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ABSTRACT 
E-cigarettes have become increasingly popular in the past decade. They are 

marketed as smoking cessation aids. These products have not been well regulated or 

researched with respect to health concerns and safety issues. A number of toxic 

compounds have been discovered in refill solutions, and the long-term effects of e-

cigarette use are still largely unknown. Nicotine is one of the primary alkaloids within e-

cigarette refill solutions. Nevertheless, other tobacco alkaloids are present including; 

cotinine, myosmine and anabasine, even though these compounds are not disclosed on 

the packaging. This study uses known amounts of tobacco alkaloids, in an in vitro culture 

system, to test the effects of these chemicals on the growth of human lung cells. Cell 

viability was measured as a function of metabolic ATP activity, using the Cell-Titer Glo 

Luminescent assay. Preliminary results from single alkaloid trials indicate generally 

decreased cell growth in response to each of the aforementioned alkaloids, in comparison 

to a control. Changes in gene expression may be linked to the development of tobacco-

related diseases in humans. To address this issue, we used qRT-PCR to analyze gene 

expression for multiple markers associated with diverse cellular functions: adhesion 

(CEACAM6, CX3CL1), immune response (TLR4, CX3CL1, CEACAM6), xenobiotic 

metabolism (CYP1A1, AHR, ALDH3A1), oxidative stress (GPX2, ALDH3A1), putative 

oncogenes (PIR, CEACAM6), and putative tumor suppressor genes (SLIT1). These 

markers were selected because their dysregulation is implicated in carcinogenesis and 

tumorigenesis. Expression of these markers will be compared between cells treated with 

the aforementioned alkaloids and control cultures. Our results show significant (p<0.05) 

differential expression of TLR4, CEACAM6, ALDH3A1, and PIR in response to alkaloid 

exposure. This project illustrates the need for more research on the contents and 
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physiological effects of refill solutions, and the requirement for better labeling and 

regulation of refill solutions.  
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GOALS and HYPOTHESIS 

 The goal of this project was to study the effects of alkaloids found in electronic 

cigarette (e-cig) refill solutions on normal gene expression and cell viability. Although 

there is an increasing popularity of the product, there is currently little available data 

regarding the potential consequences of electronic cigarettes on human health. There is a 

need for further investigation in the physiological effects of the major chemicals found in 

the cartridges, as well as the refill solutions themselves. The chemicals are vaporized and 

absorbed through the lungs where they enter the bloodstream and are distributed to 

various tissues and organs. Previous research in Dr. Carver’s lab has shown decreased 

cell viability in cultures exposed to the four major alkaloids found in e-cig refill 

solutions, both singly and in combination with one another (Beavers, 2014). Based on 

this finding, we hypothesize that the cells are activating pathways that redirect energy 

from normal physiology and into stress responses. This research was designed to examine 

changes in gene expression and cell viability of a human lung cell line exposed to major 

chemical alkaloids found in e-cigarette refill solutions. 

 We exposed a human lung carcinoma cell line, CCL-185, to four major alkaloids 

that were extracted from the e-cigarette refill cartridges: nicotine, cotinine, myosamine, 

and anabasine.  Cells were grown and maintained following protocols that allow for 

continued cell viability (Gibco). Cultured cells were exposed to individual alkaloids at 

dilutions of 1:10 and 1:1000 of the original 1mg/ml alkaloid stock, then the cell viability 

and gene regulation in the treated cells were compared to untreated control populations of 

cells. Cell viability was determined using a luminescent ATP assay, which correlates the 

amount of ATP present to the amount of metabolically active cells. Gene expression was 
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determined using reverse trancriptase PCR (RT-PCR). We chose candidate genes which 

are linked to tumorigenesis, oxidative stress, immune response, xenobiotic metabolism, 

and putative tumor suppressor genes and oncogenes. All the selected genes have shown 

differential expression in response to traditional cigarette smoke (Spira et al, 2004).  

BACKGROUND INFORMATION 
 

Cell Cultures 

Cell cultures derive from cells that have been extracted from plant or animal 

tissues. When supplied with the proper nutrients, some of these cultures may be able to 

survive indefinitely.  Cell culturing methodology allows each cell to function as an 

individual unit, which allows for control when studying cell growth, metabolism, or 

response to stimuli. Cell cultures provide a way to do certain tests in vitro that would be 

dangerous or unethical to perform on an in vivo system. Cultured cells are easily 

manipulated and are capable of showing varied responses to different stimuli (Brauze et 

al, 2014; Dasgupta et al, 2009). There are limitations to 2-D culture, in which the cells 

are plated on a solid substrate and form a monolayer. In the body, cells are suspended in a 

network of proteins called the extracellular matrix (ECM), and the cells are capable of 

communicating with one another, and with the ECM itself. There have been instances in 

which the reactions of cells in a 2-D system do not accurately portray the reactions of 

those cells in a 3-D system or in vivo (Abbot, 2003; Weaver et al, 1997). However, 2-D 

cultures are able to provide foundational research into the way cells will respond to 

stimuli such as oxidative stress and toxins, which will lead to further hypothesis and 

experimentation using more advanced techniques.  
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The American Tissue Culture Collection (ATCC) provides cell lines from many different 

tissues and organisms. We utilized the continuous-culture, human lung fibroblastic 

carcinoma cell line, CCL-185. This cell line is commonly used, and results generated 

using this study may be easily compared to other literature which utilizes this cell line. 

Since we are testing the cytotoxic effects of chemicals found in e-cigarette refill solutions 

it would be unethical to do these experiments on an in vivo system, thus the need for a 2-

D culture. Cell culture will be a useful model for providing preliminary data relating to 

the effects of e-cigarettes on human health, and will provide guidance for further 

experimentation.  

 

E-Cigarette 

Since the early 2000s, the e-cig has become prevalent as a “safe” alternative to 

tobacco cigarettes (Caponnetto et al, 2012). Due to their lack of toxins arising from the 

combustion process, they may be safer than traditional cigarettes, though traditional 

cigarettes are a poor standard of health to be compared against.  An increasing amount of 

young adults with no previous history of tobacco use have begun to smoke e-cigarettes, 

with 7.2% of high-schoolers, and 20.3% of middle-school e-cig users having never 

smoked a traditional cigarette (Carroll-Chapman et al, 2014). Despite their popularity, 

little is known about the long term physiological effects of e-cigs, or even the contents of 

the refill cartridges.  Chromatographic analyses of refill solutions show nicotine, as well 

as other alkaloids: cotinine, myosmine, anabasine, β-Nicotyrine, and anatabine (Trehy et 

al, 2011; FDA, 2009; Murray, 2014).  Analyses also show large discrepancies between 

the nicotine content marketed on the package, and the actual nicotine present in the 
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solution; in some cases, packages that were labeled as containing 0mg of nicotine 

actually showed up to 21mg of nicotine in the cartridge (Trehy et al. 2011).  Measureable 

quantities of formaldehyde have been discovered in the vapor produced by e-cigarettes 

(Jensen et al. 2015). Brief inhalation of formaldehyde is associated with airway 

inflammation, and potential allergic reactions, while long term inhalation, such as that 

which may be obtained by habitual tobacco or e-cig use, is associated with increased 

asthma and cancer incidence (ATSDR, 2008).  

A common marketing scheme among e-cigarette distributors consists of the client 

base being led to believe that the vapor produced by smoking e-cigarettes is solely water 

vapor. This marketing campaign made it initially acceptable to smoke e-cigarettes 

anywhere, including indoors, though many states are enacting regulations against this. 

Recent studies have shown that e-cigarettes reduce air quality, and emit substances that 

may be harmful toward humans. Increased amounts of nicotine, glycerine, 1,2-

propanediol, aluminum, and polycyclic aromatic hydrocarbons (PAH) were detected in 

well-ventilated rooms in which e-cig use was taking place (Schober et al, 2014). While 

there is no side-stream smoke, as there is in traditional cigarette smoking, by-standers are 

exposed to exhaled vapor, which may carry these impurities in ultra-fine particles which 

are readily absorbed in lung tissue (Schober et al, 2014). The vapor also provides 

opportunity for third-hand exposure to vapor pollutants and nicotine. This occurs when 

the vapor settles on surfaces, and allows exposure via dermal contact, ingestion, or 

inhalation. The nicotine can react with oxidizing chemicals in the air and form 

carcinogenic nitrosamines (Goniewicz and Lee, 2015).  
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A recent study developed a murine model for e-cigarette smoking, which was 

shown to be comparable to human e-cigarette consumption based on correlations between 

serum cotinine levels. The study investigated whether or not the immune response of the 

mice was effected by ‘smoking’ e-cigarettes. The study examined mechanisms of 

bacterial and viral immunity by exposure to Streptococcus pneumonia and Influenza A, 

respectively. Mice exposed to e-cigarettes had decreased clearance of the bacterial 

species from their lungs, and showed reduced alveolar macrophage activity as compared 

to a control population. Mice exposed to the viral strain showed increased quantities of 

the virus in their lungs, and increased rates of disease-related mortality as compared to a 

control population. The authors hypothesize that some of the immunomodulatory 

responses are associated with nicotine exposure, which has been shown to be 

immunosuppressive, though the study did not investigate exposure to nicotine in 

isolation. The study also examined free radical content in e-cigarettes using electron 

paramagnetic resonance, which showed that e-cigarettes contain approximately 7 x 1011 

free radical species per puff, which is less than the 1 x 1014 free radical species per puff in 

traditional tobacco smoke, but still enough to produce a heightened amount of oxidative 

stress (Sussan et al, 2015). 

E-cigarettes are comprised of multiple units which work together to provide 

function (Figure 1). In all e-cigarettes there are six invariable main components: The 

mouthpiece, the atomizer, the microprocessor, the cartridge, the battery, and the fluid. 

The user inhales through the mouthpiece. The negative pressure triggers the atomizer, 

which vaporizes the E-liquid, which contains a humectant, such as propylene glycol, that 

allows it to be vaporized (Bahl et al, 2012). The refill cartridges contain the E-liquid and 
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the atomizer. These cartridges are simple to replace, and may be purchased in nearly 

7,000 flavors (Allen et al, 2015), which may create appeal in youth populations and non-

smokers (Callahan-Lyon, 2014). The chemical diacetyl was detected in a large proportion 

of the flavorings, this chemical has been linked to the disease bronchiolitis obliterans, 

“popcorn lung”, which may require lung transplant in serious cases (Allen et al, 2015).  

 

 

Figure 1: Functional Components of the Electronic Cigarette (e-cig) 

(Adapted from http://ecigarettereviewed.com/about-e-cigs) 

This project will evaluate effects of e-cigarette usage on a human cell culture 

system, which can be used to guide us on human health risks.  Due to the novelty of the 

vaporized tobacco trend there has been little data published about the way in which e-

cigarettes affect our body tissues or metabolic function.  This project will provide insight 

into the responses that e-cigarettes elicit from the human body, and whether or not these 

responses are detrimental.   
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E-Cigarette Alkaloids 
 

Nicotine 

 

Figure 2: Chemical Structure of Nicotine 

Nicotine (Figure 2) and its effects have undergone thorough research since the 

advent of the cigarette, and its increased use in modern society. Nicotine is a natural 

product of the tobacco plant, where it functions as an insecticide. It is the most abundant 

of the alkaloids found in the tobacco plant, making up approximately 95% percent of the 

total alkaloid content and 1.5% by weight of cigarette tobacco (Hukkanen et al¸2005). 

The nicotine content of conventional cigarettes is between 10-15mg (Kozlowski et al, 

1998; Taghavi et al, 2012), but the content is variable in electronic cigarettes due to a 

lack of regulation by the FDA, and may range from 0-21.8mg in cartridges labelled as 

nicotine free, (Trehy et al, 2011). Nicotine is lipid-soluble, which allows it to cross the 

cell membrane, though this is influenced by the pH of the smoke. In more alkaline 

cigarettes, like those found in Europe, there is significant absorption of nicotine in the 

buccal mucosa of the mouth, but in more acidic cigarette smoke, like the ones found in 

America, the majority of the absorption occurs in the deep airway (Gori et al, 1986). 

Thus, the principle route of nicotine absorption occurs through the alveoli of the lung, 

which is aided by the large surface area of the alveoli (Yildiz, 2004). After inhalation of 

cigarette smoke, nicotine reaches the brain within 10-20 seconds producing rapid 

behavioral reinforcement by triggering the dopaminergic reward system (Benowitz et al, 
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2009). The smoker is able to titrate the amount of nicotine received through alterations in 

puff volume and frequency (Hukkanen et al, 2005; Farsalinos et al, 2015). Nicotine is 

also readily absorbed through the skin, which is an occupational hazard for farmers who 

work with wet tobacco leaves, which may cause Green Tobacco Sickness (McBride et al, 

1998). There has also been an increased prevalence in toxic nicotine exposures through e-

cigarette refill solutions with 5.9% of these exposures occurring through dermal contact 

(Chatham-Stephens, 2014).  

Following the initial absorption, nicotine enters the bloodstream, and at a 

physiological pH it exists in a primarily ionized state. Nicotine has the highest affinity for 

the liver, spleen, kidneys, and lung, but with low affinity for adipose tissue. Nicotine also 

has a high affinity for brain tissue, with higher affinity in smokers than non-smokers due 

to increased nicotinic cholinergic receptors in the smoker’s brain. Nicotine easily crosses 

the placental barrier and accumulates in amniotic fluid, as well as in breast milk 

(Hukkanen et al, 2005).  

Average concentrations of nicotine in the venous blood of smokers are between 

10-37ng/mL, and peak concentrations of nicotine are between 19-50ng/mL These 

numbers may vary based on the experience level of the smoker, or the mode of nicotine 

introduction, such as; cigarette, cigar, or chewing tobacco (Hukkanen et al, 2005). 

Arterial nicotine concentrations may be higher, reaching up to 100ng/mL (Benowitz et al, 

2009). Blood levels in e-cig users vary depending on the generation of the device being 

used, and the experience level of the user. With first generation devices, using a cartridge 

with a mid-range nicotine content (18mg/mL), blood levels of nicotine peaked at 
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15.75ng/mL, and with a new generation e-cig the blood levels peaked at 23.47ng/mL 

(Farsalinos et al, 2014). Typically, 1mg of nicotine is absorbed per cigarette, though this 

may not be reflected in blood levels due to the short half-life and rapid distribution of 

nicotine (Hukkanen et al, 2005). Our study utilized nicotine concentrations which were 

1µg/mL and 100µg/mL, which is higher than the physiological concentrations found in 

the blood, but may be more representative of the concentrations exposed to the lung 

epithelia prior to absorption. However, data regarding epithelial exposure to the alkaloids 

is limited, but this high and low range will provide a baseline of data regarding 

potentially dose-dependent effects of the alkaloids on lung cells. 

