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ABSTRACT 

 

A temporally and spatially high-order accurate Petrov-Galerkin finite-element method is 

applied to the analysis of several antenna configurations. The method obtains numerical 

solutions of Maxwell's equations in the time domain using implicit time stepping and introduces 

energy into the domain using a Gaussian pulse to allow frequency-domain parameters to be 

computed over a range of frequencies with a single time-dependent solution. Verification cases 

for a monopole antenna and a microstrip patch antenna are used to examine the accuracy of the 

algorithm. Effects of varying antenna parameters on subsequent performance metrics are 

discussed based on the results from the simulations. Post-processing procedures are developed to 

obtain scattering parameters, input impedance and radiation patterns. For verification, the 

antenna characteristics obtained with the present methodology are compared with the results 

from two commercial codes. Mesh and time-step refinement studies are also conducted to assess 

the level of discretization errors in the solutions. 
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CHAPTER I  

 

INTRODUCTION 

 

Antennas 

An antenna is a component of the wireless communication system, and it is designed to 

radiate or receive electromagnetic waves. The way that an antenna serves a communication 

system is analogous to the way that eyes serve a human.  In the transmitting mode, the antenna is 

used to convert guided waves within a transmission line to radiated free-space waves; while in 

the receiving mode, it is used to convert the free-space waves to guided waves. Eyes convert the 

visual information in the real world to the special information that the brain can receive, and they 

also convert the information that the brain sends out to emotion expressions. In modern wireless 

systems, the antenna also acts as a directional device. In this case, the antenna provides 

enhancement to transmitted or received energy in some directions while restraining it from 

others. While in the past the antenna technology may have been considered to be secondary, it 

has become more and more significant in the modern world. The antenna is now one of the most 

critical components in wireless communication systems. 

In 1873, James Clerk Maxwell published his work about unifying the theories of 

electricity and magnetism, the relations between which were represented through a set of 

equations: the well-known Maxwell’s Equations [1]. In 1886, Professor Heinrich Rudolph Hertz 
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demonstrated the world’s first wireless electromagnetic system between a dipole antenna and a 

loop antenna in his laboratory [2]. In 1901, Guglielmo Marconi performed a transatlantic 

transmission from Poldhu in Cornwall, England, to St. John’s, Newfoundland, which realized the 

long-distance signal transmissions for the first time.  

Prior to the 1940’s, most antenna elements were of the wire type, such as long wires, 

dipoles, helices and rhombuses. In the 1940’s, new elements other than wire related radiating 

elements were introduced to the antenna technology; open-ended waveguide, slots, horns, 

reflectors and lenses were developed at that time [3]. In the 1950’s, the broadband antennas were 

developed, which can be applied in a variety of fields such as point-to-point communications, 

feeds for reflectors and lenses, and the television. In the early 1970’s, the microstrip or patch 

antennas were developed with the advantages of low-profile, low-cost, light-weight and 

conformability to the surface [4]. 

 

Analysis of Antennas 

To analyze the characteristics of an antenna, the electric and magnetic fields radiated by 

the elements need to be obtained first. Based on the fields, a number of parameters that 

characterize the performance of the antenna system can be found.  

Traditionally, the antenna problems were solved analytically and experimentally.  Only a 

few idealized antenna geometries can be solved analytically by Maxwell’s equations. For the 

antennas that could not be solved analytically, the experimental methods were applied. The 

scattering parameters of an antenna can be obtained by a network analyzer, and the radiation 
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pattern can be obtained by a field scanner through experiments in an anechoic chamber. 

However, the cost of designing an antenna by experimental methods was too high, although this 

is not to negate the importance of experimental methods which are still used today for the 

verification of antenna characteristics.  

In the early 1960’s, numerical methods were introduced to antenna technology which 

provides good predictions and high performances. Numerical simulations help shorten the design 

cycle and have the capability to analyze complex antennas. Numerical simulations cost much 

less than experiments and can be applied in exploration of larger design space. However, 

numerical simulations still have some challenges. For example, improper use of a numerical 

solution would yield either a poor or a completely erroneous design.  

 

Numerical Methods for Simulations of Antennas 

A variety of numerical methods are applied in computational electromagnetics and they 

are mainly based on the finite-difference time-domain method, the method of moments, the 

finite-volume method and the finite-element method. 

In the 1960’s, Yee invented the finite-difference time-domain method (FDTD) that 

solved Maxwell’s equations discretized on structured grids directly in the time domain [5]. 

Within one time-domain calculation, the broadband solution can be obtained through the Fourier 

transform.  The method is efficient as no matrix solutions need to be calculated and also simple 

in implementation and grid generation. In addition, the method has the capability for anisotropic 

and inhomogeneous materials. Despite the advantages mentioned above, FDTD suffers from 
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some limitations. The major limitation for the finite-difference time-domain method is its 

capability to model complex geometrical structures such as curved surfaces and devices with a 

widely varying range of geometric scales. Nevertheless, the finite-difference time-domain 

method is still a popular choice for computational electromagnetics, and a variety of methods are 

developed based on FDTD.  For instance, the widely used simulation software CST Microwave 

Studio [6] is a Finite Integral Technique (FIT) solver, which is basically FDTD with integration 

instead of differentiation. CST MICROWAVE STUDIO®(CST MWS) is a specialist tool for the 

3D EM simulation of high frequency components. CST MWS enables the fast and accurate 

analysis of high frequency (HF) devices such as antennas, filters, couplers, planar and multi-

layer structures and SI and EMC effects. The patch antennas in this thesis are simulated by 

CST(in short for CST MWS) for comparison. 

In 1968, the method of moments(MoM) for electromagnetic analysis was introduced by 

Harrington in his book [7], and then it was widely applied in antenna analysis [8, 9]. The method 

of moments is based on the formulation of integral equations in terms of Green’s functions as the 

fundamental solution to Maxwell’s equations. The method is efficient for antennas with 

structures of layered substrates, such as microstrip patch antennas which will be discussed in this 

thesis, and also for antennas with bulk homogeneous dielectrics, such as dielectric resonator 

antennas. This is because the effect of the dielectrics can either be accounted for by a special 

Green’s function or be modeled by equivalent electric and magnetic surface currents [10]. 

However, the method of moments suffers from some shortcomings such as the capability of 

modeling complex antennas designed with complex materials that may be anisotropic and 

inhomogeneous. 



5 

 

The finite-volume method is another approach applied in computational electromagnetics. 

Maxwell’s equations in this form have mathematical similarities with the compressible Euler 

equations from fluid dynamics. These relationships are taken advantage of by the finite-volume 

method in solving the Maxwell’s equations [11, 12]. However, the second-order accuracy 

determined by the discretization of the spatial derivatives in this method is not sufficient to solve 

problems requiring higher-order accuracy such as high-frequency applications and electrically 

large structures. 

The finite-element method was introduced to computational electromagnetics by Jin in 

his book [13]. Though its application in electromagnetics is not as widely as FDTD and MoM 

are, it has many advantages such as the capability for modeling both complex structures and 

materials. The method can accurately model curved surfaces and complex structures by applying 

unstructured meshes with curvilinear triangular and tetrahedral elements. The finite element 

method is suitable for parallel computations when combined with domain-decomposition 

algorithms. Although the method requires solving a large matrix equation, its solution can be 

obtained efficiently with the use of advanced solvers. The Maxwell’s equations are solved by the 

finite element method with a weighting function added to the governing equations as a factor and 

integrated over the volume. The most popular implementation of this method for electromagnetic 

simulations is to solve for either the electric or magnetic fields through the wave equation. The 

other field variables are obtained in a post-processing step by numerical differentiation, the order 

of truncation error of which is one order less than the former one. The commercial simulation 

software HFSS [14] is based on the finite element method. The High Frequency Structure 

Simulator (HFSS™) is a software tool for 3D full-wave electromagnetic field simulations. HFSS 
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provides E- and H-fields, currents, S-parameters, and near and far radiated field results. The 

models discussed in this thesis are simulated in HFSS for comparison.  

 

Petrov-Galerkin Methods for Time-Domain Simulations on Antennas 

Maxwell’s equation can be cast in both the time domain and the frequency domain, and 

consequently the numerical simulation can be applied in either the time domain or the frequency 

domain. The frequency-domain numerical method is highly suitable for scattering analysis, 

where the main concern is the scattering due to plane waves from many incident directions. The 

reason is that the matrix equation in the frequency-domain method is solved for each frequency, 

where different excitations can be applied. The time-domain numerical method is well suited for 

antenna analysis where the main concern is a solution over a broad frequency band for one or a 

few excitations. The broadband solution can be obtained through the Fourier transform in one 

time-domain calculation. In addition, the time-domain methods have the capability for modeling 

nonlinear components, devices and media in an antenna system, which is a unique strength over 

frequency-domain methods. 

Petrov-Galerkin finite element methods are applied to solve Maxwell’s equations in the 

present work [15]. The method is highly suitable for analysis and design of large electromagnetic 

structures. It has the capability of dealing with high-order spatial discretization which helps 

represent complex geometries accurately. The field variables are stored at the vertices of the 

tetrahedrons in single-valued form, hence reducing the number of unknowns to be computed. 
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The Petrov-Galerkin method has been successfully applied in computational fluid dynamics [16], 

and the computation electromagnetics will be an attractive field for the method to explore.    

