
A NEW SOFTWARE FRAMEWORK FOR UNSTRUCTURED MESH
REPRESENTATION AND MANIPULATION

By

Craig Robert Tanis

Approved:

William K. Anderson Steve Karman

Professor of Computational Engineering Professor of Computational Engineering

(Chair) (Committee Member)

Sagar Kapadia John Matthews

Assistant Research Professor Associate Professor of Mathematics

of Computational Engineering (Committee Member)

(Committee Member)

A NEW SOFTWARE FRAMEWORK FOR UNSTRUCTURED MESH
REPRESENTATION AND MANIPULATION

By

Craig Robert Tanis

A Dissertation Submitted to the Faculty of the University
of Tennessee at Chattanooga in Partial Fulfillment

of the Requirements of the Degree of
Doctor of Philosophy in Computational Engineering

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

December 2013

ii

Copyright c© 2013

By Craig Robert Tanis

All Rights Reserved.

iii

ABSTRACT

This research presents a unique new software framework for representing and

manipulating unstructured meshes in parallel, for use in modern scientific simulation codes.

Due to the central nature of the unstructured mesh, this framework provides a variety

of functionality, desirable throughout the lifecycle of an application, such as IO, parallel

partitioning, phantom node data updates, adaptive refinement, derefinement and load

balancing.

What makes the framework unique is a focus on generality: like a database, the user

provides a programmatic schema defining the structure of the mesh, including topological

descriptions of the valid mesh entities. The system extracts adjacency information from

this input and allows the use of high-level queries for manipulating and processing the

mesh. Advanced C++ techniques allow for a combination of high extensibility and highly

optimizable code.

New applications can be built quickly, by taking advantage of the framework’s

capabilities. Existing codes can incorporate the framework with minimal modification, due

to the use of data proxies that mediate between the framework’s internal data structures

and existing user data.

The design and implementation of this framework are discussed, and several

representative applications are presented. Scalability results and analysis are included.

iv

DEDICATION

To my beautiful wife: you are my heartbeat and my breath. You are the kick in

my butt.

To my beautiful children: you are the goofiest and most brilliant kids on the

planet.

We did it!

v

ACKNOWLEDGMENTS

I gratefully acknowledge the indispensable support and direction provided by my

advisor, Dr. Kyle Anderson.

I also thank Dr. Sagar Kapadia for providing and patiently supporting the 3D flow

solver used in this work.

To my entire committee: thank you for your contributions to this paper, and to the

project as a whole.

To my colleagues and friends throughout the SimCenter, the Computer Science

Department, and UTC at large: thank you for the encouragement.

vi

TABLE OF CONTENTS

ABSTRACT ... iv

DEDICATION.. v

ACKNOWLEDGEMENTS... vi

LIST OF TABLES.. x

LIST OF FIGURES.. xi

LIST OF ALGORITHMS... xii

LIST OF LISTINGS... xiii

CHAPTER

1 INTRODUCTION.. 1

2 BACKGROUND .. 3

2.1 Unstructured Meshes ... 3
2.2 Mesh Frameworks .. 5

3 DESIGN CONCEPTS.. 8

3.1 Overview.. 8
3.2 General Mesh Representation .. 9

3.2.1 Mesh Entity Types .. 11
3.2.1.1 Adjacency ... 11
3.2.1.2 Allowed Entity Types ... 14
3.2.1.3 Adjacency Search.. 14

3.3 In Parallel .. 15
3.4 Framework Organization.. 17

vii

3.5 Queries... 18
3.5.1 An Example... 20
3.5.2 Standard Query Modules... 21
3.5.3 Adjacency Queries ... 24
3.5.4 Result Sets... 25

3.6 Summary of Design Principles ... 26

4 IMPLEMENTATION... 27

4.1 Overview.. 27
4.2 Framework Architecture .. 27

4.2.1 The Local Partition Manager .. 27
4.2.1.1 The Parallel Context .. 28
4.2.1.2 Entity Distribution ... 29
4.2.1.3 Entity Type Configuration ... 33
4.2.1.4 Other Functionality .. 35

4.2.2 Mesh Entity Indices... 35
4.2.2.1 Explicit Indices ... 36
4.2.2.2 Entity Search .. 38
4.2.2.3 Implicit Indices ... 42
4.2.2.4 Attaching Data ... 43
4.2.2.5 Working with Indices .. 43
4.2.2.6 Iterating over Virtual Indices.. 45

4.2.3 Data Proxies .. 47
4.2.3.1 Data Movement Protocols .. 48
4.2.3.2 The batch migrate Protocol.. 48
4.2.3.3 The deliver Protocol .. 49
4.2.3.4 The reorder Protocol .. 50
4.2.3.5 The sync Protocol .. 50
4.2.3.6 Standard Data Proxy Implementation...................................... 50
4.2.3.7 Arbitrary Data Types in Parallel.. 51
4.2.3.8 Reflection.. 55

4.3 Mesh Renumbering and Redistribution ... 55
4.3.1 Hooks... 57
4.3.2 Related Algorithms.. 57

4.4 Query Implementation ... 58
4.4.1 Custom Query Modules... 60

5 APPLICATIONS ... 63

5.1 Overview.. 63
5.2 Initial Partitioning ... 63

viii

5.2.1 Support for Mesh Formats... 63
5.2.2 Partition Quality Analysis... 66
5.2.3 Partitioning Scalability Analysis ... 70
5.2.4 ParMETIS Improvements.. 73

5.3 Adaptive Refinement and Coarsening.. 74
5.3.1 Refinement of Simplicial Entities .. 75

5.3.1.1 Mesh Refinement Algorithm... 77
5.3.1.2 Actual Refinement Implementation .. 79
5.3.1.3 Hooks.. 80

5.3.2 Refinement Results .. 81
5.3.3 Load Balancing.. 83
5.3.4 Enabling De-refinement ... 86

5.3.4.1 De-refinement Bookkeeping .. 87
5.3.5 De-refinement Results.. 90

5.4 Integration with Real Applications.. 97
5.4.1 Flow Solver Performance ... 99

6 CONCLUSION... 102

6.1 Future Work .. 103

REFERENCES... 105

APPENDIX

A DEMONSTRATION APPLICATION ... 110

B TETRAHEDRA VALIDATION QUERY MODULE... 133

C API DOCUMENTATION.. 137

VITA... 193

ix

LIST OF TABLES

3.1 Standard query modules . 22

3.1 Standard query modules . 23

5.1 Sizes of the simplicial meshes used for testing 69

5.2 Mesh entity counts affected by ParMETIS on the single block mesh. . . . 70

5.3 Mesh entity counts affected by ParMETIS on the eight block mesh 71

5.4 Timing of initial striped load and partitioning on the eight block mesh . . 72

5.5 Load and partitioning on fewer processors 73

5.6 Partition imbalance introduced by mesh refinement 83

5.7 Partition improvements through load balancing 84

5.8 Refinement and de-refinement of the single block mesh 93

5.8 Refinement and de-refinement of the single block mesh 94

5.8 Refinement and de-refinement of the single block mesh 95

5.8 Refinement and de-refinement of the single block mesh 96

5.9 Solver times on various processor counts . 100

5.10 Mesh entities created by refinement, and time required 101

x

LIST OF FIGURES

2.1 Unstructured spatial discretization for a 2D fluid flow simulation. 4

3.1 A polytopal complex in 2D . 9

3.2 4 nodes could be a quadrilateral or tetrahedron 10

3.3 Pyramid ordering respects the right-hand rule 12

3.4 The pyramid and hexahedron are neighbors, sharing a quadrilateral 13

3.5 Overview of the Splatter architecture . 18

5.1 Striping alone results in a poor partitioning 65

5.2 A mesh with a high-quality partition . 69

5.3 Full refinement of a tetrahedron . 76

5.4 The need for transition entities between fully refined and unrefined entities . 77

5.5 Moving the refinement function through the mesh 82

5.6 Refining and rebalancing the load at each step 85

5.7 De-refinement information stored in a custom explicit index 88

5.8 Refining, de-refining and rebalancing the load at each step 91

5.9 Refining, de-refining and rebalancing the load at each step 92

5.10 Refining the flow field in response to solution variables 99

xi

LIST OF ALGORITHMS

3.1 Determining 3D entities containing a given 2D entity 16

4.1 Determining global node owner using node dist 32

4.2 Reorder local data using in situ permutation 51

4.3 Global renumber and redistribute for explicit indices 57

5.1 Calculating new global ids from partition output 68

5.2 Propagating edge refinement . 78

xii

LIST OF LISTINGS

3.1 A typical Splatter query . 20

3.2 Determining boundary faces adjacent to an incoming region entity stream . . 24

3.3 Filtering boundary entities from a query stream 25

4.1 One way to configure a new part mgr . 28

4.2 Main functionality of parallel ctx . 29

4.3 The public interface of splatter::ownerdb 32

4.4 Definition of entity cfg and configuration of topo::QUAD instance 34

4.5 Creating a new explicit index . 37

4.6 The public interface of splatter::fast index 39

4.7 Apply a functor to a range of mesh entities in an index. 46

4.8 Expected functionality of a functor used in apply 47

4.9 Declaration of data proxy protocols . 48

4.10 The base templated get mpi type methods 52

4.11 Template specifications for returning appropriate MPI Datatype values . . . 53

4.12 A more complicated template specification for more a complex data type . . 54

4.13 Using get mpi type . 55

4.14 Method signature for part mgr::renumber 56

4.15 Query that prints out all index contents . 58

4.16 Overloaded >>= operator and join class . 59

4.17 Macros to facilitate custom query development 61

4.18 split routes incoming entities to two subqueries 62

5.1 The index op used to build the compressed row storage of a mesh 67

5.2 Splatter query for propagating refined edges in parallel 80

5.3 Filter module that verifies the results from the default search structure . . . 90

xiii

CHAPTER 1

INTRODUCTION

Computational simulations based on the numeric (approximate) solution of partial

differential equations require a discretization of the solution domain over which to calculate

values. Unstructured meshes are a historically popular choice for this discretization, as

these meshes can easily be generated for complex geometries; and can, furthermore, be

locally modified (or adapted) as a simulation progresses and higher mesh resolution is deemed

necessary in specific regions of the domain [1].

This work explores a new general data structure and code library, Splatter , for

representing unstructured meshes in MPI-parallel simulation codes. It is designed to

efficiently represent arbitrary mesh entities, with associated data, and it supports mesh

partitioning, adaptation (refinement and coarsening), and load-balancing.

A unique feature of Splatter is its highly flexible query syntax. The user may embed

queries (such as for entity adjacency searches or topological feature extraction) directly in

C++ code. Using standard C++ metaprogramming techniques, the compiler turns Splatter

queries into optimized C++ code. This feature sets Splatter apart as an ideal candidate for

experimental applications.

In Chapter 2, the need for computational meshes is discussed, as well as the value

of general mesh-management frameworks. We discuss several modern mesh-management

packages, and motivate the development of Splatter in the context of modern scientific

software engineering.

In Chapter 3, the design of Splatter is discussed, with a focus on the design concepts

that make the framework unique. Specifically, this includes a discussion on mesh entity

adjacency and the definition of mesh entity types, the use of data proxies in a distributed

memory application, and an overview of the framework’s embedded query syntax.

1

In Chapter 4, the C++ implementation of key framework components is covered,

with a focus on C++ techniques for optimized performance. An analysis of key algorithms

is also presented.

In Chapter 5, several applications of the Splatter framework are demonstrated,

that take advantage of its unique architecture. Specifically, parallel partitioning, dynamic

adaptive refinement and de-refinement and load-balancing are discussed. Additionally,

the process of modifying an existing 3D computational flow simulation to use Splatter in

presented. With minor modifications, an existing code can take advantage of advanced global

mesh manipulation operations.

Finally, in Chapter 6, the results of this research are summarized, concerning the value

of Splatter for parallel mesh management in scientific simulations. In closing, some plans

for future work are suggested, including modifications to the Splatter framework for use in

application codes consisting of multiple programming languages, and potential improvements

to the query functionality.

2

CHAPTER 2

BACKGROUND

2.1 Unstructured Meshes

Computational simulations often involve the repeated solution of partial differential

equations over some analysis domain. These computed solutions are inherently

approximations, based on a discretization of both the underlying equations and the analysis

domain.

The domain discretization provides specific points in space (and potentially time) at

which solutions are determined. The point is to replace the continuous, infinitely resolvable

physical domain with a finite number of calculable points.

Consider the simulation of air flow around an airfoil. This is a classic scenario, in

which the scientist is interested in determining the density, pressure and velocity of air in the

surrounding region, from which additional values such as lift may be obtained. Figure 2.1

illustrates an unstructured discretization suitable for such a simulation, in two-dimensions.

The simulation may proceed by approximating a solution of the Navier-Stokes

equations at the vertices of this discretization, using information about the adjacent triangles

to determine the volume that each vertex is representing.1

The domain in this example has been completely subdivided into non-overlapping

triangles, preserving the volume of the original geometry as well as possible, within the

bounds of numeric error. Similarly, the surface of the airfoil has been discretized into straight-

line edges that match up to the triangles along the boundary. This volume-conserving

collection of spatial subdivisions, and corresponding boundary edges is called a computational

1Different mathematical interpretations of this spatial discretization may be used, as long as they are
compatible with the chosen discretization of the equations being solved.

3

Figure 2.1 Unstructured spatial discretization for a 2D fluid flow simulation.

mesh. It consists of a collection of mesh entities (in this case, the triangles and boundary

edges).

This mesh is considered unstructured because there is no clear ordering of the mesh

entities — that is, the connectivity between mesh entities is irregular [2]. This is in contrast

to a structured mesh in which there is an implicit ordering of the mesh entities, due to an

ordered set of refinements along each principal axis (a grid).

Conceptually, an unstructured mesh could contain any polytopal 2 entity types. The

example in Figure 2.1 is, formally, a simplicial complex covering the domain [3], because it

consists entirely of simplices (triangles, tetrahedra). A mesh need not be simplicial, however,

and can easily involve more complex volume and surface elements, resulting in a general

polytopal complex [4][3].

The choice of entity types to use in a mesh is mostly governed by implementation

details of the application. Many solvers are developed to only work with simplices, but

certain applications benefit from mixed types, such as using packed hexahedral entities along

internal boundaries to resolve viscous effects in a flow simulation [5]. Pyramids and prisms

can be used as transitional entities between the quadrilateral and triangular faces.

A mesh involves more than just geometric data. From a mathematical standpoint,

the partial differential equations (PDE ’s) solved over a mesh require boundary conditions.

2n-dimensional polygon with flat sides

4

Different boundaries may impose different boundary conditions, and so a mechanism must

be in place to associate mesh entities along boundaries with the appropriate conditions.

From the perspective of mesh management, the simplest implementation of multiple

boundary conditions requires a simple integer flag variable associated with all boundary

entities indicating the equation type to use for those entities. More complex boundary

conditions may require the calculation of quasi-solution variables to store transient data

along the boundary.

This concept is extended to volume entities as well, where different regions in the

domain have different solution properties. For example, in [6] — a solid-oxide fuel-cell

simulation — volume conditions distinguish between free flow regions and those in the

electrode, which correspond to materials with a different porosity, motivating different flow

equations for those particular regions. This particular simulation also identifies boundaries

along which chemical reactions occur, which require the storage and processing of additional

values.

As a rule, larger meshes yield higher quality application results. These larger meshes

— larger, meaning more vertices and more entities of all relevant dimensions — demand

increasingly more computational resources. Modern mesh-based applications can involve

the use of many tens of thousands of individual processors, collectively using their memory

to store mesh data and share in the computational load.

In this work, we develop a new software framework, Splatter , useful for the

representation and manipulation of general unstructured meshes in parallel. The goal is to

encourage application scientists to focus on the mathematics and physics of the problem they

are solving, and use this framework to handle the mesh, and all of its related complexities.

2.2 Mesh Frameworks

The concept of a mesh management framework is not a novel one. After all, parallel

programming is “hard” [7] and application scientists of the world would greatly benefit from

the existence of a reusable system for dealing with parallel unstructured meshes.

5

Other frameworks exists, and have inspired and directed the development of Splatter

in key ways.

FMDB (Flexible Mesh DataBase) is a mesh management framework developed at

Rensselaer Polytechnic Institute (RPI). Originally produced as part of Dr. Seegyoung Seol’s

dissertation work [8], FMDB is based on topological concepts originally documented by Beall

and Shephard (Dr. Seol’s PhD. advisor) in their seminal 1997 work [9]. FMDB underlies

much of RPI’s considerable computational research output, including research on mesh

adaptation [10, 11], entity reordering [12] and component-based high-performance computing

[13, 14].

FMDB enables adjacency traversal and mesh manipulation in parallel, but the

interface is a highly non-intuitive C API [15]. It has been criticized as using excessive

memory [16]. Despite these subjective shortcomings, FMDB encompasses many key ideas,

and is under active development.

Additionally, FMDB provides an ITAPS (Interoperable Technologies for Advanced

Petascale Simulations) interface [17], which is a movement to formalize the interaction

between reusable scientific software components. This is a subject of future work for Splatter .

MOAB (A Mesh-Oriented datABase) [18] is an open-source mesh-management

framework from Argonne National Laboratory. It uses a reduced mesh representation to store

entity adjacency. In addition to representing unstructured grids, it also supports structured

grids. It has limited support for mesh modification [2].

The fact that MOAB does not support mesh modification well means that it could

not be considered a substitute for other frameworks listed, but its use of a reduced mesh

representation and corresponding search structures are intriguing ideas.

MSTK [19] is a mesh library from Los Alamos National Laboratory that is

configurable to use either full or reduced mesh representation for storing mesh entities, and it

supports general polygons and polyhedra. It does not, however, support mesh modification

in parallel, so the user is limited by serial processing capabilities.

6

Notable mesh-management components exist in a number of full featured numerical

solution frameworks. The Trilinos project from Sandia National Laboratory includes a mesh

framework called STK (Sierra Toolkit Mesh) [20]. It supports general adjacency retrieval,

as well as mesh refinement and load-balancing. Documentation is minimal, however [2],

and it is clearly intended for use with other Trilinos packages. Similarly, libMesh [21] is a

numerical framework originally developed at the University of Texas, that has a separate

mesh-management subpackage that supports parallel mesh modification and load-balancing.

It is, again, intended to be used along with the rest of the libMesh framework and may not

be an appropriate choice for general codes.

This sampling of existing mesh frameworks includes some inspiring, powerful systems,

but they require a significant commitment from their users. Integration of existing

applications with these frameworks is difficult, due in no small part to their cryptic APIs

and very specific usage patterns.

The goal behind Splatter is to provide comparable performance to these larger tools,

in a manner that is owned by the user. It’s a framework that’s not a framework — it’s an

unobtrusive core kernel of functionality required for processing distributed unstructured

data, along with a variety of options for configuration and integration, and – perhaps

most interestingly – an expressive embedded programming language for abstract mesh

manipulation.

Over these chapters, it will become clear that the framework is extensible, it is unique,

and it works.

7

CHAPTER 3

DESIGN CONCEPTS

3.1 Overview

Splatter is a software framework primarily intended for the representation and

manipulation of arbitrary unstructured meshes in parallel scientific simulation codes. Since

the mesh is the centerpiece of many (typical) simulation code operations, the framework

serves a variety of functions for use throughout the process.

Splatter ’s primary responsibility is simply to store the mesh and any associated data in

a way that allows users to iterate over the mesh elements and perform arbitrary calculations.

In parallel, Splatter imposes a fairly standard mesh partitioning scheme, and handles all inter-

process mesh data synchronization. In more advanced applications, Splatter allows dynamic

topological changes to occur, such as adaptive refinement (and de-refinement), and is capable

of dynamically redistributing the mesh among processors in order to better balance the load,

in response to these topological changes.

We will see in Chapter 5 the process by which Splatter functionality can be introduced

to existing applications with minimal modification. This simplicity is due, in part, to the

framework’s unique data model based on proxies. Mesh manipulation operations are written

in terms of these proxies which are responsible for modifying associated user data structures.

Splatter is designed to be extremely general. While most unstructured meshes are

based on predictable geometric entities (tetrahedra, triangles, edges, etc.), it is conceivable

that a user may want to represent different entities – either unconventional geometric

entities, alternate representations of conventional entities or something more abstract and

unexpected. To handle this, Splatter views the mesh like a database. The user provides,

essentially, a schema describing the format of allowed mesh entities, and writes queries that

define mesh operations.

8

This design provides powerful capabilities that enable interesting applications.

Section 5.3 describes an advanced use of this query functionality in the management of

parallel bookkeeping information, supporting adaptive refinement and de-refinement.

3.2 General Mesh Representation

An unstructured mesh is, generally, a polytopal complex — an arrangement of non-

overlapping, face-sharing polytopes (polyhedra in 3D, polygons in 2D) — resulting from some

mesh generation process. A mesh generation process involves the spatial decomposition

of an analysis domain, and the resulting complex is a volume-conserving discretization

of the analysis domain’s geometry. For numeric purposes, the resulting polytopes are

usually convex; for simplicity’s sake, the resulting polytopes are often simplices (tetrahedra,

triangles). Figure 3.1 illustrates a 2D polygonal complex consisting of quadrilaterals,

triangles, edges, and vertices.

Figure 3.1 A polytopal complex in 2D

Splatter can represent any polytopal complex, given the following constraints:

1. Each vertex in the polytope must be assigned a unique integer id.

2. Each polytope in the complex must be identified by a TYPE tag and an ordered tuple

of its vertex ids.

9

The TYPE tag corresponds, typically, to the geometric classification of the polytope,

which, in turn, provides a geometric interpretation of the node tuples.

Figure 3.2 illustrates how a 4-node tuple can be interpreted as a quadrilateral or a

tetrahedron. The associated TYPE tag specifies which interpretation is valid. Note: this

interpretation is strictly concerning the topological relationship between these nodes, and

does not involve any spatial coordinates associated with the nodes.

Figure 3.2 4 nodes could be a quadrilateral or tetrahedron

Modern mesh generation software outputs unstructured meshes in a format

compatible with these requirements [22]. In fact, The CFD General Notation System

(CGNS) [23] – an AIAA Recommended Practice – aims to standardize the representation

and distribution of unstructured meshes, and does so in a manner totally compatible with

the above constraints.

Typically, a mesh generation process outputs the unstructured mesh as a collection

of homogeneous lists of polytopes as tuples (each list consisting of a single TYPE – a list of

triangles, a list of tetrahedron, a list of prisms, etc.). These polytopes are often associated

with domain-specific data, such as boundary or region condition flags. Vertices are numbered

consecutively and associated with their spatial coordinates.

As a matter of nomenclature, we refer to these vertices as nodes, and all polytopes

are referred to as mesh entities. The geometric classification (TYPE tag) associated with

mesh entities are mesh entity types.

10

3.2.1 Mesh Entity Types

The mesh entity type imposes a geometric interpretation on a tuple of nodes. This

type is consulted whenever a geometric operation must be performed, such as calculating

entity volume or determining neighboring entities (adjacency search).

The type defines a tuple size, as well as a winding of the nodes. Given the tuple and

tag, the original polytope can be constructed.

Consider a pyramid. The standard Splatter entity type representing a pyramid

(defined in Section 4.2.1.3) imposes the following geometric properties (see Figure 3.3):

1. The tuple has 5 nodes.

2. The first four nodes correspond to the square base of the pyramid, ordered such that

when following the right-hand rule the thumb is pointing at the 5th node, or peak of

the pyramid.

This definition imposes a structure and order on the nodes contained in a pyramid

tuple.

Furthermore, this geometric interpretation embeds adjacency information — in

essence, answering the question “how can pyramids be positioned relative to other entities

in a mesh?”

3.2.1.1 Adjacency

In Section 3.2, polytopal complex was defined as an arrangement of face-sharing

polytopes. Adjacency, for the purposes of this work, is the relationship between two polytopes

that share a face [9]. Adjacency information is highly valuable during feature extraction and

mesh processing, such as is commonly performed during mesh-based applications, and is

thus an important feature of a mesh-management framework.

Following the nomenclature introduced in [9], define

11

Figure 3.3 Pyramid ordering respects the right-hand rule

M the mesh

{Md} an unordered list of the entities in M of dimension d

Md
i or {Md}i a specific (the ith) entity in {Md}

φ{Md} the set of entities in {Md} contained in or adjacent to φ

Note: φ may be a single entity or group of entities. The dimension of an entity is

defined by the dimension of its primary metric. Specifically dimension is 3 for entities with

volume (regions), 2 for entities with area (surfaces), 1 for entities with length (edges), 0 for

entities with no size (nodes or vertices).

An entity A may contain other entities (subentities) that are downwards adjacent to

A. In that case, A is upwards adjacent to those subentities.

12

For example, M2
i {M3} is the set of volume entities (M3) upwards adjacent from the

ith surface entity. M3
i {M2

i } is the set of surface entities contained in (downwards adjacent

from) the ith region entity.

Entities are neighbors if they are of the same dimension, and share a lower adjacency

of a dimension one less. M3
i {M2}{M3} is the set of volume entities containing surface

entities that are contained in the ith region entity, in other words the neighbors of M3
i .

In the case of a pyramid entity, the adjacent lower-dimensional entities are the

constituent 2-dimensional subentities (4 triangles and 1 quadrilateral), and their 1-

dimensional edges and 0 dimensional nodes.

Given a specific pyramid, Pyr, Pyr{M2} are the surface (2D) entities defining the

polygonal faces of the pyramid — specifically 4 triangles and a quadrilateral. Region entities,

other than Pyr that contain any of these would be neighbors of Pyr (Figure 3.4).

With this nomenclature, it is possible to discuss the adjacency information maintained

by the Splatter framework, and how it may be exploited by an application.

Figure 3.4 The pyramid and hexahedron are neighbors, sharing a quadrilateral

13

3.2.1.2 Allowed Entity Types

In Splatter , the user provides a programmatic definition of all valid mesh entity types

(a standard set of types, containing edges, triangles, quadrilaterals, tetrahedra, pyramids,

prisms, and hexahedra is part of the framework).

These mesh entity types are defined recursively, based on the adjacency concepts

described above. Starting with the fundamental building block of all unstructured meshes,

the 0-dimensional node, an edge can be defined as a 2-tuple of nodes with arbitrary winding.

