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Abstract

The Simple Zeros of the Riemann Zeta-Function
by Melissa Miller

There have been many tables of primes produced since antiquity. In 348 BC Plato studied
the divisors of the number 5040. In 1202 Fibonacci gave an example with a list of prime
numbers up to 100. By the 1770’s a table of number factorizations up to two million was
constructed. In 1859 Riemann demonstrated that the key to the deeper understanding of the
distribution of prime numbers lies in the study of a certain complex-valued function, called
the zeta-function. In 1973 Montgomery used explicit formulas to study the pair correlation
of the zeros of the zeta-function and their relationship to primes. It is conjectured that all
the zeros of the zeta-function are simple. Montgomery proved that at least two-thirds of the
zeros are simple. In this thesis I provide complete proofs of Montgomery’s method and its
applications to simple zeros and differences between consecutive primes. In addition, I give
a proof of the explicit formula derived by Ledoan and Zaharescu for the pair correlation
of vertical shifts of zeros of the zeta-function and derive several consequences that may be

useful for further study of the zeros.
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Chapter 1

Introduction

There have been many tables of primes produced since antiquity. In 348 BC Plato studied
the divisors of 5040. In 1202 Fibonacci gave an example with a list of primes up to 100. By
the 1770’s a table of number factorizations up to two million was constructed. Figure 1.1

shows a table with the first 54 primes.
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Figure 1.1: The first 54 primes among the positive integers up to 256.

The first mathematician of all time to make any significant conjecture about the dis-

tribution of the primes was Legendre. In 1808, he conjectured that, for large values of z,



the number of primes not exceeding x, which is denoted by 7(z), is given approximately by
x/(logz —1.08...). The tables of primes show that the detailed distribution of the primes
is erratic, but the pictures in Figure 1.2 show that the counting function 7(z) increases

steadily.

25

20 8000

6000
o p 4000

5 ~ 2000

n
n
20 a0 60 S0 100 20000 40000 HO000 80000 100000

Figure 1.2: The left-hand plot is a picture of m(x) for € [0,100]. The right-hand plot
shows 7(x) for x € [0,100000].

In 1849 Gauss conjectured that m(z) ~ Li(z) as  — oo, where Li(z) = [} dt/logt.!
His conjecture was proved in 1896 by Hadamard and de la Vallée Poussin, working in-
dependently. Their result became known as the Prime Number Theorem, which is that
m(x) ~ x/logx as * — oo and can be interpreted as the probability that a number n close
to = being prime is asymptotically 1/logx, and hence 1/logn.

A striking event in the early development of analytic number theory was the publication
of Riemann’s epoch-making discovery [7] in 1859. Building on the work of Cauchy, Riemann
demonstrated that the key to the deeper understanding of the distribution of the primes
lies in the study of the zeta-function ((s) as a function of the complex variable s = o + it.
The function ((s) has its origin in Euler’s identity

-1
((s) = %: 11 (1—;&) : (1.1)
n=1 p prime
which shows the connection that exists between ((s) and primes. The infinite series defines

an analytic function ((s), regular for Re(s) = o > 1. The product is also absolutely

'For example, we have 7(10'%) = 279,238,341, 033,925 and 7(10'®)/Li(10'®) = 0.999999989. . ..
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Figure 1.3: Zeros of ((s) on the critical line, with ¢ € [—50, 50].

convergent for o > 1. In his memoir Riemann proved two main results:
(a) The function ¢(s) can be continued analytically over the whole complex plane, except
for a simple pole at s = 1 with residue 1.

(b) {(s) satisfies the functional equation

ﬂ,—%sr <§) C(S) — ﬂ_—%(l—s)r (1 ; 3) C(l o S), (12)
where
I'(s) = /00 e 't dt.
0

The functional equation (2.2) allows the properties of ((s) for o < 0 to be inferred from its

properties for ¢ > 1. Riemann found it convenient to define?

&(s) = %s(s — 1)7r_%3F (%) C(s)=(s— 1)77_%5F (g + 1) ¢(s), (1.3)
so that the function £(s) is entire and that (2.2) takes the form
£(s) = £(1— 5). (1.4)

Since the infinite series in (2.1) converges for o > 1, ((s) has no zeros in this region. Since

1/T'(2) is entire, the function I'(s/2) is non-vanishing, so that £(s) also has no zeros for

2The second expression in (2.3) is obtained by applying the functional relation I'(s + 1) = sT'(s).

vii



o > 1. By (2.4), the zeros of (s) are thus confined to the critical strip 0 < o < 1. By (2.3),
any zero of ((s) must either be a zero of £(s), or a pole of I'(s/2). Hence, the zeros of ((s)
must lie in the critical strip, with the exception of the trivial zeros at s = —2, —4, —6, ...
corresponding to poles of I'(s/2). We may observe, further, that if p = 5 + i7 is a zero of
£(s), then by (2.4), so is 1 — p. Since £(s) = &(5), the complex conjugates p and 1 — p are
also zeros. Hence, the zeros of ((s) are positioned symmetrically with the real line and the
critical line o = 1/2. Figure 1.3 shows the first ten zeros in the upper half-plane and their
complex conjugates with respect to the real axis. Figure 1.4 shows the contour plot of ((s),
in which a zero is indicated by the intersection of the real part of ((s) and the imaginary
part of ((s). There are seven zeros here. Figure 1.5 is a parametric plot shows the zeros
according to the number of windings as t ranges up to height 50.

Riemann conjectured that § = 1/2, so that p = 1/2 4 iy. The numerical evidence for
this conjecture is extremely convincing. The first four zeros in the upper half of the critical
strip are 1/2+414.13472...,1/2+421.02203...,1/24425.01085. .., and 1/2+i30.42487 . ...
Figure 1.6 shows the remarkable zeta-landscape with the zeros as spikes on the critical line.
With this picture in mind, let us mention the following important conjectures.

Contour Plot of £(s)

Figure 1.4: Contour plot of ((s).

Riemann Hypothesis. All the complex zeros of {(s) lie on the line o = 1/2.

Simple Zeros Conjecture. All the complex zeros of ((s) are simple.

viii



Parametric plot of £{1/2+it} for D«<t<50
Imi g (s))

Figure 1.5: Parametric plot of ((s).

On the truth of the Riemann Hypothesis, many of the bounds on prime estimates can
be vastly refined and primality proving can be simplified.? In 2004, supercomputers with
processing capacity at speeds of nanoseconds were used to verify that the first 10 trillion
zeros up to height t = 10?4 are on the critical line and simple.

I shall now describe our project and research objectives. The distribution of the dif-
ferences of the imaginary parts of pairs of zeros Im(p — p’) = v — 4/ was first studied by
Montgomery [6] in the early 1970’s. He proved on the Riemann Hypothesis that, for any
positive €, more than 2/3 — e of the zeros are simple. In 1989 Conrey, Ghosh, and Gonek [2]
discovered a new technique that shows (conditionally) that more than 19/17—e = 0.70370 . ..
of the zeros are simple. In 1993, Cheer and Goldston [1] proved (conditionally) that more
than 0.67275 ... of the zeros are simple.* In 2011 Ledoan and Zaharescu [4], [5] investigated
the pair correlation of the vertical shifts of the zeros, that is, the pair correlation of the zeros
of {(s) and the zeros of ((k(s—1/2)+1/2) for any fixed positive integer k. Upon reviewing
this work for the American Mathematical Society, the Turkish mathematician Cem Yalgin

Yildirim, famous for his recent work on bounded gaps between primes, remarked: “Another

30ne such consequence is the sharp estimate 7(x) = Li(z) + O(y/zlog ) as  — oc.
4Conrey, Ghosh, and Gonek’s lower bound is weaker than Cheer and Goldston’s, since their technique

depends on a second unproved conjecture on the rate of growth of {(s) on the critical line, called the Lindeldf

Hypothesis.

