
56 

 

 

 

 

 

 

PREDICTION MODELING FOR GRADUATE ATHLETIC  

TRAINING EDUCATION PROGRAMS 

 

 

 

By 

 

Scott L. Bruce, MS, ATC 

 

 

 

 

 

Elizabeth Crawford 

Assistant Professor 

(Chair) 

 

 

 

Gary B. Wilkerson 

Professor 

(Committee Member) 

 

 

 

R. Barry Dale 

Associate Professor 

(Committee Member) 

 

Martina Harris 

Assistant Professor 

(Committee Member) 

 

 

 

David Rausch 

Associate Professor 

(Committee Member) 

 

 

 

  



 

ii 

 

 

 

 

 

 

PREDICTION MODELING FOR GRADUATE ATHLETIC  

TRAINING EDUCATION PROGRAMS 

 

 

 

 

By 

 

Scott L. Bruce, MS, ATC 

 

 

 

 

 

A Dissertation Submitted to the Faculty of the 

University of Tennessee at Chattanooga 

in Partial Fulfillment of the 

Requirements of the Degree of 

Doctor of Education 

 

 

The University of Tennessee at Chattanooga 

Chattanooga, Tennessee 

 

May 2014 

  



 

iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2014 

By Scott Louis Bruce 

All Rights Reserved 

  



 

iv 

 

 

 

 

 

 

ABSTRACT 

 

 

The purposes of this study were:  

 to develop a prediction model to identify factors associated with eligibility and 

first-attempt success on the Board of Certification (BOC) examination for 

students enrolled in a professional (entry-level) graduate athletic training program 

(GATP) 

 to identify applicant characteristics that are most likely to predict both academic 

success in the GATP and success on the BOC exam.  A cohort of 119 students 

was used for both purposes.  Multiple analyses yielded three-factor and two-factor 

models for prediction of passing the BOC exam.   

The three-factor model demonstrates that a student with ≥ 2 predictors had an odds ratio 

(OR) of 6.31 and a relative frequency of success (RFS) 1.66 for passing the BOC exam and 

correctly predicted 87.7% of first-attempt success on the BOC exam.  The two-factor model 

demonstrates a student with ≥1 predictor had an OR of 10.69 and an RFS 2.05 for passing the 

BOC exam and correctly predicted 89.2% of first-attempt success on the BOC exam.   

Multiple analyses yielded two three-factor models for prediction of success in the GATP.  

The initial three-factor model demonstrates that a student with ≥2 predictors had an OR of 17.94 

and a RFS of 2.13 for students being successful in the GATP, and correctly predicted 90.5% of 

GATP success.  The alternative three-factor model found a student with ≥2 predictors had an OR 



 

v 

 

of 20.94 and an RFS 1.98 for students being successful in the GATP, and correctly predicted 

93.9% of GATP success.   

Within the past year, changes in athletic training education have been implemented and 

more are expected in the future, specifically whether or not a graduate professional (entry-level) 

athletic training degree will be required to sit for the BOC exam.  Since there is a greater 

emphasis on first-time BOC exam pass rates, and more programs convert to graduate level 

curricula, the results of this study may assist GATPs to identify students who are likely to be 

successful in the graduate program and to pass the BOC exam on the first-attempt. 
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CHAPTER I 

INTRODUCTION 

 

A common goal of professional education programs is to recruit the best students.  

Selection of students from a pool of candidates can be a difficult process, especially if the 

number of qualified candidates exceeds the number of available positions.  How these decisions 

are made and who to include or exclude can be difficult, and they can be even more difficult to 

defend once they are made.  The more objective the selection process the easier it can be to 

identify qualified candidates and to defend against any legal actions or other potential problems 

related to candidates not accepted into the program.   

Multiple health education program administrators have examined potential predictors for 

assisting in their decisions to admit or reject students.  A literature search on programs from 

clinical psychology, nursing, occupational therapy, physician assistant, physical therapy, and 

medical school found all have attempted to refine their selection processes (Balogun, Karacoloff, 

& Farina, 1986; Ferguson, James, & Madeley, 2002; Hansen & Pozehl, 1995; Hayes, Fiebert, 

Carroll, & Magill, 1997; Kirchner, Holm, Ekes, & Williams, 1994; Levine, Knecht, & Eisen, 

1986; McGinnis, 1984; Meleca, 1995; Morris & Farmer, 1999; Munro, 1985; Payton, 1997; 

Salvatori, 2001; Vendrely, 2007; Willingham, 1972; Wilson, 1999; Zipp, Ruscingno, & Olson, 

2010).  Several different approaches have been used in an effort of trying to isolate which 

variable or group of variables are best at predicting those candidates that should be selected for 
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their programs.  Predictor variables such as the Graduate Record Examination (GRE), 

undergraduate grade point average (uGPA), Medical College Admission Tests (MCAT), past 

clinical experience, age, race, gender, and ethnicity have all been employed (Balogun et al., 

1986; Ferguson et al., 2002; Hansen & Pozehl, 1995; Hayes et al., 1997; Kirchner & Holm, 

1997; McGinnis, 1984; Meleca, 1995; Munro, 1985; Salvatori, 2001; Willingham, 1972; Zipp et 

al., 2010).  Several other more subjective variables were utilized to measure successful 

candidates and have included written essays, interviews, subjective inventories, references, and 

personal characteristics.  The outcome variables that have been used include admission into the 

program, graduate grade point average, academic performance, clinical rotation success, and 

graduation from the program (Balogun et al., 1986, p. 50; Bretz, 1989; Burton & Wang, 2005; 

Day, 1986; DeAngelis, 2003; Feldman, 2007; Ferguson et al., 2002; Hayes et al., 1997; Keskula, 

Sammarone, & Perrin, 1995; Kirchner & Holm, 1997; Kirchner et al., 1994; McGinnis, 1984; 

Meleca, 1995; Mitchell, 1990; Munro, 1985; Payton, 1997; Platt, Sammarone-Turocy, & 

McGlumphy, 2001; Sime, Corcoran, & Libera, 1983; Utzman, Riddle, & Jewell, 2007a; 

Willingham, 1972; Zipp et al., 2010).   

 No studies to date have examined admittance decisions for graduate professional (entry-

level) athletic training education programs.  Keskula, Sammarone & Perrin (1995) conducted a 

study to examine prediction variables for post-professional NATA-approved Graduate Athletic 

Training Program using stepwise multiple regression analysis to determine that uGPA was the 

only significant predictor of graduate school GPA (Keskula et al., 1995).   

  Medical programs such as anesthesiology, athletic training, medicine and physical 

therapy have all attempted to predict success on their respective licensing and board 
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examinations (Armstrong, Dahl, & Haffner, 1998; Kosmahl, 2005; Kuncel, Wee, Serafin, & 

Hezlett, 2010; McClintock & Gravlee, 2010; Utzman, Riddle, & Jewell, 2007b; Zaglaniczny, 

1992).  There have been nine studies attempting to predict success on the National Athletic 

Trainers’ Association’s Board of Certification (BOC) examination (Draper, 1989; Erickson & 

Martin, 2000; Harrelson, Gallaspy, Knight, & Leaver-Dunn, 1997; Hickman, 2010; Middlemas, 

Manning, Gazzillo, & Young, 2001; Pickard, 2003; Starkey & Henderson, 1995; Turocy, 

Comfort, Perrin, & Gieck, 2000; Williams & Hadfield, 2003).  All nine studies examined 

undergraduate students in their attempts to predict success on the BOC exam; none of these 

studies were successful in predicting candidates’ success on the BOC exam. 

 

Statement of the Problem 

 There are two interrelated purposes for this study, both of which pertained to the process 

of admitting students to a graduate professional program.  The first component of this study 

involves the development of a prediction model to identify factors associated with eligibility and 

first-attempt success on the Board of Certification (BOC) examination for students who have 

completed a professional (entry-level) graduate athletic training program (GATP).  The second 

component will utilize the results of the first analysis to identify program applicant 

characteristics that are most likely to predict both academic success within the graduate 

professional program and subsequent success on the BOC exam. 
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Significance of the Problem 

 This study may serve to identify methods to aid in the selection of potential students for 

athletic training educational programs, thus, improving the success rate of first-time pass rate on 

the BOC exam of student coming from a GATP.  Additionally, this study may assist athletic 

training education program directors to improve the quality of the educational experience for the 

students and permit the program director to provide sufficient advice on when the student may 

find the greatest likelihood for success on the BOC exam. 

 

Hypothesis 

 The hypotheses for this study are first to develop a prediction model to identify factors 

associated with eligibility and first-attempt success on the Board of Certification (BOC) 

examination for students who have completed a professional (entry-level) GATP.  The second 

component will utilize the results of the first analysis to identify program applicant 

characteristics that are most likely to predict both academic success within the graduate 

professional program and subsequent success on the BOC exam. 

 The first null hypothesis for this study is that a prediction model cannot be created to 

identify factors associated with eligibility and first-attempt success on the Board of Certification 

(BOC) examination for students who have completed a professional (entry-level) GATP.  The 

second null hypothesis for this study is that the results of the first analysis cannot be used to 

identify program applicant characteristics that are most likely to predict both academic success 

within the graduate professional program and subsequent success on the BOC exam. 
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Outcome Variables 

 The outcome variables for this study are the dichotomy between passing versus not 

passing of the BOC exam on the first attempt taking the exam by students selected for a GATP 

and program academic success as measured by gGPA at the end of the first year. 

 

Predictor Variables 

 The predictor variables for this study include the following:  

The predictor variables for this study include the following:  

 undergraduate Grade Point Average (uGPA) 

 percentile rank of the GRE verbal score (GREv PR) 

 percentile rank of the GRE quantitative score (GREq PR) 

 percentile rank of the GRE analytic writing score (GREwr PR) 

 Biderman’s Formula Score that includes uGPA times 100 plus the sum of GREq 

PR, GREv PR, and GREwr PR (Biderman, 2013) 

 the Basic Carnegie Classification from The Carnegie Classification of Institutions 

of Higher Education™ for each institution (The Carnegie Foundation for the 

Advancement of Teaching, 2010) 

 a student’s undergraduate institution setting, public versus private  

  the Academic Profile of Undergraduate Institutions (APUI) 

 whether or not a student took higher level science and math coursework during 

their undergraduate education 
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 whether or not the student took advanced athletic training coursework as an 

undergraduate 

 the student’s in-state versus out-of-state residency. 

 

Operational Definitions 

The following terms are operationally defined for this study. 

 Academic Profile of Undergraduate Institution – the best balance between an institution’s 

ACT mean/median and SAT mean/median as a measure of their academic standards 

 Adjusted odds ratio – in SPSS is represented by Exp(B), is an indication of a change in 

the odds one variable has upon the other variables (Field, 2009) 

 Biderman’s Formula score = (uGPA x 100) + GREv PR + GREq PR + GREwr PR 

(Biderman, 2013) 

 Binary Logistic Regression – a prediction for inclusion into dichotomous categories, 

natural log rhythm (ln) times the odds (ln(odds) (Field, 2009; Peng, Lee, & Ingersoll, 

2002; Peng & So, 2002) 

 Bivariate - an analysis consisting of two variables, in which neither is identified as an 

independent (predictor) or dependent (outcome) variables (Mertler & Vannetta, 2005a; 

Tabachnick & Fidell, 2007) 

 Complete data set – for the purposes of this study a candidate had to have the following 

items as part of their application file: 

o Official copies of transcripts from all colleges and universities attended 

o Official copies of GRE scores  
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 Confidence interval – a range of potential values for which a population’s true values are 

likely to be contained (Portney & Watkins, 2000) 

 Cut-point – also known as a cut-off score, is the score associated with the point on the 

Receiver Operating Characteristic (ROC) curve which is either closest to the upper left-

hand corner or the point furthest away from the diagonal reference line is best determined 

by Youden’s Index 

 Exp(B) – Exponent B, is a used in SPSS and is an indication of the adjusted odds ratio 

 First-year Graduate Grade Point Average – the GPA for a student at the end of their first 

year in a GATP 

 Higher level science and math coursework – courses established by the GATP which are 

above the basic level, which may include but are not limited to Biochemistry, Calculus, 

Histology, Organic Chemistry, Pathophysiology, Physics, and Calculus 

 Multicollinearity – occurs when the predictor variables are “very highly correlated (r ≥ 

0.80)” (Mertler & Vannetta, 2005a, p. 342) 

 Multivariable – involves the examination of multiple variables (Concato, Feinstein, & 

Holford, 1993; Feinstein, 1996; Peters, 2008; Reboldi, Angeli, & Verdecchia, 2013; 

Steyerberg & Harrell, 2003; Tsai, 2013) 

 Multivariate – indicates several outcome (dependent) variables (Mertler & Vannetta, 

2005a; Peters, 2008; Reboldi et al., 2013) 

 Nagelkerke R
2
 – analogous to the R

2
 in linear regression, a version of the Cox and Snell 

R
2
, provides a measure of the magnitude of the model (Field, 2009) 
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 Odds Ratio – an estimate of being classified into one category (passing the BOC exam) 

versus being classified in another category, not passing the BOC exam in case-control 

studies (Portney & Watkins, 2000); a measure of association which: 

__p1      p0__ 

1 – p1  1 – p0 

where p1 = probability of an event, given the membership in Group 1, p0 = probability of 

an event, given the membership in Group 0; an odds ratio of greater than 1.0 implies an 

increased likelihood; conversely, an odds ratio less than 1 implies a decreased likelihood 

(Peng et al., 2002; Peng & So, 2002) 

 Positive Factor – subject having a score on an predictor variable that is above the 

established cut-point for the specific predictor variable as established through ROC curve 

analysis 

 Relative Frequency for Success – is similar to Relative Risk,(RR) but since risk is not an 

appropriate term for this study Relative Frequency for Success (RFS) is being used; is the 

likelihood that someone who has been classified to be accepted into the GATP will be 

accepted into the program or is predicted to pass their board exam passes the board exam 

compared with one who has not been so classified, “indicates the likelihood that someone 

who has been (classified as meeting the criteria for acceptance will be accepted or to pass 

the BOC exam will be accepted or will pass the BOC exam), as compared with one who 

has not (met the criteria to be accepted or to pass the BOC exam)” (adapted from Portney 

& Watkins, 2000) 
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 Selection for Admittance into the Graduate Athletic Training Program (GATP) – includes 

those candidates who have applied to the GATP, have been offered a position in the 

program regardless of whether the candidate accepted the position and attended classes as 

part of the GATP.  The GATP Selection Committee may select a candidate for 

admittance, but the candidate may decide to reject position in the program for a variety of 

reasons 

 Success in a GATP – is defined as having a gGPA of greater than or equal to 3.45 at the 

end of the first year in the GATP 

 Undergraduate Grade Point Average – the GPA earned by the subject, is calculated by 

combining all of the academic institutions a candidate has attended, taken courses and 

received a grade for academic credit 

 Univariable – indicates there is a single predictor variable (Reboldi et al., 2013) 

 Univariate – indicates only one outcome variable (Mertler & Vannetta, 2005a; Peters, 

2008; Reboldi et al., 2013) 

 Youden’s Index – is a method to best determine the optimum cut-point on an ROC curve. 

specifically it is: 

J = maxc (Sn(c) + Sp(c) – 1) 

 Where: 

 J = Youden’s Index 

 c = optimal cut-point for the Sn and Sp - 1 

 maxc = maximum cut-point on the ROC curve 

(Ruopp, Perkins, Whitcomb, & Schisterman, 2008)  
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Delimitations 

 The delimitations of this study include admission data from the GATP from 2004 through 

May 2012 and BOC examination data from 2004 through June 2013.  Participants for this study 

will include those candidates that have applied to the GATP, were offered a position in the 

GATP, and started the program, students who have fulfilled the academic and clinical 

requirements for the GATP and are eligible to sit for the BOC exam and take the BOC exam at 

least one time.  For the purpose of creating a prediction model, candidates must pass the BOC 

examination on their first attempt at taking the exam. 

 

Limitations 

 The following limitations are acknowledged for this study: 

 Effort by candidates on the GRE – candidates have confessed to the authors, that because 

the GATP does not have a minimum score requirement for the GRE they may not give 

their best effort on the GRE.  Other candidates have confessed they were ill or had other 

mental and emotional issues that prevented them from giving a better effort on the GRE. 

 The undergraduate academic preparation the candidates receive.  Each institution, course, 

and instructor/professor are different in the methods used to evaluate and grade students; 

therefore, how grades are earned and distributed cannot be controlled, so grade inflation 

cannot be discounted and prevented.   

 The previous clinical experiences the candidate may have prior to their application to the 

GATP. 
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 The type of clinical experiences a student in the GATP receives is going to differ for a 

variety of reasons.  These may include, but are not restricted to the following: 

o the location of their clinical rotation 

o the number and kinds of injuries the student may be exposed to 

o the specific preceptor supervising the student and what they are permitted to do or 

not do under this individual’s supervision 

o the number of clinical experience hours which a GATP student earns during their 

time in the GATP 

 Scoring system used to assess the written portion of the GRE is a subjective assessment 

conducted by a panel of experts. 

 Changes that have occurred to the GATP since 2003.  These have included but are not 

restricted to changes in faculty, changes to athletic training competencies and 

proficiencies, and the teaching responsibilities of the faculty members. 

 Whether or not someone is a traditional student.  A non-traditional student is defined as 

someone who delays their enrollment (they do not enter graduate school within [fifteen 

months] of graduating from their undergraduate school), may be considered financially 

independent for financial aid purposes, has dependents, or is a single parent (modified 

from the definition provided by Horn & Carroll, 1996). 

 

Assumptions 

 The following assumptions are made for this study: 
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 The percentile rank related to the old and new GRE scoring system as provided by 

Educational Testing Services are accurate (Educational Testing Services, 2013a, 2013b) 

 The first-time certification data provided by the BOC are accurate (Board of Certification 

(BOC) Certification Examination for Athletic Trainers, 2008, 2009; Johnson, 2010, 2011, 

2012, 2013; National Athletic Trainers Association Board of Certification, 2005, 2006; 

National Athletic Trainers’ Association Board of Certification, 2003, 2004; National 

Athletic Trainers’ Association Board of Certification Inc., 2002, 2007). 

 That the statement made on the University of Tennessee at Chattanooga Psychology 

Department’s web site is accurate when the Department reports Biderman’s Formula 

Score “has been found to be significantly related to performance in the program” 

(Biderman, 2013).   

 The information provided by a university’s web site related to their common data set 

(Common Data Set Initiative, 2012) is accurate. 

 The information provided by The Carnegie Classification of Institutions of Higher 

Education™ (The Carnegie Foundation for the Advancement of Teaching, 2010) is 

accurate. 

  

Summary of Chapter 

Chapter I provided a brief synopsis of this study.  This study had two interrelated 

purposes, both of which pertained to the process of admitting students to a graduate professional 

program.  The first component of this study involves the development of a prediction model to 

identify factors associated with eligibility and first-attempt success on the Board of Certification 
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(BOC) examination for students who have completed a professional (entry-level) graduate 

athletic training program (GATP).  The second component will utilize the results of the first 

analysis to identify program applicant characteristics that are most likely to predict both 

academic success within the graduate professional program and subsequent success on the BOC 

exam.  This chapter outlined the statement of the problem, hypotheses, dependent and predictor 

variables, operational definitions for the study, delimitation, limitations, and assumptions that are 

anticipated at this point in the dissertation process. 
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Chapter II  

 

 

LITERATURE REVIEW 

Introduction 

 Many health education program administrators have examined potential predictors for 

assisting in their decisions to admit or reject students.  A literature search on programs from 

clinical psychology (Daehnert & Carter, 1987), nursing (Hansen & Pozehl, 1995; Katz, Chow, 

Motzer, & Woods, 2009; Munro, 1985; Newton & Moore, 2007; Salvatori, 2001; Wilson, 1999), 

occupational therapy (Kirchner & Holm, 1997; Salvatori, 2001), physician assistant (Hocking & 

Piepenbrock, 2010), physical therapy (Balogun et al., 1986; Kirchner et al., 1994; Levine et al., 

1986; McGinnis, 1984; Morris & Farmer, 1999; Payton, 1997; Zipp et al., 2010), respiratory care 

(Salvatori, 2001), and medical school (Ferguson et al., 2002; Meleca, 1995; Salvatori, 2001) find 

that all have attempted to refine their selection processes.  Several different variables have been 

used in the hope of trying to either isolate or find which group of variables may provide the best 

prediction model to determine the candidates that should be selected for their programs.  

Predictor variables such as the Graduate Record Examination (GRE) (Daehnert & Carter, 1987; 

Hocking & Piepenbrock, 2010; Katz et al., 2009; Kirchner & Holm, 1997; Munro, 1985; Newton 

& Moore, 2007), undergraduate grade point average (uGPA) (Daehnert & Carter, 1987; Hansen 

& Pozehl, 1995; Hayes et al., 1997; Keskula et al., 1995; Kirchner & Holm, 1997; McGinnis, 

1984; Meleca, 1995; Munro, 1985; Newton & Moore, 2007; Salvatori, 2001; Silver & Hodgson, 
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1997), Medical College Admission Tests (MCAT) (Kreiter & Kreiter, 2007; Meleca, 1995; 

Salvatori, 2001; Silver & Hodgson, 1997), past clinical experience (Ferguson et al., 2002; 

Hansen & Pozehl, 1995; Hayes et al., 1997), age (Hansen & Pozehl, 1995), race, gender 

(Ferguson et al., 2002), and ethnicity (Ferguson et al., 2002) have all been used.  Several other 

more subjective variables have also been used to measure successful candidates and have 

included written essays, interviews, subjective inventories, references, and personal 

characteristics (Balogun et al., 1986; Bretz, 1989; Burton & Wang, 2005; Day, 1986; DeAngelis, 

2003; Feldman, 2007; Ferguson et al., 2002; Hayes et al., 1997; Keskula et al., 1995; Kirchner & 

Holm, 1997; Kirchner et al., 1994; McGinnis, 1984; Meleca, 1995; Mitchell, 1990; Munro, 1985; 

Payton, 1997; Platt et al., 2001; Sime et al., 1983; Utzman et al., 2007a; Willingham, 1972; Zipp 

et al., 2010).  The outcome variables that have been used include admission into the program, 

graduate grade point average (gGPA), academic difficulty, academic performance, clinical 

rotation success, and graduation from the program (Balogun et al., 1986; Bretz, 1989; Burton & 

Wang, 2005; Day, 1986; DeAngelis, 2003; Feldman, 2007; Ferguson et al., 2002; Hayes et al., 

1997; Keskula et al., 1995; Kirchner & Holm, 1997; Kirchner et al., 1994; McGinnis, 1984; 

Meleca, 1995; Mitchell, 1990; Munro, 1985; Payton, 1997; Platt et al., 2001; Sime et al., 1983; 

Utzman et al., 2007a; Willingham, 1972; Zipp et al., 2010).   

There are currently no studies that have examined admittance decisions for professional 

(entry-level) graduate athletic training programs (GATP).  Keskula, Sammarone & Perrin (1995) 

studied prediction variables for post-professional NATA-approved Graduate Athletic Training 

Programs.  They used stepwise multiple regression analysis to determine uGPA was the only 

significant predictor of gGPA (Keskula et al., 1995).   
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Medical professions have a board certification or licensure examination process to pass 

before being eligible to practice their profession.  Graduates become eligible to sit for these 

accrediting exams upon completion of their education.  The primary purpose of these exams is to 

determine the entry-level competence of the candidate and to protect the health and welfare of 

the general public (Federation of State Boards of Physical Therapy, 2012; National Athletic 

Trainers’ Association Board of Certification Inc., 2006; National Board for Certification in 

Occupational Therapy, 2009; United States Medical Licensing Examination, 2012).  Several 

professions or medical specialties such as: medicine (Ferguson et al., 2002), nurse anesthetists 

(Zaglaniczny, 1992), obstetrics and gynecology (Armstrong et al., 1998), physical therapy 

(Kosmahl, 2005; Utzman et al., 2007a), and surgery (de Virgilio et al., 2010), have tried to create 

their own prediction models for passing their certification/licensure exams with varied success.  