In this thesis, the Simcenter’s in-house code using the Fully Unstructured Adaptive Finite 

Element method (FUNSAFE) is applied in analysis of the antennas. The antennas are simulated 

in the time domain with excitation of a Gaussian pulse to obtain frequency-based parameters. 

Two kinds of basic antennas are discussed consisting of a monopole antenna and a microstrip 

patch antenna. The effects of antenna parameters on antenna characteristics are discussed 

according to the simulations results. The simulation results of antenna characteristics including 

the scattering parameters, input impedance and radiation pattern are compared with the results of 

HFSS and CST for verification. Convergence tests are also operated on the antenna cases for 

assessment of the computational accuracy. 
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CHAPTER II 

 

PETROV-GALERKIN METHODS FOR ELECTROMAGNETIC SIMULATIONS 

AND FUNDAMENTALS OF ANTENNAS 

 

 Petrov-Galerkin Methods for Electromagnetic Simulations 

Governing Equation 

Maxwell’s equations are the basic laws in electromagnetics that describe electric and 

magnetic phenomena at the macroscopic level. The general form of time-varying Maxwell 

equations can be expressed as:   

     
  

  
       (2.1) 

    
  

  
                                                             (2.2) 

                                                                        (2.3) 

                                                                       (2.4) 

where E is the electric field, H is the magnetic field, D is the electric flux density, B is the 

magnetic flux density, M is the (fictitious) magnetic current density, J is the electric current 

density and    is the electric charge density.  

The currents M and J and the electric charge density    are the sources of the 

electromagnetic field. In a source-free region, M, J and    are all zero, which is the situation we 
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will be discussed below. The flux densities and the field intensities have the following 

relationships: 

         (2.5) 

         (2.6) 

where   is the permeability and   is the permittivity. The governing equations are rewritten in a 

divergence form as follows: 

  

  
    ( )                 (2.7) 

  (                 )
      (2.8) 

   ̂   ̂   ̂       (2.9) 

  (                 )
     (2.10) 

  (                 )
     (2.11) 

  (                 )
 
    (2.12) 

The equations above can be written in the differential form as: 
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    (2.13) 

 

Numerical Solution 

The Petrov-Galerkin method is applied in FUNSAFE to solve the Maxwell’s equations in 

both time-domain and frequency-domain. The Petrov-Galerkin method is formulated as a 

weighted residual method, which can be expressed in the following form: 
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∰ [ ]
 

(
  

  
    )         (2.14) 

where   is a weighting function given by: 

[ ]   [ ]  (
  

  
[ ]  

  

  
[ ]  

  

  
[ ]) [ ]   [ ]  [ ]  (2.15) 

Streamlined Upwind Petrov-Galerkin(SUPG) method is used in defining the weighting function 

[17]. Here,  [ ], the first part of  , can be represented as: 

  ∑     
 
        (2.16) 

which is composed of a linear combination of the basis functions and defines the variables within 

the element. Also,    in the equation above represent arbitrary constants. [ ] , the second part of 

the weighting function, is a stabilizing term that dissipates odd-even point decoupling along 

preferential directions. [ ]  represents the stabilization matrix and can be obtained using the 

following definitions [18] 

[ ]   ∑ |
   

  
[ ]  

   

  
[ ]  

   

  
[ ]| 

      (2.17) 

|
   

  
[ ]  

   

  
[ ]  

   

  
[ ]|  [ ][| |] [ ]    (2.18) 

where [ ] and [ ] are the right eigenvectors and eigenvalues of the matrix on the left side of Eq. 

(2.18) respectively, and  [ ]   represents the inverse of  [ ]. 

In the Petrov-Galerkin finite-element approach, field variables are assumed continuous 

across element boundaries. Hence, data is stored at the vertices and faces of the elements as a 

single-valued form. Within each element, the solution is assumed to vary according to a linear 

combination of polynomial basis functions given by: 

   ∑     
 
       (2.19) 
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In this equation,    represent the approximated variables within each element dependent on     

and   ,    is the corresponding data at each node of the element, and each    represents a basis 

function, where the basis functions of Eq. (2.16) come from. 

As a result, the weak statement above may be expressed as: 

∰ ( {
  

  
}      )   

 
 ∰ [ ]

 
(
  

  
    )   ∯     ̂  

 
   (2.20) 

 

To be noticed, the surface integral needs only to be evaluated on the boundaries of the domain 

where appropriate boundary conditions are weakly enforced by incorporating them into the 

surface integral. Because the field variables are assumed to vary continuously in the interior of 

the domain, the surface integral typically vanishes on the boundaries of the interior elements. 

In the Petrov-Galerkin scheme, the domain of interest is discretized into a series of non-

overlapping elements. For three-dimensional applications in the present work, the tetrahedral 

elements are applied. The tetrahedrons within the computational mesh are mapped to parent 

tetrahedrons which have coordinates in non-dimensional (        ) space. Gaussian quadrature 

rules are used in evaluating the volume and surface integrals. In evaluating the volume integrals, 

a function integrated over a tetrahedron can be expressed as: 

∰  (     )  
 

 ∑   ( ( 
       )  (        )  (        ))   

      

   
  (2.21) 

where (        ) are Gauss points,    are Gauss weights, and   is the Jacobian. 

In evaluating the surface integrals, a function integrated over a triangle can be expressed as: 

∬  (     )  
 

 ∑   ( ( 
    )  (     )  (     ))   

      

   
  (2.22) 

where (     ) are Gauss points,    are Gauss weights, and   is the Jacobian. 
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For polynomial representations of the dependent variables of p, formulas for integrating 

polynomials of order 2p are used in evaluating volume integrals while formulas for integrating 

polynomials of order 2p+1 are used in evaluating surface integrals [19]. 

For the antenna cases in the present work, the computational domain includes multiple 

materials of differing permittivities. In this case, the surface integral must be evaluated at the 

interface between the materials, because there will be discontinuous jumps in the tangential 

components of flux densities across the interface [20, 21]. Duplicate nodes are introduced in 

solving this problem and they are created on either side of the interface. The flux on the 

boundary between different materials is determined using a Riemann flux function given by: 

 (     )   ̂  
 

 
[ (  )   (  )  [ ̃][ ̃][ ̃][ ̃]  ]  (2.23) 

where [ ̃], [ ̃], and [ ̃] represent average values and 

  (                 )
     (2.24) 

And the difference in values across the interface    can be expressed as: 

             (2.25) 

Also, the matrix M is given by: 

[ ]  [
  

  
]     (2.26) 

Here, the flux densities Q are computed at each mesh point during the simulations. The ideas 

above come from the flux-difference-splitting method in the fluid dynamic applications [22]. 
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Boundary Conditions 

The boundary conditions are weakly enforced by modifying the fluxes when evaluating 

Eq. (2.20). Four kinds of boundary conditions will be introduced below: perfect electric 

conducting (PEC) boundary conditions, material jump boundary conditions, Silver-Muller 

boundary conditions [23], and Dirichlet boundary conditions. 

For PEC boundary conditions, the flux vector is given by: 

   ̂   ̂   ̂      (2.27) 

where 

  

[
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    (2.28) 

Then, the flux normal to the boundary surface in the interior can be expressed as: 

   ̂  

[
 
 
 
 
 
          

         

          

 
 
 ]

 
 
 
 
 

     (2.29) 

For material jump boundary conditions (such as port boundaries and interface between 

different materials), the flux is determined by Eq. (2.23) using the Riemann flux solver. For port 

boundaries, the data on the interior side of the interface is obtained from the field variables, and 

the data on the exterior side of the interface is obtained using a driving wave.  

  For Silver-Muller boundary conditions, the flux can be derived from the following 

equation [23]: 
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(      )            (2.30) 

or, in a similar way, 

(      )             (2.31) 

where (E,B) denotes the electromagnetic field, c is the speed of light and n is the unit outside 

normal to the boundary.  For the cases that the plane wave propagates normally to the boundary, 

   and    are set to zero, which is applied in FUNSAFE simulations. 

For Dirichlet boundary conditions, the values of    at each node on the boundary are set 

to the desired values. In the present work of antenna simulations, Dirichlet free stream boundary 

conditions are applied at the end of perfectly-matched layer (PML). When needed, the PML 

approach in reference [24] is used for time-domain simulations. 

Scattering Parameters and Input Impedance 

Scattering Parameters 

Scattering parameters describe the input-output relationship between ports in an electrical 

system. Regarding a typical two-port network, the scattering matrix shows the relationship 

between the outgoing waves       and incoming waves       that are incident at the two ports: 

[
  

  
]  [

      
      

] [
  

  
] ,   [

      
      

]   (2.32) 

The matrix elements, S11, S12, S21, S22 are referred to as the scattering parameters. The 

parameters S11 and S22 represent reflection coefficients, and parameters S21 and S12 represent 

transmission coefficients. 

In practice, the most commonly quoted parameter in regards to antennas is S11. S11 

represents how much power is reflected from the antenna. From this reason, S11 is also known as 
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reflection coefficient( sometimes written as Γ). The relationship among S11, return loss and input 

impedance will be discussed later. 