X



T £ 7w
— +4 -
Py :
//// j'v J j _ —
) >

10 —— AP ) > g

T e ¢ o 50
5 - J B e
0 : " t

\ e
N ==

Figure 1.6: Zeros of ((s) on the critical line, with ¢ € [0, 100], appearing as divergences.

point is that Montgomery, assuming the Riemann Hypothesis, deduced some results about
the percentage of simple zeros and about the gaps between the zeros of ((s) from his double
sum over the zeta zeros. It would be desirable to have some such conclusions from the

”

authors’ formulas.” Hence, the aim of our project is to study Montgomery’s method and
use the explicit formulas for the pair correlation of the vertical shifts of the zeros of ((s) to

derive interesting results that may add further information about the simple zeros.



Chapter 2

Montgomery’s Method

2.1 Landau-Gonek Explicit Formula

We assume the Riemann Hyposthesis (for short RH). The number p = % + 17y denotes, for
each v € R, a nontrivial zero of the Riemann zeta-function ((s). In 1973 Montgomery [6]
investigated the distribution of the differences v — I/ between the zeros, where v and I”
run through the imaginary parts of the zeros of ((s). Montgomery manipulated the explicit

formula given by the following lemma.

Lemma 1. (Assuming RH.) For 1 <o <2 and x > 1, we have

¥

D D e Vo

— _xfl/Q ZA(TZ) <%> 1—o—+it n ZA(n) (%)U—Ht (2'1)

n<x n>x

+ 270 (log 7+ Op (1)) + Op (2771,
where T = |t| + 2 and A(s) denotes the von-Mangoldt function,

logp, ifn=r7p", rime, k> 1;
A(n) = gp, fn=p",pp

0, otherwise.

The explicit formula (2.1) provides an explicit link between a weighted count of the

primes p" and a sum over the nontrivial zeros of ((s). It is derived using an explicit formula



of Landau, which states that unconditionally for x > 1, x # p",

A(n) _ _d(s)
Z ns  ((s) 1—8_2

n<x

[e.e]
T
+nZ:1 2n+s’ (2.2)

provided that s # 1, s # p, and s # 2n.
We proceed to prove Lemma 1. In (2.2), we solve for the sum over all zeros p in the

critical strip above the real axis to obtain

P S —s o0 p—2n—s
ZP:P—S_ ( (s) +Z ns 1 ;271—1—8)' (23)

n=x

This relation holds independent of RH. However, assuming RH, we have p = % + iy, for

each v € R. Setting s = o + it, we obtain p — s = % — 0 + iy — it. Then (2.3) becomes

Z $%7:7+i’yfit _ ¢'(s) . Z A(n) pl=s o p—2n—s

> %—U—Fit—i'y ¢(s) = ns l—s = 2n+s ’
from which
iy—it ! A 1—s X . —2n—s
e R Rl rr D DR ) Dit ) RS
T o— g tit—iy ¢(s) ne<e l—s “=2n+s

In similar fashion, setting s = 1 — o + it, we have p — s = —% + o + iy —it. Then (2.3)
becomes

1—s o x—Qn—s
—s 212n+5 ’

n=

o3 Hotiv—it

Z—%—FU—Fit

~

('(3)+ZA” _

—in (o) =

from which

7/y it
Z 1 — o +it —ay
o | (2.5)
%—a C’(l — 0+ Zt) Z A(n) Lo p—2n—1+o—it
=X _— - J— —
C(1—o+it) an1*‘7“t o—it “2n+l-o+it
Subtracting (2.5) from (2.4), we obtain on the one hand
iy—it it _9 1
Zf— D 1a2+
~ J—§+’Lt—’b’y 5 §—O'+Zt— ” §) _(t_’}’>
- (2.6)
xz'yfzt
=(20—1
| );(U—é)gﬂt—v)?



On the other hand, we have

gt (S0 5o A SR

¢(s) = l—s ‘= 2n+s
1— t A o—it & —2n—14o0—1it
i [ S 0’+2)+Z 1_(”)' B = z '
(1 — o +it) —n otit g —it —2n+1—-o0+it

1 Lo Aln) 1 (1 —o+it)
T2 Z nl— U—Ht B Zzna—l—it —re C(l—O'—l-’it)

n<x n>x

w 1 1 I 1 1
5—it _ a5 —2n
T <0—1+it+a—it> v ;x <2n—i—a+it+2n—|—1—a+it)

1 U(:’(l — O‘—{—it)

== | a0 () T+ A () -

n<z
14 20 —1 . _1_ 20’ — ]_) —2n
L ((U—l—}—it)(a—zt) v Z<U—1—2n—zt)(a—|—2n+it) ’
(2.7)
Equating (2.6) and (2.7) and multiplying both sides of the result by z*, we obtain
vl 1 1—o+it o+it
20 — 1 = g7 2 Aln + A(n
B e\ A6 R ()
%_(,Ht((l—a—l—it) N x5(20—1)
C1l—o+it) (o—1+it)(oc—it)
1S (20 — 1)z=2"
o 2; ((alQnit)(a+2n+it)> ’
(2.8)

By continuity (2.8) holds for all z > 1. Therefore we no longer exclude the values z = 1

and z = p". We now bound the last three terms on the right hand-side of equation (2.8).

Riemann proved the functional equation

w0 (2) ¢(e) = w 5T <1 ; ) (1—s),

from which (




We use Legendre’s duplication formula

and change s into % to obtain

() (15 s) e (:(15),

so that

and change s into § to obtain

()5 e

sin
2
Dividing (2.10) by (2.11) and simplifying, we get
()
—N 2/ %t asin (%8) r-s).

')

2
Inserting this into (2.9), we obtain
C(s) = 2°7°lsin <?) F'1—s)¢(1—ys).

Changing s into s — 1, the functional equation becomes

C(1— s) = 2(2m)~° cos (?) T (s)C(s).
Taking logarithms,

log¢(1 —s) =log2 — slog 27 + log (cos %) +log (' (s)) + log ((s)

and differentiating this,

—5) T ms  T'(s)  ('(s)
*78—710g271'*§tan?+1_‘(8) C(S)

(2.10)

(2.11)

(2.12)

(2.13)



Putting s = o — it, we obtain

' . . Mo — i o
LCUZTH ) g - Ty T D) GO )
(1 —o+it) 2 2 I(oc—it) ((o—it)

However, it is well-known that

I"(s)

1

T(s) og s+ O(]s])

and
s T8 1

Thus, we have

m(o—it) T'(o—it)

T
log27r—|—§tan 5 ~ T =it =log 7T+ O,(1)
and hence
¢'(1—o0+1it) ('(o —it)
A—oxi)  clo—i) 08T+ 0(1)=—logT+0:(1),
since

o0

Z A(n) < —= +4,
n=

for 1 < o <2, where A denotes a positive absolute constant.