Nicotine is metabolized in the liver. Six primary metabolites have been identified, 

but quantitatively and physiologically the most important is the lactam-derived 

metabolite, cotinine. In humans, 70-80% of nicotine is transformed to cotinine via a two-

step mechanism, and then excreted in the urine (Benowitz et al, 2009). The primary step 

of this conversion is carried out by the cytochrome p-450 2A6 (CYP2A6) enzyme, which 

converts nicotine to a nicotine iminium ion (Yildiz, 2004), which is then converted to 

cotinine by an aldehyde oxidase. CYP2A6 shows extensive individual polymorphism and 

variation, which causes alteration in the metabolism and excretion of nicotine (Hukkanen 

et al, 2005).   

 

 



18 
 

Cotinine 

 

Figure 3: Chemical Structure of Cotinine 

Cotinine (Figure 3) is the most abundant metabolite of nicotine, with 70-80% of nicotine 

being metabolized to cotinine (Benowitz et al, 2009). While nicotine is a natural product 

of the tobacco plant, it is thought that cotinine is produced through bacterial oxidation 

during tobacco processing (Benowitz et al, 2009). Cotinine can be further metabolized to 

several secondary metabolites (Figure 4), the most major of which are trans-3’-

hydroxycotinine (33-40%) and cotinine glucuronide (12-17%). A large portion, between 

10-15%, of cotinine is excreted completely unchanged (Benowitz et al, 2009). 

Physiologically, cotinine has no effect on mental acuity and no correlation to 

cardiovascular issues in humans (Hukkanen et al, 2005). High doses of cotinine have 

actually been shown to antagonize the effect of nicotine and aid in the alleviation of 

withdrawal symptoms (Hatsukami et al, 1998).  

 

Figure 4: Quantitative Scheme of Nicotine Metabolism Showing Percentage of Alkaloids Appearing in 

Human Urine. This representation does not include all metabolites of nicotine or cotinine, but does include 

those with the most major presence in human urine (Adapted from Benowitz et al, 2009) 
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 Clearance is the term used to describe the volume of plasma cleared of a 

particular substance per unit time. Nicotine has a clearance rate of ~1200mL/min, while 

cotinine clearance is much slower, averaging ~45mL/min. Factors such as race, gender, 

diet and genetic variation in the CYP2A6 enzyme create variability in cotinine 

metabolism.   

 Nicotine has a relatively short half-life in biological fluids, approximately four 

hours, but cotinine has a half-life of approximately sixteen hours (CDC). Due to the 

persistence of cotinine in biological fluids, such as saliva and blood, as well as the large 

proportion of nicotine that is metabolically converted to cotinine, it is a useful biomarker 

for daily intake of nicotine. As shown in Figure 4, only 10-15% of cotinine is secreted 

unchanged. The main metabolites secreted through urine are trans-3’-hydroxycotinine 

and cotinine glucorinide. There are several factors that may cause variation in the 

efficacy of this mechanism. The aforementioned effects of race, gender, age and genetic 

variation all play a role in cotinine metabolism, and thus effect the usefulness of cotinine 

as a biomarker for nicotine intake (Benowitz et al, 2009; Benowitz, 1996).  

 Given that the majority of nicotine is converted to cotinine (Benowitz et al, 2009), 

and the high persistence of cotinine in biological fluids, the blood concentrations of 

cotinine are much higher than those of nicotine. Average blood concentrations of cotinine 

range from 200-350ng/mL, though it has been shown to be as high as 900ng/mL 

(Hukkanen et al, 2005). This in vitro tissue culture study utilized a low and high 

concentration of 1µg/mL to 100µg/mL, respectively, solubilized in the culture medium. 
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Though these concentrations are higher than physiological levels, they will provide us 

further understanding of potential dose-dependent effects of cotinine on a lung cell-line. 

 

Anabasine 

 

Figure 5: Chemical Structure of Anabasine 

 Anabasine (Figure 5) is a minor alkaloid that is produced by the tobacco plant as a 

natural insecticide. Nicotine makes up approximately 95% of the total alkaloid 

composition of the tobacco plant, while anabasine makes up ~0.3% (Armstrong et al, 

1999). Unlike cotinine, anabasine is only found on the tobacco plant, it is not a nicotine 

metabolite, so presence of anabasine in biological fluids is indicative of active tobacco 

consumption (Yue et al, 2010). Comparatively, little research has been done regarding 

the physiological and psychological effects of anabasine. Anabasine has been shown to 

elicit similar addictive effects to nicotine, though at a lower potency than nicotine (Harris 

et al, 2015). However, it did not show effects on ambulatory behavior (Clemens et al, 

2009). Anabasine has been implicated as a teratogen in livestock, leading to cleft palate 

and abnormalities related to prolonged skeletal muscle contraction in animals that were 

fed ground tobacco products (Lee et al, 2006).  
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Myosmine 

 

Figure 6: Chemical Structure of Myosmine 

 Similar to cotinine, myosmine (Figure 6) is believed to arise on the tobacco plant 

through bacterial oxidation during tobacco processing. Myosmine is also present in a 

variety of food products including nuts, cereals, cocoa, carrots, corn and cream 

(Simeonova et al, 2012; Benowitz et al, 2009). Its prevalence in food contributes to its 

presence in human toenails, saliva, plasma, and breast milk (Simeonova et al, 2012).  

 Myosmine metabolism has been shown to produce genotoxic and carcinogenic 

effects. Myosmine has five metabolites in vivo, the most prevalent of which are 3-pyridyl 

acetic acid (3-PAA) and keto acid (Glas et al, 2007). Under acidic conditions, myosmine 

can be directly converted to N’-nitrosonornicotine (NNN), which is implicated in the 

induction of esophageal tumors in smokers. When NNN is metabolically activated it 

leads to pirydyloxobutylating agents which bind to DNA, leading to mutagenic G to A 

conversions.  Through peroxidation, myosmine can directly lead to molecules that form 

4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) producing DNA adducts, which have 

mutagenic effects on human cells (Vogt et al, 2006).  

 Like nicotine, myosmine is lipid soluble and passes easily through lipid 

membranes, thus following administration it is found in both intracellular and 

extracellular fluids. Myosmine shows high affinity for melanin, lachrymal and salivary 
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glands, stomach, and esophagus. Myosmine shows very rapid processing and excretion, 

appearing in the kidneys after several minutes (Glas et al, 2006). 

 

Nicotine CNS Physiology 

Nicotine has strong effects on the central nervous system, where it may cause 

locomotor stimulation, arousal, appetite suppression, and anxiety relief. Nicotine reaches 

the brain quickly, and crosses the blood-brain barrier with ease. Peak nicotine levels 

within the brain occur approximately 30 minutes after intravenous introduction, and 

within 30 seconds following cigarette smoking (Crooks et al, 1997; Hukkanen et al, 

2005). Nicotine binds nicotinic acetylcholine receptors (nAChR) on the presynaptic 

terminals of cholinergic and dopaminergic neurons. These receptors are ligand gated 

channels, and nicotine and acetylcholine are both ligands. When a ligand binds, the 

channel is opened allowing an influx of cations and leading to depolarization of the 

neural membrane (Dani and De Biasi, 2001).  

When nicotine first passes into the brain, nAChR is activated, causing an action 

potential, or nerve impulse, to travel the length of the axon and resulting in the release of 

dopamine. Dopamine is released in major reward centers, such as the nucleus accumbens 

and the ventral tegmental area (VTA), and the behaviors that allowed for this dopamine 

release are reinforced. Prolonged nicotine exposure then causes desensitization of 

nAChR, with nAChRs at active cholinergic synapses and high affinity nicotine receptors 

being more likely to desensitize than other receptor subsets. At these active cholinergic 

synapses, the receptors are exposed to high levels of acetylcholine (ACh) and nicotine 



23 
 

causing high levels of desensitization in these areas, and thus a decrease in normal 

information processing. The increased desensitization leads to a decreased rate of 

receptor turnover, and an increase in total receptors. When nicotine leaves the brain, the 

increased amount of desensitized receptors reactivate, leading to increased excitability of 

cholinergic neurons (Dani and De Biasi, 2001). There is a subnormal release of dopamine 

and other neurotransmitters, which leads to a state of irritability, inability to experience 

pleasure, and anxiety which has been dubbed “hedonic dysregulation”, though this state 

can be quickly reversed by nicotine administration, which contributes to the difficulty 

conquering nicotine addictions (Benowitz, 2008).  

In summary, nicotine and the other aforementioned alkaloids have generally 

negative impacts on human health. Nicotine has been shown to increase oxidative stress, 

increase respiratory inflammation (Jang et al, 2014), and causes behavioral adaptations 

associated with addiction (Benowitz, 2008). Myosmine has been shown to have 

genotoxic, carcinogenic and tumorigenic effects (Glas et al, 2007; Vogt et al, 2006). 

Anabasine has shown alterations to behavior similar to those in response to nicotine 

(Harris et al, 2015), and is speculated to be a teratogen in mammalian livestock (Lee et 

al, 2006). Cotinine has been shown to alleviate some of the effects of nicotine addiction 

and withdrawal symptoms (Hatsukami et al, 1998). The presence of these alkaloids in e-

cigarette refill solutions are an indicator to negative effects on the health of e-cig users, 

and possibly those that are exposed to second and third-hand vapor from e-cigarettes.  
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Selected Candidate and Control Genes 

 Previous research in Dr. Carver’s lab showed decreased cell viability in cells 

exposed to e-cigarette refill solutions, as well as those exposed to the alkaloids being 

investigated in this study (Beavers, 2014). It is likely the cells are diverting energy away 

from normal growth and metabolism and are instead allocating energy toward stress 

response pathways. In order to investigate this hypothesis, we selected a panel of nine 

candidate genes that would likely show abnormal expression if the cells were allocating 

energy in this manner. These genes are implicated in a diverse range of cellular processes 

such as oxidative stress, immune response, metabolism, adhesion, some of which have 

been characterized as putative oncogenes. We studied mRNA transcript expression of 

cells exposed to the various alkaloids, as compared to a control cell culture, using 

quantitative Real-Time PCR (qRT-PCR), in order to determine if these genes were 

differentially regulated in comparison to control cultures which were not exposed to the 

alkaloids. 
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CYPIA1 and AhR 

 

Figure 7: The molecular details of activation of Phase I and II XRE by the AhR/ARNT pathway (Adapted 

from Androutsopoulos et al, 2009) 

The Cytochrome P450 (CYP) 1A1 is the major xenobiotic (drug metabolizing) member 

of the P450 superfamily in the lung. It has shown increased inducibility in the lungs of 

smokers in comparison with non-smokers and ex-smokers (Antilla, 1992). Its main 

function is the metabolism of polycyclic aromatic hydrocarbons (PAH) and dioxins such 

as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a key component of cigarette smoke. 

PAHs bind to the Aryl Hydrocarbon Receptor (AhR) (Figure 7), a cytoplasmic receptor 

protein, which translocates to the nucleus and upregulates a battery of xenobiotic-

metabolizing enzymes (XME) (Brauze et al, 2014; Klein et al, 2010). The PAH only 

gains carcinogenicity after activation by Phase I xenobiotic-metabolizing enzymes, such 

as CYP1A1. Phase I of xenobiotic metabolism consists of modification of the ligand 

through hydrolysis, redox, or cyclization. The cytochrome P-450 molecules, such as 
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CYP1A1 or CYP1A2, attach an oxygen to the foreign molecule, making it more reactive 

and more susceptible to further metabolism by Phase II xenobiotic enzymes. These 

proteins function to transform the cytotoxic PAH to a more soluble and excretable form, 

but in the process they form metabolites that are able to bind DNA and form DNA 

adducts. The upregulation of responsive elements by AhR leads to altered metabolism 

and increased cytotoxicity and carcinogenesis (Brauze et al, 2014). The AhR signaling 

system operates on a negative feedback loop. The activation of CYP1A1 also activates 

the AhR regulator (AhRR), which prevents AhR from translocating to the nucleus (Klein 

et al, 2010; Lindahl, 1992). CYP1A1 inducibility is linked to lung cancer formation, but 

with variability in different ethnic populations (Chen et al, 2011). CYP1A1 mRNA 

overexpression is common in the oral mucosa and airway of smokers vs non-smokers 

(Boyle et al, 2010). Our study will investigate transcript expression of CYP1A1 in cells 

exposed to alkaloids found in e-cigarette refill solutions. Due to the role of CYP1A1 in 

processing reactive species, we hypothesize that transcript levels will be elevated in 

response to alkaloid exposure (Table 1). Investigating AhR in conjunction with ALDH3A1 

and CYP1A1 expression levels may provide evidence as to whether or not any differential 

regulation of these genes is carried out under an AhR-dependent pathway.  

 

ALDH3A1 

Reactive aldehyde species can be generated through multiple endogenous and 

exogenous sources, including tobacco smoke and UV-radiation. Reactive aldehydes are 

similar to reactive oxygen species (ROS), except the aldehyde species last longer within 

the cell, and are membrane permeable so they may reach more distant targets. The 
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electrophilic character of the aldehyde carbonyl group confers reactivity to the aldehyde, 

which will interact with cellular nucleophiles such as proteins and nucleic acids (Lindahl, 

1992). Reactive aldehydes cause DNA damage, enzyme inactivation, and often cell 

death. There are 19 genes in the Aldehyde Dehydrogenase (ALDH) superfamily, which 

detoxify both exogeous and endogenous aldehyde species by catalyzing their oxidation to 

carboxylic acids, using NADP+ as a coenzyme (Jang et al, 2014; Korkalainen et al, 

1995).  

ALDH3A1 is a NADP+-dependent homodimer which is constitutively expressed 

in many tissues, including the cornea, lung, esophagus and stomach with nearly 

ubiquitous distribution through the cell. ALDH3A1 has exceptionally high concentration 

in the cornea, where it protects against aldehydes generated via exposure to UV-radiation 

(Black et al, 2012). Although ALDHs are often constitutive, there are forms that are 

induced by the presence of xenobiotics, which includes class III ALDHs, such as 

ALDH3A1. ALDH3A1 can be induced by the AhR signaling pathway as a Phase II XME 

(Lindahl, 1992), but its expression can also be induced through mechanisms independent 

of the AhR receptor (Korkalainen et al, 1995). Reactive aldehydes released by cigarette 

smoke can cause DNA interstrand crosslinks, which prevent the DNA helix from 

unwinding, thus preventing the effected sequence from undergoing replication or 

transcription. ALDH3A1, to a greater extent than other class III isozymes, attenuates 

cigarette smoke induced cytotoxicity through an AhR-dependent pathway (Jang et al, 

2014). We hypothesize that the expression of ALDH3A1 will be upregulated when 

exposed to the alkaloids present in e-cigarette refill solutions (Table 1).  
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GPX2  

 Glutathione peroxidase (GPX) is an enzyme that works to prevent oxidative stress 

by scavenging hydrogen peroxide and organic hydroperoxides in order to protect 

biomembranes and cellular components. GPX isoform 2 (GPX2) is the main inducible 

isoform of GPX in the lungs, and its transcript, as well as its protein expression increases 

in response to cigarette smoke (Singh et al, 2006). GPX facilitates the reduction of 

peroxides via the oxidation of glutathione (GSH) to glutathione disulfide (GSSG). 

