
PHYSICS-BASED POINT PLACEMENT BY PARTICLE DYNAMICS SIMULATION

By

Philip Wesley Fackler

Approved:

Steve L. Karman, Jr.
Professor of Computational Engineering
(Director of Thesis)

W. Kyle Anderson
Professor of Computational Engineering
(Committee Member)

Li Wang
Assistant Research Professor of
Computational Engineering
(Committee Member)

PHYSICS-BASED POINT PLACEMENT BY PARTICLE DYNAMICS SIMULATION

By

Philip Wesley Fackler

A Thesis Submitted to the Faculty of the University
of Tennessee at Chattanooga in Partial
Fulfillment of the Requirements of the

Degree of Master of Science
in Engineering

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

December 2013

ii

Copyright c© 2013

By Philip Wesley Fackler

All Rights Reserved.

iii

ABSTRACT

A physics-based approach to point cloud distribution for mesh generation is investigated

using inter-nodal attraction and repulsion forces based on the Lennard-Jones pair potential

and a simplified particle dynamics simulation. This method produces smooth distributions

of points which accurately correspond to desired scalar spacing fields. Resulting point

distributions are triangulated using Lawson’s algorithm and the quality of these resulting

meshes is measured, demonstrating the effectiveness of the approach. Several features

planned for future development for increasing the robustness and versatility of the proposed

method are discussed.

iv

DEDICATION

This work is dedicated to God, without whom everything is meaningless and before whom

the plans of arrogant men will come to nothing. May I never forget You and may I do all

things (even this!) as unto You.

v

ACKNOWLEDGEMENTS

I would like to thank my wife, Amanda Fackler, for her too-good-to-be-true-but-still-true

love and support. She has sacrificed much to see me succeed.

Much gratitude goes to Dr. Steve Karman who has exhibited the availability, attention,

and care that characterize a true teacher. I consider myself blessed to have been able to

learn from him.

I would also like to thank Wally Edmondson for hours of help on my behalf in ways that

I am sure are beyond his job description.

Appreciation must also be expressed for my (including my wife’s) family who have never

ceased encouraging me throughout this process.

vi

TABLE OF CONTENTS

ABSTRACT . iv

DEDICATION . v

ACKNOWLEDGEMENTS . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1
Motivation . 1
Types of Meshes . 1
Methods for Generating Meshes . 2

Physics-Based Node Placement 3
Chapter Summaries . 4

Chapter 2 . 4
Chapter 3 . 4
Chapter 4 . 4
Chapter 5 . 4
Chapter 6 . 5
Chapter 7 . 5

Notation . 5

2 RELEVANT LITERATURE . 7
Bubble Meshing . 7
Monte Carlo Simulation . 9
Molecular Dynamics Simulation . 12
Truss Equilibrium Method . 14

3 METHOD OVERVIEW . 16

4 INITIAL OPERATIONS . 20

vii

Geometry Processing . 20
Initial Node Distribution . 23

Boundary Nodes . 23
Interior Nodes . 24

Result of Structured Initial Quad Distribution 28
Example Result of Random Initial Quad Distribution . . 32

5 PARTICLE DYNAMICS SIMULATION 36
Computing Forces . 36
Computing the Local Time Step . 40
New Node Locations . 43
The Global Maximum Time Step . 44
Inter-Node Force Formula . 45

6 EXPERIMENTAL RESULTS . 47
Circle within a Circle . 47
NACA 0012 Airfoil . 52

Structured Initialization . 52
Random Initialization . 61

30P/30N Multi-element Airfoil . 70
Structured Initialization . 70
Random Initialization . 81

Nuclear Reactor Rod Assembly . 92
Coarse Version . 92
Fine Version . 98

Timing and Quality Results . 104

7 CONCLUSIONS AND FUTURE WORK 110
Restart Capability . 110
Better Initial Node Distribution Method 111
Automatic Global Maximum Time Step Calculation 111
Automatic Node Population Control . 112
Automatic Boundary Population . 115
Non-Spherical Packing Methods for Viscous Layers 116
Spacing Field Adapted to Flow Solution 116
Moving Geometry . 119
3D . 119
Parallel . 119

viii

REFERENCES . 120

APPENDIX: OVERVIEW OF MESH QUALITY METRICS 122
Included Angle . 123
Aspect Ratio . 123
Skewness . 123
Weighted Condition Number . 124
Corner Jacobian . 125

VITA . 126

ix

LIST OF TABLES

6.1 Timing results . 104

6.2 Quality results: Circle within circle case . 105

6.3 Quality results: NACA 0012 airfoil case . 106

6.4 Quality results: 30P/30N Multi-element airfoil case 107

6.5 Quality results: Reactor rod assembly (coarse) case 108

6.6 Quality results: Reactor rod assembly (fine) case 109

x

LIST OF FIGURES

2.1 Bubble meshing force interpolant with k0 = 75 and σ = 1 8

2.2 Lennard-Jones force (left) and pair potential (right) with a = 75 and σ = 1 . 11

2.3 Coulomb force (left) and potential (right) with C = 600, k = 6, and qi = qj = 1 13

2.4 Modified Coulomb force (left) and potential (right) with CR = CA = 600,
k = 6, m = 5 and qi = qj = 1 . 14

2.5 Linear spring force with k = 10 and σ = 1 15

3.1 Flowchart of the major steps of the method 19

4.1 Circle within circle: Segmented geometry curves (left); Segmented geometry
curves with geometry tree (right) . 21

4.2 Circle within circle (zoomed to inner circle): Segmented geometry curves
(left); Segmented geometry curves with geometry tree (right) 22

4.3 NACA 0012 airfoil (zoomed): Segmented geometry curves (top); Segmented
geometry curves with geometry tree (bottom) 23

4.4 NACA 0012 airfoil (zoomed): Segmented geometry curves and initial bound-
ary mesh points . 24

4.5 NACA 0012 airfoil (zoomed): Geometry tree (top) versus initialization tree
(bottom) . 26

4.6 NACA 0012 airfoil (zoomed): Structured initial point distribution with (top)
and without (bottom) initialization tree . 28

4.7 Circle within circle: Structured initial point distribution with initialization tree 29

4.8 Circle within circle: Structured initial point distribution 30

4.9 Circle within circle (zoomed to a portion of the upper right quadrant):
Structured initial point distribution with initialization tree 31

xi

4.10 NACA 0012 airfoil (zoomed): Random initial point distribution with (top)
and without (bottom) initialization tree . 32

4.11 Circle within circle: Random initial point distribution with initialization tree 33

4.12 Circle within circle: Random initial point distribution 34

4.13 Circle within circle (zoomed to a portion of the upper right quadrant):
Random initial point distribution with initialization tree 35

5.1 Vector from node i to node j . 37

5.2 Ideal distance between a node pair is σij: Node j in this example is farther
from node i than σij. Therefore node i will experience an attractive force
toward node j . 38

5.3 Vector forces exerted on node i from local cloud nodes 39

5.4 Resultant force vector sum for node i . 40

5.5 The distance to node i’s nearest neighbor in the general direction of its vector
force sum . 41

5.6 The maximum distance node i will be allowed to travel in one iteration . . . 42

5.7 Example of a node being snapped to a boundary curve after crossing it . . . 44

5.8 Force magnitude with respect to rij/σij with a = 15: When rij = σij, the
magnitude of the force between nodes i and j is zero 45

6.1 Circle within circle case: Average nodal net force (red) and kinetic energy
(blue) for the structured (left) and random (right) initializations 48

6.2 Circle within circle: Initial point distribution from structured (left) and
random (right) initializations . 49

6.3 Circle within circle: Resulting point distribution from structured (left) and
random (right) initializations . 49

6.4 Circle within circle (zoomed to inner circle): Initial point distribution from
structured (left) and random (right) initializations 50

6.5 Circle within circle (zoomed to inner circle): Resulting point distribution from
structured (left) and random (right) initializations 50

xii

6.6 Circle within circle: Triangulated result from structured (left) and random
(right) initializations . 51

6.7 Circle within circle (zoomed to inner circle): Triangulated result from
structured (left) and random (right) initializations 51

6.8 NACA 0012 airfoil case: Average nodal net force (red) and kinetic energy
(blue) for the structured initialization . 52

6.9 NACA 0012 airfoil: Initial point distribution (left) and resulting point
distribution (right) from structured initialization 53

6.10 NACA 0012 airfoil: Triangulated result from structured initialization 54

6.11 NACA 0012 airfoil (zoomed midway): Initial point distribution (top) and
resulting point distribution (bottom) from structured initialization 55

6.12 NACA 0012 airfoil (zoomed midway): Triangulated result from structured
initialization . 56

6.13 NACA 0012 airfoil (zoomed): Initial point distribution (top), resulting
point distribution (middle), and triangulated result (bottom) from structured
initialization . 57

6.14 NACA 0012 airfoil (zoomed to leading edge): Initial point distribution (top)
and resulting point distribution (bottom) from structured initialization . . . 58

6.15 NACA 0012 airfoil (zoomed to trailing edge): Initial point distribution (top)
and resulting point distribution (bottom) from structured initialization . . . 59

6.16 NACA 0012 airfoil: Triangulated result zoomed to leading edge (top) and
trailing edge (bottom) from structured initialization 60

6.17 NACA 0012 airfoil case: Average nodal net force (red) and kinetic energy
(blue) for the random initialization . 61

6.18 NACA 0012 airfoil: Initial point distribution (left) and resulting point
distribution (right) from random initialization 62

6.19 NACA 0012 airfoil: Triangulated result from random initialization 63

6.20 NACA 0012 airfoil (zoomed midway): Initial point distribution (top) and
resulting point distribution (bottom) from random initialization 64

xiii

6.21 NACA 0012 airfoil (zoomed midway): Triangulated result from random
initialization . 65

6.22 NACA 0012 airfoil (zoomed): Initial point distribution (top), resulting
point distribution (middle), and triangulated result (bottom) from random
initialization . 66

6.23 NACA 0012 airfoil (zoomed to leading edge): Initial point distribution (top)
and resulting point distribution (bottom) from random initialization 67

6.24 NACA 0012 airfoil (zoomed to trailing edge): Initial point distribution (top)
and resulting point distribution (bottom) from random initialization 68

6.25 NACA 0012 airfoil: Triangulated result zoomed to leading edge (top) and
trailing edge (bottom) from random initialization 69

6.26 30P/30N multi-element airfoil case: Average nodal net force (red) and kinetic
energy (blue) for the structured initialization 70

6.27 30P/30N multi-element airfoil: Initial point distribution (left) and resulting
point distribution (right) from structured initialization 71

6.28 30P/30N multi-element airfoil: Triangulated result from structured initialization 72

6.29 30P/30N multi-element airfoil (zoomed midway): Initial point distribution
(top) and resulting point distribution (bottom) from structured initialization 73

6.30 30P/30N multi-element airfoil (zoomed midway): Triangulated result from
structured initialization . 74

6.31 30P/30N multi-element airfoil (zoomed to leading edge): Initial point
distribution (top) and resulting point distribution (bottom) from structured
initialization . 75

6.32 30P/30N multi-element airfoil (zoomed to leading edge): Triangulated result
from structured initialization . 76

6.33 30P/30N multi-element airfoil (zoomed to inter-element space): Initial point
distribution (top) and resulting point distribution (bottom) from structured
initialization . 77

6.34 30P/30N multi-element airfoil (zoomed to inter-element space): Triangulated
result from structured initialization . 78

xiv

6.35 30P/30N multi-element airfoil (zoomed to trailing edge): Initial point
distribution (top) and resulting point distribution (bottom) from structured
initialization . 79

6.36 30P/30N multi-element airfoil (zoomed to trailing edge): Triangulated result
from structured initialization . 80

6.37 30P/30N multi-element airfoil case: Average nodal net force (red) and kinetic
energy (blue) for the random initialization 81