We observe in (2.8) that

x%( o—1) 1
(a—lfit)(cfl—it) = 0o <“T 1)

and

o0

_1 (20—1)35*2“ B L B L
z 22(0—1—2n—it)(a+2n+it)_0‘7(33 21) — o, (i)

n=1

Collecting all of the above equations in (2.8), we find that

- ZA ()T e am (5T

_’7 n>x

il
SRS

~

- x%*‘ﬂrit(— log7 4+ Oy(1)) + Ox (SU%7'71> + Oy (2~

. % 2:1\ ( )1 o+n+_§: ( )a+n

n<x
1 _o+it 3.—1
+ a2 (log7 4+ O4(1)) + On <x2T ),

for 1 < o <2, x > 2, which is the desired result. This concludes the proof.

1)



2.2 Pair Correlation of Zeros of ((s)

In order to study the distribution of the differences v — 4’ between successive zeros of ((s),

Montgomery defined, for real o and 1" > 2, the pair-correlation function

T ! (vt
F(a) = F(a,T) = < 10gT> > T w(y =), (2.14)
27
0<y,y'<T
where w(u) = ﬁ is a suitable weighting function. Montgomery’s result for the pair-

correlation function F'(«) can be summerized as follows
Theorem 1. (Assume RH.) For real o and T > 2,
(i) F(«) is real and F(a) = F(—a).
(ii) If T' > To(e), then F(a) > —e for all a.
(iii) For fizred v such that 0 < a < 1,
F(a) = (1+0(1))T"* log(T) + a + o(1),
as T tends to infinity, uniformly for 0 < a <1 —e.

We shall prove the three assertions of Theorem 1 below. The key to the proof lies in
the explicit formula in Lemma 1. The basic idea is to express the pair correlation function
F(a) in terms of the square integral of one of the terms of this explicit formula, so that
F(«) is bounded from below. Then it remains to bound the square of the integral of the
remaining terms of the explicit formula.

We proceed to prove Theorem 1. To prove (i), for real @ and T' > 2, we interchange
the roles of v and 7/ and observe that w(u) is an even function of u, to conclude that

F(a) = F(—a). Then

— (T - i
Fla) = <27T log T) 0<§<TT 0wy —~') = F(~a) = F(a)

Hence, F(«) must be real.



To prove (ii), we take o = % in (2.1), so that for z > 1

¥

QZW = g2 ZA(n) (z)éﬂt N ZA(n) <z)§+zt

Y n<x n>x (2.15)

+ 2 " (log T + O,(1)) + O, (37%7'71) :

Montgomery detects a cancelation from z* by noting that the weight of the sum over v
concentrates the sum to the +’s in a short bounded interval around ¢, so that the sum’s

behavior is roughly that of

Z 7 ~logt

t<y<t+1

which is much smaller than logt, because
N(T+1)-NT)= > 1<logT.
T<~<T+1
If x is close to 1, then more cancelation can occur. Since the sum over primes is concentrated

around z, it behaves like

We denote (2.15) by
L(z,t) = R(z,t) (2.16)

and square the absolute value of the sum over zeros. We have

0<y<T
r o dt
—4 20—
AP I (e TR T
T , dt
+ 8 lﬂ(’Y*V)
p> A+ =)+ =)
v¢[0,1)

To examine this, we make use of the following results from Davenport’s classical book [3]

(pp. 98-99, Formula (3)): Fort > T,

1 <1 1 )

E — < + logT
—~)2 _

7>T1+(t Y) t+1 T-—-t+1




and

1
— s L logT.
;H(t—v)? &

Since xi(V*V/)’ =1 for all real zx,
T T
logTlog T dt < log® T
/0 %: 1+t =7)) T+ =) <</o <t+1+T—t+1> og T'logT'dt < log™ T,
~¢[0,7)
and hence
dt
L(z,t)] dt—4/ 2/0—7) +Olog3T
/0 | 0 (1+(t—9)2)(1+(t—+)2) ( )

0<y,y'<T
We can extend the range of integration on the right side from (0,7 to (oo, —00) with a
small error. To accomplish this, we need a third result, which is an immediate consequence

of the above two results: Fort > T,

1 1
Z < logT.
PRY) —
oSip =2 =T+l

From this, we have

dt 00 di
T

0<w'<T A+ =)0+ =7)%) T ot—=Y 41
and
dt ) 0 dt )
/OO 0<, 7/<T 1I+@E—7)2)1+ (-3 <log T/_OO m = o(log”T).
Hence,
4 dt
/0 L(z, 1) dt—4(/ / / >0<W<T e —
+ O(log®T)
=14 > 0 /OO O 7)2>d(tl iyt O(log® T),
0<y,y'<T 00

(2.17)



and we evaluate the integral on the far right-hand side of (2.17) using the calculus of
residues.

Let
1
I+ (E-7HA+(=-7)%)

Let p > 0 and let I" be the simple closed contour defined by I' = %UC;, where 7, is the line

f(z) =

segment given by v, = [—p, p| and where C;r is the upper half semi-circle parametrized by
z = pe'? where 0 < § < m. We have f holomorphic in T' with two simple poles at z = v+
and z = 7/ +i. We have

p
/Ff(z)dz:/ f(z)dz+ Cpf(z)d,z:/_pf(z)dz+ Cpf(z)dz.

Yo

Letting p go to infinity,

lim [ f(z)dz = lim /p f(2)dz + lim f(z)dz.
p—oo ),

p—oo 1 p—00 C;

On noting that

f(z)dz

o

</7r ’ipew“dﬂ

“Jo 11+ (pe — )21+ (pet? —1)?]
< P

(=72 -D(p—v)?-1)

which tends to infinity, we have

/Ff(z) dz = /oo f(z)dz. (2.18)
By Cauchy’s residue theorem,
=2mi | lim il C)
/Ff(z) dz=2 (Aw T+ -2 A+ -7 (2.10)
: 2= (' +1) ‘
+z—1>1'§l+i 14+ (-2 0+ (- 7’)2)> .

The residue of f at z =y + 1 is

‘ ' L z—(y+1)
Jim (2= (y+9)f(2) = lim 1+ (=92 1+(z—~+)?)
' ~1
T =i )G - 0 - =)

1
20y =v)2 =iy =)

10



and the residue of f(z) at z =+ +1 is, by symmetry,

. I _ -1
zg’rypﬂ(z - (Y +1i)f(z) = 207 =) (2 —i(y — ’Y))

Substituting these results into (2.19),

_ 2+iy=1)=2+ily =)
/rﬂz)dz - (—(v —V)E2—i(y =)2+i(y - 7’)))

27
S i) (220
2
BEEXCETD:

By (2.18) and (2.20),

/OO dt T ( ,)
= —W —_ s
O+ 20T
and inserting this into the far right-hand side of (2.17) we obtain
T
/ L, t)?dt=2 > 207 w(y—+)+ 0(log? T).
0 0<y,y'<T
The explicit formula (2.15) holds for > 1. However, the function L(z,t) is defined for all
real numbers x > 0 only. We follow Montgomery and set x = T'* for a and 1" > 2 to obtain
T
/ Lo pRdi=2r Y Ty — o) + O(log? T)
0 0<y,y'<T

