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Executive Summary  

 The scope for the project was to design and construct a system that could be 

used to both manually and automatically track the sun using solar panels to 

demonstrate engineering principles for classroom and laboratory experiments at 

both the primary and secondary education levels. For ease of demonstration, a 

manual and automatic tracker was designed for the experiment. Using a standard 

camera tripod, the solar panels were attached to fabricated mounts to allow for 

omnidirectional movement. For the automated, or active tracker, an Ardunio Uno 

microcontroller was used in conjunction with two 180˚ servos to adjust the active 

tracker solar panel into position. To do this, four light dependent resistors were 

used as sensors in the microcontroller code. The code consisted of four inequalities 

to determine whether the top or bottom and left or right are experiencing more 

light, send a signal to the servo and move the panel to the optimum setting.  

 The tests conducted for this project consisted of finding the optimal setting 

for the manual tracker and then comparing that over the course of the day with the 

active tracker. The tests successfully showed how there is an optimum range for the 

manual tracker and furthermore how the active is an average of 20% better than the 

manual over the course of the day. The final project deliverables are the 

apparatuses, the Arduino code, and excel workbook. The project has a number of 

areas to improve and has a number of experiments to study energy conversion and 

renewable energy. Dr. Margraves plans to use this system for future student 

engineering laboratory experiments, as well as demonstrations for STEM youth 

programs.   
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Introduction 

 
The overall goal for this thesis is to provide two apparatuses that will be 

utilized in a number of experiments and classes for a part of a summer program for 

students. The goal is to create an experiment where the students can learn 

engineering principles and how they can be applied. The client, Dr. Charles 

Margraves, wants two versions of a solar tracking array to use in his STEM youth 

program. One of the structures will be manually adjusted to find the optimal angle 

for energy production while the other will be automated through a microcontroller. 

Because Dr. Margraves is planning on using these apparatuses for middle and 

high school students, these structures must have components that can track the 

movement of the sun, have a visual and mathematical representation of solar power 

generation, and output data in a format that can be useful and comprehensive to a 

high school education level. The manual mode will allow the user to physically move 

and adjust the position of the panel. The automatic structure will include a 

Maximum Power Point Tracking, (MPPT), a device that can sense the maximum 

sunlight around the solar panel for optimal power generation. Most importantly the 

apparatuses needed to highlight the benefits of using an automated tracker over the 

use of a manual tracker.  

In order to meet these goals, a set of objectives was developed to clarify the 

needs of the project. The objective for this project is to create two structures that 

can support the solar panel(s), a wiring harness, power output meters, as well as the 

motors on the automated version. The primary objective will be creating and wiring 
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the microcontroller along with the algorithm to track the position of the sun in 

relation to the optimal angle. The secondary objective will be to create a Graphical 

User Interface (GUI) that will take the information from the solar array mechanism 

and arrange it in a graphical view that can be used for possible lesson plans at the 

primary and secondary education level.  

Other tracker plans can be found both commercially and in academia, 

however the important concept for this project is the need of simplicity in design. In 

order to determine whether or not these goals were achieved, a number of tests 

were conducted with varying time intervals and angles of the arrays. Analysis of 

these test results shows that the apparatus works as expected, and that the 

apparatus will demonstrate power output in other laboratory experiments. 
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Theory 

 
 The initial discovery of electricity via sunlight was through the work 

of William Grylls Adams and his student Richard Day in 1876 when they first 

discovered a small amount of electric current could be created when sunlight hit 

selenium, proving that a solid material could convert light into useable energy 

without heat or moving parts. More developments were made over the course of the 

next one hundred years; realizing silicon is more effective in harnessing the sun’s 

energy.  With these improvements in efficiency, materials, and construction, prices 

have dropped over the past twenty years, and solar has become “the least expensive 

power source for small-scale electrical demands located away from a utility line,”4. 

The photovoltaic industry has grown dramatically, increasing output 200 fold in this 

twenty year time period. Even now in remote areas, solar energy is considered the 

most effective solution for the main source of energy. Couple these facts with the 

current effects the environment is experiencing, solar energy is at the forefront of 

new development as coal and other fossil fuels are beginning to be phased out as a 

means to powering civilization4.  

Advances in energy efficiency as well as alternative forms of energy are at the 

forefront of developing research today. Solar energy is constantly debated on the 

practicality of use in comparison to regular nonrenewable forms of energy. Parida et 

al. describe photovoltaic conversion as “the direct conversion of sunlight into 

electricity without any heat engine to interfere.”3. To accomplish this, a solar panel 

or array of photovoltaic (PV) cells work together to convert sunlight into electricity 
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by allowing protons from particles of light to knock electrons free from cells in the 

panel. Each photovoltaic cell is constructed with semi-conducting materials, usually 

silicon, which is found in many forms of electronics for its conducting properties. 

Semiconductors serve as materials whose conductivities fell between that of highly 

conducting metals on one end of the spectrum and insulators on the other. Silicon 

and similar materials such as Germanium can be described as intrinsic 

semiconductors, or pure semiconductors whose conductivity is determined by their 

conductive properties in the elements pure form.  Due to the diamond cubic 

structure of these elements containing highly directional covalent bonds, these 

materials are extremely conducive to the construction of an electric field. The 

bonding electrons inside the structure of the silicon are unable to move until a 

considerable amount of energy (a photon of sunlight) breaks an electron free. These 

valence electrons are then excited from their initial position, leaving a positively 

charged hole and thus creating the structure for a conducting environment. To 

create this environment, the following procedure is required to create a 

photovoltaic cell.5 

These cells create an electric field similar in structure to a magnetic field, 

which has opposite poles; the electric field has positive and negative ends. To obtain 

a strong electric field, manufacturers “dope,” or add small amounts of substitutional 

impurity atoms to silicon to produce extrinsic silicon semiconducting material5, thus 

creating the environment needed for a strong electric field. This process gives each 

layer a positive or negative electrical charge. For example, taking a sample of silicon, 

it will be seeded with phosphorous into the top layer of silicon, which adds extra 
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electrons to this layer. The same sample in then doped with boron, which will result 

in a smaller amount of electrons, giving that end a positive charge. This will create 

an electric field between the two charged layers. Once this field is created, a photon 

of sunlight knocks an electron free from the phosphorous end. This free electron is 

then forced into a certain direction and when a larger number of electrons are freed, 

a current is created5. The following figure represents how a photon affects a p-n 

junction.  