Glutathione is an important redox couple in animal cells. It functions as an antioxidant 

via GPX, and also binds xenobiotics via the enzyme glutathione-s-transferase (Wu et al, 

2004). Basal, as well as inducible expression of GPX2 is dependent on the NF-E2-

Related Factor (NFR2) transcription factor. In response to severely oxidizing ligands, 

NFR2 releases from repressor protein KEAP1 and binds the Antioxidant Response 

Element (ARE) and upregulates a battery of antioxidant proteins, including GPX2 in the 

lungs. Nfr2-/- null mice showed much higher levels of oxidative stress than their wild-type 

counterparts (Singh et al, 2006). Given its role in the oxidative stress response we would 

predict upregulation of GPX2 as a result of these experimental conditions (Table 1). 

 

SLIT1 

 Members of the SLIT family, such as SLIT1, are extracellular matrix-secreted and 

membrane associated glycoproteins, which are the main ligands of the roundabout 

(ROBO) receptor. There are three isoforms of SLIT in mammals (SLIT 1-3), and there 

are homologues in many other organisms, including Drosophila, zebrafish, Xenopus, 
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chickens, and rats (Dickinson et al, 2004). SLIT proteins are produced in an inactive 

form, and must be cleaved in order to activate the ROBO receptor. The SLIT/ ROBO 

pathway plays an integral role in axonal guidance during embryogenesis, especially in the 

formation of commissural neurons, which have cell bodies on one side of the central 

nervous system (CNS) and extend axons to target cells on the opposite side of the CNS. 

The SLIT/ROBO complex forms a gradient which repels migrating axons away from the 

midline of the developing CNS and toward the opposing side (Dickinson et al, 2004; 

Avci et al, 2008; Ypsilanti et al, 2010). 

 Recently, the activities of the SLIT/ROBO pathway have been investigated in the 

context of tumorigenesis (Mehlen et al, 2011) and angiogenesis (Abdollahi et al, 2007; 

Mehlen et al, 2011). ROBO1 and SLIT1 have been implicated as potential pro-angiogenic 

genes during an analysis of the transcriptional network governing the angiogenic switch 

in pancreatic cancer, which is the shift in the balance between anti-angiogenic genes and 

pro-angiogenic genes. The instigation of angiogenesis is an important factor in 

tumorigenesis, because it allows the tumor to gain nutrients and growth factors required 

for growth and metastasis (Abdollahi et al, 2007; Mehlen et al, 2011). Based on the 

upregulation in SLIT1 and ROBO1 expression during tumorigenesis, we would predict 

that SLIT1 will be overexpressed in response to the alkaloids found in e-cigarettes (Table 

1). Though based on the complex networks and tissue associations required in 

angiogenesis and axonal guidance, it is difficult to predict whether SLIT1 will show 

differential expression in a study utilizing 2-D cell culture. 
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PIR 

 Pirin is a putative nuclear transcriptional regulator, and therefore it is considered 

important to normal regulation of gene expression. Its N-terminus contains a single Fe2+ 

ion, which is evolutionarily conserved. This iron-binding domain is believed to confer 

biological activity, and the ability to bind with other transcription factors (Miyazaki et al, 

2010).   

Pirin (PIR) has been implicated in the process of tumor metastasis by aiding in the 

initiation of epithelial to mesenchymal cell transition (EMT). EMT is the process by 

which anchored epithelial cells lose their connection to the extracellular matrix and 

become motile mesenchymal cells. It is a common process during embryological 

development, and has recently been linked to tumor metastasis. Fixed tumor cells may 

undergo EMT and drift and implant in other regions of the body causing tumors to grow 

there as well. PIR functions to induce EMT by downregulating epithelial markers, such 

as E-cadherin and occludin, and upregulating mesenchymal markers N-cadherin, 

vimentin, and fibronectin (Komai et al, 2015). PIR is also implicated in apoptosis due to 

its association with nuclear factor κB (NF- κB), a highly regulated antiapoptotic 

transcription factor (Liu et al, 2013). PIR is highly upregulated during periods of 

oxidative stress and apoptosis. PIR mRNA expression was three-fold more in smokers 

than non-smokers, where its overexpression has been shown to induce apoptosis 

(Gelbman et al, 2007; Orzaez et al, 2001). The regulation of the interaction between PIR 

and NF- κB is poorly understood, but the apparent promotion of apoptotic mechanisms 

by PIR suggest that it plays an inhibitory role on NF- κB (Gelbman et al, 2007). We 
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hypothesize that PIR will be upregulated when exposed to alkaloids present in e-

cigarettes (Table 1), due to the genes role in apoptosis and oxidative stress.  

 

CX3CL1 

CX3CL1 (also known as Fractalkine) is a chemokine, a type of chemoattractant cytokine. 

It is the only member of the CX3C class of chemokines. It exists as both a soluble and 

membrane bound form, the latter of which functions in cellular adhesion. In normal 

physiology chemokines have pleiotropic effects, largely influencing cellular migration 

during immune response, as well as angiogenesis, and mediation of the extra-cellular 

matrix. CX3CL1 and its receptor CX3CR1, are upregulated in several tumor types, 

including pancreatic and hepatocellular carcinomas (Li et al, 2010; Borsig et al, 2014). 

As with normal physiology, the role of chemokines is pleiotropic and far-reaching in 

cancer physiology as well. CX3CL1 functions as a tumor adhesion molecule, allowing 

tumor cells to communicate with stromal cells. Chemokines are regularly associated with 

immune function, and inflammation. The upregulation of the CX3CL1 protein is 

associated with the onset and maintenance of inflammation in liver disease. Chronic 

inflammation promotes persistent cellular proliferation, which in an inhospitable 

atmosphere, like that of inflammation or fibrosis, leads to increased probability of cancer 

cell formation. CX3CL1 has also been implicated in the process of angiogenesis, a 

process of paramount importance for tumor survival, by activating endothelial cells (Li et 

al, 2010). Due to its role in tumorigenesis we would predict increased expression of 

CX3CL1 in this experiment (Table 1), though the results may be more pronounced if our 

experiment utilized primary cell cultures as opposed to a cancer cell line. 
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TLR4 

 The Toll-like Receptor 4 (TLR4) plays an important role in innate immunity. It is 

a pattern recognition receptor (PRR) that recognizes the lipopolysaccharide (LPS) and 

lipid A (LPA) present on the outer membrane of gram-negative bacteria. TLR4 is a 

membrane protein on cells of the innate immune system, as well as endothelial cells. 

When immune cells presenting the TLR4 receptor come into contact with LPS, they 

upregulate a battery of pro-inflammatory cytokines and chemokines. The pathway used 

by TLR4, as well as the intensity of the response, depends largely on the conformation of 

the LPS ligand (Stark et al, 2014). The alveolar macrophages (AM) in lungs of smokers’ 

exhibit decreased cytokine production when stimulated by TLR4 agonists, though 

evidence indicates this occurs at a post-receptor level in the signaling cascade (Chen et 

al, 2007). Cotinine has been shown to reduce expression of ligand-stimulated TLR4 in 

cell culture (Bagaitkar et al, 2012). Based on the decreased immune response in smokers, 

we predict that cells will show decreased gene expression of TLR4 (Table 1), especially 

those that are exposed to cotinine. 

 

CEACAM6 

 Carcinoembryonic Antigen-like Cellular Adhesion Molecule 6 (CEACAM6) is a 

glycophosphotidylinositol-anchored membrane protein present in many primate tissues. It 

has a role in both innate and adaptive immunity, in which it mediates phagocytosis by 

adhering to proteins on the outer layer of gram negative bacterial and viral particles 

(Chapin et al, 2012). CEACAM6 exhibits homotypic binding with other CEA-presenting 
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cells, as well as heterotypic binding with integrin receptors, which allows its function in 

cell adhesion and migration. CEACAM6 expression is inversely correlated with cellular 

differentiation, and it is highly expressed in certain tumor types as compared to non-

tumor tissue (Blumenthal et al, 2007; Kim et al, 2013). Abnormal expression CEACAM6 

causes perturbation of specific integrins, which effects tissue architecture and regulation 

of cell differentiation. CEACAM6 exhibits inhibitory effects on anoikis, programmed cell 

death that occurs when a cell loses adherence to its substrate, which allows the onset of 

metastasis (Ordon᷈ez et al, 2000). CEACAM6 has increased mRNA in the airway of 

smokers as compared to non-smokers (Boyle et al, 2010; Spira et al, 2004). We would 

expect CEACAM6 expression to increase when exposed to alkaloids found in e-cigarette 

refill solutions (Table 1), based on the role of the gene product in EMT and metastasis. 

Expression of this gene may be varied due to the cancer cell line, but comparison to the 

baseline expression of the control cultures may allow us to predict how this gene would 

be regulated in a primary culture. 

 

Control Genes 

 Housekeeping genes code for proteins that provide essential maintenance or 

structural functions to the cell, and are therefore ubiquitous in all cells and tissues of the 

body and maintain relative stability regardless of the condition (Eisenberg and Levanon, 

2013). We selected β-2-Macroglobulin (B2M) and β-actin for our housekeeping genes 

(Table 1). B2M is a protein that interacts with the major histocompatibility complex class 

one (MHCI), an immune complex that presents internally digested antigens and is present 

on every nucleated cell. β-actin is a cytoskeletal protein associated with motility, cell 
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structure, shape, and integrity. β-actin was used as an internal inter-plate control for the 

RT-PCR experiments, which will allow us to normalize the readings and compare 

relative gene expression in the genes under study. 

 

Materials and Methods 
 

Tissue Culture Maintenance 

 The lung carcinoma cell line, CCL-185, was purchased from the American Tissue 

Culture Collection (ATCC). These cells were cultured in 75cm3 Falcon Flasks and 

incubated at 37°C with 5% CO2. Cells were grown in 12mL aliquots of DMEM High 

Glucose cell media supplemented with 10% Fetal Bovine Serum (FBS) and 1% 

penicillin-streptomycin solution. FBS provides growth factors that allow for normal cell 

growth and metabolism, and also provides inhibitors that halt the effects of trypsin during 

the cell passaging process. The penicillin-streptomycin solution prevents bacterial 

contamination of the eukaryotic cell culture. Cells were cultured until approximately 80% 

confluence within the flask.  

Table 1: Predicted Differential Expression of Candidate Gene Biomarkers in Study 

Gene CYP1A1 TLR4 CEACAM6 GPX2 CX3CL1 PIR 

Expression 

Variation 
Upregulate Downregulate Upregulate Upregulate Upregulate Upregulate 

 

Gene SLIT1 AHR ALDH3A1  B2M 

(CTRL) 

B-Act 

(CTRL) 

Expression 

Variation 
Upregulate Upregulate Upregulate  Constant Constant 
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 Once cells reached confluency, media was removed and replaced with 3mL 

aliquots of 0.25% (w/v) trypsin supplemented with 2.23mM EDTA. Trypsin is a protease 

which cleaves peptides on the C-terminal side of lysine or arginine, which causes cells to 

lose adherence to the culture flask. Ethylenediaminetetraacetic acid (EDTA) chelates 

divalent cations such as Ca2+ and Mg2+, which inhibit the protease function of trypsin. 

Cells were placed in the 37°C incubator for 5 minutes to assist in the proteolysis process. 

When the flasks were removed, the cells were suspended in solution. DMEM High 

Glucose supplemented with 10% FBS and 1% penicillin-streptomycin solution were 

added to the cell solution to bring the flask volume up to 24mL. A total of 12mL of this 

volume was removed and added to a new flask, effectively splitting the cell quantity of 

the original flask in half.  

Chemical Set-up of Tobacco Alkaloid Exposure Plates 

 Cells were grown to confluence in 75cm3 Falcon flasks. Upon reaching 

confluence, cells were trypsinized from flasks and cell counts were taken using a 

hemocytometer. Cells were counted in five sections of the hemocytometer, and the 

average cell count per square was determined. Each square contained 100nL. The average 

cell count per square was used to determine the average cell count per milliliter. The 

amount of cell stock required to seed 20,000 cells/mL was determined. Each 

experimental well was seeded with 20,000 cells in 1mL of solution, for consistency. Two 

dilutions of the alkaloids were prepared in culture media from the original 1mg/mL 

alkaloid stock: 1:10 and 1:1000, for final concentrations of 100µg/mL and 1µg/mL in the 

system, respectively. The molar concentrations varied depending on the molecular weight 

of the alkaloid (Table 2). Alkaloid stock was added directly to DMEM High Glucose, 
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supplemented with FBS and Penn/Strep. Cell stock was added directly to alkaloid 

dilutions and controls.  

Table 2. Alkaloid Concentrations in Relation to Dilution Factors 

 1:10 Dilution of 1mg/mL Stock 1:1000 Dilution of 1mg/mL 

Stock 

Concentration 

(µg/mL) 

Molar 

Concentration  

Concentration 

(µg/mL) 

Molar 

Concentration 

Anabasine 100µg/mL 620 nmol/mL 1µg/mL 6.2 nmol/mL 

Cotinine 100µg/mL 570 nmol/mL 1µg/mL 5.7 nmol/mL 

Myosmine 100µg/mL 680 nmol/mL 1µg/mL 6.8 nmol/mL 

Nicotine 100µg/mL 620 nmol/mL 1µg/mL 6.2 nmol/mL 

 For the plates that would be used for RNA extraction, each experimental 

condition was allocated an entire 12-well plate. The cells on the plates were pooled 

during the RNA extraction process, in order to ensure the maximum RNA yield. Each 

well contained 20,000 cells and 1mL of treated or control media.  

 Plates allocated to the Cell-titer luminescent assay each contained a control, and 

both dilutions of an alkaloid in triplicate. Each well contained 20,000 cells and 1mL of 

treated or control media.  

Cell-Titer Glo Luminescent Viability Assay 

 The Cell-Titer Glo Luminescent Viability Assay is a high throughput method of 

determining the amount of cells in culture by detecting the amount of ATP present in the 

solution. The luminescence is produced by a thermostable luciferase reaction (Figure 8), 

which produces a “glow-type” reaction while simultaneously inhibiting endogenous 

ATPases, which would affect ATP measurements. The luciferin used in this assay is 

derived from the firefly Photinus pennsylvanica, which provides additional stability and 

sensitivity in comparison to the traditionally used luciferin derived from the firefly 
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species, Photinus pyralis. There is a 1:1 stoichiometric relationship between the firefly 

luciferin and moles of ATP used in the reaction, which allows for a direct correlation 

between ATP and luminescence.  

 

Figure 8: Chemical reaction utilized by the Cell-Glo Luminescent Assay. The firefly luciferin protein reacts 

with ATP produced by metabolically active cells in order to yield oxyluciferin and measurable light. 

.  

