
Energy Efficient Compressed Sensing in Wireless
Sensor Networks via Random Walk

By

Robert Brian Fletcher

A Thesis
Submitted to the Faculty of

The University of Tennessee at Chattanooga
In Partial Fulfillment of the Requirements

for the Degree of Master of Science
in Computer Science

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

May 2011

 ii

DEDICATION

To my parents, Ken and Jacci Fletcher, without which I could not have been

successful in my academic endeavors and life in general; you guys have been
the best parents and I could not imagine my life without you. To Kayla Folks, for

help being my backbone in those dire times and a perfect mate always.

 iii

To the Graduate Council:
 I am submitting a thesis written by Robert Brian Fletcher entitled “Energy
Efficient Compressed Sensing in Wireless Sensor Networks via Random Walk”. I
have examined the final copy of this thesis and recommend that it be accepted in
partial fulfillment of the requirements for the degree of Master of Science with a
major in Computer Science.

Dr. Mina Sartipi, Chairperson

We have read this thesis and recommend its acceptance:

Dr. Li Yang

Dr. Yu Cao

Accepted for the Graduate Council:

Dean of the Graduate School

 iv

ABSTRACT

In this paper, we explore the problem of data acquisition using

compressive sensing (CS) in wireless sensor networks. Unique properties of

wireless sensor networks require we minimize communication cost for efficient

power usage. At first, a compressive distributed sensing (CDS) algorithm is

proposed but is then modified to decrease communication costs. The final

algorithm presented is compressive distributed sensing with random walk

CDS(RW); an algorithm that combines the data gathering and projection

generation process of CDS.CDS(RW) uses rateless encoding, graph algorithms,

and belief propagation decoding to improve upon the communication cost

associated with CDS. In the end, we show that the communication cost of

CDS(RW) versus existing CS algorithms is far superior, while still having

satisfactory decoding accuracy.

 v

TABLE OF CONTENTS

Chapter 1: Introduction ... 1	
Chapter 2: Literature and Algorithm Review ... 5	

Data Acquisition Algorithms .. 5	
Conventional Compression ... 5	
Distributed Source Coding .. 6	
Compressive Sensing .. 7	

Chapter 3: Methodology ... 11	
Compressive Distributed Sensing ... 11	

Compressive distributed sensing (CDS)- CS using rateless code 11	
Decoding – Belief Propagation ... 13	
Encoding - Rateless Code ... 15	

Random Walk ... 15	
Existing Algorithms .. 16	
Metropolis-Hastings .. 17	

Compressive Distributed Sensing with Random Walk ... 18	
Generating Networks for Simulation .. 20	

Grid Topology ... 21	
Random Topology .. 22	

Chapter 4: Analysis of Results .. 23	
Chapter 5: Conclusion ... 31	
References ... 32	
Vita .. 34	

 vi

LIST OF TABLES

Table Page

Table 1: Communication cost of different CS algorithms. ... 10	
Table 2: Metropolis-Hastings mixing time results for grid and random topologies. 18	
Table 3: Average Metropolis-Hastings mixing time results for network and random

topologies. ... 18	
Table 4: Recovery error statistics for CDS and CDS(RW) .. 27	
Table 5: Communication cost for CDS and CDS(RW) with N=96, M=40 projections ... 28	
Table 6: Communication cost for CDS and CDS(RW) for N=200, M=80 projections 28	
Table 7: Communication cost for CDS and CDS(RW) for N=300, M=120 projections .. 28	
Table 8: Single-hop average communication cost for CDS and CDS(RW) on grid and

random network topologies. .. 30	

 vii

LIST OF FIGURES

Figure 1: Harvard's Volcanic WSN [6]. .. 2	
Figure 2: Joint entropy encoding visualization [10]. .. 5	
Figure 3: Visualization of CDG algorithm using a tree structure to represent shortest

paths [10]. ... 9	
Figure 4: CS using rateless coding (CDS). ... 12	
Figure 5: Visualization of CDS using random walk (CDS(RW)). 19	
Figure 6: Example of grid network generated .. 21	
Figure 7: Example of random network generated ... 22	
Figure 8: CDS Error Recovery for N=96, s=0.0729, M must be at least M =

Οs*NlogN ==13.872727, M=40 was chosen to maximize error recovery while still
staying within communication bounds. .. 25	

Figure 9: CDS(RW) Error Recovery for N=96, s=0.0729, M must be at least M =
Ο(s*NlogN)=13.872727, M=40 was chosen to maximize error recovery while still
staying within communication bounds. .. 25	

Figure 10: CDS error recovery for N=196, K=0.0714, M must be at least
M = Ο(s*NlogN)=32.0787, M=80 was chosen to maximize error recovery while
still staying within communication bounds. ... 25	

Figure 11: CDS(RW) recovery for N=200,K=0.0854, M must be at least
M = Ο(s*NlogN)=39.302, M=80 was chosen to maximize error recovery while still
staying within communication bounds. .. 25	

Figure 12: CDS error recovery for N=256, K=0.0742, M must be at least
M = Ο(s*NlogN)=45.7445, M=120 was chosen to maximize error recovery while
still staying within communication bounds. ... 26	

Figure 13: CDS(RW) recovery for N=250, K=0. 0720, M must be at least M =
Ο(s*NlogN)=43.1629, M=120 was chosen to maximize error recovery while staying
withing communication bounds. ... 26	

 1

CHAPTER 1: INTRODUCTION

 Wireless sensor networks (WSNs) are being used in a broad variety of domains

including scientific [1], medical [2], commercial and military applications [3]. There are a

wide variety of applications for WSNs including environmental monitoring, overseeing of

smart homes and offices, and managing of intelligent transportation systems. A key feature

of all WSNs is that the individual wireless sensors are collecting data. This data can range

from simple temperature readings in a smart home, to seismic vibration readings relating to

earthquakes in an extreme outdoor environment. With the advanced state of wireless

technology and computers in general, scientists are able to use WSNs to make data

gathering much more robust and efficient. A typical WSN consists of N sensors that are

constantly taking measurements of their environment or surroundings. The sensors in

WSNs are generally low-processing and low-power units which means special attention

must be paid to the processing and energy consumption; some common WSN platforms

include National Instruments NI sensors [4] and Carnegie-Mellon’s FireFly sensors [5].