6.38 30P/30N multi-element airfoil: Initial point distribution (left) and resulting
point distribution (right) from random initialization 82

6.39 30P/30N multi-element airfoil: Triangulated result from random initialization 83

6.40 30P/30N multi-element airfoil (zoomed midway): Initial point distribution
(top) and resulting point distribution (bottom) from random initialization . . 84

6.41 30P/30N multi-element airfoil (zoomed midway): Triangulated result from
random initialization . 85

6.42 30P/30N multi-element airfoil (zoomed to leading edge): Initial point
distribution (top) and resulting point distribution (bottom) from random
initialization . 86

6.43 30P/30N multi-element airfoil (zoomed to leading edge): Triangulated result
from random initialization . 87

6.44 30P/30N multi-element airfoil (zoomed to inter-element space): Initial point
distribution (top) and resulting point distribution (bottom) from random
initialization . 88

6.45 30P/30N multi-element airfoil (zoomed to inter-element space): Triangulated
result from random initialization . 89

6.46 30P/30N multi-element airfoil (zoomed to trailing edge): Initial point
distribution (top) and resulting point distribution (bottom) from random
initialization . 90

6.47 30P/30N multi-element airfoil (zoomed to trailing edge): Triangulated result
from random initialization . 91

6.48 Reactor rod assembly (coarse) case: Average nodal net force (red) and kinetic
energy (blue) for the structured (left) and random (right) initializations . . . 92

xv

6.49 Reactor rod assembly (coarse): Initial point distribution from structured (left)
and random (right) initializations . 93

6.50 Reactor rod assembly (coarse): Resulting point distribution from structured
(left) and random (right) initializations . 94

6.51 Reactor rod assembly (coarse) (zoomed): Initial point distribution from
structured (left) and random (right) initializations 94

6.52 Reactor rod assembly (coarse) (zoomed): Resulting point distribution from
structured (left) and random (right) initializations 95

6.53 Reactor rod assembly (coarse) (zoomed to upper-left corner): Initial point
distribution from structured (left) and random (right) initializations 95

6.54 Reactor rod assembly (coarse) (zoomed to upper-left corner): Resulting point
distribution from structured (left) and random (right) initializations 96

6.55 Reactor rod assembly (coarse): Triangulated result from structured (left) and
random (right) initializations . 96

6.56 Reactor rod assembly (coarse) (zoomed): Triangulated result from structured
(left) and random (right) initializations . 97

6.57 Reactor rod assembly (coarse) (zoomed to upper-left corner): Triangulated
result from structured (left) and random (right) initializations 97

6.58 Reactor rod assembly (fine) case: Average nodal net force (red) and kinetic
energy (blue) for the structured (left) and random (right) initializations . . . 98

6.59 Reactor rod assembly (fine): Initial point distribution from structured (left)
and random (right) initializations . 99

6.60 Reactor rod assembly (fine): Resulting point distribution from structured
(left) and random (right) initializations . 99

6.61 Reactor rod assembly (fine) (zoomed): Initial point distribution from struc-
tured (left) and random (right) initializations 100

6.62 Reactor rod assembly (fine) (zoomed): Resulting point distribution from
structured (left) and random (right) initializations 100

6.63 Reactor rod assembly (fine) (zoomed to upper-left corner): Initial point
distribution from structured (left) and random (right) initializations 101

xvi

6.64 Reactor rod assembly (fine) (zoomed to upper-left corner): Resulting point
distribution from structured (left) and random (right) initializations 101

6.65 Reactor rod assembly (fine): Triangulated result from structured (left) and
random (right) initializations . 102

6.66 Reactor rod assembly (fine) (zoomed): Triangulated result from structured
(left) and random (right) initializations . 102

6.67 Reactor rod assembly (fine) (zoomed to upper-left corner): Triangulated result
from structured (left) and random (right) initializations 103

7.1 Example initialization (left) and result (right) with too few points (bubble
view) . 112

7.2 Example initialization (left), result (middle), and triangulated result (right)
with too few points . 113

7.3 Example of inserting nodes into gap regions 114

7.4 Example resulting bubble configuration after using population control 114

7.5 Example resulting point distribution and triangulation after using population
control . 115

7.6 Plot of Equation (7.2) . 117

7.7 Example resulting point distribution and triangulation after using population
control with analytic spacing field . 117

7.8 Example resulting point distribution and triangulation after using population
control with analytic spacing field (bottom boundary) 118

7.9 Example resulting point distribution and triangulation after using population
control with analytic spacing field (top boundary) 118

xvii

CHAPTER 1

INTRODUCTION

Motivation

For many real-world computational continuum problems, the vast majority of man-hours

involved in obtaining a solution goes into generating a suitable domain discretization (that

is, a mesh or grid) that will allow the computational solver to compute accurate results.

There is therefore a need for a method of generating meshes that is not only automated and

universally applicable to complex geometries but also that has the following features:

• High level of quality in the resulting meshes

• Correspondence with desired spacing fields

• Ability to adapt to and resolve features of solution data in order to achieve greater

spatial accuracy

• Ability to adapt to moving geometry maintaining temporal accuracy and quality

elements (for time-dependent problems)

• Ability to use different types of geometry definitions (i.e., analytic or discrete)

Types of Meshes

A structured mesh is comprised of general quadrilateral-shaped cells (hexahedral in 3D)

for which the connectivity between the vertices (nodes) is not explicitly stored because it is

implied by the ordered indexing of the nodes. For a complex geometry multiple blocks of

1

cells can be used for which the nodes on the shared faces of the blocks are duplicated but

the node indexing does not continue across a face from one block to another.

When a mesh has no regular ordering of the node indices and, therefore, the node-to-

node connectivity must be somehow explicitly defined, then, regardless of the shape of the

elements, it is an unstructured mesh. Nodes in an unstructured mesh can be numbered

arbitrarily, and the cells in an unstructured mesh can vary in shape one from another

arbitrarily, polygons in 2D and polyhedra in 3D.

Methods for Generating Meshes

The process of generating a structured grid is mostly non-automated and usually quite

labor-intensive, but it can be greatly aided by the use of commercial mesh generation software

such as Pointwise [1]. Many methods have been proposed for generating unstructured

meshes, some more automated than others. Cartesian methods make use of quadrilateral

elements (in 2D) aligned with the Cartesian coordinates and recursively subdivide them to

refine resolution in areas where needed. Cartesian hierarchical refinement is quite versatile

and efficient [2, 3]. Extrusion methods march points from the boundaries along normal

directions, producing a layer at a time of (generally) quadilateral elements with smooth

outward gradation in element thickness. These methods are especially useful for producing

viscous layer meshes for fluids applications [4].

Many have used the methods of Lawson [5] and of Bowyer [6] and Watson [7] for

triangulating a given set of points that have already been distributed. Lawson’s method

is used in the proposed method for generating the final mesh after the dynamics simulation

has distributed the points. When a distribution of points is not already available over a

computational domain, point placement becomes a primary problem for generating a mesh.

Standard point placement methods for generating triangular meshes are the Delaunay-based

insertion methods, and the advancing front methods [8].

2

In the Delaunay-based algorithms, the boundary surfaces are initially meshed and then

interior nodes are inserted sequentially. Triangles are reconnected with each node insertion

to maintain the Delaunay criterion. A common strategy used for where to insert new points

is at the centers of the existing elements’ circumscribing circles [9, 10, 11, 12].

Advancing front algorithms march a layer (front) of elements away from each boundary.

Ideal locations for new nodes are computed from the nodes of the element faces on each front.

New elements are formed by joining front faces with either a recently inserted node or with

an existing node where a new insertion was not necessary. When fronts intersect, elements

in the intersection region must be adjusted or recreated so that the overlap is removed and

the fronts are joined [13]. To control element shape and size, George [14] and Lee [15] use a

background Delaunay-based mesh and metric tensors, respectively.

Hybrid methods have been proposed which take advantage of the strengths of multiple

methods by applying different meshing algorithms to different regions of the computational

domain [2, 3].

Physics-Based Node Placement

The Delaunay-based and advancing-front triangular mesh generation methods operate

by inserting points incrementally. The physics-based methods reviewed in the next chapter

as well as the proposed method begin by generating an initial distribution of points inserted

at the same step and subsequently seek to smooth the distribution to obtain a desired

configuration before generating the final mesh.

“Physics-based” means that the mesh or the set of points is treated to a degree as some

physical entity and thus subjected to the corresponding physics equations in order to produce

a desired configuration. In this research we will review some of the physics-based methods

presented by others and also develop a method that gleans from these to study the usefulness

3

of the approach. The proposed method also lays the preliminary groundwork for a method

that will strive to achieve the goals listed above in future development.

Chapter Summaries

Chapter 2

The literature specifically relevant to physics-based node placement that was considered

(to differing degrees) in the present research is reviewed.

Chapter 3

An overview of the particle dynamics simulation used in this study is presented along

with explanations of some of the decisions made in the development process.

Chapter 4

Attention is given in greater detail to the necessary initial operations performed before the

simulation begins. This includes reading and processing the given geometry and populating

the domain (including the boundary curves) with an initial point distribution.

Chapter 5

The particle dynamics simulation process is presented in every aspect. This includes

the computation of nodal force sums and local time step size, and the determination of a

node’s new location (which may involve interaction with a boundary). Also described in

Chapter 5 are the process of dynamically adjusting the global maximum time step size and

the inter-nodal force formula used.

4

Chapter 6

Experimental results are presented, demonstrating the quality of the resulting meshes

compared with the meshes generated using the “Delaunay” and “Advancing Front” methods

of Pointwise [1].

Chapter 7

Conclusions concerning the advantages and disadvantages of the proposed method are

discussed. Goals for future work for improving the versatility and efficiency of the method

as well as the quality of the resulting meshes are discussed.

Notation

The following notation will be used throughout the discussion of relevant literature as well

as the description of the proposed method in order to maintain consistency and comparability.

The desired spacing for node i will be denoted qi, and the desired spacing between any pair

of nodes i and j will be denoted

σij =
1

2
(qi + qj) (1.1)

The vector from node i to node j will be written as

rij = xj − xi (1.2)

with magnitude

rij = |rij|

5

The pair force between two nodes, fij, will be applied to node i as a vector along the opposite

direction of the vector rij. That is,

Fij = fij

(
−rij
rij

)
(1.3)

And the net (resultant) force applied to node i will be denoted

Fi =
∑
j

Fij (1.4)

6

CHAPTER 2

RELEVANT LITERATURE

Bubble Meshing

Shimada and Gossard [16, 17] presented a method for physically-based mesh generation

by packing spheres on boundaries and interiors and smoothing with inter-bubble forces. They

note, “the close packing of bubbles mimics a Voronoi diagram pattern, corresponding to well-

shaped Delaunay triangles and tetrahedra” [17]. The force they use is a cubic interpolant

constructed to behave somewhat like the van der Waals force but with further constraints.

The variable for this force is the ratio (using our nomenclature)

wij =
rij
σij

(2.1)

where rij is the distance between nodes i and j (at the centers of the ith and jth bubbles,

respectively), and

σij =
qi
2

+
qj
2

(2.2)

is the desired distance between them. This distance is the sum of the radii of bubbles i and

j, and it is therefore the distance at which the two bubbles are “kissing” [17].

They enforce the following conditions for the interpolant:



f ′ (0) = 0

f (1) = 0

f ′ (1) = −k0

f (1.5) = 0

7

where k0 represents the linear spring constant. The last condition shows that they take into

account only nodes within 1.5σij of node i when calculating node i’s force sum. Thus their

force calculation takes the form (using wij as defined in (2.1)):

fij =

 k0

(
1.25w3

ij − 2.375w2
ij + 1.125

)
, 0 ≤ wij ≤ 1.5

0 , 1.5 < wij

(2.3)

Therefore, when two nodes are closer than the equilibrium spacing (that is, rij < σij making

wij < 1), there is a repulsive force between them, and when they are farther than the

equilibrium spacing there is an attractive force. This force interpolant is shown in Figure

2.1 with σ set to 1. The idea of a spring between each node pair makes a bit more sense,

since bubbles do not actually attract one another.