 

Input Impedance 

Input impedance is the impedance presented by an antenna at its terminals [25]. In this 

thesis, the antennas discussed are all fed by a coaxial cable, and the impedance represents the 

ratio of voltage and current presented at the coax port. Later in Chatper III, the details of the 

procedure to obtain the input impedance will be discussed.  

 

Relationship among S11, Return Loss and Input Impedance 

Return loss is an important factor of antennas which describes the reflection 

characteristics of antennas. The definition of return loss is given by: 

  (  )          | |    (2.33) 

where Γ, the reflection coefficient, represents the ratio of the reflected wave    to the incident 

wave    : 

  
  

  
      (2.34) 

When the source and load impedances are known values, the reflection coefficient is given by: 

  
     

     
     (2.35) 

where     is the impedance toward the source and    is the impedance toward the load.  
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For the coaxial-line fed antennas,    represents the characteristic impedance of the coax 

which is determined by the dimensions of coaxial cable only, and     represents the input 

impedance of the antenna. From the equations above, return loss can also be represented by: 

  (  )          |
  

  
|          |

     

     
|   (2.36) 

Return Loss can be also represented as: 

  (  )          |
  (   )

  (   )
|    (2.37) 

Here,     is the reflection power at the port, and     is the incident power at the port. 

To be noticed, when S11 is applied in describing antenna characteristics, it refers to the 

decibel format instead of complex format in most cases. Combined with Eq. (2.37), the formula 

applied in calculation of S11(dB) can be expressed as:  

   (  )     (  )         |
  (   )

  (   )
|   (2.38) 

The formula above is applied in the FUNSAFE code to get S11 of the antennas. 

 

 Radiation Pattern 

Definition 

The Radiation Pattern of an antenna is the special distribution of a quantity which 

characterized the electromagnetic field generated by an antenna [26]. In most cases, the radiation 

pattern is determined in the far-field region and is represented as a function of the directional 

coordinates. The radiation pattern indicates the radiating and receiving properties of an antenna 
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in the far-field on angular dependence, in which radiation properties include power flux density, 

radiation intensity, directivity, phase, polarization, and field strength.  

In most cases, the patterns are normalized with respect to their maximum value. In 

addition, the patterns are usually plotted on a logarithmic scale or more commonly in decibels 

(dB). A typical antenna pattern has a main lobe, sidelobes, minor lobes, a backlobe, and several 

nulls in a          plane,   is the azimuthal angle in spherical coordinated, as shown in Fig. 1. 

A logarithmic scale is desirable since it can accentuate in more details the low-value parts in the 

pattern, such as the minor lobes.  

 

Figure 1 Antenna Pattern in Plane          

 

If the pattern cut of an antenna is in x-z plane (   ) parallel to the E field vector, the 

corresponding pattern is called an E-plane pattern. Alternatively, if the pattern is given in y-z 

plane (  
 

 
) parallel to the H field polarization, it is referred to as an H-plane pattern. 

There are many types of antenna radiation patterns, but the most common ones are: 

Omnidirectional Pattern, Pencilbeam Pattern, Fan beam Pattern and Shaped beam Pattern. The 
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Omnidirectional pattern is the most popular in communication and broadcast applications. The 

omnidirectional antenna radiates equally in all horizontal directions, while varying with elevation 

angles [26]. The monopole antenna later discussed in Chapter III is an omnidirectional antenna.  

 

Near to Far Field Transform 

To get antenna radiation characteristics, a formal simplification of the problem is to 

replace the antenna by equivalent sources on an arbitrary surface S enclosing it according to the 

equivalence principle [27]. These equivalent sources reproduce the radiated fields of the antenna, 

which can be assumed as radiating in homogeneous space. For a particular antenna configuration, 

the exact determination of equivalent sources can be realized through knowledge of the true field 

distribution on S according to Huygens’ principle [27]. For convenience, vector potentials are 

applied in obtaining the radiating characteristics. The details of calculating antenna radiation 

characteristics are discussed below.  

 

Huygens’ and Equivalence Principles 

Numerical simulation is used to compute approximate solutions for practical 

configurations since the exact solutions of Maxwell’s equation are typically unavailable. To 

simplify the electromagnetic antenna problems, the equivalence principle is employed. 

According to the equivalence principle, the antenna configuration can be replaced by the 

equivalent electromagnetic sources located on the surface of a volume enclosing the antenna 
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configuration. These sources are usually radiating in a homogeneous solution space, and then the 

corresponding fields can be calculated by evaluating the radiation integrals. 

Huygens’ principle provides a straightforward way to construct equivalent sources. 

Huygens’ principle states that the field solution in a region V is completely determined by the 

tangential fields over the surface S enclosing V. The corresponding electric and magnetic 

equivalent surface current densities are given by: 

   ̂        (2.39) 

    ̂        (2.40) 

where both J and H are expressed in amperes per meter(A/m), and M and E are expressed in 

volts per meter(V/m) [28]. By applying Huygens’ principle, the antenna radiation pattern can be 

computed from a near-field surface integral based on the equivalent currents located on the 

surfaces within the mesh. 

 

 Calculation of Far-Field Radiation Characteristics through Vector Potential 

The vector wave equation related to the vector potential A is given by: 

                  (2.41) 

where J represents the electric current density and the related electric and magnetic fields can be 

expressed as a function of  : 

         
 

   
 (   )     (2.42) 

   
 

 
         (2.43) 
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Alternatively, the vector wave equation related to the vector potential F is given by: 

                  (2.44) 

where M represents the magnetic current density and the related magnetic field can be expressed 

as a function of  : 

    
 

 
        (2.45) 

         
 

   
 (   )     (2.46) 

The fields radiated by antennas of finite dimensions in the far-zone are spherical waves. 

For these radiators, a general solution to the vector wave equation (2.41) in spherical components 

should have the general form as: 

   ̂   (     )   ̂   (     )   ̂   (     )  (2.47) 

According to Eqs. (2.42-2.43) and neglecting high-order terms of     , the radiated E and H 

fields have only  θ and φ components which can be expressed as: 

            (2.48) 

               (2.49) 

               (2.50) 

            (2.51) 

     
 

 
         (2.52) 

     
 

 
         (2.53) 

Similarly, the far-zone fields related to potential F can be expressed as according to Eqs. (2.45-

2.46): 

            (2.54) 
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               (2.55) 

               (2.56) 

            (2.57) 

                (2.58) 

                (2.59) 

The corresponding far-zone E-field and H-field components are orthogonal to each other and 

form TEM mode fields.  

For an observation point in the far field(    ), the radial distance R from any point on 

the source or scatterer to the observation point can be assumed to be parallel to the radial 

distance r from the origin to the observation point. Approximately, the relationship between R 

and r can be represented as: 

  {
                            

                         
   (2.60) 

According to the equation above, the solution of vector potential wave equation (2.41) and (2.42) 

can be rewritten as: 

   
 

  
∬   

     

 
   

 
 

      

   
     (2.61) 

   
 

  
∬   

     

 
   

 
 

      

   
     (2.62) 

where 

   ∬    
           

 
    (2.63) 

   ∬    
           

 
    (2.64) 

Using Eqs. (2.48-2.59), the E-field and H-field in the far field can be written as: 

          (2.65) 
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   (  )  (  )     [      ]    (2.66) 

   (  )  (  )     [      ]    (2.67) 

          (2.68) 

   (  )  (  )    
 

 
[      ]    (2.69) 

   (  )  (  )    
 

 
[      ]    (2.70) 

Using the Eqs. (2.61-2.62), the equations above can be reduced as: 

          (2.71) 

    
       

   
(      )     (2.72) 

    
       

   
(      )    (2.73) 

          (2.74) 

    
       

   
(   

  

 
)    (2.75) 

    
       

   
(   

  

 
)    (2.76) 

In the rectangular coordinate system, the Eqs. (2.63-2.64) can be expressed as: 

   ∬    
           

 
 ∬ ( ̂     ̂     ̂   ) 

           
 

  (2.77) 

   ∬    
           

 
 ∬ ( ̂     ̂     ̂   ) 

           
 

 (2.78) 

Using the Cartesian-to-spherical components transformation, the equations above can be reduced 

to: 

   ∬ (                            ) 
         

 
     (2.79) 

   ∬ (              )          
 

      (2.81) 
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   ∬ (                            ) 
         

 
     (2.82) 

   ∬ (              )          
 

      (2.83) 

In summary, the procedure of calculating radiation characteristics is given by the 

following steps [20]: 

1. Select a close surface over which the actual current density    or the equivalent current 

densities    and    exists. 

2. Specify the current density     and    using Huygen’s principle: 

    ̂         (2.84) 

     ̂        (2.85) 

where  ̂ represents the unit vector normal to the surface S,    represents the total magnetic field 

over the surface S, and    represents the total electric field over the surface S. 

3. Determine   ,   ,   , and    using Eqs. (2.79-2.83). 

4. Determine the far-field E and H fields using Eqs. (2.71-2.76). 

This procedure is applied in calculating the Radiation Pattern for the antenna models in 

FUNSAFE. 

