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ABSTRACT

An approach for desigining arterial stents to maximize wall shear stress is presented. A

cost equation to maximize wall shear stress is derived and then inverted into a minimization

problem for the optimizer. A 2-D mixed-element finite-volume scheme for solving the

compressible Navier-Stokes equations is implemented. A paramaterization of the cross-

sectional shape of the stent wire using Hicks-Henne functions is described. The strategies

used in the commercial optimization software, DAKOTA, to minimize the cost equation are

described. The solver is validated using well known fluid flow test cases and is shown to match

other published computed results for bloodflow through stented arteries. New candidate stent

shapes are produced by the optimization and are evaluated based on comparison to modern

commercial stent designs.
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LIST OF MEDICAL TERMINOLOGY

atherosclerosis - The condition in which fat, cholesterol, and other substances builds up on
the arterial walls to form plaques which can eventually block the artery and cause other
problems throughout the circulatory system.

percutaneous coronary intervention (PCI) - Also known as coronary angioplasty or angio-
plasty is a non-surgical procedure used to treat stenotic (narrowed) arteries. A deflated
angioplasty balloon is inserted into the artery and inflated where the blockage is, removing
the plaque and restoring blood flow through the artery. The damage to the arterial wall
from the plaque and the inflation of the balloon often necessitate the use of an stent.

stent - A cylindrical, mesh-like, metal or plastic tube which is inserted into a damaged blood
vessel to help maintain the structure of the vessel walls.

stenosis - A narrowing of the of the opening of a blood vessel.

restenosis - The condition in which plaque reforms in a blood vessel that has been treated
for atherosclerosis.

in-stent restenosis - The condition in which plaque build up on top of the stent after
treatment for atherosclerosis.

intima - The inner lining of a blood vessel. It is made up of the endothelium, the
subendothelial layer, and an elastic layer.

endothelium - The thin layer of cells which lines the interior of blood vessels. These cells are
called endothelial cells.

endothelialization - The formation of endothelial tissue. When this process is complete, the
injurt to the blood vessel is considered to have been healed.

(neointimal) hyperplasia - The thickening of the intima of a blood vessel as a response to
injury.
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elastic recoil - In relation to blood vessels, elastic recoil is the tendency of the blood vessel
wall to revert to the deformed shape after injury.

smooth muscle cells - The cellular components of the blood vessel wall responsible for
providing structural integrity. In response to injury, the smooth muscle cells (SMCs) also
synthesize extracellular matrix molecules, migrate, and proliferate.

extracellular matrix - Molecules which help maintain the structure of the vessel wall. They
aid in the formation of scar tissue, but in excess can lead to fibrosis.

fibrosis - The reparative or reactive response to injury resulting in the formation of connective
tissue. This refers both to normal scarring and also the pathological depositing of excess
connective tissue.

thrombosis - The formation of a thrombus (otherwise known as a blood clot) within a blood
vessel which obstructs the flow of blood.

systole - The contraction of the heart, during which time blood is forced into the aorta and
pulmonary artery.

diastole - The dilatation of the heart after systole in which the chambers of the heart fill
with blood.

hematocrit - The volume percentage of red blood cells in blood.

erythrocytes - The red blood cells.
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CHAPTER 1

INTRODUCTION

Atherosclerosis is the major cardiovascular cause of death in the Western world and is

a major cause of heart attack and stroke [1]. It is characterized by the accumulation of

lipids on the inner layer (intima) of arteries causing inflammation, fibrosis, and hyperplasia

of the endothelium [1, 2]. Atherosclerosis can alter the flow of blood downstream by creating

a stenosis (a narrowing of the arterial opening), by causing the formation of a thrombus

(a blood clot) which is carried downstream to a narrower part of the artery and forms a

blockage there, and by damaging the structural integrity of the vessel wall [1]. Although

this process can occur anywhere throughout the body, this build up of cellular material most

often occurs at bends and branches in the arterial tree [2]. Atherosclerosis does not usually

occur in areas that have high wall shear stress (WSS), but instead prefers areas that have

low average shear stress, secondary flows, or variable shear stress over a cardiac cycle [1].

Percutaneous coronary intervention (PCI) has become the most widely used treatment

for atherosclerosis since its introduction in the late 1970s [3]. PCI involves removing the

blockage by dilating the artery with an angioplasty balloon. Bare metal stents (BMS),

cylindrical mesh-like structures, were developed as an adjunct to PCI for management of

early complications [3]. Although the stents had success in reducing elastic recoil [3], 30-

40% of patients experienced in-stent restenosis (ISR), the condition in which scar tissue

(caused by intimal proliferation) builds and reforms the blockage on top of the stents [3].

Drug-eluting stents (DES) were developed as a solution for ISR and initially showed to be

very effective at reducing ISR [3, 4]. However DES slow the re-endothelialization of the blood

vessel and clinical studies and autopsy findings indicate that although DES may decrease
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early ISR, they inherently increase the risk of late stent thrombosis (LST) and delayed

restenosis [3, 4].

Jukema et al. sought to identify the risk factors which contribute to restenosis [5]. They

identified the inflammatory response to the endothelial injury from the balloon dilation and

the stent placement as playing a key role. Many of the risk factors they cite are either patient-

related (genetic risk factors, the presence of other arterial diseases, or hypersensitivity to

some component of the stent) or lesion-related (due to the length or complexity of the lesion).

Most research in stent design has been focused on material strength, biocompatibility,

flexibility, drug coatings, and improved methods of deployment [6]. However, it has also

been shown that the affect of the strut geometry on the local hemodynamics is such that

it creates an atherosclerosis prone environment, increasing the chances of restenosis and

thrombosis [4, 6]. Thus, it would be advantageous to create a stent design which minimizes

the stent’s affect on local hemodynamics.

The Effect of Geometry on Wall Shear Stress and Blood Flow

Any type of obstacle, whether it be blockage from atherosclerotic plaque or the presence

of a stent, affects the hemodynamics of the blood vessel. Figures 1.1 and 1.2 use the

abbreviation ESS. This stands for endothelial shear stress and is synonymous with wall shear

stress. As illustrated in 1.1B, restenosis disturbs flow in BMS and DES treated arteries in a

similar way as the initial plaque buildup in an atherosclerotic artery [4]. In either case, there

is a region of high WSS and accelerated flow as the blood travels over the obstacle and then

the flow separates from the wall, creating a recirculation zone and a region of low WSS, as

can be seen in Figure 1.1A.

These regions of low and high WSS created by the obstacle affect the particles suspended

in blood in different ways. Although high WSS is typically beneficial in the prevention of

atherosclerosis and restenosis, if the shear rates are too high, it can activate platelets to
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Figure 1.1 Role of Wall Shear Stress in In-Stent Restenosis
[4]

release thromboxane A2 (TXA2) and adenosine diphoshate (ADP), both of which promote

platelet aggregation [6], [4]. These particles pass over the obstacle and become entraped in

the recirculation zone. The low WSS in the recirculation zone suppresses the production of

nitric oxide (NO) and endothelial prostacyclin (PGI2), which are both platelet inhibitors
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Figure 1.2 The Effect of Strut Geometry on Stent Thrombogenicity
[4]

and anti-coagulants, and tissue plasminogen activator (tPA), a thrombolytic agent. It

also increases production of the coagulation factor von Willebrand Factor (vWF) [6] and

inhibits endothelial cell proliferation, which would normally produce an anti-coagulant

phenotype [4]. Altogether, this creates an environment which favors platelet aggregation and

thrombogenesis. Figure 1.2A illustrates this process in relation to flow over a rectangular

stent strut [4].