Figure 2.1 Bubble meshing force interpolant with k0 = 75 and σ = 1

The bubble simulation also includes a damping force, −civi, on each node in order to

ensure convergence to a stable configuration. They then use a numerical iterative solver to

solve the applicable differential equations of motion, which can be written per node for their

8

configuration as

miai = Fi − civi (2.4)

mi
d2xi
dt2

+ ci
dxi
dt

= Fi (2.5)

where xi is the spatial position of the ith bubble and Fi =
∑

j fij (−r̂ij).

They also use adaptive bubble population adjustment based on an overlap ratio for each

node. Since the inter-bubble force function includes attraction as well as repulsion, then if

there are too few nodes, there will be gaps in the resulting configuration, and if there are too

many nodes, there will be areas in the domain in which nodes are significantly closer to other

nodes than the equilibrium distance. This problem is overcome by adaptively controlling the

bubble population, removing or adding bubbles based on an overlapping ratio defined as

αi =
1

qi

∑
j

(2qi + qj − 2rij) (2.6)

Nie, Zhang, Liu, and Wang [18] further researched the same bubble meshing method and

proved its “convergence” to a stable configuration. Specifically, they proved that the average

speed of the bubbles during the dynamic simulation tends to zero.

Monte Carlo Simulation

Zhang and Smirnov [19] proposed a physically-based mesh generation scheme using a

Monte Carlo simulation to minimize the system’s total potential energy which they define

as

U =
∑
i

∑
j>i

φ (rij) (2.7)

9

where φ (rij) is the Lennard-Jones pair potential between nodes i and j:

φij = φ (rij) = 4a

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.8)

Here again, rij is the actual distance between the two nodes and σij is the distance between

the pair of nodes at which the pair potential will be zero. In their research, like in the bubble

meshing study, σij is taken to be the arithmetic average of the spacing parameters of each

node. That is,

σij =
1

2
(qi + qj) (2.9)

It can clearly be seen that this is the same as using the sum of the radii of the ith and jth

bubbles, as in Equation (2.2), for the pair’s desired spacing.

As noted by the authors, the equilibrium spacing for a given node pair is actually

σ0,ij = 21/6σij ≈ 1.1225σij

instead of σij. This can clearly be seen when one differentiates the potential with respect to

the distance rij to find the force acting between two nodes:

fij = −dφij
drij

= 4a

[
12σ12

ij

r13
ij

−
6σ6

ij

r7
ij

]
(2.10)

which simplifies to

fij = 48a

(
σ6
ij

r7
ij

)[(
σij
rij

)6

− 1

2

]
(2.11)

fij = 24a

(
σ6
ij

r7
ij

)[
2σ6

ij

r6
ij

− 1

]
(2.12)

10

Figure 2.2 Lennard-Jones force (left) and pair potential (right) with a = 75 and σ = 1

As can be seen in Figure 2.2, this formula for the force is zero when the ratio rij/σij =

21/6 ≈ 1.1225, whereas the potential is zero when this ratio is one. Of course, in their study,

the formula for the force between the nodes is not used because they use a Monte Carlo

simulation instead of a particle dynamics simulation.

During their simulation, a node is moved in a random direction and tested to see whether

the node’s potential energy sum has decreased or not. The test is based on the Boltzmann

Distribution law and takes the form

accept if e−β∆φi > R

reject if e−β∆φi ≤ R
(2.13)

where

∆φi =
∑
j

φ
(
rn+1
ij

)
−
∑
j

φ
(
rnij
)

(2.14)

is the change in potential energy of node i from state n to state n+1, R ∈ (0, 1) is a random

number generated at each trial move, and β = 1/kT , where k is the Boltzmann constant

11

and T is the temperature. In their case, T is not a real temperature and is selected such

that the acceptable range of energy increase is reasonable for the system.

Here also, as in the bubble meshing study, the authors use adaptive node population

control, but based on the total system potential energy. When the potential energy is

negative, there are gaps in the mesh region and nodes should be added. When the potential

energy is significantly greater than zero, the packing is too dense and nodes should be

removed.

Molecular Dynamics Simulation

Zheleznyakova and Surzhikov [20] offered a physically-based method of mesh generation

by molecular dynamics simulation using Coulomb’s law as the particle interaction force.

Every node is given a positive charge, and the force acting between a pair of nodes is given

by

fij = C
qiqj
rkij

(2.15)

where k ≥ 2 and C is a constant. The pair potential corresponding to this force is

φij = C
qiqj

(k − 1) rk−1
ij

(2.16)

which is never negative but asymptotically approaches zero as rij grows. These functions

are plotted in Figure 2.3.

12

Figure 2.3 Coulomb force (left) and potential (right) with C = 600, k = 6, and qi = qj = 1

This force is only repulsive. There is no attraction between nodes. In order to accomplish

proper spacing near boundaries, they add an attractive force in the interaction between

boundary nodes and mobile particles in the meshing region. Thus when interior node i is

interacting with a node on a wall (denoted wj) the total interaction force is described by

fiwj = CR
qiqwj
rkiwj

− CA
qiqwj
rmiwj

(2.17)

with m < k. The corresponding pair potential then for interaction with boundary nodes is

φiwj = CR
qiqwj

(k − 1) rk−1
iwj

− CA
qiqwj

(m− 1) rm−1
iwj

(2.18)

These modified functions are plotted in Figure 2.4.

13

Figure 2.4 Modified Coulomb force (left) and potential (right) with CR = CA = 600, k = 6,
m = 5 and qi = qj = 1

Thus, a mobile node is repulsed when it is within a desired distance from the boundary

node, and it is attracted when it is farther away. In this method, as in the bubble mesh

method, a drag force is applied to each node,

fd = −Kvpi

where p ≥ 2 and K is a constant. The forces are summed for each node and the equations of

motion are numerically integrated to simulate the behavior of the nodes at each time interval

as in equation (2.5).

Truss Equilibrium Method

The physically-based meshing method presented by Persson and Strang [21] is interesting

as well. Their method re-triangulates the point system at every iteration and uses the

connectivity as truss bars between nodes. A linear spring force function is used (strictly

14

repulsive, see Figure 2.5)

fij =

 k (σij − rij) , 0 ≤ rij ≤ σij

0 , σij < rij

(2.19)

to move the nodes toward force equilibrium. The nodes are re-triangulated in their new

locations at every iteration to maintain the Delaunay properties. Thus at the beginning of

each iteration there is a different set of truss edges from which internodal forces are computed.

Figure 2.5 Linear spring force with k = 10 and σ = 1

Holm, Kaufmann, Heimsund, Øian, and Espedal [22] extend the algorithm of Persson

and Strang to handle domains with complex geometries including internal boundaries.

15

CHAPTER 3

METHOD OVERVIEW

The proposed method treats each node as a particle, similar to what is done in the

Monte Carlo simulation and the molecular dynamics simulation methods. We use a particle

dynamics simulation rather than a Monte Carlo simulation to drive the nodes to force

equilibrium. The bubble meshing method and the molecular dynamics method use a

dynamics simulation approach very similar to one another. Differing significantly only in

the choice of inter-nodal force formula used, they both sum the forces acting between node i

and its surrounding neighbors, add a drag force dependent on node velocity, and numerically

integrate the equations of motion to determine the movement of the nodes. We have chosen

to simplify the simulation. For convenience, we rewrite equation (2.5) here

mi
d2xi
dt2

+ ci
dxi
dt

= Fi (3.1)

First, we include no damping force. Instead, each node’s velocity is reset to zero at

the beginning of each iteration. Secondly, we do not numerically integrate the dynamics

equations. Instead we take acceleration for each node to be constant over an iteration and

apply the resulting motion formula directly, limiting the distance a node may travel each

step. Thus (if we also take mi = 1 ∀i), equation (3.1) above can be written as a scalar

equation
d2xi
dt2

= Fi (3.2)

16

in the direction of Fi. This can be solved directly (taking Fi to be constant over the time

interval) by integrating both sides of

d2xi = Fidt
2 (3.3)

to obtain

∆xi = ∆tivi,0 +
1

2
∆t2iFi (3.4)

But, as stated above, we set vi,0 = 0 for each iteration, resulting in

∆xi =
∆t2i
2
Fi (3.5)

The subscript on ∆ti indicates that a different time step size is used for each node. This

value is globally bounded so that no node may travel more than 1/3 the distance to its

nearest neighbor in the general direction of its resultant force.

Each node has a spacing value, qi, associated with it which defines the desired distance

from node i to each neighboring node. This parameter is computed from node i’s physical

location within the domain spacing field. The spacing field can be arbitrary, but for this

study we have used a simple inverse distance weighting function. Given a 2D geometry

defined by a set of segmented curves, the segment of each curve to which the node is closest

contributes to the calculation of that node’s spacing. The distance, dis, from node i to

each of these segments and the length of each segment, ls, are used to calculate the spacing

parameter using the formula

qi =

∑
s

ls
dis∑

s

1

dis

(3.6)

This spacing parameter defines the desired distance node i should be away from its nearest

neighboring nodes. Note, this is the same as saying that the spacing parameter is the

17

diameter of node i’s circular bubble. That is, the spacing parameter is applied equally in all

directions.

To determine the net force vector applied to node i the forces acting on it from each of

its surrounding nodes are summed

Fi =
∑
j

Fij (3.7)

The formula used in this study for the pair force magnitude between node i and each

surrounding node j is the formula for the Lennard-Jones pair potential scaled by the pair

spacing, σij:

fij = 4aσij

((
σij
rij

)12

−
(
σij
rij

)6
)

(3.8)

Here, rij is the distance from node i to node j and σij is the average of the two nodes’ spacing

parameters. This force is applied to node i along the negative of the vector from node i to

node j:

Fij = fij

(
−rij
rij

)
(3.9)

The Lennard-Jones pair potential is used rather than the corresponding force formula because

the force formula evaluates to zero at an equilibrium distance of rij ≈ 1.1225σij, while what

we require is for σij itself to be the distance at which force equilibrium is reached between

the pair of nodes.

At the end of each iteration, once the new location of a node is determined, a new spacing

parameter is computed for it based on its new physical location. The flowchart in Figure 3.1

outlines the major aspects of the proposed method which will be further explained in the

succeeding chapters.

18

Read/Store geometry segmentsRead/Store geometry segments

Duplicate geometry nodes on boundariesDuplicate geometry nodes on boundaries

Generate initialization tree Generate initialization tree

Structured initializationStructured initialization Random initializationRandom initialization

Generate node treeGenerate node tree

Compute forces on all nodesCompute forces on all nodes

Update global maximum time stepUpdate global maximum time step

Compute local time step for each nodeCompute local time step for each node

Compute new node locationsCompute new node locations

for
each
node

for
each
node

Boundary
Node?

Boundary
Node? Re-snap to “closest” pointRe-snap to “closest” point

Snap to “closest” pointSnap to “closest” pointOut-of-bounds?Out-of-bounds?

yes

no

yes

no

Keep new locationKeep new location

Compute new spacingsCompute new spacings

Delete node treeDelete node tree

All nodes?All nodes?
no

yes

All
iterations?

All
iterations?

no

yes

Triangulate resultTriangulate result

Figure 3.1 Flowchart of the major steps of the method

19

CHAPTER 4

INITIAL OPERATIONS

Geometry Processing

The proposed method takes as input file(s) containing segmented curves which define the

2D geometry. These geometry curves have to have been predefined and the points on them

pre-populated and spaced. This is important because the proposed method currently uses a

spacing field that is completely dependent on the geometry spacing.