= F(a)TlogT + O(log®T),

using (2.13). Since the integral is nonnegative, F(a)T logT + O(log®T) > 0 for all «, so

that F(a)TlogT > —O(log®T), from which F(a) > —O (gﬁ%}?}) We set T = T(¢) such
that F'(a) = F(a,T) > —e.
To prove (iii), we must examine fOT |R(z, t)]2 dt, which is equal to

2
T T 3t , .
Lt (am () o Am (5) e om0, (1) 1Oy ke
0 n>r

n<x

and bound the square integral of each of the four terms in R(z,t). For x > 1 and T > 2,
T A ) T -
/ 2™ log 7|” dt = / |17 log(Jt] + 2)|* dt
0 0

T42
= x_Q/ (logu)? du,
0

11



where u =t + 2. By partial integration,

/(log u)?du = u(logu)? — 2(ulogu — u) du,

from which

T
/ |z~ log 7|2 dt = 22T log T(log T + O(1)).
0

We have
T
/ |27 10,(1)[* dt = O, (x~>T)
0

and

if T > 2. Finally, to bound

T 1 T\ —+it x S—it
/O s (;A(n) (5) +;A(n) (ﬁ) ) dt

9 (2.21)
LT A T\ 3+t A x5t d
=z = = t
[ Zam () X ()
we use a version of Hilbert’s inequality due to Montgomery and Vaughn:
T | o0 2 00
/ SOOI g =Y Jan2 (T + O(n)).
0 nleﬂt n=1
Applying this to the right hand-side of (2.21), we obtain
2
1yt 3t
= (ZA @) S (2) ) i
-1 2 AN . 2 x
—z ;A (n)<n> (T +O(n E;A ( ) (T +O(n))
=z 2T Z A2 (n)n + z 2 Z A%(n)nO(n) + 2T Z A%(n)n=3 + z* Z A2 (n)n=30(n).
n<z n<z n>r n>xr

Our goal is to show that

2

/ Z A(n ( ) 2 + Z A(n) (%) e dt =T (logz +O(1)) + O(xlog z).

n<x n>x

12



We shall use a general form of Parseval’s identity for Dirichlet series:

T 2
E apn %t =
0 n

D lan* (T +0(n)).
From this, we obtain

:%ZAQ(n)(%)* (T +0(n)) + - ZA2 (5) (T +0(n))

n<zx n>z

:T:r_zzAz(n)n—i—x_QZAQ(n)n —i—T:cQE:A2 QZAQ

n<lx nlx n>x n>x

Let N, = “gig} Since

1
Zplong = 53:2 log x + O(:U% log® ),

p<z
we have
Ng
T2 Z A%(n)n = Tz ™2 Z Z plog?p
n<z k=1pk<g
Zplog p+Tx™ QZ Z plog?p
p<lz

1
p<xk
1 Ak
=Tz 2 (2x2 log z + O(2*2 + log® ) ) + Tz~ Z ( ok log z + O(232 + log? a:))
1
< iTlog:v + O(Tx*% log® z) + O(Tx ' log? ) + O(Tx*% log? )
1
= §Tlogx +O(T).
Next, since

> p*log’p = 2*logz(1+ O(1)),
p<z

we have

Ng
’2ZA2 ):x*ZZszlong

n<x kilpk<x
ZZp log?p+ 2~ 22 Z p?log? x
p<zx 1

p<:Ck
<L zlogz(l1+0(1)) + x2 log? z(1 + O(1))

< zlogzx.

13



Since the primes > x do not contribute, we consider only truncated versions of

T22 S A2(n)—

n>x

and

z? Z AQ(n)O n

n>x

We shall make use of the following well-known results:

1
Z 8P _ logz +1+ O(m*% log? )
p<z

and

log? 11
STER_ 8T o),
P 2 x
p<w

The first powers of primes contribute

IQ 2
log”p 1logx _ 1
Tx? g g Ta? (2 ot O(x?) ) = iTlogx +O(T),

and the higher powers of primes contribute

2
2ZZIOg p<<Tx log? xZsz < T2 log? xzz

k=2 p=x k=2 pk=g k= 2pk*z

To estimate the inner sum, we write

N, x? T
log p = 1 1 : _5
Ta? E E < Tz?log? x g E I? g E<<T:U210g3x(m 2) < T.
1
n=x2

k=2 p=x k=2pk:x

Hence

11
Ta? ZAz(”)ﬁ = ;Tlogz + O(T).

n>x

To bound

z? Z AQ(n) OTE;L) ,

n>x

we shall make use of

14



The contribution of the first powers of primes is
$2 1
2 Zlog2 pO <2> = 220(z tlogz) = O(xlog ),
p
p=x

and the higher powers of primes contribute

Ny z?

Ny a2
= 1 1
z? g g log? pO <%) < 2%log? x g E 5
k=2 pk p k=2 gt

Here, we note that when k = 2

Ne & 1 2logz] ~— 1 1
m222%<<m210g21:[10 2] Z?<<:ﬁlog3x.
=2 pt P & 1

n=x?2

Hence,

z? Z A%(n) OTE?) = O(zlog ),

n>x
and assembling all bounds, we obtain

M; =T(logz + O(1)) + O(xlog ).

To finish the proof of (iii), we shall make use of the Cauchy-Scharz inequality in the

form: We have

T
/0 Fu(6)? dt = Ay

for 1 <k <n. Suppose A, < Ap_1 <--- < Ay < Ay, then

T| n
/ > ()
0 |g=1

We obtain the relative magnitude of My, Ms, M3, M4, where

2
dt = A; + O((A1As)?).

M, =T(logz + O(1)),

T
My = 2 log? T 4 O(log T),

T
T

15



We distinguish three cases. First, we suppose that 1 <z < log% T and note that

T T O(log T
My = = (log? T+ O(log T)) > —1— log? T + rOUBT) _ 6 r10gt 1),
z log2 T log2 T

while

M; < Tlog (log% T) +O0(T) + O(log% Tlog(log% T)) = o(Ms),

T
M3:O< 3 )ZO(M2)7
log2 T

M4:O< z; )ZO(MQ).

log2 T’

Second, when 10g% T <z < log% T, all four terms are o(T'logT'). Third, when log% T <
T < &, we see that M7 dominates with all the terms being o(M7). We apply the Cauchy-

Schwarz inequality to each of the three ranges individually. In the first range, we have
2 1 T 2
T|R(z,t)|>dt = My + O ((M1M2)2> — (1 +0(1))= log?T.
0 T

In the second range, we have My = My = M3 = My = o(T log T'), so that

1

T
/ \R(z,t)|2dt = My + O ((M1M2)§> = o(Tlog T) = 0.
0
In the third range, we have
M; =T(logz + O(1)) + O(xlog ),

and so

T
/ R(z,0)|? dt = My + O(My My)) = (1 + 0(1))T'log .
0
All together, we have

T
/ |R(z,t)|* dt = (1+ 0(1))22 log? T + o(T'log T) + (1 + 0(1))T log z,
0 T

T
logT*

forl1 <z <

Let now o =T for any 0 < @ < 1 —¢e. We have
T T
/ R, ) dt = (1+ 0(1)) gz og> T + o(Tlog T) + (1 4 0(1))T log T°
0
= ((1+o0(1)T**log T + o+ 0(1))T log T,

16



uniformly for 0 < o <1 —e. Using L(x,t) = R(x,t), we get

T

[Ti o a = [ R@o?
0 0

where x = T“. Letting 7" tend to infinity, we obtain

F(a)TlogT + O(log® T) = (14 o(1))T**log T + o 4 0(1))T log T,

from which follows

F(a)= (14 0(1)T**1logT + o + o(1).