 

Fresnel-Fraunhofer Boundary Sphere 

The fields around an antenna can be divided into two principle regions: Fresnel zone and 

Fraunhofer zone. The Fresnel zone represents the region near the antenna which is also called 

the near field, while the Fraunhofer zone is the region at a large distance from the antenna that is 
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usually called the far field. As shown in references [28, 29], the interface between near field and 

far field, which is also called the Fresnel-Fraunhofer boundary sphere, can be represented as: 

            (2.86) 

where D is the maximum dimension of the antenna, and λ is the wavelength. However, this 

distance is not applicable for all situations, and it mainly works for electrically large antennas. 

The derivation of this distance will be discussed below [3, 30]. 

 
Figure 2  Derivation of Fresnel-Fraunhofer Boundary Sphere 

 

As shown in Fig. 2, D represents maximum dimension of the antenna, and R represents 

the distance between the observation point O and the antenna to be investigated. Then the 

difference in path length between the outer edge of D and the center is given by 

            (2.87) 

Appling the Pythagorean Theorem to the triangle OAB, the following equation is obtained: 

   (   )  (    )     (2.88) 

Supposing that (  )  is negligible, then the equation above is reduced to: 
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     (2.89) 

If the path difference is set to        , then we have: 

  
   

 
     (2.90) 

which is a safe distance to use if the maximum phase deviation of     is not too large for the 

antenna [30].  

However, for the monopole model discussed in Chapter III, the largest dimension of the 

antenna D is equal to    , which can be easily seen from the name quarter-wavelength 

monopole. In this case, a maximum phase deviation of     is obviously too large for the antenna, 

since the maximum phase deviation along the whole antenna is only    . Hence, the commonly 

used Fresnel-Fraunhofer boundary cannot be applied for the quarter-wavelength monopole 

antenna, and the real boundary between near field and far field should be larger than this distance. 
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CHAPTER III 

 

MONOPOLE ANTENNA 

 

Introduction  

Characteristics and Applications 

The monopole antenna is one of the simplest quarter-wavelength narrowband antennas, 

which is a popular test case for electromagnetic simulations. In 1990, James G Maloney 

proposed accurate computation of the radiation for simple antennas using FDTD [31], a 

cylindrical monopole antenna was discussed there. Later, some kinds of antennas developed 

from monopole antennas were discussed with FDTD method [32, 33]. In Makarov’s book [34], 

the monopole antenna is a basic test case for verification of the MoM methods discussed in the 

book. In Jin’s book [10], the monopole antenna is an important example of narrowband antennas 

for verification of the finite element methods. Monopole antennas are widely used in 

communication systems, and their applications include broadcasting, car radios, and cellular 

telephones. 

As a typical model of narrowband antennas, monopole antennas have a relatively large 

percent bandwidth of approximately 10%.  The monopole antenna is fed by a coaxial cable and 

does not require a balun transformer to realize impedance matching. A thin monopole antenna is 

a numerically challenging example since a fine surface mesh of the entire monopole length is 

necessary in order to get accurate results [34]. 
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Working Theory 

Relationship to Balanced Antennas 

The monopole antenna is a derivative form of the dipole antenna which was used in the 

first wireless electromagnetic system demonstrated by Professor Heinrich Rudolph Hertz [2]. 

Suppose that a monopole is mounted on an ideally infinite ground plane, according to 

image theorem, its impedance and radiation characteristics can be deduced from that of a dipole 

of twice its length in free space. For a base-driven monopole, its input impedance is equal to one-

half that of the center-driven dipole, and the radiation pattern above the infinite ground plane is 

identical with the upper half of the radiation pattern of the corresponding dipole [28]. 

 

Effect of Finite-Size Ground Plane on Impedance and Pattern 

Practically, because the ideal infinite ground plane does not exist in the real world, 

measurements are made on a test site with a finite size. Several methods were developed to 

investigate the characteristics of a monopole antenna on a finite-size ground plane. Bolljahn first 

considered the problem from the point of view of symmetrical components [35]. His original 

work was developed by assuming a short monopole on a disk. Later, Storer extended Bolljahn’s 

study to monopoles of arbitrary length [36]. 

According to Storer, the difference of the input impedance from a finite-size ground 

plane to an infinite-size ground plane of a base-driven monopole erected upon a large circular 

ground plane can be written as  

         
  

  
     | ∫

 ( )

 ( )
  

 

 
|
 

   (3.1) 
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where    represents impedance of monopole referred to an infinite ground plane in Ω,   

represents diameter of circular ground plane,    is the height of the monopole,  ( ) represents 

current-distribution function of monopole, and  ( ) represents base current or input current.   in 

the equation represents the wave number which can be expressed as: 

     ⁄       (3.2) 

For a quarter-wavelength monopole, if we assume  ( )   ( )      , then 

| ∫
 ( )

 ( )
  

 

 
|        (3.3) 

Thus, the difference of resistance dR and the reactance dX of a quarter-wavelength monopole 

from the finite-size ground plane antenna to the infinite-size ground plane antenna are shown in 

Fig. 3. As the size of the ground plane becomes larger, the difference becomes more and more 

insignificant, and the result will become closer to that of the infinite ground plane. 

 
 

Figure 3 Difference of Impedance between Finite-Size and Infinite-Size Ground Plane Monopole 

Antenna over the Ratio of Radius to Wavelength 

 

Although the size of the ground plane has small effects on the values of input impedance 

at the resonant frequency, the resonant frequency should be the same for different cases. 
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Consequently, the effect of the size of the ground plane on S11 is insignificant. However, the 

radiation pattern is affected by the size of the ground plane considerably. Analytically, uniform 

geometrical theory of diffraction(GTD) [37] is applied in obtaining the accurate pattern of 

monopole on finite-size ground plane.  

Later in this Chapter, the effect of ground plane size on the antenna characteristics will be 

discussed according to simulation results obtained by FUNSAFE and HFSS. 

 

Antenna Model and Field Distribution 

The geometry of the monopole antenna is shown in Fig. 4, and the details of parameters 

are discussed below.     and      are the radius of inner conductor and outer conductor of the 

coaxial cable, respectively. R represents the radius of ground plane which is also the radius of the 

hemispherical computational domain. h=50mm is the height of the monopole, which is     for 

quarter-wavelength monopole antenna.    is the relative permittivity of the material in the 

coaxial cable, which is set to 2.2 in the monopole antenna case. 

 
 

Figure 4 Geometry of Monopole Antenna 
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(a) Ex on x-z plane at time t1=0.625 

 

             (b) Ez on x-z plane at time t1=0.625 

  
 

(c) Ex on x-z plane at time t2=0.700 

 

 

(d) Ez on x-z plane at time t2=0.700 

 

  
 

(e) Ex on x-z plane at time t3=0.800 

 

(f) Ez on x-z plane at time t3=0.800 

Figure 5 Electric Fields of Monopole Antenna on x-z Plane 

 

The electric field is plotted on x-z plane at the selected time steps where the 

Gaussian pulse is large enough for observation of fields. As shown in Fig. 5, the electric 

field of the monopole antenna transmits periodically from the center of the ground plane to 
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the outer space. 

Effect of Ground Plane Size on Antenna Characteristics 

In this section, the monopole antenna shown in Fig. 4 is simulated in three cases with 

      (    ),        ( ) and        (  ), respectively. The simulation results 

of S11 and Radiation Pattern obtained by both FUNSAFE and HFSS are discussed below.  

In this thesis, antenna cases are run with HFSS for comparison. In HFSS, the outer 

boundary condition is selected with the option of radiation boundary, while in FUNSAFE, PML 

or Silver-Muller boundary condition is applied. The radiation boundary in HFSS is introduced to 

truncate the infinite space into one confined simulation space, and it is similar to the Silver-

Muller boundary condition applied in FUNSAFE. In HFSS, a series of adapted meshes are 

generated for each run [14], and the refined level of the mesh is determined by the Maximum 

Delta S (the maximum change in the magnitude of the scattering parameters between two 

consecutive passes). For the antenna cases considered in this thesis, the Maximum Delta S in 

HFSS is set to be a reasonable level that maximizes the solution convergence level within the 

current computer resource. However, it should be noted that the solution obtained by HFSS may 

not represent a fully converged solution. Moreover, due to the use of adaptive mesh refinement 

in HFSS, the final mesh used for the test cases discussed later is considerably smaller than the 

mesh used in FUNSAFE. 
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Effect of Ground Plane Size on S11 

Theoretically, the ideal resonant frequency for quarter-wavelength monopole antenna 

with       (       ) should be 1.5GHz [25, 28]. In practice, due to the effects of the 

ground plane and the coaxial feeding line, the resonant frequency will have a small shift from the 

theoretical results. In testing the simulation results of S11 for monopole antennas with different 

ground sizes, both PML and the Silver-Muller boundary condition are applied. The results in 

three simulation methods are compared: FUNSAFE with PML, FUNSAFE with the Silver-

Muller boundary condition and HFSS with radiation boundary. 

