POTENTIAL ENERGY COST SAVINGS BY USE OF BUILDING ROOFS AS THERMAL

STORAGE OF A MULTI-STORIED BUILDING

Ву

Ahmad Adam Shelbaya

Approved:

Prakash Dhamshala Professor Mechanical Engineering (Director of Thesis) Mike Jones Professor Mechanical Engineering (Committee Member)

James Hiestand Professor of Mechanical Engineering (Committee Member) Will Sutton Dean of the College of Engineering

A. Jerald Ainsworth Dean of the Graduate School

POTENTIAL ENERGY COST SAVINGS BY USE OF BUILDING ROOFS AS THERMAL

STORAGE OF A MULTI-STORIED BUILDING

Ву

Ahmad Adam Shelbaya

A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillments of the Requirements for the Degree of Master of Science in Engineering

University of Tennessee at Chattanooga Chattanooga, Tennessee

December 2012

ACKNOWLEDGEMENTS

I would like to acknowledge my family, and especially my wife, for their unwavering support for me in this endeavor.

I would first like to thank Dr. Prakash Dhamshala for being my advisor—he is truly an expert in his field and his door was always open. Dr. James Hiestand and Dr. Mike Jones were professors whose knowledge proved invaluable for me, both during my coursework as well as in completion of this thesis. Dr. Neslihan Alp was always available to give professional and practical advice.

ABSTRACT

The thermal mass of a building has been used for more than two decades to shift the peak cooling load occurring during the day time to evening or night time. This is typically accomplished by use of concrete slabs embedded with pipes carrying hot or chilled water to meet the heating or cooling load, respectively. The water temperature drops across the coils and the frequency and intensity of room air circulation can be varied, along with controlling the gains through the windows, to shift the peak load hours to the nighttime when energy costs are cheaper and electric demands are lower.

This thesis deals with the transient finite element heat transfer analysis of a concrete slab embedded with pipes circulating heated or chilled water of a multi-storied office building. A hypothetical office building in Chattanooga, Tennessee, USA is analyzed with weather data of that locale. The electrical power consumption of such a system operating at milder conditions of evening or night hours is estimated by use of hourly weather data. The estimated electric power consumption is then compared to the traditional method of operations. The influence of the wall envelope, including the size and orientation of windows, is considered in reducing the energy gain or loss from the space. The results presented in this thesis identify the potential energy cost savings resulting from use of such a system as well as challenges involved compared to traditional buildings in commercial applications.

iv

TABLE OF CONTENTS

ACKNOWLED	GEMENTS	iii
LIST OF TABLE	ΞS	vii
LIST OF FIGUF	RES	viii
NOMENCLAT	JRE	x
CHAPTER		
Ι.	INTRODUCTION	1
	Purpose of this Analysis	
н.	THEORY AND ANALYSIS	4
111.	FINITE ELEMENT ANALYSIS	9
	Finite Element Method Boundary Conditions	
IV.	RESULTS AND DISCUSSION	
	Establishment of the Model Thermal Analysis and Results Steady State Analysis Transient Analysis Determination of Slab and Pipe Dimensions Implementation of Hydronic Technique in a Hypothetical Example Location and Implementation Cooling Heating Economic Merit.	
V.	CONCLUSION	

	Cost Savings	. 36
	Further Study	. 37
VI.	REFERENCES	. 38
APPEN	NDIX	
	A. TABLER	. 39
	B. ANSYS GENERATED DATA	. 41
	C. CHILLER PERFORMANCE DATA	. 72
Vita		. 74

LIST OF TABLES

4.1	Materials Properties of Slab Components	13
4.2	Chiller Efficiency Analysis Data	33
4.3	Conventional Systems Costs in a Hypothetical Building	35

LIST OF FIGURES

2.1 0	Cross Section of Insulated Concrete Slab	4
2.2 T	he Inside Space of an Office Building Defined as a Closed System	8
4.1 A	Cross Section of the Slab1	.3
4.2 S	teady State Special Distribution of Temperature1	.4
4.3 S	teady State Special Distribution of Heat Flux1	.5
4.4 A	ctive Cooling and Passive Heating of the Slab1	.6
4.5 A	ctive Heating and Passive Cooling of the Slab1	.7
4.6 H	leat Flux of the Slab during Active Cooling and Passive Heating1	.8
4.7 H	leat Flux of the Slab during Active Heating and Passive Cooling1	.9
4.8 T	he Effects of Increasing Slab Thickness on Floor Temperature	20
4.9 T	he Effects of Increasing Pipe Diameter on Floor Temperature	!1
4.10	Seasonal Variations of Ambient Temperature in Chattanooga, Tennessee2	23
4.11	Seasonal Variations in Heating and Cooling Loads in Chattanooga, Tennessee 2	24
4.12	Slab capacity (with different values Ti and h) and heat extracted vs Time	26
4.13	Simulation of the Building's Cooling Load and Slab Heat Extraction Capacity 2	27
4.14	Temperature Distribution in an Office Building Using a Hydronic Cooling System	28

4.15	Simulation of Building's Heating Load and Slab's Heat Adding Capacity	29
4.16	Slab Capacity vs Heat Added	30
4.17	Temperature Distribution in an Office Building Using a Hydronic Heating System	32
4.18	Chiller Efficiency Analysis Data	34

NOMENCLATURE

- k, thermal conductivity
- ∝, thermal diffusion
- W, slab thickness
- L, slab length
- r, pipe radius
- $h_{\mbox{\scriptsize a}},$ convection heat transfer for air
- $h_{\mbox{\scriptsize w}},$ convection heat transfer for water
- x, special variable
- y, special variable
- t, time
- m, row parameter
- n, column parameter
- p, step parameter
- F_o, Fourier number
- B_i, biot number
- A_{floor} , area of floor
- A_{ceiling}, area of ceiling
- Q, heat transfer

 Q_{CL} , heat of cooling load

Q_{floor}, heat of floor

Q_{ceiling}, heat of ceiling

ρ, density

V, velocity

W_i, weighting function

q, heat flux

ds, differential length

q_e, heat flux at node e

q_w, heat flux at node w

q_n, heat flux at node n

 T_E , temperature flux at node E

 T_P , temperature flux at node P

 $T_{\ensuremath{\mathsf{W}}\xspace}$, temperature flux at node $\ensuremath{\mathsf{W}}\xspace$

T_s, temperature flux at node S

T_{space}, temperature of space

T_{high}, highest daily temperature point

T_{low}, lowest daily temperature point

A, temperature amplitude

T_a, air temperature

T_w, water temperature

CHAPTER I

INTRODUCTION

Energy use in commercial and residential buildings accounts for 30% of the world's primary energy consumption (Yang and Li, 2008). In light of this significant figure, the use of thermal masses to heat and cool non residential buildings began to be explored as early as the late twentieth century by European engineers. In an early Swiss design heat was stored in the concrete mass of the structure during the day and discharged at night through the use of a system of water piping. The pipes were embedded in a slab and coupled with air/water heat exchangers (Zhou et al, 2008). A similar system was installed in the mid-nineties in the exhibition rooms of the Groninger Museum in The Netherlands.

One limitation of the thermal slab method (hydronic method) is the impossibility of individual room control. Such systems are also unsuitable in climates with high cooling requirements (loads) in summer and high heating requirements in winter due to the high potential for under-cooling and risk of condensation. The suspended ceilings common in commercial buildings cannot be installed as much of the heat transfer between the slab and the climate-controlled space will occur through the ceiling surface (Olesen et al, 2002). In addition, a heavy, reinforced concrete wall with external polystyrene insulation and stucco is the most desirable type of external wall for buildings in which a thermal slab is the desired heating and cooling mechanism (Zhou et al., 2008). Finally, though the cost for energy transport is reduced, the need to reheat the water can limit the energy savings in this model over conventional HVAC or hybrid methods (Olesen et al, 2002).

Simmonds considered several factors in determining comfort level using the hydronic systems: dry bulb air temperature, radiant temperature (from the radiant system), air speed and relative humidity (Simmonds, 1994). He suggested that the dry-bulb air temperature (ambient room temperature) be kept between 18°C and 25°C. The heat convection coefficient used to calculate the heat transfer from the slab to the space is dependent on air speed (velocity).

In climates where solar heat gains preclude the use of a purely hydronic system, a hybrid system using slabs to transfer the peak cooling load to the cooler evening hours can be implemented successfully. Such is the example set forth in the hybrid conditioning system (radiant cooling floors and variable-volume displacement conditioning system) used in the International Airport in Bangkok (Simmonds et al, 2000).

In their 2008 analysis, Li and Yang quantified the relationship between the use of thermal mass and the reduction of cooling load including the time constant τ and the convective heat transfer factors (both interior number A_i and exterior number A_o), the outdoor air temperature, and the indoor heat gain. They noted that with a time constant between 400 and 1000 hours, an increase of that time constant can effectively reduce the cooling load by as much as 60%. It can thus be inferred that the thermal mass of a slab can be used to reduce the cooling load. Purpose of this Analysis

The analysis set forth in this thesis focuses on transient numerical finite element analysis of a hydronic system to control temperature in a two story office building. The commercial building is considered to be of typical size and is located in Chattanooga, Tennessee, a large metropolitan area in the Southeastern region of the United States. The electrical power consumption of a system operating in milder weather conditions and during evening hours was estimated using the hourly weather data in TABLER software. Transient thermal analysis of the roof structure as well as Finite Element Analysis (ANSYS) was carried out to estimate the thermal capacity.

As in previous designs, the system discussed in this thesis consists of a concrete slab embedded with a pipe circulating either heated or chilled water. A model will be created in the specified locale. In addition, favorable dimensions for the model will be explored. Results will indicate if it is possible to shift the maximum heating or cooling load from the hours of peak electric demand to off-peak hours. Furthermore, simulation results will determine if a hydronic heating and cooling system is indeed an energy cost saving substitute for commercial building applications in the identified locale.

3

CHAPTER II

THEORY AND ANALYSIS

To analyze and simulate the physical heat transfer in the slab (for the general expression of the heat condition), Equation (2.1) was employed.

$$\frac{\partial T}{\partial x^2} + \frac{\partial T}{\partial y^2} + \frac{\partial T}{\partial z^2} + \frac{\dot{Q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$
(2.1)

For transient conduction with two dimensional effects, constant properties, and no heat

generation, Equation 2.1 can be reduced to Equation 2.2.

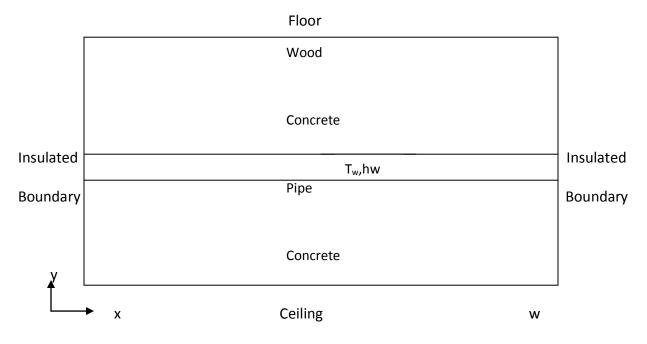


Figure 2.1 Cross Section of Insulated Concrete Slab

This differential equation was used to compute the spatial temperature distribution in the two dimensional slab model. The slab model is a 150 mm thick concrete slab covered with 20 mm of parquet flooring (oak wood). As depicted in Figure 2.1, the concrete slab contains a 20 mm pipe that carries hot or cold water used to heat or cool the slab as needed.

The solution of equation 2.2 requires boundary conditions; for the slab model the boundary conditions are as follows:

1. Convective surface condition at the floor surface:

$$y = l$$
, $k \frac{\partial T}{\partial y} = h_a [T_a - T(y, t)]$ (2.3)

2. Convective surface condition at the ceiling surface:

$$y = 0, \qquad k \frac{\partial T}{\partial y} = h_a [T_a - T(y, t)]$$
 (2.4)

3. Convective surface condition in the pipe:

$$y = r, \qquad k \frac{\partial T}{\partial y} = h_w [T_w - T(x, t)]$$
 (2.5)

4. Insulated boundary condition:

$$x = 0, \qquad \left. \frac{\partial y}{\partial x} \right|_{x=0} = 0,$$
 (2.6)

5. Insulated boundary condition:

$$x = w, \quad \left. \frac{\partial y}{\partial x} \right|_{x=0} = 0$$
 (2.7)

The solution of the differential equation with the above boundary conditions was approximated using numerical analysis.

$$\left. \frac{\partial^2 T}{\partial x^2} \right|_{m,n} = \frac{T_{m+1,n} + T_{m-1,n} - 2T_{m,n}}{\Delta x^2}$$
(2.8)

$$\frac{\partial^2 T}{\partial y^2}\Big|_{m,n} = \frac{T_{m+1,n} + T_{m-1,n} - 2T_{m,n}}{\Delta y^2}$$
(2.9)

To obtain the finite difference form, the central-difference form of Equations 2.8 and 2.9 were discretized in time using the integer p, as: $t = p\Delta t$.

$$\left. \frac{\partial T}{\partial t} \right|_{m,n} = \frac{T_{m,n}^{p+1} - T_{m,n}^p}{\Delta t} \tag{2.10}$$

Hence, the time derivative is in terms of the difference in temperatures at two points in time (p+1), new, and (p), previous, separated by the time interval Δt . Using the Explicit Method, the temperatures are evaluated at (p).

Substituting Equations 2.8, 2.9 and 2.10 into Equation 2.2 and evaluating the term on the right side at p gives:

$$\frac{1}{\alpha} \frac{T_{m,n}^{p+1} + T_{m,n}^p}{\Delta t} = \frac{T_{m+1,n} + T_{m-1,n} - 2T_{m,n}}{\Delta x^2} + \frac{T_{m+1,n} + T_{m-1,n} - 2T_{m,n}}{\Delta y^2}$$
(2.11)

Then, solving for the new nodal temperature at p + 1 for $\Delta x = \Delta y$

$$T_{m,n}^{p+1} = Fo\left(T_{m+1,n}^p + T_{m-1,n}^p + T_{m,n+1}^p + T_{m,n-1}^p\right) + (1 - 4Fo)T_{m,n}^p$$
(2.12)

with the Fourier number:

$$Fo = \frac{\propto \Delta t}{(\Delta x)^2} \tag{2.13}$$

The equations are explicit since the unknown nodal temperatures at time p+1 are determined with known temperatures at time p for each time step. Initial conditions must be known so that the temperature of each node can be known at time t=0 when p=0.

Consequentially, the temperatures at t= Δ t for p=1 are determined and the calculations proceed for t=2 Δ t for p=2 and so forth. Accuracy is increased by decreasing the size of the time step Δ t and the size of Δ x, at the expense of increasing calculation time.

Stability requires that the coefficient for $T_0^p \ge 0$, so the stability criterion for 2-D interior node is expressed as (Incropera et. al, 2007):

$$Fo \leq \frac{1}{4} \tag{2.14}.$$

The finite difference form for a nodal convective boundary condition is:

$$T_{m,n}^{p+1} = Fo\left(2T_{m-1,n}^{p} + T_{m,n+1}^{p} + T_{m,n-1}^{p} + 2BiT_{\infty}\right) + (1 - 4Fo - 2BiFo)T_{m,n}^{p}$$
(2.15)

And the stability criterion for 2-D node is:

$$Fo(1+Bi) \le \frac{1}{2}$$
 (2.16).

where:

$$Bi = \frac{h\Delta x}{k} \tag{2.17}$$

The space temperature was evaluated using the heat convection relation:

$$Q = A_{floor}h_a(T_s - T_{\infty}) \tag{2.19}$$

where:

 h_a = heat convection coefficient

 $A_{floor} =$ Area of the floor

 T_s = Floor surface temperature

 T_{∞} = Space temperature

To find the behavior of the space temperature, the inside space of the building was defined as a closed system as illustrated in Figure 2.2. The energy balance for this system resulted in the

following equation (2.20)

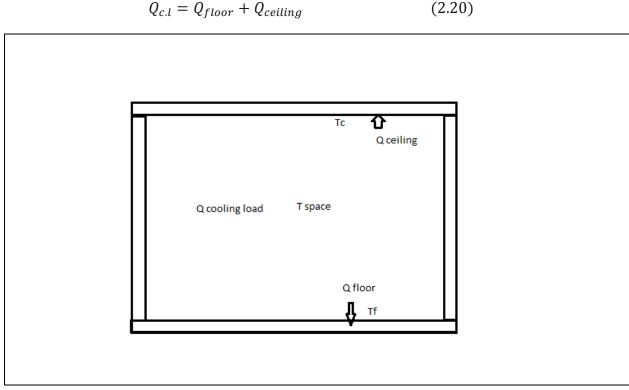


Figure 2.2 The Inside Space of an Office Building Defined as a Closed System

Substituting Equation 2.19 for Q_{floor} and $Q_{ceiling}$ in Equation 2.20 and solving for T_{space} as follows:

 $Q_{c.l} = A_{floor}h_a(T_s - T_{\infty}) + A_{floor}h_a(T_s - T_{\infty})$ $A_{ceiling} = A_{floor}$ $T_{space} = T_{\infty}$ $T_{\infty} = \frac{Q_{c.l} + hA_{floor}(T_{ceiling} + T_{floor})}{2hA_{floor}}$

where $T_{ceiling}$ and T_{floor} values were generated from a simulation.

As the Finite Difference Method is not sufficient to solve complicated geometry problems, the Finite Element Method using ANSYS will be employed to solve the problem at hand.

CHAPTER III

FINITE ELEMENT ANALYSIS

The Finite Element Analysis (FEA) is a modern numerical method for solving engineering physics problems, such as structural analysis, heat transfer, and heat flow. In situations where ordinary differential equations cannot be solved in closed form, numerical methods, such as FEA, allow for the formulation of simultaneous algebraic equations yielding approximate values of the unknowns at distinct number of points in the continuum. It is from this process (division of a model into discrete units) that the name Finite Element Analysis is derived.

This process, known as discretization, is the heart of FEA. Discretization involves modeling an object by first dividing it into discrete units with interconnected nodal points (points common to two or more elements), boundary lines, or surfaces. These nodal points, or nodes, are then used to make a mesh. Equations are formulated for each element and then combined to represent the object as a whole. In FEA, heat transfer problems, such as those pertaining to this thesis, the nodal unknowns will be temperatures.

By its nature, Finite Element Analysis is well suited to automated computational analysis, with solid modeling both enhancing and simplifying mesh formation. In fact, though it has its roots in matrix methods, FEA was not able to be widely implemented until the advent of modern computing in the latter half of the twentieth century. There are numerous

9

commercially available applications for performing FEA, with ANSYS being the one selected for this study.

ANSYS Mechanical, and the related APDL solver, was the platform used to perform FEA in this study. Continuous partial differential equations (the governing equations) were discretized into a system of linear algebraic equations that can be solved on a computer.