Predicting achievement on the BOC exam has been limited (Erickson & Martin, 2000; Harrelson 

et al., 1997; Hickman, 2010; Middlemas et al., 2001; Pickard, 2003; Starkey & Henderson, 1995; 

Turocy et al., 2000; Williams & Hadfield, 2003).  Therefore, the second purpose of this review 

was to examine the ability of health related professions to predict success on their certification or 

licensure exams. 

 This review will begin with a brief a history of athletic training education and the BOC 

examination.  A discussion of prediction modeling will also be included in this review. 

 

History of Athletic Training Education 

Athletic training’s birth likely occurred in ancient Greece with the creation of the 

Olympics (Ebel, 1999).  In the United States, Harvard hired James Robinson as the first athletic 
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trainer in 1881.  In 1932 a group of athletic trainers were present at the Summer Olympics 

Games in Los Angeles, CA (Ebel, 1999).   

In the 1950s, a group of about 200 athletic trainers met in Kansas City and formed the 

National Athletic Trainers’ Association (Ebel, 1999; National Athletic Trainers' Association, 

2011a).  By 1959 recommendations for educational requirements in the colleges and universities 

was proposed; however, ten years later only four colleges/universities had established athletic 

training educational programs.  In 1973 there were 14 colleges/universities with approved 

undergraduate athletic training curriculum programs and by 1978, 46 colleges/universities had 

approved undergraduate athletic training programs (Delforge & Behnke, 1999; Ebel, 1999; 

Lindquist, Arrington, & Scheopner, 2007).   

From 1969 until 2004 there were two routes to qualify to sit for the BOC exam.  A 

student could graduate from an approved athletic training professional (entry-level) education 

program (undergraduate or graduate) or through an apprenticeship/internship program with a 

bachelor’s degree (Delforge & Behnke, 1999; Ebel, 1999; Lindquist et al., 2007).  The internship 

route to certification was terminated in 2004 (Lindquist et al., 2007).  Presently there are over 

350 professional (entry-level) undergraduate athletic training programs (National Athletic 

Trainers' Association, 2011b) and 27 professional (entry-level) graduate athletic training 

programs (Commission on Accreditation of Athletic Training Education, 2013d).  How students 

have been accepted into a school’s athletic training educational program has varied from school-

to-school.  The only admission requirements mandated by athletic training’s accrediting body, 

the Commission on Accreditation of Athletic Training Education, are athletic training education 
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programs must be in compliance with the Americans with Disabilities Act of 1990 (Harkin, 

1990; National Athletic Trainers' Association, 2000). 

 

History of BOC Exam 

In the spring of 1969, J. Lindsy McLean wrote an article for the Journal of the National 

Athletic Trainers Association (a predecessor to the present Journal of Athletic Training) asking 

whether or not the NATA needed a certification exam (reprinted in 1999).  By December 1969, 

the NATA had implemented a process for becoming a certified athletic trainer.  In August 1970, 

the first certification examination was administered (Grace, 1999; Lindquist et al., 2007).  The 

initial exam had two portions, a written section which contained 150 multiple choice questions 

and three oral-practical exam questions.  By June 1985 a written simulation portion was added to 

the certification exam.  The written simulation portion presented students with scenarios and 

asked the student what steps they would take as they worked their way through the situation.  In 

order for a student to become certified he or she had to have graduated from an accredited 

athletic training education program and have passed all three portions of the certification exam 

(Lindquist et al., 2007).   

In 1995, the oral-practical section of the exam became an assessment of psychomotor 

skills only as the oral portion of the exam was dropped.  The psychomotor assessment portion of 

the exam was eventually discontinued after the April 2007 exam date.  By June of that year the 

entire exam was computerized (Lindquist et al., 2007).  

The BOC created the certification examination to determine the competency of athletic 

training students.  Questions for the BOC examination are developed by a committee of certified 



 

19 

 

athletic trainers.  The questions are created based on the BOC Role Delineation/Practice 

Analysis, which is broken into eight main content areas (Board of Certification, 2011a).  The 

eight content areas or domains of athletic training are:  

1. Evidence-based Practice 

2. Prevention and Health Promotion 

3. Clinical Examination and Diagnosis 

4. Acute Care of Injury and Illness 

5. Therapeutic Interventions 

6. Psychosocial Strategies and Referral 

7. Healthcare Administration 

8. Professional Development and Responsibility  

(Board of Certification, 2011a, 2011b; National Athletic Trainers’ Association, 2011). 

Once an exam question is created it is then submitted to group of independent evaluators 

for the questions to be validated.  Questions are cross referenced from the literature, edited for 

grammar, content, technical adequacy and clarity.  If a question is deemed to be appropriate, then 

it may be placed on the exam as an experimental/unscored item.  Based on the evaluation process 

these experimental questions are then appraised for future use on the BOC exam or the need for 

further revision and assessment (Board of Certification, 2011a).   

In 2011, the BOC exam consists of 175 questions and candidates have four hours to 

complete it.  Only 150 questions are used for the scoring portion of the exam, while the 

remaining questions are the “test” or experimental questions for potential inclusion in future 

exams.  Although all questions are scored, only those questions which are not test/experimental 
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questions are applied to the candidate’s exam performance for passing or not passing the 

certification exam.  The candidate does not know which questions are to be scored as part of the 

actual exam or which questions are experimental (Board of Certification, 2011a).   

The BOC exam questions are of three different types: 

1. Stand-alone multiple-choice questions 

2. Stand-alone alternative items (drag-and-drop, text based simulation, multi-select, hot 

spot, etc.) 

3. Focused testlets 

a. A 5-item focused testlet consists of a scenario followed by 5 key/critical 

questions related to that scenario 

b. Each focused testlet may include multiple-choice questions or any of the 

previously described alternative item types (Board of Certification, 

2011a"Development: Format," para. 1) 

The passing point for the BOC exam is established through the use of the Angoff method 

(Board of Certification, 2011a), which uses a “panel of judges” to “examine each multiple-

choice item” and “estimates the probability that the ‘minimally competent’ candidate would 

answer the item correctly” (George, Haque, & Oyebode, 2006, p. 47).  The mean of the 

probabilities is then calculated and this determines the passing point for the BOC exam.  

Reliabilities are computed for each of the domains of athletic training.  For each new exam, the 

passing point and reliabilities are calculated back to the initial version of the exam to assure 

fairness to the candidates so the specific test an individual is taking is not significantly easier or 
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harder than taking a different variation of the exam (Board of Certification, 2011a; George et al., 

2006) 

The first time success rate on the BOC exam has varied through the years.  Williams and 

Hadfield (2003), reported that the first time pass rate for all three section of the exam from 1997-

2002 was only 35%.  From the BOC testing year of 1995-1996 through the 2011-2012 exam 

year, the success rate for first-time candidates passing the BOC exam has varied from 30-82% 

with an overall average during this time of 47.9% and a median of 48.4% (Board of Certification 

(BOC) Certification Examination for Athletic Trainers, 2008, 2009; CASTLE Worldwide, 2001; 

Henderson, 1998; Johnson, 2010, 2011, 2012, 2013; National Athletic Trainers Association 

Board of Certification, 2005, 2006; National Athletic Trainers’ Association Board of 

Certification, 2003, 2004; National Athletic Trainers’ Association Board of Certification Inc., 

1997, 1999, 2000, 2002, 2007).  The overall average from the 1995-1996 exam years through the 

most recent report, 2012-2013 exam year, is 49.7%.  Figure 2.1 provide the data for the year-by-

year first-time pass rates. 
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Figure 2.1  First time pass rates by examination year 

 

Admission to Health Related Programs 

Several graduate level, allied health programs have examined potential predictors to 

assist in the admittance decisions to their programs and to assist in determining which candidates 

might have a better opportunity at success.  Programs in clinical psychology (Stricker & Huber, 

1967), nursing, (Hansen & Pozehl, 1995; Munro, 1985; Newton & Moore, 2007; Rhodes, 

Bullough, & Fulton, 1994) occupational therapy (Kirchner & Holm, 1997), physician assistant 

(Hayes et al., 1997), physical therapy (Day, 1986; Kirchner et al., 1994; Levine et al., 1986; 

Rhodes et al., 1994; Zipp et al., 2010) and medical schools (Meleca, 1995; Mitchell, 1990) have 

had varying degrees of success in their ability to select potential candidates for their programs to 

determine whom might have a better opportunity at success.  The predictor variables used 
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included: Graduate Record Examination, (GRE), (Day, 1986; Hansen & Pozehl, 1995; Hocking 

& Piepenbrock, 2010; Kirchner & Holm, 1997; Kirchner et al., 1994; Munro, 1985; Newton & 

Moore, 2007; Rhodes et al., 1994; Thacker & Williams, 1974), undergraduate grade point 

average, (uGPA), (Hansen & Pozehl, 1995; Julian, 2005; Kirchner & Holm, 1997; Kirchner et 

al., 1994; Levine et al., 1986; Meleca, 1995; Mitchell, 1990; Munro, 1985; Newton & Moore, 

2007; Salvatori, 2001; Stricker & Huber, 1967; Templeton, Burcham, & Franck, 1994; Thacker 

& Williams, 1974; Utzman et al., 2007a; Zipp et al., 2010), Medical College Admission Tests 

(MCAT), (Julian, 2005; Meleca, 1995; Mitchell, 1990; Salvatori, 2001), age (Hayes et al., 1997; 

Utzman et al., 2007a), race (Utzman et al., 2007a),  gender (Hayes et al., 1997), and ethnicity 

(Utzman et al., 2007a). Some of these same studies have indicated more subjective measures to 

predict success have been utilized.  These have consisted of: written essays (Kirchner & Holm, 

1997; Munro, 1985), interviews (Hayes et al., 1997; Levine et al., 1986), the Problem Solving 

Inventory (DeAngelis, 2003), references (Kirchner & Holm, 1997), and personal characteristics 

(Levine et al., 1986).  A variety of outcome variables have been examined to predict success to 

include: admission into the program, graduate grade point average (gGPA), academic difficulty 

(Utzman et al., 2007a), academic performance (DeAngelis, 2003; Hayes et al., 1997; Julian, 

2005; Kirchner & Holm, 1997; Kirchner et al., 1994; Stricker & Huber, 1967; Thacker & 

Williams, 1974; Zipp et al., 2010), clinical success (Kirchner & Holm, 1997; Munro, 1985), and 

graduation verses non-graduation from the program (Williams, Harlow, & Stable, 1970).  None 

of the studies could specifically define success for their specific programs or professions.  No 

studies to date have examined admission predictors of graduate athletic training education 

programs.  
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Prediction for Success on Certification/Licensure Exams 

Attempts to predict success on national examinations for certification/licensure 

examinations have been made by several professions or medical specialties.  Anesthesiology 

(McClintock & Gravlee, 2010), athletic training (Draper, 1989; Erickson & Martin, 2000; 

Harrelson et al., 1997; Hickman, 2010; Middlemas et al., 2001; Pickard, 2003; Starkey & 

Henderson, 1995; Turocy et al., 2000; Williams & Hadfield, 2003) medicine (Armstrong et al., 

1998; Johnson, 2010), and physical therapy (Utzman et al., 2007a; Vendrely, 2007) have 

attempted to predict success on their board or licensing examinations to varying degrees.  

Predictor variables used to assist in these prediction models include:  

 Anesthesiology 

o Country of medical school 

o Gender  

o In-Training Examination (ITE) scores 

o Residency program accreditation cycle length (McClintock & Gravlee, 

2010) 

  Medicine 

o American Board of Surgery (ABS) In-Training Examination (ABSITE) 

score 

o Fellowship training 

o Mandatory research  

o Residency program type 

o Surgical volume (Johnson, 2010) 
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o U. S. Medical Licensure Examination step 1 and grade point average 

(Armstrong et al., 1998) 

 Physical therapy 

o California Critical Thinking Skills Test (CCTST) 

o Demographic characteristics (race, age and ethnicity) 

o Final GPA  

o GREq (Vendrely, 2007) 

o GREv (Utzman et al., 2007a) 

o Ratings on the Clinical Performance Instrument (CPI) 

o uGPA (Vendrely, 2007) 

In athletic training nine different studies have been published which have attempted to 

predict success on the Board of Certification (BOC) exam, (Draper, 1989; Erickson & Martin, 

2000; Harrelson et al., 1997; Hickman, 2010; Middlemas et al., 2001; Pickard, 2003; Starkey & 

Henderson, 1995; Turocy et al., 2000; Williams & Hadfield, 2003).  There was a variety of 

predictor variables used in these athletic training studies.  Student learning style was used by 

Draper (1989), uGPA including overall GPA, athletic training GPA and academic minor GPAs 

(Harrelson et al., 1997; Middlemas et al., 2001), type of athletic training preparation program the 

student came from, either an accredited curriculum program or the internship route (Middlemas 

et al., 2001; Starkey & Henderson, 1995), “ACT composite score, and the number of semesters 

of university enrollment” (Harrelson et al., 1997, p. 327), the number of clinical experience 

hours, previous athletic training experience and demographic data (Hickman, 2010; Middlemas 

et al., 2001; Turocy et al., 2000), the students’ football experience (Hickman, 2010), and the 
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academic year the athletic training student began their clinical rotations (Hickman, 2010) have 

all been examined.   

Turocy (2002) states two studies (Harrelson et al., 1997; Middlemas et al., 2001) found 

that uGPA was the strongest predictor.  However, we find two flaws in her assessment (Turocy, 

2002).   

In the study by Middlemas et al. (2001) they found consistent predictors for success on 

the exam as a whole (passing all three portions of the BOC exam) in GPA, clinical hours 

completed and route to the certification exam (accredited curriculum versus internship).  They 

did not find any predictors for any single portion of the exam, but Middlemas et al. (2001) we 

believe the R
2
 value is too small to draw any substantial conclusions (R

2
 = 0.057). 

Harrelson et al. (1997) found academic performance to be a strong predictor for first-time 

success on the BOC exam on all three sections of the exam.  However, they only had 52 subjects 

in their study and the authors acknowledge there were problems in their study with the predictive 

power of their independent variables.  They used overall GPA, “athletic training GPA, academic 

minor GPA, ACT composite score, and number of semesters enrolled at (their) university” (p. 

324).  Although they were able to account for a more meaningful degree of the variance 

accounted for the entire examination (R
2
 = 0.26), when considering each of the individual 

sections of the exam, their R
2
 values are not strong: written portion of the exam (R

2
 = 0.12); 

written simulation portion (R
2
 = 0.11); oral/practical section (R

2
 = 0.10).  The authors also did 

not mention what their effect size was or report the confidence intervals related to their data 

(Harrelson et al., 1997). 
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Erikson and Martin (2000) had success in their Delphi study to predict athletic training 

student success on the BOC exam.  They used a panel 35 experts who identified 66 items they 

perceived as contributing factors to first-time success on the BOC exam.  Some of these factors 

included "ability to interpret the question" (p. 135), "knowledge of theories and techniques in 

rehabilitation and modalities" (p. 136), "clinical settings that allow students to take an active 

role"  (p. 136),"instructors committed to providing a positive learning environment"  (pp. 136-

137), and "clinical assessment skills"  (p. 137).  Unfortunately, the study did not test these 

attributes on actual candidates taking the BOC exam for the first time; nor was there a follow-up 

study done to examine the reliability or validity of these predictors. 

A common factor for all nine of the athletic training studies in their attempt to predict 

success on the BOC exam is that the data were gathered using the performance of undergraduate 

students (Draper, 1989; Erickson & Martin, 2000; Harrelson et al., 1997; Hickman, 2010; 

Middlemas et al., 2001; Pickard, 2003; Starkey & Henderson, 1995; Turocy et al., 2000; 

Williams & Hadfield, 2003).  Currently there have been no studies conducted that have 

examined potential prediction variables for the success of students from professional (entry-

level) GATPs and the success they have had on BOC exam.   

The national first time pass rate on the BOC since 2007 through 2011 was 48.6% 

(Johnson, 2012), (Figure 2.1) while the first time pass rate on the BOC over the same time period 

for students from the GATP is 83.2% (Bruce, 2011).  The purpose of this study is to create a 

prediction model to estimate success on the Board of Certification exam by students coming 

from a professional (entry-level) graduate athletic training program. 
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Statistical Analysis 

Frequentist Statistics versus Bayesian Philosophy 

 There are two main statistical schools of thought: frequentist and Bayesian.  Both 

methods explore probability, but the theories and the methods are very different (Vallverdú, 

2008).  The Bayesian approach to probability is to “measure the degree of belief in an event, 

given the information available.”  The focus in on the individual’s “state of knowledge” rather 

than a “sequence of events” (Vallverdú, 2008, Bayesian approach section, para. 1).  The 

frequentist approach to probability interprets it as “a long-run frequency of a ‘repeatable’ event.”  

With a frequentist’s approach “probability would be a measureable frequency of events 

determined from repeated experiments” (Vallverdú, 2008, Frequentist approach section, para. 1). 

The Bayesian approach to statistics originated in England by a minister named Thomas 

Bayes when it was first described in an article in 1763.  The paper, submitted posthumously, 

described what became known as the Bayesian theorem in which the estimated probability of an 

event occurring or being true, the estimated probability of an event not occurring or being false, 

and the third is to estimate the prior probability (or simply known as a prior).  A prior is defined 

as the probability you would assign to an event of occurring before you received additional 

information (Silver, 2012).  “The most practical definition of a Bayesian prior might simply be 

the odds at which you are willing to place a bet” (Silver, 2012, pp. 255-256).  Bayesian’s priors 

can remain strong and resilient even when there is new information (Silver, 2012).  The 

efficiency and effectiveness of using prior or historical information will enhance many statistical 

models (Rothman, Greenland, & Lash, 2008; Silver, 2012).  Algebraically the Bayesian theorem 

is demonstrated in Table 2.1:  
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Table 2.1  Equation for Bayes’ Theorem 

Bayes’ Theorem = 
XY 

     XY + Z (1 – X) 

  

Where: X = prior probability 

 Y = probability of event occurring or being true 

 Z = probability of event not occurring or being false (Silver, 2012) 

 

 

 

Another way of looking at Bayes’ Theorem is to understand it as “a relationship of 

probabilities and ‘conditional’ probabilities” (Hubbard, 2010, p. 178).  A conditional probability 

is characterized as “the chance of something given a particular condition” will or will not occur 

(Hubbard, 2010, pp. 178-179).  Table 2.2 demonstrates this form of the Bayes’ Theorem: 

 

 

Table 2.2  Equation for Bayes’ Theorem for Probabilities 

P(A | B) = 
P (A) x P (B | A) 

P (B) 

 

 

Where: P (A | B) = conditional probability of A given B 

 P (A) = probability of A 

 P (B) = probability of B 

 P (B | A) = conditional probability of B given A 

 

 

 

The major rival to Bayesian philosophy came from another Englishman, Ronald Aylmer 

(R. A.) Fisher, who was born about 120 years after Bayes died.  Fisher is the individual who 

developed many of the statistical methods still used today.  His creation of statistical significance 

and the associated methodology focused on helping the data to be freer of bias or contamination.  

The focus of Fisher’s techniques relies on selecting a representative sample from a population 
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and applying the results from the sample to the population.  This form of statistics became 

known as frequentism or frequentist (Silver, 2012). 

The frequentist approach to statistics has been the dominate form of statistics in research 

since the 1920s.  The ideas conveyed by R. A. Fisher, John Venn, Jerzy Neyman, and Egon 

Pearson caused researchers to shift their paradigm.  The concepts they discussed and advocated 

for were that of relative frequency.  The researcher would perform the experiment many times 

and the count the number of subjects who achieved or had a positive outcome or result 

(Vallverdú, 2008; Zabell, 1989).   

Advocates of frequentist statistics criticize the Bayesian approach as being overly 

subjective and arbitrary. Bayesians defend this by stating there is an element of subjectivity and 

arbitrary elements in all statistical inferences (Rothman et al., 2008).  Frequentist seek to avoid 

the reasons behind why predictions most often are wrong, that being human error.  Bayesian 

philosophy helps to apply problems into a the real world, while frequentist statistics are more 

confined to the laboratory and less suitable for the real world (Rothman et al., 2008; Silver, 

2012). 

From the 1760s into the 20
th
 Century the Bayesian approach was the dominate statistical 

technique (Fienberg, 2006) (Tables 2.3 and 2.4 demonstrate the differences between the two 

forms of statistical analyses.)  The label Bayesian did not come into the lexicon until 1970s.  

Thomas Bayes created many of the methods and theories used in probability testing with its roots 

associated with “inverse probability”.  The term inverse was used because “it involves inferring 

backwards from the data to the parameter or from effects to causes” and led to what is known 

today as inferential statistics (Fienberg, 2006, p. 5). 
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From about 1950 into the 1990s almost no one utilized Bayesian philosophy, except for a 

few researchers on the fringe of science.  There were a couple of reasons for this occurrence.  

First, everybody was engaged in the cookbook mentality of using a certain frequentist procedure 

if a specific type of study was being performed.  Researchers were led to believe that frequentist 

statistics was the way things had always been done and it was the most popular form of statistical 

analysis (Casella, 2008).  We conducted a brief search of academic search engines using just the 

terms Bayesian and frequentist.  Tables 2.3 and 2.4 demonstrate how inaccurate this assumption 

was and continues to be today.  Table 2.3 shows all of the references without any restrictions on 

the dates.  Table 2.4 shows the references from the 21
st
 Century. 

 

 

Table 2.3  Comparison of the Number of References on Various Academic Search Engines 

Search Engine Bayesian Frequentist 

Google Scholar  1,070,000   29,300  

WorldWideScience.org  368,736        39,746  

Science.gov 209,119        36,951  

Microsoft Academic Search 119,288   2,937  

PubMed   18,639       506  

The Cochran Library      7,646      680,109  

Library of Congress  128    1  

Digital Library of the Commons    96    6  

Total    1,793,652      789,556  

  



 

32 

 

Table 2.4  Comparison of the Number of References in the 21
st
 Century on Various Academic 

Search Engines  

 

Search Engine Bayesian Frequentist 

Google Scholar  580,000        19,700  

WorldWideScience.org  331,298        31,224  

Microsoft Academic Search    88,932   2,136  

PubMed    16,635       454  

Total    1,016,865        53,514  

 

 

Secondly, computers were very cumbersome, slow, and unavailable to the masses during 

the first 90 years of the 20
th
 Century.  It was not until the 1990s when personal or desk top 

computers became much more affordable and easier to use.  The third reason relates closely to 

the second – Bayesian philosophy takes a lot of computation and to do these computations in 

long hand takes a great deal of time and increases the risk of error (Casella, 2008). 

In a frequentist’s world, the data are generated by repeating the experiment on a random 

sample (providing the frequency of an event), the basic limitations remain the same during the 

application of the repeatable experiment; therefore the parameters are constant.  In the 

Bayesian’s world the data are gathered from an observed cohort, the parameters are unspecified 

and are described in terms of the likelihood of an event occurring or not occurring; therefore the 

data are fixed (Casella, 2008).  Bayesian philosophy is about observing the “association between 

the exposure and the outcome” (Denegar & Wilkerson, 2013, slide 27).  For the purposes of this 

study the exposures are the traits (predictor variables) students possess.  The outcomes are either 

being accepted or not being accepted into the GATP or passing or not passing the BOC exam the 

first time a student takes the exam. 
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Univariate/Multivariate vs. Univariable/Multivariable 

Throughout the literature, especially medical literature, researchers tend to disagree on 

the appropriate use of the terms univariate / univariable, multivariate / multivariable.  Although 

the use of these terms is often used interchangeably they have very different meanings and 

connotations (Concato et al., 1993; Reboldi et al., 2013).  The suffix –variate refers to the 

outcome or dependent variable (Concato et al., 1993; Feinstein, 1996; Mertler & Vannetta, 

2005a; Peters, 2008).  The term variate is defined as “a random variable with a numerical value 

that is defined on a given sample space” (The Free Dictionary by Farlex, 2000c, variate) The 

suffix –variable refers to the predictor or independent variable (Concato et al., 1993; Peters, 

2008; Steyerberg & Harrell, 2003).  The term variable refers to “having no fixed quantitative 

value” or the capability “of assuming any . . . set of values” (The Free Dictionary by Farlex, 

2000b, variable).   