 

 

 

 

 

 

 

 

Figure 1: Representation of a solar cell 

 

When metal contacts are placed on either end of the junction, this current is 

collected and is combined with the voltage from the electric field created from the 

cell to generate power. To help improve on the power generation of the cell, an 

antireflective coating is added to the silicon, which will reduce the amount of 

photons that will bounce off of the face of the silicon before they are able to free an 

electron.  Finally a glass surface and a frame are added to multiple PV cells to give s 
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protective structure from the elements and to help trap photons to create a 

complete solar panel with positive and negative terminals for power output5.  

Determining the best orientation and angle for the solar panel can drastically 

improve or decrease effectiveness of the power output, therefore it is important to 

understand the optimal setting for each season, which depends on location and style 

of tracking method. Based on the geographical location throughout the world, 

panels are installed differently and have varying movement depending on the 

position of the sun. Ideally the photons will hit the silicon junction at a 90° angle, 

which will maximize the amount of photons striking the panels and maximize the 

amount of energy being produced. The factors that control this setting are the 

orientation (north, south, east, west) and the angle of the array with respect to the 

horizontal of the surface of the Earth. In addition the correct angle of the array can 

depend upon the season of the year along with the latitude of the array itself. In 

addition to these factors the variety in whether the array will be: fixed, adjusted 

seasonally, or active tracking, will also determine how effective the power output 

along with how much maintenance is required.1 

The three different types of tilting styles (fixed, adjusted, or tracking) can be 

described as follows: 

 Fixed - This is the simplest set up, where the array is mounted at a single 

permanent orientation. The tilt needs to be the optimum angle for the 

entirety of the year. This angle is determined by using the latitude of the 

geographical location of the array. 2 
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 Adjusted – Similar to the Fixed, yet as the seasons change, and the sun moves 

(ie higher in the winter and lower in the summer) the tilt angle needs to 

change as well to optimize your power output.2 

 Tracking – Trackers direct solar panels toward the sun throughout the day. 

These devices change their orientation to maximize energy capture and can 

further be divided into a number of categories, depending on whether these 

trackers use sensors to orient their position or if the tracker uses a 

microprocessor/computer to calculate where the Sun is positioned using 

algorithms, geographical position, and other characteristics.2 

 

Trackers serve as the best option out of the three listed above. Table 1 below, 

shows the effect of adjusting the angle using an array setup at 40° latitude as an 

example (Chattanooga, TN is located at 35° latitude, which would be minimally 

different than what is below). Each option of tilting styles is compared with a dual 

axis tracker than would always keep the panel directly perpendicular to the sun’s 

photons.1 

 

Table 1: Comparison of Varying Types of Tracking Methods 

 
 

 Fixed Adj. 2 

seasons 

Adj. 4 

seasons 

2-axis tracker 

% of 

optimum 

71.1% 75.2% 75.7% 100% 
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From the table above, the progression of optimum generation is increasing as 

the amount of changing angle is increased. As the desired power application differs, 

so does the tracking system. In certain cases, an active tracking system is too 

expensive and will decrease the maximum power that is gained from the solar 

panel, if the tracking system is to be powered by the panel. Due to the rotation 

patterns of the Earth on its axis around the Sun, if a solar array is fixed or immobile, 

the power generation or absorption of photons is greatly affected by the time of day 

and season of the year.1 In regards to an active tracking system, which keeps the PV 

cell perpendicular to the sun throughout the day, regardless of the season, collected 

energy can be boosted in a range from 10% to 100% depending on the 

circumstances. However if an active tracking system is not used the PV cell array 

should be oriented into the optimum position, where no shadow will fall on it at any 

time in the day.  

To get the most from a position-fixed, or even a seasonally adjusted, 

photovoltaic system, the panels need to be in the direction that will capture the 

most sun at a 90° angle. Solar panels should always face true south in the Northern 

Hemisphere, and north in the Southern Hemisphere.1 In general, to get the optimum 

angle for a panel in the Northern Hemisphere in a fixed position all year long, the 

panel needs to be at an angle equal to the latitude of the geographical location with 

respect to the horizontal, facing south.  However this method is for a panel that will 

be fixed all year long, therefore it is an average optimum angle for all seasons and all 

positions of the Sun. To gain more from the panel the seasonal method can be taken 

where the angle setting is specified per season.1  
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In the seasonal method, there are a number of improvements that can be 

made to optimize the power generation over the course of specific seasons. In the 

two seasonal approach, which takes into account the Sun changing position from 

summer and winter, the optimum angle is the latitude of the geographical location 

plus 15° in the winter and minus 15° in the summer. This accounts for the increase 

in power output as in the table above for the 2-season adjustment. Even further than 

that, the panel system can be improved upon by all four seasons by further 

specifying the position of the sun in relation to the latitude of the geographical 

position of the panel. The following table differentiates the seasons by the angle 

necessary for optimization, where x is the latitude.1 

 

Table 2: Solar Optimization Equations for all seasons 

 

 

 

 

These equations relate to the optimum power output for four seasons as seen 

in Table 1. When to use these equations, can be given by the next table where the 

seasons are divided up in the calendar year. The efficiency of a fixed panel, 

compared to optimum active tracking, is lower in the spring, summer, and autumn 

than it is in the winter, because in these seasons the sun covers a larger area of the 

sky, and a fixed panel is not able to capture as much of it. These are the seasons in 

which tracking systems give the most benefit.1 

Winter  θ = 0.9x + 30 

Spring θ = x – 2.5 
Summer θ = 0.9x – 22.5 
Autumn θ = x – 2.5 
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Table 3: Seasonal Dates 

 

Winter October 13 to February 27 

 

Spring February 27 to April 20 

 

Summer April 20 to August 22 

 

Autumn August 22 to October 13 

 

As stated earlier, PV cells absorb the most sunlight when the sunlight strikes 

the cell at a perpendicular angle. Because the PV cell generates a current, the cell can 

be referred to as a DC current source. The amount of current produced has a direct 

relationship with the voltage being produced as well from the PV cell junction and 

the intensity of light the panel is absorbing. Therefore the Power can be calculated 

in a number of different ways. Below is a representation of light striking the PV cell 

system. 2 

 

 

 

 

 

 

Figure 2: Solar Cell Angle of Incidence 
 

Sunlight 
 

Normal 
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The sunlight strikes the PV cell at the angle of incidence, θ. Assuming the 

sunlight is at a constant intensity, λ, the available sunlight to the cell that can be 

converted for power generation, W, can be given by: 

 

𝑊 = 𝑋 ∗ 𝜆 ∗ cos 𝜃                                                    (𝐸𝑞𝑛. 1) 

 