Finite Element Method

In considering an isotropic body with temperature-dependent heat transfer, the equation of heat transfer has the following form

$$-\left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z}\right) + Q = \rho c \frac{\partial T}{\partial t}$$
 3.1

Where q_x , q_y and q_z are components of heat flux; Q = Q(x, y, z, t) is the heat-generation rate per unit volume; ρ is material density; c is heat capacity; T is temperature and t is time. The differential form of Fourier's law can be expressed as follows:

$$q_x = -k\frac{\partial T}{\partial x} \tag{3.2}$$

$$q_y = -k\frac{\partial T}{\partial y} \tag{3.3}$$

$$q_z = -k\frac{\partial T}{\partial z} \tag{3.4}$$

where k is the thermal-conductivity coefficient. Substituting equations 3.2, 3.3 and 3.4 into equation 3.1 gives the following heat transfer equation (3.5):

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + Q = \rho c \frac{\partial T}{\partial t} \qquad 3.5$$

Boundary Conditions

It is assumed that the boundary conditions can be of the following types:

- 1. Specified temperature $T_{S} = T_{1}(x, y, z, t) \text{ on } S_{1}$.
- 2. Specified heat flow $q_X n_X + q_y n_y + q_z n_z = -q_s \text{ on } s_2$.
- 3. Convection boundary conditions $q_X n_X + q_y n_y + q_z n_z = h(T_S - T_e) \text{ on } S_3$,
- 4. Radiation

$$q_X n_X + q_y n_y + q_z n_z = \sigma \varepsilon T^4 - \alpha q_r \text{ on } S_4,$$

where *h* is the convection coefficient; $T_{S iS}$ an unknown surface temperature; $T_{e iS}$ a convective exchange temperature; σ is the Stefan–Boltzmann constant; ε is the surface emission coefficient; α is the surface absorption coefficient; and $q_{r iS}$ the incident radiant heat flow per unit surface area. For transient problems, it is necessary to specify an initial temperature field for a body at the time t = 0:

$$T(x, y, z, 0) = T_0(x, y, z).$$

CHAPTER IV

RESULTS AND DISCUSSION

Establishment of the Model

To investigate the feasibility for concrete to be used as thermal mass in a single story office building, a model consisting of a concrete slab 203 mm thick by 75 mm width and 1 m deep with a 20mm diameter embedded pipe was used. As depicted in Figure 4.1, the model also has a 20 mm thick layer of insulation (wood). The material properties of each layer are listed in Table 1. In this study, floor temperature measurements were taken at the top surface of the wood, while ceiling temperatures were taken at the bottom of the model.

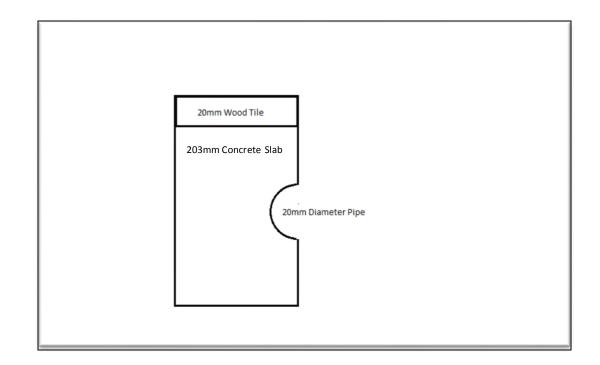


Figure 4.1 A Cross Section of the Slab

Table 1

	Density	Thermal Conductivity	Specific Heat
	$\left[\frac{kg}{m^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^$	$\left[\frac{1.4W}{m^{\circ}C}\right]$	$\left[\frac{J}{kg^{\circ}C}\right]$
Concrete	2400	2.1	1008
Wood	2000	1.4	1008

Materials Properties of Slab Components

Thermal Analysis and Results

Steady State Analysis

To conduct the thermal simulation on the model, the Finite Element Method was used

to simulate the physical phenomenon. The initial and boundary conditions were defined as

follows: the space temperature in the model was initially is set to 24° C. The floor and ceiling were defined with a convective boundary condition with an air temperature of 24°C and convective heat transfer coefficient of $10 \ wm^{-1}k^{-1}$. The pipe conditions were allowed to be as follows: water temperature of 10°C and heat transfer coefficient of 3000 $wm^{-1}k^{-1}$.

In the first steady state heat transfer simulation, the temperature of the floor dropped from 24°C to 20°C and that of the ceiling dropped from 24°C to 11.119°C. The following figure (4.2) illustrates these variations in the model temperature of the model composite in space distribution. The difference in temperature in the floor and the ceiling resulted from the added layers of insulation and screen.

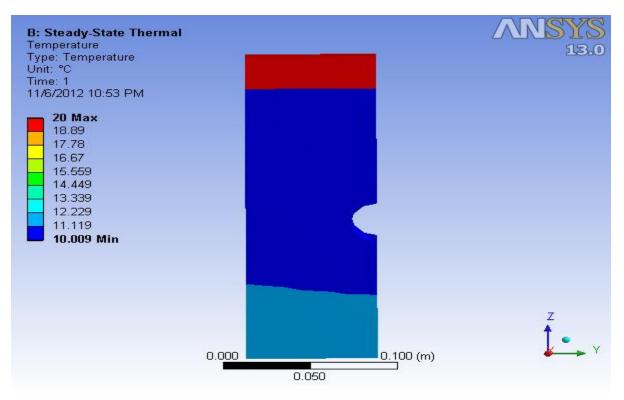


Figure 4.2 Steady State Special Distribution of Temperature

In addition, Figure 4.3 shows the heat flux distribution in the slab during the simulation. The maximum value of the heat flux 83.218 w/m² occurs at the bottom of the pipe surface. This is due to the material with lower thermal conductivity located at the top of the slab. This material acts as barrier and reduces the heat flow. Consequently, the minimum heat flux occurs at the floor surface while the ceiling has an average value of 46.232 w/m².

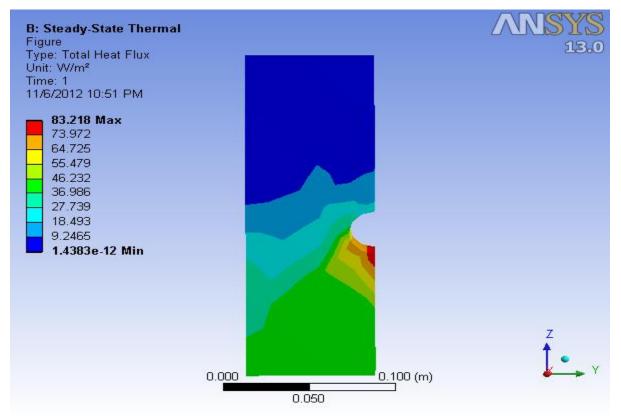


Figure 4.3 Steady State Spatial Distribution of Heat Flux

Transient Analysis

In the second part of this simulation, the initial conditions in the slab composite were

matched to the temperature distribution of the previous simulation. The water in the pipe is

turned off thus allowing it, at this point, be treated as an insulted boundary. The room air temperature is considered to be 18°C and the heat convection coefficient 10w/mk. In this particular case, the heat transfer occurs from the room to the slab composite. As demonstrated in Figure 4.4, 4.5, 4.6, and 4.7, the concrete mass has the ability to store heat energy; consequentially, it is feasible to use it as a thermal storage mass in a hydronic heating and cooling system.

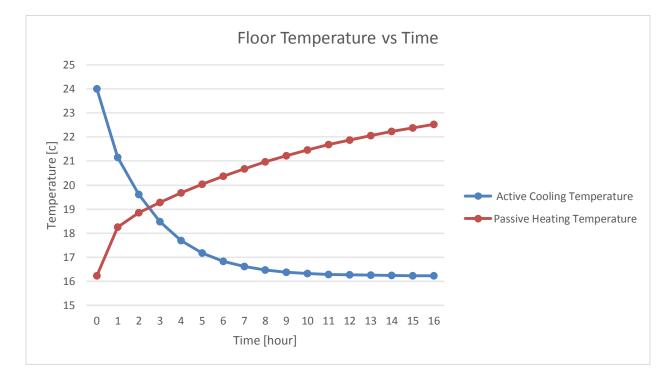


Figure 4.4 Active Cooling and Passive Heating of the Slab

Cooling the slab actively for 16 hours resulted in a temperature drop of the model floor from 24°C to 16.228°C. In the same period of time, the slab temperature increased passively from16.225°C to 22.518°C (Figure 4.4). Conversely, heating the slab actively for 16 hours resulted in an increase of the temperature of the model floor from 18°C to 23.792°C. In this same time period, the slab temperature decreased passively from 23.597°C to 20.965°C as shown in Figure 4.5.

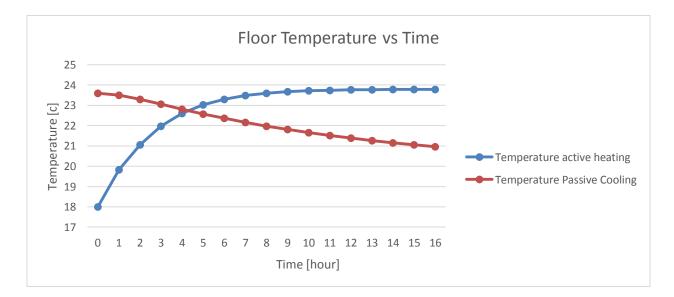


Figure 4.5 Active Heating and Passive Cooling of the Slab

As the 16 hour active cooling process starts, the heat flux of the slab decreases rapidly from $56.554 \frac{W}{m^{2}.k}$ to $14.929 \frac{W}{m^{2}.k}$. As illustrated in Figure 4.6, it increases from $42.765 \frac{W}{m^{2}.k}$ to $67.97 \frac{W}{m^{2}.k}$ in the same time period. The time constant τ , that is the length of time it takes for the heat to charge and discharge to and from the slab, is defined as the average time in hours per watt of heat. The average time constant for the active cooling process is 0.024 hr/w and that of passive heating process is 0.0396 hr/w. The time constant indicates that the slab passively releases the same amount of heat as what was charged; however, the heat discharge takes a longer period of time.

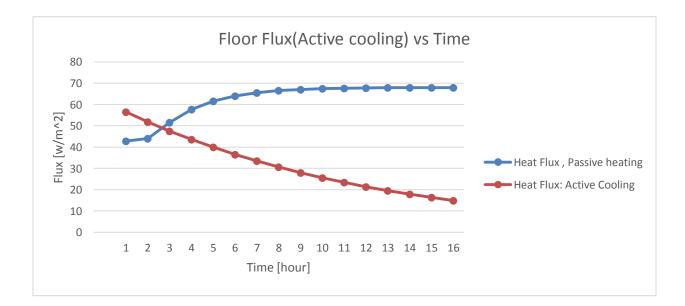


Figure 4.6 Heat Flux of the Slab during Active Cooling and Passive Heating

As the 16 hour active heating process begins, the heat flux of the slab increases rapidly from $18 \frac{W}{m^2.k}$ to $27.972 \frac{W}{m^2.k}$. By contrast, during the 16 hour passive cooling period, the heat flux only decreases from $27.972 \frac{W}{m^2.k}$ to $20.992 \frac{W}{m^2.k}$ (Figure 4.7). The average time constant for the active heating process is 0.100 hr/w and that of the passive cooling process is 0.143 hr/w. Again, it is noted that the time constant indicates that a longer period of time is required for the slab to passively release the same amount of heat as was actively gained.

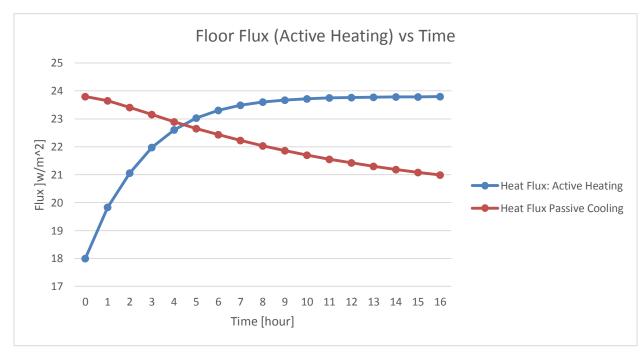


Figure 4.7 Heat Flux of the Slab During Active Heating and Passive Cooling

Determination of Slab and Pipe Dimensions

The specific dimensions for the analysis of the slab and pipe were based on the test space and boundary conditions set by Bjarne Olesen in his similar study of slab heating and cooling systems (2002). Analyses were then performed on slabs with thicknesses ranging from 110mm to 190mm (Figure 4.8) and pipe diameters ranging from 10mm to 70mm.

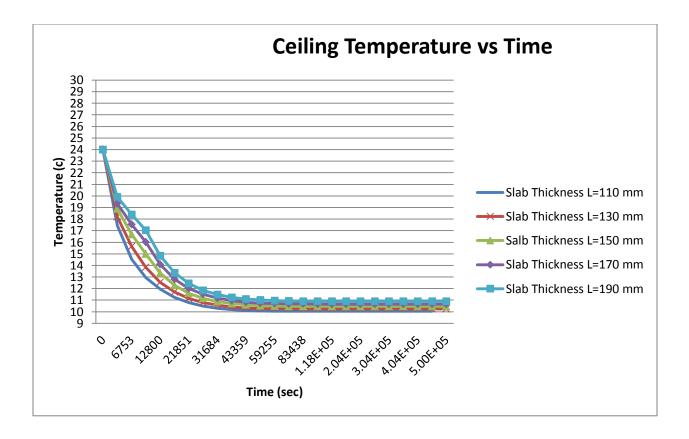


Figure 4.8 The Effects of Increasing Slab Thickness on Floor Temperature

To investigate the effect of the slab thickness L and the pipe diameter D on the energy storage capacity of the concrete mass, the simulation above was repeated, once with a constant slab thickness L and varying values for diameter D and again with a constant diameter D and differing values for slab thickness L. Figure 4.8, above, suggests that as the slab thickness increases, it takes a longer period of time for the floor temperature to reach the specified value. Figure 4.9, on the other hand, shows that as the pipe diameter increases, the floor temperature takes less time to reach the specified value. For example, the temperature of the ceiling dropped from 24°C to 14.98°C in 13333 seconds (3.70 hours) for a pipe of 10mm diameter and from 24°C to 14.98°C in 10000 second (2.77 hours) for a pipe of 30mm diameter.

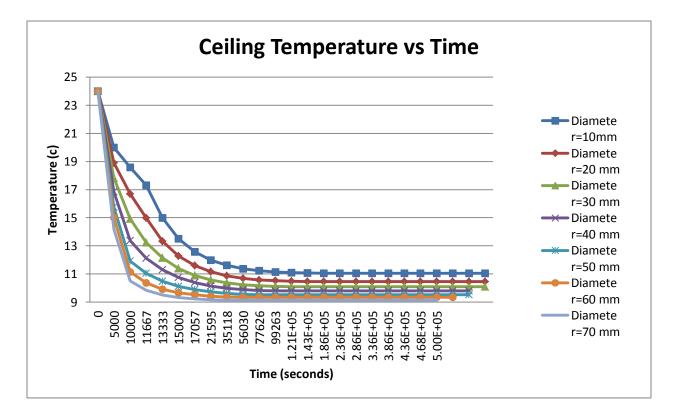


Figure 4.9 The Effects of Increasing Pipe Diameter on Floor Temperature

The more material that is in the slab, the greater the thermal storage. However, too large slab thickness introduces a negative effect in terms of weight and cost. Slab thickness most therefore be limited to those sizes generally used in commercial applications. Based on the above considerations, a slab thickness of 203.2mm was used.

The above trends also show that by allowing for a greater amount of material in the slab, limiting pipe diameter produces greater heat storage capability. Olesen, et al (2002)

demonstrated that 20mm pipe diameter yielded suitable results. A pipe diameter of 20mm was chosen for this analysis as well.

Implementation of Hydronic Technique in a Hypothetical Example To implement the thermal mass technique, the following model was used:

A 70' x 70' office building located in Chattanooga, Tennessee was modeled. The building's 15 occupants perform office work between 8:00AM-6:00PM. The building is covered with a roof No. 9. The South and North facing walls are c omposed of insulated brick wall (Group B), each with a window area of 100 ft². The east and west facing walls are adjacent to the conditioned space. The height of the building is 10'and it has 2w/ft^2 of lighting; a machine attached to a 3 hp motor operates continuously. An infiltration of 0.3 ACH is assumed along with a ventilation requirement of 15 cfm/occupant. The peak cooling load occurs at 3:00 pm in July. (Dhamshala, 2011)

Location and Implementation

The city of Chattanooga is located in the southeastern United States and is characterized by mild weather. The following group of figures (4.10 and 4.11) illustrates the extremes of daily variation in this city. In these and all subsequent figures, the time recorded as 1 stands for 01:00, or 1:00 a.m., while 13 stands for 13:00, or 1:00 p.m., and so forth.

22

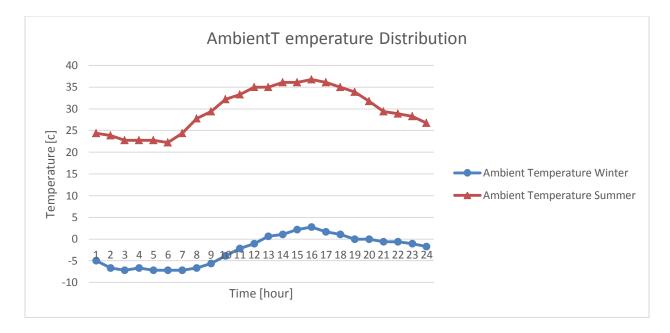


Figure 4.10 Daily Variations of Ambient Temperature in Chattanooga, TN

The variations of ambient temperature during summer and winter are shown in Figure 4.10, while Figure 4.11 illustrates the variation of the heating and cooling loads during summer and winter. The average ambient temperature in the summer is 27°C and the minimum and maximum summer temperatures are 21°C and 32°C, respectively. The average temperature in the winter is -1°C and the minimum and maximum winter temperatures are 5°C and 10°C, respectively.

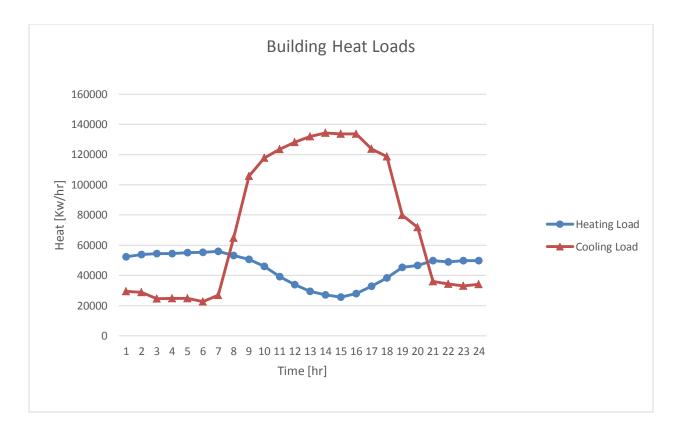


Figure 4.11 Daily Variations in Heating and Cooling Loads in Chattanooga, TN

Figure 11 shows the variation of the heating and cooling loads during summer and winter. In the winter, the required heat load increases from 52306 KW/hr to 55876 KW/hr between 1:00 and 7:00 and then decreases to 25690 KW/hr at 15:00. This decrease is due to the increase of the ambient temperature as well as the additional heat contributed by occupants, lights and equipment. The required heating load increases from 16:00 until 24:00 to reach a maximum value of 49729 KW/hr. On the contrary, the cooling load decreases from 29485 KW/hr to 27009 KW/hr between 1:00 and 7:00. It then increases to a maximum value of 134444 KW/hr at approximately 14:00 as a result of the heat added by occupants, lights and equipment. It decreases again to 34157 KW/hr by midnight

Cooling

The slab's heat removal capacity was calculated and simulated for different values for both the water pipe temperature and the heat convection coefficient. This was then plotted along with the building's cooling load against time as depicted in Figure 4.12. These simulations were done with two modes: radiation and no radiation. The general pattern of the slab capacity curves as follows. During the process of active cooling, the slab capacity starts increasing from a minimum value at 19:00 until it reaches a maximum value at 7:00. After 7:00, the slab capacity decreases again to reach the minimum value at 19:00. This is due to stopping active cooling, and the building normal operation.