After reading the file(s) and storing the geometry segments and node locations in memory,

the geometry is analyzed and various data computed, such as segment vectors, body arc

lengths, domain extents, and total interior domain area. Also determined at this step are

the locations of the critical points–that is, points where (in 2D) two geometry curves join.

Finally, the geometry segments are stored in a quad-tree data structure (referred to hereafter

as the geometry tree) for efficient searching in other parts of the code. Examples of this

geometry tree can be seen in Figures 4.1 through 4.3.

20

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"geom_quadtree.dat"

Figure 4.1 Circle within circle: Segmented geometry curves (left); Segmented geometry
curves with geometry tree (right)

21

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

"geo.dat"

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

"geo.dat"
"geom_quadtree.dat"

Figure 4.2 Circle within circle (zoomed to inner circle): Segmented geometry curves (left);
Segmented geometry curves with geometry tree (right)

22

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"geom_quadtree.dat"

Figure 4.3 NACA 0012 airfoil (zoomed): Segmented geometry curves (top); Segmented
geometry curves with geometry tree (bottom)

Initial Node Distribution

Boundary Nodes

The first mesh nodes to be placed are at the locations of the critical points of the geometry.

These points will not be allowed to move throughout the simulation. Second, all the geometry

23

nodes between the critical points are duplicated as mesh nodes. These points will be allowed

to move along the boundaries. This is important since interior points will be adhered to the

boundaries if/when they are forced outside of the domain. Thus all points on the boundaries

(whether initially placed or added later) between the critical points will need to adjust their

locations toward a state of force equilibrium along the local direction of the curve. Figure 4.4

shows an example boundary distribution in which the geometry nodes have been duplicated.

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"geo.dat"

Figure 4.4 NACA 0012 airfoil (zoomed): Segmented geometry curves and initial boundary
mesh points

Interior Nodes

A completely random initial distribution of interior nodes is inappropriate, especially

when the spacing field is non-constant, since it will require far more iterations to pack points

into areas of small spacing and spread points thin in areas of larger spacing. We need

the initialization process to take the spacing field into account, not only so that points are

clustered where they need to be clustered, but also so that the number of points used to fill

24

the domain will be as close as possible to optimal. The following outlines the initialization

method we have used.

In order to distribute nodes in the interior of the domain, another quad tree is built,

again based on the geometry segments. This quad tree we will call the initialization tree.

Whereas the geometry tree only stores the geometry segments efficiently, the initialization

tree is processed recursively and filled out to provide a somewhat smoother gradation in

the size of the quad elements. Also, as exemplified in the Figure 4.5 (bottom), elements of

the initialization tree that are fully outside the domain are ignored for node initialization

purposes. Figure 4.5 provides a comparative visualization of the geometry tree and the

initialization tree for the same NACA 0012 airfoil as in Figure 4.4.

25

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"geo.dat"

"geom_quadtree.dat"

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"geo.dat"

"ctree.cut"

Figure 4.5 NACA 0012 airfoil (zoomed): Geometry tree (top) versus initialization tree
(bottom)

Once the initialization tree is built, each quad element is visited and populated with

one or more nodes. This process in each quad is also recursive. The spacing at the center

location of the quad, qmid, is computed. Then the ratio of the area of the quad to the area

of the circle with diameter qmid is computed. This ratio tells approximately how many of

those circles will fit within the current quad and is thus used to determine how many points

26

with which to populate the quad. The quad is populated with either a structured or random

initial distribution, chosen ahead of time by the user.

Structured Quad Distribution Currently there are four possibilities for populating

the quad with a structured distribution: 1) one node at the center of the quad; 2) four nodes

interior to the quad, equally spaced as a square; 3) five nodes, four as a square and one at

the center; and 4) nine nodes interior to the quad, equally spaced as a 3×3 square. Note, the

use of the term “structured” here is referring to the fact that nodes are placed in a geometric

pattern and is distinct from its use when defining “structured grids” as done in Chapter 1.

Random Quad Distribution The random populating option will insert the number

of nodes corresponding to the area ratio, from one up to nine, using a pseudo-random

coordinate pair within the quad.

Every node placed is tested to see whether it is outside the domain or too close to a

boundary, and if it is, it is not kept. Recursion happens in either initialization process

(structured or random) if the area ratio is greater than 9.5. In this case the quad is split

into four sub-quads and each of these populated individually.

This process results in an initial distribution of points in which the area of the domain

is filled appropriately according to the spacing field and all points inserted are only in the

interior. The particle dynamics simulation will therefore be a means of smoothing this

distribution toward a locally isotropic configuration, which if/when triangulated produces

near equilateral triangles.

The user may specify an exact desired total number of points to insert that is greater

than what the above process will use. If the user indicates that all of these points should

be used, the current code will insert the remainder of the number given as random points

27

within the domain. This is generally not recommended as it tends to “overload” the domain,

but this is desired and useful in certain applications.

Result of Structured Initial Quad Distribution

Example initial point distributions, using the structured initialization procedure, are

displayed (with and without the initialization tree) in Figures 4.6 through 4.9.

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"init_pts.dat"

"ctree.cut"

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"init_pts.dat"

Figure 4.6 NACA 0012 airfoil (zoomed): Structured initial point distribution with (top) and
without (bottom) initialization tree

28

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"init_pts.dat"

"ctree.cut"

Figure 4.7 Circle within circle: Structured initial point distribution with initialization tree

29

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"init_pts.dat"

Figure 4.8 Circle within circle: Structured initial point distribution

In Figures 4.6 (top), 4.7, and 4.9, we can see several examples of the cases outlined above

for structured initialization. We notice first the quad elements through which geometry

segments “cut”. In some of these elements nodes that were placed outside the domain (or too

close to the boundary segment) have been removed. Second, we note the two elements in the

30

upper left of Figure 4.9. These elements were further subdivided during the initialization

process due to the ratio of the area of the representative bubble (determined using the spacing

at the center of the element) to the area of the quad being greater than 9.5.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

"geo.dat"
"init_pts.dat"

"ctree.cut"

Figure 4.9 Circle within circle (zoomed to a portion of the upper right quadrant): Structured
initial point distribution with initialization tree

31

Example Result of Random Initial Quad Distribution

Example initial point distributions, using the random initialization procedure, are

displayed (with and without the initialization tree, with the same views as in the previous

section) in Figures 4.10 through 4.13.

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"init_pts.dat"

"ctree.cut"

-0.2

-0.1

 0

 0.1

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"init_pts.dat"

Figure 4.10 NACA 0012 airfoil (zoomed): Random initial point distribution with (top) and
without (bottom) initialization tree

32

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"init_pts.dat"

"ctree.cut"

Figure 4.11 Circle within circle: Random initial point distribution with initialization tree

33

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"init_pts.dat"

Figure 4.12 Circle within circle: Random initial point distribution

34

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

"geo.dat"
"init_pts.dat"

"ctree.cut"

Figure 4.13 Circle within circle (zoomed to a portion of the upper right quadrant): Random
initial point distribution with initialization tree

35

CHAPTER 5

PARTICLE DYNAMICS SIMULATION

Computing Forces

The nodes are all stored in a quad tree (this is now our third use of a quad tree, and

we will refer to it as the node tree). Each node is stored as an extent square of side length

qi, which is node i’s spacing parameter. The node tree is destroyed and recreated at each

iteration because node locations change every iteration.

For an interior node, the sum of forces acting on that node is computed exclusively

from its interaction with other nodes that are within a certain distance from it. That is,

the influence of every node beyond this distance is neglected. The distance used here is a

multiple of qi, and the multiplication factor (called the cut-off distance factor) is a parameter

set by the user prior to runtime (generally between 1.5 and 3).

For a boundary node the sum of forces acting on that node is contributed to only by the

two boundary nodes immediately before and after that node on that boundary curve.

To compute the force contribution made by node j upon node i (the current node), a

vector is computed, rij, which is the vector from node i to node j. This vector and the local

point cloud for node i are illustrated in Figure 5.1. Each node’s “bubble” area is shown in

order to visualize the spacing parameter qi for each node, as shown in Figure 5.2. In these

example figures, the spacing field is constant, and the radius of node i’s circle of influence

(transparent blue area with dashed boundary) is 1.5qi. (Interior nodes are colored in red

and boundary nodes in blue.)

36

r⃗ij

j

i

Figure 5.1 Vector from node i to node j

The vector, rij, and the average of the spacing values of these two nodes,

σij =
qi + qj

2
(5.1)

are used to compute the force contribution from node j upon node i, Fij. The value of σij

is the distance desired between nodes i and j. This is the average of the two node spacings

and can also be viewed as the sum of the radii of the two bubbles, for this is the distance

these two nodes would be from one another were the edges of their bubbles just touching.

37

σij

q j

q i

Figure 5.2 Ideal distance between a node pair is σij: Node j in this example is farther from
node i than σij. Therefore node i will experience an attractive force toward node
j

Figure 5.3 illustrates the forces exerted upon node i from each of the nodes in node i’s

local point cloud. (In this figure, nodes are numbered locally and force magnitudes are not

drawn to scale.) Notice the direction of the force is dependent on the spacing. When node

i’s bubble overlaps with a neighbor’s, node i is repelled from that neighbor. When there is

a gap between the bubbles, node i is attracted to that bubble. For example, in Figure 5.3,

we see that Fi4 is pointing away from node 4 (repulsion) and Fi7 is pointing toward node 7

(attraction).

38

1

2

3 4

5

6

7

F⃗i1

F⃗i5

F⃗i3

F⃗i2

F⃗i6

F⃗i7

F⃗i4

Figure 5.3 Vector forces exerted on node i from local cloud nodes

The net force acting on node i is then the sum of all these contributions

Fi =
∑
j

Fij (5.2)

Figure 5.4 illustrates the resultant force vector sum for node i (again not drawn to scale).

39

1

2

3 4

5

6

7

F⃗i

Figure 5.4 Resultant force vector sum for node i

Computing the Local Time Step

After summing the forces for node i, a distance is computed, r0,i, which is the distance

from the current node to its nearest neighboring node in the general direction of its force

vector sum. That is,

r0,i = min
j

{
|rij| : F̂i · r̂ij > 0

}
(5.3)

This is illustrated in Figure 5.5 and will be used when computing the time step for node i.

40

1

2

3 4

5

6

7

r0, i

Figure 5.5 The distance to node i’s nearest neighbor in the general direction of its vector
force sum

For the motion of the particles we start with

Fi = miai (5.4)

and, taking acceleration to be constant, we have that the change of position of a particle is

described by

∆xi = ∆tiv0,i +
∆t2i
2

ai (5.5)

where ∆xi = ∆xîi + ∆yîj.

Since the nodes are not truly particles traveling in true space and time, there is no

problem with altering the equations to obtain the desired results. Thus, taking mi = 1 for

every node, we have ai = Fi. Also setting the velocity of each node to zero at the beginning

41

of each iteration, and taking Fi to be constant throughout an iteration, (5.5) can be written

as

∆xi =
∆t2i
2

Fi (5.6)

We want each node to move no farther in one iteration than 1/3 of the distance to its

closest neighbor in the direction of its force sum (r0,i from above). To accomplish this, we

substitute this fraction into (5.6) (that is, we set |∆xi,max| = 1
3
r0,i, shown in Figure 5.6) and

solve as a scalar equation for ∆t2i :

1

2

3 4

5

6

7

r0, i

Δ x⃗ i , max

Figure 5.6 The maximum distance node i will be allowed to travel in one iteration

1

3
r0,i =

∆t2i
2
|Fi| (5.7)

∆t2i =
2r0,i

3 |Fi|
(5.8)

42

This expression for ∆t2i could be substituted into (5.6) for efficient computation of a

node’s new location. However, in the interest of having the nodes settle out to a stable

configuration (and not continue vacillating about), we instead limit the local node time step

with a global maximum. Thus,

∆t2i = min
(
∆t2i ,∆t

2
GM

)
(5.9)

In this way, a node with a relatively small force sum will travel a shorter distance than 1
3
r0,i,

since the time step required for the node to travel that distance would be greater than the

global maximum.