Additionally, low WSS up-regulates proinflammatory genes (adhesion molecules, chemoat-

tractant chemokines, and cytokines) which enhances the inflammation response caused

by the injury to the blood vessel [4]. Low WSS also increases production of molecules

which activate smooth muscle cell (SMC) proliferation and migration while it decreases
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production of molecules that inhibit this process (including NO and PGI2). Furthermore,

low WSS also causes these SMCs to shift into synthetic mode and produce more extracellular

matrix molecules [4]. The SMCs and the extracellular matrix molecules are the principal

elements in neointimal hyperplasia (NIH), which is principally responsible for ISR [6]. These

contributions of WSS to ISR are summarized in Figure 1.1C.

Most currently available commercial stents use a rectangular cross-sectional shape. As

can be seen in Figure 1.2A this configuration causes two recirculation zones, a small

recirculation zone at the front of the stent and a larger recirculation zone at the back of the

stent. Jimenez and Davies found that decreasing the width of rectangular cross-sectional

strut decreases the size of the recirculation zone and the area of the endothelium exposed to

recirculation, increasing the probability of endothelialization [6]. Alternatively, the design

of the stent could also be improved by using a more streamlined cross-sectional shape. As

illustrated in Figure 1.2B, the streamlined shape can reduce or even eliminate flow separation

and bring the regions of low WSS and high WSS closer to physiological levels in the vicinity

of the struts [6].

Measurements of WSS

As with many parts of the body, accurate measurements of WSS and shear rate in

living people is difficult to obtain. Katritsis et al. examined the various means currently

available for measuring wall shear stress and shear rate in blood vessels and their results

are summarized in this section. Methods of these measurements fall into 3 categories: in

vitro measurements, in vivo measurements, and computational approximations. In vitro

methods obtain measurements using models of the circulatory system [2]. These models are

often transparent glass tubes with side branches or casts of actual vessels and the methods

for obtaining measurements include flow visualization using dye injection, laser Doppler

anamometry, and particle image velocimetry [7]. Although these methods are useful in
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helping to understand the properties of the fluid itself, they do little to help visualize the

conditions within the body.

In vivo methods obtain measurements directly or indirectly, invasively or non-invasively

in living organisms. Invasive methods use probes placed inside the blood vessel to obtain

measurements of various aspects of the blood flow. These methods all disturb the natural

flow conditions within the vessel and thus actual values of WSS may be different than the

values obtained by these methods [7]. Some examples of invasive techniques include:

• Intravascular Doppler Ultrasound. This method measures flow velocities using

intravascular Doppler wires. A major disadvantage of this technique is that it can

only measure the peak value of velocity and cannot provide information at the wall [7].

If Poiseuille flow is assumed, then the Hagen-Poiseuille formula can be used with this

value of velocity and the diameter of the vessel to obtain an estimate of the WSS.

• Intravascular Ultrasound. In this method, velocity profiles are measured based on

the decorrelation of ultrasonic radio-frequency signals using miniaturized transducer

assemblies inserted into catheters [7]. The shear rate is obtained from the velocity

profile and multiplied by the viscosity to obtain the WSS. The disadvantages to this

method are that it assumes blood to be Newtonian and it cannot be used in the

coronary arteries because there are no probes available that have adequate resolution

to measure velocities there.

Noninvasive methods do not have the inherent flaw which is present in invasive methods.

However, they are often limited by the resolution of the available technology. Noninvasive

methods include:

• Ultrasound. This technique can determine the mean wall shear rate at the anterior

and posterior vessel wall, the time-averaged and peak wall shear rate over one cardiac

cycle, the value at peak systole, and the maximum change in wall shear rate within

6



the cardiac cycle [7]. However, the nearest a value can be obtained to the wall is only

250 to 300 µm, wall shear rates can only be reliably determined in relatively straight

vessels, and it cannot be applied to coronary arteries because of overlying bone and

tissue.

• Pulsed Doppler Ultrasound. This technique measures average velocities in a target

volume of a focused acoustic wave [7]. However, the smallest the target volume can be

reduced to is 1 mm3 which does not give an adequate resolution of the velocity profile.

Furthermore, this technique cannot differentiate between the slowly moving vessel wall

and slowly moving blood flowing near the vessel wall. As with the intravascular Doppler

ultrasound, assuming Poiseuille flow, the WSS can be approximated using the velocity

in the center of the vessel and the diameter of the vessel. This method also cannot be

applied to coronary arteries due to the overlying bone and tissue.

• Phase Contrast MRI. Magnetic resonance imaging is capable of examining almost any

vessel in the body, even if there is overlying bone or tissue [7]. Its limitations lie in the

pixelation of the image. A given pixel may be covered partially by moving blood and

partially by the stationary wall, making it difficult to precisely identify the boundary

between the wall and the flow of blood. The spatial resolution is only 0.5-1.0mm, so

measurements of shear rates and shear stress are not precise.

Many of the above in vitro and in vivo methods arrive at estimations for WSS and shear

rate by assuming Poiseuille flow. However, Poiseuille flow makes several assumptions about

the fluid and the nature of the flow [7]:

1. Blood behaves like a Newtonian fluid.

2. The flow is laminar and fully developed. This is valid in most parts of circulation,

but flow can become turbulent in the largest blood vessels or at sites of pathologic

deformations of arterial structure where streamlines may not be parallel to the wall.
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3. Blood does not slip at the vessel wall. This is held to be universally true for all fluids

(including blood).

4. The flow is steady. In reality, blood flow is pulsatile.

5. The vessel is cylindrical. Most arteries have approximately circular cross-section, but

many veins and the pulmonary arteries tend to be elliptical. Also, the requirement of

constant diameter is never met because individual arteries tend to become narrower as

they progress toward the periphery (veins behave in the reverse way).

6. The vessel wall is rigid. Blood vessels are distensible and their diameter changes with

transmural pressure.

Blood is considered a non-Newtonian fluid because it shows two kinds of shear-dependent

properties: 1) the apparent viscosity increases at low shear rates; and 2) in small vessels,

the apparent viscosity is smaller (at higher shear rates) than it is in larger vessels [1]. The

viscosity of blood is actually dependent on the hematocrit (Hct., a percentage representing

the concentration of erythrocytes), the shear rate, the size of the blood vessel, and blood

temperature [7]. Figure 1.3 shows the viscosity of blood as a function of shear rate for

different Hct [1]. Although the viscosity of blood varies greatly for low shear rates, it is

essentially constant for shear rates > 100s−1. Therefore, the assumption that blood is a

Newtonian fluid is valid in medium and large arteries only for rates of shear > 100s−1 [7].

The final method of obtaining measurements of WSS and shear rate is through

computational fluid dynamics (CFD) simulations. According to Katritsis et al., the

limitations of CFD when applied to blood flow come from defining the problem, rather than

from the accuracy of the numerical model [7]. Many of the assumptions made concerning

Poiseuille flow are also made in CFD simulations to simplify the problem. Comparison of

results obtained from steady-state Newtonian and non-Newtonian models revealed that the

distribution pattern of WSS is similar, but that the magnitude of the estimate depends on
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Figure 1.3 Blood Viscosity for Different Hct.
[1]

the model used [7]. Furthermore, in comparing the Newtonian and non-Newtonian models

for pulsatile flow, it was observed that the Newtonian models yielded lower WSS values

throughout the entire cardiac cycle, but that the distribution pattern of WSS was again

similar. Thus the Newtonian assumption is an adequate approximation of the distribution

pattern for WSS, but not necessarily for the magnitude. The most important limitation,

however, is that there is no accepted standard against which any of these methods can be

verified and that all methods of WSS measurement produce at best only approximations to

the actual WSS values.
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CHAPTER 2

APPROACH

The goal of this study is to use numerical methods to solve the compressible Navier-Stokes

equations and determine values for WSS and shear rate and to then use a commercially

available optimization software to find a design which will maximize shear rate (and thus

WSS) in the vicinity of the stent. The components required to accomplish this are an

optimization problem which can be phrased as a minimization problem and the optimizer.

The optimizer requires a way to change the mesh according to new design variables (the

mesh movement routine) and a way to evaluate the cost function (the flow solver). The

optimization software chosen for this study was Dakota and it further requires that the

mesh movement and the flow solver be linked together by a driver script, which it calls

whenever it requires a function evaluation.