Univariable analysis in where there is a single predictor variable.  This form of analysis is 

often used in the determination of the inclusion or exclusion of variables based on some sort of 

criteria (Reboldi et al., 2013).  Multivariable analysis involves multiple predictor variables 

(Concato et al., 1993; Feinstein, 1996; Peters, 2008; Reboldi et al., 2013; Steyerberg & Harrell, 

2003; Tsai, 2013).  There are three general models in which multiple variables can relate to one 

another.  They are as follows: 

1. Multiple predictor (independent) variables relating to a single outcome 

(dependent) variable, known as a “many-to-one relationship.” 

2. Multiple predictor (independent) variables relating to multiple outcome 

(dependent) variables, known as “many-to-many relationship.” 
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3. Multiple variables which are neither predictor or independent nor outcome or 

dependent.  This is known as a “many-internal relationship, being interrelated to 

one another, but not to the external variable.”  (Feinstein, 1996, p. 2) 

Any of these three forms of relationships are referred to as multivariable since there is more than 

one predictor variable.  This was further reinforced by J. Concato (personal communication, 

December 12, 2013) when he stated if there is more than one predictor variable, the term 

multivariable is warranted. 

The main statistical methods utilized in multivariable analysis differ “in the expression 

and format of the outcome expressed as the dependent variable (Concato et al., 1993, p. 201).  

These methods include: 

1. Multiple linear regression has a continuous outcome variable 

2. Multiple logistic regression has a binary outcome variable and “occurs at a fixed 

point in time.” 

3. Discriminant function analysis has an outcome variable which the subject belongs 

to a category or a group where there are more than two possible outcomes. 

4. Cox regression has an “outcome variable which is duration of time to occurrence 

of a binary ‘failure’ event during a follow-up period of observation.”  Simply put 

what is the subject’s outcome status at the time when the study is terminated 

(Concato et al., 1993, pp. 201-202). 

The use of terms univariate, bivariate, and multivariate often are used without regard to 

what they actually signify (Feinstein, 1996).  Univariate refers to a single outcome variable 

although there may be many predictor variables (Peters, 2008; Tabachnick & Fidell, 2007).  
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When an analysis consist of two variables, but neither is identified as either an independent or 

dependent variables it is known as bivariate (Mertler & Vannetta, 2005a; Tabachnick & Fidell, 

2007).  Multivariate analysis indicates several outcome (dependent) variables, while when there 

is only one outcome variable the proper term is univariate (Mertler & Vannetta, 2005a; Peters, 

2008; Reboldi et al., 2013).  Most common medical studies are not multivariate since there is 

usually one outcome variable (Concato et al., 1993).  Conversely, Tabachnick & Fidell, (2007), 

state that multivariate analysis includes simultaneous analysis of multiple outcome and multiple 

predictor variables.   

For our study, since the development of the prediction models is similar the terms 

univariable, multivariable and univariate will be used.  We are examine each predictor variable 

individually (univariable), then combine the variables for further investigation (i.e., multiple 

predictor variables; therefore, multivariable), and a single outcome variable (univariate). 

 

Evidence-based Research 

 Evidence-based research came out of the practice of evidence-based medicine (EBM).  

By definition EBM is “the integration of the best research evidence” with clinical expertise and 

the patient’s unique values and circumstances (Straus, Richardson, Glasziou, & Haynes, 2005, p. 

1).  Evidence-based medicine has become multidisciplinary for a variety of allied health care 

professions and the evolving research has enabled practitioners to share and communicate related 

information.  It allows the clinician to seek and access answers to questions and incorporate the 

information into effective therapies and interventions.  Evidence-based medicine also allows the 

clinician to focus their reading on the specific issues that arise in their clinical practice rather 
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than randomly seeking answers through the mass of literature and myriad of journals and that are 

available today (Sackett, 1997; Steves & Hootman, 2004). 

 Figure 2.2 represents the early model of what was involved in EBM.  It was the 

combination of clinical expertise along with the best research evidence available and the 

preferences and values of the patient (Haynes, Devereaux, & Guyatt, 2002). 

 

 

Figure 2.2  Early Model for Evidence-based Medicine 

 

 

Figure 2.3 shows an updated model of EBM where clinical presentation of the patient 

along with the best available research evidence available and the preferences and values of the 

patient are all considered as part of the expertise of the clinician to provide the best possible care 

available (Haynes et al., 2002). 
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Figure 2.3  Updated Model for Evidence-based Medicine 

 

According to the Oxford Centre for Evidence-based Medicine, the ranking of the levels 

of evidence is listed on five different levels.  The gold standard of research is the randomized 

controlled trial (RCT), Level I.  Level II are cohort studies while case-control studies are 

classified as Level III studies.  A case-series is a Level IV study, and expert opinion is seen as 

the weakest and is classified at Level V (Phillips et al., 2009).  Frequentist advocates tend to stay 

at Level I and do not give much credence to cohort studies.  The problem with the RCT is 

conducted in a relatively sterile environment where all of the extraneous variables are controlled 

as best as possible to determine if only one variable is responsible for the change in condition 

(Portney & Watkins, 2000).  Although the ultimate goal would be to strive to conduct the highest 

level of research possible (Level I), it is not always practical to control all of the variables, nor 

randomize all of the subjects. 
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A cohort study (Level II) can provide valuable information when desiring to follow a like 

group of individuals over a specific period of time.  In clinical prediction modeling research, the 

clinician acknowledges it is impossible to control for all of the extraneous variables of our 

patients.  These studies have great utility due to the larger populations compared to the relatively 

small number of subjects utilized in RCTs.  Cohort studies are also advantageous in their ability 

to classify subjects in any one of many different categories depending upon the study.  Many 

epidemiological studies examine the presences or absence of some sort of condition, disease, or 

injury and related to some exposure.  This technique permits the researcher to easily classify the 

patients or subjects into one of four general categories, which provides for a 2 X 2 contingency 

table to be established.  From this 2 X 2 table any number of different statistical procedures can 

be calculated to provide a variety of data (Denegar & Cordova, 2012; MacDermid & Law, 2007; 

Portney & Watkins, 2000). 

The United Kingdom’s National Health Services (NHS) expands the Oxford Centre’s 

rating system whereby their top rating is: 1++; 1+; 1; 2++; 2+; 2; 3; 4.  Their “1” raking include 

meta-analyses and systematic reviews of RCTs.  A 1++ has very little risk of bias; a 1+ has low 

risk of bias, while a 1 has a high risk of bias.  The NHS rating of 2 studies other than RCTs, so a 

2++ is a systematic review of a cohort or case-control study.  A 2+ rated study is a well-designed 

and conducted cohort or case-control studies that possess few confounding bias variables.  If a 

cohort or case-control study has a high risk of having confounding variables then it is rated as a 2 

by the NHS system.  Studies rated as a 3 are case series or case report studies, while a rating of 4 

is expert opinion (MacDermid & Law, 2007) 
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From EBM the evolution of clinical prediction rules were developed.  There are three 

main steps when creating a prediction rule: 1. derivation of the prediction rule; 2. validation of 

the rule; 3. impact analysis (Bruce & Wilkerson, 2010a; Childs & Cleland, 2006).  Creating the 

prediction rule is to identify all of the potential predictors (Bruce & Wilkerson, 2010a; Childs & 

Cleland, 2006) or “priors” according to Silver (2012).  Validating the rule is to apply the rule to a 

different population of similar patients/subjects for which the rule was originally created.  The 

final step is to conduct an impact analysis.  This step involves evaluating whether or not the rule 

affected the clinician’s behavior, improved outcomes or reduced costs (Bruce & Wilkerson, 

2010a; Childs & Cleland, 2006).  Bayesian statistics not only helps to create the prediction rule, 

but assists in the determination of the accuracy of a prediction in the real world (Silver, 2012). 

 

Prediction Modeling 

Prediction models have been used in medicine to guide clinical practice for some time 

(Beneciuk, Bishop, & George, 2009; Bruce & Wilkerson, 2010b; Childs & Cleland, 2006; 

Emparanza & Aginaga, 2001; Flynn et al., 2002; Heyworth, 2003; Kuijpers et al., 2006; 

Laupacis, Sekar, & Stiell, 1997; Stiell, 1996; Stiell et al., 1992 ; Wasson, Sox, Neff, & Goldman, 

1985).  These prediction models have been called clinical prediction rules or clinical decision 

rules (Bruce & Wilkerson, 2010a; Childs & Cleland, 2006; Childs et al., 2004; Childs, Fritz, 

Piva, & Erhard, 2003; Cleland, Childs, Fritz, Whitman, & Eberbart, 2006; Cleland, Childs, Fritz, 

Whitman, & Eberhart, 2007; Haswell, Gilmour, & Moore, 2008; Laslett, 2006; Podichetty & 

Morisue, 2009; Yealy & Auble, 2003).  An argument could be made that “clinical prediction 

guide” is a better term since rules are usually hard and fast (Denegar, 2012).  Breaking rules 
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usually results in consequences.  While guides assist someone in negotiating territory and there 

are few if any consequences when they are violated (Bruce, 2012; Denegar, 2012).  Regardless 

of what they are called their primary purpose is to aid the healthcare practitioner in making 

clinical decisions about a condition or how to treat the specific condition based on the research 

evidence.   

Prediction models have been developed for a variety of medical disciplines.  Chiropractic 

(Davenport, Cleland, & Kulig, 2009; Teyhen, Flynn, Childs, & Abraham, 2007), emergency 

medicine (Emparanza & Aginaga, 2001; Heyworth, 2003; Stiell et al., 1992 ), military medicine 

(Billings, 2004; Leisey, 2004; Mahieu, Witvrouw, Stevens, Van Tiggelen, & Roget, 2006; Rosin 

& Sinopoli, 1999; Springer, Arciero, Tenuta, & Taylor, 2000; Sutlive et al., 2008), physical 

therapy (Beneciuk et al., 2009; Childs & Cleland, 2006; Cleland et al., 2007; Hicks, Fritz, 

Delitto, & McGill, 2005; Iverson et al., 2008; Wainner et al., 2005), and orthopedics (Brenner, 

2008; Flynn et al., 2002; Kuijpers et al., 2006; Leisey, 2004; Yuen, 2001), have all benefitted 

from their use.  Some of the specific orthopedic conditions that clinical prediction rules have 

been implemented for include: ankle injuries (Emparanza & Aginaga, 2001; Heyworth, 2003; 

Rosin & Sinopoli, 1999; Stiell, 1996; Yuen, 2001), carpal tunnel syndrome (Wainner et al., 

2005), cervical pain (Cleland et al., 2007), knee dysfunction (Iverson et al., 2008; Lesher et al., 

2006), shoulder related conditions (Kuijpers et al., 2007; Kuijpers et al., 2006) , and low back 

pain (Childs et al., 2004; Flynn et al., 2002; Hicks et al., 2005; Iverson et al., 2008; Richardson et 

al., 2002). 

Athletic training is lagging significantly in the area of clinical prediction modeling.  A 

two-part series on how to create a clinical prediction rules was published in 2010 (Bruce & 
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Wilkerson, 2010a, 2010b).  The first article involved the specifics of how to create a clinical 

prediction rule (Bruce & Wilkerson, 2010a).  The second article in the series outlined a clinical 

prediction rule for overuse injuries in intercollegiate softball players (Bruce & Wilkerson, 

2010b).  The other two articles were both conducted at the University of Tennessee at 

Chattanooga with Dr. Gary Wilkerson as the lead author.  The first study examined cardio-

metabolic risks among intercollegiate football players (Wilkerson, Bullard, & Bartal, 2010).  The 

second study was only a preliminary study, but looked at the ability to predict injuries to the core 

and lower extremity in intercollegiate football players (Wilkerson, Giles, & Seibel, 2012).  

Several other studies have been conducted at and have been presented as poster presentations, 

but have yet to be converted into manuscripts for publication in refereed journals (Burdette & 

Wilkerson, 2012; Cockrell & Bruce, 2008; Friess & Bruce, 2010; Henley, Bruce, & McDermott, 

2012; Hess, Wilkerson, & Colston, 2012; Jones, Wilkerson, Colston, & Bruce, 2012; Karch, 

Wilkerson, & Bruce, 2012b; Michel, Colston, & Tanner, 2011; Reinecke & Wilkerson, 2012; 

Rigney & Bruce, 2010; Snider, MacLean IV, & Wilkerson, 2013; Stanley & Bruce, 2009; 

Tucker, Mullis, Wilkerson, & Bruce, 2013). 

In the establishment of any prediction model the first two goals are to identify any and all 

potential predictor variables and to establish a clear operational definition of the dependent 

variable (Bruce, 2012; Bruce & Wilkerson, 2010a).  The use of prediction modeling has utility 

for admission decisions for health care professions and for estimating success on a profession’s 

licensure or board exam since the outcome is dichotomous: (admitted to the program or not 

admitted to the program; passage of the exam or not passing the exam).  Only two studies 
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examined these two research questions and both studies were done in physical therapy, by 

Utzman, Riddle, and Jewell (2007a, 2007b).   

For their first study, Utzman et al. (2007a) dichotomized their outcome variable, 

academic difficulty verses non-academic difficulty from the rating by program directors of the 

students in their program, both past and present.  The predictor variables included uGPA, GREv 

and GREq, target year of graduation, age at time of admission, gender, race/ethnicity, and degree 

level.  The researchers utilized a hierarchical logistic regression to control for confounding 

variables.  They examined the Wald statistics and adjusted odds ratios to identify those variables 

that contributed to the prediction model significantly.   

After running their logistic regression model, the authors then ran a receiver operator 

characteristic (ROC) curves to determine sensitivity and specificity.  To develop cut-points the 

authors separated uGPA, GREv, and GREq into tertiles.  They then recoded these variables and 

retested them against the previously identified predictor variables.  If these tertile cut-points did 

not yield significant differences, then ROC curve analysis was used to identify cut-points 

(Utzman et al., 2007a).   

In their study, tertile cut-points were used for the uGPA, while ROC curve analysis was 

used for GREv and GREq.  To develop the final prediction model the  coefficients from the 

logistic regression was used to determine the strength of the variables that should be included.  

Their final analysis was to apply their model to a variety of physical therapy programs.  The 

authors reported only the percentage of schools that their model fit rather than the sensitivity, 

specificity or odd ratios for each program (Utzman et al., 2007a).  
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 In a second study, Utzman et al. (2007b) repeated their previous study, but this time to 

predict performance on the National Physical Therapy Examination (NPTE).  They repeated the 

same procedures as they did in their previous study with the only difference being that they 

examined the odds ratios for failing the NPTE (Utzman et al., 2007a). “Odds ratios indicated that 

when controlling for other variables, the odds of failing the NPTE were increased 12% for each 

0.10 decrease in uGPA.  As GREv and GREq scores decreased by 10, odds of NPTE failure were 

increased by 6.6% and 3.5% respectively” (Utzman et al., 2007b, pp. 1185-1186).  The authors 

concluded that their prediction model of uGPA, GREv and GREq was able to predict failure at 

least once on the NPTE.  The GREv score was the strongest variable to predict failure on the 

NPTE.  In their conclusions the researchers suggest that GREv and GREq are the strongest 

predictors for both failure on the NPTE and academic admission decisions (Utzman et al., 

2007a).  

There are a few problems with the two Utzman et al. (2007a, 2007b) studies.  In both of 

the Utzman et al. studies, the authors use tertiles to determine cut-points, but how those cut-

points were determined was not explained and appear to be arbitrary.  For example, for the GPA, 

was it one-third of the entire 4.0 scale?  Or was it one-third between 3.0 and 4.0?  A better 

solution would have been to use the ROC curve analysis to determine the cut-points and to 

dichotomize high scores verses low scores (Bruce & Wilkerson, 2010a; Hosmer & Lemeshow, 

2000).  The dichotomized predictor variables would then be placed into a logistic regression for 

analysis of the best model.  Instead Utzman et al. (2007a, 2007b), only used ROC curve analysis 

if tertile cut-points did not yield significant differences. 



 

44 

 

Another difficulty was the authors only used ROC curve analysis for determining 

sensitivity and specificity (Utzman et al., 2007a, 2007b). Dichotomizing their data would have 

permitted them to create a 2 X 2 cross-tabulation table and calculate the sensitivity, specificity, 

likelihood ratios, odds ratios and relative frequency for success (relative risk), from these data.  

They could have calculated a 2 X 2 cross-tabulation table for each of the predictor variables and 

obtained the information for each variable (Utzman et al., 2007a, 2007b). 

Furthermore if the authors had dichotomized their data, they then could have determined 

who was above or below the established cut-points.  (In this case, high scores and GPA would 

have been positive factors to gain admittance or to pass the NPTE.)  After calculating the total 

number of positive factors an individual possesses, ROC curve analysis would be repeated to 

determine the optimum number of positive factors.  With an optimum number of positive factors 

determined a prediction model could be developed and examined for sensitivity, specificity, and 

odds ratios (Bruce & Wilkerson, 2010a; Federation of State Boards of Physical Therapy, 2012; 

Wilkerson et al., 2010). 

To develop the final prediction model Utzman et al. (2007a, 2007b) used  coefficients 

generated from the logistic regression.  There were four better choices to determine which model 

fits best.  The authors could have examined the chi-square statistic for significance, the 

Nagelkerke R
2
 data for the amount of the variance the model accounted for, examined which step 

of the classification table provided the most accurate data to classifying subjects in their 

appropriate category: (true positives + true negatives / total), or the Exp(B) data to determine the 

odds ratios of each predictor variable and the interaction between each variable at each step of 

the prediction model.  
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Statistics Utilized for Prediction Modeling 

A variety of statistical methods have been used to analyze the potential relationships 

between and among predictor variable to predict admission verses non-admission, or passing 

versus not passing a specific profession’s certification/licensure examination.  Multiple 

regression analysis was the most commonly used statistical technique implemented by a variety 

of authors and for various purposes (Balogun et al., 1986; Day, 1986; Hansen & Pozehl, 1995; 

Hayes et al., 1997; Julian, 2005; Kirchner & Holm, 1997; Kirchner et al., 1994; Levine et al., 

1986; McGinnis, 1984; Meleca, 1995; Mitchell, 1990; Munro, 1985; Newton & Moore, 2007; 

Platt et al., 2001; Rhodes et al., 1994; Silver & Hodgson, 1997).  Correlations were also used 

extensively.  Several authors used the Pearson product-moment correlation coefficient (Hayes et 

al., 1997; Levine et al., 1986; Mitchell, 1990; Munro, 1985; Newton & Moore, 2007; Rhodes et 

al., 1994; Stricker & Huber, 1967), while the Spearman rho rank correlation coefficients were 

used in only one study (Morris & Farmer, 1999).  A Pearson’s Chi-squared tests was used in one 

study (Hickman, 2010) 

Both the Draper (1989) and the Erickson & Martin (2000) studies reported only the 

specific percentage related to the data they collected.  Draper (1989) reported scores for each 

section of the BOC exam and for the Learning Style Inventory scores.  Although he does report 

the level of significance (p < 0.05), he does not state what statistical procedure was used to 

determine those p-values (Draper, 1989).  Erickson & Martin (2000)  descriptive study reports 

the percentages and means of the survey data they collected.  Since they were only describing 

what athletic training education program director’s believed contributors to success on the BOC 

exam, no p-values were reported (Erickson & Martin, 2000). 
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Harrelson et al. (1997) utilized a multiple linear regression to identify the predictor 

variables in relation to pass in the BOC exam pass rate.  Multiple discriminant analysis was used 

to determine what, if any, combination of “variables could predict success” on the BOC exam (p. 

325).  Discriminant analysis assumes that the “predictor variables are distributed as a 

multivariate normal distribution with equal covariance matrix” (Peng et al., 2002, pp. 9).   

Turocy et al., (2000) used “standard descriptive statistics, nonparametric analysis, 

parametric linear regression,” and Pearson product-moment correlational analysis to examine 

their data (Turocy et al., 2000, pp. 71).  No relationships were found for clinical experience 

hours, types of clinical experiences, or demographic information to predict scores or pass-fail 

outcome on the BOC exam or on any of the parts of the exam (Turocy et al., 2000). 

A two-way analysis of variance was used to look at the differences between the means of 

candidates’ scores by route to eligibility and by candidates’ gender in the study conducted by 

Middlemas et al. (2001).  Additionally, chi square analysis was performed to examine whether a 

difference existed between the internship and curriculum routes to certification.  Correlations 

among the predictor variables were used to examine for collinearity among the predictors.  To 

“determine the ability to predict the outcome” on each section of the exam “from the predictor 

variables” multiple regression analysis was used (Middlemas et al., 2001, p. 137).  “Stepwise 

linear regression analysis was used to examine the ability to predict the quantitative score on 

each section of the certification examination from GPA and number of hours of clinical 

education completed” (Middlemas et al., 2001, pp. 137).  Logistic regression was used to predict 

whether a candidate will pass or fail the entire BOC exam.  The predictor variables used were 
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uGPA, and clinical hours.  Both variables were statistically significant and accounted for 58% 

percent of the variance (R
2
 = 0.58) (Middlemas et al., 2001). 

Hickman’s dissertation (2010) examined if three variables were related to passing the 

BOC exam.  She used contingency tables to assist her to decide if a relationship between the 

variables and the passing the BOC exam existed.  A “statistical significance was noted if 

Prob>ChiSq was less than 0.05” (Hickman, 2010, p. 35).   

Athletic training education program (ATEP) characteristics were examined and included 

“total number of clinical experience hours, the year in which the student was assigned their first 

rotation, and the number of clinical rotations assigned that consisted of more than 50 total hours” 

(Hickman, 2010, p. 35).  She states her chi-squared (
2
) analysis found no relationship between 

ATEP characteristics and success on the BOC exam, but does not report the specific findings 

(Hickman, 2010).   

Although Hickman (2010) found that “four of five students who worked both preseason 

and fall football passed on the first attempts, while three of nine students who worked preseason 

football alone passed on the first attempt” there was no statistical relationship found 

(Prob>ChiSq= 0.086). 

Age and GPA were student demographics which were also examined by Hickman 

(2010).  She reports no statistically significant findings, but attributes it to her small sample size 

(n = 24). She reports the Prob>ChiSq = 0.081. 

In all three of the variable analyses, Hickman (2010) uses a multiple column by two row 

contingency table.  In both cases, ROC curve analysis would have given her a cut-point in order 

to dichotomize her data from a specific point rather than just arbitrarily selecting the cut-points.  
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For the football season experience X passing the BOC exam on the first attempt she uses eight 

categories.  This creates some problems.  In the notes of her contingency table she states that 

“20% of cells have expected count less than 5, Chi-square suspect” (p. 37).  If she decreased her 

number of categories from eight to two thus, dichotomizing her data, it may have strengthened 

her analysis.   

A re-configuration of Hickman’s (2010) data to fit into a 2 X 2 was done as follows: All 

students who had experience working pre-season football camp and the fall football season were 

compared to all other categories of football.  There were five students who worked both pre-

season football and the fall season who passed the BOC exam and three who did not pass the 

BOC exam.  There were five students who passed the BOC exam who had experience with all 

other combinations of football experience, while eleven students who worked other combination 

of football (FB) failed the BOC exam.  Table 2.5 shows a reconfigured 2 X 2 contingency table. 