 In the first case, the radius of the ground plane is 60mm(    ), and this means the radius 

of hemispherical computational domain for the monopole antenna also has the same value. Since 

the Silver-Muller boundary condition is applicable in the region where the wave is traveling 

normal to the boundary, the distance of      is not far enough to meet the requirement of the 

Silver-Muller boundary condition. As shown in Fig. 6, the value of S11(dB) of the antenna with 

PML is lower than that of the antenna with Silver-Muller boundary condition, which means in 

the PML case the antenna has lower reflection on the resonant frequency than in the Silver-

Muller case. Also, since radiation boundary is applied in HFSS, the result of S11 in HFSS 

simulation is closer to the one in FUNSAFE with Silver-Muller boundary condition. In 

conclusion, the hemispherical computational domain of       (    )  is not sufficient 

enough to get accurate results when using a radiation boundary condition that assumes the 

outgoing waves are normal to the boundary. 
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Figure 6 Comparison of S11 with FUNSAFE on Medium Mesh with the P2 Scheme and HFSS in 

the Case of Monopole Antenna (R=60mm(    )) 

 

 
 

Figure 7 Comparison of S11 with FUNSAFE on Medium Mesh with the P2 Scheme and HFSS in 

the Case of Monopole Antenna (R=200mm( )) 
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In the second and third case, the radius of the ground plane is 200mm( ) and 600mm(  ), 

respectively, which are also the radius of hemispherical computational domain for the monopole 

antenna. The distance is far enough to meet the requirement of the Silver-Muller boundary 

condition. As shown in Fig. 7 and Fig. 8, the resonant frequency of S11 in three cases match each 

other well when    . Since the results of S11 in FUNSAFE with PML and Silver-Muller 

boundary condition have few differences with each other, they are hard to distinguish in Fig. 7 

and Fig. 8. 

 
 

Figure 8 Comparison of S11 with FUNSAFE on Medium Mesh with the P2 Scheme and HFSS in 

the Case of Monopole Antenna (R=600mm(  )) 

 

In summary, the dimensions of the radius of ground plane have little effect on the 

resonant frequency of S11 for the quarter-wavelength monopole antenna, which can be shown 

clearly in Fig. 9. In the current simulation model, the dimensions of the hemispherical 

computational domain are limited by the size of the ground plane, and they will lead to 
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inaccuracy of the computational results for the antenna case with a relatively small ground plane 

when a radiation boundary condition that assumes the outgoing waves are normal to the 

boundary is applied.   

 
 

Figure 9 Comparison of S11 with Different Sizes of Ground Plane by FUNSAFE with PML on 

Medium Mesh with the P2 Scheme in the Case of Monopole Antenna 

 

 

Effect of Ground Plane Size on Radiation Pattern 

Opposite to the little effect on S11, the dimensions of the radius of ground plane have 

much effect on the radiation pattern. The ground plane in a monopole antenna acts as a reflector, 

and its dimension determines how much wave will be reflected above the plane.  
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(a) E-plane 

 

(b) H-plane 

 

Figure 10 Comparison of Radiation Pattern at 1.35GHz with FUNSAFE on Medium Mesh with 

the P2 Scheme and HFSS in the Case of Monopole Antenna (R=60mm(0.  )) 

 

 

  

(a) E-plane 

 

(b) H-plane 

 

Figure 11 Comparison of Radiation Pattern at 1.35GHz with FUNSAFE on Medium Mesh with 

the P2 Scheme and HFSS in the Case of Monopole Antenna (R=200mm( )) 
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(a) E-plane 

 

(b) H-plane 

 

Figure 12  Comparison of Radiation Pattern at 1.35GHz with FUNSAFE on Medium Mesh with 

the P2 Scheme and HFSS in the Case of Monopole Antenna (R=600mm(  )) 

 

 

The E-plane(   ) and H-plane(     ) normalized radiation pattern of antennas 

with ground plane of       (    ),        ( ) and        (  ) are shown in 

Figs. 10, 11, and 12, respectively. The results of HFSS and FUNSAFE match well. As the 

ground size becomes larger, the side beam becomes smaller. The effect of ground plane on 

Radiation Pattern is also indicated in [38]. Since the monopole antenna is an omnidirectional 

antenna, the radiation patterns for E-plane and H-plane are almost the same. 

 

Grid Convergence Performance and Effect of Time-Step Sizes 

Grid Convergence Behavior 

To investigate the convergence behavior, the simulation code was run on four grids of 

different mesh sizes. The numbers of tetrahedrons and nodes are listed for each mesh in Table 1. 
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For the medium and fine meshes, both p1 and p2 schemes are used. However, only the p1 

scheme is applied on the realfine and veryfine meshes. 

Table 1 Number of Tetrahedrons and Nodes for Different Meshes  

in the Case of Monopole Antenna 

 

 medium Fine realfine veryfine 

Number of tetrahedrons 238377 468178 683920 2399530 

Number of nodes 43839 84924 124504 454174 

 

Grid Convergence of S11 

The simulation results of S11 for the following six cases are shown in Fig. 13: the p1 

scheme applied on the medium mesh, the fine mesh, the realfine mesh and the veryfine mesh, 

and the p2 scheme applied on the medium mesh and the fine mesh.  For the p1 cases, as the mesh 

becomes finer, the value of S11(dB) at the resonant frequency becomes more negative. Although 

the veryfine mesh has 454174 points, which is about ten times the number of points in the 

medium mesh, the results on this mesh with the p1-order scheme still do not reach the 

convergence level of the medium mesh with the p2 scheme. The p2 scheme is clearly 

significantly more accurate than the p1 scheme when the numbers of degrees of freedom are 

approximately equal. 

It should be noticed that, since linear geometry is applied in the mesh, the order of 

accuracy for the p2 scheme is about 2, while if quadratic geometry is applied, the order will 

increase to 3. However, while the use of a linear representation of the geometry decreases the 

formal order of accuracy, the p2 scheme has significantly lower error levels than the p1 scheme 

[15]. 
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Figure 13 Comparison of S11 on Different Meshes with P1 and P2 Schemes in the Case of 

Monopole Antenna (R=600mm(3λ)) 

 

Grid Convergence of Radiation Pattern 

Since the monopole antenna is an omnidirectional antenna, the radiation patterns of E-

place and H-place have little difference with each other. The E-place radiation patterns for 

different cases are compared here. Fig. 14(a) shows the radiation patterns of the following cases: 

medium mesh with p1, medium mesh with p2, fine mesh with p1, fine mesh with p2. The results 

of p2 are more accurate than those of p1. To observe the differences more clearly, the radiation 

patterns are also plotted in rectangular coordinates, as shown in Fig.14(b). As the mesh becomes 

finer, the results of the radiation pattern tend to converge to the same value. 
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    (a) Radiation Pattern in polar coordinate 

 
 

(b) Radiation Pattern in Rectangular coordinate 

 

Figure 14  Comparison of Radiation Pattern(E-plane) at 1.35GHz on Different Meshes with P1 

and P2 Schemes in the Case of Monopole Antenna (R=600mm(3λ)) 
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Effect of Time-Step Sizes on Convergence 

To investigate the effect of time-step sizes on the convergence behavior of characteristics 

of the monopole antenna, four cases are performed on the medium mesh with the third-order 

scheme: dt= dt0, dt= 0.5*dt0, dt= 0.25*dt0, and dt= 2*dt0, where dt0=0.005. Note that this time 

step is non-dimensional but corresponds to a physical time step of 16.67 ps. 

As shown in Fig. 15, the results of S11 present converged solutions for dt= dt0, dt= 0.5*dt0 

and dt= 0.25*dt0, and the result for dt= 2*dt0 shows small variations with the others. This 

indicates the selected dt0 is proper to solve the problem, neither too high nor too low. Using a 

higher time-step size degrade the accuracy of the results though it will save computational time, 

while using lower time-step sizes will not enhance the accuracy since the simulations already 

reach the convergence level.  

 
 

Figure 15 Comparison of S11 with Different Time-Step Sizes on Medium Mesh with the P2 

Scheme in the Case of Monopole Antenna (R=600mm(3λ)) 
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The requirement of the time-step size is less sensitive for the radiation pattern, as shown 

in Fig. 16, and the results for four different time steps match each other well. However, to ensure 

the accuracy of S11, dt0 is selected for the monopole case. 

 

 
 

Figure 16 Comparison of Radiation Pattern (E-plane) at 1.35GHz with Different Time-Step Sizes 

on Medium Mesh with the P2 Scheme in the Case of Monopole Antenna (R=600mm(3λ)) 

 

Input Impedance 

In this section, the convergence behavior of input impedance and the procedure of 

calculation will be discussed. 
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Grid Convergence of Input Impedance 

The input impedance was calculated on both medium and fine mesh with p2 elements. 

The results are compared with those obtained by HFSS for verification. For a more clearly view, 

input admittance are plotted instead of input impedance. As shown in Fig. 17, as the mesh 

becomes finer, the results of input admittance agree better with the HFSS results. 

Derived from Eq. (2.36), the S11 of the antenna can be calculated from the input 

impedance by: 

   (  )         |
      

      
|     (3.4) 

where     represents the input impedance of the antenna and    is the characteristic 

impedance of the coaxial cable which can be calculated by [28]: 

   
   

√  
      (

    

   
)     (3.5) 

The result of S11 calculated through input impedance is compared with the result calculated 

through power by Eq. (2.37). As shown in Fig. 18, the results from the two methods match well. 