Optimization

Dakota (Design Analysis Kit for Optimization and Terascale Applications) contains

algorithms to solve minimization problems using gradient or non-gradient based methods

[8]. In addition to specifying the optimization method, design variables, tolerances, etc., the

user also needs to provide Dakota with a means of obtaining evaluations of the cost function

(and, if applicable, the derivatives of the cost function). This is typically done through a

script which translates requests from Dakota into input for the program evaluating the cost

(such as a flow solver) and then translates the output from this program back into the format

Dakota requires. A simplified outline of this process is provided in Figure 2.1.
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Read in user specified input 
(method, strategy, interface, 

tolerance, …).

Generate 1 or more initial 
guesses if not specified by user.

Evaluate the guess(es) using the 
specified interface.

Has the specified tolerance or 
maximum number of iterations 

been me?

Generate new guess(es) based 
on specified method.

Return the best solution to the 
user.

No

Yes

Figure 2.1 Illustration of Dakota’s Optimization Process

A python script was used in this study to interface between Dakota and the flow solver.

In this implementation, the design variables were the coefficients of the basis functions used

to parametrize the shape of the stent (this is explained later in this chapter). In this case

the application of the design variables involves moving the boundary of the mesh to a new

location and smoothing the interior points. After the mesh is moved, the script makes a

system call to the flow solver and then translates the output into a format that Dakota can

11



understand. Figure 2.2 illustriates the actions performed by the driving script. Also, note

that the driving script is the “specified interface” mentioned in Figure 2.1. For an example

of the Dakota input file used in this study, refer to appendix A.

Read in the new values for the 
design variables from Dakota.

Apply the design variables.

Evaluate the cost function (and 
possibly the derivatives).

Return the cost (and 
derivatives) to Dakota.

Figure 2.2 Illustration of the Steps Performed by the Driver Script

Evolutionary Algorithms

Dakota’s evolutionary algorithm, coliny ea, was the chosen method for optimization

in this study. Evolutionary algorithms (EAs) are global optimization methods which
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are suitable for solving problems that have multiple local optima and problems in which

gradients are not available or are expensive to compute [9]. These methods are based

on Darwin’s theory of survival of the fittest and the process is illustrated in Figure 2.3.

The EA treats design points as members of a population and the design parameters as

DNA. The algorithm starts with a randomly selected population of design points within

the parameter space. Through a sequence of generations, members of the population are

ranked based on their objective function evaluation (with low objective function values being

considered the most “fit”) and only the fittest are allowed to survive and reproduce [9]. The

EA simulates evolution through mathematical analogs of natural selection, breeding, and

mutation, ultimately identifying a design point (or a family of design points) that minimize

the objective function [9].

Figure 2.3 Illustration of the Evolutionary Algorithm
[8]
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Cost Function

It has been shown that low shear rates are a contributing factor to the development

of restenosis and that blood behaves like a Newtonian fluid for shear rates > 100. Thus

a design is sought which not only maximizes the wall shear rate but also ensures that the

value everywhere along the wall is > 100. However, DAKOTA is set up to solve minimization

problems, so this maximization problem needs to be reprhased as a minimization problem.

Equation 2.1 shows the proposed cost function for minimization based on shear rate.

Cost =
∑ 1

(S∗)2
(2.1)

where the summation is over all points on the wall within an appropriate region of the stent

and S∗ is the local non-dimensional shear rate. Dimensional shear rate is given by

S = 2

√
S2

12 +
1

2
(S2

11 + S2
22) (2.2)

S12 =
1

2

(
∂u

∂y
+
∂v

∂x

)
(2.3)

S11 =
∂u

∂x
(2.4)

S22 =
∂v

∂y
(2.5)

Following the nondimensionalization provided later in this text for the flow solver, a

nondimensional shear rate can be found using

S∗12 =
1

2

(
∂u∗

∂y∗
+
∂v∗

∂y∗

)
(2.6)

S∗11 =
∂u∗

∂x∗
(2.7)

S∗22 =
∂v∗

∂y∗
(2.8)
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where the nondimensional terms are related to the dimensional terms by

S12 = S∗12

V∞
L

(2.9)

S11 = S∗11

V∞
L

(2.10)

S22 = S∗22

V∞
L

(2.11)

Substituting Equations 2.9 - 2.11 into Equation 2.2 we find

S =
V∞
L
S∗ (2.12)

for the bloodflow cases, V∞ = 0.2228 and L = 0.004. Thus for dimensional shear rate

S = 100s −1, the corresponding nondimensional shear rate is S∗ ≈ 1.79.

Notice that in the cost function provided in Equation 2.1, if S∗ >> 1 the contritubtion

to the summation is essentially zero whereas if S∗ << 1 the cost will be very high. In reality,

a valid shear distribution may have values near to 1.79 which means that designing to this

cost function cannot actually achieve a cost of zero. This actually relaxes the convergence

requirements and allows values on the order of 1.0e+00 and even 1.0e+01 to be considered

ideal. Furthermore, this function considers the entire distribution of shear rates. This is

important because, as stated in Chapter 1, the Newtonian assumption made by many flow

solvers is adequate only in the obtaining the shear distribution and not in obtaining the

actual values of shear.

Obviously, the situation which truly maximizes the shear rate is to have no stent at all

obstructing the flow. Since this is not an option, a side constraint needs to be defined to

ensure that the stent has width. Since the shape of the stent is defined by a set of points,

it is easy to approximately compute the area of the stent. The side constraint used in this

study is defined in equation 2.13 and ensures that the area of the new stent cross-sectional

shape must be greater than half the area of the commercially used square cross-sectional
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stent wires.

A > 0.00000001 mm2 (2.13)

Governing Equations

The two-dimensional Navier-Stokes equations (provided in full in [10]) are presented

below neglecting body forces and external heat:

∂ρ
∂t

+ ∇ · (ρV ) = 0 (2.14)

∂
∂t

(ρV ) + ∇ · ρV V −∇ ·Πij = 0 (2.15)

∂Et

∂t
+ ∇ · EtV + ∇ · q −∇ · (Πij · V ) = 0 (2.16)

where ∇ is the divergence operator, V is the velocity vector, ρ is the density, Et is the total

energy per unit volume, q = −k∇T is the heat transfer (T is the temperature and k is the

coefficient of thermal conductivity), and the stress tensor is represented by Πij. In the above

equations,

Et = ρ

(
e+

u2 + v2

2

)
(2.17)

Πij = −pδij + τij (2.18)

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij
∂uk
∂xk

]
(2.19)

where e is the internal energy per unit mass, u and v are the x and y components of velocity,

p is the pressure, δij is the Kroenecker delta function, and µ is the coefficient of viscosity.
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The implementation uses the following nondimensionalization [10]:

x∗ = x
L

y∗ = y
L

t∗ = t
L

V∞

u∗ = u
V∞

v = v
V∞

µ∗ = µ
µ∞

ρ∗ = ρ
ρ∞

p∗ = p
ρ∞V 2

∞
T ∗ = T

T∞
e∗ = e

V 2
∞

(2.20)

where L is the reference length, the subscript ∞ represents freestream conditions, and the

Reynolds number is given by ReL = ρ∞V∞L
µ∞

. Substituting these nondimensionalized variables

back into equations 2.14 - 2.16 and rewriting in vector form gives:

∂Q∗

∂t∗
+
∂f ∗i
∂x∗

+
∂g∗i
∂y∗

=
∂f ∗v
∂x∗

+
∂g∗v
∂y∗

(2.21)

where Q is the vector of conservative variables given by

Q∗ =



ρ∗

ρ∗u∗

ρ∗v∗

E∗t


(2.22)
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fi and gi are the inviscid fluxes given by

f ∗i =



ρ∗u∗

ρ∗u∗2 + p∗

ρ∗u∗v∗

(E∗t + p∗)u∗


(2.23)

g∗i =



ρ∗v∗

ρ∗u∗v∗

ρ∗v2∗ + p∗

(E∗t + p∗)v∗


(2.24)

and fv and gv are the viscous fluxes given by

f ∗v =



0

τ ∗xx

τ ∗xy

u∗τ ∗xx + v∗τ ∗xy − q∗x


(2.25)

g∗v =



0

τ ∗xy

τ ∗yy

u∗τ ∗xy + v∗τ ∗yy − q∗y


(2.26)