2.3 Applications to Simple Zeros and Prime Numbers

Montgomery’s theorem leads to several corollaries from the definition of F(«,T).

proofs make use of a certain convolution formula. By definition,

F(a,n:(T)_l S Ty o)

27
a,0’€[0,T]

Assuming Fourier inversion holds, we have

T [e.e] oo . ,
i o — ia(y—>") VAT
5 logT/ F(a, T)r(a)da = /OO E T w(y — ') rada

> T a,a’€0,T]

= Z w(fy—fy/)/ T3 (o) da
a,a’€[0,T) o

= Y w1 [ i@
a,a’€[0,T) o

logT
_ A A
= ) r(( 'y)%)w( 7

a,a’€[0,T)

Corollary 1. (Assume RH.) For fized 0 < a <1,

3 (sin(a(v —7) 10gT)> Wy — ') ~ ( L a) LogT

_ A 2
o] a(y—+")logT 2 2/ 2w
and
Sin((a/2)(’vv’)10gT)) , (1 a\ T
5 = wir =)~ (24 2) Liogr
a,a’e[o,T}< (a/2)(y—~")]logT a 3/ 2w
as T — 0.

17
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Proof. Fixed 0 < a < 1. By Fourier inversion,

sin(2mua)

Tl(U) = / f1(§)€27riu§d€ — 21a/ 627Tiu§d§ _

2mua

Hence, 71 (u) has the Fourier Transform 7 (&), where x, denotes the characteristic function

of the interval [—a, a]. Furthermore, the function

4u)=:<“i§“>2

has the Fourier transform

since

s(u) = / §)erm i dg = / ~ Jel)eminede —

. 2
(cos2mu —1) = <sm7ru> .
™

2
(2miu)?

Likewise, the function

sin ravu \ 2
ra(u) = Tau

72(€) = (0 €)xal®)

; (f) _ (1 '5‘) Ya(€) = ara(€)

00 00 ) 9
() = [~ raeemsas = [ st = san) = ()

We are now ready to prove Corollary 1. We have

sin (2ma(y —+")(log T') /27) T N 00 TV ()
a,a;[o,T]< 2ra(y — ") (logT') /2m )w(’y )= 27r1 gT—l—/_ooF( T (u) du (2-22)

has the Fourier Transform

since

and

and compute that, as T" — oo,

/WFWT) L

oo 2a J_

1
/ (1+0(1) NT*log T + u + o(1 ) du
aJo

1,
2a 2

18



Together with (2.22), this gives

sin(a(y — ') logT 1 a\ T
> ((_ ,) ) w(y =)~ =+5) 5= logT.
o) a(y—~")logT 2 2) 2m

To prove the second formula in the corollary, we note that

sin((a/2)(y — ") log T') A _T o ~ w, Ty () du
Zm]< (a/2)(y =) log T )“’” ”—zwlgT/_ooF( e

where
2
oo @ oo (2.23)

However, as T' — oo,

2 [ 2 [ 1
/ Fu, T) du = / W[4 o) logT +uto(l)] du=>+a  (224)
a Jo a Jo a
and
92 [ 2 o o 2a
o uF(u,T)du = pel (14 0(1)T*"log T +u+ o(1)] du = 3 (2.25)
0 0

Inserting (2.24) and (2.25) into (2.23), we obtain

/OO Flu, T)o(u) du = ~ + . (2.26)

— 00

and hence we have the corollary. O

The second statement of Montegomery’s Corollary 1 leads to an interesting result which

is the focus of my thesis.

Corollary 2. (Assume RH.) As T — oo,

2 T
Z 1> =-+0(1)) —logT,
3 27
v€[0,T]
p simple

where the sum is taken over the height of all simple zeros p = % + 1y of ¢(s) with height v

wthin the interval [0,T] on the critical line.

19



Proof. For each zero p let m, denote multiplicity of the zero. We have

)DIEEED SRS
7,7 €[0,T] v€[0,T]
7=
Each zero p of multiplicity of m, is counted m/% times on each side. On the left-hand side,

2

for a fixed zero p, there are m, heights v of equal value. There are mg

ways to choose an
ordered pair (v,7") with v =+, so that p is counted m, times. On the right-hand side, for
fixed zero p, m, is added once for each of the m, identical heights associated with the zero

p- Since sinz < a for 0 <z < 7 we have 32

~ 1 for = sufficiently small. Using this and
the fact that w(0) = 1, we have for some fuxed 0 < a < 1 and each 7" > 2
sin((a/2)(y — ) 1log T)\
> o= 3 (T Ser ) w0
7' €0,T] 7' €0,T]
= =

adding the right-hand side the terms of the nonidentical pairs v and +/ will increase the
value of the sum. Thus, we have

S ac Y (Blepbomien),

A
T e (a/2)(y =) logT
=y

and hence

sin((a/2)(y = 7') log T) \ *
S oms X (M e ) w0

v€[0.T] 7,7 €l0,T]
Setting a = 1 — § for some small § > 0 and applying Corollary 1, as T' — oo

1 1-0\ T 4 =T

<|l——+— ) =—logT=(=+0(1)) —logT.

Zm”<1—54r 3 )%Og <3+O()> o °°
~€[0,T]
On the other hand we have

D1z > (2-my).

Y€[0,T] v€[0,7]
p simple

Hence,

S 1z2NT) - > my,

'YG[O,T} ’\/G[O,T]
p simple

20



where N (T') denotes the number of zeros of ((s) in the critical strip 0 < o < 1 with height

less than equal to T. Since

T T T
N(T) = —logﬂ ~ 5 +o(logT),

as T — oo

T 4 T
Z 1>2 —logT | —(z+0(1) | —logT.
27 3 2m

v€[0,T]
p simple
In the limit we have
2 T
1> = 1) | —logT.
Z _<3+0( )>27r og
Y€[0,T]
p simple
O
Corollary 2 tells us that at least % of the zeros of ((s) on the critical line o = % are

simple. This result is proved using the RH. There are other results about the order of the
zeros on the critical line o = % which do not assume RH. For example, Selberg showed that
a positive density of the zeros of ((s) lie on the critical line and has odd order.
Montgomery also proved a third corollary in which he interprets Theorem 1 in terms
of prime numbers, which we will state here without proof. Ordering the imaginary parts

of zeros of ((s) in the upper half-plane as 0 < v; < 79 < 73 <,..., the asymptotic for-

mula for N(T') shows that the average spacing 7,41 — v, between consecutive zeros 1027;71.
Montgomery showed that the differences between consecutive zeros are not always near the

average.
Corollary 3. (Assume RH.) There exists a constant A such that

logmm _y

Jlim (Y1 =)
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Chapter 3

Ledoan and Zaharescu’s Method

In 2011 Ledoan and Zaharescu [4] , [5] considered the function H) defined by

H)\:C<s—i2)\)(<s+i2)\>,

where A is a fixed positive real number. Figure 3.1 shows the first twenty zeros in the upper
half-plane and their complex conjugates with respect to the real axis. Figure 3.2 shows a

surface plot of 1/|H(s)| showing its zeros on the critical line as divergences.

i 1y
]

Figure 3.1: Zeros of H)(s) on the critical line, with ¢ € [—50, 50].