 

Table 2.5  Football Experience X Passing vs. Not Passing the BOC exam 

   Passed BOC exam Failed BOC exam 

Pre-season & Fall FB 

season experience 
5 3 

All other combinations 

of FB experience 
5 11 

Total 10 14F 

Sensitivity: 0.50 (90% CI: 0.27 – 0.73) +LR: 2.33 (90% CI: 0.87 – 6.28) 

Specificity: 0.79 (90% CI: 0.57 – 0.91) -LR: 0.64 (90% CI: 0.36 – 1.12) 

OR: 3.67 (90% CI: 0.82 – 16.32) RFS: 2.0 (90% CI: 1.63 – 2.45) 

(Hickman, 2010).   
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The positive findings of these reconfigured data demonstrates the RFS is a 2.0 greater 

probability of an individual passing the BOC exam for those individuals with pre-season and fall 

football season experience compared to those who have any other combination of football 

experience.  Although the odds ratio indicates an individual who has worked pre-season football 

and fall football has 3.67 times greater odds to pass the BOC exam than someone who has any 

other combination of football experiences, there are two problems.  Since the 90% confidence 

interval is 0.82 – 16.32, thus crossing “the null value of 1.0,” . . . “it can be concluded that the 

observed association is not statistically significant” (Hosmer & Lemeshow, 2000, p. 340) 

A second problem is the same number of students who experienced both pre-season 

football and the fall football season passed the BOC exam as those who had any combination of 

football experience.  Therefore, according to this small sample size in this study it appears a 

student’s football experience has no bearing on passing the BOC exam (Hickman, 2010). 

For her analysis of the GPA, she used 4 categories, so again if she had dichotomized the 

data she would have had a stronger analysis.  In Hickman’s (2010) data she sets her categories 

for “Adj. GPA” (but she never explained what Adj. GPA was or how it was calculated or 

determined) from 2.8 – 3.1; 3.2 – 3.5; 3.6 – 3.9; 3.9 – 4.2.  (Note also that she does not account 

for the hundredths of a point would be classified in her Adj. GPA.)  Hickman reports 14 students 

did not pass the BOC exam that had Adj. GPAs between 2.8 and 3.5, while six students did pass 

the BOC exam with Adj. GPAs in these categories.  No students failed the BOC exam with an 

Adj. GPA between 3.6 and 4.2, and four students did pass the exam with an Adj. GPA in these 

categories.  (Because there are no students who failed the BOC exam with an Adj. GPA between 

3.6 and 4.2, a value of 0.5 is added to that cell and for consistency to all of the other cells too.  
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Otherwise, the odds ratio will be either zero or infinity (Hosmer & Lemeshow, 2000).)  The new 

2 X 2 contingency table is displayed in Table 2.6. 

 

Table 2.6  Adj. GPA X Passing versus Failing the BOC exam 

 

 Passed BOC exam Failed BOC exam 

3.6 – 4.2 6.5 0.5 

2.8 – 3.5 4.5 14.5 

Total 11 15 

Sensitivity: 0.591 (90% CI: 0.35 – 0.79) +LR: 17.73 (90% CI: 1.74 – 181.1) 

Specificity: 0.967 (90% CI: 0.80 – 0.995) -LR: 0.42 (90% CI: 0.23 – 0.77) 

OR: 41.89 (90% CI: 3.2 – 548.4) RFS: 3.92 (90% CI: 3.2 – 4.81) 

(Hickman, 2010).   

 

 

The interpretation of this new configuration of Hickman’s (2010) data demonstrates 

moderate sensitivity and excellent specificity.  However, the odds ratio says an individual with 

an Adj. GPA of 3.6 – 4.2 is 41.89 times more likely to pass the BOC exam than someone that has 

an Adj. GPA between 2.8 & 3.5.  Because of the small sample size, (two cells have less than five 

subjects per cell) the 95% confidence interval is very large (3.2 – 548.4).  The relative frequency 

for success (RFS) tells us there is a 3.92 greater probability of an individual passing the BOC 

exam for those individuals with an Adj. GPA between 3.6 & 4.2 compared to those with an Adj. 

GPA of 2.8 to 3.5.  Again, because of the small sample size (n = 24) the CI were quite large 

indicating large fluctuations are possible in the data. 
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Pickard’s (2003) dissertation examined the role of mentorship of athletic training students 

and the effect it might have on the BOC exam.  He used a variety of statistical procedures to 

analyze his data.  He concluded that mentoring does not have an effect on the outcome of the 

BOC exam.  An additional finding was the BOC exam did not measure mentoring relationships 

(Pickard, 2003).  

Starkey and Henderson’s (1995) study analyzed the differences between students who 

took the former internship route to certification and those students who graduated from an 

accredited athletic training education curriculum.  This comparative study examined the results 

for the 1992 and 1993 calendar years.  They reported the percentages for each route to 

certification and performance on each of the three sections of the exam and for passing all three 

portions.  Students from accredited curriculum programs passed all three sections of the exam at 

a higher percentage than their internship route counterpart.  Of those students who passed all 

three sections of the exam, 32% of those who came from a curriculum program passed compared 

to only 24.1% of those who came from an internship route to certification. 

Additionally, t-tests were conducted comparing the two groups on each of the three 

sections of the exam and on the written section by each of the athletic training domains.  (For the 

other two sections of the exam, responses to questions often encompassed multiple domains.).  

Each of these analyses were statistically significant at the 0.0001 alpha level (Starkey & 

Henderson, 1995). 

The results of the Starkey and Henderson (1995) study were the impetus for the 

elimination of the internship route to certification.  The NATA Educational Task Force made 18 

recommendations to the NATA Board of Directors in 1996.  The requirement of all candidates 
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being from an accredited athletic training education program was announced in 1997 and went 

into effect in January of 2004 (Craig, 2003; Delforge & Behnke, 1999; Weidner & Henning, 

2002). 

William and Hadfield (2003) surveyed 60% of all athletic training education program 

directors to identify what attributes possessed by athletic training education programs and 

whether or not these attributes are related to their student’s success on the BOC exam.  

Regression analysis and a general linear model statistics were used to analyze the results of her 

survey results.  The following variables were analyzed and found to have a positive effect on the 

passing rate for the first-time pass rate on the BOC exam: 

 Emphasis on teaching the seven athletic training domains and the competencies 

within each of the domains 

 Having separate clinical and academic responsibilities for faculty and staff 

 Avoiding the hiring of faculty members with K-12 teaching experience (Williams 

& Hadfield, 2003) 

There were four variables which William and Hadfield (2003) identified as not being 

statistically significant to passing the BOC exam the first-time.  They include: 

 Grade point average 

 The athletic training curriculum being associated with an allied health school 

 The format in which course examinations were performed 

 The existence of a capstone course (Williams & Hadfield, 2003) 

Hanse and Pozehl (1995) examined admission criteria to predict achievement in a 

graduate level nursing program. They used factor analysis to evaluate the results from the 
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“Graduate Performance Rating Survey” utilized in their study.  The researchers used step-wise 

multiple regression to examine the association between criterion variables and factor variables 

(Hansen & Pozehl, 1995).   

Hayes et al., (1997), employed a variety of statistical methods to analyze their data.  

These included correlations, standard descriptive statistics, independent chi-square tests, multiple 

regressions, and t-tests.  To determine if differences existed between their two groups, 

(traditional verses non-traditional students) they used independent t-tests.  Additionally, the 

authors examined the correlations between all of the variables.  Multiple regressions were used 

to analyze all students, traditional students and non-traditional students each “to determine which 

variables predicted academic success in the physical therapy program as determined by PT 

GPA” (Hayes et al., 1997, pp. 13).  One problem with Hayes et al.’s model is that they do not 

identify a cut-point for what was considered a successful PT GPA. 

 

Sensitivity/Specificity 

 Sensitivity (Sn) and specificity (Sp) is easily calculated by using a 2 X 2 cross-tabulations 

table.  The four cells of the 2 X 2 cross-tabulation table are true positive, true negative, false 

positive, and false negative.  How accurately a test is able to obtain a positive test when the 

actual condition is present is known as a true positive.  When a test is able to identify a negative 

test when the condition is not present is known as a true negative.  If a person is identified as 

potentially having a condition, but in actuality does not have the condition in question this is 

known as a false positive.  A false negative is when a person is identified as not having a 

condition, but in actuality the diagnosis is positive (Munro, 2005b; Rothman et al., 2008).   
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The percentage of accurately identifying the number of true positives is known as Sn.  

Specificity is the ability of a test to classify those individuals without the condition.  A test or 

instrument that is highly sensitive will rarely identify someone as positive if they do not have the 

condition.  Likewise, a test or instrument that is highly specific will rarely identify someone as 

negative if they have the condition (Portney & Watkins, 2000; Rothman et al., 2008; Vincent & 

Weir, 2012).  This relationship is shown in Table 2.7. 

 

Table 2.7  Sensitivity and Specificity 

 

Gold Standard Test 

Positive 

Gold Standard Test 

Negative Total 

Predicted Positive 
True Positives  

(a) 

False Positives  

(b) a + b 

Predicted Negative 
False Negative 

(c) 

True Negatives 

(d)  c + d 

Total a + c b + d 

Total Percentage 

Correctly Identified 

(a +d)/a + b + c + d 

Sensitivity = 
a 

a + c 
Specificity = 

d 

b + d 

 

Odds Ratio = a/c = ad 

b/d bc 

 

Relative Risk
1  

= a/(a +b) 

c/(c + c) 

 

For the purpose of this study the phrase Relative Frequency for Success (RFS) was substituted 

for Relative Risk.  
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ROC Curve Analysis 

 Receiver operator characteristic (ROC) curve analysis was developed during World War 

II to assist radar and sonar officers to determine what signals were actual ships or planes versus 

other miscellaneous noise, known as signal-to-noise ratios (Portney & Watkins, 2000).  The 

sensitivity and specificity of actual signals versus other noise was represented on the ROC curve.  

An example of an ROC curve can be seen in Figure 2.4. 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 2.4  An example of a Receiver Operator Characteristic (ROC) curve showing the X and Y 

axis, for 1 – Specificity and Sensitivity respectively (Wilkerson, 2012).  
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An ROC curve can be created in the Statistical Package for the Social Sciences (IBM 

Corporation, 2011).  On the ROC curve, the X-axis charts the 1-specificity (false positives), 

while the Y-axis charts the sensitivity (true positives). The X-Y intercepts represents the ratio of 

true positives and false positives.  Unlike most graphing procedures where the further to the right 

on the graph data extends the more positive a test with an ROC curve a more positive result is 

seen toward the left.  The point on the curve that is closest and approaches the upper left corner 

is usually selected as the cut-point.  This means that your test has the highest possible sensitivity 

and a lowest possible 1 – specificity, (which calculates to an actual high specificity).  The closer 

the curve is to the 45 reference line, the more likely the result is a 50/50 proposition (Hosmer & 

Lemeshow, 2000; Peng et al., 2002; Peng & So, 2002; Portney & Watkins, 2000).  

The area between the 45 reference line and the curve is known as the area under the 

curve.  This allows us to compare two or more criterion to determine which one might be better.  

A better test is represented by a higher area as it approaches 1.0.  The area under the curve value 

is equal to the probability of correctly selecting the appropriate classification.  Thus with an area 

under the curve of 0.852 would represent a correct choice of the criterion 85.2% of the time of 

randomly chosen subjects as seen in Figure 2.5 (Fawcett, 2006; Hosmer & Lemeshow, 2000; 

Portney & Watkins, 2000).  

 



 

57 

 

  

 

Figure 2.5  ROC curve with the Area Under the Curve (AUC) identified in red.  

 

 

Youden’s Index helps to provide an objective method of determining what the best point 

is on the ROC curve to provide the optimal value for variable discrimination (Ardern, Taylor, 

Feller, Whitehead, & Webster, 2013).  In 1950, Dr. W. J. Youden saw a need to “reduce a table 

of data, into one figure that will adequately characterize (a) diagnostic test” (Youden, 1950, p. 

32); hence, when looking at a series of 2 X 2 cross-tabulations tables with calculated sensitivity 

and specificity or an ROC curve with multiple of potential cut-points, Youden’s Index is able to 

distinguish which point is the best cut-point.  Youden’s Index formula is: 

J =  
ad - bc 

(a + b)(c + d) 

 

  Where: 

J = Youden’s Index 

a, b, c, and d are the cells of a 2 X 2 cross-tabulation table 

 

(Youden, 1950)  
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An extension of Youden’s Index occurred when Ruopp et al., (2008) reworked the 

formula so it became: 

J = maxc (Sn(c) + Sp(c) – 1) 

Where: 

J = Youden’s Index 

c = optimal cut-point for the Sn and Sp - 1 

maxc = maximum cut-point on the ROC curve 

 (Ruopp et al., 2008) 

 

Logistic Regression 

 

 Logistic regression has been used most effectively in educational and medical research 

(Hosmer & Lemeshow, 2000; Peng et al., 2002).  It is based on the concept of “maximum 

likelihood,’ meaning the procedure “will present the ‘most likely’ solution that demonstrates the 

best odds of achieving accurate prediction of group membership” (Portney & Watkins, 2000, p. 

598)  Logistic regression helps to determine the likelihood that a patient may fit into a high risk 

verses a low risk category.  When confronted with a dichotomous outcome variable, logistic 

regression is the statistical procedure of choice.  Because the outcome variable is categorical, it 

does not have normal or linear distributions, so neither multiple or linear regression can be used.  

During data entry, the condition is usually coded as zero (0) for a non-event, and one (1) for an 

event occurring (Field, 2009; Munro, 2005a; Portney & Watkins, 2000).  The simplest result of a 

logistic regression is a 2 X 2 cross-tabulations table (Peng et al., 2002).  Although continuous 

predictor variables provide a greater volume of information, they do not lend themselves to 

accurate placement into a 2 X 2 table (Table 2.3).  By establishing cut-points through ROC curve 

analysis, dichotomizing the predictor variables as above or below the cut-point by recoding into 
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0 or 1, and classifying these data into the 2 X 2 table, it is easier for the researcher to establish 

the odds ratio (Wilkerson, 2011). 

 To determine the contribution of the predictor variables, the Wald statistic is used.  The 

Wald statistic demonstrates whether or not the b coefficient for each specific predictor is 

significantly different from zero.  When the coefficient is significantly different from zero, the 

assumption is the specific predictor is a significant contributor to the outcome (Field, 2009; 

Munro, 2005b) 

Discriminant analysis or discriminant function analysis is another statistical measure that 

could be used for categorical outcome variables (Hosmer & Lemeshow, 2000; Portney & 

Watkins, 2000; Tabachnick & Fidell, 2007).  It can be used with two or more groups that allows 

for classification of group membership.  Discriminant analysis assumes that the predictor 

variables are normally distributed and their variances are equal across groups, while logistic 

regression makes no assumption regarding the distribution of the predictor variables.  If mixtures 

of dichotomized and continuous variables are being used then logistic regression is obviously a 

better choice (Hosmer & Lemeshow, 2000; Portney & Watkins, 2000; Tabachnick & Fidell, 

2007). 

Predictor variable analysis can be accomplished several ways through most software 

packages.  Stepwise selection is an efficient manner in which to screen a large number of 

variables to determine the best combination.  To accomplish this either forward stepwise 

selection or backward stepwise selection can be used (Hosmer & Lemeshow, 2000; Portney & 

Watkins, 2000).  The “selection or deletion of variables” is accomplished through “statistical 
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algorithms” that examine each variable for their contribution to the model (Hosmer & 

Lemeshow, 2000, p. 116). 

Forward stepwise selection adds each predictor variable based on the statistical 

significance the variable contributes to the model.  If it significantly helps the model, the variable 

is retained.  If the variable does not enhance the model, it is rejected (Hosmer & Lemeshow, 

2000; Portney & Watkins, 2000).  Forward selection is more likely than backward selection to 

exclude variables.  This phenomenon is known as suppressor effects and occurs when a variable 

is contributing significantly to the model, but only if another predictor is held constant (Field, 

2009). 

Backward stepwise selection has been found to be most useful to the research efforts of 

the Graduate Athletic Training Program at the University of Tennessee at Chattanooga (Baldwin 

& Bruce, 2008; Bruce & Wilkerson, 2010b; Burdette & Wilkerson, 2012; Clark, Bruce, & 

Wilkerson, 2012; Cockrell & Bruce, 2008; Friess & Bruce, 2010; Henley et al., 2012; Hess, 

Wilkerson, & Colston, 2011; Jones et al., 2012; Karch, Wilkerson, & Bruce, 2012a; Michel et 

al., 2011; Morrison, Bruce, & Wilkerson, 2012; Rigney & Bruce, 2010; Snider et al., 2013; 

Tucker et al., 2013).  This method allows the researcher to begin with all of the predictor 

variables to be examined as part of the logistic regression. The computer software eliminates the 

variable contributing the least at each step in the process until there are either no variables 

remaining or all of the remaining variables significantly contribute to the model.  Backward 

stepwise selection lessens the risk of making a Type II error.  The elimination occurs in one of 

three ways: the use of the likelihood ratio, conditional statistic (a less forceful variation of the 

likelihood ratio), and the Wald statistic (Field, 2009). A comparison between the specific steps in 
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the model to the end step is made.  The predictor variable whose relative importance among 

variables as determined from the p-value is found to be least helpful to the model is eliminated.  

The p-value used is not the traditional hypothesis testing value, but rather an indicator of the 

importance of the variables in the equation at that particular step.  Backward stepwise regression 

analysis is likely to produce more variables for the model than forward stepwise regression 

selection.  For this reason a more intensive scrutiny of the variables should be done (Field, 2009; 

Hosmer & Lemeshow, 2000). 

In addition to ROC curve analysis predictor variables can be screened through parametric 

procedures.  Independent t-tests, Mann-Whitney U tests and chi-square tests should be used for 

continuous, nominal and ordinal variables respectively. Since the purpose is not to determine 

significance for the predictor variables, but to screen variables for their potential predictive 

value, an alpha level as high as 0.15 or 0.20 can be set (Bruce & Wilkerson, 2010a; Kuijpers et 

al., 2006; Teyhen et al., 2007).   

A common question is how many predictor variables are appropriate?  Logistic 

regression is appropriate when five or more potential independent (predictor) variables have been 

selected or thought to be of value.  Using logistic regression will allow the researcher to select 

the most appropriate variables (Childs & Cleland, 2006). It has been suggested that 10-15 

positive events or subjects categorized as a “1” occur for each predictor variable identified in the 

prediction equation.  Therefore, if three predictor variables have been identified then there 

should be 30-45 subjects classified as a “1” in the outcome variable.  This helps to prevent large 

effect sizes and large confidence intervals that often occur as a result of small sample sizes 

(Childs & Cleland, 2006; Wasson et al., 1985).  
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Odds Ratio 

The odds ratio is an estimate of how likely an individual belongs to a group for the event 

occurring compared to belonging to the non-event group with the presence of specific predictor 

variables (Field, 2009; Hosmer & Lemeshow, 2000; Portney & Watkins, 2000; Warren, 1971).  

An odds ratio of less than 1.0 indicates a decreased likelihood that an event will occur.  An odds 

ratio of greater than 1.0 indicates an increased likelihood that an event will occur (Field, 2009; 

Peng et al., 2002; Peng & So, 2002; Tabachnick & Fidell, 2007; Warren, 1971). An odds ratio of 

1.0 indicates that the “event has an equal chance of happening or not happening” (Warren, 1971, 

p. 937). Mathematically the odds ratio is expressed as: 

Odd = P(event) / P(no event) 

where P(event) is the probability of the event occurring and P(no event) is the probability of the 

event from not occurring. In SPSS, “Exp(B)” is the adjusted odds ratio for the predictor variables 

as shown in Figure 2.6 (Field, 2009; Munro, 2005b). 

 

 

Figure 2.6  An example of the chart produced by SPSS showing the “Exp(B)” statistic. 

 

 

 However, an easier method to calculate the odds ratio is from the 2 X 2 table (Table 2.3).  

The odds ratio can be calculated as follows (Table 2.8): 
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Table 2.8  Equation for Odds Ratio 

Odds Ratio = a/c = ad 

b/d bc 

    

 (Portney & Watkins, 2000) 

 

 The odds ratio interpretation is based on the premise that the desired outcome variable 

should be coded “1”.  Regarding the present study, subjects accepted into the GATP and those 

candidates passing the BOC exam on their first attempt were coded as “1”. 

 

Relative Frequency for Success 

The odds ratio has wide use in epidemiological research.  The interpretation of the odds 

ratio “is based on the fact that in many instances it approximates a quality called relative risk” 

(Hosmer & Lemeshow, 2000, p. 50).  Relative risk (RR), “indicates the likelihood that someone 

who has been exposed to a risk factor will develop the disease, as compared with one who has 

not been exposed” (Portney & Watkins, 2000, p. 333), and it is used prospectively.  In 

experimental research, the sample population at risk is allocated to a treatment group compared 

to a control group.  The study is then conducted and the outcome is then observed (Portney & 

Watkins, 2000).  Since this study will not be examining risk factors, and no known research has 

been found to develop a prediction model for acceptance into a program or predicting success on 

a board examination using the methods being used in this study, two new terms need to be 

identified.   

A positive factor is identified as occurring if a subject has a score on a predictor variable 

that is greater than the established cut-point as determined through ROC curve analysis.  For the 
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purposes of this paper, instead of RR the phrase “relative frequency for success” (RFS) will 

replace RR.  The operational definition for RFS was the likelihood the candidate who has been 

classified to be accepted into a GATP was accepted into the program compared to the candidate 

who has not been so classified.  Additionally RFS will indicate the likelihood a participate who 

has been classified as predicted to pass the BOC exam will pass his/her board exam compared 

with one who has not been so classified.  In reporting the results, a subject who has been 

classified into one of the two success categories with the specified number of positive factors is 

“X” number of times greater than those with less than the specified number of positive factors 

(Hosmer & Lemeshow, 2000). 

 

Reliability of Grade Point Average 

 Several studies have examined the reliability of grades and grade point averages (Bretz, 

1989; Clark, 1964; Etaugh, Etaugh, & Hurd, 1972; Morris & Farmer, 1999; Saupe & Eimers, 

2012; Warren, 1971; Werts, Linn, & Jöreskog, 1978).  Grade point average has been used as 

either a predictor of success (Armstrong et al., 1998; Balogun et al., 1986; Burton & Wang, 

2005; Hocking & Piepenbrock, 2010; Kirchner & Holm, 1997; Kirchner et al., 1994; Kuncel, 

Hezlett, & Ones, 2001; Middlemas et al., 2001; Morris & Farmer, 1999; Morrison & Morrison, 

1995 ; Stricker & Huber, 1967; Williams et al., 1970; Willingham, 1972) or as a criterion for 

admission into several professional programs (Bretz, 1989; Kuncel, Crede', & Thomas, 2007; 

Morrison & Morrison, 1995 ; Newton & Moore, 2007; Silver & Hodgson, 1997).  Arguments 

concerning how accurate and reliable grade point averages are in relationship to the students’ 

abilities and capabilities can be made on both sides. 
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 Reliability involves how consistent an instrument or individual is in obtaining similar 

results over time (Portney & Watkins, 2000).  Psychometricians have defined reliability as “the 

ratio of true-score variance to the sum of true-score plus error variance” (Singleton Jr. & Smith, 

1978, p. 39).   

Grades by their very nature have an element of subjectivity to them (Bailey, 2002).  It is 

difficult to use test-retest reliability for a student in a specific class, since he/she would have 

already taken the class and been exposed to the material previously, one can assume that the 

student would earn a better grade.  Intra-rater reliability, the ability of an individual to accurately 

measure across multiple trials is what would be most appropriate in grading (Portney & Watkins, 

2000).  Hence, the instructor would give the same grade to each student who earned a similar 

number of criteria needed for the grade across many semesters or years of teaching a specific 

course.  A potential problem with intra-rater reliability is bias on the part of the instructor.  Any 

number of subject criteria can influence how a teacher may assign grades.  It is virtually 

impossible to blind the teacher to whom they are grading or assessing (Portney & Watkins, 

2000).  It may be possible to use the test/re-test approach to reliability, but it would have to be 

over the course of two or more semesters or years provided the same information and material is 

covered and measured the same way from one semester or year to the next (Saupe & Eimers, 

2012). 