Where X represents a limiting conversion factor in the design of the panel as 

the current technology is unable to convert 100% of the sunlight absorbed into 

electrical energy. From this equation it is clear the most power will be generated 

when the angle of incidence is zero, or rather when the sunlight strikes the panel at 

a 90° angle. Furthermore, power will be generated when the sunlight is 

perpendicular to the normal vector. This clarifies the earlier statement of a fixed 

panel, which loses significant power due to the angle of incidence.2  Another way to 

calculate power from the panel is to take the voltage, V, from the PV junction and the 

current, A, that is generated when dissipated through a load circuit and the product 

of the two is the power generation, W, given by the following: 

 

𝑊 = 𝑉 ∗ 𝐴                                                           (𝐸𝑞𝑛. 2) 
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Experiment 

 

Apparatus 
 

The need for a lightweight and portable apparatus drove the design to be as 

simplistic as possible for use in a laboratory experiment. In that sense the decision 

was made for two different apparatuses for both a manually moveable solar panel 

and a two axis active solar tracker. The two structures needed to support the weight 

of not only the panel but also, the brackets that will be fabricated to house the panel 

and all of its components. The manual mode will allow the user to physically move and 

adjust the position of the panel. The active tracker structure will include a Maximum 

Power Point Tracking (MPPT) device that can sense the maximum sunlight around the 

solar panel for optimal power generation. 

The manual solar tracker consists of an Aleko monocrystalline 15 watt panel 

with a prefabricated frame. A figure of the panel can be seen below. 
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Figure 3: Aleko Monocrystalline 15 Watt Panel with a Prefabricated Frame. 
 

The frame has been modified to house a bracket horizontally at the midpoint. 

The bracket was fabricated out of aluminum due to its lightweight and malleable 

properties, in an I-beam structure in the center of the bracket and the quick release 

mechanism from the tripod is fastened to enable the user to remove the solar panel 

with ease from its base. The base is a common camera tripod stand that supports 

the solar panel and its angular displacement. The tripod was chosen because of its 

stable structure, lightweight and inexpensive properties. The specific tripod chosen 

is the Amazon Basics tripod. Utilizing the tripod’s panhandle and crank handle, the 

user is able to adjust the omnidirectional position of the panel. A figure of the quick-

release mechanism along with the backside of the panel can be seen below. 
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Figure 4: Fabricated Bracket with Quick Release Mechanism Attached 
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Figure 5: Rearview of the Manual Array Attached to the Tripod 

 

The tripod’s leg braces and leg lock lever can be adjusted to change the 

length of the telescoping legs. This allows for adaptability towards irregular terrain. 

This base is also the starting component for the active tracker. A LED load circuit 

was attached to the output of the solar panel to provide a visual representation of 

power generation, as well as the ability to measure current and voltage for data 
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collection. The LED load circuit is comprised of three LEDs that brighten as the 

power increases from the panel. A front view and rear view of the LED circuit can be 

seen below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Front and Rear View of LED Circuit 

 

The physical apparatus of the active tracker is more complex than the 

manual tracker due to the additional components that aid the automation processes. 

Initially the design was planned to include a stepper motor in the X-Y directional 

plane to assist in a 360° motion and add a 180° servomotor in the X-Z direction to 

allow for omnidirectional movement. The bracket designed for the active tracker 

originally was designed to house both of these components while holding solely the 

panel and housing the electrical components and the microcontroller on the base of 
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the fabricated bracket. However in the initial circuit construction, the stepper motor 

and motor driver circuit were shorted in soldering and developed complications. 

The decision was made to use two 180° servomotors which would still allow for 

omnidirectional motion, however it changed the development of the control circuit 

script. 

The electrical instrumentation and control of the system will be done using a 

microcontroller known as an Arduino Uno.  Some of the specifications of the device 

include 14 digital input/output pins, where 6 of the output pins are for pulse width 

modulation (PWM). PWM is a technique used to allow the control of supplied power 

to an electrical device. From the microcontroller, a unit step signal will be sent to the 

motor. The average voltage sent to the motor is controlled by the switching 

characteristics set by the Arduino. Below is an example of an Arduino Uno 

microcontroller.  

 

 

 

 

 

 

 

 

Figure 7: Arduino Uno Microcontroller 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.arduino.cc/en/Main/arduinoBoardUno&ei=ftQFVY-FCYmLNpG0gYgJ&psig=AFQjCNGUAzRtCXtls4jibaXJ3U9B0FquNQ&ust=1426531821173544
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The duty cycle, which is the ratio between the turn-on time and the period of 

the square wave function, dictates the average voltage to the circuit and can be 

controlled by the Arduino programming. The larger the duty cycle, the higher 

amount of power supplied to the load.  To regulate the time the signal is sent to the 

motors and light dependent resistors (LDR) will be placed along the face of the 

panel as sensors. LDR’s are made out of a semiconductor material that change its 

resistance as it is exposed to light. When in the dark, the electrical resistance can be 

as high as a couple thousand ohms, and as small as a few hundred ohms in the light. 

The LDR circuit will be fed through the Arduino. The following is an example of the 

LDR that is implemented in the active tracker. 

 

 

 

 

 

Figure 8: Light Dependent Resistor 

As the LDR’s are exposed to light, their electrical resistance is reduced, and 

therefore will increase the current within the circuit. This can be clearly seen by 

Ohm’s Law, where 

 

 𝐼 =
𝑉

𝑅
                                                                   (𝐸𝑞𝑛 3) 

 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.raspberrypi-spy.co.uk/2012/08/reading-analogue-sensors-with-one-gpio-pin/&ei=-tUFVYKLO4GfggTvjILwBw&psig=AFQjCNFLbq-oKMQu75JpX-2teBY3okYLNA&ust=1426532047690602
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 where I is the current, V is voltage, and R is resistance. The Arduino will read 

the signal and will provide a feedback loop to the PWM. The differential in the 

measured current from the set optimal current will be sent to the PWM pins that 

will translate into angle displacement for the motors. The signal will be sent 

continuously to each of the motors until the LDR current has met the parameters set 

within the Arduino. The active tracker has specified that a user friendly GUI be 

implemented to provide feedback of the data collected. The Arduino’s programming 

syntax is a C++ based language and will require a way to store data accumulated by 

the system. 

Similar to the manual tracker, the quick release mechanism was fitted to the 

aluminum base. Again, this allows for the user to remove the panel from the tripod 

base. However, the panel and crank handles of the tripod will not allow 

omnidirectional motion. To accomplish this, an aluminum base and wood section 

was cut to house the X-Y directional driving shaft. The wooden section and a series 

of fasteners is used to elevate a plastic pulley from the aluminum bracket and 

maintain the same height as the depth of the servo as seen in Figure 9. The wooden 

base allows for the center shaft to move with as little of friction as possible. 