 Cells were cultured on 12-well plates. Each plate contained a control in triplicate, 

which consisted of untreated DMEM High Glucose supplemented with 10% FBS and 1% 

Penicillin-Streptomycin solution. Two dilutions of an alkaloid (100µg/mL [Dil. 1] and 

1µg/mL [Dil. 2]) were present, both in triplicate (Figure 9). Each plate was representative 

of a single time-point. A whole week was represented in the assay design.  At each time 

point, the treated media and control media were each removed from the cultured cells, 

and replaced with 350µL of DMEM High Glucose that did not contain FBS or penicillin-

streptomycin solution, because these supplements may interfere with the Cell-Glo buffer. 

A 350µL volume of the Cell-Glo media was added to the untreated media on the cultured 
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cells, which elicits an immediate color changing reaction. The plates were incubated on 

an orbital shaker for 10 minutes.  

Figure 9: 12-Well Culture Plate Layout for the Cell-Glo Luciferase Assay. Dil. 1 represents the 100µg/mL 

dilution. Dil. 2 represents the 1µg/mL dilution. 

Following incubation, 200µL of the Cell-Glo treated media was added to a reflective, 

white-walled 96-well plate. For a more quantitative assay, the experimental plates also 

contained a standard curve. The standard curve was prepared by creating solutions with 

known quantities of ATP and mixing with the Cell-Glo media (Figure 10). A 1µL volume 

of ATP stock was added to 5000µL of untreated DMEM High Glucose (2.00 x 10-10 mols 

ATP). A 2500µL volume of the solution containing 2.00x 10-10 mols ATP was added to 

2500µL of untreated DMEM High Glucose to create a solution containing 1.00 x 10-10 

mols ATP. A 500µL volume of the solution containing 1.00 x 10-10 mols ATP was added 

to 500µL DMEM High Glucose to create a solution containing 5.00 x 10-11 mols of ATP. 

A 150µL volume of the solution containing 1.00 x 10-10 mols ATP was added to 1350µL 

of untreated media in order to make a solution containing 1.00x 10-11 mols ATP. A 

500µL volume of the solution containing 1.00 x 10-11 mols ATP was added to 500µL of 

untreated media to make a solution containing 5.00 x 10-12 mols ATP. Finally, 100µL of 

the solution containing 1.00 x 10-11 mols ATP was added to 900µL of untreated media to 

make a solution containing 1.00 x 10-12 mols ATP. A total volume of 100 µL of each 
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standard dilution, followed by 100 µL of Cell-Glo buffer, were added to individual wells 

of the opaque 96-well plate.  

 

Figure 10: ATP Standard Curve generated for the Cell-Glo Luminescent Experiment 

To prepare the experimental plates for luminescent reading, the treated or control 

media was removed from each well. It was replaced by 350µL of DMEM High Glucose 

that was not supplemented with FBS or Penn/Strep, in case those compounds would 

interfere with the action of Cell-Glo buffer. 350µL of the Cell-Glo buffer was then added 

to each well, causing an immediate color change reaction. The experimental plates 

containing the untreated media and the buffer, as well as the 96-well plate containing the 

standard, were incubated on an orbital shaker for 10 minutes, in order to ensure lysis of 

the cells and ATP release. Following the incubation 200µL of each experimental well 

was transferred to the 96-well plate. Each well from the 12-well plate was transferred to 

the 96-well plate in triplicate, the result being nine total wells per experimental condition 

for each alkaloid. The luminescence was read using a Biotek Synergy multi-mode plate 

reader. Results were analyzed in Excel™ (Microsoft, Redmond, Wa), details on the 

analytical methods used are found in the “Statistics” section of this thesis. 
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Real Time RT-PCR 

 Real-Time PCR (RT-PCR) allows for quantification of specific nucleic acid 

sequences by using fluorescent technology to monitor the amplification of the target 

sequence. One of the main uses of RT-PCR is studying gene expression levels by 

coupling with reverse transcription, which allows the researcher to quantitatively 

determine RNA transcript levels (Fraga et al, 2008).  

 There are three phases during a PCR amplification reaction: The exponential 

phase, the linear phase, and the plateau phase (Figure 11). During the exponential phase 

the PCR reaction is performing at or near 100%, so that the product doubles at each 

cycle. As the reaction progresses, the PCR components are steadily depleted, and the 

primer competes with the amplicon itself. As the reaction slows it enters the linear phase. 

There is no longer doubling of the product during each cycle, and the rate at which PCR 

components are depleted is highly variable, even amongst experimental replicates. The 

reaction will slow and stop during the plateau phase, due to depletion of substrate and 

product inhibition (Fraga et al, 2008). 
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.   

Figure 11: Plot of experimental PCR Reaction. x-axis: Cycle Number; y-Axis: Quantity of DNA. Three 

PCR phases are distinctly labeled: exponential, linear, and plateau. 

 Real Time RT-PCR measures amplicon production during each cycle of the 

reaction, and quantifies during the exponential phase when the reaction is occurring at 

maximum efficiency. There are several methods of doing this, the one utilized in this 

study utilizes the fluorescent dye SYBR Green. SYBR Green undergoes a 20-100 fold 

increase in fluorescence upon binding to double stranded DNA (Figure 12), and this 

increase was detected by the RT-PCR Thermocycler.  

 

Figure 12: Illustration of SYBR Green intercalation during PCR amplification. The detector measures the 

fold increase when the dye is bound to the minor groove of dsDNA. This is used to quantify the DNA at the 

end of the elongation step (Adapted from Fraga et al, 2008). 



42 
 

 Levels of candidate and control genes will be quantified using the relative 

standard curve method. Relative gene expression will be quantified as fold differences by 

using the ΔΔCT method (Livak and Schmittgen, 2001). The cycle threshold (CT) 

determines the level of fluorescence signal that is considered to be reliably over the 

background. The threshold must be set in a way that the product is detected while it is 

still in the exponential phase. The comparison of the CT of different samples corresponds 

to differences in the starting amounts of the target sequence (Eqn 1), and thus difference 

in gene expression.  

𝐹𝑜𝑙𝑑 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 2𝐶𝑇1−𝐶𝑇2 
Eqn 1: Fold Difference in the Amount of Starting Target Expression 

 

RNA Isolation 

RNA was extracted from monolayers of cells grown in 12-well plates at two time 

points, 2-days post incubation and 7-days post incubation. Cells subjected to each 

experimental condition grown on the 12-well plates were pooled to provide a sufficient 

amount of cells to produce a useable quantity of total RNA. RNA was extracted using the 

RNeasy Mini Plus kit (Qiagen), following manufacturer’s instructions. RNA integrity 

was tested by separation on RNase free 1.2% Agarose gel (Figure 13). Gels were checked 

for gDNA contamination and appropriate banding. RNA was quantified using Nanodrop. 
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Figure 13: Evaluation of RNA integrity and purity by gel electrophoresis. RNA integrity is evaluated by 

monitoring the degradation of bands representing 28S, 18S, and 5S RNA. Purity of the RNA sample is 

indicated by the absence of contaminating high molecular weight, genomic DNA.  Lanes 1 and 2 are 

representative RNA samples from untreated lung cell line, CCL-185. RNA was generated using the RNeasy 

Mini Plus Kit (Qiagen). 

Two-Step Quantitative RT-PCR 

 Equivalent amounts of total RNA (1µg/µL) were reverse-transcribed to 

corresponding cDNA in a 20µL reaction mixture, using an iScript cDNA Synthesis kit. 

The cDNA synthesis conditions were as follows: 5 minutes of equilibration at 25°C, 30 

minutes reverse transcription at 42°C, and 5 minutes of enzyme inactivation at 85°C. 

1/20th of the resulting cDNA was subjected to real time RT-PCR using the Real Master 

SYBR PCR Kit (Bio-Rad Laboratories, Hercules, CA). All qRT-PCR reactions were 

performed on the Biorad IQ5 Real-Time PCR detection system. Each plate intended for 

real time RT-PCR will test for one gene, and will contain the controls and both dilutions 

for all four alkaloids in triplicate for both time points, as well as a No Template Control 

(NTC), a No Primer Control (NPC), and an interplate control (IPC) (Figure 14). Plates of 

standards, ranging from 1.00 x 107 to 1.00 x 102 copy numbers, were run on RT-PCR 

prior to the experimental plates to determine efficiency of the primers.  
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Figure 14: Layout of the 96-well RT-PCR experiment. Nic is representative of nicotine; myo is 

representative of myosmine; cot is representative of cotinine; ana is representative of anabasine. NTC is 

the abbreviation for the no template control; NPC is the abbreviation for the no primer control; IPC is the 

abbreviation for the inter-plate control. 
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Primer Design 

 Primers used for RT-PCR were designed using IDT Real-Time PCR SciTool, and 

were tested on untreated cDNA and run on 2% agarose gel to check for product 

specificity (Figure 15). Primer characteristics are described in Table 3. 

Table 3: Primer details for each of the eight selected candidate genes, and the two control genes. 

Primer Name Sequence 5’-3’ Tm °C Product 

(bp) 

PCR 

Efficiency 

ALDH3A1. FP 

ALDH3A1. RP 

CCTTAAATACGTCCCCTCTTGG 

TCGCTGATCTTGCTCATGG 

62.7 

60.2 

96 93.1% 

CEACAM6. FP 

CEACAM6.RP 

CTACAAGAGGTGGACAGAGAAG 

AATAGTGAGCTTGGCAGTGG 

62.8 

60.4 

149 92.5% 

CX3CL1. FP 

CX3CL1. RP 

CACCTTCTGCCATCTGACTG 

TGCCTGGTTCTGTGATAGTG 

62.4 

60.6 

130 95.8% 

GPX2. FP 

GPX2. RP 

GCTTCCCTTGCAACCAATTTG 

TTCTGCCCATTCACCTCAC 

60.6 

60.2 

139 125.8% 

PIR. FP 

PIR. RP 

AGTAAGGATGGTGTGACATTG 

AGGGATAGGTTGGGAATGTTTG 

60.8 

60.8 

135 97.7% 

 

SLIT1. FP 

SLIT1. RP 

GACTGGCTACAAGGAACCG 

TGGACAAGCAGAGATCACAC 

62.3 

60.4 

149 99.5% 

TLR4.FP 

TLR4.RP 

TGCGTGAGACCAGAAAGC 

TTAAAGCTCAGGTCCAGGTTC 

59.9 

55.6 

134 97.6% 

ACTB.FP 

ACTB.RP 

GGCCGCGGTGTACCAACACAGTGCTG 

CCCGGGGCCGTCACTCCTGCTTGCTG 

74.9 

74.9 

228 93.6% 

 

B2M. FP 

B2M. RP 
ATGAGTATGCCTGCCGTGTGA 

GGCATCTTCAAACCTCCATG 

62.6 

60.4 

101 98.7% 

 

 

Figure 15: Evaluating primer specificity of gene targets by agarose gel electrophoresis against a 100bp 

ladder. All genes except CYP1A1 showing appropriate banding and densities adequate for gel extraction. 
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Results 

  

  Statistical Analysis 

 Cells were grown in triplicate for each experimental condition, and the control, on 

the 12 well plate, see Figure 9 for the plate layout used for this experiment. Cell lysates 

were produced in the 12 well plate and then each well was transferred into the reflective 

96-well plate in triplicate. This produced nine wells total for each experimental condition.  

The readings produced were in relative luminescent units, which were converted to moles 

of ATP based on the results of the standard curve. The nine wells per experimental 

condition, in moles of ATP, were averaged, and the graphs were produced based on the 

arithmetic mean produced. The data was analyzed in Excel™. The standard deviation 

between replicates was determined, and t-tests were used to determine whether there 

were significant differences between experimental conditions and the control. 

Independent growth of the cell cultures allowed us to determine whether differences 

occurred due to random chance or due to an external factor, such as alkaloid exposure. 

Due to the independence of the data sets we used a two tailed, type 2 t-test. P-values less 

than 0.1 were used to highlight differences, while p-values less than 0.05 illustrate 

significant differences between data. At p<0.05, we can state with 95% certainty that the 

deviations in the data are not due to random chance. The graphs in the following sections 

were analyzed using these methods.  

RT-PCR Experiments 

Expression data was generated using the gene study tool on the Bio-rad IQ5 

software. In this program the experimental genes’ expression is normalized to our two 

reference genes, β-actin and β2M. Expression data for the experimental values were 
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compared to the experimental controls in order to obtain the percent difference values by 

using Equation 2.  

% 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝐶𝑜𝑛𝑡𝑟𝑜𝑙)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙
× 100% 

Eqn 2: Percent Difference to a Control 

The gene expression study only delivers mean expression and mean CT values, 

which are insufficient for significance testing, in which we utilized the t-test. We utilized 

the individual CT values from each well of the experimental plate in order to obtain the 

triplicate values required for t-testing. However, these individual CT values have not been 

normalized to the reference genes. In order to normalize the individual CT for an 

experimental condition, we divided that CT by the geometric mean of the mean CT’s of 

the reference genes for the corresponding experimental condition, as shown in Equation 

3. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑊𝑒𝑙𝑙𝑠 =
𝐶𝑇 (𝐸𝑥𝑝)

√𝐶�̅�(𝑅𝑒𝑓1) × 𝐶�̅�(𝑅𝑒𝑓2) … × 𝐶�̅�(𝑅𝑒𝑓𝑛)
𝑛

 

Eqn 3: Normalization of Individual CT Values 

 The values produced by Equation 3, for each CT value, were used for the two-

tailed, type 2 t-test. P-values less than 0.1 were used to highlight differences, while p-

values less than 0.05 illustrate significant differences between data. At p<0.05, we can 

state with 95% certainty that the deviations in the data are not due to random chance. The 

graphs in the following sections were analyzed using these methods. 
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Cell Proliferation 

 

 The following section addresses the results produced by the Cell-Titer Glo 

Luminescent Cell Viability assay. Previous research showed decreased cell viability in 

response to alkaloid exposure (Beavers, 2014), though that study utilized manual 

counting using hemocytometry. In this experiment, cells were grown in 12 well plates, in 

which they were exposed to the experimental or control conditions. On the time points 

being studied, the cells were exposed to the buffers associated with the assay kit, which 

lysed the cells and exposed the metabolic ATP that was previously within the cell to the 

luciferin contained within the buffer. The luciferin and the ATP react and create light, 

which was detectable using a multi-mode plate reader. The luminescence produced was 

then related back to the amount of metabolic ATP, and to the amount of metabolically 

active cells within the culture. This study sought to validate the results produced by 

Beavers (2014) utilizing a high-throughput, sensitive cell viability and proliferation 

assay, which is potentially less prone to human error than manual counting by 

hemocytometry.  
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Nicotine  

 

Figure 16: Cell Viability in Response to Nicotine Exposure. * denotes p<0.05, # denotes p<0.1 

.  

Figure 16 shows the results of the Cell-Titer Glo luminescent assay for cells 

exposed to nicotine dilutions over a period of seven days. The x-axis shows the dilution 

factor, as well as time, and the y-axis expresses moles of metabolically active ATP 

present in the cell lysate.  