Triangles and quadrilaterals are built out of edges. Tetrahedra are built out of triangles;

Pyramids are built out of triangles and quadrilaterals, etc.

In short, entities with dimension d are specified in terms of the adjacent entities of

dimension d− 1. These definitions embed enough information to support general adjacency

search described in the next section.

This definition of allowed entity types, in conjunction with the arrangement of entity

indices (see Section 3.4), effectively defines the schema for a mesh. The resulting mesh

organization can be processed using user-defined queries. These concepts together yield a

view of the mesh as a flexible database – one of the key concepts driving the entire Splatter

design. Section 3.5 discusses the use of queries. Section 4.2.1.3 provides the details on entity

type implementation.

3.2.1.3 Adjacency Search

To support these kinds of adjacency queries, a mesh management framework must

maintain a search data structure that represents adjacency information between entities.

This is a potentially complex task, especially when meshes are dynamic data structures —

shifting between parallel partitions and undergoing topological transformations.

A full adjacency representation would store all upwards and downwards adjacencies

for every entity in the mesh. If such a structure were possible, it would be very fast in that

any adjacency query could be satisfied in a single access. As discussed, modern meshes are

14

very large (hence the need for parallel processing) and size of such a data structure would

be extremely prohibitive. A reduced representation may use less memory at the expense

of lengthier processing for certain lookups. A variety of representational options are well-

presented in [9].

Splatter maintains a reduced set of adjacency relationships in memory that can be

expanded to full upward and downward adjacencies in constant time — a reduced approach

referred to as circular adjacency, also introduced in [9].

In this scheme, the only physical storage required is a map from each node to the set

of containing entities with the highest dimension. (In a 3D mesh, it could be a quick lookup

table mapping nodes to containing region entities).

To determine lower-dimensional entities containing a node, generate the subentities

of the highest dimension using the patterns defined in the corresponding entity type. Since

each subentity generation process lowers the dimension by 1, there are at most 3 such entity

generations possible for a given node lookup. This is effectively constant time, on average,

though some nodes may exist in a disproportionately high number of region entities. In this

way, the worst case access would be O(max(entities per node))

More complex adjacency lookups proceed by performing set intersection operations

on the relevant entities. Algorithm 3.1 presents an algorithm for determining 3D entities

that contain a given 2D (surface) entity.

The Splatter implementation of this concept is discussed in Section 4.2.2.2. It should

be noted that the framework design allows the integration of different adjacency search

structures through normal C++ inheritance mechanisms. This possibility is briefly discussed

in Section 4.2.2.1.

3.3 In Parallel

Modern problems of interest are posed in terms of computational meshes containing

potentially many millions (or billions) of nodes and entities. As larger meshes become

15

input : face – the 2D entity for which we search
input : hash – the search structure mapping nodes to sets of region entities
declare: n – an integer
declare: regions – the working set of 3D region entities

look up the set of regions containing the 0th node in face
n← 0
regions ← hash[face.node[n]]

while regions 6= ∅ and n < face.num nodes do
regions ← regions ∩ hash[face.node[n]]
n← n+ 1

end

output : regions

Algorithm 3.1 Determining 3D entities containing a given 2D entity

commonplace, the memory demands of the systems that process them are increased, and the

algorithms that process the meshes take increasingly longer times.

To accommodate these large mesh sizes, techniques are employed to process meshes

in parallel, on multiple processors simultaneously. Splatter is based on MPI [24], Message

Passing Interface — a distributed memory parallelization framework, widely used for

scientific applications. In MPI, processors have their own address space, and network

communication is used to exchange values between processors.

Each processor is assigned a range of global nodes for which it is responsible. The

region of the mesh consisting of these assigned nodes and the mesh entities that contain

them is called the processor’s partition. Some entities contain nodes belonging to multiple

processors. These entities exist along partition boundaries, and will appear in multiple

partitions.

Splatter allows the dynamic modification of partitions. Node ownership can freely

change, and entities transparently move between processors to appear in the required

partitions. Because node ownership is based on global node ids, and processors are assigned

16

ranges of these nodes, general mesh migration between processors occurs in response to

global node renumbering and/or global node distribution range updates. Parallel partitioning

as well as load balancing (Chapter 5) are applications of a general renumber/redistribute

algorithm (Section 4.3).

3.4 Framework Organization

In Splatter , mesh entities are grouped into indices – an abstract term that can safely

be thought of as sequential collections (lists) of mesh entities. Different kinds of indices

are appropriate for different mesh entities, and these distinctions will be clarified in the

forthcoming chapter on implementation (Section 4.2.2).

Regardless of the index type, each index can be associated with arbitrary user data.

Data is attached to indices using a Splatter construct called a data proxy. The data itself

remains fully accessible to user code.

When the framework needs to make topological changes to the mesh, or otherwise

requires that mesh entities be transferred between processors, the internal changes

determined by the application are applied indirectly, to the data proxy, which in turn applies

the changes to the user data.

This organization is depicted in Figure 3.5.

The philosophical implications of the proxy concept are significant and reflect strongly

on the overall design of Splatter . Existing mesh frameworks, as discussed in Section 2.2

expect a lot from their users – they store the mesh in proprietary internal data structures,

and expect applications to use their APIs to access mesh entities. Application scientists only

need to use Splatter calls when manipulating the global mesh.

Furthermore, research [25] indicates an interesting phenomenon present in the field of

scientific computing that impacts the adoption of new frameworks, even when the introduced

capabilities would be highly desirable: application scientists with practical programming

experience are often hesitant to integrate code from outside sources. Through the use of

17

Figure 3.5 Overview of the Splatter architecture

data proxies, Splatter encourages iterative integration into existing codes, involving minimal

code modification, that may enable more users to feel comfortable adopting the framework.

In a typical Splatter application, there is a section of code that does the initial

setup: creating the indices of mesh entities managed by the framework, attaching the

appropriate data structures (via proxy) to these indices, and potentially registering hooks

for when topological changes occur (see Section 5.3). Elsewhere, simple framework calls

that perform basic tasks like synchronizing phantom data and saving restart files, as well as

more complicated refinement and load-balancing calls, are isolated sections of code — not

necessarily impacting any user algorithms.

3.5 Queries

Splatter provides an embedded query syntax that allows the user to process meshes

in parallel in an abstract, highly expressive way. This query syntax, along with the user-

definable entity schema, completes the interpretation of the mesh as a database.

These queries serve as a replacement for the concept of iterators used in other mesh

frameworks, and allow the user to traverse, process and extract features of the mesh.

Queries are used for tasks like the following:

18

1. traversing the complete set of volume entities, perhaps to populate a linear system, as

used in PDE-based simulation codes

2. creating a new index containing only the volume entities along a region interface

3. traversing an entity’s neighbors

4. iterating over edges that need to be refined, and updating their upwards adjacent

neighbors (Section 5.3)

Queries are chains of individual query modules operating on a stream of mesh entities.

These modules can roughly be classified as follows:

1. sources: introduce new mesh entities into the stream

2. filters: selectively process incoming entities and optionally pass entities to the next

module in the chain

3. terminators: process incoming entities and terminate

4. conditions: process incoming entities and evaluate as true or false for use in

appropriate filters and terminators

This is a non-strict tetrachotomy in that some modules could be classified as both

filters and sources, and it does not adequately provide for the roles of utility modules –

technically filters that provide meta-behaviors such as entity stream routing.

Regardless, it is an extremely flexible system, as these modules can be chained in

any syntactically legal order. It is fairly trivial to develop new, application-specific query

modules to invoke custom behaviors on the stream.

It should be noted that any particular query functionality is an add-on to the core

Splatter components. In other words, these query modules are written entirely in terms of

public API calls. The significance of this is that alternate query syntaxes and functionality

can seamlessly coexist with the existing query functionality.

The true power of this query component is twofold:

19

1. It enables the succinct expression of complex algorithms, leading to a higher degree of

correctness and ease of use.

2. The resulting executable is highly optimized.

3.5.1 An Example

Listing 3.1 contains a typical query. It builds a result set containing tetrahedral

entities adjacent to a boundary.

for_each("boundary") >>=

faces_in (&m,"volume") >>=

save_temp(results) >>=

end()

Listing 3.1 A typical Splatter query

Recall that a query represents a stream of mesh entities, and contains query modules

as classified above.

1. for each is a source, introducing new entities into the stream. Every query must begin

with a source. In this particular example, for each("boundary") indicates that all

entities part of the index named “boundary” should be introduced into the stream.

2. faces in is a filter. In this example, the input is the stream of boundary entities as

described above. The output is a stream of the entities in the “volume” index that

contain those boundaries. Note: the &m is a Splatter handle, required for efficiency

purposes.

3. save temp is another filter. It provides a mean for capturing entities in the stream,

and is one way of collecting results from a query. The presence of “temp” in the name

20

indicates that these results should be considered temporary. It would cease to remain

valid after structural changes to the mesh.

4. end is a terminator. In this case it merely indicates the end of the query, and is

required.

3.5.2 Standard Query Modules

Table 3.1 documents all standard query modules in the current implementation.

Syntactically, queries may contain these in any order, though the first module must be

the only source, and the last module must be the only terminator. Certain filters in the

table (skim, sort) refer to a subquery. In those cases, any legal sequence of query modules

may be a parameter to the filter module. These queries must start with a filter or terminator

— not a source. Custom query modules are easy to write, and are described in Section 4.4.1.

21

Table 3.1 Standard query modules

Name Parameters Functionality

Sources

for each index, range(optional) stream all entities from index

all faces index, range(optional) synonym for for each

one face index, entity id stream a single entity from index

Filters

skim condition(optional), sub-

query

if true, copy stream to subquery

where condition pass entities through when condition is

true

subfaces none convert incoming entities to all subentities

defined by adjacency

unique optimized(optional) only pass unique entities to output

count int variable store count of entities passed through in

variable

dump ostream variable(optional) print all entities to stream

flag container, value set container[entity] to value

save ids container store entity id in container

save temp temp index store entity in temp index

save temp uniq temp index store entity in temp index if it is not

already there

faces in handle1, index faces in index containing input stream

store special

Terminators

end none end the query

Continued on next page

22

Table 3.1 Standard query modules

Name Parameters Functionality

split subquery1, subquery2,

subquery3(optional)

route stream to all subqueries

sort special see discussion in Section 4.2.3.3

Conditions

flag container, value true when container[entity]==value

owns none true when entity is owned on local rank

phantom none true when entity has a non-local node

needs none true when entity has a local node

negate condition true iff condition is false

faces in handle, index returns true if index contains input stream

Other

fetch special

1pointer to core part mgr

23

3.5.3 Adjacency Queries

To support adjacency search, the standard query modules subfaces and faces in are

of most use. In terms of the nomenclature introduced in Section 3.2.1.1, subfaces replaces

incoming entities Md
i with the downwards adjacent entities Md

i {Md−1}.

faces in, when used as a filter, relates incoming mesh entities to a user-defined index,

I, (e.g., >>=faces in(&m,"tets")>>= is looking in the index named “tets”). Effectively, this

module replaces incoming Md
i with Md

i I
x in the stream 2 where x ≥ d and depends entirely

on the nature of I.

Listing 3.2 demonstrates these concepts, determining boundary faces adjacent to an

incoming region entity stream.

<input stream > >>=

subfaces () >>= // yields surface entities

faces_in (&m, "bnds") >>= // replace with bnds containing subfaces

<output stream >

Listing 3.2 Determining boundary faces adjacent to an incoming region entity stream

faces in, when used as a condition, does not replace the input stream; it is used to

test whether an entity is contained by any index contents. When used with where, this acts

as a filter of valid entities.

Listing 3.3 demonstrates this usage, generating 2D components from region entities

and filtering out those that exist in a “bnds” index, and then removing duplicates. The

resulting query stream returns all 2D faces that exist between two region entities.

2the contents of I of dimension x

24

{query} >>= // incoming region entities

subfaces () >>= // constituent face entities

// filter out the ones in a "bnds" index

where(negate(faces_in (&m, "bnds")) >>=

unique () >>= // no duplicate faces

{query}

Listing 3.3 Filtering boundary entities from a query stream

3.5.4 Result Sets

To facilitate integration with larger algorithms, queries may use save temp or

save ids to capture mesh entities from the query stream for further processing. Furthermore,

result sets may be shared explicitly with neighboring ranks based on arbitrary user criteria,

rather than the default data sharing model imposed by Splatter for normal indices. The

sort query module mentioned in Table 3.1 is used for this purpose, and examples of its use

will be seen in Section 5.3.

As with any new language, making best use of Splatter queries is a matter of

experience. It is very easy to write a query that uses excessive memory and takes excessive

time due to redundant processing. It is the hope that as the framework matures and attracts

users, static query analyzers may be developed to help quantify the amount of work done by

a query and lead to smarter queries.

The software implementation of the query modules, however, is capable of generating

extremely optimized machine code. These queries are written entirely in C++, using C++

templates and a technique often referred to as template metaprogramming. Through this

technique arbitrary user queries are transformed, via standard C++ compilers, into highly

optimizable inline function calls.

25

3.6 Summary of Design Principles

This chapter has provided an overview of the driving design principles behind the

Splatter framework, and attempted to motivate the implementation details provided in

Chapter 4.

In summary, this framework provides extreme user-defined flexibility in terms of what

kinds of mesh entities and associated data are managed. It allows the user to process the

mesh in terms of high-performance, abstract queries. It integrates with application code in

a nonintrustive way.

It is believed that full integration with Splatter from the outset of a development

project can greatly accelerate the timeline for deliverable software, without imposing

ubiquitous, cryptic API calls and design patterns. Users comfortable with the framework

can freely involve the use of Splatter queries in their algorithms, and benefit from the

high-performance and high expressibility they offer. It is hoped that Splatter ’s extensible

query system will foster experimentation and applications in problem domains heretofore

unconsidered.

26

CHAPTER 4

IMPLEMENTATION

4.1 Overview

This chapter discusses the implementation of key data structures and algorithms in

the Splatter framework. For the full API documentation, see Appendix C. All code is in

standards-compliant, portable C++.

4.2 Framework Architecture

As described in Chapter 3, Splatter maintains a collection of mesh entity indices,

with data attached to them. These indices are distributed across the set of MPI processors

involved in the mesh. In this section, we discuss the architectural and algorithmic

facets of this arrangement, specifically the implementation of the splatter::index and

splatter::data proxy classes, as well as the global mesh handle and organizational

centerpiece: the splatter::part mgr.

4.2.1 The Local Partition Manager

The splatter::part mgr (partition manager) class defines the main access point for

all Splatter functionality. Each process will instantiate one of these objects, per mesh, and

it contains all information regarding the local partition. Additionally, part mgr objects act

as a handle on the global mesh, and can be used collectively — assuming all distributed

part mgr’s agree — to make global changes to the mesh involving node creation and entity

distribution (see Section 4.3).

As a central component in the framework, the part mgr contains several members

with system-wide significance:

27

1. an instance of parallel ctx, which encapsulates details of the parallel environment

containing the mesh

2. an instance of ownerdb, which is the authority on node and entity ownership

throughout the framework

3. a collection of entity cfg objects, which define all allowed mesh entity types for the

current mesh (see the discussion of adjacency in Section 3.2.1.1).

splatter :: part_mgr mgr(topo:: num_std_entities , topo:: std_entities);

mgr.init(splatter :: parallel_ctx(my_custom_communicator));

Listing 4.1 One way to configure a new part mgr

Several options for constructing and initializing a new part mgr exist – refer to the

class documentation in Appendix C. Listing 4.1 illustrates one way to construct and configure

a new part mgr to use the framework’s standard topological entities on a custom MPI

communicator.

4.2.1.1 The Parallel Context

In MPI terminology, a Splatter mesh is bound to an entire MPI communicator. Every

process participating in this communicator holds a stake in mesh ownership, and participates

in mesh operations. Applications may freely create any number of communicators, allowing

the existence of multiple meshes simultaneously managed by different sets of processors.

Also, a single communicator may own multiple meshes simultaneously, simply by creating

multiple part mgr instances.

The splatter::parallel ctx class is an encapsulation of an MPI communicator

with a variety of convenience methods used in parallel communication. The parallel ctx

28

member of part mgr is the authority parallel context for the associated mesh, and can be

accessed using part mgr::pctx().

Listing 4.2 contains the salient details of the parallel ctx class’s public interface.

class parallel_ctx

{

public:

/*! number of ranks assigned to this MPI communicator */

int np() const;

/*! this process ’s rank on this MPI communicator */

int rank() const;

/*! this MPI communicator */

MPI_Comm& comm ();

/*! wrapper around MPI_Reduce , using op as reduction function */

template <typename T> T reduce(T in, MPI_Op op) const;

/*! wrapper around broadcast , selecting configured root as source of

* information */

template <typename T> void

broadcast(std::vector <T>& vec , int root=-1) const;

};

Listing 4.2 Main functionality of parallel ctx

4.2.1.2 Entity Distribution

In MPI, each processor in a communicator is assigned a unique integer called a rank

between 0 and NP , where NP is the number of processors in the communicator.

These ranks are used during network communication to identify the endpoints of an

MPI data exchange operation. Additionally, many MPI programs are written in a SIMD-

style1, with all processes executing the same code. These ranks are used within application

1Single Instruction Multiple Data

29

code to customize the behavior on each processor; often this simply involves using the rank

to choose the data on which to operate.

This pattern is followed within Splatter . The global set of node ids is broken into

NP contiguous ranges, where again NP is the number of processors in the mesh’s parallel

context. Each processor is assigned one of these ranges based on its rank.

A role of the part mgr is to ensure that each processor agrees on this node distribution.

This responsibility is delegated to a subcomponent of type splatter::ownerdb (ownership

database). This singular ownerdb within the part mgr houses the official, mesh-wide node

distribution, and provides numerous methods for determining the ownership of nodes and

entities in general.

Internally this distribution is stored as a single int[] array, called node dist, of size

np + 1 values (once again, np is the number of processors in the mesh’s parallel context).

The nodes owned by the processor with rank r are the ones identified by global ids in the

range [node dist[r], node dist[r + 1]). During mesh partitioning, all processors agree on the

contents of this array.

The set of node ids distributed across all processors are known as global node ids,

because they are globally unique over the entire mesh. Since a range of these nodes is assigned

to each rank, it is desirable to simplify the way that locally owned nodes are referenced on

a given processor. To do this, the concept of local node ids is introduced. These ids are not

unique throughout the mesh, but are unique on a given processor. These node ids always

start at 0 on each rank, and extend contiguously to provide an id for each locally stored

node.

For example, if rank 3 is assigned global node ids 4032 - 8900, then on rank 3, local

node 0 maps to global node 4032 and global node 8900 maps to local node 4868.

The node ownership concept corresponds directly with the concept of partition

introduced in Section 3.3. A processor’s partition is defined as the set of nodes assigned

to the processor and any mesh entities that contain them.

30

Due to the presence of mesh entities on partition boundaries, partitions will contain

entities that in turn contain nodes owned by other processors.

Application algorithms typically require information about all nodes present in every

mesh entity on the local partition. Splatter identifies these non-local nodes as remote

dependencies, creates local phantom nodes linked to them and provides the ability to

periodically refresh attached data from their remote counterparts (Section 4.2.3).

These phantom nodes are assigned local ids and are indistinguishable from locally

owned nodes. For many algorithms, no special care — other than the periodic

synchronization of data — is needed.

The ownerdb is responsible for providing all local-to-global node mappings (and vice

versa), for all local nodes, including these local phantom nodes.

Listing 4.3 contains the full public interface of the splatter::ownerdb class. As

discussed, it contains methods for determining global node ownership as well as these local-

global node mappings. For efficiency, certain lookup methods have variations to use when it

is known that no phantom information is present.

Two important methods available via the ownerdb are:

1. bool owns(int g), which returns true if global node g is owned by the current rank,

and false otherwise

2. int owner(int g), which returns the rank of the processor that owns global node g.

The result of owns can be determined in O(1) (constant) time because it requires a

simple test to see if g is in the global node range for the local rank.

The result of owner(int g) can be determined in O(log(np)) time, where np is the

number of processors. This is done using the binary search algorithm seen in Algorithm 4.1.

In cases where authority over a multi-node mesh entity must be exerted, a mesh

entity’s owner is considered to be the owner of the smallest global node id appearing in

the entity. An open question is whether or not this particular entity ownership strategy

31

class ownerdb

{

public:

bool owns(int g); // do I own global node g?

int owner(int g); // what rank owns global node g

int high (); // what is my highest global id

int low(); // what is my lowest global id

int g2l(int g); // global ->local

// (assumes owns(g))

int l2g(int l); // local ->global

// (assumes l is valid local)

int g2l_p(int g); // global ->local

// (using phantom lookup)

int l2g_p(int g); // local ->global

// (considering phantoms as local)

int nlocal (); // number of locally owned nodes

int nglobal (); // number of global nodes in mesh

int nphantom (); // number of phantom nodes

int nlocal_p (); // number of local nodes + nphantom

}

Listing 4.3 The public interface of splatter::ownerdb

input : g – global id
input : node dist – node distribution array of size np
low ← 0
high ← np
repeat

mid ← (low + high) / 2)
if g < node dist[mid] then

high ← mid
else if g >=node dist[mid+ 1] then

low ← mid+1
else

return mid
end

until low >= high
illegal node
return -1

Algorithm 4.1 Determining global node owner using node dist

32

introduces unacceptable biases in parallel algorithms, perhaps causing lower ranks to receive

a disproportionate amount of work. No such problems have been detected during the

development of this framework.

4.2.1.3 Entity Type Configuration

Splatter is designed to allow user-defined mesh entity types. These types are specified

by the user as instances of splatter::entity cfg.

Each entity cfg specifies:

1. a string identifying the name of the entity (used for debugging)

2. the number of nodes required for an entity of this type (usually the number of vertices

in the polytope)

3. the dimension, dim, of this geometric shape (currently unused by the implementation)

4. the number of constituent subentities (called subfaces) of dimension dim−1 (downward

adjacencies)

5. for each subentity

(a) the type of the subentity

(b) the tuple of entity nodes (positions) needed to generate the subentity

Listing 4.4 contains the C++ definition of the entity cfg data type, as well as the

creation of the entity cfg instance corresponding to quadrilaterals in Splatter ’s standard

entity list.

entity cfg objects always appear in contiguous arrays of compatible, mutually-

defined objects. One of these arrays is always active meaning it is the current set of allowed

entity types. With this in mind, entity types are referred to universally by the integer

33

struct entity_cfg

{

std:: string name;

int dim; /* dimension */

int nnodes; /* number of nodes */

int numsubfaces; /* number of sub entities */

struct

{

int subface_type;

int subface_nodes[SPLATT_MAX_SUB_ENTTITY];

} subfaces[SPLATT_MAX_SUB_ENTTITY];

};

/* definition of topo::QUAD */

entity_cfg [] std_entities =

{

...

{ "quad", 2, 4, 4,

{

{ topo::EDGE , { 0, 1 } },

{ topo::EDGE , { 1, 2 } },

{ topo::EDGE , { 2, 3 } },

{ topo::EDGE , { 3, 0 } }

}

}

...

};

Listing 4.4 Definition of entity cfg and configuration of topo::QUAD instance

position of the corresponding entity cfg value in the containing array. topo::EDGE, in

Listing 4.4, is an integer equal to the position of a similar entity cfg definition for edges.

Notice how topo::QUAD is defined recursively in terms of topo::EDGE. Read the

subface list as follows:

1. Edge 1 contains nodes 0 and 1 from the quad.

2. Edge 2 contains nodes 1 and 2 from the quad.

3. Edge 3 contains nodes 2 and 3 from the quad.

4. Edge 4 contains nodes 3 and 0 from the quad.

34

These recursive entity type definitions are processed by the framework to

automatically generate adjacency information between entity types. For example, based

on the definitions of adjacency introduced in Section 3.2.1.1, A quadrilateral is upwards

adjacent to its constituent edges, because it is defined in terms of them. Any other shapes

that are upwards adjacent to edges are potential neighbors of the original quadrilateral.

These two specific values — topo::QUAD and topo::EDGE — are provided by the

standard entity list that comes with the framework. topo::std entities contains internally

consistent definitions of node, edge, triangle, quadrilateral, tetrahedron and pyramid. An

example of configuring a new part mgr with these standard entities was seen in Listing 4.1.

4.2.1.4 Other Functionality

The part mgr contains other functionality and data for facilitating the processing of

the mesh. Most importantly, the part mgr houses all entity indices — this is the subject of

Section 4.2.2. Important global algorithms accessed through the part mgr are the subject

of Section 4.3.

Here is a list of minor functions that are worthy of note. Documentation and

demonstrations of these are available in the Appendix.

1. the capability to save and load restart files containing arbitrary user data, allowing

applications to restore previous states of processing

2. modification hooks, which allow the user to specify arbitrary code that should be

executed when topological changes occur in the mesh. These are used extensively in

the refinement and coarsening demonstrations in Chapter 5.

4.2.2 Mesh Entity Indices

Splatter indices are sequential collections of mesh entities. They are constructed and

accessed via the part mgr.

Examples of typical indices include:

35

1. the collection of all local nodes

2. the collection of all surface boundary entities

3. the collection of all internal volume entities

splatter::index is a virtual superclass, currently extended by two different concrete

index types, and infinitely extensible to support future applications. The superclass provides

two main sets of functionality:

1. the ability to associate index contents with arbitrary user data – a process referred to

as attaching data. This is explored in detail in the forthcoming section on data proxies

(Section 4.2.3).

2. the ability to quickly iterate over index contents

These indices are associated with data, such that every entity in an index has a

corresponding entry in the associated data.

Examples of typical user data include:

1. spatial coordinates of individual nodes (associated with all local nodes)

2. boundary condition tags (associated with all boundary entities)

3. volume condition tags (associated with all volume entities)

4.2.2.1 Explicit Indices

The primary subclass of splatter::index is splatter::explicit index. A single

explicit index contains entities of a single entity type, and thus may be considered a

homogeneous collection of mesh entities. It is called an explicit index, because it explicitly

contains all the nodes of all contained entities.

These indices are distributed across all mesh processors. When mesh movement occurs

(Section 4.2.3) explicit entities that are directed to move to other processors will appear in

the corresponding explicit index on the target processor.