 

 

 



 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9:  Active Tracker Base Attached to Tripod with View of X-Y Servo 

 

The X-Y plane servo was offset from the shaft to minimize any unnecessary 

weight and friction from the panel to the servo’s rotary components. A second 

pulley is placed directly on the servo in conjunction with two rubber bands. The 

rubber bands act as the belts in the pulley system. Moving above the pulleys, a 

rectangular segment of aluminum was cut and bolted to the wooden section to 

stabilize the shaft during operation. Above the aluminum plate the driving shaft is 

bolted to a mounting frame that is fastened to the frame of the panel. The mounting 
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frame consists of two sections of aluminum flat bar that were bent in a “L” shape 

and overlapped to form a “U” shape frame. It was then fastened to the center shaft, 

and then to the sides of the panel’s frame. The “U” frame can be seen in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Front View of the Active Tracker 
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From the front view, on the right side of the panel, there is a rectangular 

section of wood bolted to the “U” frame; notice that the section of wood is not bolted 

at the centerline, but offset to the right. This is due to the implementation of another 

drive shaft driven by the X-Z servo. The X-Z servo is bolted to the centerline of the 

wooden section using provisions designed by the manufacturer. On the other side of 

the section, the drive shaft of the servo is adhesively attached to a pulley. A second 

pulley is placed where the “U” frame is fastened to the panel frame. Rubber bands 

are used as the belts for the pulley system. The fasteners that attached to the panel 

frame are intentionally loose to allow for X-Z directional motion.  

 

 

 

 

 

 

 

 

 

 

 

Figure 11: X-Z Plane Servo for the Active Tracker 
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The control circuit was built on a segment of proto-board. The Arduino Uno 

microcontroller was attached to the board using industrial strength Velcro. The 

board itself was then attached to the back of the solar panel using a similar method. 

Wires from the 5V power supply and digital PWM of the microcontroller were 

attached using ribbon cable and solder. From the analog inputs of the 

microcontroller, the wires are fed to the proto board and into the mounted terminal 

blocks. From the terminal blocks on the board, red #22 AWG stranded wire is pulled 

to the light dependent resistors at each of the corners of the panel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Rear View of the Active Tracker 
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The light dependent resistors are electrically connected through a terminal 

block that is attached using Velcro to each of the panel’s corners. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Placement of Light Dependent Resistor 

 

The following description and creation of the code used for the active tracker 

was created in conjunction with an electrical engineering peer, Douglas Jensen. The 

operational functionality of the active tracker can be viewed in the drawing found in 

Appendix D. From a hardware aspect, the Arduino Uno microcontroller is supplied 

power via a USB to the A/B input on the device. When energized, the 

microcontroller has the capability to emit either a 3.3 V or a 5 V power source. 

Utilizing the 5 V source and a ground pin, four 10 kΩ, 1/4 W resistors are daisy 

chained together. At each branch, a light dependent resistor, with a light resistance 
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range 0.5 to 10 kΩ, is placed in series with the 10 kΩ resistor. Pins A0 through A3 

are then connected between the 10 kΩ and the LDR. This is done so that the 

microcontroller can read the voltage drop across the LDR with respect to the ground 

pin. Additionally, the 5 V source and ground pins are connected to the positive and 

negative terminals of the X-Y and X-Z servos. Standard wire colors are used to 

identify the positive (red), negative (black) and pulse (yellow) terminals of the 

motors. 

The pulse input of the servo is routed to digital outputs 9 and 10 for pulse 

width modulation. The order at which the pulse terminals are connected to the 

digital outputs does not matter. The output terminals of the solar panel are 

connected to the positive and negative terminal block of the load circuit. The 

terminal contacts are labeled positive and negative. The load circuit was 

implemented as a visual representation of the power generated by the panel. As the 

panel displaces toward a light source, the LED’s in the circuit will brighten. 
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Arduino Code Description 
 

Within the software of the microcontroller, variables are routed to the used 

inputs and output pins so that the microprocessor knows which i/o assignments are 

needed. Within the program setup function, the servos are assigned to digital output 

pins 9 and 10. Additionally, a reset function was implemented so that when the 

microprocessor is initially energized, it displaces the 180° servos to the 90° 

orientation. When this occurs, the panel face will be facing toward the ceiling or sky; 

this is referred to as the “initialization period”. Within the program loop, variables 

are associated with the analog readings of the sensor. The variables are named to 

indicate the location of the LDRs with respect to the front view of the panel. 

Moreover, variables for the average values of the top, bottom, right and left sensors 

were created to simplify the code within the computation segment. The tolerances 

of the servos were also calibrated using the variables “speedh” and “speedv” and the 

function “max(tolerance, # of steps)” specific for the code found in Appendix C. These 

variables control the speed of the motor to move a single step per loop iteration. The 

next segment of code utilizes the serial monitor that is provided by the Arduino 

interface. The serial monitor is a necessary tool used to debug the software. 

However, it was also used to track the position of both servos and the analog 

readings of the LDR’s. When the serial monitor is open, it will read the string 

“running” during the 5 second initialization period. After the setup, a graphic will 

appear on the serial monitor in the shape of a rectangle. This is to represent the 

front view of the panel. In each corner, the analog read values of the sensors will be 

displayed in accordance to their physical position on the panel. This allows the user 
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to identify which sensor is experiencing the most luminosity. This also serves as a 

method for confirming the servos are moving in the correct direction in response to 

the sensor values. A figure of the serial monitor can be seen below. 

Figure 14: Example Reading from Serial Monitor 

 

The logic implemented for the active tracker to decide direction consists of a 

comparative inequality and functions as follows: 

 If the average value of the top sensors, ATS, is less than the average 

value of the bottom servos, ABS, and the difference between the 

average values is greater than the sensitivity margin, then the servo 

will decrement towards the top sensor.  
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 If the average value of the left sensors, ALS, is less than the average 

value of the right servos, ARS, and the difference between the average 

values is greater than the sensitivity margin, then the servo will 

decrement towards the left sensor.  

 However, when the values are equal and less than the sensitivity 

threshold, the servo will stop and hold position. Each iteration of the 

loop is delayed 100 ms. 

 Therefore as the Sun’s position changes throughout the day, the active 

tracker will follow, keeping the rays of photons normal to the panel. 

For a complete list of materials used in the construction of the apparatuses, as well 

as the code implemented on the Adruino Uno, see Appendix C.  
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Procedure 
 

The procedure for this experiment can be broken down into two main tests. 