 Inter-rater reliability involves the ability of two or more evaluators to give the same grade 

to the same group of students (Portney & Watkins, 2000).  The problems in providing like grades 

for the same course being taught by different instructors are numerous.  The same deliverables 

and assessments could be required for the course, but how those elements are assessed or the 
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emphasis placed on certain information over other information may vary from instructor to 

instructor.  Basically, it comes down to consistently doing things from one semester or year to 

the next with as little change as possible (Warren, 1971). 

 Another issue when examining grades is the variance across institutions.  For example, 

how students are graded at an Ivy League school is likely to be different than at a land grant 

university.  Princeton University has a policy that only 35% of students in general studies 

courses and 55% of students in junior/senior level course are to receive an “A” (The Faculty 

Committee on Grading, 2005). 

 When examining reliability in grading, some basic approaches such as interclass 

correlation coefficient (ICC), split-half reliability, Cronbach’s alpha and Spearman-Brown 

statistics have been used.  The analysis of variance (ANOVA), Cronbach’s alpha, and split-half 

reliability are all measures of internal consistency, that is, they measure the degree to which a 

test measures the same attribute or characteristic or combinations of multiple components of 

them (Portney & Watkins, 2000; Saupe & Eimers, 2012).  “Because GPA is considered an 

indicator of overall academic achievement” . . . “internal consistency method(s)” are considered 

appropriate (Saupe & Eimers, 2012, p. 6).  How to achieve this consistency is outside the scope 

of this study. 

 Another issue is related to the number of assignments that are used for grading.  

Reliability can remain high if the number of evaluations throughout the grading period is kept to 

a minimum.  But with each increase in the number of assessment opportunities, the reliability of 

the grading decreases.  This is especially true when more subjective assessments such as writing, 

presentations, and essay exams are used in the assessment of the students (Warren, 1971). 
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 Finally, the problem of grade inflation and its impact upon grading cannot be ignored.  

All of the reasons for why grade inflation occurs is also beyond the scope of this paper, but it has 

been theorized that with grade inflation comes a decrease in the reliability of the grades awarded 

(Rojstaczer, 2009).  As Figure 2.7 from Rojstaczer (2009) demonstrates there is a national trend 

of increasing GPAs, and with the advent of the plus-minus system for grading, an increase in 

grading categories, there has been an increase in the reliability coefficients.  Figure 2.7 

demonstrates:  

. . . the average undergraduate GPAs for American colleges and universities from 

1991-2006 based on data from: Alabama, Appalachian State, Auburn, Brown, 

Bucknell, Carleton, Central Florida, Central Michigan, Centre, Colorado, 

Colorado State, Columbia, Cornell, CSU-Fullerton, CSU-Sacramento, CSU-San 

Bernardino, Dartmouth, Duke, Elon, Florida, Furman, Georgia Tech, 

Georgetown, Georgia, Hampden-Sydney, Harvard, Harvey Mudd, Hope, 

Houston, Indiana, Kansas, Kent State, Kenyon, Knox, Messiah, Michigan, 

Middlebury, Nebraska-Kearney, North Carolina State, North Carolina-Asheville, 

North Carolina-Chapel Hill, North Carolina-Greensboro, Northern Iowa, Northern 

Michigan, Ohio State, Penn State, Pomona, Princeton, Purdue, Roanoke, Rutgers, 

Southern Illinois, Texas, Texas A&M, Texas State, UC-Berkeley, UC-Irvine, 

UCLA, UC-Santa Barbara, Utah, UW-Oshkosh, Virginia, Washington State, 

Washington-Seattle, Western Washington, Wheaton (IL), William & Mary, 

Winthrop, Wisconsin-La Crosse, and Wisconsin-Madison. Note that inclusion in 

the average does not imply that an institution has significant inflation. Data on the 

GPAs for each institution can be found at the bottom of this web page. Institutions 

comprising this average were chosen strictly because they have either published 

their data or have sent their data to the author on GPA trends over the last 11-16 

years. (Rojstaczer, 2009, para. 1) 

 

In using grades for prediction modeling it is recommended that correlations and 

regression analysis be the statistics of choice (Rojstaczer, 2009). 

  

http://www.gradeinflation.com/
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Figure 2.7  Recent GPA Trends Nationwide 

 

(Rojstaczer, 2009 (used with permission)) 

 

 

Validity of Grade Point Average 

 

 Although according to the literature uGPA may not be reliable, several studies have 

shown uGPA to be a valid predictor (Etaugh et al., 1972; Kuncel et al., 2007; Kuncel et al., 2001; 

Morris & Farmer, 1999; Salvatori, 2001; Silver & Hodgson, 1997).  Kuncel (2007; 2001) was 

the lead author for two meta-analyses.  Both studies had a large number of student records to 

assess the predictive validity of not only uGPA, but the GRE (Kuncel et al., 2001) and the 

Graduate Management Admission Test (GMAT) (Kuncel et al., 2007).   

 Kuncel, Hezlett & Ones (2001) examined 82,659 student records and found that uGPA 

was a valid predictor of gGPA, especially when used in combination with the GRE.  In the 2007 

study Kuncel, Credѐ, & Ones examined the predictive validity of the GMAT and uGPA.  They 
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examined 64,583 students and determined GMAT was a superior predictor to uGPA separately 

and when combined the GMAT and uGPA were especially valid predictors.  In a third meta-

analysis in which Kuncel was a co-author (Grossbach & Kuncel, 2011) a total of 7,159 student 

records were examined and they determined that uGPA was a valid predictor for nursing 

students. 

 Overall, uGPA was found to be a valid predictor for several allied medical professions.  

These included: physical therapy (Burton & Wang, 2005; Day, 1986; Hayes et al., 1997; 

Kirchner et al., 1994; Levine et al., 1986; Shiyko & Pappas, 2009; Zipp et al., 2010); medical 

school (Cohen-Schotanus et al., 2006; Ferguson et al., 2002; Hamdy et al., 2006; Kreiter & 

Kreiter, 2007; Meleca, 1995; Salvatori, 2001; Silver & Hodgson, 1997); occupational therapy 

(Feldman, 2007; Kirchner & Holm, 1997); and nursing (Grossbach & Kuncel, 2011; Hansen & 

Pozehl, 1995) 

 

Graduate Record Examination 

 

The Graduate Record Examination (GRE) is a commonly used, standardized exam that 

has several purposes including admission decisions, preparedness for licensure or certification, 

course placement, employment decisions, and accountability for educational systems.  It is most 

commonly used to assess a candidate’s preparedness for graduate level work (Educational 

Testing Services, 2011b).  The primary purpose of standardized testing is the ability they have to 

provide uniformity from one test group to another over the course of a similar time period and 

over a matter of years (Perdew, 2001; Risberg, 2010).  This is supposed to be a measure of 

student achievement in their academic development; however, it fails to accomplish this 
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objective.  Standardized testing tends to say more about one’s socioeconomic status than about 

the student’s academic abilities (Wolk, 2009).  A second purpose of standardized testing was the 

ability to compare large groups of students to make an accurate comparison between states to 

help determine which ones are having success and to assist teachers in where to direct their 

efforts to be most helpful in their teaching & educational strategies (Darling-Hammond & 

Rustique-Forrester, 2005 ; Hunsecker, 2007; Risberg, 2010).Standardized testing also provides 

the ability to compare students and applicants across different areas of the country or world.  

Students have different teachers and have different curriculums.  Standardized testing is the only 

objective number provided for schools, colleges/universities, accrediting agencies, and other who 

may desire to study the results and make comparison across large populations.  Grade point 

average provides a numerical assessment of a student’s achievement and appears on all 

applications (Testing is Easy, n.d.).  However, as we have stated earlier there are problems with 

the reliability of GPA due to variance across instructors and curriculums (Bretz, 1989; Etaugh et 

al., 1972; Morris & Farmer, 1999).  

The Educational Testing Services (ETS) changed the manner in which the GRE was 

scored in 2011.  The ETS provided concordance tables so GREs taken prior to 2011 could be 

compared to exams taken since 2011.  Not only did the concordance tables allow old scores to be 

converted to new scores or vice versa, but also ETS provided percentile ranks of the scores 

(Educational Testing Services, 2011a).  These percentiles were then modified slightly through 

April 2013.  These revised scores and percentile ranks were used for the prediction models; thus, 

all candidates’ scores, for all three sections, regardless of when they applied to the GATP, were 
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converted to the most recent available scores and ranks (Educational Testing Services, 2013a, 

2013b).   

 The GATP requires the General Test of the GRE which includes three sections: verbal 

reasoning (GREv), quantitative reasoning (GREq), and analytical writing (GREwr).  Educational 

Testing Services (ETS), the organization responsible for administering the GRE revised the 

general test in August 2011.  As with the previous version of the GRE General Test, ETS states 

that “the revised test measures the verbal reasoning, quantitative reasoning, critical thinking and 

analytical writing skills required for success in graduate and business school” (Educational 

Testing Services, 2011a, p. 4).  The exam was revised in how the test was scored.  Previously the 

general test was scored in 10 point increments from 200-800 points for each section. The revised 

GRE exam is currently scored from 130-170 points in one-point increments (Educational Testing 

Services, 2011a).   

Reliability estimates for individual scores on the GRE revised General Test sections are 

as follows: verbal reasoning = 0.93; quantitative reasoning = 0.94; and analytical writing = 0.79.  

The standard error of measurements are 2.2, 2.0 and 0.4 for each section respectively 

(Educational Testing Services, 2011a).  Data used to determine the percentile ranks were 

gathered from July 1, 2007 and June 30, 2011 and totaled more than 1.5 million examinees.  

According to ETS, “(The) percentile ranks are based on the concordance relationships between 

the prior 200-800 score scale to scores on the new 130-170 score scale.  They are being used to 

provide stable and comparable interpretative information for scores on both scales” (Educational 

Testing Services, 2013b, p. 1).   
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Validity of the GRE has been established by several sources.  Burton and Wang (2005) 

examined 21 graduate departments across seven different institutions.  They established the use 

of the GRE with uGPA to determine ratings by faculty members, the student’s first-year gGPA 

and the final overall gGPA.  Kuncel et al. (2007; 2001; 2010) has conducted several studies 

regarding the GRE.  A 2001 meta-analysis examined the ability of the GRE and uGPA to predict 

first year gGPA, faculty ratings, degree attainment, and scholarly productivity (Kuncel et al., 

2001).  Kuncel and Hezlett (2007 ) examined the ability of the GRE to predict success of 

graduate students.  They also used the GRE to predict success on several standardized tests 

across several medical professions.  They concluded that all standardized exams were able to 

predict success on the student’s licensing exam, faculty ratings, research productivity, 

completion of their degree, their gGPA and first-year gGPA (Kuncel & Hezlett, 2007 ).  A third 

meta-analysis conducted by Kuncel et al. (2010) studied the ability of the GRE to predict first-

year gGPA, overall gGPA and faculty ratings in both master’s degree programs and doctoral 

programs.  The authors examined over 100 studies that included a combination of 1000 students 

and found the GRE to be very predictive of the predictor variables (Kuncel et al., 2010). 
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Chapter III 

 

METHODS 

Introduction 

This study has two interrelated purposes, both of which pertain to the process of 

admitting students to a graduate professional program.  The first component of this study 

involves the development of a prediction model to identify factors associated with eligibility and 

first-attempt success on the Board of Certification (BOC) examination for students who have 

completed a professional (entry-level) graduate athletic training program (GATP).  The second 

component utilizes the results of the first analysis to identify program applicant characteristics 

that are most likely to predict both academic success within the graduate professional program 

and subsequent success on the BOC exam.  In order to examine these two purposes Bayesian 

philosophy was used.  Receiver operating characteristic (ROC) analysis was utilized to establish 

cut-points for each predictor variable, and logistic regression was used to assist in identification 

of the strongest combination of variables.  Finally, a 2 X 2 cross-tabulations table was 

calculuated to determine the sensitivity, specificity, odds ratio and relative frequency for success. 

 

Subjects 

A cohort study design was used.  The cohort consisted of students admitted to the GATP 

2004 through 2012.  The following information from a student’s application folder was used in 

this study: all transcripts of undergraduate institutions attended to calculate uGPA and to 
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determine whether or not the subject took advanced course work related to athletic training, the 

hard sciences and math courses, the type and number of such courses taken, GRE report showing 

the percentile ranks of the GREv, GREq, and GREwr scores, in-state versus out-of-state 

residency, and their degree granting institution.  Based on the subject’s degree granting 

institution, the Carnegie Classification was used to identify each school’s academic and/or 

research classification.  From each school’s common data set, we determined the Academic 

Profile of Undergraduate Institutions (APUI) (Common Data Set Initiative, 2012; The Carnegie 

Foundation for the Advancement of Teaching, 2010). 

The GATP prioritizes a minimum uGPA of 3.0 for further consideration for admission to 

the GATP.  The GATP faculty has historically found students with an uGPA of less than 3.0 to 

have struggled more than students with an uGPA of greater than 3.0.  A few exceptions have 

occurred for students who have undergraduate degrees from universities and colleges known for 

their high academic standards. 

Descriptive statistics for the cohort are reported.  Approximately 910 prospective students 

over 10 years have applied to the GATP, and 360 (or 40%) of these candidates had complete data 

sets.  Of the original 910 applicants, 180 (20%) remained after eliminating students with an 

uGPA of less than 3.0.  The cohort was further reduced based on those who were or were not 

offered a position in the GATP, which equaled roughly 130 students.  These included students 

who have come into the GATP and for a variety of reasons left the program either voluntarily or 

have been academically disqualified from the program.  The final cohort involved all students 

who entered the GATP stayed for at least the first-year, and those who dropped out and those 

who completed the GATP curriculum, and those who sat for the BOC exam from 2005-2013. 



 

75 

 

students, , including make up the cohort used for this study.  Those students who entered the 

GATP but left the program regardless of the reason left after the first year are considered as part 

of the “fail” group related to passing or failing the BOC exam. 

The study was submitted to the IRB committee for review and was approved.  

Application data were secured from the GATP which include uGPA, all GRE scores, degree 

granting undergraduate institutions, and applicants’ state of residence.  To maintain anonymity, 

student identification numbers were assigned by the university’s Graduate School, which 

included a three letter, three digit code (i.e, abc123).  For the initial coding, these identification 

numbers were used when provided, but in any cases when an identification number was not 

assigned a random identification number of the same style was be assigned.  Once all data have 

been coded, all personal identifying information was stripped and discarded.  In subsequent 

reports, data are reported only in the aggregate.  All data were kept on a secure computer 

accessible only by the investigators.  Student’s gGPA information at the end of the first year in 

GATP was gleaned from the university’s data base accessible to all faculty members.   

 

Data Collection 

Data were collected from candidates’ application folders.  The following data were 

collected from each applicant’s folder: uGPA, GREv, GREq, GREwr scores, home state of 

residence, and degree granting undergraduate institution.  Educational Testing Services (ETS) 

provides percentile rank scores for the raw GRE score data.  Percentile rank scores are being 

used due to a change in the scoring system that was implemented in the August of 2011 by ETS.  
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Percentile rank scores are standardized across both scoring systems (Educational Testing 

Services, 2013a, 2013b).  

The UTC Psychology Department uses a “Formula Score” to aid in the decision process 

for the selection of students to their graduate program.  This Formula Score was created by a 

faculty member, Dr. Michael Biderman (Biderman, 2013).  For the purposes of this study, this 

formula score will be referred to as Biderman’s Formula Score.  According to the UTC 

Psychology page, a score of 480 is considered average.  The page informs the reader that scores 

“below 430 are less likely to be admitted than those with scores closer to 480.” The information 

continues, “A student with a formula score above 480 will have a higher probability of being 

admitted” (Biderman, 2013, The formula score, para. 4).  No specific statistics are provided to 

indicate how likely a candidate is to be accepted or not accepted into their program. 

 Biderman’s Formula Scores were calculated from these data as follows: Biderman’s 

Formula Score = (uGPA x 100) + GREv PR + GREq PR + GREwr PR (Biderman, 2013).  

Means and standard deviations were determined for the cohort for all of the continuous and 

multi-level discrete predictor variables.  A college’s or university’s status (private versus public), 

were coded as ones (“1”) and zeros (“0”) respectively.  An institution’s basic academic rating as 

determined from The Carnegie Classification of Institutions of Higher Education™ (The 

Carnegie Foundation for the Advancement of Teaching, 2010) was dichotomized in a variety of 

ways to isolate a single classification versus all other classifications to identify its strength as a 

predictor.  The classification of interest was always coded as a one (“1”), while all others were 

coded as zero (“0”). Graduate GPA (gGPA) at the conclusion of a student’s first year were 
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obtained from the university’s data base accessible to all faculty members.  The results of 

students first-attempt taking BOC exam were provided by the GATP Director.   

An analysis was conducted to determine colleges/universities with high academic 

standards versus those with less than high academic standards.  This became known as the 

Academic Profile of Undergraduate Institutions (APUI).  Those students who were offered a 

position, accepted the position, remained in the GATP for at least the first year, and either 

dropped out or were academically disqualified along with those who completed the GATP were 

part of the group of subjects used for the prediction model.  Subjects who pass the BOC exam on 

the first-attempt were coded as a one (“1”) while those who failed on their initial attempt taking 

the BOC exam or either drop out before completing the GATP curriculum, or were academically 

disqualified were classified as unsuccessful and were coded as zero (“0”).   

 

Determination of Academic Profile of Undergraduate Institutions 

In order to quantify the Academic Profile of Undergraduate Institutions (APUI) from 

which students received their undergraduate degrees, each college or university in which a 

student graduated, and who accepted a position in the GATP, and completed at least the first-

year in the GATP was included in this analysis.  If the student had a gGPA at the end of their 

first year in the GATP of ≥ 3.45 they received a code of “1”, while students with a gGPA of  

< 3.45 were coded with a “0”. 

The Google search engine was used to search for each school’s web site.  On the initial 

results page from Google, a brief profile of the school was provided and within this profile was 
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each school’s acceptance rate.  This was used as one of the independent variables to determine 

the APUI.   

Within each school’s web site, a search for the mean or median ACT and/or SAT score 

was sought.  In most cases for institutions that participated in the Common Data Set Initiative the 

information was found by doing a search for the “Common Data Set” (Common Data Set 

Initiative, 2012).  In cases where multiple years of reports were available the most current year’s 

report available was used.  There were cases in which institutions reported only the ACT or SAT 

the data, but not both.  In these cases, only the reported standardized exam data were recorded, 

but if an institution reported both set of exam scores, both were recorded.  The data were 

provided in one of three ways: via a range of 25
th

 to 75
th

 percentile, as the median of all test 

scores, or as the mean of all test scores.  In those cases where schools did not participate in the 

Common Data Set Initiative, their ACT and SAT scores may have been published in other 

locations on the institution’s web site such as through the Admission’s Office or through the 

“Quick Facts” or “Fast Facts” page.  There were several cases where this information could not 

be found on the school’s web site; thus, a search was made on the About.com College Admission 

web site (About.com, 2013).  The “mean/median” was achieved by either using the reported 

mean of each institution’s ACT/SAT score or the middle score of the reported 25
th
 and 75

th
 

percentile scores.  Once all Institutions’ ACT and SAT information was located and entered onto 

the spreadsheet, the data were downloaded into IBM SPSS 20 (IBM Corporation, 2011) for 

statistical analysis.  The mean, median and standard deviation of the Institutions’ ACT and 

Institutions’ SAT mean/median scores were determined along with the calculated 75
th
 percentile 

and 80
th

 percentiles.   



 

79 

 

Receiver operator characteristic analyses were done on each of the potential individual 

predictors to determine the best balance between sensitivity (Sn) and specificity (Sp) to establish 

the optimum cut-points for the purpose of dichotomizing each predictor.  Based on the 

established cut-points subjects received a one (“1”) if they earned a score of greater than or equal 

to the cut-point and a zero (“0”) if they earned a scored below the cut-point.  Cross-tabulation 

calculations were performed for the coded values of the various cut-points of each predictor.  

The cross-tabulation calculations generated Sn, Sp, odds ratio (OR), the relative frequency for 

success (RFS), and the p-value for Fisher’s Exact Test (one-sided).  These data were used to 

determine the Academic Profile of Undergraduate Institutions (APUI).   

 

Statistical Analysis 

Once all data have been collected and entered onto a spreadsheet it was cleaned so as to 

eliminate those students who do not meet the inclusion criteria.  For passing the BOC exam on 

the first attempt prediction model, the inclusion criteria were those students who were offered 

and accepted positions in the GATP, and completed at least the first-year of study in the GATP.  

If after the first-year in the GATP, a student dropped out of the GATP or were academically 

disqualified they were classified as failures for the first-attempt on the BOC exam.  To predict 

success in the GATP, candidates with a completed file, who received an offer to be a part of the 

GATP, accepted the offer, and remained in the GATP for at least the first-year were included in 

the sample.  Means and standard deviations for demographic data and the predictor variables 

were reported for all candidates.  Data analysis for both prediction models was achieved through 

SPSS Statistical Package for the Social Sciences (IBM Corporation, 2011).  
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The literature suggests continuous predictor variables be entered into a logistic regression 

(Flynn et al., 2002; McLean Jr., 1969; Melendez, Bruce, & Wilkerson, 2010; Wilkerson et al., 

2010).  Hosmer and Lemeshow (2000) state entering continuous predictor variables is 

acceptable; however, if continuous predictor variables are used then “a meaningful change must 

be defined” (p. 64).  The GATP faculty have found a more efficient way to handle the entry of 

the predictor variables into the logistic regression by dichotomizing each predictor (Burdette & 

Wilkerson, 2012; Cockrell & Bruce, 2008; Friess & Bruce, 2010; Henley et al., 2012; Hess et al., 

2012; Jones et al., 2012; Karch et al., 2012b; Michel et al., 2011; Reinecke & Wilkerson, 2012; 

Rigney & Bruce, 2010; Snider et al., 2013; Stanley & Bruce, 2009; Tucker et al., 2013).   

To accomplish this goal of dichotomizing each predictor variable, ROC analysis for all 

multi-level discrete and continuous variables was conducted.  “Optimum cut-points” for 

dichotomizing these data were determined by calculating Youden’s Index, the difference of the 

sensitive minus the 1-specificity figures provided by the “Coordinate on the Curve” table from 

SPSS (Böhning, Böhning, & Holling, 2008).  Youden’s Index provides an objective measure for 

the optimum cut-point on the ROC curve which is the point closest to the upper left hand corner 

of the graph for ROC analysis (Ardern et al., 2013; Böhning et al., 2008).   

To assess for multicollinearity, linear regressions were utilized to examine the 

relationship between the independent variables (Field, 2009; Mertler & Vannetta, 2005b).  