Figure 4.12 is significant in that it is necessary in the design of the hybrid system. The area under each curve of the slab capacity curves represents the total heat that can be removed. The area under the heat extracted, on the other hand, represents the total amount of heat needing to be removed. In the hybrid system, an air conditioning unit is used primarily for ventilation, air quality control and as an auxiliary cooling mechanism during extreme weather conditions. The areas described above help in sizing the air conditioning unit. Since the heat convection coefficient depends on the velocity of the air flow, it can be used to optimize the blower fan thus directing the flow to the radiant surface. The data concerning pipe water temperature and heat extracted can be used to size and optimize the chiller. After carefully comparing the slab heat capacity curves, the curve number 11 was found to meet the requirement. The choice was made mainly by matching the area under slab capacity curves to the heat extracted curve. The area under the heat extracted curve was calculated by numerical integration to be 341480W while the area under curve 11 was evaluated in similar manor and found to be 322310W. The differences in the value can be easily accommodated by a modest auxiliary air conditioning system. These two curve are shown in Figure 4.13.

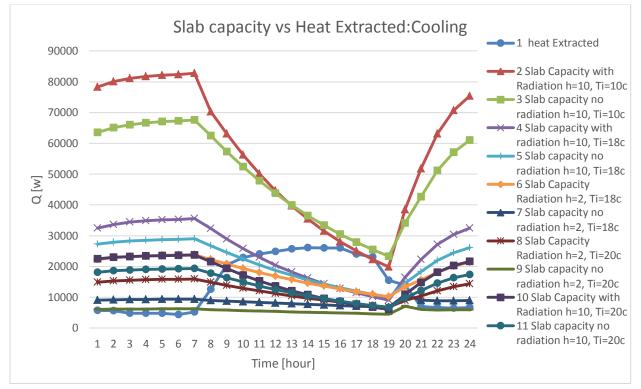


Figure 4.12 Slab capacity (with different values Ti and h) and Heat Extracted vs Time

As shown in Figure 4.13, the slab heat extraction capacity increases from 18145W to 19325W between 1:00 and 7:00 as a result of actively cooling the slab during this time.

After 7:00, the heat extraction capacity begins decreasing until it reaches 6664 W at 19:00. It then increases to 17439 at approximately 24:00. Between, 9:00 and about 8:30, the slab capacity is less than the heat extracted. The difference between the two curves during this time interval is 13932W, which can be accomodated easily by a small air conditioning unit.

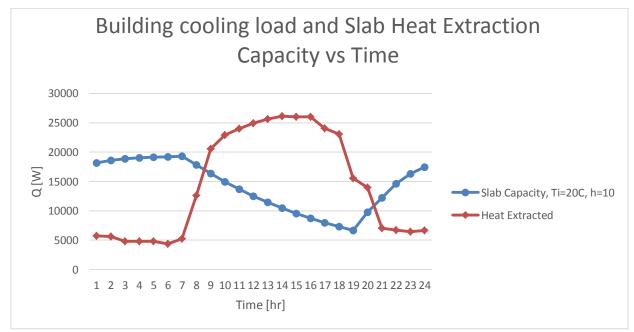
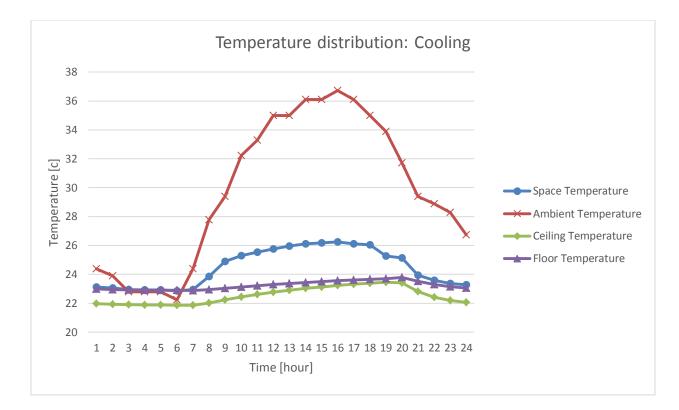
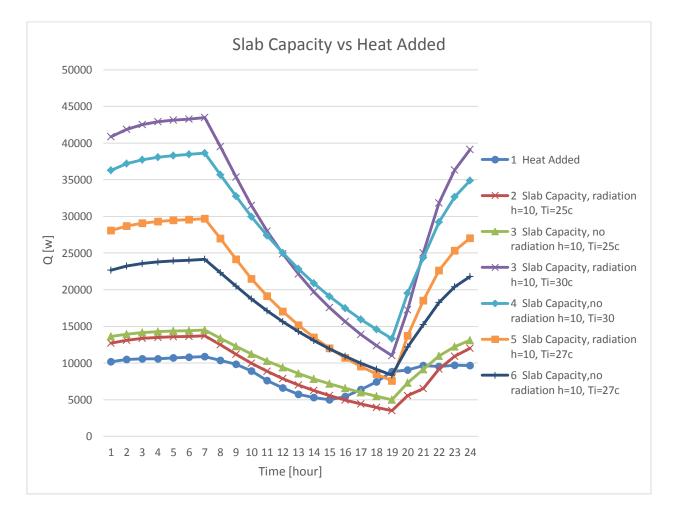


Figure 4.13 Simulation of the Building's Cooling Load and Slab Heat Extraction Capacity




Figure 4.14 Temperature Distribution in an Office Building Using a Hydronic Cooling System

The above figure (4.14) shows the temperature distributions of the space (room) in addition to the ambient, ceiling and floor temperature distributions. The outside temperature distribution of July 1 for the metro area of Chattanooga, Tennessee is graphed as ambient temperature. The floor and the ceiling temperature begin to decrease as the process of active cooling starts at 20:00 and reach their minimum values at 7:00, at which point the active cooling process stops. After the building begins operation at 7:00, the cooling load once again increases. As previously discussed, this is due to the added heat load produced by occupants, lights, equipment, ventilation, and the rise of the outside temperature.

The space temperature follows the same pattern as the ambient, floor, and ceiling temperature because it is dependent on them; therefore, the temperature drops from 23.94°C

to 22.88°C during the slab's active cooling period between 21:00 and 7:00. It increases afterward to reach 26.24°C at 16:00, then decreases slowly to 23.93°C at 21:00.

Additionally, Figure 4.14 shows that during the cooling season, the space temperature range from 24.88°C at 9:00 to 25.13°C at 20:00; that is, it stays within the range of human comfort.

Heating

Figure 4.15 Simulation of Building's Heating Load and Slab's Heat Adding Capacity

The building heating load was calculated and simulated for different values for both the water pipe temperature and heat convection coefficient. This was then plotted along with the building's heat load against time as depicted in Figure 4.15, above. The general pattern of the slab capacity curves is as follows. During the period of active heating, the slab capacity begins to increase from a minimum value at 19:00 until it reaches a maximum value at 7:00. After 7:00, the slab capacity decreases to again reach the minimum value at 19:00. The matching curve for the slab capacity to the heat added curve is curve number 3 and follows the same reasoning as the previous discussion concerning the heat extracted. The matching slab capacity for heat added and the heat needed curves are shown in Figure 4.16.

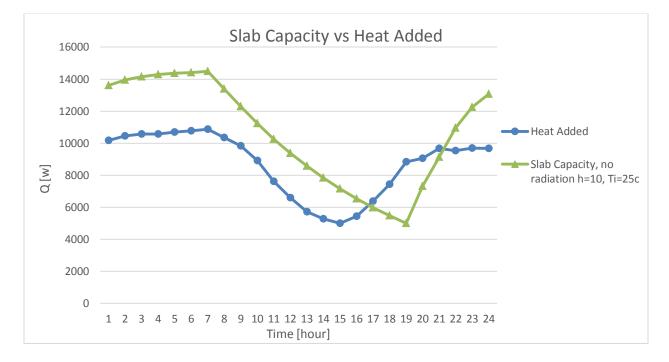


Figure 4.16. Slab Capacity vs Heat Added

Figure 4.17 illustrates the temperature distributions of the space (room), ambient, ceiling and floor temperatures, where ambient temperature is defined as the outside temperature distribution of January 1 for the metro area of Chattanooga, Tennessee. In the seasons during which heating is necessary, the ambient temperature decreases slowly from - 5°C to -7.2°C between 1:00 and 7:00. It then increases to 2.8°C 16:00 at which point it begins to drops to -1.7°C at midnight. The floor and the ceiling temperatures increase as the process of active heating take place at 1:00, reaching their maximum values of 23.31°C and 23.89°C respectively at 7:00 when the active heating process is then terminated. After 7:00, both the floor and the ceiling temperature decrease slowly to 22.89°C and 22.99°C respectively. At 19:00, these temperature then increases again to 23.28°C and 23.86°C respectively. As previously observed, the space temperature follows the same pattern as the floor and ceiling temperatures because it depend on them—the temperature rises from 23.79°C to 24.84°C during the slab's active heating period between 19:00 and 7:00. It then drops back to 23.64°C at 15:00.

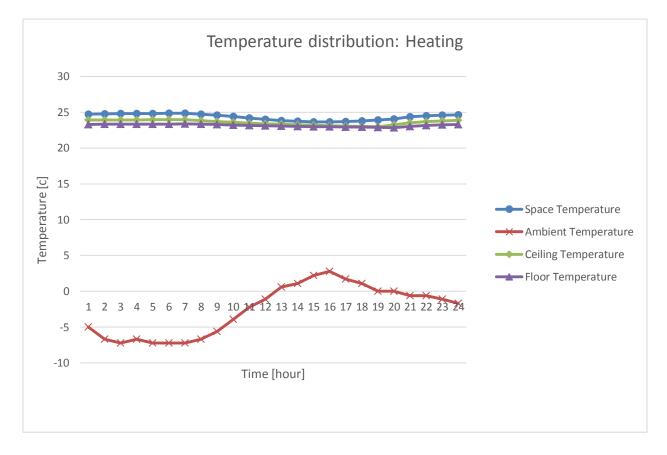


Figure 4.17 Temperature Distribution in an Office Building Using a Hydronic Heating System

Furthermore, Figure 4.17 shows that during the heating season, the space temperature ranges from 23.64°C at 15:00 to 24.84°C at 7:00; that is, it stays within the range of human comfort.

Economic Merit

The space temperature results presented in Figures 4.15 and 4.17 above show that the technique of using a slab (embedded with a pipe) for thermal storage is adequate to keep the conditioned space comfortable during most of the building operation period. One exception is

the period between 13:00 and 18:00 for the cooling season where the space temperature ranges from 25.9°C and 26.05°C. During this time, the auxiliary air conditioning system can provide the necessary cooling. To show the economic benefits of using the slab technique, the operational costs of the embedded slab technique versus a conventional air conditioning system were compared.

Table 4.2

Chiller Efficincy vs Chiller Evaperator Leaving Temperature, 70ton unit											
ELWT	65F	70F	75F	85F	95F	105F	115F				
40	5.417	4.929	4.500	3.761	3.212	2.729	2.304				
42	5.469	4.993	4.571	3.844	3.289	2.800	2.370				
44	5.499	5.043	4.635	3.926	3.369	2.870	2.432				
46	5.578	5.126	4.718	4.005	3.448	2.938	2.499				
48	5.630	5.188	4.788	4.088	3.520	3.005	2.565				
50	5.641	5.220	4.836	4.167	3.590	3.071	2.632				
52	5.695	5.285	4.904	4.241	3.664	3.135	2.696				
54	5.734	5.335	4.962	4.315	3.734	3.198	2.762				
56	5.770	5.382	5.018	4.386	3.802	3.259	2.827				
58	5.805	5.428	5.073	4.457	3.868	3.319	2.893				
60	5.839	5.472	5.125	4.525	3.933	3.378	2.958				
62	5.870	5.514	5.175	4.592	3.997	3.436	3.024				
64	5.901	5.555	5.224	4.657	4.060	3.492	3.089				
66	5.929	5.594	5.270	4.721	4.121	3.548	3.155				
68	5.957	5.631	5.316	4.784	4.181	3.602	3.220				
70	5.984	5.667	5.359	4.845	4.240	3.655	3.286				
72	6.009	5.702	5.402	4.905	4.297	3.708	3.351				

Chiller Efficiency Analysis Data

In analyzing the chiller experimental data given by Trane Inc., a unit size 70 tons was considered. Data points were collected for the water temperature leaving the evaporator (chiller operating temperature), air temperature entering condenser (set room temperature), load output in tons and power required. The coefficient of performance was calculated for these data points and presented in Table 4.2. Figure 4.18 exhibits the behavior of these data. The figure (4.18) suggests that for each specific condenser air temperature curve modeled, the coefficient of performance of the chiller increases as the temperature of the water leaving the evaporator increases. In addition, the coefficient of performance increases as the temperature of the water leaving the gap between the water temperature leaving the evaporator and the air temperature entering the condenser increases the coefficient of performance.

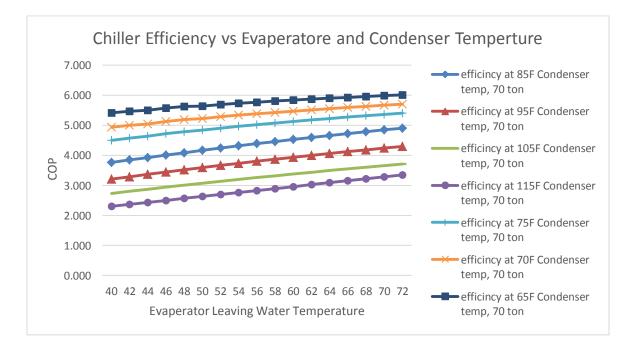


Figure 4.18 Chiller Efficiency Analysis Data (using data from Table 4.2)

The coefficient of performance (COP) is defined as the heat obtained per work input. A typical air conditioning system of 70 ton capacity operates with a COP of 3.289 as demonstrated by the highlighted cells (Table 4.2). In comparison, a chiller with 70 tons capacity operates on a typical COP of 5.359. This analysis showed that using a chiller offers about 62% cost savings over using the same technique with a conventional air conditioning system.

In the hypothetical building data, cooling and heating using a conventional air conditioning system (\$3595 AC plus half of the demand costs) represent about 38% of the total utility costs (\$11135). On the contrary, the slab technique using only a chiller and small air conditioning unit represent only 22.58% of the total utility costs. Demand is not included as the system is actively run during off peak hours. Therefore, the slab technique hybrid system offered an overall cost savings of 14.86% over a conventional system. A breakdown of the utility costs in the model building, as derived the data in Appendix 1, is presented in Table 4.3.

Table 4.3

Conventional Systems Costs in a Hypothetical Building

Building utility cost breakdown	Cost (in USD)
Air conditioning	3495
Equipment	1518
Auxiliary	694
Lights	3014
Demand	1563
Water heater	58
Telecomunication	10338
Heat	797
Total	11135

CHAPTER V

CONCLUSION

Cost Savings

The objective of this work was to investigate the feasibility of reducing the energy consumption in buildings by means of using the thermal mass of the building. Pipes for transporting cool or hot water are embedded in a concrete slab beneath the surface flooring. In what is called the hydronic system, hot or cold water runs through these pipes to store energy in the slab during night time when the energy costs of electrical power are significantly lower than during the day. The Finite Element Method was used in ANSYS to model a concrete slab with a pipe embedded in it. This slab technique was then implemented in a hypothetical building located in metropolitan Chattanooga, Tennessee, USA.

The results of the simulations show that the technique helped to reduce the cost of heating and cooling the building by 14.8%. As such, the cost savings are particularly high in areas where the charge for electricity is based on on-peak usage and off-peak usage. For example, the largest power company providing service in Atlanta, Georgia Power has costs savings of more than 50% during off-peak times (14:00-19:00), while the Tennessee Valley Authority, currently largest power company in the United States, is moving toward a peak hour surcharge for power consumption during the hours of noon to 20:00 (Connolly, 2010). Using

the method described in this paper, active cooling of the slab only occurs during off peak hours. This method results in vastly improved operational costs over a conventional system which requires operation during both on-peak and off-peak times.

Further Study

Further study would likely consider the interior walls and the building envelope as means of thermal storage instead of the floor and ceiling alone. Other considerations to be taken into account include the minimum slab thickness and pipe diameters necessary to produce optimum results.

Although implementing a hydronic system obviously has associated costs, it is important to note that this expenditure can be recouped elsewhere. The costs savings of avoiding the instillation of a large air duct system versus small one are gained immediately. Additional savings can be explored by designing the embedded hydronic pipe as a foundation for a sprinkler system, thus rendering a separate fire protection system unnecessary.

REFERENCES

- [1] Dhamshala, Prakash. *Modern Practices in design of air conditioning and refrigeration systems.* Chattanooga, TN, 2011.
- [2] Connolly, Daniel. *The Memphis Edge*. http://www.commercialappeal.com/news/2010/mar/05/tva-proposes-peak-usesurcharge/. March 5, 2010.
- [3] Incropera, Frank P., David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine. *Fundamentals of Heat and Mass Transfer*. John Wiley & Sons, Inc, Hoboken, NJ, 2007.
- [3] Meierhans, Robert A., Slab cooling and earth coupling. *ASHRAE Transactions: Symposia*, 1993, pp. 511-518.
- [4] National Program on Technology Enhanced Learning. http://nptel.iitm.ac.in/courses/112104030/. October 24, 2012.
- [5] Olesen, Bjarne W., Klaus Sommer, Bjorn Duchting, Control of slab heating and cooling systems studied by dynamic computer simulations. *ASHRAE Transactions: Symposia*, 2002, pp. 698-707.
- [6] Simmonds, Peter, Control strategies for combined heating and cooling radiant systems. *ASHRAE Transactions: Symposia*, 1994, pp. 1031-1039.
- [7] Simmonds, Peter, Stephan Holst, Stephanie Reuss, Gaw, Wayne, Using Radiant floors to cool large spaces. *AHRAE Transactions: Symposia*, 2000, pp. 696-701.
- [8] Yang, Una and Yuguo Li, Cooling load reduction by using thermal mass and night ventilation. *Energy and Buildings*, 2008, pp. 2052-2059.
- [9] Zhou, Junli, Guoqiang Zhang, Yolin Lin, Yuguo Li, Coupling of thermal mass and natural ventilation in buildings. *Energy and Buildings*, 2008, pp. 979-986.