New Node Locations

The final value of the local time step obtained from (5.9) is used in (5.6) to compute the

change in node i’s location. This vector, ∆xi, is added to node i’s original location vector

to obtain the node’s new spatial location. Each boundary mesh node is “re-snapped” to its

boundary curve at the “closest point,” the point from which a vector normal to the curve

would reach the node’s off-boundary location.

Each interior node is tested at its new location to see if it has moved outside the domain.

If a node is “out-of-bounds,” it is “snapped” to its “closest point” on whichever boundary

curve it is closest to and its node number is incorporated into the boundary mesh node

connectivity data structure. This process is illustrated in Figure 5.7.

43

Figure 5.7 Example of a node being snapped to a boundary curve after crossing it

Once the new location for a node has been determined for the next iteration, its new

spacing parameter is computed from its spatial location. Once again, the spacing function

can be arbitrary, but the one used in the experimental cases in this study is an inverse

distance weighting function based on the boundary spacing.

The Global Maximum Time Step

As described above, we limit the local time step size of each node with a global maximum

in order for all of the nodes to settle out and keep them from endlessly jittering. The purpose

of this can be understood as analogous to releasing and catching a marble along the inner

surface of a bowl. Because our “marble” moves at a constant acceleration for all of one

iteration, we need to catch and stop it after a certain amount of time so that it does not

roll too far up the other side of the bowl even farther away from the bottom than at the

beginning of the iteration.

At this point we do not have an automated time step calculation that will work well for

different geometries and spacing fields and populations. In the current method, the user

specifies an initial time step and this number is automatically incremented or decremented

based on the stability of the point cloud configuration. If the maximum force sum decreases

for five consecutive iterations, the maximum time step is increased by a factor of 1.01. On

44

the other hand, if the value of the maximum force sum increases five times (not necessarily

consecutively) before it decreases five times, the time step is decreased by a factor of 0.99.

Inter-Node Force Formula

As stated in Chapter 3, the formula used for the force magnitude between the i-j node

pair is the Lennard-Jones pair potential (rather than the actual force). We use the potential

formula because we want force equilibrium when rij = σij, and the actual force formula

derived from the potential has an equilibrium at rij ≈ 1.1225σij.

fij = 4a

((
σij
rij

)12

−
(
σij
rij

)6
)

(5.10)

We can see the magnitude of force that node j will exert on node i based on the ratio of its

distance away from node i to the desired spacing in Figure 5.8.

Figure 5.8 Force magnitude with respect to rij/σij with a = 15: When rij = σij, the
magnitude of the force between nodes i and j is zero

45

In a variable spacing field, because of the globally limited time step, nodes in regions of

larger spacing need to be able to move greater distances in the same amount of time as nodes

in regions of smaller spacing move smaller distances. This means that the magnitude of the

force sum needs to scale relative to the local spacing. With the formula in equation (5.10),

the force magnitude is based only on the ratio of the desired spacing to the actual spacing.

Therefore, we modify this formula with a scaling factor of the desired pair spacing, σij. This

force is then directed along −r̂ij to produce the inter-node vector force contribution:

Fij = −4aσij

((
σij
rij

)12

−
(
σij
rij

)6
)

rij
rij

(5.11)

46

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, the relevant results obtained from the method applied to different cases

will be shown. These include the trends in average kinetic energy and net force over the

course of the iterations, images of the resulting point distributions and triangulations, timing

statistics for each run, and quality metrics of the resulting triangulation compared with those

of meshes produced by the two unstructured initialization techniques of Pointwise [1] using

the same geometry. (In point distribution images, the geometry segments are shown in

green.) All of the following cases were run with a cut-off distance factor of 1.5 for 2000

iterations, so that the run times tabulated in the last section of this chapter are comparable.

Circle within a Circle

The geometry for this case is shown in Figures 4.1 and 4.2. The outer circle has a radius

of 10 and the inner circle has a radius of 0.5. Each circle is split into a lower and an upper

semicircle. Thus there are four boundary curves in all, each of which is populated with 31

equally-spaced points (including the endpoints). This case was run with an initial maximum

time step of 0.01 for the structured initialization and 0.025 for the random initialization. In

the following figures the results from the run starting with the structured initialization are

shown on the left image of each figure and those from the random initialization are shown

on the right image. Figure 6.1 shows the trend in the average nodal resultant force and the

average nodal kinetic energy for each of the runs.

47

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

Figure 6.1 Circle within circle case: Average nodal net force (red) and kinetic energy (blue)
for the structured (left) and random (right) initializations

Figures 6.2 and 6.3 together give a comparative view of the initial distribution to the

final distribution for each run displaying the entire domain. Likewise, Figures 6.4 and 6.5

display the same configurations zoomed to the inner circle. Figures 6.6 and 6.7 show the

triangulation of each resultant distribution.

48

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"init_pts.dat"

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"init_pts.dat"

Figure 6.2 Circle within circle: Initial point distribution from structured (left) and random
(right) initializations

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"fin_pts.dat"

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"fin_pts.dat"

Figure 6.3 Circle within circle: Resulting point distribution from structured (left) and
random (right) initializations

49

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

"geo.dat"
"init_pts.dat"

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

"geo.dat"
"init_pts.dat"

Figure 6.4 Circle within circle (zoomed to inner circle): Initial point distribution from
structured (left) and random (right) initializations

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

"geo.dat"
"fin_pts.dat"

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

"geo.dat"
"fin_pts.dat"

Figure 6.5 Circle within circle (zoomed to inner circle): Resulting point distribution from
structured (left) and random (right) initializations

50

-10

-5

 0

 5

 10

-10 -5 0 5 10

"trimesh.dat"

-10

-5

 0

 5

 10

-10 -5 0 5 10

"trimesh.dat"

Figure 6.6 Circle within circle: Triangulated result from structured (left) and random (right)
initializations

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

"trimesh.dat"

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

"trimesh.dat"

Figure 6.7 Circle within circle (zoomed to inner circle): Triangulated result from structured
(left) and random (right) initializations

51

NACA 0012 Airfoil

The geometry for this case consists of a NACA 0012 airfoil of length 1 and a 30 × 30

square outer boundary. The spacing on the outer boundary is uniform. The spacing on the

airfoil is smaller at the leading and trailing edges and coarser in the middle. This case was

run with both the structured (tracked in the first section below) and random (tracked in the

second section below) initialization schemes, using an initial maximum time step of 0.009

for both runs.

Structured Initialization

Figure 6.8 shows the trend in the average nodal resultant force and the average nodal

kinetic energy from the run starting with the structured initialization.

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

Figure 6.8 NACA 0012 airfoil case: Average nodal net force (red) and kinetic energy (blue)
for the structured initialization

Figures 6.9 through 6.16 display the structured initial point distribution, the final point

distribution, and the triangulation of the final point distribution for various regions of the

domain.

52

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

"geo.dat"
"init_pts.dat"

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

"geo.dat"
"fin_pts.dat"

Figure 6.9 NACA 0012 airfoil: Initial point distribution (left) and resulting point distribution
(right) from structured initialization

53

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

"trimesh.dat"

Figure 6.10 NACA 0012 airfoil: Triangulated result from structured initialization

54

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3 4

"geo.dat"
"init_pts.dat"

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3 4

"geo.dat"
"fin_pts.dat"

Figure 6.11 NACA 0012 airfoil (zoomed midway): Initial point distribution (top) and
resulting point distribution (bottom) from structured initialization

55

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3 4

"trimesh.dat"

Figure 6.12 NACA 0012 airfoil (zoomed midway): Triangulated result from structured
initialization

56

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"init_pts.dat"

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"fin_pts.dat"

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

"trimesh.dat"

Figure 6.13 NACA 0012 airfoil (zoomed): Initial point distribution (top), resulting
point distribution (middle), and triangulated result (bottom) from structured
initialization

57

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.1 -0.05 0 0.05 0.1

"geo.dat"
"init_pts.dat"

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.1 -0.05 0 0.05 0.1

"geo.dat"
"fin_pts.dat"

Figure 6.14 NACA 0012 airfoil (zoomed to leading edge): Initial point distribution (top) and
resulting point distribution (bottom) from structured initialization

58

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.85 0.9 0.95 1 1.05

"geo.dat"
"init_pts.dat"

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.85 0.9 0.95 1 1.05

"geo.dat"
"fin_pts.dat"

Figure 6.15 NACA 0012 airfoil (zoomed to trailing edge): Initial point distribution (top) and
resulting point distribution (bottom) from structured initialization

59

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.1 -0.05 0 0.05 0.1

"trimesh.dat"

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.85 0.9 0.95 1 1.05

"trimesh.dat"

Figure 6.16 NACA 0012 airfoil: Triangulated result zoomed to leading edge (top) and trailing
edge (bottom) from structured initialization

60

Random Initialization

Figure 6.17 shows the trend in the average nodal resultant force and the average nodal

kinetic energy from the run starting with the random initialization.

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

Figure 6.17 NACA 0012 airfoil case: Average nodal net force (red) and kinetic energy (blue)
for the random initialization

Figures 6.18 through 6.25 display the randomized initial point distribution, the final point

distribution, and the triangulation of the final point distribution for various regions of the

domain, the same as shown in the previous section covering the results from the structured

initialization.

61

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

"geo.dat"
"init_pts.dat"

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

"geo.dat"
"fin_pts.dat"

Figure 6.18 NACA 0012 airfoil: Initial point distribution (left) and resulting point
distribution (right) from random initialization

62

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

"trimesh.dat"

Figure 6.19 NACA 0012 airfoil: Triangulated result from random initialization

63

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3 4

"geo.dat"
"init_pts.dat"

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3 4

"geo.dat"
"fin_pts.dat"

Figure 6.20 NACA 0012 airfoil (zoomed midway): Initial point distribution (top) and
resulting point distribution (bottom) from random initialization

64

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3 4

"trimesh.dat"

Figure 6.21 NACA 0012 airfoil (zoomed midway): Triangulated result from random
initialization

65

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"init_pts.dat"

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

"geo.dat"
"fin_pts.dat"

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

"trimesh.dat"

Figure 6.22 NACA 0012 airfoil (zoomed): Initial point distribution (top), resulting
point distribution (middle), and triangulated result (bottom) from random
initialization

66

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.1 -0.05 0 0.05 0.1

"geo.dat"
"init_pts.dat"

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.1 -0.05 0 0.05 0.1

"geo.dat"
"fin_pts.dat"

Figure 6.23 NACA 0012 airfoil (zoomed to leading edge): Initial point distribution (top) and
resulting point distribution (bottom) from random initialization

67

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.85 0.9 0.95 1 1.05

"geo.dat"
"init_pts.dat"

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.85 0.9 0.95 1 1.05

"geo.dat"
"fin_pts.dat"

Figure 6.24 NACA 0012 airfoil (zoomed to trailing edge): Initial point distribution (top) and
resulting point distribution (bottom) from random initialization

68

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.1 -0.05 0 0.05 0.1

"trimesh.dat"

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.85 0.9 0.95 1 1.05

"trimesh.dat"

Figure 6.25 NACA 0012 airfoil: Triangulated result zoomed to leading edge (top) and trailing
edge (bottom) from random initialization

69

30P/30N Multi-element Airfoil

The geometry of this case consists of a 30P/30N multi-element airfoil with a total length

of approximately 1.2 surrounded by a 20×20 square outer boundary. This case was run with

both the structured (tracked in the first section below) and random (tracked in the second

section below) initialization schemes, using an initial maximum time step of 0.009 for both

runs.