WSNs have advantages over manually taking measurements for many reasons, but the top

is that WSNs allow for placement of sensors in remote areas that would be otherwise

difficult to reach for repeated measurements. Also, WSNs allow for continually monitoring of

an area at a rate much higher than would be possible by sending a person to physically

gather data from the site. For example, Harvard has a sensor network lab that is

responsible for monitoring volcanic activity [6]. A visualization of Harvard’s volcanic WSN

can be seen in Figure 1 and aims to provide a global view of data acquisition in their WSN.

 2

Figure 1: Harvard's Volcanic WSN [6].

 In Harvard’s volcanic WSN, sensors are strategically placed over the volcano. These

nodes constantly take seismic measurements in an effort to be able to detect eruptions

before they happen. These sensors continually send their data via neighboring sensors to,

what is labeled in this image as, the FreeWave Radio Modem. The FreeWave Radio

Modem in the general case is considered the sink node and is responsible for aggregating

the data on the WSN so that either the data can be recovered directly from the sink node or

the sink node can send data along to the base station for recovery. Constantly monitoring

and transmitting data to the base station can put a burden on the sensors with limited power

resources and therefore we need to minimize sensor transmissions. Another aspect of most

WSNs that can be exploited is the fact that it is highly probable that sensors within a certain

radius of each other will be collecting highly correlated data readings that can be exploited

later on in an effort to gain information on all sensor readings without having to explicitly get

data from each sensor.

 3

 Inherent limitations of WSNs mean that data acquisition algorithms must be

developed in such a way that we limit processing and energy consumption. As seen in the

example of Harvard’s volcanic WSN, there are a large amount of intercommunications

between sensors when propagating data across the network. These communications are

likely the most expensive operation of a data acquisition algorithm when concerned with

energy consumption and therefore need to be used intelligently. For example, if we can

have each sensor send along a compressed signal that contains more than just a single

data point, then we can increase the information to energy consumption ratio. However,

using compressed signals comes at the cost of increased processing because of the

mathematical overhead involved in the process of compressing data. In order to minimize

processing and justify the use of compression the encoding and decoding complexity of the

compression algorithms must shown to be low.

If it is our goal to recovery the N sensor readings while minimizing communication

costs, we should then look to exploit the physical proximity of sensors that are taking almost

identical data readings. Meaning, why should we require all N sensors to provide their data

when their readings are highly correlated? In this work, we exploit the physical proximity of

sensors and the highly correlated data readings of such sensors using compressive sensing

(CS). The key advantage of compressive sensing is the ability to recover all N sensor

readings, that are correlated, with M weighted linear combinations, also called projections,

such that M<<N. Compressive sensing allows us to fully recover all sensor readings, within

some error value, while greatly decreasing communication costs. However, current

compressive sensing algorithms have the drawbacks of communication costs and

encoding/decoding algorithm complexity that make their use on WSNs costly.

 4

In this work we explore two unique algorithms that use compressive sensing

combined with rateless coding for data acquisition on WSNs. Rateless coding provides a

much lower complexity as compared to the coding algorithms currently used in compressive

sensing algorithms; for example the joint entropy coding approach by [7]. The current

algorithms that exist for data acquisition land in three main domains: conventional

compression like the joint entropy coding [7] mentioned briefly above, distributed source

coding like the Slepian-Wolf coding theory [8], and compressive sensing via Candès et al.

[9]. The first new algorithm proposed during this work, compressed distributed sensing

(CDS) involves generating M projections by having individual nodes send their data along to

a sink node to have data linearly combined, which in turn then sends the data to the base

station. CDS quickly showed that it could recover the original N sensor readings with high

probability, but the communication costs made the applicability to WSNs not feasible. CDS

was then modified to combine the projection creation and combination processes into one

by using random walk on the network; the new algorithm is entitled compressed distributed

sensing with random walk (CDS(RW)). By combing the two separate steps in CDS,

CDS(RW) was able to greatly decrease communication costs while still recovering all N

sensor readings with high probability. Both algorithms are independent of network topology

and therefore the algorithms adapt to any unsuspected sensor failures and do not depend

on a static route to the sink and/or base station.

 5

CHAPTER 2: LITERATURE AND ALGORITHM REVIEW

Data Acquisition Algorithms

The most basic idea behind this work is that we have a WSN that is continually

taking some form of measurements and we need to collect these data measurements for

analysis. We also assume that the data being collected is spatially correlated because of

the physical proximity of sensors, thus the data being gathered is highly correlated. The

simplest way to collect this data would be to continually save every data measurement from

every sensor by having each sensor send its data along to the base station; as one can

imagine this quickly becomes too expensive in regards to memory, processing, and power

when applied to wireless sensors. In order to try and minimize communication costs, we

analyze several different approaches for data acquisition on WSNs.

Conventional Compression

Conventional compression has several aliases including source coding, data

compression, and bit-rate reduction. The conventional compression algorithm examined in

[7] explores compression via joint entropy coding. As with other conventional compression

algorithms, [7] requires communication between nodes and exploits correlated data in the

compression process. For visualization of joint entropy encoding examine Figure 2 below.

Figure 2: Joint entropy encoding visualization [10].

Joint entropy encoding begins by node !! encoding its data, !!, into message !!

using a total of !(!!) bits, where !(!!) is defined to be the entropy of the encoded data !!

 6

[10]. Entropy is the metric used for gauging uncertainty in a system; if entropy is high, more

information is needed to fully describe that system. From there node !! receives message

!! and encodes its data, !!, with !! using a total of !(!!|!!) bits, where !(!!|!!) is the

conditional entropy[27]. The joint entropy encoding continues along this path until the sink

node is reached and all data as been encoded. It is shown in [10] that the key downfall with

joint entropy encoding is the large number of complex computations necessary by individual

sensors in the network. These complex computations increase processing and power

consumption and are therefore not a good fit for WSNs.

Distributed Source Coding

 Distributed source coding is based on the idea of reducing the complex

computations required by the individual sensors of the network and exploiting correlated

data at the sink node; two distributed source coding algorithms can be found in [11] and

[12]. Both [11] and [12] are based on the Slepian-Wolf [8] coding theory that states the

compression of correlated data that is encoded separately, can perform as well as data that

is jointly encoded as long the data is jointly decoded [8]. These distributed source coding

algorithms exploit the Slepian-Wolf theory to switch the computational complexity from the

encoding of data at the sensors to the decoding of data at the base station. This switching

of complexity from encoding to decoding is extremely applicable to WSNs as the individual

sensors often times do not have the processing power necessary for complex coding, but

the base station is usually more capable. The specific down fall of distributed source coding

algorithms is that they predefine certain data to be main data and other data to be side data.