The purpose of the research of Ledoan and Zaharescu was to carry through deprivation

and prove explicit formulas of Hy. It is well known that explicit formulas were originally

22



motivated by the counting of primes(see reference by A.E. Ingram [17].) We can summarize

their first result as follows.

Surface Irmage of 1 (a it for =10 <2, Ostefil

Figure 3.2: Surface plot of Hy(s) for —1 <o <2 and 0 <t < 50.

Theorem 2. Fiz a positive real number A for all 2 < x < T we have

Pt 22T xA xA -1
2 hyrR logz — Re [ —*—
2 ptp o {[ * e(lﬂ'k)} Bt e((1+i>\)2>

Hj (p)=0
H(p")=0
—T<Im(p),Im(p)<T

+ O, (a:T exp(—c(log m)% (loglog x)_%) + O (z*(log T)*)
+ O (T(log T)3) ,

where ¢ is a positive absolute constant.

They obtained general formulas of the correlation of zeros of H)(s) and proved the

following theorem.

Theorem 3. Fiz a positive real number \ for all T > 2 and any continuously differentiable

23



complez-valued function g with support contined in the interval (2,T), we have,

2T [
S St =20 [ g@)+cos(Mloga) logada
Hj (p)=0 T Jo
Hk(p,):o
~T<Im(p),Im(p')<T

+ O, <T||g'(m):1; exp(—c(logm)%(logloga;)*éHl)
+ Oy ((log T)*||g' (z)a?[l1) + Ox (T(log T)*||g' (2) 1) ,

where f is a Mellin transform of g and c is a positive absolute constant.

The authors considered Montgomery’s weight function w(z) given by

4
wE) =
and defined for any real number «
FH, (a) = FH, (Ck, T) = Z Ta(p—l—p’—l)w(p + pl - 1)'
Hj (p)=0
Hy(p')=0

They established the following asymptotic formula for Fy, .

Theorem 4. Fiz n positive real number A and o € (0,1). We hawve,

Fu, (o) =2 <1 + 4COS()‘10gT)> B 16z sin(alog T')

44+ X2 4+ X2)2logT

3
5

— Oy (exp(—ac(log T)? (loglog T) ~5)),

where ¢ is a positive absolute constant.

3.1 Explicit Formula for the Pair Correlation of Zeros of

H(s)
To prove Theorem 2 we fix a positive real number A\ and take x € (1,T]. We write

Z 2’ =51+ Sy + S5+ S4+ S5 — Sg

H(p)=0
—T<Im(p)<T

24



where

<(p) ¢(p)

~T<Im(p)<T —T—3<Im(p)<-T
S3 = Z 2’ Sy = o Z z”,

¢(p) ¢(p)

T—5<Im(p)<T —T<Im(p)<T
Sy = P Z z?,  Sg = 2% Z z”.
¢(p) ¢(p)
T<Im(p)<T+3 ~T<Im(p)<-T+%

From Chapter 15 in the classical book by Davenport [3], we know that the number of
zeros of ((s) with imaginary parts in the interval [-7 — 3, —T + 3] U [T — 3,7 + 3] is at
most Oy (log T). Furthermore, |2| < z for all p. For these reasons each of the sums S, S3,
S5, and Sg is at most Oy (zlogT'). So, we must examine the remaining sums S; and Sy. To
do this we shall use the Landau-Gonek asymptotic formula written in the form,

—A(ng) sin(T'1 " log 2T
Z P = (ng) sin(Tlogz/n,) + O ( z(log 22T)* + °8 ,
o T log x/n, log =

p

—T—5<Im(p)<-T

where x,T > 1, n, is the nearest prime power to z, and A is the Mongoldt function. From

this asymptotic formula, we can derive an equivalent formula for Hy(z),

Z P — —A(ng) _ sin(T'log z/ny) (a:% +x%m> L0 x(longT)2 " log 2T ,
¢(p) T logz/nq log =
p
~T—5<Im(p)<-T
Squaring both sides of this relation and multiplying the result by z~!,
. 2
Hy(p)=0 4 log z/ny
Hx(p')=0
—T<Im(p),Im(p")<-T
log 2T
+0 (x(log 22T)* + ( o8 >>
log
log 2T in(T'1 "
4+ Oy | logz (10g235T)2 + o8 sin(1'log /1) ]
log x log x/n,

25



Integrating this relation with respect to y from 2 to y for some y € [2,T],

Z yPte — opte! B /y A(ng)? (sin(T logx/ny) 2:1;71+i)‘da;
pt+p )y logz/n;

Hx(p)=0
Hx(p')=0
—T<Im(p),Im(p")<-T

. /y A(ng)? (sin(Tlog:c/nx)>2x_1_de
2

2 log z/n
Y A(ng)? (sin(T'1 2\ 2
[N (T o) g,
9 w2 log z/n,
Y log 2T in(7'1 z
+ O, (/ log ((10g2:nT)2—|— i)g > sin(T'log z/na) )d:z‘.
9 ogw log x/n,

For the sake of brevity, let

G(u) = /2y A(ng)? (Sin(T log x/”x)>2 i g

2 log z/n,

This lets us to write

>

H(p)=0
Hy\(p")=0
—T<Im(p),Im(p")<-T

=G\ + G(=)\) + G(0) + Oy (/; log <(log 22T)? +

yp+p/ — 9optp

p+p

sin (T'log z/n)
log x/n,

log 2T
log

) as

We have n, = g1 for each x € (zg, xg4+1), where k > 0, so that A(n,) = A(qr+1). Letting

<z <y<x41, ! >0, we write

a1 ) ) v\ A(ng)? [sin(T1 D\ 2 .
G(u) = / —|—/ +...+/ +/ (n2) <sm(1 ogz/n )> gy
2 X1 Ty—1 x] ™ Og x/ni

Let t = T'log x/qm,. We have

T 2 /g 2 o amtamiy 2
/ A(ng)? (sin(T logz/ny) ol g, A(gm) / 5 sin(T log z/n,) g,
T T logz/n, 2 1 tam log z/n;

Tlog gm+am41

A 2 luT 2qm iu int 2
e [ )

2 log gy —1+am t
2qm

where
Tlogam+am+1

. 2 . 2
2am iut [ sint © ue [sint
o (Y [ o (Y g,
T'10g gy —1+3am t —o t

2qm
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where
T'log gy —1+9m Tloggm—1+am

2qm iut sint 2 2qm 1
—00 — 00

& iut [ sint 2 o 1
by = /Tlogqm-!-qu er < t > dt < /;“10gqm+qm+1 ﬁdt
2qgm

29m

and

Using the Taylor series expansion with |t| < /T,

[ (5 e [ () o () -0 ()
o t e U “\vr/) “\vr/)’

To bound the error Es, we note that

1+2 T T
Tlog <q’”+qm+1> 2T10g< + qm) >
2qm 2qm 2qm q

and hence

1
Y

S

By similar reasoning we find that

El <Ly

N

Altogether,

Tloggm+am+t1

. 2
2qm dwt [ SIint 1 Y
/Tlogqm1+qm et (t ) dt=m+0u <ﬁ)+0u (7)

2gm

As a result we have
2

T A(nx)Q sin (Tlog %) e A(qm)quuT 1 y
iu g, — 2\Gm) Gm 2 L — L (2
/x = log = x x 3 T+ O T +0 <T>

m—1
The above calculations give us

G- 3 A(:;)Q A(qm;zq}%‘T <7r+0u <&> Lo, (;))

9y
q prime power

_ T 2 _iu 2 2
=~ Y A@NMHOL VT Y MA@ +0u|y Y. AW
LAY A<y a<y
q prime power g prime power q prime power
T .
=— D AWM +0u (¥ logy),
q<y

q prime power
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using

> AMgP<logy > Alg) ~ylogy,

Sy q<y
q prime power q prime power

as y tends to infinity.