Potential independent variables to be used in the prediction model were initially examined as 

continuous or multi-level discrete variables.  This was followed by the dichotomized version of 

the continuous and multi-level discrete variables based on their cut-points plus any originally 

dichotomized variables.   
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To evaluate for interaction effects of the predictor variables three methods were used: 

1. Graphic representation of the interaction between two predictors 

2. Combining predictors and examining through a 2 X 2 cross-tabulation table 

3. Calculate the Mantel-Haenszel common OR and the Breslow-Day tests for 

homogeneity 

 

Coding 

Candidates who scored at or above the designated cut-point on the specific predictor 

variable received a code of one (1) and if they scored below the designated cut-point they 

received a code of zero (0).  Coding in this way permitted the creation of 2 X 2 cross-tabulation 

tables.  Dichotomizing the predictor variables is appropriate since the outcome variable is 

dichotomized (Hess et al., 2011; Keskula et al., 1995; Masters, 1974; Rojstaczer, 2009; Singleton 

Jr. & Smith, 1978; The Faculty Committee on Grading, 2005). The following predictor variables 

were dichotomized: institutional control, candidate’s residency, individual basic Carnegie 

classification categories, size and settings, specific athletic training courses, and advanced math 

and science courses.  Table 3.1 summarizes the coding used for these variables.   
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Table 3.1  Coding of dichotomized independent variables 

Offered a position = 1; Not offered a position = 0 

 

Institutional control: Public = 1; Private = 0 

Candidate’s residency: In-state = 1; Out-of-state = 0 

 

Basic Carnegie classification categories 

Bachelors only = 1; Others = 0 

Bachelors and Masters = 1; Others = 1 

Doctorate/Research = 1; Others = 0 

Research Intensive = 1; Others = 0 

 

Size & setting: Large (10,000+ undergraduates) = 1; Others = 0 

Size & setting: Medium (3000-9999 undergraduates) = 1; Others = 0 

Size & setting: Small (<1000-2999 undergraduates) = 1; Others = 0 

 

Did the candidate take: 

Advanced coursework: 1 = Yes; 0 = No 

Athletic training coursework: 1 = Yes; 0 = No 

Basic athletic training or Care & Pre courses: 1 = Yes; 0 = No 

Advanced athletic training courses: 1 = Yes; 0 = No 

Biomechanics: 1 = Yes; 0 = No 

Advanced Sciences & Math Coursework: 1 = Yes; 0 = No 

Any advanced biology: 1 = Yes; 0 = No 

Any advanced chemistry: 1 = Yes; 0 = No 

Calculus: 1 = Yes; 0 = No 

Pathophysiology: 1 = Yes; 0 = No 

Physics: 1 = Yes; 0 = No 

 

 

Next, 2 X 2 cross-tabulation, univariable analysis was conducted to examine each 

predictor variable for its potential value for the multivariable analysis.  Those predictors with an 

OR of greater than or equal to 2.0 (Hosmer & Lemeshow, 2000; Portney & Watkins, 2000) or a 

p-value for the Fisher’s Exact Test (one-sided) ≤ 0.20 were considered for the multivariable 

analysis (Bruce & Wilkerson, 2010a; Kuijpers et al., 2006; Teyhen et al., 2007). Each of the 
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individual predictors was then entered into a logistic regression to assess for the strongest set of 

predictors.  The remaining set of individual predictors from the univariable logistic regression 

was then summed for each subject to determine the number of positive predictors he or she 

possessed.  This was known as the total number of positive factors for that individual.  Another 

ROC analysis was conducted to determine the optimum number of positive factors for the 

prediction model.  Based on this cut-point each subject received a “1” if the number of positive 

factors each possessed was equal to or greater than the cut-point value.  If a subject has fewer 

positive factors than the cut-point value, he or she was given a “0”.  Finally, a 2 X 2 cross-

tabulation table was created along with it associated statistics.    

 

Multicollinearity 

A series of linear regressions was performed on the multi-level discrete and continuous 

variables to examine for multicollinearity, which occurs when predictor variables highly 

correlate to each other (r ≥ 0.80-0.90) (Field, 2009; Mertler & Vannetta, 2005a; Portney & 

Watkins, 2000).  Two statistical results are produced by SPSS through its collinearity diagnostics 

function: variance inflation factor (VIF) and tolerance.  The VIF signifies the presence of a 

strong linear relationship between predictor variables.  Both Field (2009) and Mertler & 

Vannetta (2005b) state although there is no hard evidence of a specific VIF value that should  

cause concern, they do agree a value of ten or greater indicates collinearity.  Tolerance is the 

inverse of the VIF (1/VIF), thus values of < 0.1 should be a matter of concern (Field, 2009; 

Mertler & Vannetta, 2005a). 
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The multi-level discrete and continuous variables included in the multicollinearity 

analysis were the percentile ranks of the GREv, GREq, and GREwr scores, Revised GRE – 

Composite score, uGPA, the number of advanced math and science courses, total number of 

advanced math, science and athletic training courses, APUI score, and Biderman’s Formula 

Score.  The process was then repeated on the dichotomized version of the multi-level discrete 

and continuous predictor variables using the established cut-points along with the other 

dichotomized variables.  These included the following: whether or not the student took physics 

as an undergraduate, whether or not the student took calculus as an undergraduate, and whether 

or not the student’s undergraduate institution was classified as a research intensive through the 

Carnegie Classification system. 

A logistic regression was performed to determine the strongest set of predictors and to 

examine for the interaction effects.  The adjusted odd ratio (Adj OR), (“Exp(B)” in the SPSS 

analysis), was used to further interpret the interaction between the various predictor variables 

upon the outcome variables.  The advantage is the researcher can determine the strongest 

“predictor variables . . . associated with the outcome” (Laupacis et al., 1997, p. 491). 

Receiver operating characteristic analysis with Youden’s Index calculations was 

performed to identify the optimum number of predictor variables “that offers the most accurate 

prediction” model (Wilkerson et al., 2010, p. 69).  With the determination of the optimum 

number of factors a 2 X 2 cross-tabulation table was used to calculate the requisite statistics.  

Based on the results of these data a prediction model was created for predicting BOC exam 

performance and success in a GATP. 
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Interaction Effects 

Statistically there are two types of effects: the main effect and the interaction effect.  The 

main effect is the result each individual predictor has on the outcome variable.  Because with 

multivariable analysis more than one predictor can have an effect on the outcome variable, the 

concept of confounding can occur, meaning “the observed effect could (possibly be) caused by 

something else” (Verhagen & Van Mechelen, 2009, p. 37).  Verhagen and van Mechelen (2009) 

offer an unofficial rule stating that “when the regression coefficient of interest changes with 

more than 10%, there is relevant confounding” (p. 37).  Therefore, a final important step in the 

use of logistic regression for prediction modeling is to examine for interaction effects (Hosmer & 

Lemeshow, 2000).   

Where multicollinearity examines overlap or the correlation between predictor variables, 

interaction effects examine how one variable acts upon on all other variables in the model (Field, 

2009; Hosmer & Lemeshow, 2000; Portney & Watkins, 2000).  The purpose of assessing for 

interaction effects “is to determine whether or not the odds ratios are constant, or homogeneous, 

over the strata” (Hosmer & Lemeshow, 2000, p. 79).  The interaction occurs when the 

relationship between variables is linear, but the slopes of the lines differ.  When represented 

graphically, if the lines of two variables do not intersect there is an absences of interaction effect 

between those two variables.  But if the lines do bisect, then an interaction effect is present 

between the two variables (Hosmer & Lemeshow, 2000; Portney & Watkins, 2000). 

To correct for variations in a logistic regression an examination of the adjusted odds ratio 

should be done.  The adjusted odds ratio takes into consideration the effect of two or more 

predictor variables have on the outcome variable (Portney & Watkins, 2000).  The adjusted odds 
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ratio reveals how the odds ratio is altered to determine the impact each of the multiple predictor 

variables has on the outcome variable.  In SPSS, the output lists the adjusted odds ratio as 

“Exp(B)”. The adjusted odds ratio is “the change in odds resulting from a unit change in the 

predictor” (Field, 2009, p. 270).  

According to the literature, examining the adjusted odds ratio is not enough to assess for 

interaction effects.  There are three additional ways in which to scrutinize for interaction effects 

between variables.  The first is to graphically represent the interaction to examine if the lines of 

the two predictor variables intersect (Portney & Watkins, 2000).  A second method is to prepare 

a list of all possible interactions between any two variables from the final logistic regression 

model and assess through a 2 X 2 cross-tabulation table (Hosmer & Lemeshow, 2000).  The final 

methods are to use the Mantel-Haenszel common OR estimator equation (Hosmer & Lemeshow, 

2000; Portney & Watkins, 2000) and the Breslow-Day Test for homogeneity (Lai, Mink, & 

Pasta, n.d.; Prieto-Marañón, Aguerri, Galibert, & Attorresi, 2012).  “The Mantel-Haenszel 

estimator is a weighted average of the stratum specific odds ratio” and is made up of “the 

observed cell frequencies in a 2 X 2 table” for each stratum (Hosmer & Lemeshow, 2000, p. 80), 

(Table 3.2)    

 

Table 3.2  Mantel-Haenszel estimator equation 

ORMH  =  
  ∑ ai x di / N 

  ∑ bi x ci / N 

 

(Hosmer & Lemeshow, 2000) 
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The Breslow-Day test is used to assess for homogeneity of the stratum-specific odds 

ratios.  For the test to be valid, each of the cells in a 2 X 2 table should have a count of greater 

than five, thus it takes large sample sizes for each of the stratum examined (Lai et al., n.d.; 

Prieto-Marañón et al., 2012), (Table 3.3). 

 

Table 3.3  Breslow-Day test for homogeneity of the odds ratio 

 

I 

 
BD = ∑ 

(aj - Aj (ORc))
2
 

Var(aj; ORc) 

 

j = 1 

  

(Prieto-Marañón et al., 2012) 

 

All three methods of assessment were done for the analysis of the prediction model for 

GATP applicant success. 
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CHAPTER IV 

RESULTS 

  This study had two interrelated purposes, both of which pertained to the process of 

admitting students to a professional graduate athletic training program.  The first component of 

this study involved the development of a prediction model to identify factors associated with 

eligibility and first-attempt success on the Board of Certification (BOC) examination for students 

who have enrolled in a professional (entry-level) graduate athletic training program (GATP).  

The second component utilized the results of the first analysis to identify program applicant 

characteristics that are most likely to predict both academic success in the graduate professional 

program and subsequent success on the BOC exam. This chapter presents the statistical testing 

and results. 

 

Predicted BOC Exam Success as a Criterion for GATP Admission 

According to Stephen Covey’s 7 Habits for Highly Effective People (2004), Habit 2 is 

that one should “begin with the end in mind.”  From this perspective, the culmination of a 

student’s athletic training education is to become eligible to take the BOC exam and pass the 

exam on the first-attempt.  A new accreditation standard of the Commission on Accreditation of 

Athletic Training Education (CAATE) states all programs must publish student outcome data on 

their web site home pages.  This is to include the number of students graduating from the 

program who took the BOC exam, the percentage of students who have passed the exam on the 
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first-attempt, and the number of students who ultimately passed the exam, regardless of the 

number of attempts.  According to CAATE, programs that do not have a three-year aggregate 

first-time pass rate ≥ 70% are said to be “in non-compliance” (Commission on Accreditation of 

Athletic Training Education, 2013b, "Becoming an Athletic Trainer", 3rd question, 5th bullet 

point).  Thus, passing the BOC exam on the first-attempt is the program outcome of primary 

importance. 

 Descriptive statistics for students who completed the first year in the GATP, and who 

subsequently took the BOC examination, are presented in Table 4.1.   
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Table 4.1  Descriptive statistics for students enrolled in the GATP 

 gGPA at the end   

of the First-yr. uGPA  GRE Composite  GREv   GREq  GREwr  

 N 
Valid 119 119 115 115 115 106 

Missing 0 0 4 4 4 13 

Mean ( sd) 3.59 ( 0.38) 3.27 ( 0.29) 293.40 ( 9.04) 147.97 ( 5.11) 145.43 ( 5.16) 3.887 ( 0.68) 

Median 3.67 3.23 293.00 148.00 145.00 4.0 

 

 

 

 

 

 

Note. gGPA = Graduate Grade Point Average; uGPA = Undergraduate Grade Point Average; GRE = Graduate Record Exam; GREv = 

Verbal section of the Graduate Record Examination; GREq = Quantitative section of the Graduate Record Examination; GREwr = 

Analytical Writing section of the Graduate Record Examination; GREq PR = Percentile Rank of the Quantitative section of the 

Graduate Record Examination; GREv PR = Percentile Rank of the Verbal section of the Graduate Record Examination; GREwr PR = 

Percentile Rank of the Analytical Writing section of the Graduate Record Examination 

 
a
Biderman’s Formula Score = (100 * uGPA) + GREv PR + GREq PR + GREwr 

 

 GREv PR GREq PR GREwr PR 
a
Biderman’s Formula Score 

N 
Valid 115 115 106 106 

Missing 4 4 13 13 

Mean ( sd) 37.57 ( 19.14) 25.63 ( 17.13) 50.32 ( 24.93) 443.16 ( 63.97) 

Median 36.00 22.00 54.00 441.500 
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The first step of the process for development of a prediction model was the performance 

of univariable analyses for factors believed to forecast first-attempt success on the BOC 

examination.  The most commonly accepted indicator of academic success is grade point average 

(GPA).  A receiver operating characteristic (ROC) analysis was performed for graduate grade 

point average (gGPA) at the completion of the first year of the two-year graduate program, using 

success on the BOC exam on the first-attempt (Yes or No) as the dichotomized outcome variable 

(Note: The definition of “No” includes students who gained eligibility to take BOC exam, but 

failed the exam on their first-attempt; students who failed to attain eligibility either because they 

dropped out of the GATP after the first-year, or they were declared academically deficient).  A 

total of 136 students took the BOC exam.  A GATP student was classified as successful on the 

BOC exam if they passed on the first-attempt taking the exam (n = 90).  Students who either 

failed the BOC exam on the first-attempt taking the exam (n = 24) or those who dropped out of 

the program after their first-year in the GATP (n = 5) were classified as not being successful on 

the BOC exam on their first-attempt.  The result of this analysis is presented in Figure 4.1 and 

Table 4.2.  A cut-point of gGPA ≥ 3.45 was found to provide the best balance of sensitivity and 

specificity for prediction of first-attempt success on the BOC examination.   
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Figure 4.1  ROC curve with identification of the optimum cut-point for first-year gGPA as a 

predictor of first-attempt BOC exam success 
 

 

Table 4.2  First-year gGPA for prediction of first-attempt pass – Yes or No, on the BOC exam 

 

 

 

 

 

  

 

First-attempt Pass on the BOC exam 

Yes No 

First-year gGPA ≥ 3.45 71 9 

First-year gGPA < 3.45 19 20 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.79 (95% CI: 0.69 – 0.86) Sp = 0.69 (95% CI: 0.51 – 0.83) 

Youden’s Index = 0.479 

OR = 8.30 (95% CI: 3.26 – 21.16) RFS = 1.82 (95% CI: 1.49 – 2.23) 

  

≥ 3.45 

AUC = 0.786 
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This analysis indicated that a student who had a gGPA ≥ 3.45 at the end of the first year 

had 8.30 times greater odds of passing the BOC exam on the first-attempt than the odds for 

someone who had a gGPA < 3.45 at the end of the first year.  The relative frequency of GATP 

success indicates the probability of a student passing the BOC exam on the first-attempt with a 

gGPA ≥ 3.45 at the end of the first year is slightly less than twice the probability of a student 

with a gGPA < 3.45. 

Several other variables were analyzed in an attempt to predict first-attempt success on the 

BOC exam.  Receiver operating characteristic analysis was performed to determine the optimum 

cut-point for each possible predictor, along with 2 X 2 cross tabulation analysis to generate 

values for sensitivity (Sn), specificity (Sp), odds ratio (OR), the relative frequency for success 

(RFS), and the p-value for Fisher’s Exact Test (one-sided).  Each subject who had a score on a 

potential predictor variable greater than or equal to the cut-point was coded as a “1”.  If the 

student scored below the cut-point value, he or she was coded with a “0”.  Receiver operating 

characteristic (ROC) analysis results includes the area under the curve (AUC), Sn, and 1-Sp. 

Youden’s Index is calculated from the Sn and 1-Sp values (Böhning et al., 2008; Ruopp et al., 

2008).  The 2 X 2 cross-tabulation analysis provides corresponding Sn and Sp values for the cut-

point identified by the greatest value of Youden’s index, as well as OR and RFS values.  The 

univariable analyses for the potential predictors related to first-attempt pass – Yes or No, on the 

BOC exam are included in Appendix A, and the related information is summarized in Table 4.3 

with the variables listed in the order of the OR magnitude.   
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Table 4.3  Summary of univariable results for potential predictor variables of first-attempt BOC exam success 

 

Variable – First-attempt pass – Yes or 

No, on the BOC exam Cut-point Sn 1 - Sp Sp 

Youden’s 

Index AUC OR RFS 

Fisher’s 

Exact Test 

(one-sided) 

p-value 

gGPA at end of the first year 3.45 0.79 0.31 0.69 0.480 0.786 8.30 1.82 0.001 

GREq (PR) 143.5 (16.5) 0.72 0.31 0.69 0.411 0.758 5.76 1.53 0.001 

GRE – Composite  290.5 0.70 0.31 0.69 0.389 0.736 5.17 1.48 0.001 

Biderman’s Formula Score 420.5 0.69 0.32 0.68 0.372 0.698 4.78 1.41 0.003 

GREwr (PR) 3.25 (24.5) 0.89 0.64 0.36 0.257 0.587 4.76 1.59 0.007 

GREv score (PR) 145.5 (26) 0.78 0.46 0.54 0.538 0.682 4.25 1.45 0.005 

Number of advanced math, science or 

athletic training courses 
3.5 0.62 0.34 0.66 0.273 0.640 3.07 1.32 0.017 

Number of advanced math and science 

courses 
2.5 0.51 0.30 0.70 0.196 0.586 2.27 1.21 0.087 

 

Note. For further consideration a variable had to have an OR of ≥ 1.50 (Hosmer & Lemeshow, 2000) and a Fisher’s Exact Test (one-

sided) p-value of ≤ 0.20 (Bruce & Wilkerson, 2010a; Kuijpers et al., 2006; Teyhen et al., 2007) 
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Multicollinearity 

A series of linear regression analyses were performed on the multi-level discrete, 

continuous, and dichotomous variables.  These included: GREq, GRE – Composite score, 

Biderman’s Formula Score, GREwr, GREv, total number of advanced science, math, and athletic 

training courses taken, and the number of advanced math and science courses taken.  The 

multicollinearity analysis results for continuous and multi-level discrete variables, including 

tolerance and variance inflation factor (VIF) values are presented in Table 4.4.   

 

Table 4.4  Multicollinearity analysis results 

 

 Multicollinearity Statistics 

Tolerance VIF 

gGPA at the end of the First-yr 0.563 1.775 

Number of Adv Math & Science Courses 0.188 5.311 

Total Number of Adv Courses  

(AT + Adv Math & Science) 
0.187 5.348 

 GREv  0.395 2.532 

 GREq  0.385 2.596 

 GREwr  0.463 2.158 

Biderman Formula Score 0.170 5.891 

Variables left out of the equation   

 GRE – Composite Score 0.000  
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As expected, multicollinearity was evident.  There were three reasons for the excessively 

low tolerance and high VIF figures: 

1. Biderman’s Formula Score contains all three GRE (PR) component scores 

2. GRE Composite Score includes the three GRE component scores 

3. Total number of advanced courses includes athletic training and advanced math and 

science course, so only the number of advanced science courses was used   

An examination of several combinations of variables led to a decision that the three 

predictors listed above be dropped from the final combination of discrete and continuous 

variables.  The final set of predictor variables selected is shown in Table 4.5. 

 

Table 4.5  Multicollinearity analysis results for discrete and continuous predictors retained 

 

 Multicollinearity Statistics 

Tolerance VIF 

GPA at the end of the first-yr 0.608 1.646 

Number of Adv Math & Science Courses 0.844 1.185 

GREv 0.589 1.698 

GREq 0.495 2.021 

GREwr 0.735 1.360 

 

Next, the multi-level discrete and continuous variables were dichotomized through ROC 

analysis.  The results of the multicollinearity assessment of the eight dichotomized variables, two 

of which were dichotomous at the outset, are presented in Table 4.6. 
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Table 4.6  Multicollinearity analysis results for dichotomous predictor variables 

 

 Multicollinearity Statistics 

Tolerance VIF 

Advanced Math & Science Courses ≥ 3 0.544 1.837 

GPA end of first-year ≥ 3.45 0.704 1.420 

 GREv ≥ 145.5 (PR ≥ 26) 0.490 2.040 

 GREq ≥ 143.5 (PR ≥ 16.5) 0.634 1.578 

 GREwr ≥ 3.25 (PR ≥ 24.5) 0.815 1.227 

Biderman's Formula Score ≥ 420.5 0.416 2.406 

Physics: 1 = Yes; 0 = No 0.490 2.039 

Calculus: 1 = Yes; 0 = No 0.689 1.450 

 

 

 The predictor variables outlined in Table 4.6 above were included in a logistic regression 

analysis to determine the best combination of variables to predict success on a student’s first-

attempt on the BOC exam.   

 

Logistic Regression Analysis 

 All of the dichotomized predictor variables were entered into a logistic regression 

analysis with “first-attempt pass – Yes or No, on the BOC exam” as the outcome variable.  

Although multicollinearity testing did not reveal overlap between Biderman’s Formula Score and 

the GRE, or between Advanced Courses and either Physics or Calculus, adjusted OR values were 
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much smaller than the OR values derived from the separate univariable analysis.  The results of 

the initial logistic regression analysis are displayed in Table 4.7.
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Table 4.7  Logistic regression analysis results including all potential predictors of first-attempt 

BOC exam success 

 

 

Adjusted OR 

95% C.I. 

Lower Upper 

Step 1 

Advanced Math & Science Courses ≥ 3 2.361 0.494 11.293 

gGPA 1stYr. ≥ 3.45 7.564 1.845 31.007 

GREv ≥ 145.5 (PR ≥ 26) 3.385 0.677 16.915 

GREq ≥ 143.5 (PR ≥ 16.5) 5.016 1.115 22.563 

GREwr ≥ 3.25 (PR ≥ 24.5) 2.290 0.538 9.744 

Biderman Formula Score ≥ 420.5 0.555 0.095 3.234 

Physics Yes or No 0.836 0.155 4.506 

Calculus Yes or No 0.154 0.024 0.979 

Constant 0.220   

Step 2 

Advanced Math & Science Courses ≥ 3 2.175 0.555 8.520 

gGPA 1stYr. ≥ 3.45 7.552 1.847 30.885 

GREv ≥ 145.5 (PR ≥ 26) 3.300 0.675 16.136 

GREq ≥ 143.5 (PR ≥ 16.5) 4.719 1.176 18.932 

GREwr ≥ 3.25 (PR ≥ 24.5) 2.271 0.534 9.658 

Biderman Formula Score ≥ 420.5 0.582 0.106 3.191 

Calculus Yes or No 0.148 0.024 0.905 

Constant 0.217   

Step 3 

Advanced Math & Science Courses ≥ 3 2.271 0.586 8.806 

gGPA 1stYr. ≥ 3.45 6.816 1.748 26.572 

GREv ≥ 145.5 (PR ≥ 26) 2.435 0.699 8.481 

GREq ≥ 143.5 (PR ≥ 16.5) 4.246 1.132 15.928 

GREwr ≥ 3.25 (PR ≥ 24.5) 2.136 0.511 8.934 

Calculus Yes or No 0.152 0.025 0.923 
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Constant 0.229   

Step 4 

Advanced Math & Science Courses ≥ 3 1.991 0.528 7.502 

gGPA 1stYr. ≥ 3.45 7.148 1.860 27.464 

GREv ≥ 145.5 (PR ≥ 26) 2.917 0.884 9.628 

GREq ≥ 143.5 (PR ≥ 16.5) 4.560 1.245 16.696 

Calculus Yes or No 0.161 0.026 0.985 

Constant 0.363   

Step 5 

gGPA 1stYr. ≥ 3.45 6.538 1.746 24.489 

GREv ≥ 145.5 (PR ≥ 26) 2.984 0.905 9.843 

GREq ≥ 143.5 (PR ≥ 16.5) 4.454 1.236 16.047 

Calculus Yes or No 0.244 0.049 1.199 

Constant 0.450   

 

 

 This model produced five steps, which step five appeared to provide the best fit with a 

Nagelkerke R
2
 at 0.386.  However, at step five, the adjusted OR for Calculus was below 1.0.  