This means in the case of an abnormal event, such as a sensor failure, that includes loss of

main data there will be a significant negative affect on decoding accuracy. Furthermore, it is

 7

shown in [10] that these decoding inaccuracies will also be propagated through the

decoding process of other sensor readings at the base station – thus also decreasing the

accuracy of other decoded data.

Compressive Sensing

 In the end compressive sensing was chosen for its low complexity at the individual

sensors, its ability to exploit correlated data, and the ability of compressive sensing to deal

with network abnormalities elegantly. The specific algorithms in this work, CDS and

CDS(RW), use compressive sensing with variations on rateless codes for encoding and

belief propagation for decoding. The crux of compressive sensing, beyond the

aforementioned advantages, is the ability to recover an N length signal that is sparse with M

projections, such that M << N. Compressive sensing proves, as shown in upcoming

sections, to be a good fit for WSNs regarding communication cost and the ability to exploit

the correlated data in the network.

Compressive sensing is based on the observation that a sparse signal ! ∈ ℝ! can

be recovered from a small number of linear projections onto a second basis that is

incoherent with the first basis [13]. In this situation, that means we can recover all N

readings, with high probability, given only M projections. The mathematical definition for

compressive sensing is a signal in a sparse basis induced by vectors !! !!!
! or the sparsity

matrix, Ψ, is represented as ! = !!!
! !! or ! = Ψx is called K-sparse if only K of the !! are

non-zero and K << N [13]. The definition of compressive sensing also dictates that for a N

length vector, s, with a K-sparse signal, that s can be recovered in ! = Ο(! log !) random

linear projections of s at the base station. These projections can be represented as

! = Φ! = ΦΨ!, where Φ is the !×! measurement matrix. As is briefly mentioned above it

 8

is necessary to minimize incoherency between the sparsity matrix Ψ and the measurement

matrix Φ in order to recover the sensor readings error free at the base station. A key feature

that is different in most CS algorithms is the generation of a measurement matrix Φ for

encoding. For that reason, we now identify and examine several different CS algorithms to

gain insight on how they generate the measurement basis.

Independent and identical Gaussian and Bernoulli vectors provide a sufficient basis

for decoding in compressive sensing [14][15]. Both the Bernoulli and Gaussian method for

generating measurement matrices, Φ, are considered dense random projections (DRPs)

since a majority of the elements in Φ are non-zero. However, this means for CS using DRPs

that the base station must receive a significant amount of data measurements in order to

recover that data because the basis is not sparse; the dense nature of the signal causes

communication costs to soar.

Apparently the key downfall to generating a measurement basis using DRPs is that

the inherent density of the signals means the BS station must receive a disproportionate

amount of information in order for successful recover of the signal. Wang et al [16] proves

that an intelligently designed sparse random projection (SRP) can reduce communication

costs and perform as well, if not better, than DRP when generating a measurement basis

for CS.

The final CS algorithm examined is proposed by [10] and goes about compressive

sensing by first building a tree structure of the network that contains the shortest path from

all nodes to the sink node. A visualization of the compressive data gathering (CDG)

proposed by [10] can be seen in Figure 3 below.

 9

Figure 3: Visualization of CDG algorithm using a tree structure to represent shortest paths [10].

In Figure 3(a) we see the topology of a WSN where the sink node is located in the center

and has four neighbors; the dotted lines separating each neighbor of the sink represent the

subtrees of the sink node. In Figure 3(b) we see the shortest path tree created by CDG

corresponding to the boxed region in Figure 3(a); the root of the tree in Figure 3(b)

corresponds to the node closest to the sink, while still within the boxed region, in Figure

3(a). Essentially, CDG starts at each of the leaf nodes and continues along the shortest

path to the sink while adding its value, multiplied by a random weight, to the weighted sum it

just received. In the end, the sink node contains a weight sum of the subtrees and uses

those values as a measurement basis for CS. While the measurement basis, Φ, generated

by CDG performs well for decoding the inherently dense nature [10] of Φ means that it

suffers from the same communication cost downfalls DRPs.

Regardless which CS algorithm is used, be it SRP, DRP, or [10], general CS theory

requires ! = Ο(! log !) projections to the base station to recover the original signal with

high probability. Given the definition of M, the communication cost for SRP, DRP and [10]

are given in Table 1.

 10

Algorithm DRP SRP [10]
Cost Ο((! ∗ !)!"#$) Ο(! ∗ ! !"#!!) Ο((! ∗ !)!"#$)

Table 1: Communication cost of different CS algorithms.

In Table 1, we analyze the bit-hop communication cost associated with a network of size N

with a diameter of d hops and an average distance of nodes from the sink node of !(!)

hops [17].

 11

CHAPTER 3: METHODOLOGY

Compressive Distributed Sensing

The first algorithm proposed, compressed distributed sensing (CDS), looks to use

compressive sensing for data acquisition on WSNs. The goal of CDS is to use a

combination of rateless encoding and belief propagation decoding to accomplish several

improvements:

1. Use CS to exploit spatial correlation of data.

2. Use simple encoding and decoding algorithms.

3. Lower communication cost as compared to other CS algorithms

As discussed in detail in Chapter 2, the key feature that is unique to each CS

algorithm is how the measurement basis is generated for later decoding at the base station.

CS theory also dictates that we need only have M projections, such that ! ≪ !, to be able

to fully recover a sparse signal at the base station. In order to understand and analyze

communication costs of CDS, we must first analyze the encoding and decoding algorithms

used.

Compressive distributed sensing (CDS)- CS using rateless code

Rateless coding is a relatively new class of algorithms that allows for linear encoding

complexity – a major enhancement over most coding algorithms. Rateless coding involves

each receiver continuously reading encoded data until the receiver is able to successfully

decode that data. While rateless coding is a relatively new class of codes, there already

exist a few different algorithms that include LT codes [18], raptor codes [19] and Online

codes [20].