At day 2, nicotine shows increased growth in comparison to the control. Between 

days 4 and 5, during which the highest level of cellular proliferation took place, the 

growth of the cells decreased in comparison to the control.  

The control cells showed a slow growth progression through day 4, with a sharp 

growth peak at day 5, where it increased from day 4 by 1.838 x 10-11 moles of ATP. 

Following this peak the control cells decreased in numbers, dropping by 7.528 x 10-11 

moles of ATP. Days 6 and 7 showed a slow decrease in cell numbers. At a 100µg/mL 

dilution of the nicotine stock (1mg/mL) day 2 cell numbers were significantly greater 
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than those of the control by 9.162 x 10-13 moles of ATP. Days 3 and 4, as well as 6 and 7 

closely mimicked the control culture, but day 5 was significantly decreased in 

comparison to the control culture by 5.252 x 10-11 moles of ATP. At a 1µg/mL dilution of 

nicotine stock (1mg/mL) cell proliferation closely followed the control curve, with no 

differences at p<0.05 or p<0.1.  

We considered p<0.05 to indicate statistical significance, and p<0.1 to show 

difference. There were two data that showed statistical significance for our nicotine 

dilutions, and that was for our day 2 time-point and our day 5 time-point.  

 

Cotinine 

 

Figure 17: Cell Viability in Response to Cotinine Exposure. * denotes p<0.05, # denotes p<0.1. 

Figure 17 shows the results of the Cell-Titer Glo luminescent assay for cells 

exposed to cotinine dilutions over a period of seven days. The x-axis shows the dilution 

factor, as well as time, and the y-axis expresses moles of metabolically active ATP 

present in the cell lysate.  
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The control cells showed a more dramatic growth progression between days 2 and 

4 than the nicotine control cells, with generally higher numbers of cells overall. Like the 

nicotine cultures, the cell growth peaked at day 5, where it increased in the number of 

metabolically active cells by 1.666 x 10-11 moles of ATP. Following day 5 there was a 

sharp decline in cell numbers, back to the amount of ATP that was present in day 4. In 

general, the 100µg/mL and 1µg/mL dilutions of the cotinine stock (1mg/mL) showed 

greater effects in comparison to the control than the nicotine dilutions. The 100µg/mL 

dilution of the cotinine stock, similar to the 100µg/mL dilution of nicotine, surpassed the 

control culture on day 2, by 7.008 x 10-11 moles of ATP. Days 3, 4, and 5 of the 

100µg/mL dilution were significantly decreased in comparison to the control culture. Day 

3 was decreased in comparison to the control by 3.680 x 10-12 moles of ATP. Day 4 was 

lower by 2.323 x 10-12 moles of ATP. Day 5 was lower by 2.490 x 10-12 moles of ATP. 

Growth at day 7 of the 100µg/mL dilutions of cotinine surpassed that of the control 

culture by 3.533 x 10-12 moles of ATP.  

The 1µg/mL dilution of cotinine also showed significant effects on cell growth, in 

comparison to the control cultures. Unlike the 100µg/mL dilutions of both nicotine and 

cotinine, the 1µg/mL dilution at day 2 showed decreased growth in comparison to the 

control, by 2.332 x 10-13 moles of ATP. Day 3 culture cell numbers were less than the 

control culture by 4.729 x 10-13 moles of ATP. Day 4 cell numbers significantly 

surpassed the control cultures by 9.488 x 10-13 moles of ATP. There was no significant 

difference in the cell numbers at the growth peak at day 5 for the 1µg/mL dilution. The 

drop between day 5 and day 6 was more dramatic than the control cultures, the difference 

being 3.314 x 10-12 moles of ATP between the day 6 for the control and 1µg/mL dilution. 
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Day 7 showed a difference that was significant at α=0.1, the 1µg/mL culture was 

decreased from the control culture by 3.611 x 10-12 moles of ATP.   

We considered p<0.05 to indicate statistical significance, and p<0.1 to show 

difference. Both the 100µg/mL and 1µg/mL dilutions of the 1mg/mL cotinine stock 

showed significant differences at multiple time points. The 100µg/mL cotinine dilutions 

showed significance at α=0.05 for all time points except for day 6. Days 3 through 5 

showed lesser cell numbers than the control, while days 2 and 7 surpassed the control for 

the respective time points. The 1µg/mL dilutions showed significance at α=0.05 for all 

days with the exceptions of days 5 and 7. Days 2, 3, and 6 were significantly decreased 

relative to the control, and day 4 was increased significantly. Day 7 showed a decrease 

that was significant at α=0.1.   

   

Myosmine 

 

Figure 18: Cell Viability in Response to Myosmine Exposure. * denotes p<0.05, and # denotes p<0.1. 
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Figure 18 shows the results of the Cell-Titer Glo luminescent assay for cells 

exposed to myosmine dilutions over a period of seven days. The x-axis shows the 

dilution factor, as well as time, and the y-axis expresses moles of metabolically active 

ATP present in the cell lysate.  

Similar to the cotinine control, the myosmine control showed a more pronounced 

increase in cells between days 2 and 3, followed by a slow upward progression between 

days 3 and 4. As with all of the other cultures, growth peaked at day 5, where it increased 

its number of metabolically active cells by 1.985 x 10-11 moles of ATP. Following the 

peak at day 5, there was a large drop off to approximately the same level as day 4 for day 

6. There was a slow downward progression between days 6 and 7. The 100µg/mL 

dilutions of myosmine stock (1mg/mL) showed effects on cell growth that were 

statistically significant. Day 2 cultures exposed to the 100µg/mL dilutions surpassed the 

amount of metabolically active as evidenced by the 1.002 x 10-12 increase in moles of 

ATP. Days 3 and 4 showed a decrease in cell numbers as evidenced by a decrease in 

moles of ATP by 2.679 x 10-12 and 1.356 x 10-12, respectively. Both days 6 and 7 showed 

increased cell numbers as illustrated by ATP increases of 2.645 x 10-12 moles and 7.025 x 

10-12 moles, respectively. The 1µg/mL dilution mimicked the curve of the control culture 

closely, with the exception of the day 6 time-point, which showed an increase of 

2.272x10-12 moles relative to the control culture.  

We considered p<0.05 to indicate statistical significance, and p<0.1 to show 

difference. Both the 100µg/mL and 1µg/mL dilutions of the 1mg/mL myosmine stock 

showed significant differences to the control culture. The 100µg/mL cotinine dilutions 
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showed significance at α=0.05 for all time points except for day 5. Days 3 through 4 

showed lesser cell numbers than the control, while days 2, 6, and 7 surpassed the control 

for the respective time points. The 1µg/mL dilutions showed significance at α=0.05 for 

day 6, which surpassed the cell growth of the control culture for the respective day.   

 

Anabasine 

 

Figure 19:Cell Viability in Response to Anabasine Exposure. * denotes p<0.05, and # denotes p<0.1. 

Figure 19 shows the results of the Cell-Titer Glo luminescent assay for cells 

exposed to anabasine dilutions over a period of seven days. The x-axis shows the dilution 

factor, as well as time, and the y-axis expresses moles of metabolically active ATP 

present in the cell lysate.  

The control culture closely resembles the nicotine controls, in which there is a 

slow positive progression between days 2 and 4. There is a large spike between days 4 

and 5, in which the quantity of metabolically active ATP increases by 2.11 x 10-11 moles. 

There is a pronounced decrease in cells between days 5 and 6, though it does not return to 
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the same level as it was on day 4, which the way the curve progressed in the cotinine and 

myosmine cultures. Unlike any of the other alkaloid control cultures, there is a positive 

progression between days 6 and 7, though given the temporal scope of the assay it is 

difficult to say whether the culture would have continued this progression into following 

days. The 100µg/mL dilution of the anabasine stock (1mg/mL) showed significant 

differences in cell numbers at multiple time points, in comparison to the control cultures. 

Day 3 and day 5 showed decreases in the number of metabolically active cells as 

evidenced by decreases in the amount of metabolic ATP by 2.291 x 10-12 and 5.248 x 10-

12 moles. Day 6 for the 100µg/mL dilution surpassed the control cells, based on a relative 

increase in metabolic ATP by 2.239 x 10-12 moles.  

The 1µg/mL dilution of the anabasine stock also showed significant differences 

relative to the control. Days 3, 5, and 6 all showed significant decreases in metabolically 

active cells as evidenced by decreases in metabolic ATP by 1.463 x 10-12, 4.498 x 10-12, 

and 2.860 x 10-12 moles, respectively. Day 7 showed a decrease that was significant at 

α=0.1, in which the amount of metabolic ATP decreased by 4.997 x 10-12 moles.  

We considered p<0.05 to indicate statistical significance, and p<0.1 to show 

difference. Both the 100µg/mL and 1µg/mL dilutions of the 1mg/mL anabasine stock 

showed significant differences to the control culture for multiple time points. The 

100µg/mL cotinine dilutions showed significance at α=0.05 for days 3, 5 and 6. Days 3 

and 5 showed lesser cell numbers than the control, while days 6 surpassed the control for 

the respective time point. The 1µg/mL dilutions showed significance at α=0.05 for days 

3, 5, and 6, which were less than the cell numbers of the control culture for the respective 
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days.  Day 7 showed a decrease of metabolic ATP that was significant at α=0.1, which 

denotes a difference. 

 

Gene Expression Results 
 

 This section will present the results of the gene expression study, which 

investigated differential expression of a battery of candidate genes in cells exposed to two 

dilutions of the alkaloid stock (1mg/mL). Previous research (Beavers, 2014), as well as 

the results produced by the Cell-Titer Glo assay in this study, demonstrated generally 

decreased cell viability in response to alkaloid exposure. We hypothesize that energy is 

being allocated away from normal growth and metabolism and into potential stress 

responses. To investigate this hypothesis, we utilized a two-step RT-PCR protocol to 

measure baseline mRNA transcript levels in cell cultures exposed to the alkaloid 

dilutions. Data is portrayed as percent difference in gene expression, as compared to a 

control culture. 
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Differential Gene Expression in Nicotine Treated Cell Cultures 

  

Figure 20: Differential gene expression in cells exposed to nicotine dilutions. The graph shows data as 

percent difference to a control (y-axis). Positive values represent increased gene expression, and negative 

values represent decreased expression. * denotes p<0.05, # denotes p<0.1. 

 Figure 20 shows differential gene expression as percent difference to control 

cultures, which were not exposed to nicotine. The y-axis represents percent difference, 

and the x-axis shows the time point (TP) and the dilution factor of the nicotine.  

 The 100µg/mL dilution of nicotine, two days past the initial seeding, showed 

differential expression of several genes. CEACAM6 showed increased gene expression 

that was significant at α=0.1. CEACAM6 expression was increased by 87.8%, in 

comparison to the control culture. PIR showed reduced expression by -32.0%, which was 

significant at α=0.1. The expression of TLR4 showed upregulation by 85.7%, and 

ALDH3A1 showed increased expression by 4.20%, though neither of these differences 

were deemed statistically significant using a student T-test.  
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The 1µg/mL dilution of nicotine, two days past the initial seeding, showed 

differential expression of each of the four genes. CEACAM6, ALDH3A1, and TLR4 

showed significantly (p<0.05) increased expression, by 168.2%, 194.1%, and 843.6% 

respectively. PIR showed reduced expression by -9.89%, though this difference was not 

deemed statistically significant.  

 The 100µg/mL dilution of nicotine, seven days past the initial seeding, showed 

differential expression of each of the four genes, three of which showing significant 

differences at α=0.05. CEACAM6 and ALDH3A1 showed significantly (p<0.05) 

increased expression by 547.2% and 144.5%, respectively. PIR showed significant 

downregulation of gene expression by -1.77%. TLR4 showed a 3.57% increase in gene 

expression, which was not shown to be significant using a student T-test. 

 The 1µg/mL dilution of nicotine, seven days past the initial seeding, showed 

significant differences in gene expression in three of the four genes. CEACAM6 and 

ALDH3A1 showed upregulation of gene expression by 407.3% and 105.3%, 

respectively, both of which were significant at α=0.05. PIR showed significantly (p<0.05) 

reduced expression by -6.51%.  

 In summary of the effects of nicotine, CEACAM6 and PIR showed differential 

expression that was significant at α=0.1, for the 100µg/mL dilution of nicotine on the day 

2 time-point. The gene expression of CEACAM6 and ALDH3A1 showed statistically 

significant (p<0.05) upregulation for the 1µg/mL nicotine dilution for both time-points, 

as well as the 100µg/mL dilution for the day 7 time-point. PIR showed significant 

(p<0.05) downregulation of gene expression for both of the day 7 time-points.  
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Differential Gene Expression in Myosmine Treated Cell Cultures 

  

Figure 21: Differential gene expression in cells exposed to myosmine dilutions. The graph shows data as percent 
difference to a control. Positive values represent increased gene expression, and negative values represent decreased 

expression. * denotes p<0.05, # denotes p<0.1. 

Figure 21 shows differential gene expression as percent difference to control 

cultures which were not exposed to myosmine. The y-axis represents percent difference, 

and the x-axis shows the time point (TP) and the dilution factor of the nicotine.  

 The 100µg/mL dilution for the day 2 time-point showed differential expression of 

all genes, three of which, CEACAM6, PIR, and ALDH3A1 showed differences which 

were significant at α=0.05. CEACAM6, PIR, and ALDH3A1 showed significantly 

increased expression by 35.6%, 6.63%, and 125.52%, respectively. TLR4 showed 

expression which was reduced by –53.0%. TLR4 showed no significant difference at 

α=0.05 or α=0.1. 
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 The 1µg/mL dilution for the day 2 time-point also showed differential expression 

of CEACAM6, ALDH3A1, and PIR, all of which were statistically significant. 

CEACAM6, PIR and ALDH3A1 showed significant upregulation of gene expression by 

23.1%, 22.5%, and 132.3%, respectively. TLR4 showed reduced expression by 45.2%, 

though not at a level that was deemed significant at α=0.05 or α=0.1. 

 The 100µg/mL dilution for the day 7 time-point showed upregulation of gene 

expression for all four genes, three of which showed differences at α=0.05. CEACAM6 

and PIR showed significantly (p<0.05) increased expression by 187.4% and 36.6%, 

respectively. TLR4 and ALDH3A1 showed increased expression by 107.9% and 10.82%, 

but did not show significance at α=0.05 or α=0.1.  

 The 1µg/mL dilution for the day 7 time-point showed significant differential 

expression of PIR. The expression of PIR was significantly decreased by -15.8%. The 

expression of CEACAM6, TLR4, and ALDH3A1 was increased by 220.26%, 142.3%, 

and 30.2%, respectively, although none of these differences showed significance at 

α=0.05 or α=0.1. 