Here, we note that

S M= > AMad™Mlogy+ Y. Alg) (A(g) —logy) ¢

9y 9y gy
g prime power q prime power prime power

By the prime number theorem,

VY

W(\/§)+7r(\3’/37)+...<<@.

Furthermore, since A(q) = logq for each prime g,

> A (Alg) —logy)| < v/ylogy.

9y
q prime power

Next, applying the summation by parts formula to

> Ag)g™logy = A(n)n™logn

q<y n<y

q prime power
to obtain the following
. . . Y )
> A(n)n™logn = U(y)y™logy — ¥(2)2™ log2 — / W)t (1 +dulog t)dt (3.1)
2<n<y 2

where

Psi(z) = Z logp = Z A(n),

pP<w n<w

with > 0, p is a prime, and v is a positive integer. Using the zero-free region for ((s) due

to Korobov and Vinogradov (see Titchmarch’s classical book [8]),

U(z) =z + O(z exp(—c(log :c)% (loglog x)fé)), (3.2)
where c is a positive absolute constant, we obtain

Y . y .
/\I/(t)t”w(lﬂ‘ulogt)dt:/ t"(1 + iulogt)dt
2 2

y
+ Oy (/ exp(—c(log t)%(log log t)% log tdt)> .
2
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Concerning the integral on the right-hand side in the above equation we see that

Y 3 1 vy 3 1
/ exp(—c(logt)s (loglogt)s log tdt = / exp(—c(logt)s (loglogt)s log tdt
2 2

y
+/ exp(—c(logt)%(loglogt)*%logtdt
VY

Here, we note that

v , 1 Vi
/ exp(—c(logt)5 (loglogt)s log tdt < / dt < \/y
2 2
and

Y Y
/ exp(—c(log t)g (log log t)% log tdt < / exp(—c(log t)% (log log t)% log \/ydt
VY VY

< yexp(—d(logy)s (loglog y) ™)

where ¢’ is a positive absolute constant. Altogether,
Y . y .
/ ()t~ (1 + iulogt)dt :/ t(1 + iulogt)dt
2 2

y
+ Oy (y/ exp(—c(log t)% (loglog t)%) log tdt> ,
2

Integrating by parts,

1+2u

Y ; 1+iu .

; . Y . 21U 2 . 21U
£(1 + julog t)dt = 1+ iulogy — - 1+ iulog2 —

/2 (1+dulogt) l—i—iu( toulogy 1+iu) 1+z’u< +oulog 1+z’u)’

and hence
14+iu

Y .
/ W) (1 + julog t)dt = 2
2

1+iul w
= mu 10 —
1+ u 34

14 u

3
5

+ Ou(y exp(—c'(log y)s (loglog ) %)

Inserting this into (3.1) and using the prime number theorem in (3.2),

. . U 1
Z Aln)n™ logn = yl'H“ (1 1+ w) <10gy 1+ zu)

n<x

3
5

+ Oy (y exp(—cr(log y) 7 (log log y) 73)

As a result,

. ; 1
A 2 _ 1+ 1— tu 1 -
> A=y ( 1+iu) %Y 150

4y
gprime power

+ Oy (y exp(—c/(log y)* (log log y) 5.

29



From this we find that

1+iuT . 1
Glu) =Y - (1 1 _Z:Lm> <logy - 1+w> + O, (yT exp(—C (log y)? (log log y) 5

+0(y*logy)
Using this asympototic formula with v = A\, u = —\, v = 0 and putting the result into

(2.26), we obtain

/ . . -1
Z = 1+ Re . logy — Re -
! 2
Hy (70 p+p ™ 1+ (141iX)
Hx(p')=0

—T<Im(p),Im(p")<T
, 3 _1
+ O\ (yT exp(—c'(logy)5 (loglogy) ™5 )

+ O(y*logy) + O (yQ(log T)4)

dzx

log 2T> sin (T log r%)

Yy
0] 1 log 22T
+ O, /2 og:r((og xT) +xlogac log =

(3.3)

Next, we have

y log 2T sin (T log nm—z) y|sin (T log %)

1 log 22T)? dr < (1 log2yT)? | |———5—%| dx.
/2 ogx((og T) +$logx> log = z < (logy)(log 2y )/2 log = x
To estimate the integral on the right-hand side, we set t = T log qim and note that for each
2<m <l,

/Im sin(T log z /ny) dp — /mm sin(T'log x/qm,) ‘ i
Tm—1 1Og x/nx Tm—1 1Og :C/Qm
Tlog gm+am+41 .
- 2qm ¢t |sint
= dm T'10g gy —1+am dt
2qm
Tlog% + [sint
< qm/ erT dt
—Tlog%
3 .
< 3¢m [T1982 |sint gt
2 —Tlog%
< logT,

since ¢m11 < 2¢m, gm-1 > %+, and since

Tlog <qm+q¢n+1> < Tlog§
2qm 2
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and

if t <T'log % Hence,

Y si 2log T
/ sin(T'log x/n,) dr < Z log T < y~logT"
9 log x /1, o log y

q prime power

Combining all estimates,

sin(T'log z/ny)

drx = O (y2(log 2yT)? log T). (3.4)
log z/n,

Y log 2T
2
/2 log ((log 22T)* + Tlog x)

Inserting (3.4) into (3.3) and noting that y € [2,T7,

O D SN Co- T D
;= ;7 +
m@=o PP m@=o PP H@=0 TP
Hx(p")=0 Hx(p")=0 H(p")=0
—T<Im(p),Im(p")<T

~T<Im(p),Im(p)<T"
_ T y™ y B9
™ {[“Re@mﬂl‘)gym(mmz) }

5(loglog y)~%) + O(y*(log T)*).

+ O\ (yT exp(—c'(log y)

Here, we observe that

20+ 1
> 2y oy ox L
H (p)=0 Hy(p)=0 0<k<2T Hx(p')=0
Hy(p')=0 —T<Im(p)<T =T<Im(p)<T
—T<Im(p),Im(p")<T Tm(p+p")|€[k,k+1]
1
S SRR S
H(p)=0 Hy(p')=0
~T<Im(p)<T —T<Im(p)<T
[Im(p+p")|€[0,1]
1
I R S
Hy(p)=0 1<k<2T =0
7T<Im(p)<T —T<Im( N<T

[Im(p+p")|€[0,1]
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Since Re(p), Im(p’) > @, we have

1 1
! Z Z P+ 7| : Z Z Re(p + p')
H,(p)=0 H(p')=0 Hj(p)=0 H(p')=0
=T<Im(p)<T —T<Im(p")<T —T<Im(p)<T —T<Im(p")<T
[Im(p+p")|€[0,1] [Im(p+p")|€[0,1]
< Z Z logT
H(p)=0 H(p")=0

—T<Im(p)<T —T<Im(p")<T
[Tm(p+4p")|€[0,1]

< (0g T)2|{p: Hy(p) = 0,~T < T(p) < T}
< T(logT)3.