 12

The mathematics behind rateless codes define there be a degree distribution

Ω ! = !!!
!!! !! where !! is the probability that degree ! is chosen. The encoding process

involves generating an independent and random packet by sampling the degree distribution

Ω ! to obtain a weight w between 1 and N. After packet generation, a vector ! = !!,… , !!

with a weight of w is chosen at random. Finally, the value of the encoded symbol is

calculated as !!!
!!! !!. In this work we propose to use rateless encoding for generating the

projections. The visualization of our proposed algorithm is shown in Figure 4. Similar to

rateless encoding, node A chooses a degree ! from the degree distribution Ω ! . Node A

then chooses ! nodes from the network completely at random. The projection generated at

node A consists of the reading of Node A and the reading of the ! chosen nodes.

Figure 4: CS using rateless coding (CDS).

In Figure 4 we show the process of generating three projections at nodes A, B, and

C. For example, node A has chosen degree 2. The nodes that contribute to node A’s

projection are marked as !! and !! respectively. The first step involves A requesting !!and

!! send along their data readings. From there, !! and !! send their readings along the

shortest path to A - these routes are marked with dashed lines. Once all the required data

readings have reached node A, A will generate the projection with the collected readings

and send the projection via the shortest path to the base station.

 13

Decoding – Belief Propagation

The decoding algorithm for CS used in this work is belief propagation decoding and

is studied extensively in [21] and [22]. The belief propagation algorithm is applied to a

bipartite graph with sensor nodes on one side and measurement nodes on the other. The

key difference between our BP decoding algorithm and that of [22] is that:

• [22] defines BP to use a fixed degree for all measurements throughout simulations

and finds the optimum value for Ω(x) = ω. Our BP decoding algorithm on the other

hand uses the fact that an irregular code outperforms a regular one [23], thus using

a non-constant degree for Ω(x).

The goal of belief propagation is to approximate the marginal distribution of coefficient and

state variables in a bipartite graph based on some measurement Y. The process involves

iteratively passing messages between a sensor node ! and one if its neighboring

measurement nodes !; a message sent from node ! to node ! is denoted as !!→!, and a

message sent from node m to node n is denoted as !!→!. The iterative process of sending

messages will be repeated until the maximum iteration, maxIter, value is reached. This BP

algorithm is summarized in Algorithm 1 below.

Algorithm 1: Belief Propagation algorithm.

 14

In Algorithm 1 above, neigh(n) and neigh(m) denote neighbors of sensor and

measurements nodes on the network; ~{n} is the set of neighbors of m excluding n,

con(neigh(m)) is the constraint on the set of sensor nodes neigh(m). For CDS the

constraint just described is defined to be !!!∈!"#$!(!) = !! where !!is the !!! coefficient

of measurement y because of the process used to generate measurements; for example, in

Figure 4 node A is connected to nodes !! and !!.

 In Algorithm 1, the first step is for pdf-prior to initialize the message sent from

sensor nodes to the projection nodes. For sparse signals !, a large number of its

coefficients are small valued and a small number of its coefficients are large valued. In

order to accurately model this behavior, we have two probability functions - the probability

mass function (pmf) and the probability distribution function (pdf).

The probability mass function (pmf) of state variable !! = 1 or !! = 0, represents the

probability that !! has either a large or small coefficient. In order to ensure we have a K-

sparse signal, we must satisfy:

Pr !! = 1 = !
!
 and Pr !! = 0 = 1 − !

!

The probability distribution function (pdf) of ! !! !! = 1) and ! !! !! = 0) models the

small and large coefficient with zero mean Gaussian distributions with high and low

variances [13] must satisfy:

! !! !! = 1)~!(0,!!!) and ! !! !! = 0)~!(0,!!!) where !! > !!.

This model is called a mixture Gaussian model and is widely used [22]. Using the definition

from above, Algorithm 1 calculates pdf-prior as:

pdf-prior = !
!
! 0,!! + 1 − !

!
! 0,!! .

 15

Encoding - Rateless Code

 As introduced in the rateless coding section, a key step in the encoding and

projection generation process is when a node randomly selects a weight from the degree

distribution Ω ! . Depending how the degree distribution Ω ! is designed, this will result in

either a dense or sparse random projection scheme [13]. While a dense projection scheme

allows for more complete recovery of a sparse signal at the base station compared to a

sparse projection scheme, the associated communication cost and computational

complexity of dense projections is high. For this reason, it is our goal to intelligently design

the degree distribution Ω ! such that only sparse projections are generated. In order to

design the degree distribution such that it generates sparse projections, CDS uses the

parallel channel scheme proposed in [13] that ensures we generate a degree distribution

Ω ! for rateless coding such that the projections are sparse, thus minimizing

communication costs.

The communication cost for CDS is: Ο(!log! d! + d) where ! is the average row

weight of the measurement matrix Φ, d! is the cost to generate each projection, and d is

the cost to send the projection from the sink node to the base station. The communication

cost downfall is because the gathering of data and the creation of projection are two

distinctly separate processes. In order to lower communication costs we modify the way

CDS creates projections to use random walk, CDS(RW).

Random Walk

 Random walk on a network is the basic procedure of “walking” the network via

neighboring nodes to create some path. Random walk can be used for myriad of different

 16

applications on networks and graphs, but it is our goal to “walk” the topology of the network

and collect data points as we go. The more technical definition of random walk is the

sequence of selecting nodes such that the next node j in the path is selected from all of the

previous node’s, i, neighbors. Random walks are Markov, since they are only dependent on

the current state. The transition matrix ! = [!!"] is defined by the random walk next hop

probability of !!" and is dependent on the algorithm used. The probability that a random

walk will end on node i is represented by the stationary distribution ! = [!!,… ,!!] where !!

represents the probability that the random walk will finish at node i. The definition of mixing

time, τ, is the number of iterations necessary for the stationary distribution to converge to a

uniform stationary distribution; meaning the probability of ending on a node is the same for

all nodes.

Existing Algorithms

 There are several random walk algorithms available for use, a few of which include

normal random walk (NRW), Maximum-Degree random walk (MDRW) and Metropolis-

Hastings random walk (MHRW). Each of these algorithms offers specific

advantages/disadvantages over alternates, and care must be taken to choose the algorithm

that best fits our situation.