However, for the cases that the characteristic impedance is not easy to obtain, the calculation 

through impedance will not work well. Also, the value of    introduced in calculating S11 is 

obtained by analytical method instead of computational method, which will lead to inaccuracy of 

the results. 
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(a) Medium Mesh 

 
 

(b) Fine Mesh 

 

Figure 17 Comparison of Input Impedance between FUNSAFE on Medium and  

Fine meshes with the P2 Scheme and HFSS in the Case of  

Monopole Antenna (R=600mm(3λ)) 
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Figure 18 Comparison of S11 Calculated through Impedance and Power on the Fine Mesh in the 

Case of Monopole Antenna (R=600mm(3λ)) 

 

 

Procedure of Calculating the Input Impedance 

As indicated earlier, the input impedance represents the ratio of voltage to current at the 

port. The most intuitive method to calculate the impedance is to calculate voltage and current, 

respectively, and then compute the ratio.  

In an arbitrary two-conductor TEM transmission line, the voltage of the positive 

conductor relative to the negative conductor can be represented as the integral of the electric 

field [39]: 

  ∫  ̅    ̅
 

 
      (3.6) 

where the integration path begins on the + conductor and ends on the – conductor. It should be 

noticed that, the voltage defined in Eq. (3.6) is unique and is independent of the integration path. 
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Also, the total current flowing on the + conductor can be expressed as the integration of 

magnetic field: 

  ∮  ̅    ̅
        (3.7) 

where the integration contour can be any closed path enclosing the + conductor. That means the 

results should be the same no matter which closed path is chosen to integrate the current. 

Since only TEM waves can be transmitted in the coaxial line, Eqs. (3.6-3.7) can be 

applied in calculating the voltage and current on the coaxial port. For the coaxial cable, 

according the working theory of coaxial transmission line, the inner conductor is related to the 

positive conductor and the outer conductor is related to the nagative conductor. From the ideas 

above, the procedure for calculating input impedance for the coaxial-line feed monopole antenna 

simulated on parallel systems is developed: 

1. Select all the points on the face of the coaxial port and save the relevant information of 

coordinates, E-field and H-field in independent arrays for each processor. 

2. Collect the information above from each process to one process. 

3. Transfer the coordinates from rectangular coordinate system to spherical coordinate 

system. 

4. Select points with r coordinates in a relatively small range, then sort the selected points 

by the value of θ, and these points will form a closed path. The sum of the dot product of 

the vector between two adjacent points and the average of  ⃗⃗  of two adjacent points along 

the whole close path will be the current. 

  ∑
 ⃗⃗    ⃗⃗    

 
    

    ⃗       
 ⃗⃗    ⃗⃗  

 
  ⃗            (3.8) 
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5.  Select points with θ coordinates in a relatively small range, then sort the selected points 

by the value of r, and these points will form a path from the inner conductor to the outer 

one. The sum of the dot product of the vector between two adjacent points and the 

average of  ⃗  of two adjacent points along the whole path will be the voltage. 

  ∑
 ⃗    ⃗    

 
    

    ⃗          (3.9) 

where point of     represents the point on the inner conductor, while point of     

represents the point on the outer conductor. The result is the voltage of the inner 

conductor relative to the outer conductor. 

6. Then the input impedance or input admittance can be calculated: 

  
 

 
      (3.10) 

  
 

 
      (3.11) 

where the input impedance and input admittance are relevant to the total electric field and 

total magnetic field obtained at the coaxial port. 

It should be noticed that, the  ⃗  and  ⃗⃗  discussed above represent Fourier Transformed 

values and are therefore in complex format. As a result, the relevant   and   are also in complex 

format, and then the input impedance or input admittance is in complex format. 

To verify the ideas above, current and voltage are calculated by selecting different paths. 

For current calculations, five different paths are selected: r=(2.0mm,2.1mm), r=(2.3mm,2.4mm), 

r=(2.5mm,2.6mm), r=(2.7mm,2.8mm), and r=(3.0mm,3.1mm). As shown in Fig. 19, the current 

calculated along different paths match each other well. 
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(a)Real part of current 

 

(b)Image part of current 

 

Figure 19  Comparison of Current at the Coax Port along Different Paths for Simulations on 

the Fine Mesh in the Case of Monopole Antenna (R=600mm(3λ)) 

 

 

For calculation of voltage, four different paths are selected:   (  
 

  
),   (

 

 
 
   

  
), 

  (  
   

  
), and   (

  

 
 
   

  
). As shown in Fig. 20, the voltage calculated along different paths 

match each other well. 

  

(a)Real part of voltage 

 

(b)Image part of voltage 

 

Figure 20 Comparison of Voltage at the Coax Port along Different Paths for Simulations on the 

Fine Mesh in the Case of Monopole Antenna (R=600mm(3λ)) 
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The procedure above is verified to be effective in calculating the input impedance for 

coaxial-line fed antenna, as shown in Fig. 17. However, it can only apply on coaxial-line fed 

models. More generally applicable methods for calculation of input impedance should be 

developed in future work. 
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CHAPTER IV 

 

                                      PATCH ANTENNA 

 

Introduction 

Patch antennas are typically narrowband antennas, which are commonly used in verifying 

the accuracy of electromagnetic simulations. Jin and Makarov applied their computational 

simulations on the patch antenna for verification of the finite element method and MoM [10, 34]. 

The patch antenna is also a test case in the HFSS tutorial [40], where the geometry and 

dimensions of the patch antennas discussed below come from. 

 

Characteristics and Applications 

Patch Antennas, also called microstrip antennas, are popular for applications in the 

microwave frequency range (300MHz-300GHz). The patch antennas are easy to manufacture, as 

both single-elements and element-arrays, due to their simplicity and compatibility with printed-

circuit technology. They commonly consist of a patch of metal, usually rectangular or circular, 

on a thin layer of dielectric, which is called the substrate, on a ground plane, as shown in Fig. 21.  
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(a) rectangular patch (b)circular patch 

 

Figure 21 Model of Microstrip Patch Antennas 

  

Due to the characteristics of low-profile, conformability to planar and nonplanar surface, 

low-cost to manufacture, microstrip patch antennas are widely used in high-performance aircraft, 

satellite, and missile applications where low-cost, high-performance, and ease of installation are 

required. These antennas also have commercial applications, such as wireless communications 

and mobile radio. 

The first microstrip patch antenna was introduced by Munson in 1972 [41]. Later, Howell 

introduced the circular patch according to the basic idea of Munson’s paper [42]. In 1976, 

Dernery proposed the transmission-line model for analysis of microstrip antennas [43]. Later, the 

cavity model [44] and the spectral-domain method [45] were developed to analyze the 

characteristics of patch antennas. 

 

Feeding Methods 

The microstrip patch antennas have various feeding methods, among which the most 

popular ones are coaxial-line feed, microstrip-line feed, proximity-coupled feed and aperture-

coupled feed [25]. The coaxial-line feed and the microstrip-line feed are introduced below. 
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Coaxial-line Feed 

As shown in Fig. 22, when a coaxial cable is applied in feeding the patch antenna, the 

inner conductor of the coax is attached to the radiation patch while the outer conductor is 

connected to the ground plane. The coaxial probe feed is easy to fabricate and match, and it has 

low spurious radiation. However, the coaxial-line feed will limit the bandwidth for the designs 

with thick substrates. This feeding method is applied in simulations of the patch antennas in this 

thesis. 

 
 

Figure 22 Coaxial-line Feed Model 

 

 

 
 

Figure 23 Microstrip-line Feed Model 
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Microstrip-line Feed  

The microstrip-line feed is shown in Fig. 23. It is simple to match by controlling the inset 

position and also simple to model. However, this feeding method will lead to an increase of 

surface waves and spurious feed radiation for the models with higher thickness of substrate [25]. 

The microstrip-line feed is commonly used in antenna arrays while the coaxial-line feed works 

better for stand-alone elements. This model will be developed in future work. 

 

Working Theory 

There are various analysis methods for microstrip patch antennas, among which the most 

popular ones are the transmission-line model, cavity model and full wave model [25]. The 

transmission-line model is the easiest but less accurate. The cavity model is more accurate but 

more complex compared to the transmission-line model. The details of cavity model are 

discussed below. 

Fringing Effects 

Before introducing the cavity model, the fringing effects need to be explained first. The 

fields at the edges of the patch undergo fringing because of the finite dimensions of the patch 

along length and width. The amount of fringing is a function of patch dimensions and substrate 

height. Since the waves travel both in substrate and air, the effective dielectric constant      is 

introduced to account for fringing and wave propagation. From reference [20], the effective 

dielectric constant is given by: 

     
    

 
 

    

 
[    

 

 
]
    

    (4.1) 
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where    is the permittivity of the substrate, and h is the height of the substrate. The equation 

above applies for the cases where the length of the patch L is the resonant dimension, and then 

W in the equation represents the width of the patch.  