APPENDIX A

TABLER DATA

	0114774110	201		TN	25	2	85		12	75				
	CHATTANO Time 12:55:5		11/30/2012	TN	35									
			(TABLER	Transien	t Analysis	of Building	Loads and	I Energy F	Requireme	nts Zone: SE Wall	1 SW Wall	NW Wall		
	Envelop:		Roof East \ 4900 700	Vall Sou 500	th Wall We 700	st VVali No 50	orth VVall Fic	00 0			0	0		
	Area(ft^2): Glass Area (ft^2):	0 0	200	0	20	0 0	0			0	0		
	U-Factor(Btu/h		0.036 0.03					04						
	Туре:		17 31	31	3	1 3	31 6)						**
	No of Occup	ants (dav) :	= 10 (night) =	0 (holida	v(s) = 0	Renw Sys	tem:1 Mode	:1 Life(yr	s): Util P.F	ac:2 Cap	Cost:5 Pa	ayback =		
,	Equip Elec L	oad, kW (d	ay) = 5 (night	(ho) = 0 (ho)	lidays) = 0	No hrs/y	r: Heat Eqp.	mt on: 0 C	ool Eqpmt o	on: 0 Eqpm	t Off: 0		0.05 1	of Eff. 0.05
	Floc Lights	$1//ff^{2} = 2$	(night) = 0.0 H = 0.3 Venti	1 (holic	davs) = 0.0	1 DCV	Svstem:Off	ZC =	Energ	y Recovery	System: C)π Sen.Επ: :08	0.85 L	.at.Eff: 0.85
	S C of Glass	= 0.85 FI	ec Power Cos	ation,cim/ st.cents/kV	Vh = 12	Gas Fuel Co	ost. cents/the	erm = 90	Economise	r: Off Elec	kW limit: 1	0 kW cos	t:10	
	Wint: Therm	set = 72 F I	V. Setback =	72 F Throti	Range = F	:Su	im: Thrm set	t = 76 F N	Setback =	76 F Throtl	Range = F	=		
			4.47/1.1 in Me		- Deve 2	0 at hr = 7	. Beak Ch	maxil ton	- 10 22/4	7 in month	= 6 on Da	ov = 28 at h	r = 16	
	Pk H/lat.Los	ad,tons = -	4.4//1.1 In M	bntn = 12	on Day = 2	:0 at nr - 7	. Peak On	naxii, toin	5 - 10.221	.7 111 11101141		iy - 20 at 1		
	Approx Red	commende	d Cap of Hea	ting Eqpr	nt, tons =	7	: Ap	prox Reco		Cap of Co			12	
			n the Peak H				-			the Peak C	S.Temp			
	Time	A.Temp (deg F)		H.Added Btu/hr)	S.Flux (W/m ²)	S.Temp (deg F)	Time	A.Temp (deg F)	(Btu/hr)	Heat Extr (Btu/hr)	(deg F)	(W/m^2)		
	1	23	-50767	-49579.6	0	72.2	1	75.9	33741	27948	75.1	0		
	2	19.94	-52215	-51006.9	0	72.2	2	75	32595	27399	75.1	0		
	3 4	19.04 19.94	-52733 -52665	-51584.3	. 0	72.2 72.2	3 4	73 73	28592 27791	23336 23490	75.2 75.2	0		
	4 5	19.94	-52005	-52125	0	72.2	5	73	26994	23484	75.2	õ		
	6	19.04	-53344	-52513	0	72.2	6	72	24487	21387	75.2	0		
	7 8	19.04 19.94	-53601 -51244	-52963.4	0	72.2 72.2	7 8	75.9 82	27784 59095	25601 61493	75.1 74.6	0		
	9	21.92	-49233	-47951.2	0	72.2	9	84.9	93595	100231	74.1	ō		
	10	24.98	-45772	-43481.7	0	72.1	10	90	104603		73.9	0		
	11 12	28.04 30.02	-40132 -35577	-37103.6	0	72 71.9	11 12	91.9 95	110586 114923		73.9 73.8	0		
	12	33.08	-35577	-27872.9	0	71.9	13	95	118967		73.8	Ő		
	14	33.98	-29313	-25751.3	0	71.9	14	97	121328		73.7	0		
	15 16	35.96 37.04	-28324 -29574	-24351.2 -26518.4	0	71.8 71.9	15 16	97 98.1	121774 122673		73.7 73.7	0		
	17	35.06	-33778	-31103.3	0	71.9	17	97	115210		73.9	õ		
	18	33.98	-37902	-36287	0	72	18	95	110894		73.9	0		1.11. 6. 6
	19	32	-43830 -44980	-43049.3 -44119.3	0	72.1 72.1	19 20	93 89.1	79485 72553	75741 68066	74.4 74.6	0		<i>i .H.</i> 1-1
	20 21	32 30.92	-47616	-47124.2	0	72.2	20	84.9	42026	34165	75	õ		
	22	30.92	-47687	-46438.1	0	72.1	22	84	39753	32622	75	0		
	23 24	30.02 28.94	-48048 -48535	-47277.6 -47136.5	0	72.2 72.2	23 24	82.9 80.1	38192 37804	31372 32377	75.1	0		
	24	20.94	-40000	-47100.0	U		tility Cost A		01004	OLOTT	10.1	Ū		
	Jan	Feb	March		May	June	July	Aug	Sept	Oct	Nov		Lyear	
	ac: 0 eqp: 126	0 120	0	231 126	453 132	634 126	715 126	680 138	498 114	284 138	0 126		3495 1518	
	eqp: 126 aux: 69	58	59	53	53	58	63	61	45	53	54	68 6	594	
	lit: 250	238	262	250	262	250	250	274	227	274	250		3014 1563	
	edmd: 75 wat: 6	75 6	75 5	165 5	166 5	178 4	177 4	173 4	167 4	162 5	75 5		1563 58	
	telc: 526	497	533	831	1070	1249	1335	1330	1054	915	510		10338	
	heat: 169	133	96	54	15	0	0	0	4	54 0	97		797	
	RevRn: 0	0 630	0 629	0 885	0 1085	0 1249	0 1335	0 1330	0 1058	969	0 607		D 11135	
	tuty: 695	050	023	000	1000	1240	1000	1000	1000					
	Pk kW Dem:	27.82 kV	Vh. Conp/yr:	77799 kV	Vh Cost/yr,	\$: 8776 t	therms/yr: 0	GasC	ost,\$: 0	E.D.Cost,\$	/yr: 1563			
1	# Solar Collect	ors = 50	Diam of Sto	org Tank(m	n) = 1.5	Cap C. S.	Tank(\$) =	Cap C.	Sol Coll(\$)	= 1500				
,	Ast= 17.68 V	st = 5.3 M	cp = 21427.8	8 # hrs o	f highTemp	in S.Tank =	= 0 # hrs of	heating =	0 # hrs o	f cooling =	0 # hrs of	auxheat= 0)	

APPENDIX B

ANSYS GENERATED DATA

h=	10	A=	455.22		
Time		T Floor	T Ceiling	70% Heat	
[hour]	T out [C]	[C]	[C]	extr	T space [C]
1	24.38889	22.986	21.973	5733.221667	23.10921988
2	23.88889	22.947	21.927	5620.600417	23.0543499
3	22.77778	22.923	21.899	4787.121111	22.93680303
4	22.77778	22.908	21.882	4818.7125	22.92427293
5	22.77778	22.899	21.872	4817.481667	22.91463774
6	22.22222	22.893	21.866	4387.305417	22.86138847
7	24.38889	22.885	21.858	5251.760694	22.94833765
8	27.77778	22.938	22.012	12614.60569	23.86055047
9	29.38889	23.024	22.225	20561.27597	24.88288891
10	32.22222	23.118	22.427	22916.88583	25.28962203
11	33.27778	23.21	22.605	24009.04528	25.54458155
12	35	23.294	22.761	24918.42597	25.7644652
13	35	23.37	22.899	25661.23389	25.953053
14	36.11111	23.439	23.021	26142.07944	26.10136763
15	36.11111	23.5	23.129	26010.38028	26.17140219
16	36.72222	23.555	23.225	26008.53403	26.2466994
17	36.11111	23.604	23.31	24056.02208	26.09924134
18	35	23.647	23.386	23078.94556	26.05142219
19	33.88889	23.686	23.453	15537.42458	25.27608413
20	31.72222	23.779	23.415	13962.98361	25.13065226
21	29.38889	23.51	22.811	7008.570139	23.93030033
22	28.88889	23.294	22.42	6692.040833	23.5920337
23	28.27778	23.145	22.188	6435.617222	23.3733689
24	26.72222	23.047	22.053	6641.781806	23.2795134

Data used to calculate T space: COOLING

Simulation Data for cooling

concrete emissivity =		0.85	T room =	24	T pipe =	10
wood pine emissivity		0.95	h room =	10	h pipe =	4300
Charging with radiation	on					
			9			q pipe
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	surface
0	24	24	0	0	0	0
1	23.228	21.952	11.747	72.745	84.492	924.12
2	22.284	19.835	26.844	86.942	113.786	580.5
3	21.525	18.459	38.855	99.922	138.777	437.77
4	20.999	17.641	47.078	108.31	155.388	369.08
5	20.656	17.162	52.411	113.29	165.701	329.42
6	20.439	16.881	55.794	116.21	172.004	306.15
7	20.302	16.716	57.916	117.93	175.846	292.37
8	20.217	16.617	59.24	118.94	178.18	284.15
9	20.165	16.559	60.062	119.54	179.602	279.22
10	20.132	16.523	60.572	119.9	180.472	276.24
11	20.112	16.502	60.887	120.12	181.007	274.45
12	20.099	16.489	61.082	120.25	181.332	273.35
13	20.091	16.481	61.202	120.33	181.532	272.69
14	20.087	16.476	61.276	120.38	181.656	272.28
15	20.084	16.473	61.321	120.4	181.721	272.04
16	20.082	16.472	61.349	120.42	181.769	271.89
Total	•	•	837.636	1795.629	2633.27	5715.72
discharging with radia	ation					
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	20.082	16.472	61.349	120.42	181.769	
1	19.847	16.816	54.158	100.27	154.428	
2	20.084	17.487	50.167	88.457	138.624	
3	20.387	18.141	45.416	78.215	123.631	
4	20.687	18.725	40.74	69.396	110.136	
5	20.964	19.24	36.41	61.689	98.099	
6	21.216	19.693	32.482	54.898	87.38	
7	21.441	20.094	28.951	48.884	77.835	
8	21.643	20.45	25.789	43.545	69.334	
9	21.824	20.766	22.964	38.797	61.761	
10	21.984	21.046	20.442	34.571	55.013	
11	22.128	21.296	18.194	30.809	49.003	
12	22.255	21.519	16.189	27.457	43.646	
13	22.369	21.717	14.402	24.472	38.874	
14	22.47	21.893	12.811	21.812	34.623	
15	22.561	22.05	11.393	19.443	30.836	
16	22.641	22.189	10.129	17.332	27.461	
Total	22.071	22.105	501.986	880.467	1382.45	
10(0)			201.200	000.407	1302.43	l

=24T pipe =10h room-10h pipe =4300charging without radiation	
= 10 h pipe = 4300	
charging without radiation	-
	rfo o o
Time T floor T ceiling q floor q ceiling qc + qf q pipe su	nace
0 24 24 0 0 0	0
1 23.021 21.713 9.3871 65.605 74.9921	922.16
2 21.792 19.307 22.059 71.668 93.727	574.43
3 20.776 17.69 32.433 79.895 112.328	418.33
4 20.054 16.692 39.718 85.803 125.521	335.63
5 19.572 16.087 44.563 89.52 134.083	289.52
6 19.258 15.721 47.714 91.793 139.507	261.56
7 19.056 15.497 49.742 93.178 142.92	244.48
8 18.927 15.36 51.039 94.023 145.062	233.98
9 18.844 15.276 51.866 94.54 146.406	227.5
10 18.792 15.224 52.392 94.858 147.25	223.49
11 18.759 15.192 52.725 95.054 147.779	220.99
12 18.738 15.172 52.936 95.176 148.112	219.44
13 18.724 15.159 53.07 95.251 148.321	218.47
14 18.716 15.151 53.155 95.299 148.454	217.86
15 18.711 15.146 53.208 95.328 148.536	217.48
16 18.707 15.143 53.242 95.346 148.588	217.24
Total 719.2491 1432.337 2151.5861 5	6042.56
discharging without radiation	
Time T floor Tceiling q floor q ceiling qc + qf	
0 18.707 15.143 53.242 95.346 148.588	
1 18.899 15.63 51.418 85.778 137.196	
2 19.219 16.321 48.182 77.736 125.918	
3 19.58 16.996 44.524 70.563 115.087	
4 19.939 17.614 40.908 64.266 105.174	
5 20.278 18.173 37.492 58.628 96.12	
6 20.593 18.68 34.32 53.529 87.849	
7 20.883 19.14 31.398 48.898 80.296	
8 21.15 19.559 28.714 44.679 73.393	
9 21.394 19.942 26.255 40.831 67.086	
10 21.617 20.291 24.004 37.318 61.322	
11 21.822 20.61 21.944 34.11 56.054	
12 22.009 20.901 20.06 31.178 51.238	
13 22.18 21.168 18.338 28.499 46.837	
14 22.336 21.411 16.763 26.051 42.814	
15 22.479 21.633 15.323 23.813 39.136	
16 22.61 21.837 14.007 21.767 35.774	
Total 526.892 842.99 1369.882	

concroto omissivity - 0.95	T room -	24	T nino -	18
concrete emissivity = 0.85 wood pine emissivity = 0.95	T room = h room =	24 10	T pipe = h pipe =	4300
Charging with radiation	11100111 =	10	ii hihe =	4300
				q pipe
Time T floor T ceiling	q floor	q ceiling	qc + qf	surface
0 24 24	0	0	0	0
1 23.669 23.122	5.0343	31.176	36.2103	396.05
2 23.265 22.217	11.511	37.318	48.829	248.8
3 22.941 21.629	16.667	42.945	59.612	187.73
4 22.716 21.281	20.198	46.576	66.774	158.37
5 22.57 21.077	22.487	48.733	71.22	141.44
6 22.478 20.958	23.939	49.996	73.935	131.52
7 22.42 20.887	24.849	50.736	75.585	125.65
8 22.383 20.846	25.416	51.173	76.589	122.16
9 22.361 20.821	25.769	51.433	77.202	120.06
10 22.347 20.806	25.987	51.588	77.575	118.8
11 22.339 20.797	26.122	51.681	77.803	118.04
12 22.333 20.792	26.205	51.737	77.942	117.57
13 22.33 20.788	26.256	51.771	78.027	117.29
14 22.328 20.786	26.288	51.792	78.08	117.12
15 22.327 20.785	26.307	51.804	78.111	117.02
16 22.326 20.784	26.319	51.812	78.131	116.95
Total	359.3543	772.271	1131.63	2454.57
discharging with radiation				
Time T floor Tceiling	q floor	q ceiling	qc + qf	
0 22.326 20.784	26.319	51.812	78.131	
1 22.405 21.015	25.129	45.92	71.049	
2 22.534 21.335	23.101	40.563	63.664	
3 22.676 21.638	20.866	35.821	56.687	
4 22.814 21.905	18.708	31.743	50.451	
5 22.94 22.14	16.717	28.187	44.904	
6 23.055 22.347				
	14.915	25.059	39.974	
7 23.157 22.53	14.915 13.295	25.059 22.293	39.974 35.588	
	13.295	22.293	35.588	
8 23.249 22.692		22.293 19.84	35.588 31.686	
823.24922.692923.33222.836	13.295 11.846 10.552	22.293 19.84 17.66	35.588 31.686 28.212	
823.24922.692923.33222.8361023.40522.964	13.295 11.846 10.552 9.3975	22.293 19.84	35.588 31.686	
8 23.249 22.692 9 23.332 22.836 10 23.405 22.964 11 23.47 23.078	13.295 11.846 10.552 9.3975 8.3684	22.293 19.84 17.66 15.722 13.998	35.588 31.686 28.212 25.1195 22.3664	
823.24922.692923.33222.8361023.40522.964	13.295 11.846 10.552 9.3975	22.293 19.84 17.66 15.722	35.588 31.686 28.212 25.1195	
8 23.249 22.692 9 23.332 22.836 10 23.405 22.964 11 23.47 23.078 12 23.528 23.179	13.295 11.846 10.552 9.3975 8.3684 7.4515	22.293 19.84 17.66 15.722 13.998 12.463	35.588 31.686 28.212 25.1195 22.3664 19.9145	
823.24922.692923.33222.8361023.40522.9641123.4723.0781223.52823.1791323.5823.269	13.295 11.846 10.552 9.3975 8.3684 7.4515 6.6348	22.293 19.84 17.66 15.722 13.998 12.463 11.096	35.588 31.686 28.212 25.1195 22.3664 19.9145 17.7308	
823.24922.692923.33222.8361023.40522.9641123.4723.0781223.52823.1791323.5823.2691423.62623.35	13.295 11.846 10.552 9.3975 8.3684 7.4515 6.6348 5.9074	22.293 19.84 17.66 15.722 13.998 12.463 11.096 9.8796	35.588 31.686 28.212 25.1195 22.3664 19.9145 17.7308 15.787	

T room =		24	T pipe =		18	
h room=		10	h pipe =		4300	
charging w	ithout radia	tion				
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	
1	23.58	23.02	4.0232	28.116	32.1392	395.21
2	23.054	21.989	9.4541	30.715	40.1691	246.18
3	22.618	21.296	13.9	34.241	48.141	179.29
4	22.309	20.868	17.022	36.773	53.795	143.84
5	22.102	20.609	19.098	38.366	57.464	124.08
6	21.968	20.452	20.449	39.34	59.789	112.1
7	21.881	20.356	21.318	39.934	61.252	104.78
8	21.826	20.297	21.874	40.295	62.169	100.28
9	21.79	20.261	22.228	40.517	62.745	97.5
10	21.768	20.239	22.453	40.653	63.106	95.78
11	21.754	20.225	22.596	40.738	63.334	94.711
12	21.745	20.216	22.687	40.79	63.477	94.045
13	21.739	20.211	22.744	40.822	63.566	93.629
14	21.735	20.208	22.781	40.842	63.623	93.369
15	21.733	20.206	22.803	40.855	63.658	93.206
16	21.732	20.204	22.818	40.863	63.681	93.104
Total			308.2483	613.86	922.1083	2161.104
	g without ra	diation	308.2483	613.86	922.1083	2161.104
	g without ra T floor	diation Tceiling	308.2483 q floor	613.86 q ceiling	922.1083 qc +qf	2161.104
discharging	-					2161.104
discharging Time	T floor	Tceiling	q floor	q ceiling	qc +qf	2161.104
discharging Time 0	T floor 21.732	Tceiling 20.204	q floor 22.818	q ceiling 40.863	qc +qf 63.681	2161.104
discharging Time 0 1	T floor 21.732 21.814	Tceiling 20.204 20.413	q floor 22.818 22.036	q ceiling 40.863 36.762	qc + qf 63.681 58.798	2161.104
discharging Time 0 1 2	T floor 21.732 21.814 21.951	Tceiling 20.204 20.413 20.709	q floor 22.818 22.036 20.65	q ceiling 40.863 36.762 33.316	qc + qf 63.681 58.798 53.966	2161.104
discharging Time 0 1 2 3	T floor 21.732 21.814 21.951 22.106	Tceiling 20.204 20.413 20.709 20.998	q floor 22.818 22.036 20.65 19.082	q ceiling 40.863 36.762 33.316 30.241	qc + qf 63.681 58.798 53.966 49.323	2161.104
discharging Time 0 1 2 3 4	T floor 21.732 21.814 21.951 22.106 22.26	Tceiling 20.204 20.413 20.709 20.998 21.263	q floor 22.818 22.036 20.65 19.082 17.532	q ceiling 40.863 36.762 33.316 30.241 27.543	qc + qf 63.681 58.798 53.966 49.323 45.075	2161.104
discharging Time 0 1 2 3 4 5	T floor 21.732 21.814 21.951 22.106 22.26 22.405	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503	q floor 22.818 22.036 20.65 19.082 17.532 16.068	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194	2161.104
discharging Time 0 1 2 3 4 5 5 6	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.54	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65	2161.104
discharging Time 0 1 2 3 4 5 6 7	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.54 22.664	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72 21.917	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709 13.456	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941 20.956	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65 34.412	2161.104
discharging Time 0 1 2 3 4 5 6 7 8	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.54 22.664 22.779	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72 21.917 22.097	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709 13.456 12.306	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941 20.956 19.148	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65 34.412 31.454	2161.104
discharging Time 0 1 2 3 4 4 5 6 6 7 7 8 9	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.54 22.664 22.664 22.779 22.883	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72 21.917 22.097 22.261	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709 13.456 12.306 11.252	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941 20.956 19.148 17.499	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65 34.412 31.454 28.751	2161.104
discharging Time 0 1 2 3 3 4 5 6 7 7 8 9 9 10	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.54 22.664 22.779 22.883 22.979	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72 21.917 22.097 22.261 22.41	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709 13.456 12.306 11.252 10.287	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941 20.956 19.148 17.499 15.994	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65 34.412 31.454 28.751 26.281	2161.104
discharging Time 0 1 2 3 4 4 5 6 6 7 7 8 8 9 10 11	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.54 22.664 22.779 22.883 22.979 23.067	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72 21.917 22.097 22.261 22.41 22.547	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709 13.456 12.306 11.252 10.287 9.4047	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941 20.956 19.148 17.499 15.994 14.618	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65 34.412 31.454 28.751 26.281 24.0227	2161.104
discharging Time 0 1 2 3 4 4 5 6 7 7 8 9 10 11 11 12	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.54 22.664 22.779 22.883 22.979 23.067 23.147	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72 21.917 22.097 22.261 22.41 22.547 22.672	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709 13.456 12.306 11.252 10.287 9.4047 8.5973	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941 20.956 19.148 17.499 15.994 14.618 13.362	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65 34.412 31.454 28.751 26.281 24.0227 21.9593	2161.104
discharging Time 0 1 2 3 4 4 5 6 7 7 8 8 9 10 11 11 12 13	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.54 22.664 22.779 22.883 22.979 23.067 23.147 23.22	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72 21.917 22.097 22.261 22.41 22.547 22.672 22.786	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709 13.456 12.306 11.252 10.287 9.4047 8.5973 7.8591	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941 20.956 19.148 17.499 15.994 14.618 13.362 12.214	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65 34.412 31.454 28.751 26.281 24.0227 21.9593 20.0731	2161.104
discharging Time 0 1 2 3 3 4 4 5 6 7 7 8 9 10 11 11 12 13 14	T floor 21.732 21.814 21.951 22.106 22.26 22.405 22.405 22.54 22.664 22.779 22.883 22.979 23.067 23.147 23.22	Tceiling 20.204 20.413 20.709 20.998 21.263 21.503 21.72 21.917 22.097 22.261 22.41 22.547 22.672 22.786 22.89	q floor 22.818 22.036 20.65 19.082 17.532 16.068 14.709 13.456 12.306 11.252 10.287 9.4047 8.5973 7.8591 7.1842	q ceiling 40.863 36.762 33.316 30.241 27.543 25.126 22.941 20.956 19.148 17.499 15.994 14.618 13.362 12.214 11.165	qc + qf 63.681 58.798 53.966 49.323 45.075 41.194 37.65 34.412 31.454 28.751 26.281 24.0227 21.9593 20.0731 18.3492	2161.104