 The normal random walk is the most basic algorithm that simply treats all neighbors

of a node with equal probability of transition. If every node in the network/graph has the

same number of neighbors, then NRW is shown to converge to the uniform stationary

distribution [24], [25]. However, in our situation we do not have a-priori knowledge of the

network topology and thus we are not guaranteed that every node will have the same

number of neighbors.

 17

 The Maximum-Degree random walk does not treat every neighbor of a node equally.

Rather, MDRW associates a maximum degree variable with each node that represent the

number of neighbors that node has. Then when deciding which node is next, MDRW simply

choses the neighbor with the high maximum degree variable. While this is a sophisticated

algorithm that could be successfully applied to WSN and CS, there is another existing

algorithm that takes MDRW a step further; that algorithm is Metropolis-Hastings random

walk and is used throughout this work as the random walk algorithm.

Metropolis-Hastings

In order to disseminate data across the network, CDS(RW) uses the Metropolis-

Hastings random walk algorithm and treats the network as an undirected acyclic graph. The

mixing time of a graph, !, is non-technically described as the number of hops necessary to

cover the entire network with high probability. An essential step in the simulation process is

to determine given a graph G of size N, what is the mixing time of that graph regardless of

topology. Once we can successfully determine the mixing time of a graph, we know how far

to travel in order to make sure, with high probability, that we have covered the entire

network topology and gathered all pertinent data before sending data along to base station.

Metropolis-Hastings defines the transition matrix ! = [!!"] to be:

!!" =

1
max ! ! , ! !

 !" !"! !

1 − !!"
!"# !

, !" ! = !

0, !"ℎ!"#$%!

 18

For our situation it is necessary to randomly initialize the stationary distribution vector such

that M of the N values in ! = [!!,… ,!!] are set to M/N; this is because CS dictates we

eventually need M projections to fully recover the signal.

The Metropolis-Hastings random walk algorithm is still Markov, but takes into

consideration the degree of itself and the degree of its neighbors as well. Having more

knowledge at its disposal, the Metropolis-Hastings random walk is better able to choose

paths that result in a lowered mixing time.

A key factor later down the line is the need to know mixing time, !, for a graph given

its size N. This is important because we want to know how many hops, given a network of

size !, is necessary to cover the entire network with high probability. To answer that

question we ran the Metropolis-Hastings algorithm for different network topologies and for

different network sizes; the results of the simulations can be seen in Table 2 and Table 3.

N Grid N Random
50 20 50 6
100 24 100 6
200 91 200 5
300 111 300 5

Table 2: Metropolis-Hastings mixing time results for grid and random topologies.

N Mixing Time
50 13
100 15
200 48
300 58

Table 3: Average Metropolis-Hastings mixing time results for network and random topologies.

Compressive Distributed Sensing with Random Walk

Compressed distributed sensing with random walk CDS(RW) combines the

projection generation and data collection process, which was shown to be the downfall in

 19

the original CDS algorithm. The key difference between CDS and CDS(RW) is that instead

of having data points independently send their data to a collection node, we simply walk

around the graph, collecting data as we go. However, it is not simple enough to walk the

minimum distance required to gather the necessary each data points, say ! hops. If we

simply walk q hops and collect that data, it is fairly obvious we will not have enough

information to recover the global data of the graph since we will be restricted to a q-hop

radius from our first node. The mixing time of a graph, !, is the number of hops necessary to

cover the entire topology of the graph with high probability. In order to ensure that we cover

a satisfactory amount of the network, we must travel a minimum ! hops and collect q data

points. If ! > !, then we will skip !"#$(!/!) nodes between each data point collected. Once

we have arrived at the qth data point to be collected, CDS(RW) sends along all the

collected information to the base station for decoding. It is important to note that rateless

coding, all be it a modified rateless coding algorithm, and belief propagation were also used

for CDS(RW) just as in CDS; details in the CDS section above. A visualization of CDS(RW)

can be seen in Figure 6 below.

Figure 5: Visualization of CDS using random walk (CDS(RW)).

 In Figure 6, we can see nodes !, !, ! initialize projections to the base stations.

Examining the projection generated by node !, we see the contributing data points

 20

correspond to data readings at nodes !! and !!. CDS(RW) starts by randomly walking the

network at node !. A key feature to note is the skipping of nodes data measurements; this

corresponds to the mixing time being longer than the number of required measurements for

projection generation. Therefore, nodes must be skipped in between each data

measurement so that we ensure coverage of the entire network with high probability. Once

the CDS(RW) associated with node ! has reached the final node contributing a data

measurement, considered the sink node, the projection is generated and sent along the

shortest path to the base station. As long as we travel at least the length of the mixing time

for a graph, CDS(RW) consistently outperforms CDS from a communication standpoint and

is satisfactory in error recovery; analysis is performed in the next section.

Generating Networks for Simulation

A clear step in the simulation process is the need to generate maps of networks to

perform simulations on. In this paper we considered both grid networks and random

networks. The grid network generation, as seen in Figure 7 was a simple static algorithm

that was comprised of a while loop and a few if statements. However, the random network

generation proved to be much more complicated.

 For the simulation process, the networks were represented as undirected, un-

weighted graphs via adjacency lists. For a given graph ! = (!,!) is made up of set of V

vertices and a set E of edges that connect these verticies. Adjacency lists represent graphs

as an individual node with an associated list of neighbors.

This contrasts representing graphs as adjacency matrices, where a given graph G of

size N is represented as an NxN Boolean valued matrix ! = (!!") in which entry !!" is

TRUE if there is an edge connecting vertices i and j , and FALSE otherwise. While an

 21

adjacency matrix representation of networks is certainly more intuitive and straightforward

to program, scalability problems relating to memory allocation quickly became apparent.

Representing the network as an adjacency list results in much smaller memory

requirements but also complicates operations like matrix multiplication and matrix algebra.

Grid Topology

In order to ensure the accuracy of our simulations, regular networks and random

networks needed to be generated and run through all the same simulations; this made sure

the results were consistent regardless of network topology. A regular network is traditionally

defined as any network/graph such that all nodes have the same number of neighbors and

a minimum spanning tree exists. Regular networks help the distribution of probabilities

across the network when performing simulations and guarantee good connectivity. While

not completely regular, for our purposes we decided to use a grid graph. In a grid graph all

internal nodes have same connectedness and it is only the outer border nodes that cause

the graph to not be completely regular. An example of the grid network structure generated

for our simulations can be found in Figure 7 below.