 
(a)top view 

 
 

 (b)side view 

 

Figure 24 Physical and Effective Lengths of Microstrip Patch 

The field along the resonant dimension L and the effective lengths caused by edge effects 

are shown in Fig. 24. Due to fringing, the microstrip patch looks wider electrically compared to 

its physical dimensions.  A practical approximate relation for the normalized extension of the 

length is indicated in [46],  given by:  

  

 
 

     (        )(
 

 
      )

(          )(
 

 
    )

     (4.2) 
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where      is effective dielectric constant obtained by Eq. (4.1), and h is the height of the 

substrate. The extension of the length    is added to the resonant dimension L, while W in the 

equation represents the width of the patch.  

 

Cavity Model 

In the cavity model, the dielectric substrate (the part between the patch and the ground 

plane) of the microstrip patch antenna is treated as a cavity. This cavity has electric conductors 

above and below it and magnetic walls along the perimeter of the patch.  

As shown in Fig. 25, the charge distribution of the cavity model is controlled by the 

attractive mechanism and the repulsive mechanism [47]. The attractive mechanism works 

between the corresponding opposite charges on the bottom side of the patch and the ground 

plane, and it tends to maintain the charge concentration on the bottom of the patch. The repulsive 

mechanism works between charges on the bottom surface of the patch, and it tends to push some 

charges from the bottom of the patch to its top surface around its edges. 

 
 

Figure 25 Current Distribution of Cavity Model 
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In practice, the height-to-width ratio of the patch is very small, the current flow around 

the edges of the patch will be small, and then the tangential magnetic fields at the edges will be 

very small. Since the height of the substrate is very small (   ), the field variations along the 

height will be negligible. In addition, the fringing of the fields along the edges of the patch are 

also very small. And then the electric field is nearly normal to the surface of the patch, therefore 

only TM
z
 field configurations will be considered within the cavity. From the discussions above, 

for the cavity model, the top and bottom walls are perfectly electric conducting, and the four side 

walls will be modeled as perfectly magnetic walls, as shown in Fig. 26. 

 
Figure 26 Boundary Conditions of Cavity Model 

The electric and magnetic fields within the cavity are related to the vector potential Ax 

given by [20]: 
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      (4.7) 

           (4.8) 

where 

   [     (   )       (   )] [     (   )       (   )] [     (   )       (   )] 

(4.9) 

and subject to the boundary conditions of  

  (                  )      (4.10) 

  (                  )      (4.11) 

  ( 
                 )      (4.12) 

  ( 
                 )      (4.13) 

  (                  )      (4.14) 

  (                  )      (4.15) 

Applying the boundary conditions in Eq. (4.9), the final form of the vector potential    is: 

           (   
 )    (   

 )    (   
 )    (4.16) 

where      represents the amplitude coefficients of each mnp mode. The wave numbers 

  ,   ,    are given by: 

   
  

 
     (4.17) 

   
  

 
     (4.18) 

   
  

 
     (4.19) 

where m, n and p represent the number of half-cycle field variations along the x, y and z 

directions,  respectively. Since the wave numbers   ,   ,    are subject to the constraint equation: 
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     (4.20) 

then the resonant frequencies for the cavity are given by: 

(  )    
 

  √  
√(

  

 
)  (

  

 
)  (

  

 
)     (4.21) 

The mode with the lowest resonant frequency is referred to as the dominant mode. From 

the equations above not only dominant mode but also higher order modes can be derived. The 

dominant mode and higher order modes are determined by the relationships among the 

dimensions of the antenna.  

If      , the dominant mode is the      
 , and the resonant frequency is given by: 

(  )    
 

  √  
     (4.22) 

where c is the speed of light in free space. In this case, if     
 

 
  , the second order mode 

is the      
 , and the resonant frequency is given by: 

(  )    
 

  √  
     (4.23) 

But if   
 

 
    , the second order mode is the      

 , and the resonant frequency is given 

by: 

(  )    
 

 √  
      (4.24) 

If      , the dominant mode is the      
 , and the resonant frequency is given by: 

(  )    
 

  √  
     (4.25) 

In this case, if     
 

 
  , the second order mode is the      

 , and the resonant frequency 

is given by: 

(  )    
 

  √  
     (4.26) 
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But if   
 

 
    , the second order mode is the      

 , and the resonant frequency is given 

by: 

(  )    
 

 √  
     (4.27) 

Based on the equations above, the    field distribution along the side walls of the cavity 

for the      
  mode,      

  mode,      
  mode, and      

  mode is shown in Fig. 27, 

respectively. 

 

  
(a)      

  (b)      
  

  
(c)     

  (d)      
  

 

 Figure 27 Field Modes of Cavity Model 
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The discussions above are based on the assumption that there is no fringing of fields 

along the edges of the cavity. When the effective length is taken into consideration, the modified 

formula of Eqs. (4.22-4.27) which includes edge effects is given by: 

   
 

 (     )√  
     (4.28) 

where   is the speed of light in free space and    is the fringing extension added to the 

resonant dimension L calculated by Eq. (4.2).   and    here can be replaced by   and    

when   is the resonant dimension. According to the Eq. (4.28), the real frequency will be a little 

lower than the ideal values calculated by the Eqs. (4.22-4.27). Some examples discussed below 

will illustrate what the real resonant frequency looks like. 

 

Antenna Model and Field distribution 

The geometry of the patch antenna is shown in Fig. 28, and the details of the parameters 

are discussed below.     and      are the radius of inner conductor and outer conductor of the 

coaxial cable, respectively, and x=5mm is the shift distance between the coordinate origin and 

the center of the coaxial cable. a=100mm and b=90mm represent the dimensions of the substrate 

along x and y direction, respectively. L=40mm and W=30mm represent the dimensions of the 

patch along x and y direction, respectively. h=3.2mm is the height of the substrate, t=0.1mm is 

the height of the patch, and     and     are the relative permittivity of the material in the coaxial 

cable and the material of the substrate, respectively. 
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(a)top view 

 
(b) cut-plane view 

Figure 28 Geometry of Patch Antenna 

 

The electric field is plotted on both the x-z plane and the patch at the selected time steps 

where the Gaussian pulse is large enough for observation of fields. As shown in Fig. 29, the solid 

line represents the side-view of the patch, and the electric field of the patch antenna transmits 

periodically along the patch and inside the substrate. 
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(a) Ex on x-z plane at time t1=0.4800 

 

 

(b) Ex on x-z plane at time t2=0.5925 

 

  
 

(c) Ez on x-z plane at time t1=0.4800 

 

 

(d) Ez on x-z plane at time t2=0.5925 

 

  
 

(e) Ez on the patch at time t1=0.4800 

 

(f) Ez on the patch at time t2=0.5925 

 

 Figure 29 Electric Fields of Patch Antenna on x-z Plane and Patch 

 

 

Effect of Permittivity of Antenna Substrate on S11 

Theoretical Results 

To investigate the effect of permittivity of antenna substrate on S11, the patch antenna 

shown in Fig. 28 is simulated in four different cases:                         and     
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   . To keep the characteristics of the coaxial cable the same, the permittivity of the material in 

the coax is set to          for each case. Through calculation by Eqs. (4.22-4.27), the 

theoretical ideal resonance frequency for each case is indicated in Table 2. 

 

Table 2 Theoretical Ideal Resonant Frequency of Different Modes for Different Values of 

Relative Permittivity    in the Case of Patch Antenna (GHz) 

 

                             

     
  3.5755 2.5282 1.7877 1.4597 

     
  4.7673 3.3710 2.3837 1.9462 

     
  7.1510 5.0565 3.5755 2.9194 

     
  9.5346 6.7420 4.7673 3.8925 

 

Computational Results  

The computational results of S11 for patch antennas with substrate material of different 

permittivities by FUNSAFE are shown in Fig. 30. The main and higher-order resonant 

frequencies for each case are list in Table 3 for convenience of comparison. Compared with 

theoretical results in Table 2, the differences between computational and theoretical results are 

discussed below.  
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Figure 30 Comparison of S11 on Fine Mesh with the P2 Scheme for Different Values of Relative 

Permittivity    in the Case of Patch Antenna 

 

 

Table 3 Computational Resonant Frequency of Different Modes for Different Values of Relative 

Permittivity    in the Case of Patch Antenna (GHz) 

 

                             

1st resonant frequency 3.15 2.35 1.7 1.4 

2nd resonant frequency - - 3.425 2.825 

3rd resonant frequency - - - 3.6 

 

 

For the antenna with the substrate of        , within the frequency range from 0.8GHz 

to 3.8GHz, the only resonant frequency is 3.15GHz, while the theoretical resonant frequency 

of      
  mode is 3.5755GHz. The difference is caused by edge effect which is not considered in 

the theoretical results in Table 2.  As explained earlier, the edge effects will make the dimension 

of the patch electrically larger, which will make the resonant frequency lower than the ideal one.  
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For the case with the substrate of       , within the frequency range from 0.8GHz to 

3.8GHz, the only resonant frequency is 2.35GHz, a little lower than the theoretical resonant 

frequency of 2.5282GHz for the       
  mode. However, the theoretical resonant frequency of 

     
  mode which is 3.3710GHz within the observed frequency range does not show up in the 

computational results. This phenomenon will be explained in the cases discussed below. 