			_		I	
concrete emissivity =		0.85	T room =	24	T pipe =	10
wood pine emissivity = Charging with radiation		0.95	h room =	2	h pipe =	4300
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	920.89
1	22.898	21.549	7.996	60.901	68.897	570.3
2	21.485	18.921	19.065	60.563	79.628	410.38
3	20.288	17.099	28.211	64.29	92.501	314.44
4	19.416	15.939	34.712	67.54	102.252	257.65
5	18.821	15.213	39.102	69.738	108.84	225.26
6	18.425	14.76	42.008	71.144	113.152	204.93
7	18.165	14.476	43.914	72.032	115.946	192.11
8	17.995	14.298	45.157	72.59	117.747	184
9	17.885	14.185	45.966	72.94	118.906	178.86
10	17.813	14.114	46.49	73.161	119.651	175.59
11	17.766	14.068	46.83	73.301	120.131	173.5
12	17.736	14.039	47.05	73.389	120.439	172.17
13	17.717	14.021	47.192	73.445	120.637	171.32
14	17.704	14.009	47.284	73.481	120.765	170.78
15	17.696	14.002	47.343	73.504	120.847	170.43
16	17.691	13.997	47.381	73.518	120.899	
Total		•	635.701	1125.537	1761.24	4492.61
discharging with radiat	ion	1		1		
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	17.691	13.997	47.381	73.518	120.899	
1	17.871	14.422	46.148	66.852	113	
2	18.177	15.04	43.878	61.851	105.729	
3	18.529	15.661	41.263	57.397	98.66	
4	18.885	16.243	38.63	53.434	92.064	
5	19.227	16.783	36.093	49.815	85.908	
6	19.55	17.283	33.689	46.45	80.139	
7	19.853	17.747	31.428	43.316	74.744	
8	20.137	18.178	29.308	40.393	69.701	
9	20.402	18.579	27.324	37.665	64.989	
10	20.649	18.952	25.47	35.119	60.589	
11	20.88	19.3	23.738	32.742	56.48	
12	21.095	19.624	22.122	30.522	52.644	
<u> 13 14 </u>	21.295	19.925	20.613 19.205	28.45	49.063 45.722	
14	21.481 21.655	20.206 20.467	19.205	26.517 24.712	45.722	
15	21.855	20.467	17.892	23.028	39.696	
Total	•		520.85	731.781	1252.63	1
			-			3

T room=		24	T pipe =		10	
h room=		2	h pipe =		4300	
	/ithout radia	tion				I
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	g pipe surface
0	24	24	0	0	0	q pipe surface
1	22.428	21.21	2.6375	51.921	54.5585	917.56
2	20.289	18.138	7.3082	39.419	46.7272	559.39
3	18.369	15.904	11.369	33.84	45.209	389.05
4	16.89	14.407	14.37	31.089	45.459	281.84
5	15.822	13.42	16.493	29.562	46.055	210.45
6	15.07	12.771	17.972	28.666	46.638	162.19
7	14.548	12.342	18.996	28.121	47.117	129.43
8	14.188	12.058	19.701	27.779	47.48	107.15
9	13.941	11.87	20.185	27.559	47.744	92.009
10	13.771	11.744	20.517	27.415	47.932	81.714
11	13.655	11.659	20.744	27.32	48.064	75.631
12	13.576	11.603	20.899	27.257	48.156	71.892
13	13.522	11.565	21.004	27.214	48.218	69.378
15	13.486	11.539	21.004	27.185	48.261	67.684
15	13.46	11.522	21.125	27.166	48.291	66.541
16	13.443	11.511	21.159	27.152	48.311	65.77
Total			275.5557	488.665	764.2207	3347.679
dischargin	g without ra	diation			I	
Time	T floor	Tceiling	q floor	q ceiling	qc +qf	
0	13.443	11.511	21.159	27.152	48.311	
1	13.538	11.697	21.004	25.154	46.158	
2	13.718	11.982	20.632	24.186	44.818	
3	13.937	12.282	20.18	23.453	43.633	
4	14.17	12.578	19.706	22.857	42.563	
5	14.406	12.378	19.700	22.837	42.503	
6	14.64	13.144	18.763	21.727	40.49	
7	14.869	13.414	18.303	21.186	39.489	
8	15.094	13.677	17.852	20.66	38.512	
9	15.314	13.934	17.412	20.148	37.56	
10 11	15.528 15.738	14.183 14.426	16.981 16.562	19.649 19.162	36.63 35.724	
12	15.942	14.664	16.152	18.687	34.839	
13	16.141	14.895	15.752	18.225	33.977	
14 15	16.336 16.526	15.12 15.34	15.362 14.982	17.773 17.333	33.135 32.315	
15	16.711	15.34	14.982	17.333	32.315	
	10.711	10.000				
Total			304.644	356.539	661.183]

concrete emissivity =		0.85	T room =	24	T pipe =	10
wood pine emissivity =		0.95	h room =	5	h pipe =	4300
Charging with radiatio			I	[l
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	
1	23.05	21.716	9.7226	65.694	75.4166	922.27
2	21.858	19.305	22.709	71.549	94.258	574.73
3	20.872	17.677	33.268	79.453	112.721	418.84
4	20.171	16.669	40.655	85.129	125.784	335.06
5	19.702	16.057	45.555	88.705	134.26	288.65
6	19.397	15.684	48.737	90.895	139.632	260.46
7	19.2	15.457	50.782	92.232	143.014	243.2
8	19.075	15.318	52.089	93.048	145.137	232.59
9	18.995	15.232	52.921	93.549	146.47	226.03
10	18.944	15.179	53.45	93.857	147.307	221.96
11	18.912	15.146	53.786	94.047	147.833	219.44
12	18.892	15.125	53.998	94.165	148.163	217.86
13	18.879	15.112	54.133	94.239	148.372	217.80
14	18.871	15.104	54.218	94.284	148.502	216.26
15	18.866	15.099	54.271	94.313	148.584	215.87
16	18.862	15.096	54.305	94.331	148.636	215.63
Total	10.002	13.090	734.5996	1419.49	2154.09	5025.72
discharging with radia	tion		75 115550	1115115	213 1103	3023172
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	18.862	15.096	54.305	94.331	148.636	
1	19.051	15.586	52.439	84.908	137.347	
2	19.366	16.283	49.138	77.057	126.195	
3	19.72	16.966	45.407	70.025	115.432	
4	20.072	17.591	41.717	63.83	105.547	
5	20.403	18.157	38.23	58.265	96.495	
6	20.711	18.669	34.99	53.219	88.209	
7	20.994	19.135	32.003	48.625	80.628	
8	21.254	19.56	29.258	44.433	73.691	
9	21.492	19.946	26.742	40.604	67.346	
10	21.709	20.299	24.437	37.105	61.542	
11	21.908	20.621	22.328	33.905	56.233	
12	22.09	20.915	20.398	30.98	51.378	
13	22.256	21.183	18.634	28.305	46.939	
14	22.407	21.428	17.022	25.86	42.882	
15	22.546	21.652	15.547	23.624	39.171	
16	22.672	21.856	14.2	21.58	35.78	
Total			536.795	836.656	1373.45	

T room =		24	T pipe =		10]
h room=		5	h pipe =		4300	
	/ithout radia	-	ii pipe		1500	
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	919.62
1	22.718	21.421	5.9411	57.368	63.3091	566.25
2	21.041	18.635	14.71	52.61	67.32	402.62
3	19.594	16.675	22.156	53.385	75.541	302.81
4	18.522	15.407	27.564	54.908	82.472	238.53
5	17.776	14.6	31.292	56.103	87.395	199.15
6	17.272	14.087	33.808	56.922	90.73	176.45
7	16.934	13.761	35.491	57.46	92.951	161.9
8	16.709	13.552	36.609	57.807	94.416	152.53
9	16.56	13.418	37.351	58.031	95.382	146.49
10	16.462	13.332	37.841	58.174	96.015	142.57
11	16.397	13.276	38.164	58.266	96.43	140.04
12	16.354	13.24	38.377	58.325	96.702	138.39
13	16.326	13.216	38.517	58.363	96.88	137.32
14	16.308	13.201	38.609	58.387	96.996	136.62
15	16.296	13.191	38.669	58.403	97.072	136.17
16	16.288	13.185	38.709	58.413	97.122	
Total			513.8081	912.925	1426.7331	4097.46
discharging	g without ra	diation		Γ	Γ	
Time	T floor	Tceiling	q floor	q ceiling	qc +qf	
0	16.288	13.185	38.709	58.413	97.122	
1	16.451	13.538	37.956	53.499	91.455	
2	16.738	14.06	36.501	50.129	86.63	
3	17.074	14.592	34.796	47.19	81.986	
4	17.419	15.1	33.055	44.626	77.681	
5	17.757	15.577	31.355	42.232	73.587	
6	18.082	16.027	29.722	39.979	69.701	
7	18.392	16.451	28.165	37.853	66.018	
8	18.687	16.852	26.684	35.845	62.529	
9	18.967	17.231	25.277	33.946	59.223	
10	19.233	17.589	23.944	32.15	56.094	
11	19.485	17.928	22.68	30.449	53.129	
12	19.723	18.249	21.482	28.839	50.321	
13	19.949	18.553	20.347	27.314	47.661	
14	20.163	18.841	19.272	25.87	45.142	
15	20.366	19.114	18.253	24.502	42.755	
16 Total	20.558	19.372	17.288 465.486	23.207 636.043	40.495 1101.529	
TULdi			405.480	050.043	1101.529	J

			r			
concrete emissivity =		0.85	T room =	24	T pipe =	18
wood pine emissivity =		0.95	h room =	2	h pipe =	4300
Charging with radiatio		Tasilian				
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	394.67
1	23.528	22.949	3.4269	26.101	29.5279	244.44
2	22.924	21.826	8.1896	26.049	34.2386	175.95
3	22.414	21.05	12.14	27.772	39.912	134.91
4	22.044	20.557	14.952	29.259	44.211	110.94
5	21.792	20.249	16.853	30.261	47.114	97.184
6	21.625	20.058	18.11	30.901	49.011	88.572
7	21.516	19.938	18.933	31.304	50.237	83.155
8	21.444	19.863	19.47	31.556	51.026	79.735
9	21.398	19.816	19.818	31.715	51.533	77.57
10	21.368	19.786	20.044	31.815	51.859	76.196
11	21.348	19.767	20.19	31.878	52.068	75.322
12	21.336	19.755	20.284	31.917	52.201	74.765
13	21.328	19.747	20.345	31.943	52.288	74.41
14	21.322	19.743	20.384	31.959	52.343	74.183
15	21.319	19.739	20.409	31.969	52.378	74.038
16	21.317	19.737	20.426	31.975	52.401	
Total			273.9745	488.374	762.349	1541.37
discharging with radia		Tasiling	a floor		and of	
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	21.317 21.394	19.737 19.921	20.426 19.882	31.975 29.045	52.401 48.927	
2	21.594	20.186	19.882	29.043	45.706	
3	21.676	20.453	17.739	24.842	42.581	
4	21.827	20.702	16.587	23.086	39.673	
5	21.974	20.933	15.48	23.080	36.965	
6	22.111	20.333	14.434	20.004	34.438	
7	22.241	21.147	13.452	18.628	32.08	
8	22.362	21.529	12.533	17.349	29.882	
9	22.475	21.7	11.674	16.158	27.832	
10	22.58	21.86	10.873	15.049	25.922	
10	22.678	22.008	10.126	14.016	24.142	
12	22.769	22.145	9.4293	13.053	22.4823	
13	22.854	22.274	8.7803	12.156	20.9363	
14	22.934	22.393	8.1756	11.32	19.4956	
15	23.007	22.504	7.6123	10.542	18.1543	
16	23.076	22.608	7.0875	9.8162	16.9037	
Total			223.176	315.3452	538.521	l

T room =		24	T pipe =		18	
h room=		24	h pipe =		4300	
	vithout radia					
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	393.24
1	23.326	22.804	1.1306	22.252	23.3826	239.74
2	22.41	21.488	3.1322	16.894	20.0262	166.73
3	21.587	20.53	4.8723	14.503	19.3753	120.79
4	20.953	19.889	6.1585	13.324	19.4825	90.193
5	20.495	19.466	7.0683	12.669	19.7373	69.512
6	20.173	19.188	7.7025	12.285	19.9875	55.47
7	19.949	19.004	8.1411	12.052	20.1931	45.923
8	19.795	18.882	8.4432	11.905	20.3482	39.433
9	19.689	18.801	8.6508	11.811	20.4618	35.02
10	19.616	18.747	8.793	11.75	20.543	32.413
11	19.567	18.711	8.8902	11.709	20.5992	30.811
12	19.533	18.687	8.9565	11.682	20.6385	29.733
13	19.51	18.671	9.0018	11.663	20.6648	29.007
14	19.494	18.66	9.0327	11.651	20.6837	28.518
15	19.483	18.652	9.0537	11.642	20.6957	28.187
16	19.476	18.647	9.068	11.637	20.705	
Total			118.0954	209.429	327.5244	1434.72
discharging	g without ra			Γ	Γ	
Time	T floor	Tceiling	q floor	q ceiling	qc +qf	
0	19.476	18.647	9.068	11.637	20.705	
1	19.516	18.727	9.0018	10.78	19.7818	
2	19.593	18.849	8.8425	10.366	19.2085	
3	19.687	18.978	8.6484	10.051	18.6994	
4	19.787	19.105	8.4454	9.7959	18.2413	
5	19.888	19.228	8.2421	9.55	17.7921	
6	19.988	19.347	8.0412	9.3116	17.3528	
7	20.087	19.463	7.844	9.0799	16.9239	
8	20.183	19.576	7.6509	8.8544	16.5053	
9	20.277	19.686	7.4621	8.6348	16.0969	
10	20.369	19.793	7.2778	8.4208	15.6986	
11	20.459	19.897	7.0978	8.2122	15.31	
12	20.547	19.999	6.9223	8.0088	14.9311	
13	20.632	20.098	6.751	7.8105	14.5615	
		1	1	7 64 74	14 201	
14	20.715	20.194	6.5839	7.6171	14.201	
15	20.797	20.289	6.421	7.4285	13.8495	

			_			
concrete emissivity =	_	0.85	T room =	24 2	T pipe =	20
wood pine emissivity = Charging with radiatio		0.95	h room =	Ζ	h pipe =	4300
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	263.11
1	23.685	23.3	2.2846	17.4	19.6846	162.96
2	23.283	22.551	5.4629	17.382	22.8449	117.31
3	22.943	22.034	8.1013	18.552	26.6533	89.963
4	22.698	21.706	9.9809	19.558	29.5389	74.046
5	22.53	21.502	11.251	20.236	31.487	64.897
6	22.419	21.375	12.091	20.669	32.76	59.172
7	22.346	21.296	12.641	20.941	33.582	55.574
8	22.299	21.246	12.999	21.112	34.111	53.303
9	22.268	21.214	13.232	21.219	34.451	51.867
10	22.248	21.195	13.382	21.287	34.669	50.955
11	22.235	21.182	13.48	21.329	34.809	50.376
12	22.227	21.174	13.543	21.356	34.899	50.007
13	22.222	21.169	13.583	21.373	34.956	49.772
14	22.218	21.166	13.609	21.384	34.993	49.621
15	22.216	21.164	13.626	21.391	35.017	49.525
16	22.215	21.162	13.637	21.395	35.032	
Total			182.9037	326.584	509.488	1029.348
discharging with radia	tion					
Time						
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	T floor 22.215	Tceiling 21.162	q floor 13.637	q ceiling 21.395	qc + qf 35.032	
			· ·			
0	22.215	21.162	13.637	21.395	35.032	
0	22.215 22.266	21.162 21.285	13.637 13.272	21.395 19.429	35.032 32.701	
0 1 2	22.215 22.266 22.353	21.162 21.285 21.462	13.637 13.272 12.603	21.395 19.429 17.933	35.032 32.701 30.536	
0 1 2 3	22.215 22.266 22.353 22.454	21.162 21.285 21.462 21.64	13.637 13.272 12.603 11.835	21.395 19.429 17.933 16.602	35.032 32.701 30.536 28.437	
0 1 2 3 4	22.215 22.266 22.353 22.454 22.555	21.162 21.285 21.462 21.64 21.806	13.637 13.272 12.603 11.835 11.063	21.395 19.429 17.933 16.602 15.421	35.032 32.701 30.536 28.437 26.484	
0 1 2 3 4 5 6 7	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938	
0 1 2 3 4 5 6	22.215 22.266 22.353 22.454 22.555 22.652 22.744	21.162 21.285 21.462 21.64 21.806 21.96 22.102	13.637 13.272 12.603 11.835 11.063 10.322 9.6219	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429 11.572	35.032 32.701 30.536 28.437 26.484 24.668 22.9739	
0 1 2 3 4 5 6 7	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938	
0 1 2 3 4 5 6 7 8	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83 22.911	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234 22.357	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648 8.3503	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429 11.572	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938 19.9223	
0 1 2 3 4 5 6 7 8 9	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83 22.911 22.986	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234 22.357 22.471	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648 8.3503 7.7765	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429 11.572 10.774	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938 19.9223 18.5505	
0 1 2 3 4 5 6 7 7 8 9 10	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83 22.911 22.986 23.056	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234 22.357 22.471 22.577	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648 8.3503 7.7765 7.2414	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429 11.572 10.774 10.032	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938 19.9223 18.5505 17.2734	
0 1 2 3 4 5 6 7 8 9 10 11	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83 22.911 22.986 23.056 23.121	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234 22.357 22.471 22.577 22.675	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648 8.3503 7.7765 7.2414 6.7425	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429 11.572 10.774 10.032 9.341	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938 19.9223 18.5505 17.2734 16.0835	
0 1 2 3 4 5 6 7 7 8 9 10 10 11 12	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83 22.911 22.986 23.056 23.121 23.182	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234 22.357 22.471 22.577 22.675 22.767	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648 8.3503 7.7765 7.2414 6.7425 6.2776	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429 11.572 10.774 10.032 9.341 8.6973	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938 19.9223 18.5505 17.2734 16.0835 14.9749	
0 1 2 3 4 5 6 7 7 8 9 9 10 10 11 12 13	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83 22.911 22.986 23.056 23.121 23.182 23.239	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234 22.357 22.471 22.577 22.675 22.767 22.852	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648 8.3503 7.7765 7.2414 6.7425 6.2776 5.8446	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429 11.572 10.774 10.032 9.341 8.6973 8.0978	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938 19.9223 18.5505 17.2734 16.0835 14.9749 13.9424	
0 1 2 3 4 5 6 7 7 8 9 10 10 11 12 12 13 14	22.215 22.266 22.353 22.454 22.555 22.652 22.744 22.83 22.911 22.986 23.056 23.121 23.182 23.239 23.291	21.162 21.285 21.462 21.64 21.806 21.96 22.102 22.234 22.357 22.471 22.577 22.675 22.767 22.852 22.932	13.637 13.272 12.603 11.835 11.063 10.322 9.6219 8.9648 8.3503 7.7765 7.2414 6.7425 6.2776 5.8446 5.4412	21.395 19.429 17.933 16.602 15.421 14.346 13.352 12.429 11.572 10.774 10.032 9.341 8.6973 8.0978 7.5395	35.032 32.701 30.536 28.437 26.484 24.668 22.9739 21.3938 19.9223 18.5505 17.2734 16.0835 14.9749 13.9424 12.9807	