τ ∗xx =
2µ∗

3ReL

(
2
∂u∗

∂x∗
− ∂v∗

∂y∗

)
(2.27)

τ ∗yy =
2µ∗

3ReL

(
2
∂v∗

∂y∗
− ∂u∗

∂x∗

)
(2.28)

τ ∗xy =
µ∗

ReL

(
∂u∗

∂y∗
+
∂v∗

∂x∗

)
(2.29)

q∗x = − µ∗

(γ − 1)M2
∞ReLPr

∂T ∗

∂x∗
(2.30)

q∗y = − µ∗

(γ − 1)M2
∞ReLPr

∂T ∗

∂y∗
(2.31)
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The Mach number and the nondimensionalized forms of the equations of state are given by:

M∞ =
V∞√
γRT∞

(2.32)

p∗ = (γ − 1)ρ∗e∗ (2.33)

T ∗ =
γM2

∞p
∗

ρ∗
(2.34)

where R is the gas constant and γ is the ratio of specific heats.

Numerical Formulation

The nondimesionalized compressible Navier-Stokes equations given by 2.21 are discretized

in a point Gauss-Siedel implicit node-centered finite volume scheme which is 2nd order

accurate in space, 1st order accurate in time. The scheme uses Van Leer flux vector splitting

for the inviscid fluxes, central differencing for the viscous fluxes, and characteristic variable

boundary conditions. The discretized equation for the ith node is:

Ai
∆Qi

∆ti
+
∑
j

∂Fi
∂Qj

∆Qj = −
∑
j

Fij · n̂ij +
∑
j

Fvij · n̂ij (2.35)

where ∆Q is the change in Q for node i between the n and n+ 1 timesteps, ∆ti is the local

timestep for node i, ∂Fi

∂Qj
are derivatives of the inviscid flux at node i with respect to Q, Fij

and Fvij are the inviscid and viscous fluxes across the face between nodes i and j, and n̂ij is

the unit vector normal to the control volume face between nodes i and j. In two dimensions,

Ai is the area of the control volume around node i and Sij is the length of the vector that

forms the face between nodes i and j.
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Timestep Calculation

The local timestep for node i is taken to be the area of the control volume around i

divided by the sum over all edges around i of the largest eigenvalue:

∆ti =
Ai∑

j(|Ū |+ c)l
(2.36)

where Ū = un̂x + vn̂y is the contravariant velocity, c is the local speed of sound, and l is the

length of the vector n, which is normal to the face between i and j.

Van Leer Flux Vector Splitting

The inviscid flux in equation 2.35 is computed using Van Leer flux vector splitting. The

flux is split into two components, F+ and F− such that the following criteria are satisfied

[10]:

1. F (Q) = F+(Q) + F−(Q).

2. ∂F+

∂Q
contains all eigenvalues ≥ 0 and ∂F−

∂Q
contains all eigenvalues ≤ 0.

3. F± must be continuous with F+(Q) = F (Q) for Ū ≥ c and Ū
c
≥ 1 and F−(Q) = F (Q)

for Ū ≤ −c and Ū
c
≤ −1

4. The components of F+, F− exhibit the same symmetry that F exhibits (if F (Ū) =

±F (−Ū), then F+ = ±F−(−Ū)).

5. The Jacobians ∂F±

∂Q
are continuous.

6. The Jacobians ∂F±

∂Q
must have one eigenvalue vanish for |M | < 1.

7. F± must be a polynomial in Mach number of lowest possible order.
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The equations for Van Leer flux vector splitting are given below [11].

F± =



±1
4
ρc
(
Ū
c
± 1
)2

F±1

(
n̂x

γ

(
−Ū ± 2c

)
+ u
)

F±1

(
n̂y

γ

(
−Ū ± 2c

)
+ v
)

F±1

[
−(γ−1)Ū2±2(γ−1)Ūc+2c2

γ2−1
+ u2+v2

2

]


(2.37)

where Ū is the contravariant velocity Ū = un̂x+vn̂y and c is the local speed of sound. Thus,

for a given face between nodes i and j, the inviscid flux is

Fij · n̂ij = F+(Ql) + F−(Qr) (2.38)

Ql and Qr are the Q values on the left and right, respectively, and are determined by the

direction of the normal. For instance, for first order spatial accuracy when n̂ points in

the direction from node i to node j, Ql = Qi and Qr = Qj. For second order spatial

accuracy, the gradients at the nodes are involved, resulting in Ql = Qi +∇Qi · (~xm−~xi) and

Qr = Qj +∇Qj · (~xm − ~xj), where ~xi, ~xj are the coordinate vectors associated with nodes

i and j respectively and ~xm is the coordinate vector of the midpoint of the edge between i

and j.

Boundary Conditions

The computation of the fluxes requires information on the left and the right side of the

face between the nodes. These left and right states are easy to identify inside the mesh,

but this is difficult at the boundaries. For flux computation on a given boundary segment,

Ql is taken to be an average of the Q values at the boundary nodes and Qr is taken to

be the Q values at some “ghost” node just outside the boundary. Characteristic variable

boundary conditions are used in this implementation to find the appropriate Q values for
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this ghost node. Bloodflow is characterized by very low Mach numbers, so the boundary

conditions needed for the cases are: subsonic inflow, subsonic outflow, impermeable surface,

and symmetry plane. In the following discussion of boundary conditions, variables with a

subscript i refer to values at physical nodes, variables with the subscript ∞ refer to the values

at freestream, the subscript b refers to the value at the ghost node, and the subscript 0 refers

to an arithmetic average of the values at the physical and ghost nodes. The convention

used in this implementation is for outward pointing boundary normals. The eigenvalues are

λ1 = λ2 = θ, λ3 = θ+c, and λ4 = θ−c, where θ is the contravariant velocity: θ = un̂x+vn̂y.

Subsonic Inflow

Subsonic inflow is characterized by λ1,2,4 < 0 and λ3 > 0. Following the derivation in

[12], the boundary values are given by the following equations:

pb =
1

2
[p∞ + pi − ρ0c0 {n̂x(u∞ − ui) + n̂y(v∞ − vi)}] (2.39)

ρb = ρ∞ −
p∞ − pb
c2

0

(2.40)

ub = u∞ − n̂x
p∞ − pb
ρ0c0

(2.41)

vb = v∞ − n̂y
p∞ − pb
ρ0c0

(2.42)

Subsonic Outflow

Subsonic outflow is characterized by λ1,2,3 > 0 and λ4 < 0. Following the derivation in

[12], which takes pressure to be the one piece of information that comes from outside the
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domain, the boundary values can be given by the following equations:

pb = p∞ (2.43)

ρb = ρi +
pb − pi
c2

0

(2.44)

ub = ui − n̂x
pb − pi
ρ0c0

(2.45)

vb = vi − n̂y
pb − pi
ρ0c0

(2.46)

For internal flow problems p∞ refers to a specified back pressure which preserves the desired

pressure drop across the domain. In all other cases, it refers to the pressure at the freestream

conditions.