 In summary of the effects of myosmine, CEACAM6 showed significant (p<0.05) 

upregulation of gene expression for all dilutions and time points, with the exception of 

the 1µg/mL dilution on the day 7 time-point. PIR showed significantly increased 

expression for the 100µg/mL dilution at the day 2 and day 7 time-points, as well as the 

1µg/mL dilution at the day 2 time-point. PIR showed significant downregulation of gene 

expression for the 1µg/mL dilution at the day 7 time-point. ALDH3A1 showed 

significantly increased expression for both dilutions on the day 2 time-point, and 
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insignificant upregulation of gene expression for both dilutions at the day 7 time-point. 

TLR4 showed no statistically significant differential expression for any dilution or time 

point. 

 

Differential Gene Expression in Anabasine Treated Cell Cultures 

  

Figure 22: Differential gene expression in cells exposed to anabasine dilutions. The graph shows data as 

percent difference to a control. Positive values represent increased gene expression, and negative values 

represent decreased expression. * denotes p<0.05, # denotes p<0.1 

Figure 22 shows differential gene expression as percent difference to control 

cultures which were not exposed to anabasine. The y-axis represents percent difference, 

and the x-axis shows the time point (TP) and the dilution factor of the anabasine stock 

(1mg/mL).  

 The 100µg/mL anabasine dilution for the day 2 time-point showed differential 

expression in all detectable genes, but only ALDH3A1 showed a difference to the control 

that was significant at α=0.05. The expression of ALDH3A1 was significantly (p<0.05) 
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increased by 21.27%. The expression of CEACAM6, TLR4, and PIR was reduced by -

13.7%, -53.7%, and -11.3%, respectively, though these differences were not deemed 

statistically significant using a student t-test. 

 The 1µg/mL dilution for the day 2 time-point showed significantly (p<0.05) 

reduced expression in PIR by -1.42%. No other genes showed significant differential 

expression for this dilution and time point. 

 The 100µg/mL dilution for the day 7 time-point showed differential expression in 

three of the four genes at a level that was significant α=0.05. CEACAM6 showed 

statistically significant (p<0.05) downregulation of gene expression by -58.5% in respect 

to the control cultures. ALDH3A1 and PIR showed significantly increased expression by 

64.98% and 100.3%, respectively. TLR4 showed statistically insignificant 

downregulation of gene expression by -50.73%. 

 The 1µg/mL dilution for the day 7 time-point showed statistically significant 

(p<0.05) differential expression for three of the four detectable genes. CEACAM6 and 

ALDH3A1 showed statistically significant (p<0.05) upregulation of gene expression by 

52.2% and 82.0%, respectively. PIR showed significantly reduced expression in 

comparison to the control by -4.99%. TLR4 showed insignificant upregulation of gene 

expression by 23.08%. 

 PIR showed significant downregulation of gene expression at the 100µg/mL 

dilution for the day 2 time-point, as well as the 1µg/mL dilution for the day 7 time-point. 

PIR showed statistically significant upregulation of gene expression at the 100µg/mL 
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dilution for the day 7 time-point. The expression of CEACAM6 was significantly 

decreased at the 100µg/mL dilution for the day 7 time-point, and significantly increased 

for the 1µg/mL dilution of the same time point. ALDH3A1 showed significant 

upregulation of gene expression in cells treated with both dilutions at the day 7 time-

point, as well as the 100µg/mL dilution on the day 2 time-point.  TLR4 showed 

differential expression for each condition and time point, but none that were deemed 

significant using the student t-test. 

 

Differential Gene Expression in Cotinine Treated Cell Cultures 

 

Figure 23.Differential gene expression in cells exposed to cotinine dilutions. The graph shows data as 

percent difference to a control. Positive values represent increased gene expression, and negative values 

represent decreased expression. * denotes p<0.05, # denotes p<0.1 

Figure 23 shows differential gene expression as percent difference to control 

cultures which were not exposed to cotinine. The y-axis represents percent difference, 

and the x-axis shows the time point and the dilution factor of the cotinine stock 

(1mg/mL).  

-80

-60

-40

-20

0

20

40

60

100µg/mL D2 1µg/mL D2 100µg/mL D7 1µg/mL D7

Gene Expression in Response to Cotinine Exposure

CEACAM6 ALDH3A1 PIR TLR4

*
*

*

#

**

*



64 
 

The 100µg/mL dilution for the day 2 time-point showed statistically significant 

differential expression in three of the four genes. CEACAM6 and PIR showed 

significantly (p<0.05) reduced expression, in comparison to control cultures, by -40.5% 

and -35.4%, respectively. ALDH3A1 showed increased expression by 0.789%, and TLR4 

showed decreased expression by -18.99%, though neither were deemed statistically 

significant using the student t-test.  

The 1µg/mL dilution for the day 2 time-point showed a marginally significant 

(p<0.1) increase in expression for ALDH3A1. Expression of ALDH3A1 was increased 

by 27.55%, in comparison to the control. The expression of CEACAM6, PIR, and TLR4 

was decreased by -9.59%, -22.19%, and -64.83%, respectively. None of these values 

were deemed significant at α=0.05 or α=0.1.  

The 100µg/mL dilution for the day 7 time-point showed significant differential 

expression for three of the four genes. CEACAM6 showed significantly decreased 

expression by -7.51%, in comparison to the control culture. PIR and ALDH3A1 showed 

significantly upregulated gene expression by 11.59% and 50.52%, respectively. TLR4 

showed reduced expression by –48.3%, though this was not deemed significant at α=0.05 

or α=0.1. 

The 1µg/mL dilution for the day 7 time-point showed significant differential 

expression for PIR, which was significantly (p<0.05) upregulated by 21.32%. ALDH3A1 

and TLR4 exhibited decreased expression by -14.90% and -34.30%, respectively, though 

not a level that was significant at α=0.05 or α=0.1. 
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CEACAM6 showed decreased expression for all dilutions and time points, though 

only the 100µg/mL dilution for both time points exhibited reduced expression at a level 

that was statistically significant (p<0.05). ALDH3A1 showed increased expression for 

the 1µg/mL dilutions for the day 2 time-point at a level that was significant at α=0.1, and 

significant upregulation of gene expression (p<0.05) for the 100µg/mL dilution at the day 

7 time-point. PIR showed significant differential expression for all dilutions and time 

points, with the exception of the 1µg/mL dilution during the day 2 time-point. It 

exhibited decreased expression for the day 2 time-points, and increased expression for the 

day 7 time-points. TLR4 showed decreased expression for all points, though not at a level 

that was significant at α=0.05 or α=0.1. 

Discussion 
 

 This section will discuss the implications of results produced by the cell viability 

and RT-PCR experiments. The results will be discussed in the context of how they 

conform to the hypotheses, as well as their potential effects on the health of the cell and 

the human body as a whole.  

 Cell-Titer Glo Luminescent Cell Proliferation Assay 

This assay was used as a high-throughput and accurate method for characterizing 

cell culture growth. We performed the week long assay three times total. The first time 

we only examined cell growth on day 2 and day 7, but we felt like we were unable to 

accurately convey the growth effects of the alkaloid using only two time points. The 

second time we examined cell growth daily, for a period of seven days, in order to insure 

a comprehensive perspective on the cells growth curve. However, due to a malfunction in 
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the culturing process, the cultures treated with a 100µg/mL dilution of the myosmine 

failed to adhere to the 12-well culture plate, so myosmine was unable to be included in 

the investigation. We decided to repeat the experiment to insure validity and get readings 

for cells cultured in the myosmine dilutions. All cells were successfully cultured, and 

upon visual inspection appeared in better health than those of the previous assays, so this 

assay bears the weight of scrutiny, although the other assays are not out of consideration. 

However, during the period of the third seven-day assay we ran out of reflective, white-

walled 96-well plates, so we were forced to reuse one. Between runs of the assay the 

plate was rinsed with DI water, lab quality soap, followed by DI water and 70% alcohol, 

and then air-dried. The triplicates for each well remained close, and the standard showed 

little variance between plates, indicating that this process did not interfere with 

reproducibility of the assay. The standard deviation between triplicates was lower than 

that of the second set of assays performed. This being said, it is my belief that the assay 

should be repeated in future studies to ensure validity.  
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Figure 24: Alkaloid treated cells percent difference in cell proliferation, as compared to control cultures. 

Negative values represent decreased growth, while positive values represent growth that surpassed the 

control cultures.   * denoted p<0.05, and # represents p<0.1. 

Interestingly, of the four alkaloids, nicotine showed the least effect on cell growth 

and proliferation. Significant differences (p<0.05) were only observed at the more 

concentrated 100µg/mL dilutions, and only on days 2 and 5 of the assay. Day 2 showed a 

19.89% increase compared to the control culture, while day 5 showed a 19.92 % decrease 

compared to the control (Figure 24). 

Cotinine showed the greatest effect on the cell cultures. All of the time points for 

the 100µg/mL dilution, with the exception of day 6, showed significant differences at 

α=0.05. Days 2 and 7 showed relative increases in cell growth as compared to the control, 

of 19% and 21%, respectively. The remainder of the significant data for the 100µg/mL 

dilution showed relative decreases ranging from 6-21% (Figure 24). Cotinine is the 

primary metabolite of nicotine, as much as 80% of nicotine entering the body is 

metabolized to cotinine via the CYP2A6 complex. Next to nicotine, it is the most highly 
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studied alkaloid found in tobacco. Cotinine is able to exist in biological fluids much 

longer than nicotine (CDC), which may be partially responsible for the persistent effect 

seen in these growth assays, and the relative lack of an effect found in nicotine. It is 

possible that the relative increase seen in day 2 is the result of an initial stress response 

and the relative growth suppression in the following days is due to a relative depletion of 

resources and energy from said response.  The increase seen in day 7 could be due to the 

control group reaching confluence earlier than the treated cells and beginning decay 

earlier, so the treated cells’ growth curve would be shifted right in respect to the control 

curve. Though this effect would need to be subtle, because there is no dramatic shift of 

growth curves seen in the data. 

 The 1µg/mL dilution of the cotinine stock (1mg/mL) showed generally decreased 

growth compared to the control, with the exception of day 4, which was significant at 

α=0.05 and showed a 4.53% increase relative to the control (Figure 24). All data were 

significant at α=0.05, with the exception of days 5 and 7. Day 5 showed no significant 

difference, and day 7 showed a 21.9% decrease that was significant at α=0.1. Despite the 

increase on day 4 the rest of the data were decreased in relation to the control. This 

suggests that cotinine has an oppressive or dysregulatory effect on cell growth even at 

low concentrations.  

The 100µg/mL dilution of the myosmine stock (1mg/mL) showed variances in 

growth that were significant at α=0.05 for all days with the exception of day 5, which was 

not significantly different from the control. Days 2, 6, and 7 all showed increased growth 

relative for the control by 28%, 13.5%, and 53.9%, respectively (Figure 24). The 
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explanation for this phenomena may be similar to that seen in cotinine, in which the 

initial spurt of growth was due to a strong stress response in the earlier days, followed by 

decreased growth due to lack of nutrients and energy. The increased growth seen during 

days 6 and 7 could be due to the growth curve of the treated cells being shifted subtly 

right in relation to the control curve.  

The 1µg/mL dilution of the myosmine stock (1mg/mL) showed a lesser effect 

than the cotinine solution. Day 4 showed a small increase that was different from the 

control with a significance of p<0.1. Day 6 showed an increase of 11.6% in relation to the 

control, which was significant at α=0.05 (Figure 24). In general, the growth curve for the 

1µg/mL dilution closely mimics the control curve, suggesting only a mild effect at this 

low of a concentration.  

The 100µg/mL dilution of the anabasine stock showed significant differences at 

days 3, 5, and 6. Days 3 and 5 were decreased in relation to the control by 30.7% and 

17.3%, respectively. Day 6 was increased with respect to the control by 13.2% (Figure 

24). The decrease seen in days 3 and 5 suggests a strong initial effect on growth, though 

without the initial growth surge on day 2 that was seen in the 100µg/mL dilutions of the 

other three alkaloids. Perhaps anabasine activates an alternative stress pathway than the 

other alkaloids. Increased growth on day 6 could be signs of cellular recovery, or shifts in 

the growth curve as hypothesized with the other alkaloids.  

The 1µg/mL dilution of anabasine showed statistically significant differences on 

days 3, 5, and 6, as well as a difference that was significant at α=0.1 for day 7. All 

significant differences were decreases in relation to the control by 19.6%, 14.8%, 16.8% 
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and 24.5%, respectively (Figure 24). This data suggests that even low concentrations of 

anabasine may have a significant effect on cell growth, over a relatively lengthy time 

period.  

 

Differential Gene Expression in Response to Alkaloid Exposure 
 

Alkaloid Effects on CX3CL1 

 

Table 4: Gene Expression Data for CX3CL1. Units are in Normalized Fold Differences. N/A represents 

data that was below the limit of detection 

CX3CL1 Expression 

 Nic Myo Ana Cot 

CTRL D2 0.43 1.47 0.44 N/A 

100µg/mL D2 0.68 1.45 1.63 0.91 

1µg/mL D2 6.05 N/A 1.82 1.27 

CTRL D7 1.49 N/A 0.56 0.28 

100µg/mL D7 1.25 0.94 1.08 1.05 

1µg/mL D7 0.67 0.35 0.66 0.53 
 

Table 5: Representation of the percent difference in CEACAM6 expression between experimental 

conditions and control, for each alkaloid. ** Denotes p<0.05, * denotes p<0.1. N/A denotes values that 

were below the limit of detection.. 

CX3CL1 Percent Difference 

 Nic Myo Ana Cot 

100µg/mL D2 59.61 -1.49% 268.46% N/A 

1µg/mL D2 1315.23% N/A 312.89% N/A 

100µg/mL D7 -15.89%** N/A 92.86% 272.37% 

1µg/mL D7 -54.81%** N/A 17.99% 86.88% 
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Table 6: P-Values generated using a type 2, two tailed student T-Test. N/A represents data that was unable 

to be generated due to replicates that were below the limits of detection. 

 CX3CL1 P-Values  

 Day 2 Day 7 

Nic 100µg/mL N/A 0.031 

Nic 1µg/mL N/A 0.26 

Myo 100µg/mL N/A N/A 

Myo 1µg/mL N/A N/A 

Ana 100µg/mL N/A N/A 

Ana 1µg/mL N/A N/A 

Cot 100µg/mL N/A 0.27 

Cot 1µg/mL N/A 0.738 

. 

The chemokine, CX3CL1, was very lowly expressed in our lung carcinoma cell 

line, CCL-185. The Bio-Rad IQ5 was sensitive enough to generate expression data for 

the majority of the conditions, with the several notable exceptions: myosmine 1µg/mL 

Day 2, myosmine CTRL Day 7, and cotinine CTRL Day 2 (Table 4). In the absence of 

the controls for myosmine day 7, and cotinine day 2 there is no baseline of comparison 

for the experimental conditions on these time points, and percent difference data can’t be 

made (Table 5). Percent difference data was generated for the entirety of the nicotine and 

anabasine treated cultures, for both time points (Table 4). We were unable to perform t-

tests on the majority of the data (Table 6), due to many of the replicates for each 

experimental condition being below the limit of detection, therefore rendering much of 

the data unreliable. 