T room =		24	T pipe =		20	
h room=		2	h pipe =		4300	
charging	without radia	ation		1	1	
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0		24	0	0	0	262.16
1		23.203	0.75371	14.835	15.58871	159.82
2		22.325	2.0882	11.262	13.3502	111.16
3		21.687	3.2482	9.6685	12.9167	80.525
4		21.259	4.1057	8.8827	12.9884	60.129
5		20.977	4.7124	8.4464	13.1588	46.341
6		20.792	5.135	8.1903	13.3253	36.98
7		20.669	5.4275	8.0346	13.4621	30.615
8	21.197	20.588	5.6288	7.9369	13.5657	26.288
9	21.126	20.534	5.7672	7.8744	13.6416	23.347
10	21.078	20.498	5.862	7.8332	13.6952	21.609
11	21.044	20.474	5.9268	7.8059	13.7327	20.541
12	21.022	20.458	5.9711	7.7879	13.759	19.822
13	21.006	20.447	6.0012	7.7755	13.7767	19.338
14	20.996	20.44	6.0218	7.7673	13.7891	19.012
15	20.989	20.435	6.0359	7.7617	13.7976	18.791
16	20.984	20.432	6.0454	7.7578	13.8032	
Total			78.73091	139.6201	218.35101	956.478
	ng without ra	1	0			
Time	T floor	Tceiling	q floor	q ceiling	qc +qf	
0		20.432	6.0454	7.7578	13.8032	
1	-	20.485	6.0012	7.187	13.1882	
2	21.062	20.566	5.895	6.9103	12.8053	
3	21.125	20.652	5.7656	6.7008	12.4664	
4	21.192	20.737	5.6303	6.5306	12.1609	
5	21.259	20.819	5.4947	6.3666	11.8613	
6	21.326	20.898	5.3608	6.2077	11.5685	
7	21.391	20.975	5.2293	6.0533	11.2826	
8	21.455	21.051	5.1006	5.903	11.0036	
9	21.518	21.124	4.9747	5.7566	10.7313	
10	21.579	21.195	4.8519	5.6139	10.4658	
11		21.265	4.7319	5.4748	10.2067	
12		21.332	4.6149	5.3392	9.9541	
13		21.399	4.5007	5.207	9.7077	
14		21.463	4.3893	5.0781	9.4674	
15		21.526	4.2807	4.9524	9.2331	
1 10	21.004	21.520	7.2007	7.5524	5.2551	
16	21 017	21 5 97	1 1717	1 8200		
16 Total	21.917	21.587	4.1747 87.0417	4.8298 101.8689	9.0045 188.9106	

concrete emissivity =		0.85	T room =	24	T pipe =	20
wood pine emissivity =	=	0.85	h room =	24 10	h pipe =	4300
Charging with radiatio		0.55	ii tooin –	10	n pipe -	
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	264.03
1	23.779	23.415	3.3562	20.784	24.1402	165.87
2	23.51	22.811	7.6749	24.888	32.5629	125.17
3	23.294	22.42	11.114	28.65	39.764	105.61
4	23.145	22.188	13.469	31.078	44.547	94.338
5	23.047	22.053	14.996	32.519	47.515	87.732
6	22.986	21.973	15.964	33.363	49.327	83.827
7	22.947	21.927	16.571	33.857	50.428	81.5
8	22.923	21.899	16.949	34.149	51.098	80.106
9	22.908	21.882	17.184	34.322	51.506	79.267
10	22.899	21.872	17.329	34.426	51.755	78.76
11	22.893	21.866	17.419	34.488	51.907	78.452
12	22.89	21.863	17.474	34.525	51.999	78.265
13	22.888	21.861	17.509	34.548	52.057	78.151
14	22.886	21.859	17.53	34.562	52.092	78.082
15	22.885	21.858	17.543	34.57	52.113	78.039
16	22.885	21.858	17.55	34.575	52.125	
Total		1	239.6321	515.304	754.936	1373.169
discharging with radia	tion					
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	22.885	21.858	17.55	34.575	52.125	
1	22.938	22.012	16.756	30.639	47.395	
	23.024	22.225	15.402	27.058	42.46	
3	23.118	22.427	13.911	23.89	37.801	
4	23.21	22.605	12.47	21.166	33.636	
5	23.294 23.37	22.761 22.899	<u>11.142</u> 9.94	18.793 16.705	29.935 26.645	
7	23.439	23.021	8.86	14.859	23.719	
8	23.5	23.129	7.8937	13.223	21.1167	
9	23.555	23.225	7.0308	11.769	18.7998	
10	23.604	23.31	6.2612	10.477	16.7382	
11	23.647	23.386	5.5753	9.327	14.9023	
12	23.686	23.453	4.9642	8.3037	13.2679	
13	23.72	23.513	4.4199	7.3928	11.8127	
14	23.751	23.567	3.9352	6.5819	10.5171	
15 16	23.778 23.803	23.614 23.657	3.5036 3.1192	5.8599 5.2171	9.3635 8.3363	
Total	23.003	23.037	152.7341	265.8364	418.571	
			192.7941	205.0504	410.371	l

T room =		24	T pipe =		20	
h room=		10	h pipe =		4300	
	/ithout radia					
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	24	24	0	0	0	263.48
1	23.72	23.346	2.6821	18.744	21.4261	164.12
2	23.369	22.659	6.3028	20.477	26.7798	119.52
3	23.079	22.197	9.2666	22.827	32.0936	95.895
4	22.873	21.912	11.348	24.515	35.863	82.72
5	22.735	21.739	12.732	25.577	38.309	74.731
6	22.645	21.634	13.633	26.227	39.86	69.85
7	22.587	21.571	14.212	26.623	40.835	66.851
8	22.55	21.532	14.583	26.864	41.447	65
9	22.527	21.507	14.819	27.011	41.83	63.854
10	22.512	21.493	14.969	27.102	42.071	63.141
11	22.503	21.483	15.064	27.158	42.222	62.697
12	22.497	21.478	15.125	27.193	42.318	62.42
13	22.493	21.474	15.163	27.215	42.378	62.246
14	22.49	21.472	15.187	27.228	42.415	62.137
15	22.489	21.47	15.202	27.237	42.439	62.069
16	22.488	21.47	15.212	27.242	42.454	
Total			205.5005	409.24	614.7405	1440.731
dischargin	g without ra	diation				
Time	T floor	Tceiling	q floor	q ceiling	qc +qf	
0	22.488	21.47	15.212	27.242	42.454	
1	22.543	21.608	14.691	24.508	39.199	
2	22.634	21.806	13.766	22.21	35.976	
3	22.737	21.999	12.721	20.161	32.882	
4	22.84	22.175	11.688	18.362	30.05	
5	22.937	22.335	10.712	16.751	27.463	
6	23.027	22.48	9.8057	15.294	25.0997	
7	23.11	22.611	8.9707	13.971	22.9417	
8	23.186	22.731	8.2041	12.765	20.9691	
9	23.255	22.841	7.5015	11.666	19.1675	
10	23.319	22.94	6.8583	10.662	17.5203	
11	23.378	23.031	6.2698	9.7456	16.0154	
12	23.431	23.115	5.7316	8.908	14.6396	
13	23.48	23.191	5.2394	8.1426	13.382	
14	23.525	23.26	4.7895	7.443	12.2325	
15	23.565	23.324	4.3781	6.8036	11.1817	
16	23.603	23.382	4.0021	6.2191	10.2212	
Total			150.5408	240.8539	391.3947	
				= 10.00000	221.00 //	

concrete em =0.85	T room =24	T pipe = 10	T pipe = 10
wood em =0.95	h pipe = 4300	h room =10	h room =10
Time[h]	70% Heat extr	slab capacity+ radiation	slab capacity no radiation
1	5733.221667	78299.66088	63506.37654
2	5620.600417	80048.61612	65060.0424
3	4787.121111	81111.0996	66035.12364
4	4818.7125	81758.42244	66646.93932
5	4817.481667	82154.46384	67031.145
6	4387.305417	82398.00654	67271.95638
7	5251.760694	82744.88418	67640.22936
8	12614.60569	70298.71416	62454.36312
9	20561.27597	63104.41728	57320.39196
10	22916.88583	56279.30382	52389.90414
11	24009.04528	50136.10992	47877.30828
12	24918.42597	44656.62678	43755.7464
13	25661.23389	39777.1236	39990.62178
14	26142.07944	35432.0487	36552.34512
15	26010.38028	31562.22348	33409.96146
16	26008.53403	28114.84242	30538.88892
17	24056.02208	25043.01786	27915.00084
18	23078.94556	22307.14566	25516.90188
19	15537.42458	19868.53212	23324.56236
20	13962.98361	38462.44824	34137.90376
21	7008.570139	51797.66292	42666.40494
22	6692.040833	63174.06594	51133.95216
23	6435.617222	70735.72536	57139.66962
24	6641.781806	75430.40922	61037.26326

Table used to generate slab cooling graph

concrete em =0.85	T room = 24	T pipe = 18c	T pipe= 18c
wood em =0.95	h pipe = 4300	h room =10	h room = 10
Time[h]	70% Heat extr	slab capacity+ radiation	slab capacity no radiation
1	5733.221667	32420.7684	27217.14858
2	5620.600417	33656.6907	27883.13544
3	4787.121111	34407.8037	28300.57218
4	4818.7125	34864.84458	28562.7789
5	4817.481667	35143.89444	28727.11332
6	4387.305417	35313.6915	28830.90348
7	5251.760694	35566.79382	28988.86482
8	12614.60569	32342.92578	26766.02556
9	20561.27597	28981.12608	24566.40252
10	22916.88583	25805.05614	22452.81606
11	24009.04528	22966.30422	20519.0415
12	24918.42597	20441.19888	18752.33268
13	25661.23389	18196.96428	17139.033
14	26142.07944	16200.36936	15665.03064
15	26010.38028	14424.10092	14318.48988
16	26008.53403	12842.66664	13088.03022
17	24056.02208	11434.89879	11963.63682
18	23078.94556	10181.63261	10935.61349
19	15537.42458	9065.47869	9996.312546
20	13962.98361	16483.65277	14630.40662
21	7008.570139	22227.93738	18285.7777
22	6692.040833	27136.57464	21914.74602
23	6435.617222	30396.86028	24488.5599
24	6641.781806	32420.7684	26158.76208

concrete em =0.85	h pipe = 4300	T pipe = 10	T pipe = 10	T pipe = 10
wood em =0.95	T room = 24 c	h room =10	h room =10	h room =5
Time	70% Heat extr	slab capacity+ radiation	slab capacity no radiation	slab capacity+ radiation
1	5733.221667	52780.93812	21448.60074	63563.27904
2	5620.600417	53600.78934	21613.8456	65102.83308
3	4787.121111	54128.38932	21734.02368	66069.26514
4	4818.7125	54467.52822	21819.60504	66676.0734
5	4817.481667	54686.03382	21879.69408	67057.09254
6	4387.305417	54826.24158	21921.57432	67296.53826
7	5251.760694	51439.86	21012.04476	67662.07992
8	12614.60569	48129.95538	20402.04996	62523.10134
9	20561.27597	44912.0052	19862.61426	57446.4879
10	22916.88583	41909.37408	19375.52886	52546.95504
11	24009.04528	39107.03976	18898.00308	48047.10534
12	24918.42597	36480.87558	18431.8578	43926.4539
13	25661.23389	34024.96368	17976.18258	40154.50098
14	26142.07944	31729.28922	17531.43264	36703.47816
15	26010.38028	29584.29258	17098.0632	33545.61702
16	26008.53403	27581.32458	16674.7086	30657.24612
17	24056.02208	25710.8256	16262.27928	28015.14924
18	23078.94556	23964.60168	15859.40958	25598.38626
19	15537.42458	22334.45886	15467.00994	23388.29316
20	13962.98361	36248.25816	21271.15598	34331.14465
21	7008.570139	42108.30522	20580.04098	42908.12676
22	6692.040833	46547.15544	20693.84598	51312.85362
23	6435.617222	49546.1448	20965.1571	57259.39248
24	6641.781806	51509.05344	21230.55036	61117.8372

concrete em				
=0.85	h pipe = 4300	T pipe = 10	T pipe = 10	T pipe = 10
wood em =0.95	T room = 24 c	h room =5	h room =2	h room =2
	70% Heat	slab capacity no	slab capacity+	slab capacity no
Time	extr	radiation	radiation	radiation
1	5733.221667	41302.1106	51509.05344	21230.55036
2	5620.600417	42313.15422	52780.93812	21448.60074
3	4787.121111	42980.05152	53600.78934	21613.8456
4	4818.7125	43419.79404	54128.38932	21734.02368
5	4817.481667	43707.9483	54467.52822	21819.60504
6	4387.305417	43896.8646	54686.03382	21879.69408
7	5251.760694	44211.87684	55035.64278	21992.13342
8	12614.60569	41632.1451	51439.86	21012.04476
9	20561.27597	39435.7086	48129.95538	20402.04996
10	22916.88583	37321.66692	44912.0052	19862.61426
11	24009.04528	35361.94482	41909.37408	19375.52886
12	24918.42597	33498.27414	39107.03976	18898.00308
13	25661.23389	31729.28922	36480.87558	18431.8578
14	26142.07944	30052.71396	34024.96368	17976.18258
15	26010.38028	28464.45138	31729.28922	17531.43264
16	26008.53403	26959.49406	29584.29258	17098.0632
17	24056.02208	25535.11068	27581.32458	16674.7086
18	23078.94556	24185.38338	25710.8256	16262.27928
19	15537.42458	22907.12562	23964.60168	15859.40958
20	13962.98361	28819.5685	31363.29234	24836.12037
21	7008.570139	30645.4104	36248.25816	21271.15598
22	6692.040833	34387.77402	42108.30522	20580.04098
23	6435.617222	37542.90384	46547.15544	20693.84598
24	6641.781806	39783.9519	49546.1448	20965.1571

concrete em =0.85	h pipe = 4300				
wood em =0.95	T room = 24 c	Ti=18 h=2	Ti=18 h=2	Ti=20 h=2	Ti=20 h=2
		slab capacity+	slab capacity no	slab capacity+	slab capacity no
Time[h]	70% Heat extr	radiation	radiation	radiation	radiation
1	5733.221667	22310.78742	9098.70975	14913.0072	6065.943066
2	5620.600417	22868.88714	9192.302982	15287.19804	6128.217162
3	4787.121111	23228.05572	9262.907604	15528.00942	6175.377954
4	4818.7125	23458.85226	9314.620596	15682.78422	6209.929152
5	4817.481667	23607.25398	9351.58446	15782.02218	6234.328944
6	4387.305417	23702.39496	9377.167824	15845.75298	6251.399694
7	5251.760694	23853.98322	9425.3301	15947.26704	6283.492704
8	12614.60569	22272.54894	9005.070996	14886.14922	6003.532404
9	20561.27597	20806.28532	8744.09337	13900.59792	5829.228666
10	22916.88583	19383.72282	8512.340868	12945.09114	5674.954608
11	24009.04528	18059.94306	8303.804586	12056.04648	5535.884898
12	24918.42597	16827.2073	8099.319762	11229.36696	5399.500986
13	25661.23389	15676.86636	7899.341616	10458.17876	5266.21257
14	26142.07944	14603.4576	7704.097758	9738.885636	5136.065172
15	26010.38028	13602.88404	7513.542666	9069.029406	5009.058792
16	26008.53403	12669.68304	7327.630818	8444.55861	4885.102386
17	24056.02208	11800.21284	7146.316692	7863.197148	4764.241476
18	23078.94556	10989.92124	6969.4182	7321.53087	4646.293974
19	15537.42458	10234.39261	6796.935342	6816.873978	4531.305402
20	13962.98361	13441.69064	10644.22717	8960.823612	7096.292566
21	7008.570139	15586.09549	9116.326764	10399.45538	6077.278044
22	6692.040833	18168.74064	8820.024066	12133.11523	5879.940174
23	6435.617222	20125.73142	8868.82365	13446.69806	5912.579448
24	6641.781806	21447.23508	8984.813706	14333.51214	5990.148936

	T 24	T · 20	T : 20
concrete em =0.85	T room =24	T pipe =20	T pipe =20
wood em =0.95	h pipe =4300	h room =10	h room =10
Time	70% Heat avtr	slab capacity+ radiation	slab capacity no radiation
	70% Heat extr		
1	5733.221667	22454.63694	18145.0692
2	5620.600417	22955.83416	18588.9087
3	4787.121111	23260.83156	18867.50334
4	4818.7125	23446.56132	19041.8526
5	4817.481667	23559.9111	19151.56062
6	4387.305417	23629.10454	19220.29884
7	5251.760694	23728.3425	19325.90988
8	12614.60569	21575.1519	17844.16878
9	20561.27597	19328.6412	16376.99472
10	22916.88583	17207.77122	14968.54404
11	24009.04528	15311.77992	13679.361
12	24918.42597	13627.0107	12501.70686
13	25661.23389	12129.3369	11425.88543
14	26142.07944	10797.36318	10443.52067
15	26010.38028	9612.744174	9545.553702
16	26008.53403	8558.044956	8725.42935
17	24056.02208	7619.563404	7975.590966
18	23078.94556	6783.825006	7290.530388
19	15537.42458	6039.813438	6664.238712
20	13962.98361	10989.10184	9753.589242
21	7008.570139	14823.28334	12190.70056
22	6692.040833	18101.36808	14609.64859
23	6435.617222	20278.68534	16325.55486
24	6641.781806	21629.7783	17439.02298

h=	10	A=	455.22		
Time			T Ceiling	70% Heat	
[hour]	T out [C]	T Floor [C]	[C]	Add	T space [C]
1	-5	23.31	23.896	10170.70406	24.72011964
2	-6.7	23.329	23.916	10463.49879	24.77177934
3	-7.2	23.34	23.928	10581.94599	24.79628922
4	-6.7	23.348	23.935	10577.86372	24.80334084
5	-7.2	23.352	23.94	10692.86458	24.82047219
6	-7.2	23.355	23.942	10772.45847	24.83171454
7	-7.2	23.359	23.946	10864.85303	24.84586288
8	-6.7	23.326	23.834	10346.93888	24.71647674
9	-5.6	23.275	23.707	9836.655889	24.57142879
10	-3.9	23.22	23.591	8919.787625	24.38522273
11	-2.2	23.168	23.488	7611.391278	24.1640124
12	-1.1	23.119	23.397	6605.985069	23.98358159
13	0.6	23.075	23.317	5717.815736	23.82402774
14	1.1	23.035	23.247	5282.593069	23.72122418
15	2.2	22.999	23.184	4995.378111	23.64017736
16	2.8	22.968	23.129	5439.955111	23.64600836
17	1.7	22.94	23.08	6380.496403	23.7108146
18	1.1	22.914	23.036	7443.874861	23.7926129
19	0	22.892	22.997	8831.085569	23.91447996
20	0	22.856	23.231	9050.584181	24.03758903
21	-0.6	23.036	23.529	9667.006028	24.34429496
22	-0.6	23.155	23.703	9526.260236	24.47533586
23	-1.1	23.231	23.803	9698.474333	24.58225134
24	-1.7	23.28	23.861	9669.529236	24.6325721