Solid Wall Conditions

An inviscid solid wall is characterized by λ1,2 = 0, λ3 > 0 and λ4 < 0. This condition is

also called a “slip” condition because it allows flow tangential to the boundary but does not

allow any flow through the boundary. The resulting equation set is:

pb = pi + ρ0c0 (n̂xui + n̂yvi) (2.47)

ρb = ρi +
pb − pi
c2

0

(2.48)

ub = ui − n̂x
pb − pi
ρ0c0

(2.49)

vb = vi − n̂y
pb − pi
ρ0c0

(2.50)

The viscous solid wall condition (also called a “no-slip” condition) is computed in the

same way as the inviscid solid wall condition except that u and v are identically zero at the

boundary.
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Symmetry Plane

A symmetry plane condition is used in cases where the flow is assumed to be symmetric

about a plane and thus the problem size can be reduced in half. All of the meshes created

with this condition are completely structured, so every symmetry plane node is connected

to exactly one non-symmetry plane node. Let the subscript i here refer to the values at this

non-symmetry node. Then the values at the boundary are given by:

pb = pi (2.51)

ρb = ρi (2.52)

ub = Vi − (Vi · n̂) n̂x (2.53)

vb = Vi − (Vi · n̂) n̂y (2.54)

Mesh Movement

In order to optimize the cross-sectional shape of the stent, two operations need to be

performed on the mesh:

1. To reduce the total number of design variables, the boundary representing the stent

needs to be parametrized.

2. Based on the above parametrization, the mesh needs to be moved to the new stent

shape proposed by the optimizer.

This implementation uses Hick-Henne functions for parametrization and linear elastic

smoothing for the mesh movement.
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Hicks-Henne Parametrization

The Hicks-Henne shape functions are a set of n sine waves with specified positions for

the maximum of each wave in the interval (0, 1) [13]. Let xMi
be the specified location for

the maximum of the ith function and let its position be defined in the following way:

xMi
= 0.5 (1− cos(θi)) (2.55)

where θi = πi
n+1

. This produces a distribution of xMi
’s that is denser towards the leading and

trailing edges. The Hicks-Henne functions are then defined by:

bi(x) = sin4(πxmi) (2.56)

mi =
ln 0.5

lnxMi

(2.57)

(2.58)

Any new shape for the boundary can be obtained by adding a linear combination of the

n Hicks-Henne functions to the initial shape. In this case the n weights of the linear

combination become the n design variables that the optimization routine will find. As can

be seen in figure 2.4, although the distribution of the xMi
s is symmetric over the interval,

the resulting functions are not symmetric. For instance, the peak for the first and last

function is the same distance from the boundary of the interval, however the sine wave

for the first function has a greater width than the sine wave for the last function. This

type of parametrization favors an airfoil-like shape. It is also important to note that this

parametrization is based on the initial mesh and requires that every function evaluation for

the design process start from the exact same mesh.

25



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

bi

x

Hicks-Henne Functions

Figure 2.4 Hicks-Henne Shape Functions for 16 Design Variables

Linear Elastic Smoothing

Linear-elastic smoothing is a robust method of mesh movement which smoothes the

interior points of a mesh when the boundary has been moved or deformed [14]. Linear-

elastic smoothing can perform very large deformations in both viscous and inviscid meshes

while maintaining good spacings in the boundary layer. This method is ideal for design

optimization since it can handle large deformations of the mesh and it can also be used to

find mesh sensitivity derivatives for gradient-based optimization methods[14].

The differential equations governing linear-elastic smoothing in two dimensions are

presented below [14].

∂

∂x

[
α1
∂u

∂x

]
+

∂

∂y

[
α2
∂u

∂y

]
+

∂

∂x

[
α3
∂v

∂y

]
+

∂

∂y

[
α2
∂v

∂x

]
= 0 (2.59)

∂

∂x

[
α2
∂v

∂x

]
+

∂

∂y

[
α1
∂v

∂y

]
+

∂

∂x

[
α2
∂u

∂y

]
+

∂

∂y

[
α3
∂u

∂x

]
= 0 (2.60)

26



where

α1 =
E(1− ν)

(1 + ν)(1− 2ν)
(2.61)

α2 =
E

2(1 + ν)
(2.62)

α3 =
Eν

(1 + ν)(1− 2ν)
(2.63)

(2.64)

In the above equations, the solution vector [u, v]ᵀ defines the displacement at each node [14],

E represents Young’s Modulus and is taken to be the element aspect ratio, and ν represents

Poisson’s ratio and is taken to be 0.20. The resulting system of equations is solved using a

point implicit finite volume method.
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CHAPTER 3

VALIDATION

The goal of this section is to show that the solver matches benchmark analytical solutions

for viscous flow and that it matches published computational results for blood flow. The

viscous terms and boundary conditions will be verified by examining the Blasius equation

for laminar flow over a flat plate and Couette flow. The blood flow cases will consider flow

through a stented artery for a square, semi-circular, and streamlined shaped stent cross-

section.

Laminar Flow Along a Flat Plate

The first validation case considered is laminar flow along an infinitely thin flat plate. This

case was chosen because the nature of the flow is characterized by the viscous terms and so it

will verify that the code can simulate viscous flow. The Blasius equation, shown in equation

3.1, takes the boundary-layer equations (2 partial differential equations) and combines them

through the dimensionless coordinate η into one ordinary differential equation [15].

f(η)f ′′(η) + 2f ′′′(η) = 0 (3.1)

η = y

√
U∞
νx

(3.2)

Furthermore, the velocity profile can be obtained from the relation

u

U∞
= f ′(η) (3.3)

28



A structured mesh with viscous spacing was created which is rectangular in shape. The

sides and top have a farfield condition and the bottom of the plate is split into 3 sections: a

flat plate of unity length and viscous wall condition with a region of inviscid wall conditon

on either side. A Reynold’s number of 10000, Mach number of 0.8, and normal freestream

conditions for air were used for this case.
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Figure 3.1 Comparison of Profiles for Blasius Test Case

Figure 3.1 shows the comparison of the computed solution to the analytical solution of

the Blasius equation. The analytical solution used is the numerical solution to the Blasius

equation found by L. Howarth [15]. The computed solution is found using the velocities in a

column of the mesh located at 3
4

of the length of the plate. The computed solution reaches

a value slightly higher than 1 at freestream. This can be attributed to the fact that the

abrupt transition between the inviscid wall condition and the viscous wall condition at the
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leading edge of the plate causes the velocity to speed up slightly. Other than this overshoot,

the computed solution agrees well with the analytical solution.

Couette Flow

The second validation case is Couette flow, which is flow between two parallel surfaces in

which the distance h between the surfaces is small in comparison to the length of the channel.

This case was chosen because it is the two-dimensional analog of Poiseuille flow, which is

often used to model the flow of blood in blood vessels. Couette flow is not only viscous

dominated, but also highly dependent on the boundary conditions. Successful execution of

this case will verify that the boundary conditions and the freestream conditions are adequate

for modeling blood flow problems.

In Couette flow, the direction of flow is in the x-direction only, causing pressure to become

a function of x only and velocity to become a function of y only [16]. The Navier Stokes

equations then reduce to:

0 = −dp
dx

+ µ
d2u

dy2
(3.4)

Integrating this twice and applying the conditions u(0) = u(h) = 0, the velocity can

expressed as a function of y:

u(y) = − 1

2µ

dp

dx
y (h− y) (3.5)

Dividing by a reference velocity and substituting P = − h2

2µU
dp
dx

produces the nondimension-

alized velocity profile:

u(y)

U
= P

y

h

(
1− y

h

)
(3.6)

Thus when the pressure drop through the channel, h, and µ are known, the velocity profile

can be exactly computed using the above equation.
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The freestream conditions for the blood flow cases were derived from the density and

viscosity of blood (assumed to be constant) using Couette flow and the equations of state.

They are listed in Table 3.1.