The first test will be to determine the optimum angle for power generation of the 

fixed array. The other test will be to determine the overall power generation over 

the course of a day. In this test, the fixed array, at its optimum angle, will be 

compared to the active tracker. The full procedure is dictated by the setup of the 

two apparatuses, data collection and analysis. Parameters that will affect each test 

are: the angle of the fixed array, the load generation circuit used for each apparatus, 

the weather on the particular day, and the instruments used to collect data for 

analysis.  

To set up the fixed array for testing, first the tripod needs to be erected. Each 

of the telescoping legs needs to be fully extended and the brace must be locked. The 

panhandle head of the tripod needs to be parallel with the ground. After confirming 

the pan handle head is level, lock it in to place with the pan handle. After doing so, 

loosen the panhandle by one and a half complete turns. Perform the same steps 

concerning the panning lock nut. Fully tighten the side tilt locking nut as this portion 

of the tripod will remain stationary. The crank handle can be turned to the users 

preference, however at least one full turn is necessary so the tripod base will not 

interfere with the pan handle. A figure seen below labels the parts needed to alter 

before attaching the panel itself.  
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Figure 15: Tripod with part descriptions 

 

Once all the steps have been taken, prepare the quick release platform by 

moving the arm to the open position. Next slide the quick release mechanism 

attached to the panel into the quick release platform and lock down the arm onto 

the quick release mechanism. Now the panel is set, however the load generation 

circuit needs to be attached to the panel array.  

To attach the load generation circuit, the Velcro attachment on the side of the 

panel frame will be used. The blue wire from the back of the panel, or the negative 

power output will be connected to the terminal block opening on the left if facing 

the three openings on the empty terminal block. This is the negative terminal for all 
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three LED bulbs. The positive end will be connected to a wire with two alligator 

clips on either end, which in turn will be connected to the multimeter. Using the 

multimeter to complete the circuit, by placing the other lead of the multimeter into 

the opening of the terminal block on the right side. This will allow the user to 

measure DC voltage and current for the panel. Using an inclinometer, the user can 

measure the angle of the panel, using the panhandle to adjust the sensitivity; the 

angle of the panel can be changed by tilting the panel itself. The multimeter and the 

inclinometer used for the fixed array testing and the active tracker testing can be 

seen below in the following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: RadioShack Multimeter Used in Testing 
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Figure 17: Swanson Inclinometer Used for Testing 

 

In a more detailed description different angles will be measured 

approximately one to two minutes apart. The angles will be from 25 degrees to 70 

degrees with 2.5-degree increments. The fixed array will always be facing true south 

as all tests will be made in the Northern Hemisphere. The angles are predetermined 

based on the latitude of the testing location and the data given by the National 

Renewable Energy Laboratory, NREL, to optimize power generation depending on 

the season and style of the fixed array. The data was all recorded on an Excel 

spreadsheet to include: time of day, voltage, amperage, wattage, and sky conditions. 
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The test began by setting up the fixed array to ensure its stability, then positioning it 

180 degrees South. The array was required to remain in direct sunlight for the 

purpose of maximizing photon collection. Using the inclinometer and the 

multimeter described above, the angle, DC current, and DC voltage were all recorded 

beginning at 25 degrees. The trials would then vary by a 2.5-degree increase in 

angle and another measurement of DC current and DC voltage. There was a one-

minute resting period between tests to ensure, the angle measurement and to 

realign the array to a 180 degrees South position if it had been altered.  The same 

procedure will be run on 10 days to get reliable data of what angle will provide the 

optimal generation for the season.  

In addition to the power optimization test, the fixed array will then be 

tested on a smaller range of angles with the time of day varying. This will allow 

finding an average optimum angle setting for the season, which may vary from the 

previous test. This data will then be compared to the data of the active tracker. The 

active tracker will also be tested throughout the day to see the average power 

generation. The two will then be compared to determine if the active tracker is more 

effective in power generation and maintaining the 90° angle of the panel to photons.  

Concerning the active tracker, the setup of the tripod is similar to the fixed 

array. Each of the telescoping legs needs to be fully extended and the brace must be 

locked. The panhandle head of the tripod needs to parallel with the ground. After 

confirming the pan handle head is level, lock it in to place with the pan handle. Once 

this is done, the active tracker can be placed onto the quick release platform. Again, 

prepare the quick release platform by moving the arm to the open position. Next 
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slide the quick release mechanism attached to the base of the active tracker into the 

quick release platform and lock down the arm onto the quick release mechanism. It 

is important to remember to place the active tracker base where the extending 

edges are perpendicular to the panhandle on the tripod. Then the components of the 

active tracker must be set into position. Each LDR will need to be placed in its 

respective corner, and are labeled “TL” for top left orientation, “TR” for top right 

orientation, “BL” and “BR” for the bottom left and the bottom right orientation. Next, 

on the computer that will be used to run the active tracker, pull up the file entitled 

ST_hybrid. Plug in the USB cord into the Arduino Microcontroller and then plug the 

opposite end of the cord into the computer. Wait until the servos initialize, (this can 

be confirmed by hearing the one to two second whirring sound of each servo). 

Unplug the cord from the computer after hearing this sound and place the bands 

onto the horizontal servo, similar to the figure below. 
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Figure 18: Complete Setup of X-Y Servo 

 

 For the X-Z servo, the first step is to rotate the panel until it is parallel with 

the ground and then attach the two rubber bands on the two pulleys. Overlap the 

rubber bands as the pulleys have half the thickness of the X-Z servo pulleys. A figure 

can be seen below as to how to attach these bands.  
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Figure 19:  Complete Setup of X-Z servo 

 

 Once the rubber bands are in place, next ensure all of the wiring is connected 

and no stray wires are left unconnected. Similar to the manual tracker, the load 

circuit must me attached to the lead wires coming off the back of the panel. After 

this is completed the active tracker is ready for testing. Using the multimeter in 

similar fashion as the manual fixed array, attach it to the active tracker and plug the 

active tracker into your power source.  

 Over the course of the day, the following parameters were taken every half 

hour: the voltage, amperage, angle, and the cardinal direction of the apparatus. This 
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data was compared to the manual array to determine whether the active tracker 

was performing better than the manual array. Performing these calculations over 

the course of 5 days will give reliable data as to which is performing optimally.  

 For the active tracker the step-by-step instructions are as follows: 

 After setting up the active tracker, plug in the USB cable and click on the tools 

button in the upper ribbon. Select Serial Monitor, this will allow for the user 

to know the position of both servos as the active tracker orients itself.  