Data used to calculate T space: Heating

Simulation Data for Heating

concrete emissivity =		0.85	T room =	24	T pipe =	25
wood pine emissivity =	=	0.85	h room =	24 10	h pipe =	4300
Charging with radiatio		0.00		10		
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	22	22	0	0	0	
1	22.591	22.739	2.1233	10.101	12.2243	195.75
2	22.856	23.231	1.9096	12.414	14.3236	119.54
3	23.036	23.529	4.7762	15.358	20.1342	85.246
4	23.155	23.703	6.6922	17.321	24.0132	67.78
5	23.231	23.803	7.9262	18.493	26.4192	58.619
6	23.28	23.861	8.7072	19.18	27.8872	53.263
7	23.31	23.896	9.1968	19.583	28.7798	50.101
8	23.329	23.916	9.502	19.821	29.323	48.22
9	23.34	23.928	9.6914	19.961	29.6524	47.094
10	23.348	23.935	9.8087	20.045	29.8537	46.417
11	23.352	23.94	9.8812	20.096	29.9772	46.008
12	23.355	23.942	9.926	20.126	30.052	45.76
13	23.357	23.944	9.9535	20.145	30.0985	45.61
14	23.358	23.945	9.9705	20.156	30.1265	45.518
15	23.358	23.945	9.9809	20.163	30.1439	45.462
16	23.359	23.946	9.9874	20.167	30.1544	45.428
Total			130.0331	293.13	423.1631	1045.816
discharging with radia	T					
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	23.359	23.946	9.9874	20.167	30.1544	
1	23.326	23.834	9.5289	17.881	27.4099	
2	23.275	23.707	8.7471	15.799	24.5461	
3	23.22	23.591	7.8851	13.962	21.8471	
4	23.168	23.488	7.0528	12.384	19.4368	
5	23.119	23.397	6.2856	11.01	17.2956	
6	23.075	23.317	5.5911	9.8023	15.3934	
7	23.035	23.247	4.9673	8.7354	13.7027	
8	22.999	23.184	4.4092	7.7899	12.1991	
9	22.968	23.129	3.911	6.9503	10.8613	
<u> 10 11 </u>	22.94 22.914	23.08 23.036	3.4667 3.0707	6.204 5.5402	9.6707 8.6109	
11	22.914	22.997	2.7179	4.9494	7.6673	
13	22.872	22.962	2.4037	4.4236	6.8273	
14	22.854	22.931	2.1238	3.9555	6.0793	
15	22.838	22.903	1.8746	3.5388	5.4134	
16	22.824	22.879	1.6527	3.1677	4.8204	
Total			85.6756	156.2601	241.9357	

-			_ .]	
T room =		24	T pipe =	25		
h room =		10	h pipe =	4300		
	ithout radia		a floor		and the of	
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	22	22	0	0	0	197.61
1	22.225	22.609	2.0116	14.058	16.0696	123.09
2	22.492	23.105	4.7271	15.358	20.0851	89.643
3	22.707	23.427	6.95	17.121	24.071	71.922
4	22.858	23.624	8.5111	18.387	26.8981	62.04
5	22.959	23.743	9.5493	19.183	28.7323	56.048
6	23.025	23.815	10.225	19.67	29.895	52.387
7	23.067	23.859	10.659	19.967	30.626	50.138
8	23.094	23.886	10.937	20.148	31.085	48.75
9	23.111	23.903	11.114	20.259	31.373	47.89
10	23.122	23.913	11.227	20.327	31.554	47.356
11	23.129	23.919	11.298	20.369	31.667	47.023
12	23.133	23.923	11.343	20.395	31.738	46.815
13	23.136	23.926	11.372	20.411	31.783	46.685
14	23.138	23.927	11.39	20.421	31.811	46.603
15	23.139	23.928	11.402	20.427	31.829	46.552
16	23.14	23.929	11.409	20.431	31.84	
Total			154.1251	306.932	461.0571	1080.552
dischargin	g without ra		1	1	1	
Time	T floor	Tceiling	q floor	q ceiling	qc +qf	
0	23.14	23.929	11.409	20.431	31.84	
1	23.096	23.801	11.018	18.381	29.399	
2	23.026	23.648	10.325	16.658	26.983	
3	22.948	23.503	9.5409	15.121	24.6619	
4	22.871	23.371	8.766	13.771	22.537	
5	22.798	23.251	8.0339	12.563	20.5969	
6	22.73	23.142	7.3543	11.471	18.8253	
7	22.668	23.043	6.728	10.478	17.206	
8	22.611	22.953	6.153	9.5741	15.7271	
9	22.559	22.871	5.6261	8.7495	14.3756	
10	22.511	22.796	5.1437	7.9968	13.1405	
11	22.467	22.728	4.7023	7.3092	12.0115	
12	22.427	22.665	4.2987	6.681	10.9797	
13	22.39	22.608	3.9296	6.1069	10.0365	
14	22.357	22.556	3.5921	5.5823	9.1744	
15	22.326	22.508	3.2836	5.1027	8.3863	
16	22.298	22.464	3.0016	4.6644	7.666	
Total			112.9058	180.6409	293.5467	

					I	
concrete emissivity =		0.85	T room =	24	T pipe =	30
wood pine emissivity =		0.95	h room =	10	h pipe =	4300
Charging with radiatio Time	n T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
	22	22	0	9 cening 0	<u>qc + q</u> i 0	
0	22.888	23.666	2.289	35.599	37.888	525.79 326.86
2	23.495	23.000	11.493	43.451	54.944	240.19
3	23.94	25.626	18.666	51.235	69.901	199.92
4	24.241	26.062	23.532	56.293	79.825	176.74
5	24.241	26.315	26.679	59.293	85.976	163.18
6	24.558	26.463	28.672	61.053	89.725	155.18
7	24.635	26.549	29.921	62.082	92.003	150.42
8	24.683	26.6	30.699	62.688	93.387	147.58
9	24.713	26.631	31.182	63.048	94.23	145.86
10	24.731	26.649	31.481	63.262	94.743	144.83
11	24.742	26.66	31.665	63.39	95.055	144.2
12	24.749	26.667	31.779	63.468	95.247	143.82
13	24.754	26.671	31.849	63.515	95.364	143.59
14	24.756	26.673	31.892	63.543	95.435	143.45
15	24.758	26.675	31.919	63.56	95.479	143.36
16	24.759	26.676	31.935	63.571	95.506	
Total			425.653	939.055	1364.708	2569.18
discharging with radiat	tion					
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	24.759	26.676	31.935	63.571	95.506	
1	24.656	26.324	30.477	56.312	86.789	
2	24.496	25.922	27.994	49.693	77.687	
3	24.322	25.555	25.259	43.855	69.114	
4	24.155	25.23	22.621	38.846	61.467	
5	24.001	24.944	20.191	34.487	54.678	
6	23.861	24.693	17.991	30.659	48.65	
7	23.736	24.47	16.017	27.279	43.296	
8	23.624	24.273	14.252	24.285	38.537	
9	23.524	24.098	12.676	21.628	34.304	
10	23.435	23.942	11.272	19.266	30.538	
11	23.356	23.804	10.02	17.167	27.187	
12	23.285	23.681	8.9056	15.299	24.2046	
13	23.222	23.571	7.913	13.637	21.55	
14	23.166	23.473	7.0292	12.158	19.1872	
15	23.116	23.386	6.2422	10.842	17.0842	
16	23.071	23.309	5.5416	9.6698	15.2114	
Total			276.3366	488.6538	764.9904	

Тиссия		24	Taina		20]
T room = h room =		24 10	T pipe = h pipe =		30 4300	
	/ithout radia		ii pipe –		4300	
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	22	22	0	0	0	526.95
1	22.599	23.623	5.3643	37.489	42.8533	328.25
2	23.311	24.946	12.606	40.953	53.559	239.05
3	23.885	25.804	18.533	45.654	64.187	191.79
4	24.289	26.33	22.696	49.03	71.726	165.44
5	24.557	26.648	25.465	51.154	76.619	149.46
6	24.732	26.841	27.265	52.454	79.719	139.7
7	24.845	26.958	28.424	53.245	81.669	133.7
8	24.917	27.03	29.165	53.727	82.892	130
9	24.963	27.074	29.638	54.023	83.661	127.71
10	24.992	27.101	29.938	54.205	84.143	126.28
11	25.011	27.118	30.129	54.317	84.446	125.39
12	25.022	27.129	30.249	54.386	84.635	124.84
13	25.03	27.135	30.326	54.429	84.755	124.49
14	25.034	27.139	30.374	54.456	84.83	124.27
15	25.037	27.142	30.405	54.473	84.878	124.14
16	25.039	27.143	30.424	54.484	84.908	
Total	_0.000		411.0013	818.479	1229.48	2881.46
	g without ra	diation	11110010	0101175	1223110	2001110
Time	T floor	Tceiling	q floor	q ceiling	qc +qf	
0	25.039	27.143	30.424	54.484	84.908	
1	24.923	26.801	29.382	49.016	78.398	
2	24.735	26.394	27.533	44.421	71.954	
3	24.527	26.008	25.443	40.322	65.765	
4	24.322	25.655	23.376	36.724	60.1	
5	24.128	25.335	21.424	33.502	54.926	
6	23.948	25.045	19.611	30.588	50.199	
7	23.782	24.782	17.941	27.941	45.882	
8	23.629	24.542	16.408	25.531	41.939	
9	23.49	24.323	15.003	23.332	38.335	
10	23.362	24.123	13.717	21.325	35.042	
11	23.245	23.94	12.54	19.491	32.031	
12	23.138	23.774	11.463	17.816	29.279	
13	23.041	23.621	10.479	16.285	26.764	
14	22.951	23.482	9.579	14.886	24.465	
15	22.87	23.355	8.7563	13.607	22.3633	
16	22.795	23.238	8.0042	12.438	20.4422	
Total			301.0835	481.709	782.7925	

concrete emissivity =		0.85	T room =	24	T pipe =	27
wood pine emissivity =	=	0.95	h room =	10	h pipe =	4300
Charging with radiatio	n					
Time	T floor	T ceiling	q floor	q ceiling	qc + qf	q pipe surface
0	22	22	0	0	0	330.03
1	22.297	22.926	4.1818	25.933	30.1148	207.31
2	22.639	23.65	9.5727	31.065	40.6377	156.41
3	22.907	24.1	13.871	35.797	49.668	131.99
4	23.089	24.364	16.816	38.854	55.67	117.91
5	23.208	24.518	18.726	40.668	59.394	109.68
6	23.283	24.608	19.936	41.729	61.665	104.81
7	23.33	24.661	20.695	42.351	63.046	101.92
8	23.359	24.692	21.168	42.718	63.886	100.18
9	23.377	24.71	21.462	42.935	64.397	99.138
10	23.388	24.721	21.643	43.065	64.708	98.507
11	23.395	24.728	21.756	43.143	64.899	98.125
12	23.4	24.732	21.825	43.19	65.015	97.893
13	23.402	24.735	21.867	43.218	65.085	97.751
14	23.404	24.736	21.894	43.235	65.129	97.665
15	23.405	24.737	21.91	43.246	65.156	97.612
16	23.405	24.738	21.92	43.252	65.172	
Total			299.2435	644.399	943.6425	2046.931
discharging with radia			_			
Time	T floor	Tceiling	q floor	q ceiling	qc + qf	
0	23.405	24.738	21.92	43.252	65.172	
1	23.335	24.497	20.925	38.313	59.238	
2	23.225	24.223	19.233	33.814	53.047	
3	23.106	23.972	17.369	29.842	47.211	
4	22.991	23.749	15.569	26.432	42.001	
5	22.886	23.554	13.911	23.463	37.374	
5	22.886 22.79	23.554 23.381				
			13.911	23.463	37.374	
6	22.79	23.381	13.911 12.411	23.463 20.854	37.374 33.265	
6 7	22.79 22.705	23.381 23.229	13.911 12.411 11.063	23.463 20.854 18.549	37.374 33.265 29.612	
6 7 8 9 10	22.79 22.705 22.628 22.559 22.498	23.381 23.229 23.094 22.974 22.867	13.911 12.411 11.063 9.8574 8.7812 7.8214	23.463 20.854 18.549 16.506 14.692 13.08	37.374 33.265 29.612 26.3634 23.4732 20.9014	
6 7 8 9 10 11	22.79 22.705 22.628 22.559 22.498 22.444	23.381 23.229 23.094 22.974 22.867 22.772	13.911 12.411 11.063 9.8574 8.7812 7.8214 6.9661	23.463 20.854 18.549 16.506 14.692 13.08 11.646	37.374 33.265 29.612 26.3634 23.4732 20.9014 18.6121	
6 7 8 9 10 11 12	22.79 22.705 22.628 22.559 22.498 22.444 22.395	23.381 23.229 23.094 22.974 22.867 22.772 22.688	13.911 12.411 11.063 9.8574 8.7812 7.8214 6.9661 6.2041	23.463 20.854 18.549 16.506 14.692 13.08 11.646 10.37	37.374 33.265 29.612 26.3634 23.4732 20.9014 18.6121 16.5741	
6 7 8 9 10 11 12 13	22.79 22.705 22.628 22.559 22.498 22.444 22.395 22.352	23.381 23.229 23.094 22.974 22.867 22.772 22.688 22.612	13.911 12.411 11.063 9.8574 8.7812 7.8214 6.9661 6.2041 5.5253	23.463 20.854 18.549 16.506 14.692 13.08 11.646 10.37 9.2347	37.374 33.265 29.612 26.3634 23.4732 20.9014 18.6121 16.5741 14.76	
6 7 8 9 10 11 12 13 14	22.79 22.705 22.628 22.559 22.498 22.444 22.395 22.352 22.314	23.381 23.229 23.094 22.974 22.867 22.772 22.688 22.612 22.545	13.911 12.411 11.063 9.8574 8.7812 7.8214 6.9661 6.2041 5.5253 4.9207	23.463 20.854 18.549 16.506 14.692 13.08 11.646 10.37 9.2347 8.2236	37.374 33.265 29.612 26.3634 23.4732 20.9014 18.6121 16.5741 14.76 13.1443	
6 7 8 9 10 11 12 13	22.79 22.705 22.628 22.559 22.498 22.444 22.395 22.352	23.381 23.229 23.094 22.974 22.867 22.772 22.688 22.612	13.911 12.411 11.063 9.8574 8.7812 7.8214 6.9661 6.2041 5.5253	23.463 20.854 18.549 16.506 14.692 13.08 11.646 10.37 9.2347	37.374 33.265 29.612 26.3634 23.4732 20.9014 18.6121 16.5741 14.76	