Structured Initialization

Figure 6.26 shows the trend in the average nodal resultant force and the average nodal

kinetic energy from the run starting with the structured initialization.

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

Figure 6.26 30P/30N multi-element airfoil case: Average nodal net force (red) and kinetic
energy (blue) for the structured initialization

Figures 6.27 through 6.36 display the structured initial point distribution, the final point

distribution, and the triangulation of the final point distribution for various regions of the

domain.

70

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"init_pts.dat"

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"fin_pts.dat"

Figure 6.27 30P/30N multi-element airfoil: Initial point distribution (left) and resulting
point distribution (right) from structured initialization

71

-10

-5

 0

 5

 10

-10 -5 0 5 10

"trimesh.dat"

Figure 6.28 30P/30N multi-element airfoil: Triangulated result from structured initialization

72

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5 0 0.5 1 1.5

"geo.dat"
"init_pts.dat"

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5 0 0.5 1 1.5

"geo.dat"
"fin_pts.dat"

Figure 6.29 30P/30N multi-element airfoil (zoomed midway): Initial point distribution (top)
and resulting point distribution (bottom) from structured initialization

73

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5 0 0.5 1 1.5

"trimesh.dat"

Figure 6.30 30P/30N multi-element airfoil (zoomed midway): Triangulated result from
structured initialization

74

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

"geo.dat"
"init_pts.dat"

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

"geo.dat"
"fin_pts.dat"

Figure 6.31 30P/30N multi-element airfoil (zoomed to leading edge): Initial point
distribution (top) and resulting point distribution (bottom) from structured
initialization

75

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

"trimesh.dat"

Figure 6.32 30P/30N multi-element airfoil (zoomed to leading edge): Triangulated result
from structured initialization

76

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.65 0.7 0.75 0.8 0.85 0.9

"geo.dat"
"init_pts.dat"

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.65 0.7 0.75 0.8 0.85 0.9

"geo.dat"
"fin_pts.dat"

Figure 6.33 30P/30N multi-element airfoil (zoomed to inter-element space): Initial point
distribution (top) and resulting point distribution (bottom) from structured
initialization

77

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.65 0.7 0.75 0.8 0.85 0.9

"trimesh.dat"

Figure 6.34 30P/30N multi-element airfoil (zoomed to inter-element space): Triangulated
result from structured initialization

78

-0.2

-0.15

-0.1

-0.05

 0

 0.95 1 1.05 1.1 1.15 1.2

"geo.dat"
"init_pts.dat"

-0.2

-0.15

-0.1

-0.05

 0

 0.95 1 1.05 1.1 1.15 1.2

"geo.dat"
"fin_pts.dat"

Figure 6.35 30P/30N multi-element airfoil (zoomed to trailing edge): Initial point
distribution (top) and resulting point distribution (bottom) from structured
initialization

79

-0.2

-0.15

-0.1

-0.05

 0

 0.95 1 1.05 1.1 1.15 1.2

"trimesh.dat"

Figure 6.36 30P/30N multi-element airfoil (zoomed to trailing edge): Triangulated result
from structured initialization

80

Random Initialization

Figure 6.37 shows the trend in the average nodal resultant force and the average nodal

kinetic energy from the run starting with the random initialization.

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

Figure 6.37 30P/30N multi-element airfoil case: Average nodal net force (red) and kinetic
energy (blue) for the random initialization

Figures 6.38 through 6.47 display the randomized initial point distribution, the final point

distribution, and the triangulation of the final point distribution for various regions of the

domain, the same as shown in the previous section covering the results from the structured

initialization.

81

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"init_pts.dat"

-10

-5

 0

 5

 10

-10 -5 0 5 10

"geo.dat"
"fin_pts.dat"

Figure 6.38 30P/30N multi-element airfoil: Initial point distribution (left) and resulting
point distribution (right) from random initialization

82

-10

-5

 0

 5

 10

-10 -5 0 5 10

"trimesh.dat"

Figure 6.39 30P/30N multi-element airfoil: Triangulated result from random initialization

83

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5 0 0.5 1 1.5

"geo.dat"
"init_pts.dat"

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5 0 0.5 1 1.5

"geo.dat"
"fin_pts.dat"

Figure 6.40 30P/30N multi-element airfoil (zoomed midway): Initial point distribution (top)
and resulting point distribution (bottom) from random initialization

84

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.5 0 0.5 1 1.5

"trimesh.dat"

Figure 6.41 30P/30N multi-element airfoil (zoomed midway): Triangulated result from
random initialization

85

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

"geo.dat"
"init_pts.dat"

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

"geo.dat"
"fin_pts.dat"

Figure 6.42 30P/30N multi-element airfoil (zoomed to leading edge): Initial point
distribution (top) and resulting point distribution (bottom) from random
initialization 86

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

"trimesh.dat"

Figure 6.43 30P/30N multi-element airfoil (zoomed to leading edge): Triangulated result
from random initialization

87

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.65 0.7 0.75 0.8 0.85 0.9

"geo.dat"
"init_pts.dat"

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.65 0.7 0.75 0.8 0.85 0.9

"geo.dat"
"fin_pts.dat"

Figure 6.44 30P/30N multi-element airfoil (zoomed to inter-element space): Initial point
distribution (top) and resulting point distribution (bottom) from random
initialization 88

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.65 0.7 0.75 0.8 0.85 0.9

"trimesh.dat"

Figure 6.45 30P/30N multi-element airfoil (zoomed to inter-element space): Triangulated
result from random initialization

89

-0.2

-0.15

-0.1

-0.05

 0

 0.95 1 1.05 1.1 1.15 1.2

"geo.dat"
"init_pts.dat"

-0.2

-0.15

-0.1

-0.05

 0

 0.95 1 1.05 1.1 1.15 1.2

"geo.dat"
"fin_pts.dat"

Figure 6.46 30P/30N multi-element airfoil (zoomed to trailing edge): Initial point
distribution (top) and resulting point distribution (bottom) from random
initialization 90

-0.2

-0.15

-0.1

-0.05

 0

 0.95 1 1.05 1.1 1.15 1.2

"trimesh.dat"

Figure 6.47 30P/30N multi-element airfoil (zoomed to trailing edge): Triangulated result
from random initialization

91

Nuclear Reactor Rod Assembly

This geometry is comprised of 25 rod cross-sections in a 5× 5 array inside a square outer

boundary. For this geometry we ran two cases, one with a coarse boundary distribution and

one with a fine boundary distribution (recall that the spacing function used in this research

is entirely dependent upon the spacing on the boundaries).

Coarse Version

The coarse version of this geometry has 20 segments on each circle and 40 on each side

of the outer square. This case was run with an initial maximum time step of 0.0025 for

the structured initialization and 0.005 for the random initialization. Figure 6.48 shows the

trend in the average nodal resultant force and the average nodal kinetic energy for each of

the runs.

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

Figure 6.48 Reactor rod assembly (coarse) case: Average nodal net force (red) and kinetic
energy (blue) for the structured (left) and random (right) initializations

92

Figures 6.49 through 6.54 provide comparative views of the initial distribution to the

final distribution for each run for various regions of the domain. Figures 6.55 through 6.57

show the triangulation of each resultant distribution for the same regions of the domain.

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"geo.dat"
"init_pts.dat"

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"geo.dat"
"init_pts.dat"

Figure 6.49 Reactor rod assembly (coarse): Initial point distribution from structured (left)
and random (right) initializations

93

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"geo.dat"
"fin_pts.dat"

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"geo.dat"
"fin_pts.dat"

Figure 6.50 Reactor rod assembly (coarse): Resulting point distribution from structured
(left) and random (right) initializations

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"geo.dat"
"init_pts.dat"

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"geo.dat"
"init_pts.dat"

Figure 6.51 Reactor rod assembly (coarse) (zoomed): Initial point distribution from
structured (left) and random (right) initializations

94

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"geo.dat"
"fin_pts.dat"

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"geo.dat"
"fin_pts.dat"

Figure 6.52 Reactor rod assembly (coarse) (zoomed): Resulting point distribution from
structured (left) and random (right) initializations

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"geo.dat"
"init_pts.dat"

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"geo.dat"
"init_pts.dat"

Figure 6.53 Reactor rod assembly (coarse) (zoomed to upper-left corner): Initial point
distribution from structured (left) and random (right) initializations

95

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"geo.dat"
"fin_pts.dat"

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"geo.dat"
"fin_pts.dat"

Figure 6.54 Reactor rod assembly (coarse) (zoomed to upper-left corner): Resulting point
distribution from structured (left) and random (right) initializations

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"trimesh.dat"

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"trimesh.dat"

Figure 6.55 Reactor rod assembly (coarse): Triangulated result from structured (left) and
random (right) initializations

96

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"trimesh.dat"

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"trimesh.dat"

Figure 6.56 Reactor rod assembly (coarse) (zoomed): Triangulated result from structured
(left) and random (right) initializations

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"trimesh.dat"

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"trimesh.dat"

Figure 6.57 Reactor rod assembly (coarse) (zoomed to upper-left corner): Triangulated result
from structured (left) and random (right) initializations

97

Fine Version

The fine version of this geometry has 60 segments on each circle and 130 on each side of

the outer square. Therefore, the spacing will be much smaller everywhere than in the coarse

version. This case was run with an initial maximum time step of 0.02 for both initialization

methods. Figure 6.58 shows the trend in the average nodal resultant force and the average

nodal kinetic energy for each of the runs.

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"Favg.dat"
"KEav.dat"

Figure 6.58 Reactor rod assembly (fine) case: Average nodal net force (red) and kinetic
energy (blue) for the structured (left) and random (right) initializations

Figures 6.59 through 6.64 provide comparative views of the initial distribution to the

final distribution for each run for various regions of the domain. Figures 6.55 through 6.67

show the triangulation of each resultant distribution for the same regions of the domain.

98

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"geo.dat"
"init_pts.dat"

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"geo.dat"
"init_pts.dat"

Figure 6.59 Reactor rod assembly (fine): Initial point distribution from structured (left) and
random (right) initializations

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"geo.dat"
"fin_pts.dat"

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"geo.dat"
"fin_pts.dat"

Figure 6.60 Reactor rod assembly (fine): Resulting point distribution from structured (left)
and random (right) initializations

99

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"geo.dat"
"init_pts.dat"

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"geo.dat"
"init_pts.dat"

Figure 6.61 Reactor rod assembly (fine) (zoomed): Initial point distribution from structured
(left) and random (right) initializations

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"geo.dat"
"fin_pts.dat"

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"geo.dat"
"fin_pts.dat"

Figure 6.62 Reactor rod assembly (fine) (zoomed): Resulting point distribution from
structured (left) and random (right) initializations

100

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"geo.dat"
"init_pts.dat"

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"geo.dat"
"init_pts.dat"

Figure 6.63 Reactor rod assembly (fine) (zoomed to upper-left corner): Initial point
distribution from structured (left) and random (right) initializations

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"geo.dat"
"fin_pts.dat"

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"geo.dat"
"fin_pts.dat"

Figure 6.64 Reactor rod assembly (fine) (zoomed to upper-left corner): Resulting point
distribution from structured (left) and random (right) initializations

101

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"trimesh.dat"

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

"trimesh.dat"

Figure 6.65 Reactor rod assembly (fine): Triangulated result from structured (left) and
random (right) initializations

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"trimesh.dat"

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

"trimesh.dat"

Figure 6.66 Reactor rod assembly (fine) (zoomed): Triangulated result from structured (left)
and random (right) initializations

102

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"trimesh.dat"

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

"trimesh.dat"

Figure 6.67 Reactor rod assembly (fine) (zoomed to upper-left corner): Triangulated result
from structured (left) and random (right) initializations

103

Timing and Quality Results

All of the above test cases were run on a Dell Vostro with an Intel Core i5 (2.67GHz ×

4) processor and 4GB of RAM (SimCenter Workstation). Table 6.1 presents the time taken

to run each case. This information is split into three parts: initialization time, simulation

time, and triangulation time, all measured in seconds.