36

In addition to storing these entities, the explicit index maintains a search structure,

called a fast index, for quick node → entity lookups, meaning “given a node id, quickly

determine all entities that contain it.”

Listing 4.5 illustrates the creation of an explicit index for storing entities of type

topo::TET. The variable mgr is the part mgr object deigned to contain the new TET index.

This particular index is given the name “tets”.

std::vector <int > tet_nodes;

// missing code that loads tet_nodes with values

...

idx = mgr.add_explicit_index("tets", topo::TET , tet_nodes ,

SPLATT_STEAL_DATA |

SPLATT_PHANTOM_DEPS |

SPLATT_FAST_INDEX);

Listing 4.5 Creating a new explicit index

topo::TET is the standard entity type for tetrahedra. This type is defined to require 4

nodes per entity, providing an obvious interpretation of the ints contained in the tet nodes

vector: specifically, there are 4 nodes per entity in the index, and thus tet nodes.size()/4

total tetrahedra.

The final argument to add explicit index is a bitwise-OR’d collection of special

Splatter flags, which configure the behavior of this index, as well as the part mgr’s

relationship with the index. These particular flags may be interpreted as follows:

1. SPLATT STEAL DATA – the index should remove the contents of tet nodes and store

the node values internally. This is appropriate for use in a subroutine that sets up the

initial part mgr, since tet nodes may now be safely discarded. Without this flag, the

vector continues to store all node data, and the explicit index processes the node

contents using a dynamically created proxy.

37

2. SPLATT PHANTOM DEPS – nodes included in tet nodes that are not owned locally should

introduce phantom node dependencies into the part mgr (see the discussion of ownerdb

in Section 4.2.1.2).

3. SPLATT FAST INDEX – the framework should optimize internal data structures,

potentially at the expense of extra memory, to facilitate the quick lookup of entities

containing a given node.

Generally, a statement such as that seen in Listing 4.5 would occur in an isolated

“setup” method. Once created, Splatter assumes full responsibility for the contents and

parallel distribution of the entities contained in tet nodes.

4.2.2.2 Entity Search

Section 3.2.1.1 introduced the concept of circular adjacency. explicit index objects

provide the implementation of this concept, and are used during queries to extract topological

mesh features.

To satisfy adjacency searches, particularly those accomplished using queries, any

index must provide the ability to quickly search for entities containing a given node.

The logic behind this was presented in Section 3.2.1.1, particularly in the discussion of

circular adjacency data structures: because we can use the entity cfg structure to generate

all subfaces of an entity, if we can find the parent entity quickly using an explicit index’s

search functionality, then we can find all subface entries (perhaps in other indices) that

contain a given node.

The framework class that contains circular adjacency information is called

splatter::fast index. Instances of this class provide, effectively, a mapping from global

ids to sets of entities containing them.

Listing 4.6 contains the public interface of the fast index data structure. The

primary use of these objects is through the overloaded operator[](int g), which returns

38

a splatter::intset – a custom data structure representing a unique set of integers –

populated with the entities containing g.

class fast_index

{

public:

fast_index ();

// specify the range of "local" ids

fast_index(int low , int high); // range of ’local ’ ids

// update the range of ints we consider "local"

status update(int low , int high) ;

intset& operator [](int g);

const intset& operator [](int g) const;

void clear ();

/** erase unused global structures **/

void purge ();

};

Listing 4.6 The public interface of splatter::fast index

Originally, this functionality was implemented using standard C++ containers:

std::map<int, std::set<int> >, that is a map from int to sets of ints. This

implementation was problematic in two ways:

1. The memory usage was extremely high. Internally, both the map and set

implementations involved a large number of individual allocations, resulting in a

ridiculously large page table size (a standard memory management data structure used

in various operating systems) for a moderately sized mesh.

39

2. The standard set container does not provide any mathematical set operations, which

are very useful for adjacency searches.

The fast index implementation cut memory usage by more than half, and uses

a custom data structure for integer sets (splatter::intset) that provides a fast set

intersection operation (again, useful for adjacency queries).

More significantly, map lookups with fast index are much faster than those with

the standard map container: Since map is tree-based, the time taken for any lookup is

O(logNlocal), where Nlocal is the number of local nodes. With the fast index, most node

lookups are O(1).

To achieve the O(1) performance, the following observation was made: because

of the nature of Splatter partitioning, most node lookups are for those nodes owned

by the local rank. To optimize the fast index for local node ranks, the index uses a

std::vector<intset> to store local node results, and a std::map<int,intset> to store

results for all other nodes (mostly phantom nodes). An overwhelming majority of node

lookups occur with local nodes, so most of the actual lookups take place in constant time

using the contiguous vector. Looking up non-local nodes operates in O(logNphantom), where

Nphantom is the number of non-local nodes present in the index. If a partitioning is good

(Section 5.2), Nphantom is much smaller than Nlocal.

Another optimization that takes place within the fast index concerns the rather

dynamic nature of partitioning over the course of some Splatter applications. Generally

speaking the range of locally owned node ids could change rapidly as entities are shifted

subtly between partitions, such as during load-balancing. To compensate for this, the range

of nodes considered local is decoupled from the actual range defined by the partitioning.

When a mesh redistribution results in a different range of assigned global nodes,

the fast index members of the various indices are updated to use the new range. Within

the code for fast index::update, heuristics are evaluated to determine whether or not to

physically update the internal index components (that is reassigning the node values handled

by the vector versus the map).

40

Generally, the algorithm decides that the index should be updated if the discrepancy

between the old and new node ranges would result in too many local node ids falling outside

the range handled by the fast index’s vector. Too many is defined by a constant provided

when the framework is compiled (SPLATT FI RATIO THRESH).

The end result is a very fast search structure that responds intelligently to mesh

updates. It choose to perform these relatively expensive index updates only when the benefit

outweighs the expense.

The splatter::intset objects used in the fast index allow very fast set

intersection operations. To check for the existence of a specific entity in an index, simply

intersect the sets returned from the fast index for each of the nodes in the entity. If the

resulting set intersection contains any values, then the desired entity is present, specifically

it exists at the locations contained in the resulting intersection. Each individual search

takes O(1) time, on average, and the time for set intersections is linear in the size of the

set (O(|intset|)), also known as “the average number of entities per node”. The resulting

performance analysis is O(width× average|intset|).

For typical polytopal complexes, this equates to a constant.

This entity lookup algorithm was presented in Algorithm 3.1.

The search data structure and entity lookup algorithm work perfectly for correct

mesh entities in a true polytopal complex. The flexibility inherent in Splatter ’s entity type

configuration, however, allows for mesh entities that are not correct (see an example in

Section 5.3.4.1).

Entities used in atypical applications could contain duplicate node numbers. Applying

the lookup algorithm in such a case could result in false positives: matches that do not truly

contain the desired search term.

Atypical algorithms could also define non-polytopal entities, with subentities that do

not appear as faces or edges in the shape (perhaps an internal edge connecting nonadjacent

nodes). With the current algorithm, searching for such an edge could return false positives

— entities that contain the searched-for edge nodes, but without the actual connecting edge.

41

These are generally experimental applications, and there are ways to account for

this possibility. One option is to define a new index type with a more appropriate search

structure.

Alternately, the fast index can be used to narrow down search possibilities, but the

results from the search must be verified with a second-stage test. That is the approach taken

in Section 5.3.4.1.

As suggested above, alternatives to circular adjacency exist and are desirable for

certain applications. This current work is completed entirely using this adjacency structure,

but new indices could be created (as proper, separate extensions of splatter::index that

provided alternate search functionality).

One reasonable approach would be to incorporate a half-edge data structure [26, 27] —

this search mechanism maintains explicit upwards adjacency information unlike the current

implementation, and thus could prove more efficient for certain kinds of queries.

4.2.2.3 Implicit Indices

implicit index objects represent a sequence of entities defined implicitly by a range

of values, rather than by explicitly enumerated entity tuples. These are used exclusively for

representing collections of nodes.

The part mgr maintains a single implicit index exclusively for representing the

sequence of local nodes. These nodes are stored implicitly in the index as the range of global

values assigned to the local processor, augmented by the set of phantom nodes stored in the

ownerdb.

Implicit indices offer no search mechanism or other capabilities. (Searching, in this

case, is handled entirely by the ownerdb.) The primary role of these indices in the framework

is to allow the attachment of user data to the nodes themselves, without having to store the

node ids.

The real value of implicit index will become clear during the discussion of data

proxies in Section 4.2.3.

42

4.2.2.4 Attaching Data

Recall that an index is a sequence of entities. Attaching data involves taking a similar

sequence of data elements and pairing it up with the index. The sequences must be of the

same length, and the values match up position-by-position. That is, the 0th entity owns the

0th data element; the 50th entity owns the 50th element, etc.

A data sequence attached in this way becomes managed by the part mgr. As mesh

entities are moved between processors, or reordered locally, the attached data elements follow.

4.2.2.5 Working with Indices

In many programming environments maximum flexibility and high-performance are

at odds with each other. Throughout Splatter , however, a consistent implementation pattern

is followed that enables both flexibility and high performance.

This implementation pattern is relevant to the discussion on indices because working

with mesh indices is a fundamental operation in the framework. It must be fast.

Splatter is written entirely in C++, a programming language commonly used

in scientific computing. Because this language is compiled directly for a target CPU

architecture, it is possible to generate extremely fast programs. A major factor dictating the

speed of a compiled C++ application is the quality of the compiler’s optimizer.

A general rule of thumb for writing code that is to be processed by an optimizing

compiler is “give the compiler as much information to work with as possible”. By following

this rule, the developer can lean heavily on the expertise and experience of the compiler

developer and take advantage of architecture-specific optimizations, making great strides

towards having “fast code” with, otherwise, little effort.

Unfortunately, certain aspects of C++ tend to undermine the efficacy of optimizers.

Consider, specifically, the concept of polymorphism, from the Greek meaning many shapes

— a great promise of object oriented programming. The “normal” polymorphic approach is

to envision a hierarchy of data types. Algorithms written in terms of the general superclasses

43

of the hierarchy may be seamlessly applied to instances of the derived superclasses. Specific

functionality from the subclasses will kick in during the algorithm, causing the code to

change shape in response to the specific data types involved.

This is a powerful programming model for complex systems, but — at least in C++

— this flexible behavior is only possible when several criteria are met, each of which has a

detrimental effect on performance:

1. The general data structure must be a pointer or reference (aka a fancy pointer).

2. The methods called on the general data structure must be declared virtual.

The problem with pointers and references is the level of indirection between the

variables being operated on, and the data being manipulated. Using pointers violates our

first rule of writing optimizable code: the compiler does not have access to information

surrounding the actual data being operated on, just the pointers!

Access to these values can not be optimized by the compiler, because the values

themselves are not yet defined. They are going to be pointed at during runtime.

Virtual methods, introduced by the virtual keyword, push this concept even further.

These virtual members are identified by the compiler as elements of a class that may have

been overridden in a subclass. Because of this possibility, at runtime when such a member

is referenced, the objects must be inspected to determine which method implementation is

appropriate (not unlike the use of standard function pointers).

Code that calls a virtual function will always require the use of the call stack.

Parameters are pushed on to the stack, a subroutine call is invoked with the virtual

subroutine code pointer, and when that routine is finished, the stack is popped.

When high performance is required, such as in a tight number-crunching loops, virtual

function calls should be avoided.

On the other end of the performance spectrum lies inline functions. Functions of

this type are entirely accessible — source code and all — to the optimizing compiler. Inline

function calls can be replaced by the compiler with the actual code from the function body.

44

Call stack manipulations are removed from the optimized code, allowing the compiler to

further optimize access to that function’s local variables.

4.2.2.6 Iterating over Virtual Indices

To optimize access to virtual subclasses of splatter::index, techniques involving

C++ templates are used. These techniques, sometimes referred to as compile-time

polymorphism are designed to preserve the aspects of inheritance that lend themselves well

to the design of complex systems, while still allowing the compiler to highly optimize the

code.

We have the general problem of needing to iterate over the contents of an index,

without using virtual accessors to access the mesh contents.

The solution for the case of index is representative of the framework philosophy in

general: rather than iterate over the index contents, have the index apply a functor2 to

itself. This is implemented as a non-virtual templated method apply on the virtual index

superclass.

Listing 4.7 shows the definition of index::apply. C++ does not allow virtual

templated methods, but this implementation is spiritually virtual, in that a call to this

method immediately and explicitly translates into a call to do apply on the actual subclass

object.

Two downsides exist, but neither is intractable:

1. Adding a new subclass of splatter::index requires modification of this apply

method.

2. When index::apply is expanded by the template processor, it in turn expands all

subclass versions of do apply, even if they are not called. This would result in a

negligible amount of code bloat – binary contents in the executable resulting in higher

memory requirements.

2often called a function object

45

template <typename OP, typename IT>

void index:: apply(const OP& op , IT start , IT end)

{

switch(_type)

{

case SPLATT_IMPLICIT:

static_cast <implicit_index *>(this)->

do_apply <OP ,IT ,&OP:: operator ()>(op , start , end);

break;

case SPLATT_EXPLICIT:

static_cast <explicit_index *>(this)->

do_apply <OP ,IT ,&OP:: operator ()>(op , start , end);

break;

default:

ERROR("cannot ’apply+iterators ’ to index with type " << _type);

}

return;

}

Listing 4.7 Apply a functor to a range of mesh entities in an index.

do apply is defined for each concrete index subclass. The do apply method explicitly

iterates over the index contents, applying the functor to each entity. Since do apply is in

turn templated in terms of the functor, the code for the functor is available to the optimizing

compiler during the compilation of do apply. The end result is a tight loop over the index

contents calling the body of functor as if it were declared inline.

For this to work on any index, functors must be defined in such a way that they can

process any mesh entity. This simply means that the functor must accept general enough

parameters that could represent any mesh entity.

This is formalized through the splatter::index op class (Listing 4.8). Specifically,

any functor that extends this class can be used in a call to index::apply. Because this is

handled by the template processor, there is nothing special about this index op. It merely

exists to help the user write a functor class that will work. Attempting to implement the

operator() method, but failing to take the right parameters, will result in a compile-time

error since the abstract virtual operator has not been properly provided.

46

class index_op

{

public:

// idx -- an index

// eltno -- entity position within index

// etype -- entity type for this entity

// nnodes -- number of nodes in this entity

// nodes -- actual nodes in this entity

virtual void operator ()(splatter :: index* idx , int eltno , int etype ,

int nnodes , int* nodes) const =0;

};

Listing 4.8 Expected functionality of a functor used in apply

To reiterate: the index op class is unknown in the apply method, so no attempt at

calling this virtual operator will ever be attempted. The native code in the actual subclass

will be expanded via template, and in turn highly optimized.

4.2.3 Data Proxies

Data proxies are objects that serve as mediators between parallel Splatter algorithms

and proxied local data structures. They are designed to implement specific parallel data

movement protocols by translating them into operations on arbitrary data structures.

They are of particular use when dealing with index objects and their attached data.

Protocols are initiated with a data structure describing details of the corresponding data

movement. That data structure can be used to invoke a protocol on the data proxy managing

an index’s entity nodes as well as on every proxy managing data that is attached to that

index. The end result is the equivalent data movement operations (defined by the proxy)

being applied to each individual data sequence (the index itself, as well as each attached

collection of data elements). All data is moved in the same way and ends up reunited in

their new location

As discussed earlier, indices and data elements are related by their positions in the

corresponding sequences. Those positional relationships are preserved even though the

entities and data may be moving to entirely new processors.

47

4.2.3.1 Data Movement Protocols

The following data movement protocols are supported:

1. batch migrate: for arbitrarily copying data to other processors and deleting local copies

2. reorder : for local data reordering, using an in situ permutation algorithm

3. sync: for copying data to and from remote processors into preordained locations, such

as is used for refreshing phantom node data

4. deliver : for packaging up data into a payload for other MPI ranks (does not affect the

local data).

class data_proxy

{

public:

virtual status batch_migrate(const migrate_args& args)=0;

virtual data_proxy* deliver(const deliver_args& args)=0;

virtual status sync(parallel_ctx pctx , const sync_args& args)=0;

virtual status reorder(const std::vector <int >& localids)=0;

}

Listing 4.9 Declaration of data proxy protocols

4.2.3.2 The batch migrate Protocol

batch migrate is used for general data movement between processors, supporting

explicit index objects. Its primary argument, an instance of migrate args contains the

following:

48

1. a std::deque<int> containing data (identified by position) that should be removed

from the underlying data structure

2. a std::vector<std::deque<int> > containing the data (identified by position) that

must be copied to each MPI rank.

Upon the first use of a new migrate args, a coordination phase occurs, in which all

involved processors communicate message sizes and initialize communication buffers.

Each invocation of the batch migrate protocol packages up the proxied data and

communicates it with the other relevant processors. Incoming data overwrites those data

elements marked for deletion.

Since the protocol is applied in the same way to the mesh entities and all attached

data, the position integrity of the index and data is preserved.

The cost of applying this protocol is analyzed in this way:

1. construction of the migrate args is part of a larger algorithm, potentially user-defined,

but generally consists of a process that looks at each mesh entity and classifies it based

on where it should be moved. This is a O(number of local entities) calculation.

2. Preparing the arguments involves an all-to-all MPI call, O(np), where np is the number

of processors.

3. The actual migration of data occurs once for each related data proxy, and takes

time proportional to the amount of data moved: O(number of data proxies ×

amount of data).

The end result is, on average, as good as can be expected: O(np +

amount of data to move).

4.2.3.3 The deliver Protocol

deliver is a special protocol used in conjunction with query result sets. A special

query syntax, based on the sort query module, allows for the easy construction of deliver

49

protocol arguments. Functionally speaking it is similar to batch migrate, but has no

facility for deleting arguments. Unlike batch migrate which is designed for application

in distributed indices, deliver is used to copy a set of values into a remote query result set.

4.2.3.4 The reorder Protocol

reorder is used to rearrange local data, based on a std::vector<int> which

containing new local destinations for each rank. This is used primarily for the renumbering

of an implicit index. It operates by using an in situ permutation algorithm that runs in

O(n) time with minimal memory overhead.

Algorithm 4.2 contains the algorithm implemented by the reorder protocol.

4.2.3.5 The sync Protocol

sync exists to support proxies on node data. As described in Section 4.2.1.2, phantom

nodes are assigned local ids, and the ownerdb maintains a mapping from local ids to

their remote counterpart. These mappings are used to construct a sync args object for

parameterizing the sync protocol.

The sync protocol is invoked on a single data proxy attached to node data, and

results in refreshed values for the attached data associated with all phantom nodes.

4.2.3.6 Standard Data Proxy Implementation

The primary implementation of data proxy is a templated subclass that operates

on behalf of arbitrary std::vector objects. This class exists because the std::vector

is a highly efficient container providing nice manipulation semantics on top of a standard,

cache-friendly, contiguous array.

The implementation of data proxy protocols in terms of std::vector methods was

very straightforward and performs excellently. Furthermore, in the interest of appealing

to scientists with existing codes, the std::vector is syntactically compatible with plain C

50

input : data – array of arbitrary user data
input : localids – new local positions for each element in data
declare: prev – array of integer positions, initialized to -1

for n ← 0 . . . data.size do
find beginning of cycle
if prev[n] == -1 and localids[n]!=n then

p ← localids[n]
prev[p] ← n;
until the end of the cycle..
while p 6= n do

prev[localids[p]] ← p
p ← localids[p]

end

tmp ← data[n]

copy backwards through cycle
while prev[p] 6= n do

data[p] ← data[prev[p]]
p ← prev[p]

end

data[localids[n]] ← tmp

end

end

Algorithm 4.2 Reorder local data using in situ permutation

arrays. The process of incorporating Splatter with existing scientific codes based on arrays

is discussed in Section 5.4;

4.2.3.7 Arbitrary Data Types in Parallel

Throughout the framework, parallel operations on arbitrary user data are performed.

From the framework’s perspective, the user data types are unknown, and thus are

implemented as template arguments, T, throughout the framework API. (See, for example,

the definition of parallel ctx::reduce in Listing 4.2).

51

To convert between an unknown type T and a valid MPI Type, the framework uses a

templated helper subroutine called get mpi type.

template <typename T> MPI_Datatype get_mpi_type(T ex)

{

ERROR("using base get_mpi_type(ex)!"); return MPI_BYTE;

}

template <typename T> MPI_Datatype get_mpi_type ()

{

ERROR("using base get_mpi_type ()!"); return MPI_BYTE;

}

Listing 4.10 The base templated get mpi type methods

Listing 4.10 contains the base definition of get mpi type. Note that this base

version of the subroutine does not function: the ERROR macro triggers an MPI_Abort —

early termination of the executing code (return MPI BYTE exists here only to satisfy the

requirements of the compiler that the subroutine return an MPI Datatype).

C++ template specifications providing concrete values for T are used to override

this base template at compile time, resulting in inline functions that return the specific

appropriate MPI Datatype values as needed. Two versions of the method exist depending

on whether access to the raw type data is convenient or an example value must be used to

trigger the proper template application.

Template specifications for the most common data types are seen in Listing 4.11.

These enable the templated parallel ctx methods, as well methods in data proxy to

operate on arbitrary data.

Even more interesting is the example seen in Listing 4.12 in which a new

MPI Datatype is constructed when first called. This new type represents count contiguous

T values — perfect for when an array of values needs to be considered a unit. The templated

52

template <>

inline MPI_Datatype get_mpi_type <double >(double ex)

{

return MPI_DOUBLE;

}

template <>

inline MPI_Datatype get_mpi_type <double >()

{

return MPI_DOUBLE;

}

template <>

inline MPI_Datatype get_mpi_type <int >(int ex)

{

return MPI_INT;

}

template <>

inline MPI_Datatype get_mpi_type <int >()

{

return MPI_INT;

}

template <>

inline MPI_Datatype

get_mpi_type <std::complex <double > >(std::complex <double > ex)

{

return MPI_COMPLEX;

}

template <>

inline MPI_Datatype get_mpi_type <std::complex <double > >()

{

return MPI_COMPLEX;

}

Listing 4.11 Template specifications for returning appropriate MPI Datatype values

53

function maintains a static map of generated MPI Datatype values, allowing unique types

for different sized arrays.

This pattern of providing a template specification of get mpi type that creates

a new complex type on the fly can easily be followed, by framework users, to provide

automatic system-wide parallel support for custom data types, for example using

MPI Type create struct.

template <typename T>

MPI_Datatype get_mpi_type(T example , int count)

{

static std::map <int ,MPI_Datatype*> types;

std::map <int ,MPI_Datatype *>:: iterator match = types.find(count);

if (match == types.end ())

{

LLOG(2, "creating new mpi_type for count");

MPI_Datatype& newtype = new_mpi_type ();

MPI_Type_contiguous(count , get_mpi_type(example), &newtype);

MPI_Type_commit (& newtype);

types[count]=& newtype;

return newtype;

}

else

{

return *(match ->second);

}

}

Listing 4.12 A more complicated template specification for more a complex data type

With get mpi type thus defined, a user can write an algorithm that transfers

arbitrary user data using MPI. This can be seen in Listing 4.13.

54

template <typename T>

T add_up(T in)

{

T rval;

MPI_Allreduce (&in, &rval , 1, get_mpi_type <T>(),

MPI_SUM , MPI_COMM_WORLD);

return rval;

}

Listing 4.13 Using get mpi type

4.2.3.8 Reflection

Data proxies support minimal reflection capabilities for application that must copy

unknown user data between proxies.

Use the data proxy::type copy() method to return a new data proxy capable of

holding the same type of data as the original.

Use data proxy::store raw() to copy data from a position in a source proxy into

a local position. This assumes that the source proxy is type compatible, such as one created

using type copy().

4.3 Mesh Renumbering and Redistribution

In Section 3.3, the partition was defined as the collection of all locally owned nodes

and the mesh entities containing them. This partitioning can be modified in two ways:

1. The ranges of nodes owned by each process can be modified (redistribution)

2. Nodes can be reassigned new global ids (renumbering)

This section covers the implementation of Splatter ’s part mgr::renumber method,

which provides a single access point for both global renumbering and redistribution.

renumber() takes a vector<int> containing the new global ids for every locally

owned node, and a vector<int> corresponding to the desired new node distribution

(Section 4.2.1.2).

55

status renumber(const std::vector <int >& newgids ,

const std::vector <int >& dist ,

std::list <temp_index*> externals=std::list <temp_index * >());

Listing 4.14 Method signature for part mgr::renumber

The algorithm proceeds by renumbering each index separately. The individual

index subclasses define renumber in such a way that entity nodes are replaced with their

replacements, and the entities are moved to the processors that require them, based on the

new node distribution. The entity movement is always conceived in terms of data proxy

protocols, meaning that entities and their associated data appear in their new locations

together.

Indices that are automatically updated when a renumber occurs are called tracked

indices. All indices created via the part mgr are automatically tracked. The third argument

to renumber in Listing 4.14 is a manual list of temp index* objects that should be

temporarily tracked. temp index is used to store query result sets, so this temporary tracking

allows result sets to be renumbered along with the rest of the mesh.

temp index instances are not distributed across processors, so no automatic entity

movement is performed, just node renumbering.

Algorithm 4.3 illustrates the renumbering process for explicit index. This

algorithm is operates in O(number of local entities) time.

To renumber an implicit index, the batch migrate protocol is applied such that the

data of every local node is routed to its new owner. Additionally, this protocol is applied to

the vector of new global ids. The result is that node data is associated with its new global

id on the destination processor!

After the batch migration, every processor has a complete, yet out-of-order collection

of all local nodes associated with their new global ids (and no extraneous nodes). These

global ids are translated to new local node ids using the ownerdb’s g2l() (global to local id)

method, and the results are used as input to the renumber protocol.

56

declare: bma – new batch migrate args

for each entity in index do

determine new numbering for all nodes

for each new owner o of entity nodes do
register with bma that entity should copy to o

end

if entity is no longer needed locally then
register with bma that entity should be deleted locally

end

end

invoke batch migrate protocol on entity index and all attached data

Algorithm 4.3 Global renumber and redistribute for explicit indices

The initial batch migration takes O(Nlocal) time on each processor, as does the in situ

permutation that takes place during the renumber protocol. Implicit index renumbering is

linear in the size of the local partition (O(Nlocal)).