Table 3.1 Freestream Conditions for Blood Flow Cases

Variable Value Unit of Measure

Density 1060·0 kg/m3

Viscosity 0·0035 kg/m·s

Reference Length 0·004 m

Temp 0·0442482 degree K

Velocity 0·2228773585 m/s

Inlet Pressure 13463·89 Pa

Back Pressure 13424·808455 Pa

Mach Number 0·052853 (dimensionless)

Reynolds Number 270·0 (dimensionless)

Three structured meshes were created for this test case with 32×32, 64×64, and 128×128

evenly spaced points. Each mesh extends from −50 mm to 50.2 mm in the x-direction and

from 0 to a height of 4 mm in the y-direction. The profiles for the computed solutions were

taken at the center column in the mesh. Figure 3.2 compares the velocity profiles from the

computed solutions to the analytical profile.
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Figure 3.2 Comparison of Velocity Profiles for Couette Flow:Full Profile

Since Couette flow is naturally symmetric about the centerline of the channel, the problem

can be cut in half using a symmetry condition. Three structured meshes were created which

again extended from −50 to 50.2 mm in the x-direction but only extended from 0 to 2 mm

in the y-direction. These three meshes had the same spacings as those before, but only half

the total number of points. Figure 3.3 shows the comparison of the computed solutions to

that of the analytical solution found for the same flow conditions. In both cases, as the mesh

is refined, the computed solution more closely matches the analytical solution.
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Figure 3.3 Comparison of Velocity Profiles for Couette Flow: Symmetry Plane Condition

It is worth noting that the reference velocity U for the analytical profile was taken to be

the freestream velocity whereas for the computed solutions it was taken to be the maximum

velocity in the mesh at the column of x values. The reason for this discrepancy is that

the characteristic inflow condition is not the ideal boundary condition for this type of flow.

While the appropriate pressure is achieved at the outflow, the inflow pressure is not exactly

matched. A total pressure condition for the inflow boundary would help enforce the correct

pressure drop and implementing such a condition is intended for the future.

Stent Validation Cases

This section compares the results of simulating flow thorugh stented blood vessels to

results from other studies. Three geometries are considered: rectangular, semi-circular, and

streamlined stent cross-sectional shapes. The parameters for the geometries are those used
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by Chen et al., in which the height h of each stent is 0.1 mm, the width d of the rectangular

and semi-circular stents is 0.2 mm and the width of the streamlined stent is 0.5 mm, and the

diameter of the blood vessel is 4.0 mm [17]. The shape of the streamlined stent is defined

by the equation:

R(z) = 0.1e−z
2

(3.7)

where z = d/h (−2.5 ≤ z ≤ 2.5). Jimenez and Davies also studied the rectangular and

semi-circular shapes using one stent ring, whereas Chen et al. used five stent rings. In order

to compare to both studies, the meshes were created with only one stent ring. The viscous

spacing used is small enough to resolve the recirculation zones. The contours of the velocity

for each of the shapes can be seen in Figures 3.4 - 3.6.

Chen et al. compared the length of the recirculation zone to the height of the stent for

each of their 5 stent rings. Their results can be found in Figure 3.7, in which P1-P5 represent

the positions of the 5 stent rings and L
h

represents the ratio of recirculation length to stent

height. Jimenez and Davies also studied the rectangular and semi-circular stents and found

L
h

for the case of one stent ring to be approximately 0.845 for the rectangular stent and 0.47

for the semi-circular stent. The results obtained here consider the case of only one stent

ring and L
h

was found to be approximately 0.8 for the rectangular stent and 0.48 for the

semi-circular stent. These values correspond well with the results of first stent right of the

Chen study as well as to the values found by Jimenez and Davies. The streamlined stent

had no observable recirculation, which also corresponds well to the results of L
h
< 0.0015

obtained by Chen et al.
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Figure 3.4 Contours of Velocity for the Rectangular Stent

Figure 3.5 Contours of Velocity for the Semi-Circular Stent

Figure 3.6 Contours of Velocity for the Streamlined Stent
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Figure 3.7 Effect of Cross-Sectional Shape on the Length of Recirculation Zones

Jimenez and Davies also studied the profiles of WSS and shear rate for the rectangular

and semi-circular stents with varying aspect ratios. Their results can be seen in Figure 3.8,

in which part (a) shows the results for the rectangular stent, part (b) shows the results for

the semi-circular stent, and the dashed line in each section corresponds to the 2:1 aspect

ratio studied here. Figures 3.9 and 3.10 show the distribution of shear rate in the vicinity of

the rectangular and semi-circular stents obtained from the computed results. The profile for

the rectangular stent matches very well with the results obtained by Jimenez and Davies.

The profile for the semi-circular stent achieved a shape similar to the profile obtained by

Jimenez and Davies, however the values do not match. This can be attributed to the fact

that Jimenez and Davies are using a blood vessel that is 3 mm in diameter and 19.2 mm in

length, which may not be long enough to sufficiently establish the inlet velocity profile. Also,

they do not provide much detail as to the resolution of their meshes and since this shape is

naturally more streamlined than the rectangle, there may not be sufficient resolution for the

shear profile to fully develop.
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Figure 3.8 WSS and Shear Rate Distributions Obtained by Jimenez and Davies for
Rectangular and Semi-Circular Stent Shapes
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Figure 3.9 Computed WSS Distribution for Rectangular Stent Shape
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Figure 3.10 Computed WSS Distribution for Semi-Circle Stent Shape
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CHAPTER 4

RESULTS

The Hicks-Henne parametrization changes the shape of an existing mesh to obtain the

new desired shape. Four different initial shapes were chosen to examine the dependency of

the final optimized shape on the initial shape: an elliptical shape, the exponential shape

defined by equation 3.7, an airfoil shape, and a flat plate. It is important to note that since

the new shape depends on the distribution of the initial mesh, it is possible (and in fact

probable) that the optimizer will request a set of design variables which produces a bad

mesh. In such a case, the solver will return a cost of 1.0e+15, which is orders of magnitude

higher than the cost for any valid mesh. The results in this chapter show only the valid

meshes created in the design process.

The initial meshes created have viscous spacing small enough to resolve the recirculation

zones and the points on the stent are clustered towards the front and back of the stent. The

mesh for the exponential shaped stent can be seen in Figure 3.6. Figures 4.1, 4.2, and 4.3

show the meshes for the elliptical, airfoil, and flat initial stent shapes respectively.
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Figure 4.1 Contours of Velocity for Elliptical Shaped Stent

Figure 4.2 Contours of Velocity for Airfoil Shaped Stent

Figure 4.3 Contours of Velocity for Flat Stent
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Design of the Elliptical Shaped Stent

The elliptical shape was chosen because it is in a middle position between the ideal

unstented case and the extreme semi-circle case. The design process was performed using

8, 12, and 15 design variables as a convergence study and to observe the effect of an even

versus an odd number of design variables on the resulting shape.

8 Design Variables

Figures 4.4 - 4.8 show the first 5 valid meshes created in the design process using the

elliptical shaped stent and 8 design variables. These images show variations of 2 distinct

shapes.

Figure 4.4 Elliptical Shape Design With 8 Design Variables: Iteration 5
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Figure 4.5 Elliptical Shape Design With 8 Design Variables: Iteration 7

Figure 4.6 Elliptical Shape Design With 8 Design Variables: Iteration 17

Figure 4.7 Elliptical Shape Design With 8 Design Variables: Iteration 19
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Figure 4.8 Elliptical Shape Design With 8 Design Variables: Iteration 22

Figures 4.9 - 4.11 show the final 3 meshes produced in the design process. These images

show that Dakota is optimizing toward the shape initially identified by 5th function evaluation

(shown in Figure 4.4). This shape has a region of very high velocity on the back side of the

stent and also has a very large recirculation zone behind the stent.