 Once the active tracker is in position and the position of the two servos has 

stabilized, or the readings for “currentph”- position of the horizontal servo” 

and “currentpv” – position of the vertical servo have recorded the same value 

for 5 seconds, the user can begin to record the data. 

 Record the angle, voltage, amperage, and cardinal direction of the active 

tracker. 
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Results  
 
 From the data gathered concerning the manual tracker, the following graphs 

detail the ten-day average of angle versus various categories: voltage, amperage, 

and wattage. The load generation circuit consisting of 3 LED bulbs only draws an 

average of 1.25 watts instantaneously, with a maximum power of 1.5 watts. This is 

due to the resistors used in the load circuit. The quarter watt resistors lower the 

amount of power so that the LED bulbs do not become overloaded. This will also 

ensure that the load circuit can be used with the experiment for years to come. 

Therefore the data will focus on the readings directly from the circuit rather than 

the load generation over the course of an allotted amount of time. The data was 

taken over the month of February and March and is described as the turning point 

from winter setting to spring setting in regards to a fixed one-axis tracker. The 

organization of the data consists of the average manual tracker data and finding the 

optimal angle for power generation. Then the 2 axis active tracker will be compared 

to the manual tracker over the course of a day. This data will then be averaged to 

determine if the active tracker is working properly. The first graph compares the 

angle of the array with respect to the horizontal versus the DC voltage running 

through the circuit in Figure 19 below.  
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Figure 20: Manual Tracker Voltage versus Angle 

 

 The data above, taken from ten days in the winter season show peaks of 

voltage. The data was all taken on a sunny day with mostly clear skies to eliminate 

any inconsistencies in regards to optimal sunlight hitting the solar cells.  The range 

of angles is in increments of 2.5˚ and can be explained by the equations in the theory 

regarding optimal positioning for the specific geographical location in the specific 

season of the year. The difference will be explained later in the conclusions. From 

the data above the highest average is at 35˚ with respect to the horizontal of 20.1 

volts. The next points are 25˚ and 40˚ both with averages of 20.07 and 20.08 volts 

respectively. This range from 25˚ to 40˚ will be confirmed in the later figures to be 

used in the daily average in comparison to the active tracker. The next graph seen 
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below in figure 20 compares the average amperage with the angle of the manual 

tracker.  

 

 Figure 21: Manual Tracker Amperage versus Angle 

 

 The amperage versus angle is similar to the voltage comparison, however the 

peaks vary. The highest point on the amperage is at 40˚ with a value of 0.06097 

amps. The next values are 35˚ and 25˚ with 0.06084 and 0.06079 amps respectively. 

The range again is maxed from 25˚ to 45˚ with a significant drop from 50˚ degrees 

on. The two parameters, voltage and amperage will be compared in terms of 

wattage to determine the overall range that will be used in the hourly test.  
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Figure 22: Manual Tracker Wattage versus Angle 

 

 As expected the wattage graph is similar in range to the voltage and 

amperage, with a maximum power output at 40˚ with a reading of 1.225 watts. This 

position is the experimental optimum position for power generation with latitude of 

35˚. This will be further discussed in the conclusion section to ascertain why this 

was the peak degree. 

 The next figure is a three dimensional power graph to show the relationship 

between all the parameters. In figure 22 below, the maximum power output is 

summarized. 
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Figure 23: Manual Tracker Power Graph 

 

 Comparing the parameters of voltage, wattage, and the angle of the panel, 

allow for a visual representation of a heat map of the optimum range for power 

output. The main area of maximum power output is from 25 degrees to 40 degrees. 

However upon closer inspection, the highest cluster of power is from 35 degrees to 

45 degrees. The following figure is a close up of the highest power output values in 

the range of 30 degrees to 40 degrees. Below that is a table containing the highest 

power value from the fixed tracker testing.  
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Figure 24: Manual Tracker Power Graph (30-45 degrees) 

 

 The power graph values were then summarized in value by the following 

table. Note the decline in value from 27.5 degrees to 37.5 degrees. The larger value 

for the 25 degree mark can be attributed to initial start of the instruments as well as 

the array initial connection to the instruments. The panel contained a small power 

charge, which could have led to a spike in the voltage and amperage readings. 

Accounting for the initial jump and disregarding the 25 degree value, there is a clear 

range of optimal power from angles 35 to 45 degrees with 40 degrees as the peak 

with an average of 1.225 watts. All of the readings can be seen below in Table 4. 
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Table 4: Summarized Angle Range for Fixed Array 

 

 

 

 

 

 

 

  The overall difference in power is small across the range of angles, however, 

the load generation circuit is used as a scale for larger panel array combinations and 

larger From the table, it was decided that the range of 35 to 45 is the optimal power 

range for the manual tracker when the tracker is fixed facing true south for power 

generation. Therefore the angle used for all tests, when comparing the manual 

tracker to the active tracker output, is 40 degrees facing true south. This will allow 

for an accurate representation of a fixed manual tracker used in both residential and 

commercial settings. This is what will be used to compare the active tracker over the 

course of a day. The next section will discuss the success of the active tracker over 

the manual tracker.  

 The day test consists of both apparatuses being used. The fixed manual 

tracker from the data above is set at 40 degrees facing true south for the entirety of 

the test. Each half hour beginning at 10:00 AM EST, the active tracker will be 

plugged in and will locate the sun. The manual tracker was placed at 40 with respect 
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to the horizontal and the cardinal direction was true south. The following figures are 

Intensity Maps of both the Manual and Active Trackers.  

 

Figure 25: Manual Tracker Intensity Map 

 

 The x-axis of the intensity map represents the time of day as the tests were 

performed. The z-axis or the depth is the tracker’s cardinal direction. For the 

manual tracker, all of the readings were performed at 180˚ south, explaining why 

this axis never changes. The key on the right color coordinates the ranges of power 

experienced by the panel. The manual tracker experienced an average maximum 

power of 1.12 watts, which is 9% lower than the original optimal angle tests. This 

can be attributed to cloud cover, the temperature of the day tests were taken, 

however is an accurate representation of the power rating over the course of the 
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day. Noting also these tests were taken in mid March, after Daylight’s Savings Time 

was observed, the azimuth of the Sun altered slightly form the original February 

tests. This change in the azimuth can account for the power loss, because as the sun 

rises higher in the sky, the angle needs to lessen to account for more rays to strike 

the photovoltaic cells at 90˚. The next figure is the intensity map of the active tracker 

over the same time span.  

 

 

Figure 26: Active Tracker Intensity Map 

 

 Similar to the manual tracker, the active tracker map has the same axes. The 

cardinal direction increases throughout the day, as the azimuth of the Sun changes. 