 CX3CL1 is a chemokine, and chemoattractant signaling molecule, which plays a 

major role in immunity, cell migration, and inflammation. CX3CL1 promotes 

carcinogenesis by maintaining inflammation, and subsequently causing increased cell 

proliferation, which in an atmosphere like that of chronic inflammation may lead to 

increased probabilities of mutation and cancer cell formation. CX3CL1 also promotes 



72 
 

angiogenesis, which allows tumors to grow and their cells to divide with greater 

efficiency (Li et al, 2010). It is possible that the expression of CX3CL1 would be more 

pronounced in a primary cell culture, in which these metabolic, and potentially 

carcinogenic changes were occurring, as opposed to in a cancer cell line in which these 

changes have already occurred. It would be difficult to generate data regarding 

angiogenesis, though there have been studies that utilized 3D cultures containing 

spheroids of tumor cells and endothelial cells which show endothelial tubule formation 

sustained by the tumor cells, with no external growth factors (Seano et al, 2013).  

 In the future, the issue of low expression may be ameliorated by increasing the 

amount of RNA in the cDNA conversion reaction, or by adding a greater amount of 

cDNA template to the RT-PCR reaction. This should not alter the results, because the 

experimental wells are compared to controls which reside on the same plate, and will 

have the same amount of cDNA or RNA in the reaction. Thus, the increase should be 

proportional throughout all wells, and adding more template will only cause an increase 

in detectable gene product. 

Alkaloid Effects on SLIT1 

 

Table 7: Gene Expression Data for SLIT1. Units are in Normalized Fold Differences. N/A represents data 

that was below the limit of detection. 

SLIT1 Expression 

 Nic Myo Ana Cot 

CTRL D2 0.098 0.14 0.11 0.14 

100µg/mL D2 0.0069 0.82 0.015 0.63 

1µg/mL D2 N/A 0.36 0.22 0.44 

CTRL D7 0.58 0.26 0.29 0.68 

100µg/mL D7 0.27 1.24 0.67 1.15 

1µg/mL D7 0.86 1.18 0.096 0.47 
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Table 8: Representation of the percent difference in CEACAM6 expression between experimental 

conditions and control, for each alkaloid. ** Denotes p<0.05, * denotes p<0.1. N/A denotes values that 

were below the limit of detection 

SLIT1 Percent Difference 

 Nic Myo Ana Cot 

100µg/mL D2 -93.05 501.61 -85.89 353.34 

1µg/mL D2 N/A 160.81 105.11 216.27 

100µg/mL D7 -53.23 370.30** 127.95 68.99 

1µg/mL D7 49.54 347.52** -67.22 -30.52 

 

Table 9:  P-Values generated using a type 2, two tailed student T-Test. N/A represents data that was unable 

to be generated due to replicates that were below the limits of detection. 

 SLIT1 P-Values  

 Day 2 Day 7 

Nic 100µg/mL 0.012518 0.385294 

Nic 1µg/mL N/A 0.429312 

Myo 100µg/mL N/A 0.017509** 

Myo 1µg/mL N/A 0.001586** 

Ana 100µg/mL N/A 0.56683 

Ana 1µg/mL N/A 0.809402 

Cot 100µg/mL N/A 0.597122 

Cot 1µg/mL 0.723695 0.530542 

 

SLIT1, a molecule involved in the complex processes of axonal guidance and 

angiogenesis, showed low normalized expression (Table 7). Percent differences between 

experimental conditions and controls were created using expression data (Table 8). Some 

p-values were generated from the cycle threshold data, however, many of these data were 

below the LOD and the p-values generated are based on incomplete replicates, and 

therefore are not reliable (Table 9).  

This low expression may be explained by tissue localization of the SLIT1 protein. 

SLIT1 is a SLIT isoform that is mainly localized to neural tissue (Dickinson et al, 2004), 

and we utilized a lung cell culture for our experiments. SLIT1 also regulates highly 

complex, multi-tissue interactions, such as angiogenesis or neural guidance, and the 

simplistic nature of a 2D cell culture does not allow for these complex interactions to 
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occur, which may not elicit expression of SLIT1. Further attempts to determine 

expression of this gene could utilize higher quantities of RNA or cDNA template. 

Alkaloid Effects on CEACAM6 

 

Table 10: Representation of the percent difference in CEACAM6 expression between experimental 

conditions and control, for each alkaloid. ** Denotes p<0.05, * denotes p<0.1. 

CEACAM6 Percent Difference 

 Nic Myo Ana Cot 

100µg/mL D2 87.81%* 35.55%** -13.69% -40.54%** 

1µg/mL D2 168.2%** 23.09%** -3.61% -9.59% 

100µg/mL D7 547.22%** 187.38** -58.50%** -7.51% 

1µg/mL D7 407.37%** 220.26% 52.24%** -30.92%** 

 

Nicotine 

The expression of CEACAM6, an adhesion molecule that is implicated in 

carcinogenesis and metastasis, was significantly (p<0.05) upregulated for the 1µg/mL 

dilution on day 2, as well as the 100µg/mL and 1µg/mL nicotine dilutions on day 7. The 

100µg/mL nicotine dilution on day 2 showed upregulation of gene expression, that was 

marginally significant based on a p<0.1 (Table 10). CEACAM6 expression is inversely 

correlated to cellular differentiation (Blumenthal et al, 2007), so we would expect a 

higher baseline level in a non-transformative cancer cell line, such as CCL-185, though 

we did not compare expression levels between this cell line and a primary culture. The 

consistent upregulation of gene expression in response to even low levels of nicotine is 

consistent with research demonstrating that smokers have higher levels of CEACAM6 

mRNA than non-smokers (Spira et al, 2004). Though the cell line may have a higher 

baseline expression of CEACAM6 than a primary cell source, we can use the increased 
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expression compared to the control cell culture as predictive to how a primary culture 

would respond to the same nicotine stimulus. 

Myosmine 

The expression of CEACAM6 was significantly (p<0.05) upregulated for all 

dilutions and time points, with the exception of the 1µg/mL dilution on day 7 (Table 10). 

Myosmine’s metabolism has been shown to have genotoxic effects, leading to 

carcinogenesis and tumorigenesis (Glas et al, 2007; Vogt et al, 2006). Upregulation of 

CEACAM6 gene expression in response to myosmine may be associated with decreased 

cellular differentiation (Blumenthal et al, 2007), and increased metastatic capabilities 

(Ordoñez et al, 2000). The magnitude of CEACAM6 gene expression showed a 

significant increase between Day 2 and Day 7, which may suggest that the mutagenic 

effects of myosmine increased over the week long time span, as opposed to cells showing 

recovery by the end of the week. 

Anabasine 

CEACAM6 showed significantly (p<0.05) decreased expression for the 100µg/mL 

anabasine dilution on the day 7 time-point, and significant upregulation of gene 

expression for the 1µg/mL anabasine dilution on the day 7 time-point. Both dilutions of 

the day 2 time-point showed reduced expression, but the values were not significant when 

α=0.05 or α=0.1 (Table 10). CEACAM6, aside from having implications in 

carcinogenesis and metastasis, also plays a role in phagocytosis of bacteria and viruses 

(Chapin et al, 2012). A recent study demonstrated decreased bacterial clearance as a 

result of lowered phagocytic capabilities in mice exposed to e-cigarette vapor (Sussan et 
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al, 2015). The effects of anabasine on immunity are not well documented, but 

anabasine’s presence in e-cigarette refill solutions implicates it as a suspect for this 

decreased innate immunity. The increased expression of CEACAM6 seen in the lower 

dilution of anabasine on the day 7 time-point may be explained by a dose-dependent 

mechanism for anabasine’s inhibition of CEACAM6. Perhaps at the 1µg/mL dilution, 

over a period of seven days, the effects of CEACAM6 are able to overcome the 

downregulatory effects of anabasine.  

Cotinine 

CEACAM6 showed significantly (p<0.05) decreased expression resulting from 

exposure to the 100µg/mL dilution on day 2 (Table 10). The 1µg/mL dilution on day 7 

showed decreased expression that was significant (p<0.05). Reduced expression of 

CEACAM6 may indicate decreased immune function (Chapin et al, 2012), or increased 

tissue permeability due to weakened adherence to neighboring cells. Cotinine has been 

shown to decrease innate immunity by inhibiting the action of Toll Like Receptors 

(TLRs), prominent pattern recognition receptors associated with the innate immune 

system (Bagaitkar et al, 2012), and perhaps the decreased expression of CEACAM6 is a 

function of decreased immunity. 
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Alkaloid Effects on ALDH3A1 

 

Table 11: Representation of the percent difference in ALDH3A1 expression between experimental 

conditions and control, for each alkaloid. ** Denotes p<0.05, * denotes p<0.1. 

ALDH3A1 Percent Difference 

 Nic Myo Ana Cot 

100µg/mL D2 4.20% 125.52%** 21.27%** 0.788% 

1µg/mL D2 194.10%** 132.27%** 6.86% 27.55%* 

100µg/mL D7 144.46%** 10.82% 64.98%**  50.52%** 

1µg/mL D7 105.26%** 30.17% 82.01%** -14.90% 

 

Nicotine 

 ALDH3A1, a protein involved in the detoxification of reactive aldehydes during 

drug metabolism, showed significant upregulation for the 1µg/mL dilution on day 2, and 

the 100µg/mL and 1µg/mL nicotine dilutions on day 7. The 100µg/mL dilution for day 2 

showed upregulation, but not at a level that was statistically significant at α=0.05 or 

α=0.1 (Table 11). Nicotine has been shown to induce oxidative stress in cell cultures 

(Crowley-Weber et al, 2003), which may increase reactive aldehyde species in serum or 

media. ALDH3A1 is an inducible aldehyde dehydrogenase isoform (Lindahl, 1992), and 

may therefore its expression may by increased as a result of increased oxidative stress, as 

is suggested by the data. Our results are consistent with previous experiments showing 

increased ALDH3A1 expression in cell cultures exposed to cigarette smoke extract (Jang 

et al, 2014), as well as in the airways of smokers as compared to non-smokers (Spira et 

al, 2004). 

Myosmine 

ALDH3A1 showed significantly (p<0.05) increased expression for both myosmine 

dilutions on the day 2 time-point. ALDH3A1 showed upregulation of gene expression for 
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both myosmine dilutions of the day 7 time-point, but not at a level that was significant at 

α=0.05 or α=0.1 (Table 11). Myosmine, and its metabolites, have been shown to induce 

oxidative stress in mouse models (Simeonova et al, 2012). Increased ALDH3A1 

expression may be induced by increased oxidative stress resulting from myosmine 

exposure. The day 7 time-point showed only slight upregulation of gene expression 

compared to the control, which may indicate a degree of recovery. It is possible that the 

initial upregulation of ALDH3A1, and likely other genes responsible for fighting 

oxidative stress, were successful and were able to inactivate the oxidative stressors and 

return to normal levels by the day 7 time-point.  

Anabasine 

ALDH3A1 showed significantly (p<0.05) increased expression in response to the 

100µg/mL dilutions of anabasine for both time points, as well as the 1µg/mL dilution on 

the day 7 time-point (Table 11). E-cigarette vapor exposure causes increased oxidative 

stress in vivo in mice, especially over long periods over exposure (i.e 2 weeks) (Chapin et 

al, 2015), which may be related to the observed increase in the magnitude of expression 

between the day 2 and day 7 time-points in the data. Nicotine and myosmine have both 

been shown to increase oxidative stress (Crowley-Weber et al, 2003; Simeonova et al, 

2012), and based on the structural similarities between anabasine and the aforementioned 

alkaloids it is possible that anabasine may have a role in oxidative stress. The effects of 

anabasine on oxidative stress are poorly documented, but based on our data, the apparent 

induction of ALDH3A1 expression during the later time period implicates anabasine in 

the production of oxidative stress. Interestingly, the pattern of ALDH3A1 expression in 

response to anabasine opposes that of myosmine-induced expression, in which there was 
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a strong initial increase in expression, which eventually settled to near normal levels. 

Perhaps anabasine and its metabolites produce a lesser amount of oxidative stressors, thus 

only mildly activating the antioxidant response element, but as these stressors accumulate 

over the week-long time period they cause a more robust antioxidant response.  

Cotinine 

ALDH3A1 showed significantly (p<0.05) increased expression for the 100µg/mL 

dilution of cotinine on day 7, and only a mildly significant (p<0.1) upregulation of gene 

expression for the 1µg/mL dilution on day 2 (Table 11). Cotinine, a primary metabolite of 

nicotine, has been shown to induce the production of harmful oxidants and increased 

oxidative stress (Soto-Otero et al, 2002). This could cause the initial induction of the 

antioxidant, ALDH3A1. The decreased expression, though not deemed statistically 

significant though the triplicates for this time point are relatively close to one another 

(SD=0.019), seen in the 1µg/mL (Day 7) data may be due to the ability for ALDH3A1, 

and other antioxidant gene products, to overcome the oxidative stress produced by a low 

dilution of cotinine over a week long time period. 

Alkaloid Effects on PIR 

 

Table 12: Representation of the percent difference in PIR expression between experimental conditions and 

control, for each alkaloid. ** Denotes p<0.05, * denotes p<0.1. 

PIR Percent Difference 

 Nic Myo Ana Cot 

100µg/mL D2 -32.01%* 6.63%** -11.28% -35.41%** 

1µg/mL D2 -9.89% 22.49%** -1.42%** -22.19% 

100µg/mL D7 -1.77%** 36.63%** 100.31%** 11.59%** 

1µg/mL Day7 -6.51** -15.76%** -4.997%** 21.32%** 
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Nicotine 

PIR, an important transcriptional regulator which has implications in apoptosis 

and oxidative stress response due to its relationship with NF-κB, showed significant 

(p<0.05) downregulation of gene expression for the 100µg/mL nicotine dilution and the 

1µg/mL dilution on the day 7 time-point. The 100µg/mL dilution on the day 2 time-point 

showed downregulation with a p<0.1 (Table 12). Our findings are inconsistent with other 

research, which shows increased expression of PIR in response to oxidative stress and 

cigarette smoke (Gelbman et al, 2007). There are several aspects of this study which may 

cause this discrepancy. PIR is also upregulated and has a role in inducing apoptosis 

(Orsaez et al, 2001), likely by inhibiting the effects of the anti-apoptotic transcription 

factor NF-κB (Gelbman et al, 2007). This study utilized a continuous cancer cell line, 

which may have impaired apoptotic mechanisms and not express genes in this pathway in 

the same way as a primary culture. This study only examined these alkaloids in isolation, 

as opposed to the complex mixtures of chemicals associated with cigarette smoke or e-

cigarette vapors, thus nicotine in isolation may not have an upregulating effect on PIR 

gene expression. Nicotine has also been shown to have anti-apoptotic properties by 

stimulating NF- κB activity (Tsurutani et al, 2005; Crowley-Weber et al, 2003), which 

may override the NF- κB inhibitory effects of PIR. 