Figure 6: Example of grid network generated

 22

Random Topology

Generating the random graphs was a little more complicated as it is necessary to

generate graphs that have high connectivity even though they are not regular. The method

to generate the maps was to choose a radius r that ensured connectivity and then generate

N random (x, y) points that represent the traditional Euclidean tuple. Each point then

calculates the Euclidean distance to all other points, and any point with a distance that is

less than or equal to the radius r is determined to be a neighbor. It was important to

minimize the number of orphan sections on the graph, so it was necessary to vary the

radius until we reached the desired connectivity described above.

The radius used in generating random networks was a key issue that majorly affects

the connectivity of the graphs. The connectivity of the graphs for CDS and CDS(RW)

becomes important and can greatly affect performance in the end. In order to minimize the

affect connectivity had on simulation results, we simply aimed to generate random graphs

with approximately the same connectivity as a grid graph of similar size. Connectivity is

formally defined as the average number of neighbors per node in a network. An example of

a random graph generated can be seen in Figure 8:

Figure 7: Example of random network generated

 23

CHAPTER 4: ANALYSIS OF RESULTS

 In the section on CS, in Chapter 2, we compared the cost of CDS with that of

existing algorithms for CS – specifically, DRP, SRP, and [10]. It was shown that CDS has

the lowest cost when all algorithms require ! = Ο(! log !) projections to recover the

original signal with high probability. In this section we focus on comparing the costs

between CDS and CDS(RW) as we have already shown that CDS is more efficient

compared to existing CS algorithms.

In order to analyze CDS and CDS(RW) we must not only examine the projected

communication costs but must also compare the error percentage recovered in decoding so

we can ensure that data is recovered with high probability. In compressive sensing the main

metric for analysis is the ability to recovery a sparse signal within some error percentage.

For that reason we ensure that the projections created generate an error percentage that is

acceptable to existing algorithms. As covered in depth up to this point, one of our main

concerns with data acquisition in WSNs is the communication cost, so we also carefully

analyze the communication costs of CDS and CDS(RW) as well.

Error Recovery

 While the decoding process for CDS and CDS(RW) is very similar, the encoding

differences are what eventually prove to be the mitigating factor when it comes to overall

communication cost. In this section we carefully analyze the error recover capability of both

CDS and CDS(RW). For the error recovery comparison and performance evaluation of the

rateless coding process we used minimum-mean squared error (MMSE) where ! !
! is the

norm 2 function:

 24

Where the error is:

In Figures 9-14 we have six different network configurations and the graphs that

result from the comparison of the original signal to the recovered signal for each situation. In

the graphs there is a baseline that has data point “spikes” rising from the baseline that

represent the original signal. Scattered along the baseline and near the peaks of the

“spikes” are small circles that represent the recovered signal. In the case of near perfect

recovery, the graphs would consist of a baseline with “spikes” and circles at centered

around the peak of each spike and all along the baseline – indicating that the recover signal

matched exactly with the original signal.

In Figures 9-14, the three essential variables that need to be considered when

analyzing the graphs are the size of the graph N, the sparsity of the graph !, and the

number of projections provided for decoding !. The sparsity value ! is defined to be ! = !
!

where ! is the K-sparse value associated with CS and the input signal. The most dynamic

value, usually based on empirically observations of error recovery, is the number of

projections, !. Compressive sensing dictates the number of projections must be at least

! = Ο(! log !) in order to recover the signal with high probability. In the end, M was

empirically chosen to balance the communication cost versus the error recovery capability.

 25

Figure 8: CDS Error Recovery for N=96, s=0.0729, M must

be at least ! = ! ! ∗ ! !"# ! ==13.872727, M=40 was
chosen to maximize error recovery while still staying within

communication bounds.

Figure 9: CDS(RW) Error Recovery for N=96, s=0.0729, M
must be at least ! = !(! ∗ ! !"# !)=13.872727, M=40

was chosen to maximize error recovery while still staying
within communication bounds.

Figure 10: CDS error recovery for N=196, K=0.0714, M must
be at least ! = !(! ∗ ! !"# !)=32.0787, M=80 was
chosen to maximize error recovery while still staying within
communication bounds.

Figure 11: CDS(RW) recovery for N=200,K=0.0854, M must
be at least ! = !(! ∗ ! !"# !)=39.302, M=80 was
chosen to maximize error recovery while still staying within
communication bounds.

 26

Figure 12: CDS error recovery for N=256, K=0.0742, M must be
at least ! = !(! ∗ ! !"# !)=45.7445, M=120 was chosen to
maximize error recovery while still staying within
communication bounds.

Figure 13: CDS(RW) recovery for N=250, K=0. 0720, M must
be at least ! = !(! ∗ ! !"# !)=43.1629, M=120 was chosen
to maximize error recovery while staying withing communication
bounds.

 While one can extrapolate information from the graphs in Figures 9-14, we cannot

rely solely on visualizations without having also analyzing concrete numbers – for that

reason we carefully detail one set of the graphs in Table 4. In Table 4 we have a series of

ten different simulations of CDS and CDS(RW) where each time ! = 40 projections were

generated for a size of ! = 96 network with a sparsity value of ! = 0.0729. The “begin”

value is the norm-2 of the signal that essentially refers to the error recovery if we randomly

guessed the values in the signal. The “end” value represents the error recovery after using

the CDS or CDS(RW) projections in the decoding process. The summary of these runs can

be found in middle section of Table 4, where we list all the averages and also include a

percentage of difference from the beginning error percentages versus the ending error

percentages.