4.3.1 Hooks

To facilitate integration with user code, applications may register renumber hooks –

arbitrary code that should be executed whenever the global renumber method is invoked.

These methods can be used, for example, to rebuild local connectivity data structures that

are outside the domain of Splatter , such as linear system connectivities.

4.3.2 Related Algorithms

Renumbering can also be used to introduce new nodes into the mesh, such as during

mesh refinement. Simply create a new node distribution that accounts for extra unused

57

nodes on each processor, and optionally calculate new global ids for each node so that they

will remain in the range of nodes owned by the local processor.

Removing unused nodes can be accomplished using an obscure feature of the renumber

method. Create a new node distribution array of a smaller size and assign each unneeded

node the new global id of −1. The implementation will remove those nodes, and their

associated data, completely.

4.4 Query Implementation

Splatter ’s embedded query syntax is based on standard C++ templates. A technique

called template metaprogramming leverages the template processor to create new objects

based on syntactic structures appearing in the code.

Specifically, consider a simple query that prints out all of the entities in an index,

Figure 4.15.

for_each("tets") >>= dump() >>= end()

Listing 4.15 Query that prints out all index contents

This chain of query modules is translated, by the template processor, into a temporary

class object that iterates over the contents of “tets” and evaluates the dump module on each

one (the dump module just prints out the nodes of the incoming entity).

The >>= operator, typically used for auto right shift — a fairly obscure bitwise

operator — has been overloaded with a template, to take two arbitrary values as operands,

as seen in Listing 4.16. This operator returns an instance of a special join class that unites

the two operands in a special way.

58

template

< typename T1 ,

typename T2 >

join <T1 ,T2 > operator >>=(T1 x, T2 y)

{

return join <T1 ,T2 >(x,y);

}

template <typename T1, typename T2>

class join : public query_op

{

public:

join (T1 x, T2 y) : x(x), y(y) {}

void operator ()() const

{

x(y);

}

private:

T1 x;

T2 y;

};

Listing 4.16 Overloaded >>= operator and join class

At compile time, when the template processor sees the first >>= operator in

Listing 4.15, it determines that for the operator use to be syntactically valid, then it must

be syntactically valid to build a join<for each,dump> class.

Looking in the join template definition, when creating a join<for each,dump> class

the instance variable x is of type for each and y is of type dump. These two instance variables

come together in join::operator() with the single statement that unlocks the mystery of

the entire query syntax: x(y).

x must have an operator() that is compatible with y. In fact, this operator, defined

for for each objects, simply iterates over all entities in the index specified at construction

time (in this case “tets”), and for each entity applies the functor y, which happens to be a

dump.

59

Every query module follows this pattern. The parentheses operator is overloaded to

call and/or be called by other query modules. These calls are chained together via join

classes gluing the objects together. The end result has the feel of a stream of entities flowing

through the chained modules.

Technically, the >>= operator is right associative (which is part of the reason this

operator was chosen for queries), so this process would have happened first in analyzing the

relationship between dump and end.

dump is a filter module (Section 3.5) that takes incoming entities. This means that the

operator() is designed to take arguments that reflect a single, general mesh entity. After

it does its processing (prints the entity nodes to standard output) it calls the next one in

the join-chain with the same entity. Here, that next module is the special end module, a

terminator that simply receives incoming mesh entities and stops.

The actual temporary class generated by the template processor is of type

join<for each, join<dump,end> >. This process repeats for the entire sequence of chained

query modules.

After the template processor creates this temporary class, the compiler is invoked to

translate it into machine code. The optimizer has access to all of the class code for every

piece involved: all of the operator() calls may be inlined, and further optimized, until

the machine code is indistinguishable from a hand-written loop that explicitly processes the

mesh in the prescribed way.

4.4.1 Custom Query Modules

Recall the general classification of query modules from (Section 3.5): sources,

filters, terminators and conditions. The distinction between these module types is entirely

dependent on how the operator() receives and passes along mesh indices.

These calls must be defined in terms of general enough parameters that any mesh

entity in any index can be passed. In this current implementation, those parameters are as

follows:

60

1. splatter::index* idx – the containing index

2. int eltno – entity position within that index

3. int etype – the mesh entity type for this entity

4. int nnodes – number of nodes in the mesh entity type (redundant, for efficiency)

5. int* nodes – the actual node ids of the entity

To facilitate the development of new query modules, these required arguments are

bundled together in standard C macros, based on the desired role of the module in a query.

These macro definitions are listed in Listing 4.17.

#define SQ_SOURCE(out)

#define SQ_TERM(idx , eltno , etype , nnodes , nodes)

#define SQ_FILTER(idx , eltno , etype , nnodes , nodes , out)

#define SQ_COND(idx , eltno , etype , nnodes , nodes)

Listing 4.17 Macros to facilitate custom query development

These macros are used to define all the standard query modules, and may be used in

user code as well.

Consider, for example, the split module, a terminator that routes incoming entities

to 2 output modules. In Figure 4.18, the use of SQ TERM is demonstrated to implement split

functionality.

Queries represent a particularly novel contribution to the field of mesh management

frameworks. Future work will focus on adding capabilities and additional performance

improvements to this feature of Splatter .

61

template <typename T1, typename T2>

class split_obj : public query_op

{

public:

split_obj(T1 x, T2 y) : x(x), y(y) {}

// call ’x’ and ’y’ on entity

SQ_TERM(idx , eltno , etype , nnodes , nodes)

{

x(idx ,eltno ,etype ,nnodes ,nodes);

y(idx ,eltno ,etype ,nnodes ,nodes);

}

private:

T1 x;

T2 y;

}

Listing 4.18 split routes incoming entities to two subqueries

62

CHAPTER 5

APPLICATIONS

5.1 Overview

This chapter discusses several applications of the Splatter framework, demonstrating

the appropriateness and usability of the framework for advanced tasks.

5.2 Initial Partitioning

Splatter is designed to manage the computational mesh throughout an application

run. In the beginning of a typical run, the mesh must be loaded on all parallel processors

before the application can proceed. This framework offers a variety of functions for the

initial load of mesh data. In this section, these various functions are explained and applied

to real mesh data.

5.2.1 Support for Mesh Formats

There are generally two different approaches to the initialization of a Splatter instance,

depending on the nature of the data being loaded into the system. When a new mesh is

processed for the first time, it must be manually loaded into the framework for processing.

Subsequent runs can employ the framework’s standard save and restart capability that

allows an application to resume execution from an arbitrary state reached during an earlier

application execution.

The process of manually loading a new mesh into Splatter for the first time depends

entirely on the format of the mesh generation output process. Generally speaking, any

format that supplies the mesh in terms of numbered polytopes (see Section 3.2) is usable

with Splatter .

63

The core data structures do not provide general or specific IO functionality other than

the save/restart capability mentioned earlier. Any reader for a specific mesh file format must

be written to use the official, exposed public interfaces of Splatter data structures.

That said, subroutines have been written for reading monolithic Star-CD formatted

ASCII mesh files, in parallel, in a way that is compatible with Splatter indices. (By

monolithic, it is meant that the mesh data is provided in large files without any regard

for parallel distribution.) These subroutines are used throughout the applications discussed

in this chapter, and are illustrated in the sample code provided in Appendix A.

These starcd::read routines proceed by having each processor open the mesh files

simultaneously, jump to a position in the middle defined by the processors rank and the total

file size, and reading in an assigned part of the file. This process is known as striping, and

results in the mesh data being arbitrarily distributed over the involved processors.

These routines are not particularly efficient in the way that they access the disk.

Explicitly using multiple simultaneous file pointers to read a file from a parallel file system

can, anecdotally, lead to some unsatisfactory performance. Specifics of this performance

degradation will be seen in the analysis to follow.

These performance issues could be resolved with a new mesh file reader based on

MPI IO – a standard mechanism for reading files in parallel that avoids these observed

performance issues. MPI IO, however, does not work well with ASCII based files and thus

would not work with Star-CD mesh files, which were chosen for other practical reasons.

Recall that any mesh-format specific file reader will exist entirely outside the

framework. The relative performance of mesh loading mechanisms that are not part of

fundamental Splatter functionality are simply not a concern in this present work.

What is a concern, however, is that this striping process results in poor quality

partitions (Section 3.3) in which the partition boundaries, shared between processors, are

large compared to the computational volume of each partition. Figure 5.1 illustrates a 2D

slice of a 3D mesh loaded on 4 processors using this striping technique. In this figure, each

64

processor is assigned a color. Each processor does own the same number of nodes, but they

are distributed throughout the domain haphazardly.

Figure 5.1 Striping alone results in a poor partitioning

The subject of partition quality has been researched extensively (see, for example

[28],[29], [30]). The most desirable partitioning maximizes local computation and minimizes

inter-process communication — that is, minimizes the number of phantom nodes and shared

entities along partition boundaries, while maximizing the amount of local calculations. This

is an optimal configuration due to the relatively high cost of communication when compared

to computation [31].

In Splatter , a striping load must be followed by an explicit parallel partitioning phase.

The framework provides flexibility for working with a number of existing mesh partitioning

software libraries, including Zoltan [32] and – perhaps the de facto standard – ParMETIS

[33], a parallel implementation of the highly regarded mesh and graph partitioning library,

METIS [28]. Basically any algorithm that can assign each local node a target partition

can be used with this framework. In general, these tools work by taking a global mesh

connectivity as input, and assigning the nodes an appropriate partition.

The METIS family of software libraries implement a multilevel k-way partitioning

algorithm that has shown to generate excellent partition quality and very fast performance.

65

This is the particular partitioning software and algorithm chosen for this test of the Splatter

framework.

To apply the metis algorithms, particularly the ParMETIS V3 PartKway subroutine,

the mesh must be transformed into its graph dual or node-to-node connectivity in the

commonly used compressed row storage (CRS) form. This is accomplished this using the

index op defined in Listing 5.1.

The output of the metis algorithm is a partition assignment (an int) for each node.

Using Algorithm 5.1, these partition assignments are translated into new global ids for

each node (note: not all ids will change). Furthermore, the number of nodes per partition

leads directly to the new node distribution array (Section 4.2.1.2). These new ids and new

distribution are input for Splatter ’s global renumber/redistribute algorithm (Section 4.3)

which results in all tracked indices and associated data moving to new locations on new

processors, as appropriate.

5.2.2 Partition Quality Analysis

Figure 5.2 shows the mesh from Figure 5.1 following an application of a ParMETIS-

based renumbering algorithm. Visually it is clear that the nodes assigned to each rank are

no longer haphazardly distributed throughout the mesh.

To quantify the improved partition quality, a striped load followed by a ParMETIS-

based renumbering was tested on two fairly large simplicial (tets, triangles) meshes. These

meshes are listed in Table 5.1.

Table 5.2 and Table 5.3 contain, for the single block and eight block meshes

respectively, the minimum and maximum partition sizes (in terms of entity counts) before

and after an explicit ParMETIS-based renumbering, with a variety of processor counts (np).

The partitioning process attempts to group nodes into equal-sized partitions, while

minimizing the dependencies between partitions and maximizing the number of entities on

a partition (referred to as the computational volume, earlier). From these tables, it can be

66

class CSRBuilder

{

public:

// this is applied to each index entity

void operator ()(splatter :: index* idx , int item , int etype ,

int width , int* nodes) const

{

for (int n1=0; n1 <width; n1++)

{

if (_odb.owns(nodes[n1]))

{

int l = _odb.g2l(nodes[n1]);

// remember connectivity between n1 and n2 , for nodes

// owned locally

for (int n2=0; n2 <width; n2++)

{

if (n1 != n2)

{

_hash[l]. insert(nodes[n2]);

}

} } } }

void getCSR(std::vector <int >& ia , std::vector <int >& ja)

{

// preallocate ia ,ja

...

// load ia ,ja with connectivity

for (unsigned int n=0; n<_hash.size (); n++)

{

ia.push_back(ja.size ());

for (unsigned int v=0; v<_hash[n].size (); v++)

{

ja.push_back(_hash[n][v]);

}

}

ia.push_back(ja.size ());

}

private:

std::vector <intset >& _hash;

const ownerdb& _odb;

}

Listing 5.1 The index op used to build the compressed row storage of a mesh

67

input : parts – array of partition ids for each local node
input : nparts – the number of partitions
input : np – number of MPI processors involved in decomp
input : rank – local MPI rank

output : new globals contains the new global id for each local node
output : new dist nparts+1 integers reflecting new node distribution

declare: part sizes local – array of size npart
declare: part sizes global – array of size nparts × np
declare: part offsets – array of size nparts
declare: tally – an integer

for for each part in parts do
part sizes local[part]++

end

get all part sizes from all involved ranks
MPI Allgather(part sizes local → part sizes global)
part sizes local ← 0...0

tally ← 0
for p ← 0 ... nparts − 1 do

for r ← 0 ... np − 1 do
if r = rank then

part offsets[p] ← tally
tally ← tally + part sizes global[r × nparts + p]
part sizes local[p] ← part sizes local[p] + part sizes global[r × nparts+p]

end

end

end
tally ← 0
for n ← 0 ... nparts do

new dist[n] ← tally
tally ← tally + part sizes local[n]
new dist[nparts] ← tally

end
for n ← 0 ... new globals.size − 1 do

new globals[n] ← part offsets[parts[n]]
part offsets[parts[n]] ← + part offsets[parts[n]]

end

Algorithm 5.1 Calculating new global ids from partition output

68

Figure 5.2 A mesh with a high-quality partition

Table 5.1 Sizes of the simplicial meshes used for testing

mesh name node count tetrahedron count triangle count
single block 6798161 40025670 692596
eight block 54385252 320205360 5540768

seen that the initial striped partitioning had a very even node distribution, in terms of node

count per partition.

The tet distribution, however, varied widely because the count included entities along

the partition boundaries, which were arbitrary (see Figure 5.1). The ParMETIS process

assigned a less even node distribution, but the resulting entity balance was much better.

The higher-dimensional entity distribution has a profound impact on run-time

performance for typical PDE-based simulation applications. The dependencies between

nodes yield non-zeros in the representative linear system, and thus directly contribute to the

size of the problem and the amount of work to be done per rank. In short, the tetrahedron

count tends to reflect the work per process more than the node count.

Additionally, the tetrahedra counts are high because of the excessive size of the

partition boundary, in this striped case. All partitions contain a high number of entities

containing non-local nodes because no efforts were made to minimize the inter-partition

69

Table 5.2 Mesh entity counts affected by ParMETIS on the single block mesh.

np state nodes,min nodes,max tets,min tets, max bnds,min bnds,max
16 pre 424885 424886 2966550 5209003 0 692596

post 394447 432097 2351357 2688059 4228 63012
32 pre 212442 212443 1318682 3198179 0 455006

post 198964 216139 1234627 1358827 0 38665
64 pre 106221 106222 667539 1909987 0 277692

post 97718 107934 589655 695072 0 22226
128 pre 53110 53111 338209 1069662 0 171944

post 47429 53960 294088 353588 0 14261
256 pre 26555 26556 208240 568869 0 104093

post 22790 26964 148151 180416 0 8791

dependencies. This leads to a much higher communication demand when updating data for

phantom nodes.

Furthermore, the imbalance noted in post-ParMETIS results is configurable in

the particular parmetis call used for partitioning. Specifically, an imbalance threshold

parameterizes the partitioning algorithm. Here the suggested default value of 1.05 is used.

This can be decreased, allowing less imbalance. Here we define the imbalance of X as

Xmax−Xmin

2×(Xmax+Xmin)
, the magnitude of the range of values divided by the average value.

A last item to consider, these resulting partition sizes — particularly for the

eight block case — are extremely high for typical simulation applications. A mesh

containing 320 million tetrahedra would typically be processed with a much larger

computational system, containing potentially thousands of processors. In such a case,

the individual partition sizes would be much smaller, and ParMETIS’s allowed imbalance

threshold would result in count discrepancies of a much smaller magnitude.

5.2.3 Partitioning Scalability Analysis

Measuring the time it takes to apply the initial partitioning is very interesting in that

it suggests certain trends regarding the performance of Splatter ’s internal data structures

and parallel communication algorithms.

70

Table 5.3 Mesh entity counts affected by ParMETIS on the eight block mesh

np state nodes,min nodes,max tets,min tets, max bnds,min bnds,max
16 pre 3399078 3399079 21092647 24367788 0 5540768

post 3349934 3448224 19839594 20418826 332053 362608
32 pre 1699539 1699540 10219866 14060663 0 3445374

post 1645069 1726669 9768743 10312563 147892 184532
64 pre 849769 849770 5134431 8878685 0 1771018

post 791311 864666 4731051 5212246 59965 107857
128 pre 424884 424885 2550270 5606273 0 904880

post 365327 432399 2202616 2677209 4412 66611
256 pre 212442 212443 1310011 3296484 0 498548

post 184512 216327 1117522 1372091 0 40676
384 pre 141628 141632 860661 2429394 0 343352

post 117012 144041 717083 921297 0 30986
512 pre 106221 106225 665911 1925250 0 289514

post 94144 108116 579290 694960 0 24968

Considering only the eight block case, Table 5.4 shows the time (in seconds) taken

to load and partition the eight block mesh in a variety of parallel contexts. In this table,

the rows have the following meaning:

1. Striped read: time to load the Star-CD file

2. Build conn: time to generate connectivity input for ParMETIS process

3. ParMETIS call: time for partitioning algorithm to complete

4. Mesh movement: time to renumber in response to partitioning

5. Phantom sync: time to collect phantom nodes from entities on partition boundaries

and their associated data

Table 5.4 highlights two problem areas for the current implementation:

1. The striped mesh reader really does perform poorly as the number of processors

increases (as per the discussion in Section 5.2.1).

2. ParMETIS does not scale with the number of processors!

71

Table 5.4 Timing of initial striped load and partitioning on the eight block mesh

np 16 32 64 128 256 384 512
Striped read 660.1 401.4 246.1 273.3 396.4 601.7 595.5
Build conn 12.3 6.7 4.2 2.4 1.3 .75 .61
ParMETIS call 29.8 22.4 61.5 81.5 172.0 272.2 308.1
Mesh movement 67.6 37.8 23.4 18.5 9.9 7.5 6.2
Phantom sync .34 .23 .17 .16 .06 .09 .08
Total time 770.14 468.53 335.37 375.86 579.66 882.24 910.49
Total - read 110.04 67.13 89.27 102.56 183.26 280.54 314.99

Problem 1 from this list will be ignored for now. As discussed above, it is not germane

to the performance of Splatter , as the load subroutine exists outside the framework. A proper

MPI IO implementation is practically guaranteed to alleviate this issue.

Problem 2 is more of an issue, and it’s no surprise — ParMETIS is known to perform

better when using fewer processors. Note: this does not mean it must create fewer partitions.

This issue is addressed in the next section, Section 5.2.4.

An interesting thing about the problem of initial partitioning is this: the amount of

work required to go from a striped file to quality partitions is highly variable. It depends

entirely on the attributes of the monolithic mesh files. As the number of partitions increase,

the amount of data that is “probably on the wrong partition” increases, and the global work

required to put everything where it belongs increases.

A simple thought experiment backs this up: if we desired a single partition, then

all data from the monolithic mesh file would be on the desired partition, immediately upon

reading the mesh in serial — requiring no extra work. Alternately, if we had a processor

for every node in the mesh, then, then every tetrahedral entity must be copied to at least 3

other partitions.

With this degree of arbitrariness, the general performance reflected in Table 5.4 —

other than the problems identified above — is highly acceptable.

The amount of time it takes to prepare the connectivity for ParMETIS scales

reasonably (approximately 60% scalability over the tested range of processor counts, for

a component of the algorithm that is inherently fast).

72

Similarly, the amount of work required to physically move all mesh data in response

to the partitioning (labeled Mesh movement in the table) scales reasonably, especially

considering the thought experiment posed above.

5.2.4 ParMETIS Improvements

It is clear from these results that ParMETIS should not be invoked on all processors

involved in the mesh for the initial partitioning. We have implemented a method that

allows fewer partitions to take part in the ParMETIS execution. Unfortunately, the current

implementation requires the processors involved in ParMETIS to physically store the entire

mesh while doing so. This will be improved in the next revision of the code.

Specifically, we create an MPI group, with a corresponding communicator, that

handles all of the initial load and distribution of the mesh. This will be replaced in the future

with a variation that allows the mesh data to be read in parallel on the entire complement

of processors, while using a restricted (smaller) set of processors just for the ParMETIS

algorithms.

Regardless, the current system does allow us to reason about the performance aspects

of the ParMETIS algorithms using fewer processors for the partitioning.

Table 5.5 illustrates timing information for these alternate configurations.

Particularly, the eight block mesh is always loaded and partitioned on 32 processors,

farming the partitioned mesh out to the entire complement of processors.

Table 5.5 Load and partitioning on fewer processors

np 32 64 128 256 384
num loaders 32 32 32 32 48
Parmetis 22.4 32.3 32.3 33.5 33.1
Mesh movement 37.8 45 45 45.8 32.2

73

In summary, improved scalability of the initial partitioning can be achieved with

a rewrite of the ParMETIS-related code. A current implementation can be invoked on

a more desirable number of processors, but the entire mesh and all data must fit in the

memory allocated to the executing processes, along with the communication buffers needed

to distribute the mesh entities. Because of the memory size of the communication buffers,

the cases for 384 and 512 processors above could not be loaded on 32 processors. The

384 processor case was partitioned on 48 processors, and the 512 processor case was not

attempted.

Splatter is capable of performing the initial parallel load and distribution of a mesh

suitably well. Certain optimizations must be made to improve the performance of the system

in general.

Note: In the introduction to this section, a system for saving and restarting the

processing of a mesh was mentioned. These mechanisms are used later in this chapter,

and do not suffer from either the IO bottlenecks or ParMETIS limitations discussed here.

Specifically, the partitioned mesh can be saved in this format as soon as partitioning is

complete. In this mode, partitioning can be treated as an offline process, meaning that

future runs need not concern themselves with the initial distribution of the mesh at all.

5.3 Adaptive Refinement and Coarsening

Splatter supports topological changes to mesh entities over the course of an

application run. Such changes impact internal framework data structures, namely the node

→ entity maps (Section 4.2.2.2) and phantom node mappings (Section 4.2.2.3). Because of

this, it is imperative that these changes either occur via framework API calls that maintain

internal data structure integrity, or are explicitly followed by calls that rebuild these internal

structures (such as part mgr::augment nodes and explicit index::build hash — see

Appendix C).

74

In this section, we describe an advanced application of the Splatter framework that

allows for the dynamic refinement and de-refinement of simplicial meshes in response to

user-defined refinement functions.

In a simulation application, these user-defined refinement functions would typically

correspond to interpretations of solution data, such as high gradients in solution variables.

Indeed, this particular application will be shown in Section 5.4.

Here, we focus on the mechanics of refinement and de-refinement, using an entirely

artificial refinement function. As such, we can explore the behaviors of extreme mesh

modification, without the overhead of actual simulation code numerics.

The test function we use is a sphere around an arbitrary coordinate point in the

mesh. Entities that intersect this sphere will be fully refined. As the experiments progress,

this sphere will move through the mesh, refining entities along its path, introducing many

additional nodes and mesh entities. In response to these dynamic mesh modifications, the

mesh partitioning will be explicitly updated to rebalance partition sizes.

Finally, de-refinement is allowed. In this case, refined entities that are too far away

from the refinement sphere are restored to their original configuration. This is a highly

complicated algorithm that makes novel use of Splatter ’s flexible index structure and query

syntax.

5.3.1 Refinement of Simplicial Entities

The purpose of mesh refinement techniques is to dynamically add extra nodes to a

mesh as an application progresses. In the regions of the mesh where these nodes are added,

mesh entities are replaced with new, smaller entities defined in terms of the additional nodes.

With more nodes in these regions, a higher resolution solution can be determined, hence this

technique is useful in regions of the mesh where high solution activity is detected.

Certain application techniques, based on particular equation discretization schemes,

include mathematical specifications for estimating the numerical discretization error of an

75

ongoing solution, throughout the mesh [34]. Such a scheme could be used to decide where

mesh refinement should occur, minimizing the detected error.

Splatter ’s refinement capabilities are separate from any such mathematical

motivation. With this framework, the user — based on an arbitrary criterion — merely

indicates which mesh entities should be broken into smaller pieces.

The algorithm used by the framework is flexible and extensible, but the current

implementation is limited to simplicial meshes.

Every tetrahedral entity marked for refinement by the user will eventually be replaced

by 8 smaller tetrahedra. A new node is introduced along each edge in the original, and these

split edges define the resulting smaller shapes. Figure 5.3 illustrates the full refinement of a

single tetrahedron.

Figure 5.3 Full refinement of a tetrahedron

Replacing these tetrahedra alone will not yield a valid polytopal complex. There must

be transition entities acting as a layer between the fully refined and unrefined entities. This

concept is demonstrated using triangular entities, for clarity, in Figure 5.4. (Note: some

applications may allow hanging nodes between adjacent mesh entities — that configuration

is supported by Splatter , but not used in this demonstration).

Further complicating this refinement algorithm is the fact that it is happening in

parallel. Special attention must accompany mesh operations along partition boundaries. All

76

Figure 5.4 The need for transition entities between fully refined and unrefined entities

processors affected by an entity refinement must agree on how to proceed. The framework

provides considerable help in designing algorithms that handle these special cases.

5.3.1.1 Mesh Refinement Algorithm

The global mesh refinement algorithm proceeds in 3 stages:

1. Mark all edges that need to be split, propagating through transition entities until the

proposed configuration yields a valid complex.

2. Request from the framework enough new global nodes to assign one to each refined

edge.

3. Replace all entities containing a marked edge with the appropriate configuration of

smaller entities such that all marked edges are split.