Figure 4.9 Elliptical Shape Design With 8 Design Variables: Iteration 203
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Figure 4.10 Elliptical Shape Design With 8 Design Variables: Iteration 205

Figure 4.11 Elliptical Shape Design With 8 Design Variables: Iteration 206

Figure 4.12 shows the evaluations of the cost function for each set of valid design variables

requested by Dakota and Figure 4.13 shows the corresponding areas for each of the cost

evaluations. Although the cost is chatotic at first, Dakota begins to identify a family of

configurations which produce a significantly lower cost. Unfortunately, the area constraint

of 1.0e-08 is never met and the cost for the more optimized shapes is still in the 1000s,

indicating that the strain rate is not > 100s−1 everywhere.
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Figure 4.12 Convergence of Design of the Elliptical Stent Using 8 Design Variables
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Figure 4.13 Area of Designs of the Elliptical Stent Using 8 Design Variables
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12 Design Variables

Figures 4.14 - 4.18 show the first 5 valid meshes produced in the design process using

the elliptical starting shape and 12 design variables. Just as with the 8 design variable case,

these images show variations on 2 distinct shapes.

Figure 4.14 Elliptical Shape Design With 12 Design Variables: Iteration 18

Figure 4.15 Elliptical Shape Design With 12 Design Variables: Iteration 28
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Figure 4.16 Elliptical Shape Design With 12 Design Variables: Iteration 32

Figure 4.17 Elliptical Shape Design With 12 Design Variables: Iteration 40

Figure 4.18 Elliptical Shape Design With 12 Design Variables: Iteration 49
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Figures 4.19 - 4.21 show the final 3 meshes of the design process. These images indicate

that Dakota is designing towards a symmetric shape. This shape is very different from the

final shape in the 8 design variable case and does not have a region of high velocity along

the back of the stent. Also the recirculation zone behind the stent is smaller than it was in

8 design variable case.

Figure 4.19 Elliptical Shape Design With 12 Design Variables: Iteration 194

Figure 4.20 Elliptical Shape Design With 12 Design Variables: Iteration 195
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Figure 4.21 Elliptical Shape Design With 12 Design Variables: Iteration 197

Figure 4.22 shows the convergence of the design process using 12 design variables and

the initial elliptical shape. The corresponding areas are shown in Figure 4.23. This case was

able to more quickly identify a family of optimal configurations, but the cost is still very

high. The areas observed are slightly higher than for the case with 8 design variables, but

they still do not meet the constraint.
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Figure 4.22 Convergence of Design of the Elliptical Stent Using 12 Design Variables
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Figure 4.23 Area of the Designs of the Elliptical Stent Using 12 Design Variables

15 Design Variables

Figures 4.24 - 4.28 show the first 5 valid meshes produced in the design process using

the elliptical starting shape and 15 design variables. Unlike the case for 8 and 12 design

variables, these images show only variations on one distinct shape.

Figure 4.24 Elliptical Shape Design With 15 Design Variables: Iteration 8
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Figure 4.25 Elliptical Shape Design With 15 Design Variables: Iteration 11

Figure 4.26 Elliptical Shape Design With 15 Design Variables: Iteration 17

Figure 4.27 Elliptical Shape Design With 15 Design Variables: Iteration 20
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Figure 4.28 Elliptical Shape Design With 15 Design Variables: Iteration 21

Figures 4.29 - 4.31 show the final 3 meshes produced in the design process. Again, the

design process converged to a completely different shape than that observed in either the 8

or 12 design variable cases. This shape has a region of high velocity along the back of the

stent, just as with the 8 design variable case, and the recirculation zone behind the stent has

not been improved.

Figure 4.29 Elliptical Shape Design With 15 Design Variables: Iteration 197
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Figure 4.30 Elliptical Shape Design With 15 Design Variables: Iteration 198

Figure 4.31 Elliptical Shape Design With 15 Design Variables: Iteration 200

Figure 4.32 shows the convergence of the cost for designing the elliptical stent with 15

design variables and the corresponding areas can be seen in Figure 4.33. This case produced

significantly lower costs than either the 8 or 12 design variable cases, however the area

constraint was still not met.
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Figure 4.32 Convergence of Design of the Elliptical Stent Using 15 Design Variables
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Figure 4.33 Area of Designs of the Elliptical Stent Using 15 Design Variables
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Design of the Exponential Shaped Stent

The exponential shape was considered for design since it was proposed as a streamlined

stent by Chen et al. [17]. This case was performed using 12 design variables. Figures 4.34

- 4.38 show the first 5 valid meshes produced in the design process. Four of these shapes

still resemble the initial exponential shape. It is interesting to note that several of these

shapes dip below the level of the blood vessel wall towards the back of the stent. In reality,

a portion of the stent’s thickness sinks into the wall of the blood vessel. Thus, a slight dip

below the level of the blood vessel may be producible.

Figure 4.34 Exponential Shape Design With 12 Design Variables: Iteration 2

Figure 4.35 Exponential Shape Design With 12 Design Variables: Iteration 3

54



Figure 4.36 Exponential Shape Design With 12 Design Variables: Iteration 7

Figure 4.37 Exponential Shape Design With 12 Design Variables: Iteration 8

Figure 4.38 Exponential Shape Design With 12 Design Variables: Iteration 9
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Figures 4.39 - 4.41 show the final 3 valid meshes produced in the design process. Dakota

seems to be designing toward an elliptical-like shape with a lower peak, which has a portion

that extends below the level of the blood vessel wall. This shape is very different than any

of the shapes obtained using the initial elliptical shape and the recirculation zone behind the

stent is nearly eliminated.

Figure 4.39 Exponential Shape Design With 12 Design Variables: Iteration 126

Figure 4.40 Exponential Shape Design With 12 Design Variables: Iteration 127
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Figure 4.41 Exponential Shape Design With 12 Design Variables: Iteration 128

Figure 4.42 shows the convergence of the cost for the design process and Figure 4.43 shows

the corresponding areas. This shape quickly converged to an optimal family of configurations

which have very low costs and all of the areas observed satisfied the area constraint, making

this a good candidate for an improved stent shape.
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Figure 4.42 Convergence of Design of the Exponential Stent Using 12 Design Variables
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Figure 4.43 Area of Designs of the Exponential Stent Using 12 Design Variables

Design of the Airfoil Shaped Stent

Airfoils are very streamlined and so the shape was considered as a possibility for stent

design. Since the Hicks-Henne functions were developed for use with airfoils, only 8 design

variables were used for this case. Figures 4.44 - 4.48 show the first 5 valid meshes produced

in the design process. All of these shapes are airfoil-like with differences in the height of

the peak. They all also have a final dip below the level of the blood vessel wall, similar to

the exponential shaped designs. Although the recirculation zone at the front edge of the

stent is more pronounced than in other cases, several of these early designs have virtually

no recirculation at the back of the stent, which is where most of the problems contributing

to restenosis occur.
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Figure 4.44 Airfoil Shape Design With 8 Design Variables: Iteration 7

Figure 4.45 Airfoil Shape Design With 8 Design Variables: Iteration 23

Figure 4.46 Airfoil Shape Design With 8 Design Variables: Iteration 29
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Figure 4.47 Airfoil Shape Design With 8 Design Variables: Iteration 33

Figure 4.48 Airfoil Shape Design With 8 Design Variables: Iteration 35

Figures 4.49 - 4.51 show the final 3 meshes produced in the design process. These shapes

are very similar to one another. These later designs do not dip below the level of the blood

vessel wall, indicating the Dakota is designing away from that option. This shape has a

region of very high velocity along the front of the stent and also a very large recirculation

zone at the front. Unfortunately the mesh is inverted at the leading edge of the stent,

indicating that there needs to be improved analysis of mesh quality in the code.
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Figure 4.49 Airfoil Shape Design With 8 Design Variables: Iteration 218

Figure 4.50 Airfoil Shape Design With 8 Design Variables: Iteration 219

Figure 4.51 Airfoil Shape Design With 8 Design Variables: Iteration 220
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Figure 4.52 shows the convergence of the design process. As with the exponential shape,

the naturally streamlined initial shape of the airfoil also produced lower values of cost.