 27

CDS(RW)	 Begin	 CDS(RW)	 End	 CDS	 Begin	 CDS	 End	
29.5073 8.2696 29.4894 7.2263
29.0035 9.9183 30.2244 5.6476
29.524 10.3277 29.1587 6.449
29.1776 9.7763 30.3121 7.1271
29.573 9.4178 29.0892 6.9328
30.3327 10.7532 29.0567 5.2237
29.6605 6.4261 29.19 10.0886
29.4118 7.393 29.6201 7.4674
29.8098 9.4969 29.2678 5.2679
28.892 10.7901 29.5642 6.2484

	 	

Averages	 of	 data	 above	
CDS(RW)	 Begin	 CDS(RW)	 End	 CDS	 Begin	 CDS	 End	

29.48922 8.26507 29.49726 6.76788
	 	

Percentage	 Difference	 in	 Averages	

CDS(RW)	 Percentage	 Difference	 CDS	 Percentage	 Difference	
0.719725717 0.770559028

Table 4: Recovery error statistics for CDS and CDS(RW)

The most telling data in Table 4 is the percentage difference from beginning to end

for CDS, about 77%, and CDS(RW) of about 72%. CDS and CDS(RW) are very

comparable but CDS has the edge when it comes to its error recovery from the projections

provided. In summary, the error recovery of CDS(RW) is comparable to that of CDS. As will

be shown in the next section, the communication cost of CDS(RW) if far less than that of

CDS therefore mitigating the advantage that CDS has in error recovery.

Communication Cost

 To analyze the communication cost of CDS versus CDS(RW) we consider how

many “hops” or sensor communications are required to propagate the necessary data

across the network. In order to do successfully analyze communication cost a key step

involved finding the shortest paths on dynamic networks between nodes. Since our

 28

networks were represented as undirected graphs with no edge costs, we simply used a

breadth first search until the destination node was reached or no more nodes could be

visited, in which case the node was not found. The breadth first search algorithm starts at a

source node and expands its frontier to each unvisited neighboring node and is unaffected

by changes in the network topology as it is Markov. The algorithm returns an integer that

represents the shortest number of hops necessary to reach destination node from source

node regardless of the specific path taken.

The shortest path algorithm is used in both CDS and CDS(RW) in several different

ways. In CDS, the shortest path algorithm was used very heavily as it became necessary

for the all requested data from nodes had to first be sent to a intermediary node via the

shortest path, then linearly combined and sent along to the base station via the shortest

path. For CDS(RW) the shortest path algorithm was only used to calculate costs between

the last node in our random walk to the base station. Tables 5, 6, and 7 summarize average

communication costs for CDS and CDS(RW) on grid and random network topologies based

several different network sizes N.

Communication Costs CDS CDS(RW)
Grid Network Topology 4,320 1,160

Random Network Topology 2,172 968

Table 5: Communication cost for CDS and CDS(RW) with N=96, M=40 projections

Communication Costs CDS CDS(RW)
Grid Network Topology 89,520 5,120

Random Network Topology 12,640 4,960

Table 6: Communication cost for CDS and CDS(RW) for N=200, M=80 projections

Communication Costs CDS CDS(RW)
Grid Network Topology 252,000 8,640

Random Network Topology 30,360 7,320

Table 7: Communication cost for CDS and CDS(RW) for N=300, M=120 projections

For clarity, we detail a sample calculation for a network size of N=300 on a grid

network. As seen in the Chapter 3, the communication cost for CDS is:

 29

Ο !log! d! + d = Ο ! ∗ d! + d

Where !log(!) = ! projections need for recovery at BS according to CS, d! is the cost

associated with generate a projection, and d is the cost from the sink node to the base

station.

For the random topology situation in Table 7 using CDS we see Ο !log! d! + d =

 Ο ! ∗ d! + d = Ο(120 ∗ 250 + 3 = 30,360 hops to disseminate data for compressive

sensing. CDS(RW) communication cost is calculated differently and uses the average

mixing time, !, described in the Methodology section earlier. Since the data collection and

projection generation process are combined we need simply consider the mixing time used,

given that ! < q – the number of individual data points required for each, and then the cost

from the final node in the random walk to the base station. Let ! be the mixing time

described in Methodology chapter, let d be the cost from the last node in the random walk

path to the base station (the last node in the random walk path acts as the sink node), and

let !log(!) = ! be the number of projections needed for CS; then for CDS(RW) we have a

communication cost of:

Ο !log! ! + d = Ο ! ∗ ! + d

For the random topology situation in Table 7 using CDS(RW) we see Ο !log! ! +

d = ! ∗ ! + d = 120 ∗ 58 + 3 = 7320 hops to disseminate data for compressive

sensing. The results for CDS and CDS(RW) on a random network follow the same pattern

as on grid networks except the disparity between CDS and CDS(RW) is not as drastic

because of the higher connectivity of random networks; making finding shortest paths to a

destination node much more efficient because of the increase in neighbors and thus overall

connectivity. Another key feature of CDS(RW) over CDS is the ability for CDS(RW) to adapt

 30

to network topology. This is best illustrated in the similar communication costs for grid and

random topologies for each of the three situations provided in Tables 5,6, and y. To

summarize the details in Tables 5,6 and 7 we provide Table 8 which lists averages for CDS

and CDS(RW) on grid and random network topologies. We can see that CDS(RW)

performs, on average, significantly better than CDS. As briefly mentioned above, we can

see that CDS(RW) also performs better comparatively to CDS when changing from grid to

random topology; this is an indicator that CDS(RW) will handle dynamic topologies and

errors in the WSN gracefully.

Average Communication Costs CDS CDS(RW)
Grid Network Topology 115,280 4,973.33
Random Network Topology 15,057.33 4,416

Table 8: Single-hop average communication cost for CDS and CDS(RW) on grid and random network
topologies.

 In the end while CDS has the advantage in error recovery, CDS(RW) has a

dominating advantage in regards to communication costs. While performance is still

important, our main concern is to minimize communication costs, and thus CDS(RW) is the

apparent winner over CDS. This balance between communication costs and error recovery

can be affected in a number of ways, and it is possible to decrease the error recovery of

CDS(RW) by increasing the number of projections provided to the base station. By

CDS(RW) increasing the number of projections to the base station in an effort to decrease

error recovery, there is an obvious increase in communication cost associated with the

collection and generation of the projection. Another way to decrease error recovery of

CDS(RW) compared to CDS is by increasing the mixing time and skip-hop value in the

random walk so that the sample data points used in the generation of projections are more

likely to be less correlated due to increased physical proximity.

 31

CHAPTER 5: CONCLUSION

This work takes an in depth exploration into data acquisition algorithms for WSNs

and ends at an innovative solution that combines compressive sensing and random walk

algorithms in CDS(RW). The first algorithm proposed, CDS, is essentially compressive

sensing with rateless codes and was shown to already have a lower communication cost

than currently existing CS algorithms. While the cost was low, we were eventually able to do

better by incorporating random walk with CS. In the end, CDS(RW) showed to be dominant

in communication costs as compared to existing CS algorithms while still being satisfactory

in decoding accuracy.