Stage 1 of this global algorithm proceeds according to Algorithm 5.2. This

algorithm handles the determination of transition entities according to a user-specified

entity classification function. It propagates edges marked for refinement until the resulting

discretization eliminates all hanging nodes. The end result is a list of all edges that must be

refined by the local processor. Note: as mentioned the current implementation is explicitly

77

for simplicial meshes, but this algorithm is written in terms of general entities subjected to

edge-based refinement.

input : refine edges – set of edges required to split
input : indices – collection of Splatter indices
output : refine edges – set of all edges required to split, leaving a valid complex
declare: new edges – extra edges refined during this iteration

Tell other ranks about refine edges, on partition boundaries, storing incoming edges
in refine edges

repeat
new edges ← ∅
foreach entity ent in indices adjacent to any of edges do

invoke geometry-specific test
if not TEST(ent, edges) then

introduce extra edges needed for a valid refinement
new edges ← new edges ∪ ADDITIONAL EDGES(ent, edges)

end

Tell other ranks about new edges, storing incoming edges in new edges
refine edges ← refine edges ∪ new edges

end

until global(new edges) 6= ∅

Algorithm 5.2 Propagating edge refinement

The purpose of the entity classification test (corresponding to TEST and

ADDITIONAL EDGES in Algorithm 5.2) is to ensure that when an entity is refined, the

resulting replacement entities are valid and are suitable for the application. The current

implementation of this TEST, for tetrahedra, requires that no tetrahedron have more than

3 refined edges without being fully refined. This is intended to halt the creation of small

tetrahedra with high aspect ratios, and to provide a model for future refinement of more

78

complex entities. The corresponding ADDITIONAL EDGES implementation marks extra

edges for refinement, as needed, to satisfy this TEST.

Since any call to ADDITIONAL EDGES has the affect of causing the main

propagation loop to repeat, the process continues until all parallel ranks agree that all entities

will end in a valid state (global(new edges) in the algorithm translates to an MPI Reduce

operation). Having too strict a TEST would cause this process to repeat indefinitely, with

the result of refining far more entities than would be desirable.

An obvious improvement to this algorithm would be the ability to mark certain edges

as unrefinable. With this the user would be able to keep the transition entity propagation

process from venturing into regions of the mesh where refinement should not occur, for

whatever reason.

5.3.1.2 Actual Refinement Implementation

Algorithm 5.2 is written for clarity. Several implementation details require further

explanation.

Listing 5.2 contains the actual query used to implement the inner loop of the algorithm

— basically a single pass in the transition entity propagation process. It uses a single

custom query module to simultaneously provide the TEST and ADDITIONAL EDGES

functionality. The deliver protocol (Section 4.2.3.1), as applied to the temp index result set

called new edges is used to communicate refinement information with adjacent processors.

Specifically, this query tests every mesh entity that is adjacent to any edge on the

list to be refined. The store/sort combination routes all newly refined edges to processors

impacted by the refinement — specifically, those that share a stake in any affected mesh

entity.

The custom validate tet query module is designed to analyze an incoming entity

and make sure that the set of edges to be refined will leave that entity in a usable state. This

is where custom user criteria for refinement would go. This module introduces new edges

79

to be refined as appropriate, and these are the edges that are routed to the appropriate

neighboring ranks. The source code for validate tet is included in Appendix B.

for_each(refine_edges) >>= faces_in(root_idx) >>= unique () >>=

>>= store(all_needers(true), "tet_needers")

>>= validate_tet(refine_edges)

>>= save_temp(new_edges)

>>= sort(fetch("tet_needers"), face_id(), new_edge_delivery)

Listing 5.2 Splatter query for propagating refined edges in parallel

Once this algorithm identifies all edges that must be refined, the part mgr is

requested to provide enough new global ids to assign one to each of the refined edges.

This get more nodes algorithm proceeds by calculating a new, larger, node distribution

containing an appropriate number of unused nodes on each rank. This new distribution

is applied using the standard renumber/redistribute (Section 4.3) functionality. The

new/unused nodes are associated with each edge-to-refine and these mappings are routed

using framework queries and deliver to processors in need of the data.

Lastly, a counterpart to the validate tet query module is applied that actually

replaces every refined entity with the appropriate smaller entities. Specifically, this module

is called refine tet and it has the luxury of assuming that validate tet succeeded in

enforcing a valid refinement plan for each tetrahedron. When the application of refine tet

is complete, the indices will contain the replacement tetrahedra in place of the originals.

5.3.1.3 Hooks

To further satisfy arbitrary user applications, code may be registered with the

framework to execute when new nodes and entities are created. Code thus registered is

considered a hook (or a callback) and is used typically to copy user-specific data into the

replacement entities.

80

For example, region entities are often associated with volume condition tags. Using a

refinement hook, the user can specify that when an entity is replaced during the refinement

process, the new smaller entities should inherit the original’s volume condition tag.

The presence of these hooks enables seamless integration of the described refinement

functionality with user applications.

5.3.2 Refinement Results

To demonstrate this refinement capability, we reintroduce the demonstration

described earlier in this section. An analytic refinement function defined as a sphere around

a coordinate point is introduced and moved through the mesh over the course of several

iterations. All mesh entities intersected by the sphere are fully refined. Transition entities

are propagated as needed.

For illustration, Figure 5.5 is a sequence of images generated from this test program,

on a smaller 3D mesh of 17016 nodes and 75576 tetrahedra, using 4 processors. Each

contributing rank is assigned a color.

Table 5.6 contains results from this test program run on the eight block mesh

consisting of 54 million nodes and 320 million tets. The refinement algorithm scales well

— very close to linear scaling — but the resulting partition is poorly distributed among

the processors. This imbalance leads to poor parallel performance in solve applications (see

Section 5.4).

The initial imbalances reported in Table 5.6 are allowed, as they fall within

ParMETIS’s prescribed imbalance factor. Refining the mesh introduces imbalance, which

leads to idle processors. The increased imbalance as the number of processors increases

makes sense: the refined mesh entities are consolidated onto fewer, smaller partitions, which

get proportionally larger than those containing no refinements.

Considering the relatively low percentage increase in average nodes per partition

(.26%), the magnitude of the resulting imbalance is striking.

81

a) b)

c) d)

e) f)

g) h)

Figure 5.5 Moving the refinement function through the mesh

82

Table 5.6 Partition imbalance introduced by mesh refinement

np 32 64 128
before refinement
minimum node count 1683624 820010 385772
maximum node count 1770382 902895 466734
node imbalance 1.2% 2.4% 4.7%
minimum tet count 9768743 4731051 2202616
maximum tet count 10312563 5212246 2677209
tet imbalance 1.3% 2.4% 4.8%

avg. delta node count 4511 2257 1146
avg. partition size increase .26% .26% .26%
refinement time (s) 72.7 52.3 20.8

after refinement
minimum node count 1683624 820010 385772
maximum node count 1874249 1023201 581509
node imbalance 2.7% 5.5% 10.1%
minimum tet count 9768743 4731051 2202616
maximum tet count 10896768 5915415 3329890
tet imbalance 2.7% 5.6% 10.1%

5.3.3 Load Balancing

As entities are refined, the additional nodes introduced are owned by the rank that

owned the refined entity. Left unchecked, this leads to a load imbalance in which certain

processors have an excess of work to perform. Processors with less work to do idle, waiting

for the busy processors to finish. The result is a poor use of computational resources, and

extra time required for the application to complete.

This load imbalance occurs because after refinement, certain processors are

responsible for a disproportionate number of mesh entities. To restore the balance of load,

the mesh is adaptively repartitioned.

Splatter uses ParMETIS routines, again, to calculate new, more balanced partitions.

In fact, the previous load-balancing algorithm is used here, with one small but important

modification. ParMETIS V3 PartKway is called with an adaptation flag, indicating to the

83

partitioning library that the existing partition was mostly good (which is true), it just needs

to be adjusted. The use of this flag causes ParMETIS to execute in a mode that does not

suffer from the scalability problems discussed in Section 5.2.4.

Table 5.7 illustrates the speed and quality of improvement offered by a ParMETIS

load balancing algorithm. It can be considered an extension of Table 5.6 in that the initial

entity distribution corresponds to the post-refinement balance in that table. Following those

entries is the time required to invoke ParMETIS and physically move data into a more

balanced configuration.

Table 5.7 Partition improvements through load balancing

np 32 64 128
before balancing
minimum node count 1683624 820010 385772
maximum node count 1874249 1023201 581509
node imbalance 2.7% 5.5% 10.1%
minimum tet count 9768743 4731051 2202616
maximum tet count 10896768 5915415 3329890
tet imbalance 2.7% 5.6% 10.1%

time to compute repartition (s) 27.5 19.6 10.4
time to move entities (s) 25.9 22 12.2

after balance
minimum node count 1689631 819854 385698
maximum node count 1826333 932435 490640
node imbalance 1.9% 3.2% .06%
minimum tet count 9806471 4730741 2202439
maximum tet count 10602510 5325942 2746515
tet imbalance 2% 3% 5.5%

The actual load balancing calls scale fairly well – approximately 90% scalability for

the jump from 64 to 128 processors.

84

a) b)

c) d)

e) f)

g) h)

Figure 5.6 Refining and rebalancing the load at each step

85

5.3.4 Enabling De-refinement

De-refinement, or coarsening, is a much more difficult problem than refinement. The

idea is that over the course of an application, it is determined that there are more nodes

than necessary in a given region of the mesh, and that excess nodes should be removed. As

before, mathematical error estimates could lead to a quantifiable motivation for eliminating

nodes.

General mesh coarsening is problematic in that it insinuates that the original mesh

generation process was somehow overzealous. In many cases meshes are generated with

features designed to serve an application requirement, such as orthogonal packing of mesh

entities along surface boundaries, to better resolve viscous effects. General coarsening in

these cases could have devastating effects on application results.

Furthermore, general coarsening is difficult. It is a localized mesh generation problem

in which nodes are eliminated from a mesh region, and entities are reconstructed from the

remaining nodes, using mesh generation techniques (such as Delaunay triangulation).

The approach taken presently is for de-refinement : restoring refined mesh entities

to an earlier configuration. To facilitate this, we require an elaborate bookkeeping data

structure that records all mesh modifications, so that they can be undone.

The de-refinement process proceeds as follows:

1. Identify previous mesh entities to restore.

2. Remove the smaller mesh entities that conflict with the mesh entities being restored.

3. Re-add the original mesh entity to the appropriate indices.

4. Update the bookkeeping data structure.

5. Invoke a restricted mesh refinement process to create transition entities around the

newly restored entities as needed.

6. Remove unused nodes (optional, depending on application requirements).

86

5.3.4.1 De-refinement Bookkeeping

The bookkeeping data structure must be updated every time an entity refinement is

made, to include a record of the original entity and its replacements. These replacements

may, in turn, be refined and the data structure must be able to reflect this, effectively storing

multiple levels of undo information.

Additionally, the bookkeeping data structure must be aware of the parallel context of

the mesh. Load-balancing often occurs in response to mesh refinement, meaning that nodes

and entities are renumbered and moved between processors. The bookkeeping must reflect

these numbering changes, including the movement to other processors, so that the processor

owning the related entities has the information needed to de-refine.

Lastly, since an overarching Splatter goal is to support arbitrary user data, these

refined mesh entities may be associated with arbitrary user data that must be maintained

along with the bookkeeping records. In other words, entity data also must be restored when

a refinement is undone.

Here, we present a solution that accomplishes all of the above by making elaborate

use of Splatter ’s flexible mesh data structures and query syntax. It currently only supports

simplicial mesh entities — that is, the de-refinement of tetrahedra and triangles.

The bookkeeping consists of three distinct components:

1. replacements – a mapping from original mesh entities to their replacements.

2. originals – a list of original mesh entities that may be de-refined.

3. originals pending – a secondary list of original mesh entities that are currently not

allowed to be de-refined, because their replacements have been refined. (de-refinement

must happen incrementally — one level of undo at a time).

Recall:

1. The lists and mappings comprising the bookkeeping structure must appear on the

process that owns the partition containing the related entities.

87

2. Refinement, de-refinement and load-balancing will occur periodically, meaning that the

nodes used in these lists and mappings must be updated.

In short, these bookkeeping data structures must be treated exactly like every other

tracked index in use (Section 4.3). The solution: implement these bookkeeping structures

as Splatter indices.

The framework allows the construction of additional entity types, and does not

technically require them to represent polytopes. Here, we introduce a new mesh entity

type that represents a replacement entity and its corresponding original.

The originals and pending originals indices are explicit index objects of type

topo::TET. The replacements index is an explicit index containing custom entities with

8-node tuples: the first four nodes containing the nodes in the replacement tetrahedron, the

last four containing the nodes belonging to the original (see Figure 5.7).

Figure 5.7 De-refinement information stored in a custom explicit index

By tracking these indices with the part mgr (the default behavior for those of type

explicit index), they are automatically renumbered and redistributed as appropriate,

88

whenever any global renumber/redistribute occurs, which (as seen in Section 4.3) happens

during any operation that impacts the node distribution.

To configure the part mgr to enable de-refinement, a special subroutine called

register coarsen handlers is used. This subroutine registers custom hooks for the

refinement process (Section 5.3.1.3), such that whenever entities are refined, the bookkeeping

is updated with the proper undo information.

During the de-refinement process, after the entities to be restored are identified,

queries are used to find the replacement entities that were derived from these originals.

These replacement entities will be removed from the indices and the originals will be put

back.

One complication of note: indices that do not represent polytopes, such as the special

entities comprising the replacements index, are susceptible to false positives in the search

results, using the standard fast index search structure (Section 4.2.2.2).

In the case of replacements, searching for a 4-node tetrahedron would find all 8-node

entities that happened to contain all 4 nodes, but those nodes would not be guaranteed to

exist entirely in half the tuple corresponding to a specific tetrahedron. For example, 3 of the

nodes might be in the part of the tuple representing the original entity, and the 4th might

be from the other half.

Because of this possibility, bookkeeping queries that operate on replacements must

use a secondary test on the results of the search process.

In the current implementation, this secondary test is manifested in a custom query

module called actual replacements, which is used in lieu of the standard faces in

component. This module outputs only the expected replacement entities (from replacements)

for an incoming tetrahedron. Listing B contains the heart of this query module. It

uses a special tetmatch object (an instance of splatter::picky matcher documented in

Appendix C) to filter out the false matches from the default search structure.

A final complication of note: user data may be associated with refined mesh

entities that must be restored when de-refinement occurs. To account for this, reflective

89

SQ_FILTER(idx , eltno , etype , nnodes , nodes , o)

{

// matches gets all replacements returned by

// the default search structure

intset matches = replacements.findall(4, nodes);;

for (unsigned int m=0; m < matches.size (); m++)

{

// only output the replacements that meet our secondary

// screening process

if (tetmatch (&(replacements[matches[m]][4]) , nodes))

{

o(& replacements , matches[m],

topo::TET , 4, replacements[matches[m]]);

}

}

}

Listing 5.3 Filter module that verifies the results from the default search structure

properties of the data proxy (see Section 4.2.3.8) are used to clone the data associated

with the primary tetrahedra index, attaching compatible data proxies to the original and

original pending indices. Part of the refinement hooks, as well as the main coarsening

algorithm, use the store raw functionality of data proxy to blindly copy associated data

between the bookkeeping data structures and user data structures. Thus, arbitrary user

data is automatically tracked throughout the refinement/de-refinement process, with no

user interaction necessary.

5.3.5 De-refinement Results

With coarsening configured, the refinement test using the artificial sphere refinement

function is repeated. Refined entities that fall a distance from the sphere center corresponding

to a configurable threshold are de-refined. Figure 5.8 and Figure 5.9 illustrate this process.

Table 5.8 contains the results of this refinement/coarsening demonstration run on

the single block mesh introduced in Section 5.2.2. 7 iterations were run, each iteration

containing a coarsening stage and a refinement stage.

90

a) b)

c) d)

e) f)

g) h)

Figure 5.8 Refining, de-refining and rebalancing the load at each step

91

i) j)

k) l)

m) n)

o) p)

Figure 5.9 Refining, de-refining and rebalancing the load at each step

92

For each iteration, the following results are reported:

1. entities de-refined: the global number of mesh entities that will be restored. This

number does not attempt to count distinct entities; that is, entities shared along

partition boundaries will be counted multiple times.

2. de-ref time: the number of seconds to process the de-refinement.

3. entities refined: The initial number of tetrahedron being fully refined. The actual

refinement count will be more due to the subsequent calculation of transition entities.

4. refinement time: the number of seconds to process the refinement.

5. node count: the average number of nodes owned per processor.

6. tet count: the average number of volume entities existing on each processor.

7. boundary cont: the average number of triangular boundary entities existing on each

processor.

8. phantom node count: the average number of non-local nodes required per processor.

9. memory usage: the maximum size in kilobytes of a single processors virtual memory.

10. iteration time: the wall clock time taken to evaluate the entire process

coarsening/refinement

Table 5.8 Refinement and de-refinement of the single block mesh

Processor Count 16 32 64 128

INITIAL

node count 424885 212442 106221 60825

tet count 2570163 1298160 657397 334037

boundary count 43891 22066 11104 5601

Continued on next page

93

Table 5.8 Refinement and de-refinement of the single block mesh

Processor Count 16 32 64 128

phantom node count 23438 16943 11498 7715

memory usage (kb) 429456 409060 335372 319796

ITERATION 0

entities de-refined 0 0 0 0

de-ref time (s) 9.22 3.99 1.84 0.96

entities refined 44749 45841 46877 48169

refinement time (s) 28.30 12.30 6.68 3.48

node count 455271 214952 107476 53738

tet count 2601453 1315408 666479 338203

boundary count 44319 22173 11160 5633

phantom node count 25367 17992 12214 7940

memory usage (kb) 695348 527920 395804 345848

iteration time (s) 53.2 23.8 12.9 7.9

ITERATION 1

entities de-refined 0 0 0 0

de-ref time (s) 27.39 10.40 5.63 3.46

entities refined 82140 85606 85501 85834

refinement time (s) 34.93 23.10 10.95 5.38

node count 439040 219520 109760 54880

tet count 2656365 1341236 679692 345479

boundary count 44436 22329 11248 5674

phantom node count 26244 17846 12261 8215

memory usage (kb) 821756 600756 421872 365372

iteration time (s) 84.6 46.8 23.0 12.9

ITERATION 2

entities de-refined 83733 83381 84953 86052

de-ref time (s) 59.61 43.80 21.27 17.50

Continued on next page

94

Table 5.8 Refinement and de-refinement of the single block mesh

Processor Count 16 32 64 128

entities refined 103518 105863 105648 108613

refinement time (s) 45.72 23.18 11.86 6.60

node count 446676 223338 111669 55835

tet count 2704577 1364338 693405 351507

boundary count 44515 22364 11276 5686

phantom node count 27751 18298 13304 8430

memory usage (kb) 846916 622584 465468 482864

iteration time (s) 124.25 76.59 40.27 29.60

ITERATION 3

entities de-refined 187082 187772 193030 192870

de-ref time (s) 67.96 46.63 22.03 26.09

entities refined 103792 103582 107598 107693

refinement time (s) 49.49 22.66 13.15 6.15

node count 449575 224788 112394 56197

tet count 2723090 1373950 695970 355070

boundary count 44402 22310 11233 5676

phantom node count 28460 18750 12702 9020

memory usage (kb) 862012 650108 504428 567244

iteration time (s) 147.01 84.34 44.18 37.78

ITERATION 4

entities de-refined 258287 258644 262169 272252

de-ref time (s) 76.23 36.51 25.64 22.72

entities refined 102874 102681 105170 108317

refinement time (s) 61.59 27.49 11.72 5.98

node count 449491 224747 112375 56186

tet count 2720675 1381067 695882 355052

boundary count 44368 22322 11229 5672

Continued on next page

95

Table 5.8 Refinement and de-refinement of the single block mesh

Processor Count 16 32 64 128

phantom node count 27776 21472 12725 9027

memory usage (kb) 868604 663836 547936 567244

iteration time (s) 168.97 80.49 48.38 34.47

ITERATION 5

entities de-refined 261615 269655 266529 274482

de-ref time (s) 125.24 41.51 26.03 20.92

entities refined 102771 106200 106151 111656

refinement time (s) 50.65 32.86 13.20 5.85

node count 44952 0 224762 112385 56196

tet count 2721186 1375045 697439 355542

boundary count 44368 22306 11238 5671

phantom node count 27853 19232 13306 9202

memory usage (kb) 872232 664396 553576 567244

iteration time (s) 204.60 93.77 48.49 32.28

ITERATION 6

entities de-refined 257427 262433 268309 274919

de-ref time (s) 52.00 73.38 31.32 19.62

entities refined 102411 103727 106727 109618

refinement time (s) 54.25 35.08 13.34 6.39

node count 449772 224902 112452 56230

tet count 2722006 1375929 696357 355523

boundary count 44363 22315 11226 5674

phantom node count 27708 19228 10353 12702

memory usage (kb) 872284 669788 560036 567244

iteration time (s) 137.75 125.31 54.55 31.69

Valuable insight from this table:

96

1. The refinement algorithm is highly scalable, with an average strong scaling percentage

of 101% over the course of these iterations, up to 128 processors.

2. The coarsening algorithm – not quite as impressive as the refinement – with an average

strong scaling percentage of 54%. This is a reasonable figure given the complexity of

the bookkeeping, as well as the extreme nature of the refinement and coarsening done

during the tests.

3. Each iteration roughly results in an equal number of additions and subtractions from

the mesh. This is evidenced by the near constant node, tet and boundary counts.

Correspondingly, the total memory size remains effectively constant over the runs.

This demonstration and analysis reflects highly usable algorithms. Considering that

most real applications will take a far greater amount of time simply to perform application

calculations, the time it takes to update and manipulate the mesh will be dwarfed by other

concerns in a real application, as seen in the next section.

5.4 Integration with Real Applications

Splatter exists to support real applications. In this section, we discuss the process

by which the framework may be integrated with an existing computational fluid dynamics

simulation.

An initial 3D CFD flow solver, written in C++, was taken and modified in the

following ways:

1. All mesh-IO routines were removed. The original solver required a preliminary offline

partitioning process. Framework mesh loading operations, such as those implemented

in Appendix A were used instead, allowing the use of standard save/restart capability

or on-the-fly load-and-partition of monolithic Star-CD format meshes.

97

2. All parallel communication related routines were either removed, to be handled

automatically by Splatter , or replaced by similar framework-aware calls. This part

was optional, but done to test framework capabilities.

3. All mesh data structures were replaced, via a global, textual search and replace, with

the equivalent std::vector’s. This was to enable the direct attachment of user data

with existing splatter::data proxy implementations

4. The construction of all ancillary data structures affected by mesh connectivity, such

as the compressed row storage indices for the mesh’s corresponding linear system,

were moved into a single subroutine call that was subsequently registered as a

RENUMBER HOOK (Section 4.3.1) with the part mgr.

Most of these changes were simple textual processes. The more structural

modifications were somewhat complicated in that the original solver was written by someone

else. The process of modifying it for Splatter involved identifying certain data structures that

were somewhat obscure. All in all, the process of preparing the solver was straightforward

and took a matter of days.

After these changes, the solver ran exactly as before. The only real change to the

application process involved the initial mesh loading and partitioning. However, since it

was now fully integrated with the framework, all of the queries and modifications mentioned

throughout this document were applicable.

Specifically, we added the ability to dynamically refine the mesh in response to flow

solution data. This required, in addition to the changes already made, the identification of

data refinement rules — that is, the registration of REFINEMENT HOOKS (Section 5.3.1.3)

for passing entity data, such as node coordinates and volume condition tags, to the new nodes

and entities introduced during the refinement process.

This was a trivial process, since all of the data relationships were identified during

the initial Splatter integration process.

98

5.4.1 Flow Solver Performance

To analyze the performance of the Splatter -augmented flow solver, a series of flow

simulations were performed on a small mesh with 45372 nodes and 327916 tetrahedra. These

tests were executed on 8, 16 and 32 processors.

Figure 5.10 illustrates the results of solution-based refinement. After achieving a first

order solution, the flow field was refined by marking cells with high gradients of solution

variables, and having Splatter fully refine the marked cells. Figure 5.10 demonstrates the

results of one of these runs.

Figure 5.10 Refining the flow field in response to solution variables

For the following tests, a first order solution was achieved prior to the timed tests. The

following results indicate the relative performance of the solver executing several iterations

of a 2nd order solution process.

99

Table 5.9 contains average iteration times in wall clock seconds for this 2nd order

process, run on a variety of processor counts.

Table 5.9 Solver times on various processor counts

np 8 16 32 strong scaling
base time 2.73 1.62 1.07 0.63785047
time with refinement 12.18 6.56 3.71 0.82075472
time with refinement and load balancing 5.8 3.06 1.81 0.80110497

The specific mesh refinement case executed introduced a significant number of new

nodes due to the particular refinement function invoked. This accounts for the significant

performance drop between the base fun time and the run with full refinement and load

balancing. Furthermore, it is clear that refinement without load balancing is a bad idea.

Specifically, Table 5.10 contains the before and after average local mesh sizes from

the load-balancing process, to gauge the amount of extra work introduced by the refinement

process. It also contains the average number of phantom nodes before and after the load-

balancing process.

Lastly, it contains the time taken to execute the refinement and load balancing

algorithms.

Considering the relatively high level of refinement in these cases, Splatter ’s

contribution to the total runtime is low. The load-balancing functionality, in particular,

provides a major service using a minimal amount of time.

These results provide some context for the performance analyses in the previous

sections. Compared to typical application work, the framework’s manipulation of the mesh

takes a small amount of time.

100

Table 5.10 Mesh entities created by refinement, and time required

np 8 16 32
initial node count 5672 2831 1418
initial phantom node count 762 572 452
initial tet count 31703 16329 8560

refinement time (s) .89 .62 .47
phantom node count (pre load-balance) 1137 883 702

load balancing time (s) .70 .63 .54

final node count 11927 5936 2982
final phantom node count 1213 1049 756
final tet count 68482 35186 18275

101

CHAPTER 6

CONCLUSION

Splatter is a new mesh management framework characterized by extreme flexibility

and easy integration with application codes.

The unique embedded query syntax provides a high level of expressibility, leading to

increased correctness and ease of development. The query system is highly optimized C++

code, so this flexibility does not come with a penalty on performance.

The ability to programmatically define mesh entity types, along with the existence

of these queries, presents a general unstructured mesh as a database. It is hoped that the

inherent flexibility in this configuration will enable experimental applications beyond the

traditional scientific uses of unstructured meshes.

The framework’s data model, based on the use of proxies, untethers framework

logic from the underlying data structures. The end result is a powerful model for data

manipulation that assures data integrity despite complex mesh manipulations and parallel

redistributions.

It is this same notion of proxies that allows for the straightforward integration

with application codes. By attaching to existing user data structures, the framework can

manipulate user data without requiring ubiquitous and cryptic API calls.