(Note: SPSS produced only five steps for this logistic regression analysis.)  Due to potential 

conflict between Biderman’s Formula Score and the GRE component scores and between the 

Advance Math & Science Courses and Physics and Calculus, Biderman’s Formula Score and the 

individual courses were removed from the model and the logistic regression analysis was 

repeated.  The results of this logistic regression analysis are shown in Table 4.8. 
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Table 4.8  Second logistic regression analysis results (Biderman’s Formula Score. Physics and 

Calculus removed) for prediction of first-attempt BOC exam success 

 

 

Adjusted OR 

95% C.I. 

Lower Upper 

Step 1 

Advanced Math & Science Courses ≥ 3 2.054 0.619 6.817 

gGPA 1stYr. ≥ 3.45 4.597 1.389 15.211 

 GREv  ≥ 145.5 (PR ≥ 26) 2.336 0.714 7.637 

 GREq  ≥ 143.5 (PR ≥ 16.5) 2.521 0.706 9.003 

 GREwr ≥ 3.25 (PR ≥ 24.5) 1.945 0.484 7.814 

Constant 0.246   

Step 2 

Advanced Math & Science Courses ≥ 3 1.930 0.590 6.318 

gGPA 1stYr. ≥ 3.45 4.834 1.487 15.718 

 GREv  ≥ 145.5 (PR ≥ 26) 2.695 0.862 8.428 

 GREq  ≥ 143.5 (PR ≥ 16.5) 2.775 0.792 9.719 

Constant 0.366   

Step 3 

gGPA 1stYr. ≥ 3.45 4.432 1.404 13.988 

 GREv  ≥ 145.5 (PR ≥ 26) 2.668 0.853 8.343 

 GREq  ≥ 143.5 (PR ≥ 16.5) 3.494 1.066 11.448 

Constant 0.471   

 

 

 Step three of the analysis appeared to provide the best fit with a Nagelkerke R
2
 at 0.353.  

The set of three predictor variables included gGPA at the end of the first year ≥ 3.45, GREv  

≥ 145.5 (PR ≥ 26), and GREq ≥ 143.5 (PR ≥ 16.5).  

A second logistic regression analysis was performed that included the following 

dichotomized predictor variables: advanced math and science courses, gGPA at the end of the 

first-year, the Biderman’s Formula Score, the student taking physics as an undergraduate, and the 
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student taking calculus as an undergraduate, with “first-attempt pass – Yes or No, on the BOC 

exam” as the outcome variable (Table 4.9).   

 

Table 4.9  Logistic regression analysis results (including Biderman’s Formula Score) for 

prediction of first-attempt BOC exam success 

 

 

Adjusted OR 

95% C.I. 

Lower Upper 

Step 1 

Advanced Math & Science Courses ≥ 3 1.315 .313 5.524 

gGPA 1stYr. ≥ 3.45 8.692 2.345 32.220 

Biderman’s Formula Score ≥ 420.5 2.560 .787 8.332 

Physics Yes or No 2.310 .523 10.205 

Calculus Yes or No .214 .039 1.165 

Constant .614   

Step 2 

gGPA 1stYr. ≥ 3.45 8.667 2.341 32.082 

Biderman’s Formula Score ≥ 420.5 2.565 .791 8.317 

Physics Yes or No 2.679 .748 9.604 

Calculus Yes or No .225 .042 1.201 

Constant .632   

Step 3 

gGPA 1stYr. ≥ 3.45 7.812 2.152 28.356 

Biderman’s Formula Score ≥ 420.5 2.483 .780 7.907 

Calculus Yes or No .422 .103 1.732 

Constant .935   

Step 4 

gGPA 1stYr. ≥ 3.45 5.783 1.866 17.923 

Biderman’s Formula Score ≥ 420.5 2.336 .746 7.320 

Constant .901   

Step 5 
gGPA 1stYr. ≥ 3.45 8.193 2.884 23.274 

Constant 1.133   
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 Step four of the analysis provided the best fit with a Nagelkerke R
2
 at 0.263.  The final 

prediction model had only two predictors: gGPA at the end of the first year ≥ 3.45 and a 

Biderman’s Formula Score ≥ 420.5.  

 

Prediction Model 

 The multiple analyses yielded two potential models for prediction of passing the BOC 

exam on the first-attempt: a three-factor model that included a gGPA at the end of the first-year  

≥ 3.45, GREv ≥ 145.5 (PR ≥ 26), and GREq ≥ 143.5 (PR ≥ 16.5); and a two-factor model that 

included a gGPA at the end of the first year ≥ 3.45, and having a Biderman’s Formula Score of  

≥ 420.5. 

 For each prediction model, the sum of the number of positive predictor variables for each 

subject was calculated, and an ROC analysis was performed to identify the number of positive 

factors that provided the best balance of Sn and Sp for prediction of first-attempt BOC exam 

success.  The results of this analysis are provided in Figure 4.2 and Table 4.10. 
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Figure 4.2  ROC curve with identification of the optimum cut-point for the number of positive 

factors (including GREv and GREq scores) for prediction of first-attempt BOC exam 

success 

 

 

Table 4.10  Number of factors (including GREv and GREq scores) for prediction of first-attempt 

BOC exam success  
 

 

 

 

 

  

 

First-attempt Pass on the BOC exam 

Yes No 

≥ 2 Factors 71 10 

< 2 Factors 18 16 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.80 (95% CI: 0.70 – 0.87) Sp = 0.62 (95% CI: 0.43 – 0.78) 

Youden’s Index = 0.413 

OR = 6.31 (95% CI: 2.46 – 16.23) RFS = 1.66 (95% CI: 1.35 – 2.03) 

≥ 2 Factors 

AUC = 0.779 
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A GATP student who had ≥ 2 positive factors, (gGPA at the end of the first year ≥ 3.45, 

GREv ≥ 145.5 (PR ≥ 26), or GREq ≥ 143.5 [PR ≥ 16.5]), had 6.31 times greater odds of first-

attempt BOC exam success than the odds for someone who had none or only one of the three 

factors.  The relative frequency of success indicates the probability of a student passing the BOC 

exam on the first-attempt with any two or more of these factors is slightly more than one and half 

times the probability of a student who has less than two of these factors. 

The percentages of successful GATP students according to the number of positive factors 

are presented in Table 4.11. 

 

Table 4.11  Specific number of factors (including GREv and GREq scores) for prediction of 

first-attempt pass – Yes or No, on the BOC exam 

 

 First-attempt Pass on the BOC exam  

Number of Factors Yes No Total Percentage 

Percentage above/ 

below cut point 

0 3 11 14 21.43% 
18/34 = 52.94% 

1 15 5 20 75.00% 

2 24 6 30 80.00% 
71/81 = 87.65% 

3 47 4 51 92.16% 

Total 89 26 115 77.39%  

 

 Among students who had two or more positive factors, 87.65% passed the BOC exam on 

the first-attempt.  Of the students who had one or  

none of the positive factors only 52.94% achieved BOC exam eligibility and passed on the exam 

on the first-attempt.   
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 A two-factor model including Biderman’s Formula Score is presented in Figure 4.3 and 

Table 4.12. 

 
 

Figure 4.3  ROC curve with identification of the optimum cut-point for the number of positive 

factors (including Biderman’s Formula Score) as a predictor of first-attempt BOC 

exam success 

 

 

  

≥ 1 Factor 

AUC = 0.760 
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Table 4.12  Number of factors (including Biderman’s Formula Score) for prediction of first-

attempt pass – Yes or No, on the BOC exam  

 

 

 

 

 

 

 

 

 

 For the two-factor model, a GATP student who had at least one positive factor, (either 

gGPA at the end of the first year of ≥ 3.45, or Biderman’s Formula Score of ≥ 420.5) had 10.69 

times greater odds of BOC exam success on the first-attempt than the odds for someone who had 

neither of the two factors.  The relative frequency of GATP success indicates the probability of a 

student being successful in the GATP with one or more factors is slightly greater than twice the 

probability of a student with none of the positive factors.  The percentages of successful GATP 

students according to the number of positive factors are presented in Table 4.13. 

 

  

 

First-attempt Pass on the BOC exam 

Yes No 

≥ 1 Factor 74 9 

No Factors 10 13 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.88 (95% CI: 0.80 – 0.93) Sp = 0.59 (95% CI: 0.39 – 0.77) 

Youden’s Index = 0.498 

OR = 10.69 (95% CI: 3.64 – 31.16) RFS = 2.05 (95% CI: 1.67 – 2.51) 
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Table 4.13  Specific number of factors (including Biderman’s Formula Score) for prediction of 

first-attempt pass – Yes or No, on the BOC exam 

 

First-attempt Pass on the BOC exam 

Number of Factors Yes No Total Percentage 

Percentage above/ 

below cut point 

0 10 13 23 43.48%  

1 23 4 27 85.19% 
74/83 = 89.16% 

2 51 5 56 92.73% 

Total 89 26 115 77.39%  

 

 

Among students who had one or more positive factors, 89.16% passed the BOC exam on 

the first-attempt.  Of the students who had none of the positive factors only 43.48% achieved 

BOC exam eligibility and passed on the exam on the first-attempt (Table 4.13).   

 

Prediction of Success in GATP 

 The second purpose of this study was to utilize the results of the first analysis to identify 

program applicant characteristics that are most likely to predict both academic success in the 

graduate professional program and subsequent first-attempt success on the BOC exam.  Because 

first-year gGPA (≥ 3.45) was found to be the strongest predictor of first-attempt BOC exam 

success, it was selected as the outcome variable for GATP success.  When selecting the most 

qualified candidates for a GATP, the goal is to recruit students who most likely to pass the BOC 

exam on the first-attempt.   

 To create a prediction model, the initial step is to identify all possible predictor variables 

that might have an association with the outcome variable (Bruce & Wilkerson, 2010a; Childs & 
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Cleland, 2006).  A list of 39 potential predictor variables is presented in Table 4.14.  The 

following were multi-level discrete variables: number of advanced courses, number of athletic 

training courses, and number of advanced science courses.  The following were continuous 

variables: Institution ACT mean/median or SAT mean/median, uGPA, GRE component score, 

GREv, GREq, GREwr, and Biderman’s Formula Score.   
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 Academic Profile of Undergraduate 

Institution (APUI) 

 Undergraduate institution SAT 

mean/median 

 Undergraduate institution ACT 

mean/median 

 Undergraduate institution SAT 75
th
 

percentile 

 Undergraduate institution ACT 75th 

percentile 

 Undergraduate institution SAT 80th 

percentile 

 Undergraduate institution ACT 80
th
 

percentile 

 

 Basic Carnegie classification categories 

 Bachelors Only 

 Bach & Masters 

 Doctorate/Research 

 Research Intensive 

 

 Undergraduate institution size and setting: 

 Large (10,000+ undergraduates) 

 Medium (3,000-9,999 undergraduates) 

 Small (<1,000-2,999 undergraduates) 

 

 Advanced math and science courses 

 Number of advanced science courses 

 Any advanced biology 

 Any advanced chemistry 

 Biomechanics 

 Calculus 

 Pathophysiology 

 Physics 

 

 Athletic training courses 

 Number of athletic training courses 

 Basic athletic training or Care & 

Prevention courses 

 Advanced athletic training courses 

 

 Advanced math, science, and athletic 

training courses 

 Total number of advanced courses 

 

 uGPA 

 

 GRE Scores  

 GRE Composite  

 GREq 

 GREv 

 GREwr 

 

 Biderman's Formula Score 

 

Table 4.14 Potential predictor variables analyzed 
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For each of the multi-level discrete and continuous variables, an ROC analysis was 

performed to determine the optimum cut-point for dichotomization.  Each of the dichotomized 

predictor variables was analyzed by univariable 2 X 2 cross-tabulation, which included the 

calculation of Sn, Sp, OR, RFS and the p-value for Fisher’s Exact Test (one-sided).   

 

Determination of Academic Profile of Undergraduate Institution 

The variable Academic Profile of Undergraduate Institution (APUI) was quantified by 

examining each institution’s reported ACT mean or median value and/or SAT mean or median 

value, and the 75
th
 and 80

th
 percentiles for these variables.  The descriptive statistics related to 

the APUI are presented in Table 4.15. 
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Table 4.15  Descriptive statistics and summary of univariable analysis results for undergraduate institutions (N = 194) as potential 

predictors of first-year gGPA ≥ 3.45 relating to APUI for students admitted to GATP 

 

Academic Profile of 

Undergraduate Institution 

a
Mean     

( sd) Cut-point Sn 1 - Sp Sp 

Youden’s 

Index AUC OR RFS 

Fisher’s 

Exact Test 

(one-sided) 

p-value 

Institution ACT 

mean/median (N = 110) 

1128.3 

( 116.88) 
≥ 25.5 0.48 0.14 0.86 0.341 0.710 5.82 1.54 0.001 

Institution SAT  

mean/median (N = 121) 

24.45 

( 2.82) 
≥ 1132.5 0.61 0.29 0.71 0.318 0.697 3.78 1.44 0.003 

a
This is the mean ( sd) for all of the undergraduate institutions represented of students admitted to the GATP
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A series of ROC analyses and corresponding 2 X 2 cross-tabulation tables were produced 

(The individual ROC analyses and 2 X 2 cross-tabulation tables for individual predictors are 

provided in Appendix B). 

The summary of APUI statistics for potential predictor variables is presented in Table 

B.2, which are listed in order of the odds ratio magnitude.  A list of the undergraduate colleges 

and universities with their respective ACT and SAT mean/median scores is provided in 

Appendix C. 

 To determine the best combination of reported Institution ACT and SAT scores to define 

high versus low APUI, various pairings of values were assessed through 2 X 2 cross-tabulation 

tables.  The analysis results for the eight pairings are presented in Appendix D.  To be classified 

as high APUI a school had a reported ACT mean/median of ≥ 25.5 or SAT mean/median of  

≥ 1132.5.  A college or university that reported their scores below the identified values were 

determined as low APUI.  Since all of the pairings had relatively similar Sn, Sp, OR, RFS, and 

Fisher’s Exact Test (one-sided) it was difficult to select which combination of ACT and SAT 

scores should be used for further consideration in the prediction model.  The result of the 

analysis of either Institution ACT mean/median ≥ 25.5 or Institution SAT mean/median ≥ 1132.5 

is shown Table 4.16.  Ultimately the pairing selected provided the best balance between Sn and 

Sp, and the absolute mean/median figures were easier to locate on a college/university web site 

compared to the percentile ranks of the undergraduate athletic training students’ institutions.   
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Table 4.16  Institution SAT mean/median for prediction of first-year gGPA ≥ 3.45 

 

 

 

 

 

 

 

 

 

 The OR of 5.39 for APUI classification met the criterion for inclusion in a multivariable 

analysis of potential predictors.  The results of the univariable analyses for the potential 

predictors of first-year success gGPA (≥ 3.45) are presented in Appendix E, and summarized in 

Table 4.17, (variables are listed in order of the OR magnitude).  The policy of the UTC Graduate 

School is to determine uGPA by combining all courses taken at all undergraduate institutions, 

which is the method utilized to determine each student’s uGPA for this study.   

 

 

First-year 

gGPA ≥ 3.45 

First-year 

gGPA < 3.45 

Either Institution ACT mean/median ≥ 25.5 or 

Institution SAT mean/median ≥ 1132.5 52 8 

Neither Institution ACT mean/median ≥ 25.5 

nor Institution SAT mean/median ≥ 1132.5 41 34 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.56 (95% CI: 0.46 – 0.66) Sp = 0.81 (95% CI: 0.67 – 0.90) 

OR = 5.39 (95% CI: 2.25 – 12.89) RFS = 1.59 (95% CI: 1.29 – 1.94) 
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Table 4.17  Summary of univariable analysis results for prediction of first-year gGPA ≥ 3.45  

 

Variable - 3.45 gGPA Cut-point Sn 1 - Sp Sp 

Youden’s 

Index AUC OR RFS 

Fisher’s 

Exact Test 

(one-sided)           

Biderman's Formula Score 458.45 0.61 0.09 0.91 0.528 0.816 16.94 1.84 0.001 

GREq  141.5  0.90 0.47 0.53 0.430 0.772 10.49 2.66 0.001 

*Calculus Yes or No  0.44 0.07 0.93   10.06 1.62 0.001 

GRE - Composite 292.5 0.70 0.24 0.76 0.465 0.795 7.60 1.79 0.001 

GREv  150.5  0.47 0.11 0.90 0.363 0.754 7.48 1.54 0.001 

uGPA 3.18 0.71 0.33 0.67 0.380 0.715 4.71 1.67 0.001 

Number of adv math & science courses 4 0.36 0.14 0.86 0.212 0.632 3.30 1.35 0.009 

Number of adv courses 5 0.38 0.19 0.81 0.186 0.624 2.56 1.29 0.045 

GREwr  3.75 0.66 0.46 0.54 0.202 0.648 2.30 1.28 0.044 

*Graduated from a Research Intensive 

Institution Yes or No 
 0.46  0.67   1.69 1.17 0.121 

*Physics Yes or No  0.58  0.52   1.52 1.14 0.173 

Note. For further consideration a variable had to have an OR of ≥ 1.50 (Hosmer & Lemeshow, 2000) and a Fisher’s Exact Test (one-

sided) p-value of ≤ 0.20 (Bruce & Wilkerson, 2010a; Kuijpers et al., 2006; Teyhen et al., 2007) 

 

*Dichotomous variables
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A summary of the univariable analysis results for potential predictors that did not meet 

the criterion for inclusion in the multivariable analysis is presented in Table 4.18. 

 

Table 4.18  Predictor variables eliminated from further consideration 

 

 

OR 

95% Confidence 

Interval 

Fisher's Exact Test          

p-value (1-sided) 

Carnegie classifications    

Bachelors only 1.520 CI:  0.56  to  4.13 0.284 

Bachelors and Master 0.773 CI:  0.37  to  1.62 0.310 

Doctoral research 1.294 CI:  0.62  to  2.71 0.310 

Graduate Program 1.322 CI:  0.58  to  3.00 0.322 

Number of Athletic Training Courses 

(≥ 4 courses) 
2.11 CI.  0.57  to  7.85 0.200 

Public-Private 0.605 CI:  0.26  to  1.39 0.161 

Residency (In-state vs. Out-of-state) 0.541 CI:  0.24  to  1.22 0.100 

Size & Setting - small 1.540 CI:  0.63  to  3.77 0.234 

Size & Setting - medium 0.474 CI:  0.21  to  1.08 0.590 

Size & Setting - large 1.305 CI:  0.63  to  2.70 0.298 

Took Basic AT courses 0.710 CI:  0.34  to  1.48 0.234 

Took Advanced AT courses 1.055 CI:  0.44  to  2.55 0.548 

Took biomechanics 1.418 CI:  0.66  to  3.04 0.240 

Took advanced chemistry 1.403 CI:  0.66  to  2.96 0.242 

Took advanced biology 1.276 CI:  0.60  to  2.71 0.329 
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Although ≥ 4 athletic training courses demonstrated an OR > 2.0, the lower limit of its 

95% confidence interval was < 1.0 (0.57).  Thus this potential predictor was dropped from 

further consideration.  

 

Multicollinearity 

A series of linear regression analyses were performed to assess multicollinearity among 

continuous variables, which included: the number of advanced math and science courses, total 

number of advanced courses, APUI (Institution ACT mean/median or Institution SAT 

mean/median), uGPA, GRE Composite score, GREv, GREq, GREwr, and Biderman’s Formula 

Score.  The analysis results from are presented in Table 4.19. 
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Table 4.19  Results for assessment of multicollinearity among potential predictors of first-year 

gGPA ≥ 3.45 

 

 
Multicollinearity Statistics 

Tolerance VIF 

APUI 0.680 1.471 

Number of adv math & science courses 0.174 5.757 

Total number of adv courses  

(AT + Adv Science) 
0.182 5.504 

 GREv 0.083 11.998 

 GREq 0.095 10.475 

 GREwr 0.066 15.089 

uGPA 0.043 23.331 

Biderman’s Formula Score 0.009 107.068 

Variables left out of the equation   

 GRE – Composite score 0.000  

 

 

There were three reasons for the excessively low tolerance and high VIF values that were 

obtained: 

1. Biderman’s Formula Score contains all three GRE PR scores 

2. The GRE Composite score includes the three parts of the GRE 

3. Total number of advanced courses includes the number of advanced science 

courses    



 

119 

 

Through trial and error various combinations of multi-level discrete and continuous 

variables were selected (Table 4.20 and Table 4.21). 

 

Table 4.20  Multicollinearity analysis results for seven-variable set of potential predictors 

(including GRE scores) of first-year gGPA ≥ 3.45  

 

 Multicollinearity Statistics 

Tolerance VIF 

APUI 0.675 1.481 

Number of adv science courses 0.174 5.750 

Total number of adv courses  

(AT + Adv Science) 
0.180 5.551 

GREv 0.517 1.934 

GREq  0.498 2.007 

GREwr 0.769 1.300 

uGPA 0.836 1.196 

 

 

 Tolerance and VIF scores improved for uGPA and GRE scores, when the set of variables 

was reduced from 8 (Table 4.21) to seven (Table 4.22) by removal of Biderman’s Formula 

Score, but there was still overlap between the variables.  The analysis was repeated after removal 

of the “Total number of adv courses” variable (Table 4.23). 
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Table 4.21  Multicollinearity analysis results for six-factors set of potential predictors (including 

GRE scores) of gGPA ≥ 3.45 

 

 Multicollinearity Statistics 

Tolerance VIF 

APUI 

(Institution ACT + Institution SAT mean/median) 
0.711 1.407 

Number of adv science courses 0.830 1.204 

GREv 0.522 1.917 

GREq  0.505 1.982 

GREwr  0.782 1.279 

uGPA 0.844 1.185 

 

 

 This six-factor model demonstrates acceptable tolerance and VIF values. 

Multicollinearity analysis was repeated performed for a set of eight dichotomized variables 

(Table 4.22). 

 

  



 

121 

 

Table 4.22  Multicollinearity analysis results for an eight-factor set of dichotomized potential 

predictors (including GRE scores) of first-year gGPA ≥ 3.45 

 

 Multicollinearity Statistics 

Tolerance VIF 

High APUI  0.587 1.703 

Number of Advanced Math & Science 

Courses ≥ 4 
0.767 1.304 

uGPA ≥ 3.18 0.878 1.139 

Physics: 1 = Yes; 0 = No 0.672 1.487 

Calculus: 1 = Yes; 0 = No 0.575 1.739 

Research Intensive = 1; Others = 0 0.783 1.277 

GREv ≥ 150.5 (PR ≥ 46.5) 0.759 1.317 

GREq ≥ 141.5 (PR ≥ 12) 0.768 1.303 

GREwr ≥ 3.75 (PR ≥ 44.5) 0.862 1.160 

 

 

This eight-factor model demonstrates acceptable tolerance and VIF values.  Results for 

assessment of multicollinearity among potential predictors of first-year gGPA ≥ 3.45 found 

excessively low tolerance and high VIF values (Table 4.19).  Because Biderman’s Formula 

Score contains all three GRE PR scores, it was dropped from this specific analysis.   

 A second series of analyses were performed to assess multicollinearity among continuous 

and multi-discrete variables, which included: the number of advanced math and science courses, 
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APUI (Institution ACT mean/median or Institution SAT mean/median), uGPA, and Biderman’s 

Formula Score.  The analysis results from are presented in Table 4.23. 

 

Table 4.23  Results for assessment of multicollinearity among potential predictors (including 

Biderman’s Formula Score) of first-year gGPA ≥ 3.45 

 

 Multicollinearity Statistics 

Tolerance VIF 

APUI 0.738 1.353 

Number of adv math & science courses 0.892 1.122 

uGPA 0.463 2.159 

Biderman's Formula Score  0.388 2.577 

 

 

 This four-factor model demonstrates acceptable tolerance and VIF values.  