Geometry Initialization No. of Nodes Initialization Simulation Triangulation

Circle-Circle Structured 2536 0.03 37.97 0.03

Random 2257 0.02 32.85 0.02

NACA 0012 Structured 5852 0.13 156.99 0.11

Random 5272 0.13 136.51 0.09

30P/30N Structured 11219 1.07 872.67 0.40

Random 10733 1.03 828.23 0.37

NRRA (coarse) Structured 2364 0.10 87.63 0.03

Random 1409 0.06 38.65 0.02

NRRA (fine) Structured 11712 1.15 1189.63 0.43

Random 11478 1.11 1148.07 0.40

Table 6.1 Timing results

The triangulation used is Lawson’s algorithm and is not part of the research, but only used

to generate connectivity for the resultant point distribution after all the iterations for the

simulation are completed. Tables 6.5 through 6.4 compare some quality metrics computed

for the results of each of the above test cases and two meshes generated by Pointwise [1]

using the same geometry and boundary distribution. These metrics are described in the

Appendix. The column heading abbreviations reference the following:

104

JP_Str Mesh resulting from the proposed method using the structured initialization

JP_Ran Mesh resulting from the proposed method using the randomized initialization

PW_Del Mesh produced by Pointwise using the “Delaunay” method

PW_AF Mesh produced by Pointwise using the “Advancing Front” method

JP_Str JP_Ran PW_Del PW_AF

Number of Triangles 4952 4394 2420 2222

Included Angle MIN 35.07 35.37 26.28 23.42

(degrees) MAX 106.15 105.32 105.51 112.20

Aspect ratio Average 1.019 1.017 1.079 1.066

(1,∞) MAX 1.563 1.535 1.613 1.780

Skewness Average 1.104 1.102 1.313 1.258

(1,∞) MAX 1.719 1.698 2.213 2.516

Weighted Condition Number Average 1.015 1.014 1.067 1.058

(1,∞) MAX 1.374 1.356 1.499 1.585

Minimum Corner Jacobian 0.575 0.579 0.443 0.397

Table 6.2 Quality results: Circle within circle case

In Table 6.2 we can see that for the circle within circle case, all of the metrics for the

meshes produced by the proposed method are better than those of the meshes produced by

Pointwise (some more so than others). For example the minimum included angle is above 35

degrees in the proposed method’s resulting meshes, but not for those from Pointwise. Also,

the maximum skewness is significantly smaller for the JP meshes than for the Pointwise

meshes.

105

JP_Str JP_Ran PW_Del PW_AF

Number of Triangles 11383 10223 6609 5881

Included Angle MIN 29.57 30.49 24.55 24.93

(degrees) MAX 117.61 113.01 107.48 112.67

Aspect ratio Average 1.022 1.025 1.081 1.062

(1,∞) MAX 2.022 1.805 1.634 1.836

Skewness Average 1.118 1.127 1.313 1.240

(1,∞) MAX 1.928 1.961 2.388 2.332

Weighted Condition Number Average 1.018 1.020 1.068 1.054

(1,∞) MAX 1.606 1.501 1.548 1.547

Minimum Corner Jacobian 0.494 0.507 0.416 0.421

Table 6.3 Quality results: NACA 0012 airfoil case

For the NACA 0012 airfoil case, we can see from Table 6.3 that starting from the random

initialization resulted generally in slightly better metrics than Pointwise, and starting from

the structured initialization resulted generally in slightly worse metrics.

106

JP_Str JP_Ran PW_Del PW_AF

Number of Triangles 21026 20054 25416 23652

Included Angle MIN 27.71 24.74 26.58 23.82

(degrees) MAX 120.90 121.39 112.31 115.98

Aspect ratio Average 1.040 1.043 1.081 1.064

(1,∞) MAX 2.218 2.253 1.785 1.940

Skewness Average 1.165 1.177 1.315 1.262

(1,∞) MAX 2.089 2.387 2.232 2.474

Weighted Condition Number Average 1.032 1.035 1.068 1.057

(1,∞) MAX 1.699 1.717 1.524 1.591

Minimum Corner Jacobian 0.465 0.419 0.447 0.404

Table 6.4 Quality results: 30P/30N Multi-element airfoil case

From Table 6.4 we can see that the proposed method resulted in meshes with quality

metrics quite similar overall to those from Pointwise but generally worse in the extrema (the

averages are still slightly better).

107

JP_Str JP_Ran PW_Del PW_AF

Number of Triangles 4113 2206 2776 2864

Included Angle MIN 33.85 26.60 29.99 30.39

(degrees) MAX 110.15 123.23 105.80 103.77

Aspect ratio Average 1.085 1.065 1.120 1.095

(1,∞) MAX 1.695 2.373 1.551 1.504

Skewness Average 1.243 1.237 1.382 1.341

(1,∞) MAX 1.742 2.060 2.000 1.955

Weighted Condition Number Average 1.065 1.052 1.099 1.082

(1,∞) MAX 1.444 1.768 1.366 1.363

Minimum Corner Jacobian 0.557 0.448 0.500 0.506

Table 6.5 Quality results: Reactor rod assembly (coarse) case

On the coarse version of the reactor rod assembly, starting from the random initialization

scheme resulted in some gaps in the domain and, therefore, some poorly shaped triangles

in the resulting mesh. This can be seen here in Table 6.5 as well. The minimum included

angle quite smaller than we would like to have and the extrema of the other metrics are not

ideal. On the other hand, the structured case did quite well, with the resulting metrics being

similar or slightly better than those from Pointwise.

108

JP_Str JP_Ran PW_Del PW_AF

Number of Triangles 21452 20984 26252 20452

Included Angle MIN 30.79 36.18 28.13 27.90

(degrees) MAX 117.90 104.88 111.80 116.34

Aspect ratio Average 1.022 1.019 1.079 1.052

(1,∞) MAX 2.037 1.521 1.768 1.962

Skewness Average 1.116 1.107 1.314 1.210

(1,∞) MAX 1.951 1.640 2.112 2.079

Weighted Condition Number Average 1.018 1.016 1.067 1.043

(1,∞) MAX 1.612 1.348 1.487 1.580

Minimum Corner Jacobian 0.512 0.590 0.471 0.468

Table 6.6 Quality results: Reactor rod assembly (fine) case

With the fine version of this geometry, we have an opposite result. The structured case

resulted in poorer metrics than the random case, which produced better numbers here than

the Pointwise meshes.

109

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this research, we have validated the usefulness of the physics-based approach for

generating smooth, quality point distributions (and meshes) that match a desired spacing

field for complicated geometries. Much of what was done in this work was reproducing the

work of others (see Chapter 2) in a simplified fashion in order to test this approach on complex

geometries. From the above results we can see that the proposed method, though having

several limitations, has shown to be capable of producing high quality resulting meshes,

and we can generally agree with Zhang and Smirnov [19] that “liquefying” (overloading) the

domain results in better distributions.

There is much work to be done in developing the proposed method, adding and improving

features to increase its versatility, reliability, and speed. The following sections address some

of the problems with the current method and outline the major goals for future development,

in keeping with the goals stated in Chapter 1.

Restart Capability

This will be beneficial in the cases of large point clouds which do not reach equilibrium

within the given number of iterations. The node data will be written to a file and that file

given as input when restarting the program. The case could thus be given more iterations

starting from the configuration in which it previously stopped.

This will also include the capability of reading in a generic mesh file generated elsewhere.

The connectivity would be removed and the program would be used as smoothing routine

for the nodes already populated from the given mesh file.

110

Better Initial Node Distribution Method

The initialization method needs to be improved in order to 1) reduce the number of

iterations required to reach a stable configuration and 2) better match the desired spacing

field. For example, in the 30P/30N multi-element airfoil case, the domain was significantly

overloaded especially in the regions between and around the airfoil elements. That is, the

spacing field was not matched well by the initialization.

Shimada and Gossard point out that a hexagonal pattern (in 2D) gives the ideal packing of

bubbles, since the connectivity of nodes at the centers of those bubbles produces equilateral

triangles [17]. In their method, they therefore initialize the (2D) domain by packing the

bubbles in a hexagonal pattern. (In 3D the ideal packing is a pattern of icosahedra. That

is, each node should be surrounded by 12 immediate neighbors.) This initialization method

will need to be implemented and tested in future work.

Automatic Global Maximum Time Step Calculation

For every case, there is a value for the global maximum time step size that is both small

enough to stabilize the motion of the nodes (i.e., nodes do not continue to jitter indefinitely)

and large enough to allow the nodes to move enough to smooth the distribution. This value

depends on many factors, including the total domain area (or volume), the number of nodes

in the domain, the spacing field, and the inter-node force formula being used. It would be

preferable to have a method to automatically calculate the right value for the maximum time

step size for a given case from the data specific to that case. Various methods have been

attempted throughout the course of this research, but none have worked equally well for all

cases tested.

111

Automatic Node Population Control

Since the force formula we are using includes attraction as well as repulsion, this means

that when there are too few nodes in the system, there will be gaps in the domain in which

there are no nodes. On the other hand, if there are too many nodes in the domain, most

node pairs will be at a distance that is smaller than their ideal spacing, σij. In some cases,

especially when the geometry is complex, a resulting configuration may simultaneously have

regions in the domain with gaps and other regions in which the nodes are too tightly packed.

Examples of this problem can be seen in the figures in Chapter 6. A simple example of

gaps in a domain with too few points is shown in Figures 7.1 and 7.2. The geometry is a

simple 200× 200 square with 40 points on the boundary. Thus the spacing field is constant

(qi = 20, ∀i). Using the structured initialization method, the domain is initialized with 64

interior nodes. Figure 7.1 shows the initial and resulting bubble configurations. Figure 7.2

shows the initial and resulting point distributions as well as the triangulated result.

Figure 7.1 Example initialization (left) and result (right) with too few points (bubble view)

112

-100

-50

 0

 50

 100

-100 -50 0 50 100

"geo.dat"
"init_pts.dat"

-100

-50

 0

 50

 100

-100 -50 0 50 100

"geo.dat"
"fin_pts.dat"

-100

-50

 0

 50

 100

-100 -50 0 50 100

"trimesh.dat"

Figure 7.2 Example initialization (left), result (middle), and triangulated result (right) with
too few points

There is therefore the necessity of being able to both insert points into gaps and remove

points from areas of excess concentration. Shimada and Gossard [17] proposed a method for

accomplishing this by measuring an “overlap ratio” for each node. Using our notation, the

formula for this ratio is:

αi =
1

qi

∑
j

(2qi + qj − rij) (7.1)

This ratio corresponds to how tightly the nodes are packed in the domain. For an interior

node in 2D, this ratio should have a value of 6 (in 3D, it should be 12). If the ratio is smaller

than ideal, the node is considered “open” and if it is greater, the node is considered “excess”.

An excess node is removed and one or more points are inserted around an open node.

The results of a preliminary implementation of this approach used on the example above

are shown in Figures 7.3 through 7.5. In this implementation, the simulation is allowed to

progress until it reaches the criterion that the maximum force magnitude decreases for 20

consecutive iterations. At this point the population control function is called which tests

every interior node’s overlap ratio. It will then delete excess nodes and search around each

open node for empty spaces and fill them. Figure 7.3 shows the intertion of 23 points from

iteration 106 to 107 after the nodes have significantly slowed their movement.

113

Figure 7.3 Example of inserting nodes into gap regions

In all, this function is called 27 times throughout the course of the simulation. Figure

7.3 shows the first call. Two other calls result in one node being inserted each. The other 24

calls result in no change to the population. At the end of 2000 iterations then the result is

much more uniformly packed than before, as is shown in Figure 7.4.