For the active tracker, the gradient of power at the different times is less. This is to 
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be expected, as the goal of the active tracker is to maximize the amount of photons 

hitting the photovoltaic cell at 90˚.  The average maximum power reading is 1.34 

watts. This value is 10% greater than fixed array during the optimal angle test and 

almost 20% greater over the hourly test. Overall the active tracker’s lowest average 

value from 10:00 AM EST to 2:30 PM EST was 1.14 watts, which is around 2% 

greater than the maximum the manual tracker, was able to accomplish.  The 

following table summarizes the average values recorded for both the active tracker 

and the manual tracker. 

 

Table 5: Averaged Values from Hourly Tests 

 

 In the active tracker section of the table above, angles have a range from 53 

to 38 on average throughout the day. As the time of day carries on, the active tracker 

had a tendency to move from east to west, true east being at 90 degrees and true 

south being at 180. On average, the active tracker was 18% better at generating 

power than the manual tracker when it was locked into place at 40 degrees facing 

true south.  
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Conclusions and Recommendations 

 
The goals of this project were met and the apparatuses prove to be an 

effective means of demonstrating engineering principles through the use of solar 

panels. The scope of the project asked for a mechanism that can automatically 

optimize the position of a solar array for maximum electrical power output. The 

system should be able to adjust its position over time to follow the sun, and must be 

able to be mounted on uneven terrain. The results proved that the active tracker 

performs optimally against the manual tracker, and can be used both indoors and 

outdoors to demonstrate tracking capabilities. This apparatus will prove to be a 

valuable experiment and demonstration of principles for Dr. Margraves when 

discussing not only energy transfer concepts but also the difficulties when designing 

and prototyping an experiment.  

 The final apparatus for the manual tracker includes the tripod with the solar 

panel that can be rotated in any fashion to demonstrate solar power generation 

throughout the day. Furthermore the load generation circuit shows both visually 

with the LED bulbs as well as with the multimeter to calculate voltage, amperage, 

and wattage to give an intensity map or a number of comparisons in solar energy. 

 The final apparatus of the active tracker gave a higher power output than the 

manual tracker. The active tracker created the optimal scenario in the hourly tests, 

however some adjustments were made due to some complications with the tracking 

code. The LDR method of tracking was not precise enough to optimally set itself due 

to the inequality in the code. The average values of the LDR that are used to 
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determine how many steps the servos should move were not large enough to 

constitute a step. The first step to counteract this issue was to place a tinted screen 

over the LDRs in hopes to lower the readings on the LDRs. However the issue was 

the difference in the average values rather than the values themselves. The next step 

involved altering the tolerance values in the code itself. Indoor with artificial light, 

when the apparatus was initially tested, the active tracker required a vertical 

tolerance of 20 and a horizontal tolerance of 10. This means that if the average of 

the top LDRs is 45 and the average of the bottom LDRs is 32 the servos do not move. 

One main issue arises inside with multiple light sources, the active tracker could sit 

in between two light sources with all of the LDRs and inequalities satisfied, however 

the panel would be sitting out of optimal positioning.  

Once the apparatus was taken outside, another problem arose with the active 

tracker. When the active tracker was placed outside of optimal range, it would 

stabilize before it reached the best power output. Altering the tolerances of the 

active tracker helped, however there were still moments over the course of daily 

tests where the active tracker would stabilize and not follow the sun. A continuous 

check is required to ensure when the tolerances need to be altered. However as seen 

in the results, the active tracker was still able to average a 20% better power output 

than the manual counterpart. Furthermore the average power output for the active 

tracker was greater than the manual was ever able to accomplish.  Therefore the 

final apparatus provided to Dr. Margraves will prove to be useful for both 

demonstrations and laboratory experiments for primary and secondary level 

education students.  
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The following is a list of recommendations to be made on both of the 

apparatuses to improve this project and similar tracking systems. 

 Redesign a larger load generation circuit that will allow for a larger change in 

visual representation of power. Ideally the load circuit would output how 

much power it was experiencing rather than using a multimeter and 

inclinometer. 

 Redesign the physical control circuit to include a stronger belt system and 

allow for omnidirectional movement. Furthermore more powerful servos 

that allow for more movement than 180˚ would benefit the omnidirectional 

movement. Additionally, it would be ideal if the power generated from the 

panel powered the control circuit so that the entire experiment would be 

self-contained. 

 Add a potentiometer, or an adjustable resistor, which consists of a wiper that 

slides across a resistive strip to deliver an increase or decrease in resistance. 

This would allow for a change in the LDR inequality code to ensure that the 

issue of stabilizing due to the difference in value of what each LDR is 

experiencing. 

 A complete redesign of the code, where the active tracker had a set path to 

rotate through taking readings at every point and then back tracking to the 

optimal position would ensure the active tracker to be in the ideal position at 

all points in time. 
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Appendices 

Appendix A: Bill of Materials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 59 

Appendix B: Testing Procedure 
 
Manual Tracker 
 

1. Remove the tripod from its carrying bag. 

2. Open the telescoping legs such that the tripod can steadily stand. 

3. Adjust the height of the tripod accordingly. 

4. Remove the solar panel from its box.  

5. Notice the quick-release mechanism on the back of the panel located at the 

center of the aluminum bracket. Slide the mechanism on to the quick-release 

holster on the top of the tripod. To ensure continuity, you should hear a 

“click” sounds from the mechanism. 

6. With the panel connected, move the pan and crank handle of the tripod to 

confirm the panel is connected correctly. 

7. Remove the load circuit box from packaging. Notice the Velcro on the top of 

the box and on the top of the tripod. Attach the load circuit to the top of the 

tripod in the associated Velcro patch. 

8. Open the back of the load circuit box to expose the circuitry. 

9. Notice the red and blue wires enclosed by the black cable shielding. Using the 

provided flat-head screw driver, proceed to attach the red wire to the 

terminal block labeled, (+), in the load circuit box.  

10. First loosen the screw. Then place the wire into the terminal hole. Once wire 

is in the hole, proceed to tighten the screw.  

11. Repeat steps 9 and 10 for the blue wire. However, be sure to attach the blue 

wire to the terminal block labeled (-). 

12. Close the back of the load circuit box.  
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Active Tracker 
 

1. Remove the tripod from its carrying bag. 

2. Open the telescoping legs such that the tripod can steadily stand. 

3. Adjust the height of the tripod accordingly. 

4. This step requires two people. Remove the solar panel from its box.  

5. Notice the quick-release mechanism on the bottom of the aluminum bracket. 

Slide the mechanism on to the quick-release holster on the top of the tripod. 