Figure 4.53 shows the areas corresponding to each of the cost function evaluations. In

the figure a reference line has been drawn to indicate the area constraint. Although there

was a decreasing trend for the areas observed, many were above the threshold. If further

constraints were placed on the shape to ensure the mesh would not be inverted, this case may

produce results which meet the area constraint. However, unless the recirculation zone at

the leading edge of the stent is greatly reduced, this cannot be considered a good candidate

for an improved stent shape.
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Figure 4.52 Convergence of Design of the Airfoil Stent Using 8 Design Variables
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Figure 4.53 Area of Designs of the Airfoil Stent Using 8 Design Variables

Design of the Stent Starting from a Flat Curve

The ideal scenario for improving shear rate and shear stress is to have no stent in the

blood vessel, which is usually not the case after PCI treatment. It was decided to use the

true ideal scenario as a starting place for design to see if the random initial population of the

evolutionary algorithm and the area constraint would be enough to find a valid option which

improves the stent design. Figures 4.54 - 4.58 show the first 5 valid meshes produced in the

design process. These images identify two different design options, one that is symmetric

and curved and another that is a plateau shape with a slight dip in the center.
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Figure 4.54 Stent Design Starting from a Flat Plate With 8 Design Variables: Iteration 1

Figure 4.55 Stent Design Starting from a Flat Plate With 8 Design Variables: Iteration 2

Figure 4.56 Stent Design Starting from a Flat Plate With 8 Design Variables: Iteration 7
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Figure 4.57 Stent Design Starting from a Flat Plate With 8 Design Variables: Iteration 11

Figure 4.58 Stent Design Starting from a Flat Plate With 8 Design Variables: Iteration 15

Figures 4.59 - 4.61 show the final 3 meshes produced in the design process. This case

converged to a somewhat symmetric shape with very little recirculation in either the front

or the back of the stent. This shape is most similar to that produced using the exponential

initial mesh, but the height of the stent is much lower. This shape also has a slight bump

at the trailing edge of the stent. This is likely a remnant of the evolutionary process rather

than an optimized design since the stent would still have very little recirculation without it.
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Figure 4.59 Stent Design Starting from a Flat Plate With 8 Design Variables: Iteration 143

Figure 4.60 Stent Design Starting from a Flat Plate With 8 Design Variables: Iteration 144

Figure 4.61 Stent Design Starting from a Flat Plate With 8 Design Variables: Iteration 146
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Figure 4.62 shows the convergence of the designing using 12 design variables and a flat

starting position and Figure 4.63 shows the corresponding areas. The cost in general is very

low, with many around or below a value of 10, however this case produced the smallest

areas thus far observed. Therefore improvements need to be made in the constraints used to

ensure proper area or height for the stent.
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Figure 4.62 Convergence of Stent Design Starting from a Flat Plate Using 12 Design
Variables
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Figure 4.63 Area of Stent Designs Starting from a Flat Plate Using 12 Design Variables
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CHAPTER 5

CONCLUSIONS

The goal of this work was to implement a two-dimensional, compressible flow solver that

is capable of simulating blood flow through stented arteries and then to interface the flow

solver and a mesh movement routine with Dakota to improve arterial stent design. The

ability to simulate blood flow was verified by comparing the results to analytic solutions

of the Blasius equation and Couette flow and by comparing results of simulations through

stented arteries to results found in other studies. The flow solver was linked with linear

elastic mesh movement and an interface was created with Dakota.

Candidate stent designs were found by Dakota using initial meshes with elliptical,

exponential, airfoil, and flat shaped stent sections. All of the resulting candidate stent

shapes differed greatly from one another, indicating that the results are highly dependent on

the initial shape used for the design process. Regardless of the number of design variables

used, the elliptical shape failed to produce low costs and never met area constraint. The

exponential shape produced results with low costs, areas above the constraint, and reduced

recirculation zones. The airfoil shape nearly met the area costraint and also had low costs,

but the recirculation zone at the leading edge was more pronounced and the final meshes

were inverted at the leading edge. The flat shape produced the lowest costs overall, but

failed to meet the area constraint. Thus the only the exponential shape can be considered a

good candidate for improving stent design.

Improvements can be made to the design process in several areas. The flow solver

will more accurately simulate blood flow when incompressibility, the extension to three

dimensions, and the ability to model pulsatile flow are added. The computational time could
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be reduced by adding parallelism and the ability to compute derivatives needed for gradient-

based optimization methods. The results obtained here would provide a good starting place

for gradient-based methods. Furthermore, since the designs obtained using Hicks-Henne

functions are dependent upon the initial mesh and there are some issues with smoothness

using this parametrization, other forms of parametrization should be considered which do not

have this dependency and better satisfy smoothness requirements. Finally, the recirculation

zones were not entirely eliminated, especially in the airfoil case, indicating that the cost

function needs improvment. This is due to the fact that although the flow is in the wrong

direction, the shear rate is still relatively high in most of the recirculation zone and is

only low at the reattachment point. Incorporating a directional component into the cost

function would allow the design process to directly minimize the recirculation zones as well

as maximizing shear rate.
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APPENDIX A

DAKOTA INPUT FILE
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Below is an example of the Dakota input file used in this study. Although this study only

used the evolutionary algorithm, identified as ‘EA’, this input file is also set up to handle the

OPT++ quasi-Newton method, identified as method ‘NLP’. Each method requires a model

which identifies the appropriate variables, interface, and responses. If Dakota is to use an

outside source for the function evaluations, this information needs to be specified in the

interface section. Every time a function evaluation is required, Dakota will print the request

in the parameters file specified, call the specified analysis driver, and wait for the driver to

return the specified results file. The responses section identifies the number of cost functions

and any constraints. It may be advantageous to use a combination of methods to solve the

problem. For instance, Dakota could use evolutionary algorithm to find an interval which

contains the solution and then switch to the Newton method to quickly find that solution.

Although not shown here, this can all be specified in the strategy section of the input file.

# DAKOTA INPUT FILE

strategy,

hybrid sequential

method_list = ‘EA’

#graphics

tabular_graphics_data

method,

id_method = ‘EA’

model_pointer = ‘M1’

max_iterations = 30

coliny_ea

seed = 101

population_size = 10

crossover_rate = 1.0

crossover_type = blend

mutation_type = offset_normal

mutation_scale = 0.0001

replacement_type chc = 3

final_solution = 1

output debug

method,
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id_method = ‘NLP’

model_pointer = ‘M2’

optpp_q_newton

max_iterations = 100

convergence_tolerance = 1e-8

#max_step = 10.0

search_method value_based_line_search

output debug

model,

id_model = ‘M1’

single

variables_pointer = ‘V1’

interface_pointer = ‘I1’

responses_pointer = ‘R1’

model,

id_model = ‘M2’

single

variables_pointer = ‘V1’

interface_pointer = ‘I1’

responses_pointer = ‘R2’

variables,

id_variables = ‘V1’

continuous_design = 15

cdv_initial_point 0.00 0.1 -0.1 0.00 0.00 0.00 0.00 0.00

cdv_lower_bounds -0.02 -0.02 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

cdv_upper_bounds 0.02 0.05 0.10 0.10 0.10 0.10 0.10 0.10

cdv_descriptor ’h0’ ’h1’ ’h2’ ’h3’ ’h4’ ’h5’ ’h6’ ’h7’

interface,

id_interface = ‘I1’

system

#asynchronous

analysis_driver = ‘driver_script.py’

parameters_file = ‘params.in’

results_file = ‘results.out’

#aprepro

#deactivate active_set_vector

file_tag # tag files with design cycle number

#file_save # don’t delete old design cycle files

responses,
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id_responses = ‘R1’

num_objective_functions = 1

num_nonlinear_inequality_constraints = 1

nonlinear_inequality_lower_bounds = 1.0e-8

no_gradients

no_hessians

responses,

id_responses = ‘R2’

num_objective_functions = 1

num_nonlinear_inequality_constraints = 1

nonlinear_inequality_lower_bounds = 1.0e-8

#numerical_gradients

#fd_gradient_step_size = .000001

# to instead use analytic gradients returned by the simulator comment the

# preceding two lines and uncomment the following:

analytic_gradients

no_hessians
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