Similarly, we have

1 logT
SN S M R Y
Hy(p)=0 1<k<2T  H,(p')=0 p)=0 1<k<2T
—T<Im(p)<T 7T<Im( N<T —T<Im(p)<T

[tm(p-+p')|€[0,1]
<(logT)* Y 1
Hy(p)=0
—T<Im(p)<T

< T(logT)3.

Hence,

9p+p 5
> — | < T(logT)3. (3.6)
H(p)=0 P
H\(p")=0
—T<Im(p),Im(p")<T
It follows from (3.5) and (3.6) that

Z Zl’fp+p/ 2z {

;T

Hj(p)=0 pEe i
Hy(p')=0

—T'<Im(p),Im(p")<T

e () e () )
10, (wT exp(—c(log )3 (log log a:)—%) +0 (22(log T)*)

+ 0 (T(logT)?).

This concludes the proof of Theorem 2.
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3.2 Some Consequences

We worked hard to obtain an asymptotic formula for the function Fpg, (o) in the form
Fr, (@) = (log T + o(log TH)T™** + a+o(1), T — oo,

where A > 0 and § > 0, and to show that this formula holds uniformly for all 7 > 2 and all
a € [(3loglogT)logT, 1 — d]. However, we were not successful.

Instead, we proved a consequence of Theorem 2, which may be used to investigate the
simple zeros of Hy(s), and hence the simple zeros of ((s). Specifically, Theorem 5 (below)

is an analogue of Montgomery’s Corollary 1 which is applicable to the function H)(s).

Theorem 5. (Assume RH.) For any fized real number \, any fized § > 0, and any fized

1
© <10gT> '

0<a<1-=4, we have

Sin(a/Z)('y—'y’)logT>2 n TlogT s«

> — w(y —7) = o)t
o< <T < (a/2)(y =) logT ™ <3)
Hy (1/2+4i7)=0
HA(1/24i7)=0

To commence, we let
a—|f

a2

H(p) =

We compute that

/OO H(ﬁ)cosﬁxdﬂ:2/QH(B)cosﬁxdﬂ
—00 0
= % Oa(a — ) cos Bz df
_2 O‘(a_ﬁ)<sinﬂx> a3
0 x
2 sinfBz\|* 2 [“sinfBz
- Sta-p) (™ )0+02/0 2 s

= — sin Sz df
0

o

2
= ———cosfx
o?z?

0

c )
= ——(1—cosazx
a?x?
4 | sax
= sin® —
a?x? 2

-(mR)
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using integration by parts. Here, we point out that this holds for all  # 0. Hence,

sin(ay/2)>

| H)cossyds - ( o

for all y # 0. Let

ay
r=—,
2
so that
2x
y=—.
«
As a result,

« . 2
/ H(B)coszﬁjdﬁz <sma;>
a x

-

for all z # 0. Next, putting

we obtain

3 (sin(a(v —')log T/2)> w(y =)

_ !
o< Ter afy —~")logT/2

H (1/2+i7)=0
Hy(1/2+i7')=0

0<y,y' <T @

H(1/2+1v)=0
Hy(1/24i~")=0

= Y w1 [ H@)eos(Bly - o) logT) ds.

0<y,y/ <T e

Hy(1/2+iv)=0
H) (1/2+iv")=0

Since

/a H(B) sin%dﬁ =0,

—Q
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(e

> wly=) aH(ﬁ)cos(w.W
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we have

5 <sin(a(’y — ') log T/2)> wy —~)

A
e a(y =) logT/2

Hy(1/2+iv)=0
Hy(1/2+iv")=0

= Y wt=) [ HB)eos(Bly — 7 log T) + sin(B(y — /) log T)) df

0<y,y' <T e
Hy (1/2+iv)=0
Hy\(1/2+iv")=0

=S wl—) [ H@E T g
0<y,Y'<T e

Hi(1/2+iv)=0

Hy(1/24iy")=0

= Y why—=9) [ HETPOd
0<y,Y'<T @

H (1/2+i7)=0

Hy(1/2+iv")=0

= H) Yoo 1Py o) | dB.
0<vY'<T

Hx(1/24iv)=0

Hy(1/2+iv")=0

By a short calculation involving the sum

S\Tox)y= Y a=(1+2") Y 2"+ 05(logT)
0<y<T 0<~y<T
H(1/2+i7)=0 ¢(1/2+i7)=0

(counting multiplicity) and making use of

/ |S\(T, ) |* dx: —/ Z 21077 dy

0<'y v <T
Hy(1/24iv)=0
Hx(1/2+1v")=0
_ Z Y= — 9l+i(y=)
(A
0<v,y'<T 1+ Z(’7 v )
Hy(1/24iv)=0
Hjy(1/241y")=0

Z y1+i(7_7/)
- 1Lil~y—~"
0<yY'<T L+i(y =)
Hy(1/2+iv)=0
H(1/2+iv")=0
1 2) —iA\ A 2
~ ir Z (2+m" +m~"")A%(m) + small error,

2<m<y

+ small error
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we find that

Yoo 2wy —o) =
0<y,y' T
Hy(1/24iv)=0
Hy(1/2+iv")=0

Tlogz (2 + 2= 1
o (4+)\2 +§ + OX(T).

From this, we take x = T with 0 < a < 1 — §, we deduced that

. / TlO T
Yoo TR0y - ) = B (2 +
2
0<v,y'<T
Hj (1/2+4i~)=0
Hjy (1/24i~")=0

1 - )\2 (Ti)\cx + T—i>\0t)> + O(T)

Using this with « replaced by 3, we find that

> (AT -

_ /
N aly—°')logT/2

H(1/24i7)=0
Hy(1/2+i7")=0

_ TlogT [ 4 iAB —iAB
5L [ H@BI (24 1 4T ) 0m)) ds

_ TlogT [*(a—p)B 4 s —z‘AB) (1>
- /0 o2 <2+4+A2(T T ) AP O g7

_ TlogT [*(a—pB)B 1
= /0 o2 (2 + 112 cos(AB logT)> ag+ 0O <logT>
_ TlogT 2 [ a2 1

- T &(ﬁ&xﬂ>w+0<mﬁ)

_ TlogT 2 (B« pB*\|" 1

= 'a2(23)0+0Q%T)

T1 3 3
T a? \ 2 3 logT
1

- leTgT (%) +0 <logT> ’

and hence

S () ue - - TEL(5) +

1
O<10gT)’

0<yY'<T
H(1/2+1iv)=0
Hy(1/2+iv")=0

as required. This finishes the proof of Theorem 5.
We point out that, when A = 0, the left-hand side gives multiplicity two for each zero.

Hence, for pairs of zeros the multiplicity is four. The right-hand side gives four times
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Montgomery’s result. Finally, from the above calculations, we also have

TlogT -1 Bi(y—") N 4 iAB —iAB
(F21) X 1t = 8l (24 @ 4T

2T
0<y,y'<T
1
0] .
* <10gT >

Hy(1/24iv)=0
The left-hand side is a function of A\, 5 and T'. It is easy to see that this function is an even

H(1/2+iv")=0

function of 3
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