The design and implementation of this framework has been discussed in detail, and

specific applications of the framework have been demonstrated. In particular, the framework

has been used for refinement and de-refinement of unstructured meshes, along with parallel

load balancing. Performance analysis has been very encouraging.

Finally, the integration of the framework with a working 3D computational flow solver

has been discussed, proving that the framework is suitable for real scientific applications.

102

6.1 Future Work

The current Splatter implementation is hopefully the starting point for many

interesting future projects.

Most generally, since the framework is based on a standard C++ class model,

additional advanced capabilities can be added to the framework through the extension of

classes. Particularly, new index types can be designed that use different search structures,

optimized for different algorithms, and new data proxies can be implemented to further the

integration capabilities with existing codes.

Of particular interest is a data proxy capable of operating on Fortran data. This, it

is assumed, will be one of the first such extensions.

Additionally, the query syntax can be improved without breaking existing

compatibility. The most pressing improvement to the query system is the existence of hybrid

parallel (multithreaded) queries, as multi-core hardware is now commonplace.

Also, a tighter integration with mesh data would allow more functionality to be

implemented directly in the query syntax, instead of in surrounding code or custom query

modules. A static query analyzer that helps in writing high performance queries — or at

least interpreting cryptic compiler errors — would be very welcome.

Other future ideas relate to the tightening integration of Splatter with existing

software libraries. PETSc [35] is a remarkable tool for solving nonlinear equations and

linear systems in parallel. Integrating PETSc’s solvers into Splatter queries would allow for

the rapid development of new simulation codes.

Similarly, several movements are afoot to define the interfaces between interchange-

able scientific software components. Two of note are ITAPS [17] and the Common

Component Architecture[36]. It would be a boon to have Splatter integration with either of

these projects.

103

Splatter provides an efficient implementation of a very flexible design. Hopefully it

will be used for some interesting applications. The specifics of those applications will define

the future of this software.

104

REFERENCES

[1] Oliker, L., Biswas, R., and Gabow, H. N., “Parallel tetrahedral mesh adaptation with

dynamic load balancing,” Parallel Computing , Vol. 26, No. 12, 2000, pp. 1583–1608.

[2] Garimella, R., “A Practical Guide to Developing and Using Mesh and Geometry

Frameworks for Advanced Meshing and Computational Software,” International

Meshing Roundtable, Oct. 2011, pp. 1–62.

[3] De Floriani, L. and Hui, A., “Shape representation based on simplicial and cell

complexes,” Eurographics 2007 - State of the Art Reports , 2007, pp. 63–87.

[4] Kremer, M., Bommes, D., and Kobbelt, L., “OpenVolumeMesh–A Versatile Index-

Based Data Structure for 3D Polytopal Complexes,” Proceedings of the 21st

International Meshing Roundtable, 2012, pp. 531–548.

[5] Garimella, R. V. and Shephard, M. S., “Boundary layer mesh generation for viscous

flow simulations,” International Journal for Numerical Methods in Engineering , Vol. 49,

No. 1, 2000, pp. 193–218.

[6] Kapadia, S., Computational Design and Sensitivity Analysis of Solid Oxide Fuel Cells ,

Ph.D. thesis, University of Tennessee at Chattanooga, July 2008.

[7] McKenney, P. E., Is Parallel Programming Hard, And, If So, What Can You Do About

It? , kernel.org, Aug. 2012.

[8] Seol, E. S., FMDB: Flexible Distributed Mesh Database for Parallel Automated Adaptive

Analysis , Ph.D. thesis, Rensselaer Polytechnic Institute, Nov. 2005.

105

[9] Beall, M. and Shephard, M. S., “A general topology-based mesh data structure,”

International Journal for Numerical Methods in Engineering , Vol. 40, No. 9, 1997,

pp. 1573–1596.

[10] Zhou, M., Xie, T., Seol, E. S., Shephard, M. S., Sahni, O., and Jansen, K. E.,

“Tools to support mesh adaptation on massively parallel computers,” Engineering with

Computers , Vol. 28, No. 3, April 2011, pp. 287–301.

[11] Shephard, M. S., Seol, E. S., Smith, C., Mubarak, M., Ovcharenko, A., and Sahni,

O., “Methods and Tools For Parallel Anisotropic Mesh Adaptation And Analysis,”

Proceedings of the VI International Conference on Adaptive Modeling and Simulation,

May 2013.

[12] Zhou, M., Sahni, O., Shephard, M. S., Carothers, C., and Jansen, K. E., “Adjacency-

based data reordering algorithm for acceleration of finite element computations,”

Scientific Programming , Vol. 18, No. 2, 2010, pp. 107–123.

[13] Xie, T., Mesh Data Management Components for Petascale Adaptive Unstructured Mesh

Based Simulations , Ph.D. thesis, Rensselaer Polytechnic Institute, 2012.

[14] Devine, K. D., Diachin, L., Kraftcheck, J. A., Jansen, K. E., Leung, V., Luo, X., Miller,

M., Ollivier-Gooch, C., Ovcharenko, A., Sahni, O., Shephard, M. S., Tautges, T. J., Xie,

T., and Zhou, M., “Interoperable mesh components for large-scale, distributed-memory

simulations,” Journal of Physics: Conference Series , Vol. 180, Aug. 2009, pp. 012011.

[15] Rensselaer Polytechnic Institute, The FMDB User’s Guide, Aug. 2012.

[16] Ledoux, F., Weill, J.-C., and Bertrand, Y., “GMDS: A Generic Mesh Data Structure,”

17th International Meshing Roundtable, United States , 2008.

[17] “ITAPS Interfaces,” http://www.itaps-scidac.org/software/download_

interfaces.html, 2011, [Online; accessed 8-July-2011].

106

http://www.itaps-scidac.org/software/download_interfaces.html
http://www.itaps-scidac.org/software/download_interfaces.html

[18] Tautges, T. J., Ernst, C., Stimpson, C., Meyers, R. J., and Merkley, K., “MOAB: a

mesh-oriented database.” Tech. rep., Sandia National Laboratories, April 2004.

[19] Garimella, R., “MSTK-a flexible infrastructure library for developing mesh based

applications,” Proceedings of 13th International Meshing Roundtable, 2004, pp. 203–

212.

[20] “STK-Home,” http://trilinos.sandia.gov/packages/stk/, 2013, [Online; accessed

9-May-2013].

[21] Kirk, B. S., Peterson, J. W., Stogner, R. H., and Carey, G. F., “libMesh: A C++

Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations,” Engineering

with Computers , Vol. 22, No. 3–4, 2006, pp. 237–254, http://dx.doi.org/10.1007/

s00366-006-0049-3.

[22] “Mesh Generation Software for CFD - Pointwise,” http://www.pointwise.com, 2013,

[Online; accessed 30-Sep-2013].

[23] “CFD General Notation System,” http://cgns.org, 2013, [Online; accessed 25-Aug-

2013].

[24] The MPI Forum, C., “MPI: a message passing interface,” Proceedings of the Conference

on High Performance Networking and Computing , 1993, pp. 878–883.

[25] Segal, J., “SECSE: Some Challenges Facing Software Engineers Developing Software

for Scientists,” Software Development Processes for Computational Science and

Engineering , March 2009, pp. 9–14.

[26] Celes, W., Paulino, G. H., and Espinha, R., “A compact adjacency-based topological

data structure for finite element mesh representation,” International Journal for

Numerical Methods in Engineering , Vol. 64, No. 11, 2005, pp. 1529–1556.

[27] McGuire, M., “The Half-Edge Data Structure,” http://www.flipcode.com/archives/

The_Half-Edge_Data_Structure.shtml, 2013, [Online; accessed 30-Sep-2013].

107

http://trilinos.sandia.gov/packages/stk/
http://dx.doi.org/10.1007/s00366-006-0049-3
http://dx.doi.org/10.1007/s00366-006-0049-3
http://www.pointwise.com
http://cgns.org
http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml
http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml

[28] Karypis, G. and Kumar, V., “A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs,” SIAM Journal on Scientific Computing , Vol. 20, No. 1,

Dec. 1998.

[29] Schloegel, K., Karypis, G., and Kumar, V., “Graph partitioning for high-performance

scientific simulations,” Sourcebook of parallel computing , Jan. 2003.

[30] Catalyurek, U. V. and Aykanat, C., “Hypergraph-partitioning-based decomposition

for parallel sparse-matrix vector multiplication,” IEEE Transactions on Parallel and

Distributed Systems , Vol. 10, No. 7, July 1999.

[31] Teresco, J., Devine, K. D., and Flaherty, J., “Partitioning and dynamic load balancing

for the numerical solution of partial differential equations,” Numerical solution of partial

differential equations on parallel computers , 2006, pp. 55–88.

[32] Devine, K. D., Boman, E. G., Riesen, L., Catalyurek, U. V., and Chevalier, C., “Getting

started with zoltan: A short tutorial,” Proc. Dagstuhl Seminar Combinatorial Scientific

Computing, Also Sandia National Labs Tech Report SAND2009-0578C , 2009.

[33] “ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering,” http:

//glaros.dtc.umn.edu/gkhome/metis/parmetis/overview, 2013, [Online; accessed

6-Sep-2013].

[34] Frey, P.-J. and Alauzet, F., “Anisotropic mesh adaptation for CFD computations,”

Computer methods in applied mechanics and engineering , Vol. 194, No. 48, 2005,

pp. 5068–5082.

[35] Balay, S., Brown, J., , Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D.,

Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H., “PETSc Users Manual,”

Tech. Rep. ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

108

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[36] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L.,

Parker, S., and Smolinski, B., “Toward a common component architecture for high-

performance scientific computing,” Proceedings of the 8th International Symposium on

High Performance Distributed Computing , 1999, pp. 115–124.

109

APPENDIX A

DEMONSTRATION APPLICATION

110

1 // splatter refine/coarsening demo

2
3 #include <splatter.h>

4 #include <splatt_query.h>

5 #include <splatt_coarsen.h>

6 #include <splatt_geom.h>

7 #include <unistd.h> // for getopt

8
9 using namespace splatter;

10
11
12 // This custom query module is used to mark tets for refinement

13 class on_radius : public query :: query_op

14 {

15 public:

16 on_radius(const array <double ,3> center ,

17 const double radius ,

18 const std::vector <starcd :: node_coords >& coords) :

19 center(center), radius2(radius*radius), coords(coords)

20 {}

21
22
23 // return true if tet should be refined

24 // SQ_COND makes this query module usable in a ’where’ clause

25 SQ_COND(idx , eltno , etype , nnodes , nodes)

26 {

27 // does the radius arc through this face?

28 bool has_closer_node = false;

29 bool has_farther_node = false;

30
31 for (int n=0; n<nnodes && !(has_closer_node && has_farther_node);

n++)

32 {

33 // get distance from center , squared

34 int gn = (*odbp).g2l_p(nodes[n]);

35 bool farther = (geom:: dist2(coords[gn], center)-radius2) >0;

36
37 if (farther)

38 {

39 has_farther_node = true;

40 }

41 else

42 {

43 has_closer_node = true;

44 }

45 }

46
47 if (has_farther_node && has_closer_node)

48 {

49 return true;

111

50 }

51 else

52 {

53 return false;

54 }

55 }

56
57
58 private:

59 ownerdb* odb;

60 array <double , 3> center;

61 double radius2;

62 const std::vector <starcd :: node_coords >& coords;

63 };

64
65
66 // This custom query module is used to mark tets for de -refinement

67 class outside_radius : public query :: query_op

68 {

69 public:

70 outside_radius(const array <double ,3> center ,

71 const double radius_in ,

72 const double radius_out ,

73 const std::vector <starcd :: node_coords >& coords) :

74 center(center), radiusin2(radius_in*radius_in),

75 radiusout2(radius_out*radius_out),coords(coords)

76 {}

77
78
79 SQ_COND(idx , eltno , etype , nnodes , nodes)

80 {

81 // are all nodes wihtin the radius?

82 bool all_closer=true;

83 bool all_farther=true;

84
85 for (int n=0; n<4; n++)

86 {

87 // get distance from center , squared

88 int gn = (*odbp).g2l_p(nodes[n]);

89
90 if (gn == -1) // this is so that the refinement process

will

91 // get rid of this

92 {

93 return true;

94 }

95
96 double dist=geom:: dist2(coords[gn], center);

97
98 bool closer = dist <radiusin2;

99 bool farther =dist >radiusout2;

112

100
101 all_closer &= closer;

102 all_farther &= farther;

103 }

104
105
106 return all_closer | all_farther;

107 }

108
109
110
111 private:

112 ownerdb* odb;

113 array <double , 3> center;

114 double radiusin2 , radiusout2;

115 const std::vector <starcd :: node_coords >& coords;

116 };

117
118 // include some uninteresting query modules for calculating mesh volumes

119 #include "volparts.cpp"

120
121 // Hook argument for tet refinement

122 struct tet_ref_arg

123 {

124 std::vector <starcd :: tet_cond_data >* vcondp;

125 };

126
127
128 // Hook argument for triangle refinement

129 struct tri_ref_arg

130 {

131 std::vector <starcd :: bnd_cond_data >* bcondp;

132 };

133
134
135 // Hook argument for node refinement

136 struct node_ref_arg

137 {

138 std::vector <starcd :: node_coords >* coordsp;

139 };

140
141
142 // forward declaration of refinement hooks

143 void new_tet_cond(part_mgr* mgr , void* edgesp , void* udata);

144 void new_node_coords(part_mgr* mgr , void* edgesp , void* udata);

145
146
147 // TODO: make this not global

148 std::vector <int > tet_is_refined;

149
150

113

151 // forward declaration of demo -specific utility for calculating "big

circle" radius

152 void get_bounds(const std::vector <starcd :: node_coords >& nc , const

parallel_ctx& ctx ,

153 double* lowxp , double* hixp ,

154 double* lowyp , double* hiyp ,

155 double* lowzp , double* hizp);

156
157
158
159 // parameters , set by getopt , configuring this demo invocation

160
161 struct runcfg

162 {

163 bool do_load;

164 bool do_restart;

165 bool do_balance;

166 bool init_decomp;

167 std:: string project;

168 bool do_save;

169 bool do_init_save;

170 bool do_final_save;

171 std:: string save_name;

172 bool do_coarsen;

173 int num_iterations;

174 int num_loaders;

175 int coarsen_interval;

176 int refine_interval;

177 int subdivs; // inverse speed of refinement front

178 double circle_rad; // circle radius

179 double coarsen_thresh;

180 int fast_forward;

181 };

182
183
184 static const char* usage_str =

185 "-l <int > -- number of loaders of starcd project\n"

186 "-p <projectname > -- starcd project to load\n"

187 "-r <restartname > -- restart file to load (incompatible with -p)\n"

188 "-o <restartname > -- output restart filename\n"

189 "-i <int > -- number of iterations\n"

190 "-S -- save decomp ’d version after loading\n"

191 "-F -- save final version at end of iterations\n"

192 "\n"

193 "-c -- enable coarsening\n"

194 "-b -- disable load balancing\n"

195 "-B -- disable initial partitioning\n"

196 "\n"

197 "-C <int > -- coarsening interval (default to 1)\n"

198 "-R <int > -- refinement interval (default to 1)\n"

199 "\n"

114

200 "-v <int > -- subdivision of xy area to calculate circle xy delta\n"

201 "-d <double > -- circle radius\n"

202 "-t <double > -- coarsening threshold\n"

203 "-f <int > -- fast forward refinement iterations\n"

204 ;

205
206
207 // forward declaration of routine that handles options

208 status configure_run(runcfg& cfg , int argc , char** argv , int numload);

209
210
211
212
213 // Without further ado , the main routine ...

214
215
216 int main(int argc , char** argv)

217 {

218 MPI_Init (&argc , &argv);

219
220 // ’big_circle ’ parameters

221 double zero[] = { -5.0, -5,0, 0.0 };

222 double p110[] = { 1, 1, 0 };

223
224 // set up circles

225 array <double ,3> circle_center = zero;

226 array <double ,3> circle_delta = p110;

227
228 double circle_refine_radius= 5;

229 double circle_coarsen_thresh = .1;

230
231 // filename used for restart files

232 std:: string outfile;

233
234
235 // the starcd loader will populate these

236 std::vector <starcd :: node_coords > coords; // node coordinates

237 std::vector <int > tets; // tet nodes

238 std::vector <starcd :: tet_cond_data > vcond; // tet volume conditions

239 std::vector <int > bnds; // boundary (triangle)

nodes

240 std::vector <starcd :: bnd_cond_data > bcond; // boundary conditions

241
242
243 LLOG(0, "in the beginning");

244
245
246 // this guy is in charge of everything -- load it with the

247 // standard mesh entities , default MPI configuration ,

248 // and initialize immediately

249 part_mgr mgr(topo:: num_std_entities , topo:: std_entities);

115

250
251
252 // configure this run using getopt

253 runcfg cfg;

254 if (configure_run(cfg , argc , argv , mgr.pctx().np()) != SPLATT_OK)

255 {

256 if (mgr.pctx().rank() == 0)

257 {

258 std::cout << usage_str <<std::endl;

259 }

260
261 ERROR("error configuring run");

262 }

263
264
265 // runtime configuration complete

266 // -------------

267
268
269 // Timers to analyze performance of routines

270 timer total_timer;

271 timer part_timer;

272
273
274 // reroute std(err|out) to files

275 if (mgr.pctx().np() > 1)

276 {

277 mgr.pctx().rebind_stdio ();

278 }

279
280
281
282 int namelen =0;

283 char proc_name[MPI_MAX_PROCESSOR_NAME];

284 MPI_Get_processor_name(proc_name , &namelen);

285
286 LOG("rank " << mgr.pctx().rank() << " of " << mgr.pctx().np() << " on

" << proc_name);

287 LOG("project: " << cfg.project);

288 LOG("nloaders: " << cfg.num_loaders);

289 LOG("num iterations: " << cfg.num_iterations);

290 LOG("coarsening: " << (cfg.do_coarsen ? "true" : "false"));

291 LOG("load balancing: " << (cfg.do_balance ? "true" : "false"));

292 LOG("initial decomp: " << cfg.init_decomp);

293
294
295 // TBL is a macro that logs information in a format that can easily be

296 // converted to a CSV file using an offline script provided as part of

the

297 // framework

298 TBL(-1, "rank", mgr.pctx().rank());

116

299
300
301 // Configure indices

302 // ------------------

303 // this sets up the initial node ownership

304 splatter ::index* idx = mgr.get_node_index ();

305
306 // register node data

307 idx ->attach_data("coords", splatter :: proxy (coords));

308
309 // set up tet index from vector loaded above; this index introduces

310 // phantom dependencies , and should have a fast node search.

311 idx = mgr.add_explicit_index("tets", topo::TET , tets ,

312 SPLATT_PHANTOM_DEPS | SPLATT_FAST_INDEX);

313 // attach the tet data vector to this index

314 idx ->attach_data("vcond", splatter :: proxy(vcond));

315
316
317 // set up boundary index from vector loaded above

318 // no phantom deps needed , since these are handled by the tets , above

319 idx = mgr.add_explicit_index("bnds", topo::TRI , bnds ,

SPLATT_FAST_INDEX);

320
321 // attach bnd data vector to this index

322 idx ->attach_data("bcond", splatter :: proxy(bcond));

323
324
325
326 // external data structure maintaining de -refinement bookkeping data

327 coarsen_kernel* coarsenk=NULL;

328
329
330 if (cfg.do_coarsen)

331 {

332 // register appropriate refinement hooks with the framework , to

handle

333 // the updating of de -refinement bookkeeping

334 coarsenk = register_coarsening_handlers (&mgr ,

335 mgr.get_index("tets"),

336 mgr.get_index("bnds"));

337
338 }

339
340
341
342
343
344 // load the mesh on cfg.nloaders processors

345
346
347 bool involved_in_init=false;

117

348
349 MPI_Group fullgroup;

350 MPI_Group loadgroup;

351 MPI_Comm loadercomm;

352 MPI_Comm_group(mgr.pctx().comm(), &fullgroup);

353
354 // temporary parallel context for file load

355 parallel_ctx loader_ctx;

356
357
358 if (cfg.do_restart)

359 {

360 // load mesh and data from restart files with name cfg.project

361
362 part_timer.start ();

363 int onp = mgr.load(cfg.project);

364
365 LOG("TIME: initial restart load took " << part_timer.time());

366 TBL(-1, "*restart_load", part_timer.time());

367
368 // log diagnostics about virtual memory usage

369 LOG_MEM(-1, "post_load_restart");

370
371 // error code

372 if (onp == 0)

373 {

374 ERROR("invalid restart project: " << cfg.project);

375 }

376
377 if (onp == mgr.pctx().np())

378 {

379 // the restart files were loaded by the same number of

processors

380 // that created them

381
382 LOG("no need to rebalance after restart");

383 cfg.init_decomp=false;

384 }

385 else

386 {

387 // the restart files were loaded on more processors than

orginally

388 // created them , so they must be repartitioned

389
390 LOG("need to rebalance: " << onp << " of " << mgr.pctx().np()

<< " had data");

391 if (mgr.pctx().rank() < onp)

392 {

393 involved_in_init = true;

394 }

395

118

396 // create an MPI_COMM for the ranks involved in initial IO/

parmetis

397 std::vector <int > loaderranks(onp);

398 for (unsigned int i=0; i < loaderranks.size(); i++)

399 {

400 loaderranks[i]=i;

401 }

402
403 // create MPI communicator containing processors with valid

mesh data

404 MPI_Group_incl(fullgroup , onp , &loaderranks [0], &loadgroup);

405 MPI_Comm_create(mgr.pctx().comm(), loadgroup , &loadercomm);

406 }

407
408 }

409 else

410 {

411 // ------------------

412 // LOAD Monolithic mesh files in parallel

413
414 // create an MPI_COMM for the ranks involved in initial IO/

parmetis

415 std::vector <int > loaderranks(cfg.num_loaders);

416 for (unsigned int i=0; i < loaderranks.size(); i++)

417 {

418 loaderranks[i]=i;

419 }

420
421 if (mgr.pctx().rank() < cfg.num_loaders)

422 {

423 involved_in_init = true;

424 }

425
426 MPI_Group_incl(fullgroup , cfg.num_loaders , &loaderranks [0], &

loadgroup);

427 MPI_Comm_create(mgr.pctx().comm(), loadgroup , &loadercomm);

428
429 part_timer.start ();

430 if (involved_in_init)

431 {

432 loader_ctx.init(loadercomm);

433 assert(loader_ctx.rank() == mgr.pctx().rank());

434
435 part_timer.start ();

436 LLOG(0, "loading data files");

437
438 // call the starcd routines

439 if (starcd :: load_all(cfg.project , loader_ctx , coords , tets ,

vcond , bnds , bcond)

440 == SPLATT_FAIL)

441 {

119

442 ERROR("failed to load "<<cfg.project <<" files");

443 MPI_Abort(mgr.pctx().comm(), -1);

444 }

445 LLOG(0, "file loading took " << part_timer.time());

446 TBL(-1, "*project_load", part_timer.time());

447 }

448 else

449 {

450 TBL(-1, "*project_load", -1);

451 }

452
453
454 // non -loaders wait here

455 MPI_Barrier(mgr.pctx().comm());

456 LOG("TIME: initial load took " << part_timer.time());

457
458 LLOG(0, "files loaded on " << cfg.num_loaders << " of " << mgr.

pctx().np() << " nodes");

459 LOG_MEM(-1, "post_load_proj");

460 LLOG(0, "number of coords: " << coords.size());

461 LLOG(0, "number of tets: " << (tets.size()/4));

462 LLOG(0, "number of bnds: " << (bnds.size()/3));

463
464 TBL(-1, "coords_pref", coords.size());

465 TBL(-1, "tets_pref", (tets.size()/4));

466 TBL(-1, "bnds_pref", (bnds.size()/3));

467
468
469 // mesh data is loaded on first nloader ranks

470
471 // build node distribution out of local vector sizes

472 mgr.config_node_index(coords.size());

473
474
475 part_timer.start ();

476
477 // route all entities to processors that own the corresponding

nodes

478 mgr.finalize_load ();

479
480 LOG("TIME: finalize_load () took " << part_timer.time());

481 TBL(-1, "*finalize_load", part_timer.time());

482 }

483
484
485 LLOG(0, "log/finalize complete");

486 LOG_MEM(-1, "predecomp");

487 LLOG(0, "number of coords: " << coords.size());

488 LLOG(0, "number of tets: " << (tets.size()/4));

489 LLOG(0, "number of bnds: " << (bnds.size()/3));

490

120

491 TBL(-1, "coords_load", coords.size());

492 TBL(-1, "tets_load", (tets.size()/4));

493 TBL(-1, "bnds_load", (bnds.size()/3));

494
495
496 // The mesh is loaded. Do initial partitioning if needed.

