near the shock. Again

the magnitude of the gradient field was clipped at each node that had a gradient magnitude

greater than 1.5 times the standard deviation of the entire mesh. This finally allowed for

the mesh shown. The forcing function method produced a weaker shock that was not as

straight.

The convergence rate of the two meshes was also di↵erent than the initial mesh. Both

adapted meshes converged almost 100 iterations faster than the initial mesh. All cases were

run using the same CFL.

Adapting to this CFD solution also gives the opportunity to talk briefly about the

computational cost of adaptation with respect to the computational cost for a CFD solution

on the same mesh. On the initial mesh, running 500 iterations of the Euler solver took

85.9 seconds running on a desktop computer with using a 2.7 GHz Intel i5 processor. Using

the central point adapted mesh the solver took 86.5 seconds, and the forcing function mesh

took 72.8 seconds. On average the solver took 81.7 seconds to run 500 iterations. As figure

5.13 shows, 500 iterations was su�cient to converge the system. Adapting the mesh using

the central point method to obtain the mesh shown in figure 5.12a took 7.2 seconds while

the adapting using the forcing function method took 3.7 seconds. For this problem, as a

percentage of the CFD solution time, that places adaptation between 4.5% and 8.8% of the

computational time required of a steady state solution for the same mesh. This analysis does
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not take into consideration the increased convergence rate that both adaptation methods

yielded.

Table 5.6 Mesh metrics for Mach of 0.75 and an angle of attack of 4.0 degrees

mesh adapted points max aspect ratio avg aspect ratio max angle max skew avg skew
initial 52 1.86 1.07 114.23 2.09 1.30./
CP 77 4.13 1.06 124.00 7.43 1.27
FF 63 2.52 1.06 120.58 2.77 1.25
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(a) Mesh adapted using central point o↵set.

(b) Mesh adapted using forcing functions.

Figure 5.12 Mach number solution on adapted meshes
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Figure 5.13 Convergence rate of adapted NACA meshes
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The second case was again done on the NACA 0012 airfoil, with freestream Mach number

of 0.95 and a zero angle of attack. The resulting meshes from each method are shown in

figure 5.14. In this case the forcing function adaptation produced higher refinement in the

test adaptation region while the central point method yielded a worse maximum aspect ratio

and maximum skew, though averages for most quality metrics were similar.

All three meshes (central point, forcing function and baseline) converged within 25

iterations when used to compute the flow solution. However di↵erences can be seen in

figure 5.15 between the computed solution using the central point method and the forcing

function method. The forcing function produced results almost indistinguishable from the

initial coarse mesh. The forcing function adapted mesh was more adapted and did produce

smoother contour lines for the shocks.

Table 5.7 Mesh metrics for Mach of 0.95

mesh adapted points max aspect ratio avg aspect ratio max angle max skew avg skew
initial 47 1.86 1.07 114.23 2.09 1.30
CP 56 10.87 1.06 120.95 20.11 1.27
FF 85 3.82 1.06 133.49 2.78 1.25
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Figure 5.14 Adapted NACA 0012 mesh, tail shocks
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Figure 5.15 Mach number computed using the adapted mesh from central points and forcing
function
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CHAPTER 6

CONCLUSIONS

A new method for mesh adaptation, called the central point o↵set method, has been

presented using automated and iterative manipulation of the computational domain that,

in the context of a Winslow based elliptical solver can produce good quality meshes. This

new method is intrinsically robust when adapting to solution fields with high variations in

the magnitude of the gradient field. This robustness is due to an intuitive restriction that

while virtual control volumes can be manipulated, the computational domain must remain

valid. While robust, manipulation of the virtual control volume could not achieve the level of

refinement during some analytic test cases. The method also has the ability to use a spacing

field that is user defined to adapt the mesh.

In contrast, adaptation through forcing functions was shown to produce high quality

meshes with more control on the level and direction of adaptation when using simple analytic

adaptation functions. However, the method became unstable when applied to more complex

problems using actual simulation data. This instability was addressed by limiting the range

of gradients in the solution field. Unfortunately, limiting the solution gradients caused the

degree of adaptation be become unsatisfactorily small in some of the test cases.

Neither method can be considered a mature technology, further research is needed for

both. The virtual control volume manipulation used here only altered the location of a single

point in the computational stencil. To achieve the control and refinement presented by the

forcing functions, virtual control volume manipulation may have to be extended to include

alteration of the entire computational stencil.
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The robustness of the central point method came about through an intuitive implemen-

tation of limits on the level of virtual control volume manipulation. While the same limits

do not apply to the forcing function method, additional constraints could be implemented

that would increase the robustness of the method. Further research with forcing function

adaptation should definitely include using a more stable linear solver such as GMRES. The

stability problem in this method seem to be a problem with the range and scale of the forcing

functions. Or possibly by using a gradient calculation method that is more dissipative such

as a least squares gradient. Research into scaling or skewing the forcing functions should

also be pursued. This may lead to a new, more general, way of computing forcing functions

to control the mesh. A way of automating the calculation forcing functions to match some

desired mesh quality may be possible.