Myosmine 

PIR showed significant (p<0.05) upregulation of gene expression for all day 2 

dilutions, and the 100µg/mL dilution of myosmine on day 7. PIR showed significantly 

reduced expression for the 1µg/mL dilution on the day 7 time-point (Table 12). 
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Myosmine has been shown to induce cytostasis (halting the cell growth cycle) and 

apoptosis in cell cultures (Boteva et al, 2011), which may occur through a pathway 

regulated by PIR, a known contributor to apoptosis (Gelbman et al, 2007). The reason for 

the decreased expression associated with the 1µg/mL dilution on the day 7 time-point is 

unclear. Perhaps the negative effects related to a low concentration were not enough to 

overwhelm the cells, and the effects causing the induction of PIR expression seen in the 

same dilution on the day 2 time-point may have been ameliorated by the day 7 time-

point.  

 

Anabasine 

PIR showed significant (p<0.05) downregulation of gene expression for the 

1µg/mL anabasine dilution for both the day 2 and the day 7 time-points. However, the 

gene expression of PIR was significantly upregulated for the 100µg/mL dilution on the 

day 7 time-point (Table 12). PIR expression is upregulated during periods of oxidative 

stress and apoptosis (Gelbman et al, 2007; Orsaez et al, 2001). The increase in PIR 

expression at the 100µg/mL dilution on the day 7 time-point may be reflective of the 

same cause that potentially increased ALDH3A1 expression for the same time point, an 

accumulation of oxidative stressors. Increased amounts of oxidative stress may cause 

increased expression of PIR, as suggested by previous literature (Gelbman et al, 2007). 

The downregulation of gene expression seen during the day 2 time-point and the 1µg/mL 

dilution on the day 7 time-point may be reflective of anti-apoptotic capabilities similar to 

that of nicotine, though research regarding anabasine’s effect on apoptosis is minimal. 
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Alternatively, there may be less oxidative stress in the earlier time points and at lower 

dilutions. 

Cotinine 

PIR showed significant (p<0.05) differential expression for all time points and all 

dilutions of cotinine, with the exception of the 1µg/mL dilution on day 2. The 100µg/mL 

dilution on day 2 showed significantly reduced expression. Both dilutions showed 

significant upregulation of gene expression during the day 7 time-points (Table 12). 

Cotinine has been shown to promote lung tumorigenesis by activating the PI3K/Akt 

pathway, which is linked to apoptotic inhibition and cellular proliferation (Nakada et al, 

2012). This pathway has also shown cross-talk with the NF-κB pathway, which also 

mediates an anti-apoptotic response. PIR has shown putative inhibitory behavior on the 

NF-κB transcription factor, and promotes apoptosis through this mechanism (Orsaez et 

al, 2000). The initial anti-apoptotic response induced by cotinine may be responsible for 

the decreased expression seen during the day 2 time-period. The increased expression 

seen in the later time period (Day 7) may be associated with a certain degree of recovery 

from the initial anti-apoptotic effects of cotinine, or may be associated with increased 

oxidative stress in these time points, which would be associated with increases in PIR 

expression (Gelbman et al, 2007).  
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Alkaloid Effects on TLR4 

 

Table 13: Representation of the percent difference in TLR4 expression between experimental conditions 

and control, for each alkaloid. ** Denotes p<0.05, * denotes p<0.1. 

TLR4 Percent Difference 

 Nic Myo Ana Cot 

100µg/mL D2 85.68% -53.00% -53.73% -18.99% 

1µg/mL D2 843.62%** -45.24% -26.16% -64.83% 

100µg/mL D7 3.57% 107.87% -50.74% -48.31% 

1µg/mL D7 4.03% 142.28% 23.08% -34.30% 

 

Nicotine 

TLR4, an important receptor of the innate immune system, showed upregulation 

of gene exression at all time-points and nicotine dilutions, though only the 1µg/mL 

dilution on day 2 showed upregulation that was statistically significant (p<0.05) (Table 

13). TLR4 is largely known as a pattern recognition receptor (PRR) that associates with 

the endotoxic lipopolysaccharide present on the outer membrane of gram negative 

bacteria, but that is also present in pollution and smoke. Nicotine has been shown to 

induce respiratory inflammation through a TLR4 associated pathway, so it would not be 

surprising to see upregulation of gene expression in response to nicotine exposure (Lin et 

al, 2010). The large increase in expression that was deemed significant for the 1µg/mL 

dilution on day 2, may be due to the role of TLR4 as a receptor. It is possible that a low 

dilution of nicotine may allow the receptor to perform at a greater efficiency, while a 

higher concentration may cause the receptor to become saturated. 
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Myosmine 

 TLR4 showed decreased expression for both myosmine dilutions on the day 2 

time-point, and it showed upregulation for both dilutions of the day 7 time-point (Table 

13). No values for the myosmine dilutions were deemed statistically significant. 

Myosmine’s effects on immunity are not well documented, so the root cause for the 

initial downregulation of gene expression is unclear. Cigarette smokers have been shown 

to have decreased innate immunity (Chen et al, 2007), and it is possible that myosmine 

contributes to this by decreasing the amount of TLR4 present on the surface of innate 

immune cells.    

Anabasine 

 TLR4 showed downregulation of gene expression for the both dilutions on the day 

2 time-point as well as the 100µg/mL dilution for the day 7 time-point, and upregulation 

for the 1µg/mL dilution on the Day 7 time-point. These data were not significant at 

α=0.05 or α=0.1 (Table 13). Interestingly, the data for the differential expression of TLR4 

in cells exposed to anabasine follows a similar pattern to the expression of CEACAM6 

when exposed to the same conditions. Both genes and their products have roles in innate 

immunity. The decreased expression of TLR4 may lend further support to the 

aforementioned idea that anabasine plays a role in decreased innate immune response that 

is seen in smokers and e-cig users (Chen et al, 2007; Sussan et al, 2015). The 

upregulation of gene expression seen for the 1µg/mL dilution on the day 7 time-point, 

though not deemed statistically significant, may suggest that TLR4 is not greatly 

hindered by the low dilution over a period of seven days, or perhaps that the function of 

TLR4 as a receptor is more efficient at a low concentration. 
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Cotinine 

 TLR4 showed decreased gene expression for all dilutions of cotinine and time 

points, though none of them were deemed statistically significant at α=0.05 or α=0.1 

(Table 13). Based on previous literature, we would expect to see decreased TLR4 

expression in response to cotinine exposure (Bagaitkar et al, 2012). Bagaitkar and 

colleagues showed downregulation of ligand-stimulated TLR4 and a decrease in the 

downstream pro-inflammatory cytokine response, due to levels of cotinine exposure that 

are physiologically relevant to smokers.  

Limitations 

This is a pilot study, based on our funding, resources and time. A 2D culture 

system as a model for complex physiological processes does not necessarily mimic the 

human response properly (Abbot, 2003; Weaver et al, 1997). Cultures grown in 3D 

suspensions, such as hydrogel matrices, or in the extracellular matrix of the tissue being 

studied have been shown to be more physiologically accurate (Weaver et al, 1997). We 

also utilized a continuous carcinoma cell line, which is likely to have differential gene 

expression in comparison to healthy tissues. In the future we would like to utilize primary 

cultures in these experiments, as they would provide a more accurate of an e-cigarettes 

effect on healthy cells and genomic changes.  

We used a liquid media to expose the cell cultures to the primary alkaloids, when 

in reality these alkaloids would be aerosolized. There have been experiments which use 

machines to produce aerosols of these extracts (Trehy et al¸2011; Jensen et al, 2015). 

This would produce effects that are more true to actual e-cigarette exposure, however we 
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do not have the resources required to purchase or create one of these machines. However, 

the experiments conducted within these limitations are still useful to better understand 

how these chemicals interact with living cells in vitro. 

Table 14: Characteristics of the Failed Primers 

Gene Sequence 5’-3’ Tm°C Product 

Length 

PCR Efficiency 

CYP1A1 (a). FP 

 

CYP1A1 (a). RP 

CCCAACCCTTCCCTGAATG 

 

TTCTCCTGACAGTGCTCAATC 

62.2 

 

61.8 

146 N/A 

CYP1A1 (b). FP 

 

CYP1A1 (b). RP 

 

TCATTGTAACTCAGAGACCACTAAC 

 

CATTATGGCAGGAAAAGGGTTG 

62.2 

 

61.9 

137 N/A 

CYP1A1 (c). FP 

 

CYP1A1 (c). RP 

ACAGATGCTTTGGTCTTTTATGC 

 

AGGATTTAATGCCCAGTGTAGC 

62.0 

 

62.6 

150 N/A 

AHR. FP 

 

AHR. RP 

CCACATCACCTACGCCAG 

 

CCAAACGGTCCAACTCTGTAT 

62.3 

 

62.1 

135 N/A 

We were unable to study all of the genes listed in the proposal. Several of the 

primers were unable to show specificity for their gene products (Table 14), such as 

CYP1A1, AHR, and GPX2. Several of the genes had to be examined multiple times 

using qRT-PCRs. At several points the cell cultures became unhealthy and would not 

adhere to the tissue culture flasks, which required us to restart the cultures from frozen 

reserves. It became difficult to grow and isolate enough cells to produce a meaningful 

quantity of RNA to be converted to cDNA. Cell cultures will be maintained and more 

cDNA will be produced, and these genes will be studied following my DHON defense. I 

plan to continue working on this project into the summer, and I will help Dr. Kovach 

train another student to continue this project into the future. 
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Conclusion 

Cell viability studies, utilizing the Cell-titer Glo ATP Luminescent Assay, showed 

generally decreased cell viability, or cell proliferation, in cell cultures exposed to the 

individual alkaloids found in e-cigarette refill solutions: nicotine, myosmine, anabasine, 

and cotinine. The examination of differential gene expression, using qRT-PCR, showed 

significant differential expression for each gene and each alkaloid being examined in this 

study. Two of the genes, SLIT1 and CX3CL1, showed expression which was below the 

limit of detection (LOD) for the methods of examination we utilized, which suggests that 

these genes and their products are not highly expressed in lung tissue, or that the cancer 

cell line, CCL-185, does not highly express these genes. TLR4 showed differential 

expression in response to all alkaloids, but did not show statistical significance for these 

differences, which may be a result of procedural or human error and may be alleviated 

with repetition. Each of these genes serves a particular function in the cell: adhesion 

(CEACAM6, CX3CL1), immune response (TLR4, CX3CL1, CEACAM6), xenobiotic 

metabolism (CYP1A1, AHR, ALDH3A1), oxidative stress (GPX2, ALDH3A1), putative 

oncogenes (PIR, CEACAM6), or putative tumor suppressor genes (SLIT1). Differential 

expression of these genes has been implicated in carcinogenesis and tumorigenesis. 

Overall, the differential expression observed in this study was variable depending on the 

alkaloid and time point (Table 14), and thus were not unanimously consistent with the 

predictions made in the hypothesis (Table 1; Table 14). Certain alkaloids showed 

expected patterns of gene expression, for instance, ALDH3A1 showed increased 

expression for each alkaloid, as predicted in the hypothesis. This being said, differential 
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expression, either increased or decreased, for any of these genes may be associated with a 

potentially deleterious response within the cell, or within the body as a whole. 

Table 15. Observed Differences in Gene Expression for Candidate Genes 

Gene ALDH3A1 CEACAM6 PIR TLR4 

Predicted 

Expression 

Increased Increased Increased Decreased 

Observed 

Expression 

Generally 

increased as a 

result of exposure 

to each alkaloid 

Increased for 

myosmine and 

nicotine; 

decreased for 

anabasine and 

cotinine 

Nicotine and 

anabasine were 

reduced. 

Myosmine was 

increased. 

Cotinine was 

reduced for D2 

and increased for 

D7. 

Nicotine showed 

increased 

expression. 

Cotinine and 

anabasine were 

reduced. 

Myosmine was 

reduced for D2 

and increased for 

D7. 

 

 The differential expression, as well as the decreased cell viability, seen in our 

study suggests an insidious nature of these chemicals in regards to human health, and 

should inspire further investigation into the physiological effects of e-cigarettes, as well 

as the standards of regulation that apply to the marketing and labeling of e-cigarette 

products. 

Future Directions 

The experiments outlined in this thesis will need to be repeated to ensure validity 

of the measurements, and allow us to reduce the effects of random and procedural error. 

Considering the growth curves peaked at day 5, we would like to investigate gene 

expression on this day during future experiments. This project investigated gene 

expression on a transcript level, it would be interesting to investigate protein expression 

of the genes being studied, because mRNA expression has not always been shown to 

have a strong correlation with corresponding protein expression (Guo et al, 2008), though 
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the correlation is seen to be stronger in differentially expressed mRNA (Koussanadis et 

al, 2015). We would like to perform western blots of the genes being studied in order to 

study varied protein expression. This would allow us to see if the differential expression 

seen on the transcript level carried over onto the translational level. Protein expression 

may also be examined qualitatively using immunohistochemical (IHC) or 

immunofluorescent (IF) staining of the proteins in question. This would allow us to 

examine the localization and distribution of the various proteins, while the western 

blotting would allow a more quantitative view of the protein expression. 

Immunofluorescent stains may be visualized using fluorescent microscopy or laser 

confocal microscopy, both of which are assets possessed by UTC. Both western blots and 

staining would likely utilize the same antibodies targeted for the protein being studied, 

which would be financially advantageous. 

 Cell viability assays and RT-PCR will be carried out on combinations of the 

alkaloids being studied, which will allow us to examine how the physiology changes 

when presented with more complex solutions, like those that are actually found in the 

refill cartridges. It will allow us to determine if the alkaloids will have compounding 

effects, or if one alkaloid, or combination of alkaloids, may ameliorate the changes 

produced by another. Experiments examining transcript expression and cell viability will 

also be carried out in cells exposed to commercially available e-cigarette refill solutions. 

It would also be beneficial to develop a way to expose the cells to aerosols of the various 

alkaloids and refill solutions, as this is how these chemicals are introduced in vivo, 

therefore experimentation using this method may convey a more accurate representation 

of the physiological responses occurring in e-cigarette users.   
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 This experimental protocol should also be repeated utilizing a primary cell line, as 

opposed to a cancer cell line. A primary cell line would allow a closer examination of 

how normal cell physiology changes in response to e-cigarette refill solutions, and may 

better show morphological and genetic changes associated with carcinogenesis and 

tumorigenesis.  

 The field of e-cigarette research is still burgeoning, though more information is 

coming out rapidly as lab groups shift their focus to what is now becoming a global trend. 

This project is providing a pivot point for e-cigarette research, switching from 

quantitative examination of the chemical components to examination of how these 

components affect human and cellular physiology. As more data of this nature is accrued, 

it will become more clear how e-cigarettes affect human health on not only the individual 

scale, but on the scale of public health. Research of this nature will provide a basis for 

future laws and regulations regarding e-cigarettes, and allow for a more informed 

generation of e-cigarette users. 
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