To ensure continuity, you should hear a “click” sound from the mechanism. 

6. With the panel connected, notice that the sensor terminal blocks are hanging 

off the back the panel. Place each sensor into the correct Velcro area at each 

corner of the panel. The terminal blocks are labeled in accordance to their 

position. 

7. The control circuit will be already connected via Velcro to the back of the 

panel offset from the nameplate. Utilizing the elementary drawing, verify that 

the connections are correct. 

8. Verify connection continuity to the servo motors in accordance to the 

elementary drawing. 

9. Remove the load circuit box from packaging. Notice the Velcro on the top of 

the box and on the top of the tripod. Attach the load circuit to the top of the 

tripod in the associated Velcro patch. 

10. Open the back of the load circuit box to expose the circuitry. 

11. Notice the red and blue wires enclosed by the black cable shielding. Using the 

provided flat-head screw driver, proceed to attach the red wire to the 

terminal block labeled, (+), in the load circuit box.  

12. First loosen the screw. Then place the wire into the terminal hole. Once wire 

is in the hole, proceed to tighten the screw.  

13. Repeat steps 9 and 10 for the blue wire. However, be sure to attach the blue 

wire to the terminal block labeled (-). 

14. Close the back of the load circuit box.  
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15. Notice the two rubber bands at each servo is not connected to its associated 

pulley. Attach the rubber bands to their associated pulley warily such that 

the bands do not break. 

16. Remove the USB to A/B cable from the packaging box, and connected the A/B 

male side to the microcontroller.  

17. Connect the USB to the computer utilized to execute the experiment. 

18. To verify continuity, the LEDs located on the microcontroller will turn on. 

19. On your computer interface, open the windows explorer and venture to your 

C:. 

20. Click Program Files (x86) 

21. Click the Arduino Folder 

22. Open the Arduino application. 

23. From the top taskbar of the Arduino Interface click File>Open and navigate to 

the directory of the Solar Tracker code file, ST.ino. 

24. Once the code is open, click Tools>Serial Monitor to display the serial 

monitor for the servo position tracking and the GUI. 

25. Click Verify, to compile and upload the code to the microcontroller. 
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Appendix C: Ardunio Code  
 
#include <Servo.h>  
  
Servo Hservo;  
Servo Vservo; 
 
int currentpv = 90;   // initial position 
int currentph = 90; 
int LDRTL = A0; // LDR Top Left (frontview) 
int LDRTR = A1; // LDR Top Right (frontview) 
int LDRBL = A2; // LDR Bottom Left (frontview) 
int LDRBR = A3; // LDR Bottom Right (frontview)  
int toleranceh = 1; 
int tolerancev = 3; 
  
void setup()  
{  
  Serial.begin(9600); 
  Serial.println("running"); 
  Hservo.attach(9);  // Attach XY direction servo to Digital output 9 
  Vservo.attach(10); // Attach XZ direction servo to Digital output 10 
  pinMode(LDRTL, INPUT); 
  pinMode(LDRTR, INPUT); 
  pinMode(LDRBL, INPUT); 
  pinMode(LDRBR, INPUT); 
  Hservo.write(currentph); 
  Vservo.write(currentpv); 
  delay(5000); // Delay 5 seconds for servos to intialize 
}   
  
void loop()  
{  
  //Analog Input Values 
  int LDRTLS = analogRead(LDRTL); // reads analog inputs of LDRTL 
  int LDRTRS = analogRead(LDRTR); // reads analog inputs of LDRTR 
  int LDRBLS = analogRead(LDRBL); // reads analog inputs of LDRBL 
  int LDRBRS = analogRead(LDRBR); // reads analog inputs of LDRBR 
 
  //Average Values 
  int AVGLDRL = (LDRTLS + LDRBLS) / 2; //Average values of the left sensors 
  int AVGLDRR = (LDRTRS + LDRBRS) / 2; //Average values of the right sensors 
  int AVGLDRB = (LDRBLS + LDRBRS) / 2; //Average values of the bottom sensors 
  int AVGLDRT = (LDRTLS + LDRTRS) / 2; //Average values of the top sensors 
   
  //For Horizontal Servo 
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  if((abs(AVGLDRL - AVGLDRR) <= toleranceh) || (abs(AVGLDRR - AVGLDRL) <= 
toleranceh)) { 
    //do nothing if the difference between values is within the tolerance limit 
  } else {     
    if(AVGLDRL < AVGLDRR) 
    { 
      currentph = --currentph; 
    } 
    if(AVGLDRL > AVGLDRR)  
    { 
      currentph = ++currentph; 
    } 
  } 
 
  //For Vertical Servo 
   
  if((abs(AVGLDRT - AVGLDRB) <= tolerancev) || (abs(AVGLDRB - AVGLDRT) <= 
tolerancev)) { 
    //do nothing if the difference between values is within the tolerance limit 
  } else {     
    if(AVGLDRB < AVGLDRT) 
    { 
      currentpv = ++currentpv; 
    } 
    if(AVGLDRB > AVGLDRT)  
    { 
      currentpv = --currentpv; 
    } 
  } 
  
  if(currentph > 180) { currentph = 180; } // reset to 180 if it goes higher 
  if(currentph < 0) { currentph = 0; } // reset to 0 if it goes lower 
 
  if(currentpv > 180) { currentpv = 180; } // reset to 180 if it goes higher 
  if(currentpv < 0) { currentpv = 0; } // reset to 0 if it goes lower 
   
  Hservo.write(currentph); // write the position to servo 
  Vservo.write(currentpv); 
  delay(10); 
 
  Serial.print(LDRTLS); 
  Serial.print("---------------"); 
  Serial.println(LDRTRS); 
  Serial.println("---------------------"); 
  Serial.println("---------------------"); 
  Serial.println("---------------------"); 
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  Serial.println("---------------------"); 
  Serial.println("---------------------"); 
  Serial.println("---------------------"); 
  Serial.println("---------------------"); 
  Serial.print(LDRBLS); 
  Serial.print("---------------"); 
  Serial.println(LDRBRS); 
  Serial.println(""); 
  Serial.println(""); 
  Serial.println(""); 
  Serial.println("currentph:"); 
  Serial.println(currentph); 
  Serial.println(""); 
  Serial.println("currentpv:"); 
  Serial.println(currentpv); 
  delay(1000); 
} 
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Appendix D: Active Tracker Control Circuit Drawings 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A: Active Tracker Control Circuit Drawing  
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Figure B: Load Generation Circuit 
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