h room = 10 h pipe = 4300 charging witwout rational methods Tellion Tellion Tellion q floor q ceiling qc+qf q pipe surface 11 22.374 23.014 3.3526 23.43 26.7826 329.34 22 22.819 23.841 7.8785 25.596 33.4745 205.15 3 23.178 24.378 11.583 28.534 40.117 149.44 4 23.43 24.706 14.185 30.644 44.829 119.87 5 23.598 24.905 15.915 31.971 47.886 103.4 6 23.778 25.099 17.765 33.278 51.043 87.313 7 23.872 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.778 78.824 11 23.882 25.209 18.954 34.018 52.979 78.024 11 <td< th=""><th>T room =</th><th></th><th>24</th><th>T pipe =</th><th></th><th>27</th><th></th></td<>	T room =		24	T pipe =		27	
charging without radiation r<<							
Time T floor T ceiling q floor q ceiling q c, +qf q pipe surface 0 22 22 0 0 0 0 1 22.374 23.014 3.3526 23.43 26.7826 329.34 2 22.819 23.841 7.8785 25.596 33.4745 205.15 3 23.178 24.378 11.583 26.534 40.117 149.4 4 23.43 24.706 14.185 30.644 44.829 119.87 5 23.598 24.706 17.041 32.784 49.825 93.414 6 23.778 25.099 17.765 33.278 51.043 87.313 8 23.822 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.205 18.964 34.018 52.972 78.024 14 23.897 <td></td> <td>vithout radia</td> <td>_</td> <td></td> <td></td> <td></td> <td>I</td>		vithout radia	_				I
1 22.374 23.014 3.3526 23.43 26.7826 329.34 2 22.819 23.841 7.8785 25.596 33.4745 205.15 3 23.178 24.378 11.583 28.534 40.117 149.4 4 23.43 24.706 14.185 30.644 44.829 119.87 5 23.598 24.905 15.915 31.971 47.886 103.4 6 23.708 25.026 17.041 32.784 49.825 93.414 7 23.778 25.099 17.765 33.278 51.043 87.313 8 23.823 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.899 79.817 11 23.889 25.205 18.906 33.991 52.897 78.926 12 23.892 25.215 19.015 34.035 53.019 77.808 14 23		1		q floor	q ceiling	qc + qf	q pipe surface
2 22.819 23.841 7.8785 25.596 33.4745 205.15 3 23.178 24.378 11.583 28.534 40.117 149.4 4 23.43 24.706 14.185 30.644 44.829 119.87 5 23.598 24.905 15.915 31.971 47.886 103.4 6 23.708 25.026 17.041 32.784 49.825 93.414 7 23.778 25.099 17.765 33.278 51.043 87.313 8 23.823 25.171 18.524 33.764 52.288 83.564 9 23.852 25.171 18.524 33.764 52.889 79.817 11 23.882 25.188 18.711 33.878 52.897 78.371 13 23.894 25.205 18.906 33.991 52.897 78.024 14 23.897 25.212 18.913 34.045 53.019 77.672 16	0	22	22	0	0	0	
3 23.178 24.378 11.583 28.534 40.117 149.4 4 23.43 24.706 14.185 30.644 44.829 119.87 5 23.598 24.905 15.915 31.971 47.886 103.4 6 23.708 25.026 17.041 32.784 49.825 93.414 7 23.778 25.099 17.765 33.278 51.043 87.313 8 23.823 25.144 18.228 33.579 51.807 83.564 9 23.852 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.897 78.371 11 23.889 25.205 18.906 33.991 52.897 78.371 13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.215 19.003 34.046 53.068 77.637 15 23	1	22.374	23.014	3.3526	23.43	26.7826	329.34
4 23.43 24.706 14.185 30.644 44.829 119.87 5 23.598 24.905 15.915 31.971 47.886 103.4 6 23.708 25.026 17.041 32.784 49.825 93.414 7 23.778 25.099 17.765 33.278 51.043 87.313 8 23.823 25.144 18.228 33.579 51.807 83.564 9 23.852 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.199 18.83 33.948 52.778 78.926 12 23.889 25.205 18.906 33.991 52.897 78.371 13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.212 18.903 34.046 53.049 77.587 Total 23.92 52.515 19.015 34.053 53.068 77.587	2	22.819	23.841	7.8785	25.596	33.4745	205.15
5 23.598 24.905 15.915 31.971 47.886 103.4 6 23.708 25.026 17.041 32.784 49.825 93.444 7 23.778 25.099 17.765 33.278 51.043 87.313 8 23.823 25.144 18.228 33.579 51.807 83.564 9 23.852 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.199 18.83 33.948 52.778 78.926 12 23.889 25.205 18.906 33.991 52.897 78.371 13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.212 18.984 34.035 53.019 77.628 16 23.9 25.215 19.015 34.053 53.068 77.87 170al Teoiling q floor q ceiling qc + qf 1471.566 12	3	23.178	24.378	11.583	28.534	40.117	149.4
6 23.708 25.026 17.041 32.784 49.825 93.414 7 23.778 25.099 17.765 33.278 51.043 87.313 8 23.823 25.144 18.228 33.579 51.807 83.564 9 23.852 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.09 18.906 33.991 52.897 78.371 13 23.894 25.205 18.906 33.991 52.897 78.371 13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.215 19.015 34.053 53.068 77.587 Total	4	23.43	24.706	14.185	30.644	44.829	119.87
7 23.778 25.099 17.765 33.278 51.043 87.313 8 23.823 25.144 18.228 33.579 51.807 83.564 9 23.852 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.059 18.906 33.914 52.778 78.926 12 23.889 25.205 18.906 33.914 52.977 78.024 14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.215 19.015 34.053 53.068 77.587 Total 23.92 25.215 19.015 34.053 53.068 77.587 16 23.9 25.215 19.015 34.053 53.068 77.587 Total Tceiling q floor q ceiling qc + qf 1471.566 11 23.827 25.011 18.364 30.635 48.999 2 23.709<	5	23.598	24.905	15.915	31.971	47.886	103.4
7 23.778 25.099 17.765 33.278 51.043 87.313 8 23.823 25.144 18.228 33.579 51.807 83.564 9 23.852 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.059 18.906 33.914 52.778 78.926 12 23.889 25.205 18.906 33.914 52.977 78.024 14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.215 19.015 34.053 53.068 77.587 Total 23.92 25.215 19.015 34.053 53.068 77.587 16 23.9 25.215 19.015 34.053 53.068 77.587 Total Tceiling q floor q ceiling qc + qf 1471.566 11 23.827 25.011 18.364 30.635 48.999 2 23.709<	6	23.708	25.026	17.041	32.784	49.825	93.414
8 23.823 25.144 18.228 33.579 51.807 83.564 9 23.852 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.05 18.906 33.991 52.897 78.371 13 23.894 25.029 18.954 34.018 52.972 78.024 14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.215 19.003 34.046 53.049 77.672 16 23.9 25.215 19.015 34.053 53.068 77.587 70tal 23.99 25.215 19.015 34.053 53.068 77.587 13 23.97 25.215 19.015 34.053 53.068 77.587 70tal 7160r Tceiling q floor q ceiling qc + qf 14 23.827	7						
9 23.852 25.171 18.524 33.764 52.288 81.25 10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.199 18.83 33.948 52.778 78.926 12 23.889 25.205 18.906 33.991 52.897 78.371 13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.212 18.984 34.035 53.019 77.630 15 23.898 25.215 19.005 34.053 53.068 77.587 Total 25.8751 511.549 768.4241 1471.566 discharging without ratiation 7 7 7 18.364 30.635 48.999 2 23.709 24.746 17.208 27.763 44.971 3 23.579 24.505 15.902 25.201 41.103 4 23.451 24.284 14.61 22.952 37.562 5 23.33 24.085 13.39 20.	8			18.228			
10 23.87 25.188 18.711 33.878 52.589 79.817 11 23.882 25.199 18.83 33.948 52.778 78.926 12 23.889 25.205 18.906 33.991 52.897 78.371 13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.214 19.003 34.046 53.049 77.672 16 23.9 25.215 19.015 34.053 53.068 77.587 Total 23.9 25.215 19.015 34.053 53.068 14171.566 discharging without radiation Treelling q floor q ceiling qc + qf 1471.566 1 23.827 25.001 18.364 30.635 48.999 2 2 23.709 24.765 15.902 25.01 41.03 3 23.579	9		25.171	18.524			
11 23.882 25.199 18.83 33.948 52.778 78.926 12 23.889 25.205 18.906 33.991 52.897 78.371 13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.214 19.003 34.046 53.049 77.672 16 23.9 25.215 19.015 34.053 53.068 77.587 Total 25.827 25.011 18.364 30.635 48.999 2 23.709 24.746 17.208 27.763 44.971 3 23.579 24.505 15.902 25.201 41.103 4 23.451 24.284 14.61 22.952 37.562 5 23.33 24.085 13.39 20.938 34.328 6 23.217 23.903 12.257 19.118 31.375	10		25.188				
12 23.889 25.205 18.906 33.991 52.897 78.371 13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.214 19.003 34.046 53.049 77.672 16 23.9 25.215 19.015 34.053 53.068 77.587 Total 25.215 19.015 34.053 53.068 77.587 0 23.9 25.215 19.015 34.053 53.068 1 23.827 25.001 18.364 30.635 48.999 2 23.709 24.746 17.208 27.763 44.971 3 23.579 24.505 15.902 25.201 41.103 4 23.451 24.284 14.61 22.952 37.562 5 23.33 24.085 13.39 20.938 34.328 6 <td></td> <td>23.882</td> <td></td> <td></td> <td></td> <td></td> <td></td>		23.882					
13 23.894 25.209 18.954 34.018 52.972 78.024 14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.214 19.003 34.046 53.049 77.672 16 23.9 25.215 19.015 34.053 53.068 77.587 Total 25.215 19.015 34.053 53.068 77.587 0 23.9 25.215 19.015 34.053 53.068 1 23.827 25.011 18.364 30.635 48.999 2 23.709 24.746 17.208 27.763 44.971 3 23.579 24.505 15.902 25.201 41.103 4 23.451 24.284 14.61 22.952 37.562 5 23.33 24.085 13.39 20.938 34.328 6 23.217 23.903 12.257 19.118 31.375 7 23.144 23.739 11.213 17.463 28.676 8 23.018							
14 23.897 25.212 18.984 34.035 53.019 77.808 15 23.898 25.214 19.003 34.046 53.049 77.672 16 23.9 25.215 19.015 34.053 53.068 77.587 Total 25.215 19.015 34.053 53.068 77.587 Total 23.9 25.215 19.015 34.053 53.068 discharging without ratiation Teiling q floor q ceiling qc + qf 0 23.9 25.215 19.015 34.053 53.068 1 23.827 25.001 18.364 30.635 48.999 2 23.709 24.746 17.208 27.763 44.971 3 23.579 24.505 15.902 25.201 41.103 4 23.451 24.284 14.61 22.952 37.562 5 23.33 24.085 13.39 20.938 34.328 6 23.217							
15 23.898 25.214 19.003 34.046 53.049 77.672 16 23.9 25.215 19.015 34.053 53.068 77.587 Total 256.875 511.549 768.4241 1471.566 dischargine without radium 7 768.4241 1471.566 dischargine without radium q floor q ceiling qc + qf 10 23.9 25.215 19.015 34.053 53.068 1 23.827 25.001 18.364 30.635 48.999 2 23.709 24.746 17.208 27.763 44.971 3 23.579 24.505 15.902 25.201 41.103 4 23.451 24.284 14.61 22.952 37.562 5 23.33 24.085 13.39 20.938 34.328 6 23.217 23.903 12.257 19.118 31.375 7 23.114 23.739 11.213 17.463 23.958	-						
16 23.9 25.215 19.015 34.053 53.068 77.587 Total 256.8751 511.549 768.4241 1471.566 discharging without ratiation T Total q floor q ceiling qc + qf 0 23.9 25.215 19.015 34.053 53.068 1 23.827 25.001 18.364 30.635 48.999 2 23.709 24.746 17.208 27.763 44.971 3 23.579 24.505 15.902 25.201 41.103 4 23.451 24.284 14.61 22.952 37.562 5 23.33 24.085 13.39 20.938 34.328 6 23.217 23.903 12.257 19.118 31.375 7 23.114 23.739 11.213 17.463 28.676 8 23.018 23.327 8.5728 13.328 21.9008 10 22.851 23.317 7.8372 12							
discharging without radiationTimeT floorTceilingq floorq ceilingqc + qf023.925.21519.01534.05353.068123.82725.00118.36430.63548.999223.70924.74617.20827.76344.971323.57924.50515.90225.20141.103423.45124.28414.6122.95237.562523.3324.08513.3920.93834.328623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.9581022.85123.2137.837212.18220.01921122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765		-					
TimeT floorTceilingq floorq ceilingqc + qf023.925.21519.01534.05353.068123.82725.00118.36430.63548.999223.70924.74617.20827.76344.971323.57924.50515.90225.20141.103423.45124.28414.6122.95237.562523.3324.08513.3920.93834.328623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.2137.837212.18220.01921122.77823.2137.847211.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.765	Total	1		256.8751	511.549	768.4241	1471.566
023.925.21519.01534.05353.068123.82725.00118.36430.63548.999223.70924.74617.20827.76344.971323.57924.50515.90225.20141.103423.45124.28414.6122.95237.562523.3324.08513.3920.93834.328623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.2137.837212.18220.01921122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	dischargir	ig without ra	diation				
123.82725.00118.36430.63548.999223.70924.74617.20827.76344.971323.57924.50515.90225.20141.103423.45124.28414.6122.95237.562523.3324.08513.3920.93834.328623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.2137.837212.18220.01921122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.49722.7745.00267.773912.7765	Time	T floor	Tceiling	q floor	q ceiling	qc +qf	
223.70924.74617.20827.76344.971323.57924.50515.90225.20141.103423.45124.28414.6122.95237.562523.3324.08513.3920.93834.328623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.3278.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	0	23.9	25.215	19.015	34.053	53.068	
323.57924.50515.90225.20141.103423.45124.28414.6122.95237.562523.3324.08513.3920.93834.328623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.2178.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	1	23.827	25.001	18.364		48.999	
423.45124.28414.6122.95237.562523.3324.08513.3920.93834.328623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.3278.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765		1	24.746			44.971	
523.3324.08513.3920.93834.328623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.3278.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765		1		15.902			
623.21723.90312.25719.11831.375723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.3278.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	4	23.451	24.284	14.61	22.952	37.562	
723.11423.73911.21317.46328.676823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.3278.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	5	23.33	24.085	13.39	20.938	34.328	
823.01823.58910.25515.95726.212922.93123.4529.376814.58323.95981022.85123.3278.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	6	23.217	23.903	12.257	19.118	31.375	
922.93123.4529.376814.58323.95981022.85123.3278.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	7	23.114	23.739	11.213	17.463	28.676	
1022.85123.3278.572813.32821.90081122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	8	23.018	23.589	10.255	15.957	26.212	
1122.77823.2137.837212.18220.01921222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	9	22.931	23.452	9.3768	14.583	23.9598	
1222.71123.1087.164511.13518.29951322.6523.0136.549310.17816.72731422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	10	22.851	23.327	8.5728	13.328	21.9008	
13 22.65 23.013 6.5493 10.178 16.7273 14 22.595 22.926 5.9869 9.3038 15.2907 15 22.543 22.847 5.4727 8.5045 13.9772 16 22.497 22.774 5.0026 7.7739 12.7765	11	22.778	23.213	7.8372	12.182	20.0192	
1422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	12	22.711	23.108	7.1645	11.135	18.2995	
1422.59522.9265.98699.303815.29071522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	13	22.65	23.013	6.5493	10.178	16.7273	
1522.54322.8475.47278.504513.97721622.49722.7745.00267.773912.7765	14		22.926				
16 22.497 22.774 5.0026 7.7739 12.7765	15						
10tai 188.1708 301.0082 489.245	Total			188.1768	301.0682	489.245	

concrete em =0.85	h pipe = 4300	T pipe = 25	T pipe = 25	T pipe = 27
wood em =0.95	T room = 22c	h room =10	h room =10	h room =10
Time	70% Heat Added	slab +radiation	slab no radiation	slab + radiation
1	10170.70406	12694.81118	13608.8019	28071.14
2	10463.49879	13101.14056	13941.56772	28699.8
3	10581.94599	13348.41606	14150.5137	29082.18
4	10577.86372	13498.36553	14281.61706	29314.8
5	10692.86458	13590.00131	14364.01188	29456.38
6	10772.45847	13646.22098	14415.45174	29543.32
7	10864.85303	13726.88597	14494.2048	29667.6
8	10346.93888	12477.53468	13383.01278	26966.32
9	9836.655889	11173.87564	12283.20126	24148.06
10	8919.787625	9945.236862	11226.59012	21491.39
11	7611.391278	8848.020096	10259.29314	19119.7
12	6605.985069	7873.303032	9376.120818	17013.39
13	5717.815736	7007.383548	8569.653066	15142.89
14	5282.593069	6237.743094	7832.51532	13479.97
15	4995.378111	5553.274302	7159.290462	12001.15
16	5439.955111	4944.280986	6544.060632	10685.47
17	6380.496403	4402.296054	5981.81841	9514.735
18	7443.874861	3919.853898	5467.87503	8472.6
19	8831.085569	3490.308306	4998.179034	7544.862
20	9050.584181	5564.745846	7315.203312	13708.86
21	9667.006028	6520.389192	9143.139222	18499.09
22	9526.260236	9165.490524	10957.60062	22609.87
23	9698.474333	10931.2889	12244.55308	25342.1
24	9669.529236	12026.54822	13079.51761	27037.34

Table used to generate Heat Graphs

concrete em				T pipe =
=0.85	h pipe = 4300	T pipe = 27	T pipe = 30	30c
-0.05	11 pipe - 4500	1 pipe - 27	1 pipe - 50	h room
wood em =0.95	T room = 22c	h room =10	h room =10	=10
				slab, no
Time	70% Heat Added	slab,no radiation	slab + radiation	radiation
1	10170.70406	22681.3365	40844.6145	36289.68
2	10463.49879	23235.79446	41881.60566	37177.36
3	10581.94599	23583.58254	42511.63014	37734.1
4	10577.86372	23802.54336	42895.3806	38084.16
5	10692.86458	23939.56458	43128.90846	38303.58
6	10772.45847	24025.60116	43270.9371	38441.51
7	10864.85303	24157.61496	43474.3312	38651.82
8	10346.93888	22305.32478	39506.3528	35688.34
9	9836.655889	20471.69862	35363.1224	32754.9
10	8919.787625	18710.90766	31460.6928	29937.54
11	7611.391278	17098.97364	27979.7784	27358.72
12	6605.985069	15626.79216	24889.4256	25003.41
13	5717.815736	14282.5275	22145.48	22851.59
14	5282.593069	13053.88872	19708.3392	20886.4
15	4995.378111	11932.22664	17542.0424	19091.47
16	5439.955111	10906.98016	15615.1808	17450.86
17	6380.496403	9969.682176	13900.8976	15951.82
18	7443.874861	9113.140224	12375.5224	14581.15
19	8831.085569	8330.29839	11017.93392	13328.39
20	9050.584181	12191.97517	17247.37536	19507.68
21	9667.006028	15238.26189	25011.60768	24381.13
22	9526.260236	18262.06074	31820.33322	29219.21
23	9698.474333	20407.05738	36337.9365	32651.11
24	9669.529236	21798.66492	39137.99472	34878.5

APPENDIX C

CHILLER PERFORMANCE DATA

								Cond	enser Ente	ring	g Air T	emperatu	re
	85				95			105			115	-	
Evaper	unit size	tons	Kw input	EER	tons	Kw input	EER	tons	Kw input	EER	tons	Kw input	EER
40	70	68.7	64.3	11.2	64.6	70.8	9.7	60.4	77.9	8	55.5	84.8	7.1
	80	78.8	75.6	11.2	74.4	83.1	9.7	69.8	91.3	8	65	100.4	7.2
	90	89.9	88.9	10.9	84.8	97	9.5	79.5	106.1	8	73.9	116.4	7
	100	99.9	101.7	10.6	94.2	110.5	9.3	88.2	120.5	8	81.9	131.9	6.9
	110	108	110.7	10.6	102	120.3	9.3	95.2	131.2	8	88.4	143.6	6.9
	125	119	122	10.8	112	132.3	9.4	105	144.1	8	97.5	157.5	7
42	70	71.1	65.1	11.5	66.9	71.6	10	62.6	78.7	9	57.1	84.8	7.3
	80	81.6	76.8	11.4	77.1	84.2	9.9	72.3	92.5	9	67.4	101.6	7.3
	90	93	90.3	11.1	87.8	98.4	9.7	82.3	107.5	8	76.5	117.8	7.2
	100	103	103.3	10.8	97.4	112	9.5	91.2	122.1	8	84.7		7.1
	110	111	112.4	10.8	105	121.9	9.5	98.4	132.9	8	91.5		7
	125	123	124	11	116	134.2	9.6	109	146.1	8			
44	70	73.5	65.9	11.8	69.3	72.4	10	64.9	79.6	9	58.6	84.8	7.5
	80	84.5	78	11.7	79.8	85.4	10	74.9	93.7	9			
	90	96.1	91.7	11.3	90.8	99.8	9.9	85.1	108.9	9	79.2		
	100	107	104.9	11	101	113.6	9.7	94.3	123.7	8	87.6		7.2
	110	115	114.2	11	109	123.7	9.7	102	134.6	8	94.6		7.2
	125	127	126	11.1	120	136.2	9.8	112	148.1	9	104		
46	70	76	66.8	12	71.7	73.2	11	67.2	80.5	9	60.2	84.8	7.7
	80	87.4	79.2	11.9	82.6	86.6	10	77.6	94.9	9	72.4		7.7
	90	99.4	93.1	11.6	93.8	101.2	10	88	110.4	9			
	100	110	106.6	11.2	104	115.3	9.9	97.4	125.3	9			7.4
	110	119	116	11.2	112	125.5	9.9	105	136.4	9	97.7		
	125	131	128	11.3	124	138.3	10	116	150.1	9	107	162.1	7.4
48	70	78.5	67.6	12.3	74.1	74.1	11	69.5	81.4	9	61.8	84.8	7.9
	80	90.4	80.4		85.4	87.9	11	80.3		9			
	90	103		11.8	96.9	102.7	10						
	100	114	108.3		107	117	10						
	110	122	117.8		116	127.3	10					1	
	125	136	130.2		128		10						7.5
50	70	81.1	68.5	12.6	76.5	75	11	71.8	82.3	10	63.4	84.8	8.1
20	80	93.4	81.7	12.4	88.3	89.1	11	83					
	90	106	96.2	12	100	104.2	11	93.9	113.3				
	100	117	110.1	11.6	111	118.7	10	-				1	
	110	126	119.7	11.6	119	129.2	10	112	140.1				
	125	140			132	142.6	10						

Ahmad Shelbaya graduated from the University of Florida in 2009 with Bachelor of Engineering degrees in Aerospace Engineering and Mechanical Engineering. His work experience at the University included extensive labwork as well as a position as a laboratory teaching assistant. His main interests during his undergraduate years were 3D CAD design, dynamic analysis, Finite Element Analysis, modeling and control systems.

Subsequent to earning his Bachelors' degrees, Ahmad pursued a Masters in Mechanical Engineer from the University of Tennessee at Chattanooga where he was pleased to choose the energy concentration under the experienced advisement of Dr. Prakash Dhamshala, Ph.D. P.E. Ahmad has actively used his extensive undergraduate design and analysis experience in heat transfer and thermodynamics applications. He also served as a graduate assistant in the department of Mechanical Engineering.

Prior to and intermittently during his Master's program, Ahmad accepted a position as a construction project manager. He was successful in this role which included management of all phases of construction.

Ahmad currently resides in Atlanta, Georgia with his wife. His personal hobbies include physical fitness, home-remodeling, and building computers.

VITA