Future work includes rigorous simulations on different network topologies to gain

further insight on performance gains found in this work. Also, increasing the number of

measurements provided to the base station for CDS(RW) is an option since the

communication cost is so low. This means that CDS(RW) has the capability to possibly

perform better in terms of recovery error as compared to CDS while still be significantly less

in communication cost. Finally, this work can be extended to an actual WSN and then

analyzed for performance in a real-world situation.

 32

REFERENCES

[1] Kandris, D.; Tsioumas, P.; Tzes, A.; Pantazis, N.; Vergados, D.D.; , "Hierarchical energy efficient routing
in Wireless Sensor Networks," Control and Automation, 2008 16th Mediterranean Conference on , vol.,
no., pp.1856-1861, 25-27 June 2008.

[2] Dayu He; , "The ZigBee Wireless Sensor Network in medical care applications," Computer, Mechatronics,
Control and Electronic Engineering (CMCE), 2010 International Conference on , vol.1, no., pp.497-500,
24-26 Aug. 2010.

[3] Diamond, S.M.; Ceruti, M.G.; , "Application of Wireless Sensor Network to Military Information
Integration," Industrial Informatics, 2007 5th IEEE International Conference on , vol.1, no., pp.317-322,
23-27 June 2007.

[4] “NI Wireless Sensor Networks”, http://www.ni.com/wsn/, April, 2011.
[5] “Real-Time Wireless Sensor Network Platform”, http://www.ece.cmu.edu/firefly/, April 2011.
[6] “Harvard Sensor Networks Lab”, http://fiji.eecs.harvard.edu/Volcano, Aprol 2011.
[7] R. Cristescu, B. Beferull-Lozano, M. Vetterli. “On Network Correlated Data Gathering with explicit

communication: Np-completeness and algorithms” IEEE/ACM Trans. On Networking, 14(1):41-54, Feb.
2006.

[8] D. Slepian, J.K. Wolf. “Noiseless Encoding of Correlated Information Sources” 19:471-480, Jul. 1973.
[9] E. J. Candès, M.B. Wakin. “An Introduction to Compressive Sampling.” IEEE Signal Processing

Magazine, 25(2):21-30, Mar. 2008.
[10] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering for large-scale wireless sensor

networks,” InProc. of MobiCom, pp. 145–156, 2009.
[11] J. Chou, D. Petrovic, and K. Ramchandran. A distributed and adaptive signal processing approach to

reducing energy consumption in sensor networks. In Proc. of IEEE Infocom, pages 1054–1062, Mar. 2003.
[12] G. Hua and C. W. Chen. Correlated data gathering in wireless sensor networks based on distributed source

coding. Intl. Journal of Sensor Networks, 4(1/2):13–22, 2008.
[13] M. Sartipi and R. Fletcher, "Energy-Efficient Data Acquisition in Wireless Sensor Networks Using

Compressed Sensing," Data Compression Conference (DCC), 2011 , vol., no., pp.223-232, 29-31 March
2011

[14] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509,
2006.

[15] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM Journal on
Scientific Computing,, pp. 33–61, 1998.

[16] W. Wang, M. Garofalakis, and K. Ramachandran, “Distributed sparse random projections for refinable
approximation,” In Proc. of the ACM/IEEE International Symposium on Information Processing in Sensor
Networks, pp. 331–339, 2007.

[17] S. Lee, S. Pattem, M. Sathiamoorthy, B. Krishnamachari, and A. Ortega, “Compressed sensing and routing
in multi-hop networks,” USC Technical Report, 2009.

[18] M. G. Luby, “LT codes,” In Proc. of the 43rd IEEE Symposium on the Foundations of Computer Science
(STOC),pp. 271–280, 2002.

[19] A. Shokrollahi, “Raptor codes,” In Proc. of IEEE International Symposium on Information Theory, p. 36,
2004.

[20] P. Maymounkov, “Online codes,” NYU Technical Report TR2003-883, 2002.
[21] W. Xu and B. Hassibi, “Further results on performance analysis for compressive sensing using expander

graphs,” In Proc. of the Forty-First Asilomar Conference on Signals, Systems and Computers, pp. 621–625,
2007.

[22] D. Baron, S. Sarvotham, and R. Baraniuk, “Bayesian compressive sensing via belief propagation,” IEEE
Transactions on Signal Processing, vol. 58, no. 1, pp. 269–280, 2010.

[23] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Efficient erasure correcting
codes,” IEEE Transactions on Information Theory, vol. 47, pp. 569 – 584, February 2001.

[24] Y. Lin, B. Liang, and B. Li, “Data persistence in large-scale sensor networks with decentralized fountain
codes,” In Proc. of Infocom, 2007.

 33

[25] D. Vukobratovic, C. Stefanovic, V. Crnojevic, F. Chiti, and R. Fantacci, “A packet-centric approach to
distributed rateless coding in wireless sensor networks,” In Proc. of Conference on Sensor, Mesh, and Ad-
Hoc Networks and Communications, 2009.

[26] F. Zhang and H. D. Pfister, “Compressed sensing and linear codes over real numbers,” In Proc. of
Information Theory and Applications, Feb. 2008.

[27] Shannon, Claude E.: Prediction and entropy of printed English, The Bell System Technical Journal, 30:50-
64, January 1951.

 34

VITA

 Robert Brian Fletcher was born in Santa Cruz California and lived in Arcadia,

California with his parents Ken and Jacci Fletcher. He moved to Knoxville, Tennessee in

2003 and graduated from Karns High School in Knoxville in 2004. After high school, Robert

attended University of Tennessee – Knoxville and received his Bachelor of Science in

Computer Science with a minor in mathematics from University of Tennessee Knoxville.

Robert then received his Master of Science in Computer Science from University of

Tennessee at Chattanooga. Robert recently, February 2011, was hired at Cisco Systems,

Inc. as a Software Engineer II. Robert is also employed as a graduate research assistant at

University of Tennessee at Chattanooga. Robert enjoys working out and has been a

fantastic relationship with his girlfriend, Kayla Folks, for over seven years.