497
498 if (cfg.init_decomp)

499 {

500 int edgecut;

501 std::vector <int > new_numbering;

502 std::vector <int > new_node_dist;

503
504 LLOG(0, "initiating [or waiting for] initial decomp");

505 part_timer.start ();

506 if (involved_in_init)

507 {

508 // call ParMETIS routines to generate new node numbering and

distribution

509
510 decomp(loadercomm , mgr.get_index("tets"), mgr.pctx().np(), &

edgecut ,

511 mgr.get_ownerdb (),

512 new_numbering , new_node_dist , false , -1);

513
514 }

515 else

516 {

517 LOG("TIME: parmetis call took -1");

518 TBL(-1, "*parmetis", -1);

519 }

520
521 LOG("TIME: decomp call took " << part_timer.time());

522 TBL(-1, "*decomp", part_timer.time());

523
524 MPI_Barrier(mgr.pctx().comm());

525
526 part_timer.start ();

527
528 {

529 // communicate new node distribution with processors

uninvolved in

530 // decomp

531 mgr.pctx().broadcast(new_node_dist);

532
533 // invoke the global mesh renumber/redistribute routines to

update the entire mesh

534 LLOG(0, "initial renumbering of post -decomp ’d mesh");

535 mgr.renumber(new_numbering , new_node_dist);

536 }

121

537 LOG("TIME: initial renumber (for decomp) took " << part_timer.time

());

538 TBL(-1, "*renumber_init", part_timer.time());

539 }

540
541
542 MPI_Barrier(mgr.pctx().comm());

543 part_timer.start ();

544 LLOG(0, "augmenting nodes at end of iteration");

545
546 // build phantom node maps and update phantom node data

547 mgr.augment_nodes ();

548 LOG("TIME: augment_nodes took " << part_timer.time());

549 TBL(-1, "*augment_init", part_timer.time());

550
551 LOG_MEM(-1, "post_augment1");

552
553 LLOG(0, "ready to run");

554 LLOG(0, "initial node dist: " << mgr.get_ownerdb ());

555 LLOG(0, "initial tet dist: " << mgr.get_index("tets")->size());

556 LLOG(0, "initial bnd dist: " << mgr.get_index("bnds")->size());

557
558 TBL(-1,"nlocal_init", mgr.get_ownerdb ().nlocal ());

559 TBL(-1, "coords_init", coords.size());

560 TBL(-1, "tets_init", (tets.size()/4));

561 TBL(-1, "bnds_init", (bnds.size()/3));

562
563
564
565 LLOG(0, "initial decomp/data distribution complete");

566
567
568 mgr.pctx().barrier ();

569
570
571 // save post -decomp restart files if desired

572
573
574 if (cfg.do_init_save)

575 {

576 outfile = cfg.save_name + "init";

577 mgr.save_start(outfile);

578 mgr.save_node_data("coords");

579 // mgr.save_data ("tets", "refstat ");

580 mgr.save_end ();

581 }

582
583
584 // stop here , unless we are actually running the refinement demo

585 if (cfg.num_iterations <= 0)

586 {

122

587 LOG("the end (no iterations)");

588 MPI_Finalize ();

589 exit (0);

590 }

591
592
593 // register refinement hooks

594
595 // uncomment these to update tet and boundary data during refinement

596 // mgr.register_hook(SPLATT_REFINE_HOOK , topo::TRI , hookify(

new_bnd_cond , &bcond));

597 // mgr.register_hook(SPLATT_REFINE_HOOK , topo::TET , hookify(

new_tet_cond , &vcond));

598 mgr.register_hook(SPLATT_REFINE_HOOK , topo::NODE , hookify(

new_node_coords , &coords));

599
600 explicit_index* tet_idx = mgr.get_index("tets");

601 explicit_index* bnd_idx = mgr.get_index("bnds");

602
603 // refinement flag to avoid too much refinement in this demo

604 tet_idx ->attach_data("tet_is_refined", proxy(tet_is_refined));

605
606 if (cfg.do_coarsen)

607 {

608 // make sure the "tet_is_refined" data is restored when de -

refining

609 coarsen_track_tet(coarsenk , "tet_is_refined");

610 }

611
612
613
614 part_timer.start ();

615 LLOG(1, "building fast indices");

616
617 // pre -build search structures.

618
619 mgr.build_fast_indices ();

620 LOG("TIME: build_fast_indices took "<< part_timer.time());

621 TBL(-1, "*build_fast_idx", part_timer.time());

622
623
624 // set up circle based on actual dimensions of mesh and runtime

configuration

625 double lowx , lowy , lowz , hix , hiy , hiz;

626 get_bounds(coords , mgr.pctx(), &lowx , &hix , &lowy , &hiy , &lowz , &hiz);

627 double delx = hix -lowx , dely=hiy -lowy , delz=hiz -lowz;

628
629 circle_center [0] = lowx;

630 circle_center [1] = lowy;

631 circle_center [2] = delz /2.0;

632 double smallest = delx;

123

633 if (dely < smallest) smallest = dely;

634 if (delz < smallest) smallest = delz;

635
636 if (cfg.circle_rad < 0)

637 {

638 circle_refine_radius = delx /2.1;

639 }

640 else

641 {

642 circle_refine_radius = cfg.circle_rad;

643 }

644
645 LOG("refine radius: " << circle_refine_radius);

646
647
648 circle_delta [0] = delx / cfg.subdivs;

649 circle_delta [1] = dely / cfg.subdivs;

650
651 if (cfg.coarsen_thresh >=0)

652 {

653 circle_coarsen_thresh = cfg.coarsen_thresh;

654 }

655 LOG("coarsening threshold factor: " << circle_coarsen_thresh);

656
657 LOG("refinement interval: " << cfg.refine_interval);

658 LOG("coarsening interval: " << cfg.coarsen_interval);

659
660
661 if (cfg.fast_forward > 0)

662 {

663 LOG("fast -forwarding refinement front");

664 for (int f=0; f<cfg.fast_forward; f++)

665 {

666 if (f % cfg.refine_interval == 0)

667 {

668 circle_center = circle_center + circle_delta;

669 }

670
671 }

672 }

673
674
675 // Begin refinement / coarsening circle propogation

676
677
678
679 for (int current_circle_iteration = 0;

680 current_circle_iteration < cfg.num_iterations;

681 current_circle_iteration ++)

682 {

683 timer iteration_timer;

124

684
685 LOG_MEM(current_circle_iteration , "iter start");

686
687 using namespace splatter ::query;

688 LOG("beginning big_circle iteration " << current_circle_iteration)

;

689
690 // coarsening

691 if (cfg.do_coarsen && current_circle_iteration % cfg.

coarsen_interval == 0)

692 {

693 std::deque <int > to_coarsen;

694
695
696 // mark entities for de -refinement

697
698 mgr.query(

699 for_each(coarsen_candidates(coarsenk)) >>=

700
701 where(outside_radius(circle_center ,

702 (1.0- circle_coarsen_thresh)*

circle_refine_radius ,

703 (1.0+ circle_coarsen_thresh)*

circle_refine_radius ,

704 coords)) >>=

705
706 save_ids(to_coarsen) >>=

707 end()

708);

709
710 TBL(current_circle_iteration , "chgcoarsen", to_coarsen.size())

;

711 LOG("CHANGE: coarsening " << to_coarsen.size() << "/" << mgr.

pctx().reduce ((int)to_coarsen.size(), MPI_SUM));

712
713 part_timer.start ();

714
715 // **** DE -REFINE THEM ****

716 do_coarsen(coarsenk , to_coarsen);

717
718 LOG("TIME: coarsening took " << part_timer.time());

719 TBL(current_circle_iteration , "*tmcoarsen", part_timer.time())

;

720 }

721
722
723 LOG_MEM(current_circle_iteration , "iter mid");

724
725 // refinement

726 if (current_circle_iteration % cfg.refine_interval == 0)

727 {

125

728 circle_center = circle_center + circle_delta;

729
730
731 std::deque <int > to_refine;

732
733 {

734 // mark entities for refinement

735
736 mgr.query(

737 all_faces("tets") >>=

738
739 // this test marks tet_ref_status

740 where(on_radius(circle_center , circle_refine_radius ,

coords)) >>=

741 where(negate(flag(tet_is_refined , 1))) >>=

742 save_ids(to_refine) >>= end()

743);

744 }

745
746
747 TBL(current_circle_iteration , "chgrefine", to_refine.size());

748 LOG("CHANGE: refining " << to_refine.size() << "/" << mgr.pctx

().reduce ((int)to_refine.size(), MPI_SUM));

749 part_timer.start ();

750
751 // **** REFINE THEM ****

752 mgr.refine_marked("tets", to_refine , coarsenk , mgr.get_index("

bnds"));

753
754 LOG("TIME: refining took " << part_timer.time());

755 TBL(current_circle_iteration , "*tmrefine", part_timer.time());

756 }

757
758 LOG_MEM(current_circle_iteration , "iter postref");

759
760 // purge remote data for loadbalance

761 mgr.clear_phantom_data ();

762 mgr.remove_unused_nodes ();

763 int edgecut;

764
765 if (cfg.do_balance)

766 {

767
768 std::vector <int > new_numbering;

769 std::vector <int > new_node_dist;

770
771 // call ParMETIS in adaptation mode

772
773 LLOG(0,"decomp ’ing to adapt");

774 part_timer.start ();

775 decomp(mgr.pctx().comm(), mgr.get_index("tets"),

126

776 mgr.pctx().np(), &edgecut ,

777 mgr.get_ownerdb (),

778 new_numbering , new_node_dist , true ,

779 current_circle_iteration); // true ->adapt

780 LOG("TIME: decomp (for load -balancing) took " << part_timer.

time());

781 TBL(current_circle_iteration , "*decomp", part_timer.time());

782
783
784 LLOG(0, "renumbering to balance load");

785 part_timer.start ();

786
787 // apply the new numbering and distribution

788
789 mgr.renumber(new_numbering , new_node_dist);

790 LOG("TIME: renumber for load balance took " << part_timer.time

());

791 TBL(current_circle_iteration , "*renumber", part_timer.time());

792 }

793
794 // rebuild phantom data

795 mgr.augment_nodes ();

796
797
798 // save restart files if required

799 if (cfg.do_save || (current_circle_iteration == cfg.num_iterations

-1 && cfg.do_final_save))

800 {

801 // save restart file

802 outfile = cfg.save_name + "iter -" + stringify(

current_circle_iteration);

803 mgr.save_start(outfile);

804 mgr.save_node_data("coords");

805 // mgr.save_data ("tets", "refstat ");

806 mgr.save_end ();

807 }

808
809 double mintet;

810
811
812 LOG("end of iteration " << current_circle_iteration << "; total

volume: " <<

813 total_tet_volume(mgr , coords , &mintet) << " | total area: " <<

total_tri_area(mgr , coords));

814 LOG("minimum tet volume: " << mgr.pctx().reduce(mintet , MPI_MIN));

815 LOG("TIME: iteration " << current_circle_iteration << " took " <<

iteration_timer.time());

816 TBL(current_circle_iteration , "*itertime", iteration_timer.time())

;

817
818 LOG("SIZE: nodes: " << mgr.get_ownerdb ());

127

819 LOG("SIZE: tets: " << tet_idx ->size() << "/" << mgr.pctx().reduce

((int)tet_idx ->size(), MPI_SUM));

820 LOG("SIZE: bnds: " << bnd_idx ->size() << "/" << mgr.pctx().reduce

((int)bnd_idx ->size(), MPI_SUM));

821
822 TBL(current_circle_iteration , "nlocal_iter", mgr.get_ownerdb ().

nlocal ());

823 TBL(current_circle_iteration , "coords_iter", coords.size());

824 TBL(current_circle_iteration , "tets_iter", (tets.size()/4));

825 TBL(current_circle_iteration , "bnds_iter", (bnds.size()/3));

826 LOG_MEM(current_circle_iteration , "iter final");

827
828 }

829
830 LOG("the end");

831 MPI_Finalize ();

832 }

833
834
835
836 // refinement hooks

837 void new_node_coords(part_mgr* mgr , void* edgesp , void* udata)

838 {

839 const ownerdb& odb = mgr ->get_ownerdb ();

840 std::vector <starcd :: node_coords >& coords = *(std::vector <starcd ::

node_coords >*) udata;

841
842 temp_index& edge_map =*((temp_index *)(edgesp));

843 const std::vector <int >& nmap = edge_map.data(refine_id_tag , std::

vector <int >());

844
845 // for each refined edge , set the new node coordinate to the center of

the

846 // edge

847
848 for (int e=0; e<edge_map.size(); e++)

849 {

850 if (odb.owns(nmap[e]))

851 {

852 int nn = odb.g2l(nmap[e]);

853 int n1 = odb.g2l_p(edge_map[e][0]);

854 int n2 = odb.g2l_p(edge_map[e][1]);

855
856 coords[nn] = (coords[n1] + coords[n2]) * 0.5;

857 }

858 }

859 }

860
861 void new_tet_cond(part_mgr* mgr , void* cbdata , void* udata)

862 {

128

863 std::vector <starcd :: tet_cond_data >& vcond =*((std::vector <starcd ::

tet_cond_data >*) udata);

864
865 // propogate volume condition and tet_is_refined into new replacement

tets

866
867 refine_arg* arg = (refine_arg *) cbdata;

868 for (int n=0; n<arg ->numnew; n++)

869 {

870 vcond[arg ->newent[n]] = vcond[arg ->oldent];

871 tet_is_refined[arg ->newent[n]]=1;

872 }

873 }

874
875
876
877
878
879 // get extent of mesh to calculate reasonable sphere radius for testing

880 void get_bounds(const std::vector <starcd :: node_coords >& nc , const

parallel_ctx& ctx ,

881 double* lowxp , double* hixp ,

882 double* lowyp , double* hiyp ,

883 double* lowzp , double* hizp)

884
885 {

886 double lowx = nc [0][0];

887 double hix = nc [0][0];

888 double lowy = nc [0][1];

889 double hiy = nc [0][1];

890 double lowz = nc [0][2];

891 double hiz = nc [0][2];

892
893 for (unsigned int n=1; n<nc.size(); n++)

894 {

895 double x = nc[n][0];

896 if (x < lowx) lowx=x;

897 if (x > hix) hix=x;

898
899 x = nc[n][1];

900 if (x < lowy) lowy=x;

901 if (x > hiy) hiy=x;

902
903 x = nc[n][2];

904 if (x < lowz) lowz=x;

905 if (x > hiz) hiz=x;

906 }

907
908 *lowxp = ctx.reduce(lowx , MPI_MIN);

909 *hixp = ctx.reduce(hix , MPI_MAX);

910 *lowyp = ctx.reduce(lowy , MPI_MIN);

129

911 *hiyp = ctx.reduce(hiy , MPI_MAX);

912 *lowzp = ctx.reduce(lowz , MPI_MIN);

913 *hizp = ctx.reduce(hiz , MPI_MAX);

914
915 return;

916 }

917
918
919
920 // run this after MPI_Init

921 status configure_run(runcfg& cfg , int argc , char** argv , int numload)

922 {

923 bool usage_err = false;

924 int ch;

925
926 // defaults

927 cfg.do_load=false;

928 cfg.do_restart=false;

929 cfg.do_save=false;

930 cfg.init_decomp=true;

931 cfg.do_init_save=false;

932 cfg.do_final_save=false;

933 cfg.project="trial";

934 cfg.save_name="";

935 cfg.do_coarsen=false;

936 cfg.num_iterations =0;

937 cfg.num_loaders=numload;

938 cfg.do_balance=true;

939 cfg.coarsen_interval =1;

940 cfg.refine_interval =1;

941 cfg.subdivs =-1;

942 cfg.circle_rad =-1;

943 cfg.coarsen_thresh =-1;

944 cfg.fast_forward =0;

945
946
947 while ((ch = getopt(argc , argv , "l:p:ci:r:bo:C:R:v:?f:d:t:SFB")) !=

-1)

948 {

949 switch (ch)

950 {

951 case ’l’:

952 cfg.num_loaders = atoi(optarg);

953 if (cfg.num_loaders <= 0) usage_err=true;

954 break;

955
956 case ’p’:

957 cfg.do_load=true;

958 cfg.project=std:: string(optarg);

959 break;

960

130

961 case ’c’:

962 cfg.do_coarsen=true;

963 break;

964
965 case ’i’:

966 cfg.num_iterations = atoi(optarg);

967 if (cfg.num_iterations < 0) usage_err=true;

968 break;

969
970 case ’r’:

971 cfg.do_restart=true;

972 cfg.project=std:: string(optarg);

973 break;

974
975 case ’b’:

976 cfg.do_balance=false;

977 break;

978
979 case ’o’:

980 cfg.do_save=true;

981 cfg.save_name=std:: string(optarg)+"-";

982 break;

983
984 case ’S’:

985 cfg.do_init_save=true;

986 break;

987
988 case ’F’:

989 cfg.do_final_save=true;

990 break;

991
992 case ’C’:

993 cfg.coarsen_interval = atoi(optarg);

994 if (cfg.coarsen_interval <= 0) usage_err=true;

995 break;

996
997 case ’R’:

998 cfg.refine_interval = atoi(optarg);

999 if (cfg.refine_interval <= 0) usage_err=true;

1000 break;

1001
1002 case ’v’:

1003 cfg.subdivs = atoi(optarg);

1004 if (cfg.subdivs <= 0) usage_err=true;

1005 break;

1006
1007 case ’d’:

1008 cfg.circle_rad = atof(optarg);

1009 if (cfg.circle_rad < 1E-6) usage_err=true;

1010 break;

1011

131

1012 case ’t’:

1013 cfg.coarsen_thresh = atof(optarg);

1014 if (cfg.coarsen_thresh < 1E-6) usage_err=true;

1015 break;

1016
1017 case ’B’:

1018 cfg.init_decomp=false;

1019 break;

1020
1021
1022 case ’?’:

1023 std::cout << usage_str << std::cerr;

1024 MPI_Finalize ();

1025 exit (0);

1026
1027
1028 case ’f’:

1029 cfg.fast_forward = atoi(optarg);

1030 if (cfg.fast_forward < 0) usage_err=true;

1031 break;

1032
1033
1034 default:

1035 usage_err=true;

1036 }

1037 }

1038
1039 if (usage_err == true || (cfg.do_load && cfg.do_restart))

1040 {

1041 return SPLATT_FAIL;

1042 }

1043
1044 if (cfg.subdivs == -1)

1045 {

1046 cfg.subdivs = cfg.num_iterations;

1047 }

1048
1049 if (! cfg.do_restart)

1050 {

1051 cfg.do_load=true;

1052 }

1053
1054 return SPLATT_OK;

1055
1056 }

132

APPENDIX B

TETRAHEDRA VALIDATION QUERY MODULE

133

1
2 // This custom query module is used to process a tet stream , checking the

3 // currently refined edges and verifying that the resulting discretization

4 // will leave usable smaller tets. It outputs additional edges that must

be

5 // refined for the configuration to be valid.

6
7 class validate_tet : public splatter ::query :: query_op

8 {

9 public:

10 // initialize with internal status vector and temp_index containing

11 // current refinement candidates

12
13 validate_tet(std::vector <int >& refstat , const temp_index& edges) :

14 refstat(refstat), edges(edges)

15 {}

16
17
18 // This method does the job of a query filter module

19
20 SQ_FILTER(idx , eltno , etype , nnodes , nodes , o)

21 {

22 int edge[] = { nodes[0], nodes[1],

23 nodes [0], nodes [2],

24 nodes [0], nodes [3],

25 nodes [1], nodes [2],

26 nodes [1], nodes [3],

27 nodes [2], nodes [3] };

28
29 // 1 or 2 refined edges , or exactly 3 co -facial edges is ok ,

30 // More than this requires full tet validation

31 // --

32
33
34
35 // Partition tet edge lists into refined and unrefined

36 std::vector <int > rpart (6);

37 int rcount =0; int end=5;

38 for (int e=0; e< 12; e+= 2)

39 {

40 if (edges.find(&edge[e]) == -1)

41 {

42 // unrefined

43 rpart[end --]=e;

44 }

45 else

46 {

47 // refined

48 rpart[rcount ++]=e;

49 }

134

50 }

51
52 assert(rcount ==end +1);

53 refstat[eltno] = rcount;

54
55
56 if (rcount == 1) // refining one edge is always ok

57 {

58 return;

59 }

60
61
62 if (rcount == 2) // refining two edges requires the third

63 // cofacial edge if it exists

64 {

65 /* add 3rd cofacial edge if possible */

66 int lastedge [2];

67
68 if (edge[rpart [0]] == edge[rpart [1]])

69 {

70 lastedge [0] = edge[rpart [0]+1];

71 lastedge [1] = edge[rpart [1]+1];

72
73 // output new edge

74 o(NULL , -1, topo::EDGE ,2, lastedge);

75 refstat[eltno]=3;

76 return;

77 }

78 else if (edge[rpart [0]] == edge[rpart [1]+1])

79 {

80 lastedge [0] = edge[rpart [0]+1];

81 lastedge [1] = edge[rpart [1]];

82
83 // output new edge

84 o(NULL , -1, topo::EDGE ,2, lastedge);

85 refstat[eltno]=3;

86 return;

87 }

88 else if (edge[rpart [0]+1] == edge[rpart [1]])

89 {

90 lastedge [0] = edge[rpart [0]];

91 lastedge [1] = edge[rpart [1]+1];

92
93 // output new edge

94 o(NULL , -1, topo::EDGE ,2, lastedge);

95 refstat[eltno]=3;

96 return;

97 }

98 else if (edge[rpart [0]+1] == edge[rpart [1]+1])

99 {

100 lastedge [0] = edge[rpart [0]];

135

101 lastedge [1] = edge[rpart [1]];

102
103 // output new edge

104 o(NULL , -1, topo::EDGE ,2, lastedge);

105 refstat[eltno]=3;

106 return;

107 } else

108 {

109 // no cofacial edge , so we leave it at 2

110 // TRACE(11, "not a cofacial edge ...");

111 return;

112 }

113 }

114
115
116 if (rcount == 3)

117 {

118 // make sure the three refined edges are cofacial

119 if (edgeloop (&edge[rpart [0]], &edge[rpart [1]], &edge[rpart

[2]]))

120 {

121 return;

122 }

123
124 // otherwise we refine the whole tet

125 }

126
127 // refine the whole tet

128 // TRACE(11, "need to refine the whole tet! " << edgecount);

129
130 refstat[eltno] = MAX_TET_EDGES;

131
132 // output all previously unrefined edges , indicating that they

need to

133 // be refined

134 for (unsigned int e=rcount; e<6; e++)

135 {

136 o(NULL , -1, topo::EDGE , 2, &edge[rpart[e]]);

137 }

138
139 return;

140 }

141
142 private:

143 std::vector <int >& refstat;

144 const temp_index& edges;

145 }

136

APPENDIX C

API DOCUMENTATION

137

Introduction

The following pages describe the public methods for the major classes of the Splatter

framework.

Data Structures

C.1 splatter::part mgr Class Reference

C.1.1 Detailed Description

part mgr is the main access point for users.

It is used to create and manipulate indices, as well as provide global mesh operations such

as renumber().

It is responsible for maintaining all local content (currently based on MPI’s reported rank)

and provides user access to relevant information via the ownerdb.

It maintains the overall topological mapping between indices, and ensures that index

modifications are propogated properly – as long as they occur through the proper channels.

C.1.2 Constructor & Destructor Documentation

C.1.2.1 part mgr::part mgr (int num ent, const entity cfg ∗ cfg, bool

doinit = true)

Construct a new part mgr

138

Parameters

num ent number of entities in cfg

cfg pointer to an appropriate topology configuration

doinit true if the part mgr should immediately initialize usign the default

parallel ctx

C.1.2.2 splatter::part mgr::part mgr ()

Construct a new part mgr using topo::std entities. Requires an explicit call to init()

C.1.3 Member Function Documentation

C.1.3.1 status part mgr::init (parallel ctx pctx = parallel ctx())

Initialize this part mgr with the specified parallel ctx. Default to an auto-configured

parallel ctx based on MPI COMM WORLD

C.1.3.2 status part mgr::finalize load ()

Make sure initial distribution of all indices is correct. Call only after calling part mgr-

::config node index and adding any other desired indices

C.1.3.3 splatter::implicit index ∗ part mgr::config node index (int size,

int node type = 0)

Designate size and other behavior (via flags) of the primary node index.

139

Parameters

size number of local nodes owned by this rank

node type index in topo cfg for nodes

flags extra parameters for index creation

Returns

handle to node index

C.1.3.4 splatter::explicit index ∗ part mgr::add explicit index (std::string

name, int entity type, std::vector< int > & nodes, int flags =

0)

Add a new homogeneous explicit index

Parameters

name tag for this set of faces

entity type index in topo cfg for this face type

nodes vector of node ids definining the faces for this index

flags extra parameters for index creation

Returns

handle to created index

C.1.3.5 splatter::explicit index ∗ part mgr::add explicit index (std::string

name, int entity type, int flags = 0)

Add a new homogeneous explicit index without loading nodes

140

Parameters

name tag for this set of faces

entity type index in topo cfg for this face type

flags extra parameters for index creation

Returns

handle to created index

C.1.3.6 splatter::explicit index ∗ part mgr::add explicit index notype (

std::string name, int width, int flags = 0)

Add a new homogeneous explicit index without loading nodes or specifying an entity type

Parameters

name tag for this set of faces

width number of nodes per entity

flags extra parameters for index creation

Returns

handle to created index

C.1.3.7 splatter::implicit index ∗ splatter::part mgr::get node index ()

Get the index managing node data

Returns

null if index is not configured

141

C.1.3.8 splatter::explicit index ∗ part mgr::get index (std::string name)

Get a named index

142

Parameters

name name (tag) of desired index

Returns

null if index cannot be found

C.1.3.9 status part mgr::track (temp index ∗ idx)

Track a temp index. A tracked index provides phantom node dependencies and is

renumbered

Parameters

idx pointer to temp index that should be tracked

C.1.3.10 status part mgr::untrack (temp index ∗ idx)

Untrack a temp index

Parameters

idx pointer to temp index that should be untracked

C.1.3.11 const parallel ctx & splatter::part mgr::pctx () const

Access of this mesh’s parallel ctx

Returns

a const reference to this part mgr’s parallel ctx

C.1.3.12 const ownerdb & splatter::part mgr::get ownerdb () const

Access the authority of node/entity ownership for this mesh

143

Returns

a const reference to this part mgr’s ownerdb

C.1.3.13 ownerdb splatter::part mgr::make ownerdb (std::vector< int >

nd)

Create a new ownerdb out of a user-specified node distribution

Parameters

nd the node distribution to use – the user is responsible for making sure it

works with the current parallel ctx

Returns

the new ownerdb (by value)

C.1.3.14 const entity cfg ∗ splatter::part mgr::get etypes () const

Get current array of valid entity types

Returns

a const pointer to the topological configuration

C.1.3.15 status part mgr::augment nodes (std::list< temp index ∗ >

extras = std::list<temp index∗>())

Collect all phantom nodes from indices flagged SPLATT PHANTOM DEPS and those that are

explicitly tracked and those passed in the parameter to this method.