For the patch antenna with substrate of        , within the frequency range from 

0.8GHz to 3.8GHz, the first and second resonant frequencies are 1.7GHz and 3.425GHz, which 

are close to the theoretical resonant frequencies for the      
  mode of 1.7877GHz and the 

     
  mode of 3.5755GHz. Similar to the case with       , the theoretical resonant frequency 

of 2.3837GHz  for the      
  mode does not show up in computational results.  

For the case with the substrate       , within the frequency range from 0.8GHz to 

3.8GHz, the first, second and third resonant frequencies are 1.4GHz, 2.825GHz and 3.6GHz, 

respectively, while the relevant theoretical resonant frequencies are 1.4597GHz, 2.9194GHz and 

3.8925GHz.  It should be noticed that as the permittivity increases, the equivalent wavelength in 

the substrate becomes smaller, and the simulation results for the same mesh will become less 

accurate. 

From the relationship between the dimensions of the patch L and W, and according to 

Eqs.(4.23-4.24), the theoretical second resonant frequency for the patch antenna should be the   

     
  mode. However, from the results above, the computational second resonant frequencies 

are closer to the theoretical results of      
  mode than      

  mode. The reason is that, in Eqs. 

(4.22-4.27), fringing effects are not taken into consideration. If considering the fringing effect, 
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the dimensions of the patch L and W will have new relationship in which case Eq. (4.24) will be 

used to calculate the second resonant frequency instead of Eq. (4.23).  

 

Effect of Grid Quality on Convergence Behavior 

Grid Optimization 

As is indicated earlier, it is the fields around the edges of the patch that cause the patch 

antenna to radiate. This is why the mesh quality around the edges is important for accurate 

solutions. The following comparison of different meshes is a good proof of this point. 

Table 4  Parameters for Different Meshes of Patch Antenna 

 

 Coarse medium Fine 

Number of 

tetrahedrons 
107339 152671 199223 

Number of points 20843 29885 38904 

Number of points 

along L direction of 

the patch 

40 13 40 

Number of points 

along W direction of 

the patch 

30 9 30 

 

The three meshes shown in Table 4 are used to investigate the effect of mesh quality on 

antenna characteristics. The details about how we recognized the importance of meshes around 

edges will be discussed below.  The first mesh generated was the medium mesh, and although 

the mesh initially appears to be fine enough to solve the problem, the result was not satisfactory, 

as shown in Fig. 31.  Then the second mesh was developed which is the fine mesh with more 

points on the edges of the patch, and this result turns out to be reasonable. To prove the 



67 

 

importance of the meshes around the edges, the third mesh was generated. The third mesh is the 

coarse one which has about half the points of the fine mesh but the same points on the edges with 

the fine mesh. As shown in Fig. 31, the results of the coarse mesh and fine mesh match each 

other well. The investigation above is a good proof of the importance of mesh quality around the 

edges to obtain accurate solutions.  

From the discussions above, an adaptive mesh should be a good implementation for the 

electromagnetic solver, which will be introduced in future work. 

 
 

Figure 31 Comparison of S11 on Meshes with Different Quality with the P2 Scheme in the Case 

of Patch Antenna 

 

 

Convergence Behavior of S11 

To investigate the convergence behavior of S11, the FUNSAFE code was run on the 

coarse and fine meshes in both p1 and p2 elements, and the results are compared with those of 

the electromagnetic simulation software HFSS and CST. 
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The comparison for the case with substrate of        is shown in Fig. 32. For the p1 

scheme, the resonant frequency of S11 on the fine mesh is closer to the expected one than that on 

the coarse mesh, while for the p2 scheme, the difference between results on coarse and fine mesh 

is negligible. These differences among different simulation methods are reasonable. 

 
 

Figure 32 Comparison of S11 Calculated by HFSS, CST and FUNSAFE on Different Meshes 

with P1 and P2 Schemes in the Case of Patch Antenna (      ) 
 

The comparisons for the cases with substrates of        ,       , and        are 

shown in Fig. 33, 34, and 35, respectively. The resonant frequencies of the results of different 

simulation methods match well. The differences in values may be caused by the impedance 

mismatching introduced by higher permittivity of substrates. As is indicated in Chapter III, the 

method of calculating S11 in FUNSAFE is independent of impedance, while some commercial 

codes indeed use impedance to get the S11.  This is only one guess for the reason, the secret 

behind still needs to be explored. 
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Figure 33  Comparison of S11 Calculated by HFSS, CST and FUNSAFE on Different Meshes 

with P1 and P2 Schemes in the Case of Patch Antenna (      ) 
 

 

 

 
 

Figure 34  Comparison of S11 Calculated by HFSS, CST and FUNSAFE on Different Meshes 

with P1 and P2 Schemes in the Case of Patch Antenna (      ) 
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Figure 35  Comparison of S11 Calculated by HFSS, CST and FUNSAFE on Different Meshes 

with P1 and P2 Schemes in the Case of Patch Antenna (      ) 
 

 

Comparison of Radiation Pattern on Different Simulation Methods 

In this section, the results of Radiation Pattern obtained by different simulation methods 

are compared. Since the patch antenna is not an omnidirectional antenna as the monopole 

antenna is, the radiation patterns for E-place and H-place are different. As shown in Fig. 36, the 

main lobe of the radiation pattern for each simulation result matches well, although the side lobes 

have some differences.  
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(a) E-plane(2.35GHz) 

 

(b) H-plane(2.35Hz) 

 

Figure 36 Comparison of Radiation Pattern at 2.35GHz Calculated by HFSS,CST and 

FUNSAFE on Fine Mesh with Hemispherical Computational Domain with the P2 Scheme 

in the Case of Patch Antenna (      ) 

 

 

To investigate the reasonability of the results we got, several different cases are run. In 

HFSS, three different computational domains are applied, and in CST, both time domain and 

frequency domain are simulated, and for FUNSAFE, both Silver-Muller boundary condition and 

PML are applied. To show the main lobe more clearly, the radiation patterns of H-place are 

plotted in rectangular coordinates. As shown in Fig. 37, the side lobes of different simulation 

results are not exactly the same, but the main lobes match each other well. Considering the -3dB 

beam width, one of the main characteristics of patch antennas, they are close for each simulation 

method. The behavior of effects of computational domain on radiation pattern will be explored in 

more details in future work. 
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Figure 37 Comparison of Radiation Pattern (H-plane) at 2.35GHz Calculated by HFSS with 

Different Computational Domain, CST in Time-Domain and Frequency-Domain, and FUNSAFE 

with Different Boundary Conditions on Fine Mesh with Hemispherical Computational Domain 

with the P2 Scheme in Rectangular Coordinates in the Case of Patch Antenna (      ) 
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CHAPTER V 

 

                                          CONCLUSION 

 

A higher-order Petrov-Galerkin finite element method is applied in analysis of the 

antennas. Higher-order discretization is introduced in both spatial and temporal domains to solve 

Maxwell’s equations. Implicit time stepping is applied in the time domain and quadratic 

elements are introduced in the mesh. Gaussian pulse is introduced as the excitation for the 

antennas which helps obtain frequency-based characteristics in one time-domain calculation.  

To get antenna characteristics parameters including the scattering parameters, input 

impedance and radiation pattern, post processes are implemented. The theory and procedures of 

the post processes for antenna characteristics are discussed. The antenna characteristics obtained 

from the post processes are compared with the results of HFSS and CST for verification.  

The first verification case is the monopole antenna. A quarter-wavelength monopole 

antenna fed by coaxial cable is simulated here. The working theory and characteristics of the 

monopole antenna are explained. Simulations are run on cases with different ground plane sizes 

to explore the effect of ground plane on antenna characteristics. The simulation results of 

FUNSAFE match well with HFSS. To test the grid convergence behavior, meshes with different 

sizes are applied with both p1 and p2 schemes. These results demonstrate that the p2 solution is 

significant more accurate than the p1 solution, even when the same number of degrees of 
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freedom are used. The effect of time-step size is also examined.  The procedure of calculating 

input impedance is described in detail, and the results match well with those of HFSS.  

The second verification case is the patch antenna. A rectangular patch antenna fed by 

coaxial cable is simulated here. The working theory and characteristics of the patch antenna are 

explained in detail. Simulations are run on cases with different permittivity of material in their 

substrates to explore the effect of substrate material on antenna characteristics. The simulation 

results are compared with theoretical results and results of HFSS and CST Microwave Studio. 

The grid convergence behavior is tested on meshes with different sizes which are applied with 

both p1 and p2 schemes. Simulation results on meshes with different distribution are discussed to 

show the importance of placing mesh points in appropriate locations and demonstrate the need 

for mesh adaption. Radiation patterns of the patch antennas are discussed with results from 

different simulation methods and different computational domains. 

In future work, adaptive meshes will be introduced which will highly increase the 

efficiency of the simulations. Moreover, other feeding methods will be introduced to explore the 

capability of FUNSAFE to solve a wider variety of antennas, and other, more general, methods 

for calculating the input impedance will be developed which will help obtain the characteristics 

of the antennas fed by other models than the coaxial cable. In addition, the effect of 

computational domain on radiation patterns will be explored in more detail. Finally, a variety of 

antennas will be simulated by FUNSAFE for further verifications. 
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