While both methods currently have issues that need to be addressed, the methods do

show promise. The computational time required for adaptation has been shown as well under

10% of the computational time required for CFD analysis. And solution based adaptation

was also able to increase the convergence rate of the CFD solver.

In the future these methods must be implemented for a distributed memory parallel

paradigm to allow for adaptation of very large meshes. While parallel implementations

always introduce new complexities, both adaptation methods should be as well suited for

parallelization as CFD analysis codes are. The only step in each method that would require

communication would be solving the pseudo-linear system.

One final note, the two methods are not mutually exclusive. It could be possible to

combine the methods and do virtual control volume manipulation and forcing functions

simultaneously. A hybrid method for adaptation may be able to produce the control over

refinement from forcing functions while still retaining robustness.
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APPENDIX A

TRANSFORMATION OF WINSLOW EQUATIONS
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The Winslow equations are expressed as a Laplacian operator on the computational

coordinates set equal to zero or set to forcing functions P,Q. The Winslow equations are

poisson equations in the computational space, shown below in the P,Q form:

r2
⇠ = P

r2
⌘ = Q (A.1)

(A.2)

in �, form:

r2
⇠ = (r⇠ ·r⇠)�

r2
⌘ = (r⌘ ·r⌘) (A.3)

with the computational space represented by (⇠, ⌘) and the physical space represented as

(x, y). The mapping between the computational space and physical space is defined by:

⇠ = ⇠(x, y), x = x(⇠, ⌘)

⌘ = ⌘(x, y), y = y(⇠, ⌘) (A.4)

To transform from the computational domain to the physical, the metric linear identities in

2D are
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(A.5)
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Applying the chain rule for di↵erentiation

f

x

= f

⇠

⇠

x

+ f

⌘

⌘

x

(A.6)

yielding

f
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Substituting the and simplifying we have

⇠
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with

J

⇠

= x

⇠

y

⌘⇠

+ y

⌘

x

⇠⇠

� x

⌘

y

⇠⇠

� y

⇠

x

⇠⌘

J

⌘

= x

⇠

y

⌘⌘

+ y

⌘

x

⌘⇠

� x

⌘

y

⌘⇠

� y

⇠

x

⌘⌘

(A.9)

So substituting and simplifying⇤
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With substitutions of ↵, � and �
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⇤
and making use of the mixed derivative theorem
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Defining the operator
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Which gives
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Similarly r2
⌘ can be determined as
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yielding
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(A.14)

The Winslow equations in P,Q form can then be described as:
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and finally
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or in �, form

↵(x
⇠⇠

+ �x
xi

)� 2�x
⇠⌘

+ �(x
⌘⌘

+ x
⌘

) = 0

↵(y
⇠⇠

+ �y
xi

)� 2�y
⇠⌘

+ �(y
⌘⌘

+ y
⌘

) = 0 (A.18)

with

↵ = x

2
⌘⌘

+ y

2
⌘⌘

� = x

⇠

x

⌘

+ y

⇠

y

⌘

� = x

2
⇠⇠

+ y

2
⇠⇠

(A.19)

59



APPENDIX B

HIERARCHAL STORAGE OF TWO DIMENSIONAL DATA
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Hierarchal storage can be used to store adaptation functions or spacing data to a

background x,y plane. For two dimensional mesh generation it is becoming common to

use a quadtree to location based data. A quadtree is a tree data structure where each

node in the tree has four children. Beginning with the root node, the root node of the tree

encapsulates the entire domain and the four children of the root node subdivide the domain

into four equal quadrants. Then recursively each quadrant can be subdivided into four, more

refined, quadrants. The “Quadtree” C++ implementation of this data structure stores data

using an associated extent box. An extent box is the cartesian aligned rectangular region as

defined by an upper left point and a lower right point, that represents the location of the

data. At any level of the tree, extent boxes that would cross the next quadrant divide are

stored at that level of the tree while extent boxes that would be completely encapsulated

are stored in lower levels. Figure B.1 shows a domain and the subdivides that would be the

quadrants of the next level in the tree. The red extent box crosses the divide that will be

the next layer of quadrants and is stored on the current layer of the tree. The blue extent

box is completely encapsulated by the subdivide, and is stored in a lower layer. When

retrieving data from the quadtree, all the data whose associated extent box contained the

query location are returned.

Figure B.1 Extent boxes on a quadrant
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Storing data in the quadtree that completely covers a domain cannot easily be done

because of the rigid nature of the extent boxes. Storing data from a mesh using the extent

box of cells or dualed-cells would cause extent boxes to overlap for all but the simplest

structured mesh case. When retrieving data from a location where extent boxes overlap a

decision must be made about which extent box best represents the location. Figure B.2

shows two cells and their extent boxes. If the red dot was a query location then both data

sets would be returned with no way of di↵erentiating which set more accurately represents

the data.

Figure B.2 Overlapping extents

This problem was first solved by Collao [11] by storing the outline of cells or dualed-cells

that the extent box encapsulates. When both data sets are returned, the cells can be used

to test whether the point is inside our outside each cell. As figure B.3 shows, by adding cells

to the information stored the decision on which data set to use can be made.
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Figure B.3 Overlapping extents with associated cells
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