144

Parameters

extras explicit list of temp index∗ from which to extract phantom nodes

C.1.3.16 status part mgr::sync all node data ()

Update data associated with all phantom nodes

Returns

success or failure

C.1.3.17 status part mgr::sync node data (std::string tag)

Update data named tag associated withphantom nodes

Returns

success or failure

C.1.3.18 template<typename T > status splatter::part mgr::sync node data (

std::vector< T > & dat, int size per = 1)

Sync unattached data, assuming normal index/data relationship with nodes

Parameters

dat node data to sync

size per data count per node

Returns

success or failure

145

C.1.3.19 template<typename T > status splatter::part mgr::sync raw node -

data (T ∗ dat, int size per = 1)

Sync unattached data, assuming normal index/data relationship with nodes

146

Parameters

dat node data to sync

size per data count per node

Returns

success or failure

C.1.3.20 status part mgr::renumber (const std::vector< int > & newgids,

std::list< temp index ∗ > externals = std::list<temp index∗>()

)

Renumber the mesh, and optionally any temp index’s specified

Parameters

newgids vector of new global ids for the nodes owned by this rank

externals list of temp index∗ to also renumber

C.1.3.21 status part mgr::renumber (const std::vector< int > & newgids,

const std::vector< int > & dist, std::list< temp index ∗ >

externals = std::list<temp index∗>())

Renumber and redistribute the mesh, and optionally any temp index’s specified

Parameters

newgids vector of new global ids for the nodes owned by this rank

147

dist new node distribution array

externals list of temp index∗ to also renumber

C.1.3.22 status part mgr::remove unused nodes (std::list< temp index ∗ >

externals = std::list<temp index∗>())

Purge all nodes that do not appear in any index

Parameters

externals list of temp index∗ to check for used nodes

Returns

success or failure

C.1.3.23 status part mgr::build fast indices ()

Pre-build search structures for all indices flagged SPLATT FAST INDEX

Returns

success or failure

C.1.3.24 status part mgr::build phantom map (std::list< temp index ∗ >

extras = std::list<temp index∗>())

Do not call

C.1.3.25 status part mgr::build node sync map ()

Do not call

148

C.1.3.26 status part mgr::clear phantom data ()

Remove all phantom node maps and data

Returns

success or failure

C.1.3.27 status part mgr::get more nodes (int amt, int ∗ newstart,

std::list< temp index ∗ > externals = std::list<temp index∗>()

)

Request the creation of more nodes

Parameters

amt number of nodes needed on the local partition

newstart output variable for new starting node id

externals list of temp index to renumber after getting more nodes

C.1.3.28 template<typename T > status splatter::part mgr::query (T op)

Querying the mesh

Parameters

op the query

Returns

success or failure

149

C.1.3.29 status part mgr::set query data (std::string name, std::deque<

int > ∗ data)

do not call (reserved for query usage)

C.1.3.30 std::deque< int > ∗ part mgr::get query data (std::string name

)

do not call (reserved for query usage)

C.1.3.31 status part mgr::register hook (hook entry point, int entity,

app hook ∗ hook)

Register callback for when certain action occurs

Parameters

point event to trigger callback (e.g., SPLATT RENUMBER HOOK or SPLATT REFINE-

HOOK)

entity type of entity for this hook to process, if applicable

hook the callback function

Returns

success or failure

C.1.3.32 void part mgr::dump ()

Print out various information about the state of the mesh

150

C.1.3.33 status part mgr::refine marked (std::string indexname,

std::deque< int > & marked, explicit index ∗ next = NULL)

Refine the contents of index with specified positions

151

Parameters

indexname name of index to refine

marked collection of entity ids to refine

next secondary index affected by refinement

Returns

success or failure

C.1.3.34 status part mgr::refine marked (std::string index name,

std::deque< int > & marked, coarsen kernel ∗ kernel,

explicit index ∗ next = NULL)

Refine the contents of index with specified positions, allowing de-refinement

Parameters

indexname name of index to refine

marked collection of entity ids to refine

kernel handle on derefinement bookkeeping

next secondary index affected by refinement

Returns

success or failure

C.1.3.35 status part mgr::refine marked opt (std::string indexname,

std::deque< int > & marked, temp index & edgemap,

std::vector< int > & new ids, std::vector< int > &

unused nodes, explicit index ∗ next = NULL)

Internal refinement. Do not call

152

C.1.3.36 void splatter::part mgr::inhibit hooks ()

Supress all hooks

C.1.3.37 void splatter::part mgr::enable hooks ()

Reactivate all hooks

C.1.3.38 void part mgr::call hooks ()

Explicitly trigger all renumber hooks

C.1.3.39 status part mgr::save start (std::string path prefix)

Initiate creation of restart files

Parameters

path prefix location of restart files

Returns

success or failure

C.1.3.40 status part mgr::save node data (std::string tag)

Save node data in current restart files

Parameters

153

tag node data tag to save

Returns

success or failure

C.1.3.41 status part mgr::save data (std::string idx, std::string tag)

Save index data in current restart files

Parameters

idx index whose data should be saved

tag data tag to save

Returns

success or failure

C.1.3.42 status part mgr::save end ()

Finish creation of all restart files

Returns

success or failure

C.1.3.43 int part mgr::load (std::string path prefix)

Restore part mgr state from restart files

Returns

number of nodes loaded

154

C.2 splatter::parallel ctx Class Reference

C.2.1 Detailed Description

Container of all MPI details for the current mesh

C.2.2 Constructor & Destructor Documentation

C.2.2.1 parallel ctx::parallel ctx (MPI Comm comm) [explicit]

Instantiate with provided MPI communicator

Parameters

comm the MPI communicator to use

C.2.2.2 parallel ctx::parallel ctx () [explicit]

Instantiate placeholder context. Requires init() prior to use

C.2.2.3 parallel ctx::parallel ctx (const parallel ctx & other)

Create new parallel ctx using values from another

Parameters

other the other parallel ctx to copy

C.2.3 Member Function Documentation

C.2.3.1 void parallel ctx::init (MPI Comm comm)

Initialize this parallel ctx

155

Parameters

comm the MPI communicator to use

C.2.3.2 void parallel ctx::rebind stdio (int ignore rank = - 1,

std::string file prefix = "") const

Rebind stdout/stderr to file stdout.<rank>

Parameters

ignore rank MPI rank that should continue printing to stdout

file prefix optional prefix before stdout/stderr in filename

C.2.3.3 int splatter::parallel ctx::np () const

Returns

number of processors in this MPI communicator

C.2.3.4 int splatter::parallel ctx::rank () const

Returns

this process’s rank on this MPI communicator

C.2.3.5 MPI Comm& splatter::parallel ctx::comm () const

Returns

this MPI communicator

156

C.2.3.6 int splatter::parallel ctx::root () const

Returns

rank of processor considered the official source in broadcast

C.2.3.7 template<typename T > T splatter::parallel ctx::reduce (T in,

MPI Op op) const

Wrapper around MPI Reduce

Parameters

in local data for reduction

op MPI operator for reduction

Returns

global reduction value

C.2.3.8 template<typename T > void splatter::parallel ctx::broadcast (

std::vector< T > & vec, int root = - 1) const

Wrapper around MPI Broadcast

Parameters

vec data to broadcast

root source of official data (see root() if -1 is used

C.2.3.9 void parallel ctx::barrier () const

Wrapper around MPI Barrier

157

C.2.3.10 parallel ctx & parallel ctx::operator= (const parallel ctx & other

)

Assignment operator

158

Parameters

other the source of the assigned values

C.3 splatter::ownerdb Class Reference

C.3.1 Detailed Description

Container of all parallel distribution / node ownership data

C.3.2 Constructor & Destructor Documentation

C.3.2.1 splatter::ownerdb::ownerdb ()

Public constructor: creates invalid ownerdb

C.3.3 Member Function Documentation

C.3.3.1 bool splatter::ownerdb::owns (int g) const

Parameters

g the global node id being considered

Returns

true iff the local processor owns global node g

C.3.3.2 int splatter::ownerdb::owner (int g) const

159

Parameters

g the global node id being considered

Returns

the rank of hte process that owns global node g

C.3.3.3 int splatter::ownerdb::me () const

Returns

the local processor’s rank

C.3.3.4 int splatter::ownerdb::np () const

Returns

the number of processors in this MPI communicator

C.3.3.5 int splatter::ownerdb::high () const

Returns

the high node id (exclusive) assigned to the local rank

C.3.3.6 int splatter::ownerdb::low () const

Returns

the low node id (inclusive) assigned to the local rank

C.3.3.7 int splatter::ownerdb::g2l (int g) const

160

Parameters

g the global node id being considered

Returns

the corresponding local node id, assuming it is owned locally

C.3.3.8 int splatter::ownerdb::l2g (int l) const

Parameters

l the local node id being considered

Returns

the corresponding global node id, assuming l is valid

C.3.3.9 int splatter::ownerdb::g2l p (int g) const

Parameters

g the global node id being considered

Returns

the corresponding local node id, assuming it is owned locally or a phantom node

C.3.3.10 int splatter::ownerdb::l2g p (int l) const

161

Parameters

l the local node id being considered

Returns

the corresponding local node id, assuming it is owned locally or a phantom node

C.3.3.11 int splatter::ownerdb::nlocal () const

Returns

the number of nodes owned locally

C.3.3.12 int splatter::ownerdb::nglobal () const

Returns

the number of global nodes

C.3.3.13 int splatter::ownerdb::nlocal p () const

Returns

the total number of local nodes, including phantom nodes

C.3.3.14 int splatter::ownerdb::nphantom () const

Returns

the number of phantom nodes locally

162

C.3.3.15 const int ∗ splatter::ownerdb::node dist () const

Returns

the underlying node distribution

C.3.3.16 const parallel ctx & splatter::ownerdb::pctx () const

Returns

the underlying parallel ctx

C.3.3.17 void ownerdb::debug phantoms () const

Do not call

C.4 splatter::index op Class Reference

C.4.1 Detailed Description

Functionality required for use in index::apply

Any functor used in apply must have something with this operator (It is not required that

this class be explicitly extended)

163

C.4.2 Member Function Documentation

C.4.2.1 virtual void splatter::index op::operator() (splatter::index ∗

idx, int eltno, int etype, int nnodes, int ∗ nodes) const

[pure virtual]

This operator will be called on each member of the index to which it’s applied. Due to the

way it’s done with templates, it can be optimized into direct manipulation of the index –

Compile-time polymorphism!

164

Parameters

idx index being applied to

eltno id of current entity

etype type of current entity

nnodes number of nodes in current entity

nodes actual nodes of current entity

C.5 splatter::index Class Reference

C.5.1 Detailed Description

Superclass for other indices; collection of mesh entities.

C.5.2 Constructor & Destructor Documentation

C.5.2.1 index::index (const ownerdb & odb, std::string name,

index type type, int flags) [protected]

Superclass constructor for all index instances.

Parameters

reference to ownership authority

name identifying tag for this index

type index type for this index (for dispatching non-virtual template functions)

165

flags index creation flags

C.5.3 Member Function Documentation

C.5.3.1 status index::attach data (std::string name, data proxy ∗ p)

Associate data from a data proxy with this index. Changes to the index (through the

appropriate means) will be mirrored in the associated data.

NOTE: index destructor will delete the proxy.

Parameters

name identifying tag for the attached data

p pointer to proxy

Returns

success or failure

C.5.3.2 status index::detach data (std::string name)

Remove associated data, deleting proxy.

C.5.3.3 template<typename D > D & splatter::index::data (std::string

name, const D & orig)

Access associated data.

166

Parameters

name identifying tag of requested data

orig model data type (it’s complicated...)

C.5.3.4 std::string splatter::index::name () const

Returns

identifying name used for this index (used in mesh queries)

C.5.3.5 index type splatter::index::type () const

Returns

type of actual index value

C.5.3.6 int splatter::index::flags () const

Returns

flags used to configure the index

C.5.3.7 int splatter::index::size () const [virtual]

Returns

the number of entities in the index

Reimplemented in splatter::explicit index , and splatter::implicit index .

167

C.5.3.8 template<typename OP , typename IT > void splatter::index::apply (

const OP & op, IT start, IT end)

Apply op to each entity in this index, with the positional id’s specified by the iterator

168

Parameters

op see index op

start iterator to beginning face id

end end iterator

C.5.3.9 template<typename OP > void splatter::index::apply (const OP &

op)

Apply op to every entityt in this index

Parameters

op see index op

C.5.3.10 template<typename OP , typename IT , void(OP::∗)(index ∗, int,

int, int, int ∗) const func> void splatter::index::apply (const

OP & op, IT start, IT end)

Apply some index op - esque member function to each entity in this index, with the

positional id’s specified by the iterator

Parameters

op see index op

start iterator to beginning face id

end end iterator

C.5.3.11 template<typename OP , void(OP::∗)(index ∗, int, int, int, int ∗)

const func> void splatter::index::apply (const OP & op)

Apply some index op - esque member function to every entity in this index

169

Parameters

op see index op

C.5.3.12 virtual status splatter::index::renumber (const ownerdb &

new odb, const std::vector< int > & local gid, std::map< int,

int > & global map) [protected], [pure virtual]

pure virtual method for renumbering entities according to local gid, and potentially

redistributing nodes according to new odb

Implemented in splatter::explicit index , and splatter::temp index .

C.6 splatter::explicit index Class Reference

C.6.1 Detailed Description

An index of homogeneous entities and associated data. Potentially (probably) hashes node

positions for fast lookup.

C.6.2 Constructor & Destructor Documentation

C.6.2.1 explicit index::explicit index (const ownerdb & odb,

std::string name, int width, int entity type, std::vector< int

> & nodes, int flags = 0)

Constructor: called by part mgr

170

C.6.2.2 explicit index::explicit index (const ownerdb & odb,

std::string name, int width, int entity type, int flags = 0)

Constructor: called by part mgr

C.6.3 Member Function Documentation

C.6.3.1 int explicit index::size () const [virtual]

Returns

number of entities stored in index

Reimplemented from splatter::index .

C.6.3.2 const int∗ splatter::explicit index::operator[] (int f) const

unchecked (raw) entity lookup

Parameters

f desired entity position

Returns

const int∗ to nodes belonging to entity at position f

C.6.3.3 status explicit index::build hash ()

Enable fast lookup for this index

171

C.6.3.4 int explicit index::add face (const int ∗ newface nodes)

Add a single entity to this index – respects fast lookup hash if necessary NOTE: user must

ensure that data is extended appropriately.

172

Parameters

newface -

nodes

nodes to use for the new entity

Returns

position of new entity

C.6.3.5 const intset& splatter::explicit index::faces (int g) const

Figure out which faces contain a node – hash must be enabled

Parameters

g global id of desired node

Returns

const reference to intset of related faces

C.6.3.6 int splatter::explicit index::width () const

Returns

number of nodes in this index’s entity type

C.6.3.7 const std::vector<int>& splatter::explicit index::nodes ()

const

Returns

raw pointer to indexed nodes

173

C.6.3.8 bool splatter::explicit index::is hashed ()

Returns

whether fast lookup hash is enabled for this index

C.6.3.9 void explicit index::set purge (bool p)

Specify whether this index should delete local nodes when no longer needed

C.6.3.10 const fast index& splatter::explicit index::hash ()

Returns

const reference to the fast lookup hash

C.6.3.11 template<typename Q OP > void explicit index::do query (const

Q OP & op, int specific = - 1)

Used to apply a query to this index – has to be public, but don’t call it directly

C.6.3.12 template<typename Q OP , typename IT > void

explicit index::do query it (const Q OP & op, IT begin, IT end

)

Used to apply a query to this index, faces pulled by iterator

C.6.3.13 exp index searcher splatter::explicit index::get query searcher (

)

Do not call outside a query.

174

Returns

a query object for searching this index quickly

C.6.3.14 template<typename IT > status explicit index::delete faces (IT

start, IT end)

Globally delete all faces with ids iterated over between start and end

Parameters

start beginning iterator to container of entity ids to delete

end end iterator of container

Returns

success or failure

C.6.3.15 status explicit index::sync phantom layer (bool

clobber duplicates = true)

Globally delete all faces, not trusting the hash to be picky enough. Use this with no-type

indices that may have repeated node-ids

Ensures that all entities are stored on processes that need them (based on ownership of

underlying entity nodes).

Parameters

clobber -

duplicates

check and purge local entities that are duplicates

175

C.6.3.16 int splatter::explicit index::etype () const

Returns

entity type for this index

C.6.3.17 status explicit index::validate hash ()

Expensive debugging/validation method Do not call.

C.6.3.18 status explicit index::validate entities ()

Expensive debugging/validation method Do not call.

C.6.3.19 status explicit index::do migrate (migrate args & args)

[protected], [virtual]

move faces according to migrate args – used mostly for deleting?? dangerous!

Reimplemented in splatter::temp index .

C.6.3.20 status explicit index::renumber (const ownerdb & new odb,

const std::vector< int > & local gid, std::map< int, int > &

global map) [protected], [virtual]

pure virtual method for renumbering entities according to local gid, and potentially

redistributing nodes according to new odb

Implements splatter::index .

Reimplemented in splatter::temp index .

176

C.7 splatter::implicit index Class Reference

C.7.1 Detailed Description

index subclass for collections of single-node entities, stored as a range of node ids – specifically

the range of nodes owned by the current rank and potentially any phantom entities

This is really just used for the master node index, but i guess it could conceivably be used

for something else...

C.7.2 Constructor & Destructor Documentation

C.7.2.1 splatter::implicit index::implicit index (const ownerdb & odb)

Constructor: called by part mgr

C.7.3 Member Function Documentation

C.7.3.1 int splatter::implicit index::size () const [virtual]

Returns

number of nodes represented by this index (just nlocal!)

Reimplemented from splatter::index .

C.8 splatter::temp index Class Reference

C.8.1 Detailed Description

a special, user-space version of an explicit index for facilitating complex mesh manipula-

tion logic. Be careful! It tries to maintain a mapping to position in original index.

177

Fast hash lookup is always enabled.

C.8.2 Constructor & Destructor Documentation

C.8.2.1 temp index::temp index (part mgr ∗ mgr, int entity type, bool

update hash = false)

Construct a new temp index

Parameters

mgr pointer to relevant part mgr

entity type topological entity type for the contents of this index

update hash will this entity have enough distribution of mesh elements for the hash

to benefit from having dedicate room for data associated with every local

node ?

C.8.2.2 temp index::temp index (explicit index & ei, bool update hash =

false)

Construct a new temp index modeled after an explicit index

Parameters

ei explicit index to model after

update hash this index is expected to use a wide range of local nodes

178

C.8.3 Member Function Documentation

C.8.3.1 temp index temp index::no type (part mgr ∗ mgr, int width,

bool update hash = false) [static]

Construct a new temp index with no type

179

Parameters

mgr the authority part mgr

width number of nodes per entity

update hash this index is expected to use a wide range of local nodes

C.8.3.2 temp index temp index::vec wrapper (part mgr ∗ mgr,

std::vector< int > & data) [static]

Temporarily treat an array as a temp index so it can be renumbered

Parameters

mgr the authority part mgr

data the std::vector to process

C.8.3.3 status temp index::clear ()

Remove all index contents

C.8.3.4 int∗ splatter::temp index::operator[] (int f)

Non-const entity accessor.

Parameters

f entity to look up

Returns

pointer to nodes of specified entity

180

C.8.3.5 const int∗ splatter::temp index::operator[] (int f) const

Const version of entity accessor.

181

Parameters

f entity to look up

Returns

pointer to nodes of specified entity

C.8.3.6 int splatter::temp index::add face (int eltno, const int ∗

newface nodes)

Add a entity to this index

Parameters

eltno position in source index for entity, if applicable

newface -

nodes

nodes for the new entity

Returns

local position of new entity

C.8.3.7 int splatter::temp index::add face (const int ∗ newface nodes)

Add a entity to this index

Parameters

newface -

nodes

nodes for the new entity

Returns

local position of new entity

182

C.8.3.8 status splatter::temp index::add all (const temp index & other,

bool unique = false)

Copy all entities from one temp index

183

Parameters

other the original temp index

unique check for and purge duplicates

Returns

success or failure

C.8.3.9 int splatter::temp index::origid (int f) const

Parameters

f local entity being checked

Returns

original id in source index

C.8.3.10 int splatter::temp index::find (const int ∗ nodes) const

Finds a face in this index

Parameters

nodes the face to be searched for

Returns

position of face or -1 if not found

C.8.3.11 status temp index::renumber (const ownerdb & new odb, const

std::vector< int > & newgids, std::map< int, int > & global map

) [virtual]

Renumber this index (see part mgr)

184

Reimplemented from splatter::explicit index .

C.8.3.12 template<typename Q OP > void splatter::temp index::do query (

const Q OP & op, int specific = - 1)

Query support Do not call directly

C.8.3.13 status splatter::temp index::do migrate (migrate args & args)

[virtual]

Apply the migrate protocol

Parameters

args protocol args

Returns

success or failure

Reimplemented from splatter::explicit index .

C.9 splatter::data proxy Class Reference

C.9.1 Detailed Description

Proxy for user data

185

C.9.2 Member Function Documentation

C.9.2.1 virtual int splatter::data proxy::size () [pure virtual]

Returns

size of data being proxied

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.2 virtual int splatter::data proxy::size per () [pure virtual]

Returns

number of data elements per entity

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.3 virtual void splatter::data proxy::clear () [pure virtual]

Removes all data contents (be careful!)

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.4 virtual void∗ splatter::data proxy::raw () [pure virtual]

Returns

pointer to underlying data (be careful!)

186

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.5 virtual status splatter::data proxy::resize (unsigned int s)

[pure virtual]

Resize underlying data

Parameters

s number of elements to resize for

Returns

success or failure

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.6 virtual void splatter::data proxy::insert (int n) [pure

virtual]

Insert slots for new data

Parameters

n number of slots to insert

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.7 virtual void splatter::data proxy::add one () [virtual]

Insert 1 slot for new data

187

C.9.2.8 virtual status splatter::data proxy::batch migrate (const

migrate args & args, proxy monitor ∗ m = NULL) [pure virtual]

Apply the batch migrate protocol.

188

Parameters

args protocol args

Returns

success or failure

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.9 virtual data proxy∗ splatter::data proxy::deliver (const

deliver args & args, data proxy ∗ out = NULL) [pure virtual]

Apply the deliver protocol.

Parameters

args protocol args

out optional proxy for collected data

Returns

pointer to collecting proxy

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.10 virtual status splatter::data proxy::sync (parallel ctx pctx,

const sync args & args) [pure virtual]

Apply the sync protocol.

189

Parameters

pctx the parallel ctx to use

args protocol args

Returns

success or failure

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.11 virtual status splatter::data proxy::reorder (const

std::vector< int > & localids) [pure virtual]

Apply the ‘reorder protocol.

Parameters

localids new local ids for all local data

Returns

success or failure

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.12 virtual status splatter::data proxy::load (std::ifstream & in)

[pure virtual]

Load data from restart file stream.

190

Parameters

in the restart file stream.

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.13 virtual status splatter::data proxy::save (std::ofstream & out,

int limit = - 1) [pure virtual]

Save data to a restart file stream.

Parameters

out the restart file stream.

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.14 virtual data proxy∗ splatter::data proxy::type copy () [pure

virtual]

Create a new data proxy capable of storing the same kind of data

Returns

the type clone

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

C.9.2.15 virtual void splatter::data proxy::store raw (int dest, int

src, data proxy ∗ src proxy) [pure virtual]

Forcibly copy data between proxies, assumign they are type compatible

191

Parameters

dest position in local data

src position in source data

src proxy data proxy containing source data

Implemented in splatter::data proxy std< T > , and splatter::data proxy std< int

> .

192

VITA

Degrees

M.S. Computer Science
Tulane University, 1998
Thesis: Navigation and map-making with a team of mobile robots

B.S.E. Computer Engineering
Tulane University, 1997
Minor: Robotics and Automation

Positions

Lecturer, University of Tennessee at Chattanooga 2010-

Research Assistant, UTC SimCenter 2007-2010

Consultant / Developer, Tanis Tech LLC 2006-2010

Senior Programmer, Advance Internet 1999-2006

Professional Associate, Johns Hopkins Applied Physics Lab 1998-1999

Research Assistant, Tulane University 1996-1998

Teaching Assistant, Tulane University 1997-1998

Publications

“Petrov-Galerkin and discontinuous-Galerkin methods for time-domain and frequency-
domain electromagnetic simulations.” W. K. Anderson, L. Wang, S. Kapadia, C. Tanis,
and B. Hilbert. Journal of Computational Physics, vol. 230, no. 23, Sep. 2011.

“Distributed Map-making Using Online Generalized Voronoi Graphs.” J. Jennings, C.
Kirkwood-Watts, C. Tanis. Proceedings of the Conference on Automated Learning and
Discovery (CONALD 98).

“Cooperative Localization and Map-making for Mobile Robots.” C. Tanis Tulane
University Technical Report, May 1997.

193

	Front Matter
	Title
	Abstract

	ABSTRACT
	Dedication

	DEDICATION
	Acknowledgements

	ACKNOWLEDGEMENTS
	Table of Contents

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF LISTINGS
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Unstructured Meshes
	2.2 Mesh Frameworks

	3 DESIGN CONCEPTS
	3.1 Overview
	3.2 General Mesh Representation
	3.2.1 Mesh Entity Types

	3.3 In Parallel
	3.4 Framework Organization
	3.5 Queries
	3.5.1 An Example
	3.5.2 Standard Query Modules
	3.5.3 Adjacency Queries
	3.5.4 Result Sets

	3.6 Summary of Design Principles

	4 IMPLEMENTATION
	4.1 Overview
	4.2 Framework Architecture
	4.2.1 The Local Partition Manager
	4.2.2 Mesh Entity Indices
	4.2.3 Data Proxies

	4.3 Mesh Renumbering and Redistribution
	4.3.1 Hooks
	4.3.2 Related Algorithms

	4.4 Query Implementation
	4.4.1 Custom Query Modules

	5 APPLICATIONS
	5.1 Overview
	5.2 Initial Partitioning
	5.2.1 Support for Mesh Formats
	5.2.2 Partition Quality Analysis
	5.2.3 Partitioning Scalability Analysis
	5.2.4 ParMETIS Improvements

	5.3 Adaptive Refinement and Coarsening
	5.3.1 Refinement of Simplicial Entities
	5.3.2 Refinement Results
	5.3.3 Load Balancing
	5.3.4 Enabling De-refinement
	5.3.5 De-refinement Results

	5.4 Integration with Real Applications
	5.4.1 Flow Solver Performance

	6 CONCLUSION
	6.1 Future Work

	REFERENCES
	A DEMONSTRATION APPLICATION
	B TETRAHEDRA VALIDATION QUERY MODULE
	C API DOCUMENTATION

	VITA