Figure 7.4 Example resulting bubble configuration after using population control

114

-100

-50

 0

 50

 100

-100 -50 0 50 100

"geo.dat"
"fin_pts.dat"

-100

-50

 0

 50

 100

-100 -50 0 50 100

"trimesh.dat"

Figure 7.5 Example resulting point distribution and triangulation after using population
control

So far this implementation works well only for simple cases, especially with constant

spacing. With more complex geometries, too many points are deleted near inner boundaries,

resulting in more gaps than would result without using it.

Automatic Boundary Population

The current method requires the user to have distributed points on the boundaries prior

to runtime. For complex geometries (especially in 3D), just the task of distributing points

on the boundaries can be a very time-consuming process. There is therefore a need for

an automatic boundary population method to be implemented as part of the initialization

process.

The spacing field used (prior to flow solution) is also affected by the choice of method

used here. One option is to require the user to specify the spacing only at the critical points

and use an inverse-distance weighted average formula based only on the critical points to

define the spacing at all other locations on the boundaries and in the interior of the domain.

115

Non-Spherical Packing Methods for Viscous Layers

In the current method, the spacing parameter for each node is a scalar, and therefore

each node’s bubble is circular. That is, the same spacing value is enforced in every direction

from the node. This is not suitable for creating viscous layer meshes, in which generally

the spacing in the direction normal to a boundary surface is significantly smaller than the

spacing tangential to the surface. In order to create viscous meshes, nodes near a (viscous)

boundary surface need to have bubbles (spacing implementations) that are elliptical (or

perhaps quadrilateral) in shape, with the longer dimension tangential to the boundary

surface. Shimada [23] and Yamakawa [24] have proposed a method of ellipsoid packing

that may be useful for this purpose. This technique may also be useful for refining a mesh

in regions of high gradients with anisotropic elements.

Spacing Field Adapted to Flow Solution

At the current state of development, the proposed method can adapt well to a variable

spacing field. The spacing field used can be arbitrary as long as it is a scalar function over

the entire domain. In future development, we will implement the capability to adapt to a

spacing field defined as a tensor function. Of course, the primary reason for this capability

is to adapt the mesh to solution data.

Using the same geometry as shown in Figure 7.1 (left) and the random initialization, we

define an analytic spacing field specific to that case which “smoothly” mimics a spacing field

adapted to a vertical shock region:

qi = 0.5 + 19.5
(

tanh
(x

16

))2

(7.2)

116

Figure 7.6 Plot of Equation (7.2)

Figures 7.7 through 7.9 display the resulting point distribution and triangulation after

running this case with the population control function described above. On the bottom

boundary, points were pushed onto the boundary so that the resulting boundary distribution

matches the spacing function. On the top boundary, however, not enough points were pushed

onto the boundary, and therefore the spacing function is not matched and ill-shaped triangles

result.

-100

-50

 0

 50

 100

-100 -50 0 50 100

"geo.dat"
"fin_pts.dat"

-100

-50

 0

 50

 100

-100 -50 0 50 100

"trimesh.dat"

Figure 7.7 Example resulting point distribution and triangulation after using population
control with analytic spacing field

117

-105

-100

-95

-90

-85

-80

-75

-70

-65

-20 -15 -10 -5 0 5 10 15 20

"geo.dat"
"fin_pts.dat"

-105

-100

-95

-90

-85

-80

-75

-70

-65

-20 -15 -10 -5 0 5 10 15 20

"trimesh.dat"

Figure 7.8 Example resulting point distribution and triangulation after using population
control with analytic spacing field (bottom boundary)

 65

 70

 75

 80

 85

 90

 95

 100

 105

-20 -15 -10 -5 0 5 10 15 20

"geo.dat"
"fin_pts.dat"

 65

 70

 75

 80

 85

 90

 95

 100

 105

-20 -15 -10 -5 0 5 10 15 20

"trimesh.dat"

Figure 7.9 Example resulting point distribution and triangulation after using population
control with analytic spacing field (top boundary)

118

It is worth noting that the initialization for this example did not take the analytic spacing

field into account. The random initialization was used and therefore in the first iteration,

qi was equal to 20 everywhere. More work will need to go into initializing (from restart as

well) the boundaries and interior with a new spacing field.

Moving Geometry

The proposed method is foreseeably useful for adapting to moving geometry. It will

be implemented to pair with either a finite volume solver or a meshless solver to produce

time-accurate solution results for moving geometry cases.

3D

The proposed method along with all of the above future capabilities must be implemented

in three dimensions. Perhaps the greatest challenge with this will be dealing with the

geometry surface meshes, which will be significantly more complicated than dealing with

segmented curves in two dimensions.

Parallel

Implementing the method in parallel will clearly be necessary for scalability.

119

REFERENCES

[1] Pointwise Inc. www.pointwise.com, 2013. 2, 5, 47, 104

[2] Vincent C. Betro. Fully Anisotropic Split-tree Adaptive Refinement Mesh Generation
using Tetrahedral Mesh Stitching. PhD thesis, The University of Tennessee at
Chattanooga, 2010. 2, 3

[3] Cameron T. Druyor Jr. An adaptive hybrid mesh generation method for complex
geometries. Master’s thesis, The University of Tennessee at Chattanooga, 2011. 2,
3

[4] Satish Chalasani and David Thompson. Quality improvements in extruded meshes
using topologically adaptive generalized elements. International Journal for Numerical
Methods in Engineering, 60(6):1139–1159, 2004. 2

[5] Charles L. Lawson. Software for C1 surface interpolation. In Mathematical Software
III, pages 161–194. Academic Press: New York, 1977. 2

[6] Adrian Bowyer. Computing dirichlet tessellations. The Computer Journal, 24(2):162–
166, 1981. 2

[7] David F. Watson. Computing the n-dimensional delaunay tessellation with application
to voronoi polytopes. The Computer Journal, 24(2):167–172, 1981. 2

[8] Steven J. Owen. A survey of unstructured mesh generation technology. In Proceedings,
7th International Meshing Roundtable, pages 239–267, October 1998. 2

[9] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR89-983,
Department of Computer Science, Cornell University, April 1989. 3

[10] Jim Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation.
Technical Report CSD92-694, Computer Science Division, University of California at
Berkeley, 1992. 3

[11] Jim Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of Algorithms, 18:548–585, 1995. 3

120

[12] Jonathan Richard Shewchuk. Delaunay refinement algorithm for triangular mesh
generation. Computational Geometry: Theory and Applications, 22(1-3):21–74, May
2002. 3

[13] Rainald Löhner and Paresh Parikh. Generation of three-dimensional unstructured grids
by the advancing front method. International Journal for Numerical Methods in Fluids,
8:1135–1149, 1988. 3

[14] Paul Louis George and Eric Seveno. The advancing-front mesh generation method
revisited. International Journal for Numerical Methods in Engineering, 37:3605–3619,
1994. 3

[15] C. K. Lee. Automatic adaptive mesh generation using metric advancing front approach.
Engineering Computations, 16(2):230–263, 1999. 3

[16] Kenji Shimada. Physically-Based Mesh Generation: Automated Triangulation of
Surfaces and Volumes via Bubble Packing. PhD thesis, Massachusetts Institute of
Technology, May 1993. 7

[17] Kenji Shimada and David C. Gossard. Bubble mesh: Automated triangular meshing of
non-manifold geometry by sphere packing. In ACM Symposium on Solid Modeling and
Applications, pages 409–419. ACM, 1995. 7, 111, 113

[18] Yufeng Nie, Weiwei Zhang, Ying Liu, and Lei Wang. A node placement method
with high quality for mesh generation. IOP Conference Series: Materials Science and
Engineering, 10(1):012218, 2010. 9

[19] Hanzhou Zhang and Andrei V. Smirnov. Node placement for triangular mesh generation
by monte carlo simulation. International Journal for Numerical Methods in Engineering,
64:973–989, 2005. 9, 110

[20] A. L. Zheleznyakova and S. T. Surzhikov. Triangular-mesh generation for aerodynamics
problems by molecular-dynamics simulation. Doklady Physics, 56(7):385–390, 2011. 12

[21] Per-Olof Persson and Gilbert Strang. A simple mesh generator in matlab. SIAM Review,
46(2):329–345, 2004. 14

[22] Randi Holm, Roland Kaufmann, Bjørn-Ove Heimsund, Erlend Øian, and Magne S.
Espedal. Meshing of domains with complex internal geometries. Numerical Linear
Algebra with Applications, 13:717–731, 2006. 15

[23] Kenji Shimada, Atsushi Yamada, and Takayuki Itoh. Anisotropic triangular meshing
of parametric surfaces via close packing of ellipsoidal bubbles. In Proceedings, 6th
International Meshing Roundtable, pages 375–390, October 1997. 116

[24] Soji Yamakawa and Kenji Shimada. High quality anisotropic tetrahedral mesh
generation via ellipsoidal bubble packing. In Proceedings, 9th International Meshing
Roundtable, pages 263–273, October 2000. 116

121

APPENDIX

OVERVIEW OF MESH QUALITY METRICS

122

Herein we define the metrics used to compare meshes in Chapter 6 and show how they

are computed.

Included Angle

An included angle is the angle between any two edges of a triangle. For any triangle

with positive (and nonzero) area, all three included angles will be less than 180 degrees and

greater than 0 degrees. A good mesh triangle should have included angles between 35 and

145 degrees.

Aspect Ratio

Aspect ratio is defined for a triangle as

ρAR =
R

2r

where R is the radius of the triangle’s circumscribing circle and r is the radius of its inscribing

circle. The division by 2 serves to normalize the equation so that equilateral triangles have

an aspect ratio of ρAR = 1. This metric is thus bounded below by 1. The greater the aspect

ratio the “skinnier” (or more ill-shaped) the triangle.

Skewness

Another measure of how much a triangle deviates from a standard triangle shape is called

the skewness. This is computed as a ratio of the maximum edge length over the minimum

edge length:

ρskew =
max {l1, l2, l3}
min {l1, l2, l3}

123

where l1, l2, and l3 are the lengths of the three edges of the triangle. This metric is bounded

below, like aspect ratio, by 1.

Weighted Condition Number

This metric uses the condition number of a matrix as another measure of how far the

triangle deviates from a standard shape. In this case the weight matrix

W =

 1 1
2

0
√

3
2


defines the standard shape to be a right triangle. We define two vectors u = uxe1 + uye2

and v = vxe1 + vye2 as the vectors pointing from one vertex of the triangle to the other two

vertices, then we can define a matrix

A =

 ux vx

uy vy


and compute the weighted condition number of this matrix as

KW =
‖AW−1‖ ‖WA−1‖

2

using as a matrix norm ‖M‖ =
√

tr (MTM). This number is again bounded below by 1,

and is the same regardless of the vertex upon which the computation is based.

124

Corner Jacobian

In two dimensions the corner Jacobian is the cross product of the two (normalized) vectors

pointing away from one vertex.

Je3 =
u

‖u‖
× v

‖v‖

with u and v defined as above. This number will be different for each corner and is related

to area giving a measure of how well shaped each corner is. A valid element (non-inverted)

will have a positive value for the Jacobian at all corners. Elements with negative Jacobians

are not considered valid. This value is bounded above by 1 (since the vectors u and v are

normalized, the value of J is simply the sine of the angle between them), and the larger the

value is, the better the shape of the corner.

125

VITA

Philip Wesley Fackler was born in Bowling Green, Kentucky, on February 16th, 1986, the

youngest of three sons of David and Teale Fackler. He attended Madisonville North Hopkins

High School of Madisonville, Kentucky, graduating and receiving the Commonwealth diploma

in May of 2004. He graduated with honors from Asbury College (now University) of Wilmore,

Kentucky, in May of 2008 with a Bachelor of Arts degree in Mathematics.

126