Multicollinearity analysis was then performed for a set of seven dichotomized variables (Table 

4.24). 
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Table 4.24  Multicollinearity analysis results for seven-factor set of dichotomized variables 

(including Biderman’s Formula Score) for prediction of first-year gGPA ≥ 3.45 

 

 

Multicollinearity Statistics 

Tolerance VIF 

High APUI  0.635 1.575 

Total Advanced Courses ≥ 5 0.801 1.249 

uGPA ≥ 3.18 0.804 1.243 

Biderman's Formula Score ≥ 458.45 0.686 1.457 

Physics: 1 = Yes; 0 = No 0.735 1.360 

Calculus: 1 = Yes; 0 = No 0.574 1.743 

Research Intensive = 1; Others = 0 0.831 1.204 

 

 

Logistic Regression Analysis 

GRE Model 

 Because two possible prediction models were created to forecast gGPA at the end of the 

first year, two separate logistic regression analyses were performed.  The first analysis included 

the GRE component scores with five other dichotomized predictor variables.  The variables 

included in this analysis were: High APUI, uGPA ≥ 3.18, ≥ 4 advance math & science courses, 

GREv ≥ 150.5 (PR ≥ 46.5), GREq ≥ 141.5 (PR ≥ 12.0), GREwr ≥ 3.75 (PR ≥ 44.5), graduated 

from a research intensive institution, took physics as an undergraduate, and took calculus as an 

undergraduate (Table 4.25).    
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Table 4.25  Logistic regression analyses of nine variables for prediction of first-year gGPA          

≥ 3.45 

 

 

Adjusted OR 

95% C.I. 

Lower Upper 

Step 1 

High APUI  0.703 0.182 2.708 

Number of math & science courses ≥ 4 1.870 0.314 11.136 

uGPA ≥ 3.18 7.661 2.303 25.485 

GREv ≥ 150.5 (PR ≥ 46.5) 3.137 0.730 13.489 

GREq ≥ 141.5 (PR ≥ 12) 7.041 1.848 26.827 

GREwr ≥ 3.75 (PR ≥ 44.5) 1.100 0.370 3.264 

Research Intensive = 1; Others = 0 2.054 0.593 7.121 

Physics: 1 = Yes; 0 = No 0.665 0.184 2.407 

Calculus: 1 = Yes; 0 = No 13.353 2.060 86.548 

Constant 0.081   

Step 2 

High APUI  0.701 0.182 2.700 

Number of math & science courses ≥ 4 1.858 0.315 10.968 

uGPA ≥ 3.18 7.771 2.355 25.638 

GREv ≥ 150.5 (PR ≥ 46.5) 3.194 0.756 13.497 

GREq ≥ 141.5 (PR ≥ 12) 7.053 1.853 26.851 

Research Intensive = 1; Others = 0 2.101 0.622 7.097 

Physics: 1 = Yes; 0 = No 0.668 0.185 2.411 

Calculus: 1 = Yes; 0 = No 13.444 2.076 87.066 

Constant 0.084   

Step 3 

Number of math & science courses ≥ 4 1.908 0.319 11.402 

uGPA ≥ 3.18 7.339 2.276 23.664 

GREv ≥ 150.5 (PR ≥ 46.5) 2.972 0.720 12.275 

GREq ≥ 141.5 (PR ≥ 12) 6.420 1.791 23.018 

Research Intensive = 1; Others = 0 1.942 0.599 6.296 

Physics: 1 = Yes; 0 = No 0.690 0.193 2.462 

Calculus: 1 = Yes; 0 = No 10.981 2.012 59.929 

Constant 0.086   
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Step 4 

Number of math & science courses ≥ 4 2.146 0.381 12.091 

uGPA ≥ 3.18 8.162 2.645 25.186 

GREv ≥ 150.5 (PR ≥ 46.5) 2.899 0.710 11.833 

GREq ≥ 141.5 (PR ≥ 12) 5.623 1.722 18.360 

Research Intensive = 1; Others = 0 1.904 0.587 6.176 

Calculus: 1 = Yes; 0 = No 9.336 1.917 45.472 

Constant 0.076   

Step 5 

uGPA ≥ 3.18 7.300 2.477 21.510 

GREv ≥ 150.5 (PR ≥ 46.5) 2.650 0.665 10.564 

GREq ≥ 141.5 (PR ≥ 12) 6.442 2.052 20.225 

Research Intensive = 1; Others = 0 1.795 0.558 5.771 

Calculus: 1 = Yes; 0 = No 8.716 1.829 41.538 

Constant 0.085   

Step 6 

uGPA ≥ 3.18 7.018 2.418 20.375 

GREv ≥ 150.5 (PR ≥ 46.5) 2.828 0.696 11.486 

GREq ≥ 141.5 (PR ≥ 12) 6.087 1.959 18.916 

Calculus: 1 = Yes; 0 = No 9.481 2.062 43.594 

Constant 0.104   

Step 7 

uGPA ≥ 3.18 7.624 2.627 22.127 

GREq ≥ 141.5 (PR ≥ 12) 7.677 2.481 23.759 

Calculus: 1 = Yes; 0 = No 11.767 2.657 52.106 

Constant 0.101   

 

 

Step 7 produced the best model of fit, with a Nagelkerke R
2
 of 0.493.  The lower limit 

95%
 
CI for the adjusted OR was > 1.0 for all three variables: uGPA ≥ 3.18, GREq ≥ 141.5 (PR   

≥ 12), and having taken calculus as an undergraduate. 

 A second logistic regression analysis was performed that included all of the dichotomized 

predictor variables, including Biderman’s Formula Score, with gGPA at the end of the first year 

≥ 3.45 as the outcome variable.  The predictor variables included the following: High APUI, 
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uGPA ≥ 3.18, ≥ 4 advance math & science courses, Biderman’s Formula Score ≥ 458.45, 

graduated from a research intensive institution, took physics as an undergraduate student, and 

took calculus as an undergraduate.  The analysis generated a model of five steps from the logistic 

regression analysis.  All of the steps and the adjusted OR and the associated 95% confidence 

interval are shown in Table 4.26.  Step 5 produced the best model of fit and had a Nagelkerke R
2
 

of 0.436.   
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Table 4.26  Logistic regression analysis results including Biderman’s Formula Score as 

predictors of first-year gGPA ≥ 3.45 

 

 

Adjusted OR 

95% C.I. 

Lower Upper 

Step 1 

High APUI  1.490 0.465 4.777 

Number of math & science courses ≥ 4 2.250 0.619 8.176 

uGPA ≥ 3.18 3.211 1.218 8.466 

Biderman’s Formula Score ≥ 458.45 7.631 1.959 29.733 

Research Intensive = 1; Others = 0 0.901 0.334 2.434 

Physics: 1 = Yes; 0 = No 0.580 0.208 1.622 

Calculus: 1 = Yes; 0 = No 6.228 1.228 31.580 

Constant 0.456   

Step 2 

High APUI  1.469 0.463 4.657 

Number of math & science courses ≥ 4 2.240 0.617 8.130 

uGPA ≥ 3.18 3.248 1.239 8.518 

Biderman’s Formula Score ≥ 458.45 7.572 1.949 29.420 

Physics: 1 = Yes; 0 = No 0.582 0.208 1.627 

Calculus: 1 = Yes; 0 = No 6.175 1.218 31.296 

Constant 0.440   

Step 3 

Number of math & science courses ≥ 4 2.269 0.627 8.208 

uGPA ≥ 3.18 3.348 1.280 8.752 

Biderman’s Formula Score ≥ 458.45 8.165 2.132 31.261 

Physics: 1 = Yes; 0 = No 0.561 0.203 1.555 

Calculus: 1 = Yes; 0 = No 7.888 1.844 33.732 

Constant 0.469   

Step 4 

Number of math & science courses ≥ 4 1.890 0.550 6.496 

uGPA ≥ 3.18 3.487 1.341 9.066 

Biderman’s Formula Score ≥ 458.45 7.745 2.052 29.235 

Calculus: 1 = Yes; 0 = No 6.177 1.551 24.598 

Constant 0.382   

Step 5 

uGPA ≥ 3.18 3.180 1.249 8.093 

Biderman’s Formula Score ≥ 458.45 8.331 2.221 31.249 

Calculus: 1 = Yes; 0 = No 7.113 1.822 27.770 

Constant 0.437   
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The final three predictor variables were uGPA ≥ 3.18, Biderman’s Formula Score  

≥ 458.45, and took calculus as an undergraduate.   

 

Interaction Effects 

 Because two models were able to predict gGPA at the end of the first year in the GATP, 

separate analyses were conducted to assess any interaction effects.  The first logistic regression 

model included the GREq scores.  The univariable odds ratio and multivariable adjusted odds 

ratio for each of the predictor variables is shown in Table 4.27.   

 

Table 4.27  Comparison of odds ratios for predictor variables 

 Univariable OR Multivariable Adj OR 

uGPA 4.71 (95% CI: 2.17 – 10.23) 7.62 (95% CI: 2.63 – 22.13) 

GREq 10.49 (95% CI: 4.11 – 26.78) 7.68 (95% CI: 2.48 – 23.76) 

Calculus 10.06 (95% CI: 2.90 – 34.86) 11.77 (95% CI: 2.66 – 52.11) 

 

 

 The existence of an interaction between uGPA and GREq is suggested by the differences 

between the univariable odds ratio and the corresponding multivariable adjusted odds ratio, 

whereas there was relatively little change between the two odds ratios for taking calculus. 

 The interaction pairings studied were: GREq X uGPA; uGPA X Calculus; GREq X 

Calculus.  Each interaction pairing was examined for prediction of success, (success = gGPA  

≥ 3.45 at the end of the first year).  Each possible interaction was examined three ways:  
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1. 2 X 2 cross-tabulation tables to calculate the Sn, Sp, OR, RFS and Fisher’s Exact Test 

(one-sided). 

2. Stratified analysis and graphic representation of the interaction  

3. Stratum-specific odd ratios were compared to the Mantel-Haenszel OR estimate and 

the Breslow-Day test was done to confirm homogeneity of the stratum-specific ORs. 

The next series of tables and figures demonstrate the nature of the interactive relationship 

between GREq and uGPA (Tables 4.28 to 4.30 and Figure 4.4). 

 

Table 4.28  A student with a combination of a high uGPA (≥ 3.18) and a high GREq (≥ 141.5  

[PR  ≥ 12]) for prediction of first-year gGPA ≥ 3.45 

 

 

 

 

 

 

 

 

A student who had both a high uGPA (≥ 3.18) and a high GREq (≥ 141.5 [PR ≥ 12.0]) 

had 15.69 times greater odds for success in the GATP than the odds for someone who had either 

one or none of the factors.  The relative frequency of GATP success indicates the probability of a 

student being successful in the GATP who has both a high uGPA and a high GREq is slightly 

more than twice that for students who have only one or none of these factors.  

  

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

Both factors,  

uGPA X GREq 65 5 

≤ 1 factor, either  

uGPA X GREq 29 35 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.69 (95% CI: 0.59 – 0.78) Sp = 0.88 (95% CI: 0.74 – 0.95) 

OR = 15.69 (95% CI: 5.58 – 44.13) RFS = 2.05 (95% CI: 1.67 – 2.51) 
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Table 4.29  Stratified analysis of uGPA levels for association of GREq as a predictor of gGPA  

 

uGPA ≥ 3.18 

 
Success Not successful Total Percentage 

High GREq 65 5 70 93% 

Low GREq 3 8 11 27% 

 

OR = 34.67 

 

     
uGPA < 3.18 

 

Success Not successful Total Percentage 

High GREq 20 13 33 61% 

Low GREq 6 12 18 33% 

 

OR = 3.07 

  

 

 
 

Figure 4.4  GREq X uGPA for prediction of GATP success 
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This possible interaction represents students with both a high GREq (≥ 141.5 [PR ≥ 

12.0]) and a high uGPA (≥ 3.18) were 93% successful.  Students with both a low GREq and a 

low uGPA had a low success rate (27%).  A student who had a high uGPA and a high GREq had 

34.67 times greater odds to be successful in the GATP than the odds for someone who had a high 

GPA and a low GREq.  Conversely, a student who had a low uGPA and a high GREq had 3.07 

times greater odds for GATP success than one who had a low uGPA and a low GREq.  The OR 

indicates that a student who had a high GREq (≥ 141.5 [PR ≥ 12.0]) and had a high uGPA (≥ 

3.18) had 34.67 times greater odds to be successful in the GATP than the odds for someone who 

had a low GREq and had a high uGPA.  A student who had a high GREq and a low uGPA had 

3.07 time greater odds to be successful in the GATP than the odds from someone who had a low 

GREq and a low uGPA.  

 Controlling for uGPA, the relationship between GREq and GATP success (gGPA at the 

end of the first year ≥ 3.45) was examined (Mantel-Haenszel ORest = 6.49 [95% CI: 2.59 – 

16.52]).  There is a statistically significant association between GREq and GATP success (gGPA 

at the end of the first year ≥ 3.45) and high and low uGPA strata (≥ 3.18 OR = 34.67 [95% CI: 

6.94 – 173.21]; < 3.18 OR = 3.08 [95% CI: 0.92 – 10.25]); Mantel-Haenszel 
2
(1) = 18.615; (p < 

0.001).  The null hypothesis for the Breslow-Day test assumes that the odds ratios for GREq by 

GATP success (gGPA at the end of the first year ≥ 3.45) at the end of the first year is equivalent 

for uGPA categories.  The Breslow-Day test for homogeneity found the odds ratios to be 

significantly different for the two strata, Breslow-Day 
2
(1) = 6.045; (p = 0.014).   

 An examination of the univariable odds ratio and the multivariable adjusted odds ratio is 

shown in Table 4.30 for uGPA X GREq and Calculus.  
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Table 4.30  Univariable and multivariable comparison of odds ratio for the interaction of uGPA 

and GREq with taking calculus 

 

 Univariable OR Multivariable Adj OR 

uGPA X GREq 15.69 (95% CI: 5.58 – 44.13) 16.80 (95% CI: 5.62 – 50.21) 

Calculus 10.06 (95% CI: 2.90 – 34.86) 10.92 (95% CI: 2.85 – 41.89) 

 

 

 This table demonstrates that calculus appears to have an independent effect (10.06 – 

10.92), but uGPA and GREq interact.  A 2 X 2 analysis that does not include calculus (uGPA X 

GREq) generates an OR that is not very different from the multivariable adjusted OR derived 

from a logistic regression analysis that did include calculus (15.69 – 16.80).  

 The next series of tables and figures demonstrate the nature of the interactive relationship 

between uGPA and taking calculus for prediction of gGPA (Tables 4.31 to 4.33 and Figure 4.5). 

 

Table 4.31  A student with a combination of a high uGPA (≥ 3.18) and took calculus as an 

undergraduate for prediction of first-year gGPA ≥ 3.45 

 

A student who had both a high uGPA (≥ 3.18) and had taken calculus as an 

undergraduate had 16.52 times greater odds to be successful in the GATP than the odds for 

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

Both factors,  

uGPA X Calculus (1) 27 1 

≤ 1 factor, either 

uGPA X Calculus (0) 67 41 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.29 (95% CI: 0.206 – 0.386) Sp = 0.98 (95% CI: 0.877 – 0.996) 

OR = 16.52 (95% CI: 2.163 – 1.905) RFS = 1.55 (95% CI: 1.268 – 1.905) 
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someone who had only one or none of the factor.  The relative frequency of GATP success 

indicates the probability of a student being successful in the GATP who had both a high uGPA 

and had taken calculus as an undergraduate is slightly more than one and half that for a students 

who only one or none of these factors.  Please note the cell count of “1” is cause to interpret 

these results with skepticism since it weakens the overall analysis and results in highly unstable 

odd ratios (Hosmer & Lemeshow, 2000). 

 

Table 4.32  Stratified analysis of uGPA for levels of association of calculus history as a predictor 

of gGPA  

 

uGPA ≥ 3.18 

 
Success Not successful Total Percentage 

Calculus - Yes 27 1 28 96% 

Calculus - No 41 14 55 75% 

 

OR = 9.22 

 

     
uGPA < 3.18 

 

Success Not successful Total Percentage 

Calculus - Yes 14 2 16 88% 

Calculus - No 12 25 37 32% 

 

OR = 14.58 
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Figure 4.5  Calculus X uGPA for prediction of GATP success 

 

 

The interaction indicates that students who took calculus had a high rate of success 

regardless of uGPA (uGPA ≥ 3.18 = 96%; uGPA < 3.18 = 88%).  A student who took calculus 

and who had a high uGPA (≥ 3.18) had 9.22 times greater odds for success in the GATP than the 

odds for someone with a high uGPA, who did not take calculus.  Students who took calculus, but 

had a low uGPA (< 3.18) had 14.58 times greater odds for success in the GATP than the odds for 

someone who had a low uGPA and did not take calculus.   

 Controlling for uGPA, the relationship between taking calculus and GATP success 

(gGPA at the end of the first year ≥ 3.45) was examined using a Mantel-Haenszel analysis 

(Mantel-Haenszel ORest = 11.79 [95% CI: 3.71 – 44.12]).  There is a statistically significant 

association between taking calculus and GATP success (gGPA at the end of the first year ≥ 3.45) 

and high and low uGPA strata (≥ 3.18 OR = 9.22 [95% CI: 1.15 – 74.25]; < 3.18 OR = 14.58 

[95% CI: 2.85 – 74.71]); Mantel-Haenszel 
2
(1) = 16.76; (p < 0.001).  The null hypothesis for 
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the Breslow-Day test assumes that the odds ratios for taking calculus by gGPA at the end of the 

first year is equivalent for uGPA categories.  The Breslow-Day test for homogeneity found the 

odds ratios to be not significantly different from one another, Breslow-Day 
2
(1) = 0.119;  

(p = 0.730).  Please note the large confidence intervals are due to the low cell counts.  Hosmer & 

Lemeshow (2000) suggest a minimum of five for each cell to have more reliable, valid, and 

stable model. 

 An examination of the univariable odds ratio and the multivariable adjusted odds ratio is 

shown in Table 4.33 for uGPA X Calculus and GREq. 

 

Table 4.33  Univariable and multivariable comparison of odds ratio for the interaction of uGPA 

and GREq with taking calculus 

 

 Univariable OR Multivariable Adj OR 

uGPA X Calculus 16.52 (95% CI:2.16 – 126.23) 8.25 (95% CI: 3.16 – 21.54) 

GREq 10.49 (95% CI: 4.11 – 26.78) 9.59 (95% CI: 1.20 – 76.70) 

 

 

This table demonstrates that GREq appears to have an independent effect (10.49 – 9.59), 

but uGPA and calculus clearly interact.  A 2 X 2 analysis that does not include GREq (uGPA X 

Calculus) generates an OR that is different from the multivariable adjusted OR derived from a 

logistic regression analysis that did include calculus (16.52 – 8.25).  

 The next series of tables and figures demonstrates the nature of the interactive 

relationship between GREq and taking calculus for prediction of gGPA (Tables 4.34 to 4.36 and 

Figure 4.6).  
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Table 4.34  A student with a combination of a high GREq (≥ 141.5 [PR ≥ 12]) and took calculus 

for prediction of first-year gGPA ≥ 3.45 

 

 

A student who had both a high GREq (≥ 141.5 [PR ≥ 12]) and took calculus had 15.69 

times greater odds to be successful in the GATP than the odds for someone who had one or none 

of these factors.  The relative frequency of GATP success indicates the probability of a student 

being successful in the GATP who had both a high GREq and had taken calculus as an 

undergraduate is slightly more than twice that for a student who has only one or none of these 

factors.   

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

Both factors, 

GREq X Calculus (1) 65 5 

≤ 1 factor, either  

GREq X Calculus (0) 29 35 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.69 (95% CI: 0.59 – 0.78) Sp = 0.88 (95% CI: 0.74 – 0.95) 

OR = 15.69 (95% CI: 5.58 – 44.13) RFS = 2.05 (95% CI: 1.68 – 2.51) 
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Table 4.35  Stratified analysis of calculus history for association of GREq as predictor of gGPA 

 

Calculus - Yes 

 
Success Not successful Total Percentage 

High GREq 38 2 40 95% 

Low GREq 3 1 4 75% 

 

OR = 6.33 

  

     
Calculus - No 

 

Success Not successful Total Percentage 

High GREq 47 16 63 75% 

Low GREq 6 19 25 24% 

 

OR = 9.30 

   

 

 
 

Figure 4.6  Calculus X GREq for prediction of GATP success 
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This possible interaction represents students who took calculus as an undergraduate 

tended to be successful regardless of their GREq score; 95% if they had a high GREq (≥ 141.5 

[PR ≥ 12]) versus 75% if they had a low GREq (< 141.5 [PR < 12]).  If a candidate had a high 

GREq, but did not take calculus, 75% were successful, compared to only 24% who were 

successful if they had a low GREq and did not take calculus.  The OR indicates that a student 

who had a high GREq and took calculus had 6.33 times greater odds to be successful in the 

GATP than the odds for someone who had a low GREq and took calculus.  A student who had a 

high GREq and did not take calculus had 9.30 times greater odds to be successful in the GATP 

than the odds for someone who had a low GREq and did not take calculus. 

 Controlling for taking calculus, the relationship between GREq and GATP success 

(gGPA at the end of the first year ≥ 3.45) was examined using a Mantel-Haenszel analysis 

(Mantel-Haenszel ORest = 8.97 [95% CI: 3.29 – 24.49]).  There is a statistically significant 

association between GREq and GATP success (gGPA at the end of the first year ≥ 3.45) and 

high and low uGPA strata (taking calculus OR = 6.33 [95% CI: 0.44 – 91.71]); not taking 

calculus OR = 9.30 (95% CI: 3.15 – 44.12); Mantel-Haenszel 
2
(1) = 18.85; p < 0.001).  The 

null hypothesis for the Breslow-Day test assumes that the odds ratios for GREq by GATP 

success (gGPA at the end of the first year ≥ 3.45) is equivalent for taking versus not taking 

calculus categories.  The Breslow-Day test for homogeneity found the odds ratios to not be 

significantly different from one another, Breslow-Day 
2
(1) = 0.070; (p = 0.791).  It should be 

noted due to the low cell counts (several < 5) make these results highly unstable (Hosmer & 

Lemeshow, 2000). 
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 An examination of the univariable odds ratio and the multivariable adjusted odds ratio is 

shown in Table 4.36 for GREq X Calculus with uGPA.  

 

Table 4.36  Univariable and multivariable comparison of odds ratio for the interaction of uGPA 

and GREq with taking calculus 

 

 Univariable OR Multivariable Adj OR 

GREq X Calculus 13.57 (95% CI: 3.09 – 59.54) 14.90 (95% CI: 3.25 – 68.22) 

uGPA 4.71 (95% CI: 2.17 – 10.23) 5.15 (95% CI: 2.21 – 12.01) 

 

 

This table demonstrates that uGPA appears to have an independent effect (4.71 – 5.15), 

as do GREq and calculus.  A 2 X 2 analysis that does not include uGPA (GREq X Calculus) 

generates an OR that is not very different from the multivariable adjusted OR derived from a 

logistic regression analysis that did include uGPA (13.57 – 14.90).  

 

Three-way interaction 

 An examination of the three-way interaction between GREq (≥ 141.5 [PR ≥ 12]), took 

calculus and uGPA (≥ 3.18) was made.  The 2 X 2 cross-tabulations table showing the results of 

this analysis is below (Table 4.37).  Please note the upper right cell (All three factors and first-

year gGPA of < 3.45) had zero (0) subjects in the cell.  In order to compute the odds ratio, 0.5 

was added to all cells (Hosmer & Lemeshow, 2000). 
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Table 4.37  A student with a combination of a high GREq score (≥ 141.5 [PR ≥ 12]), a high 

uGPA (≥ 3.18), and took calculus as an undergraduate for prediction of first-year 

gGPA  ≥ 3.45 

 

 

 

A student who had all three positive factors, (GREq ≥ 141.5 [PR ≥ 12]; took calculus; 

uGPA ≥ 3.18) had 25.05 times greater odds to be successful in the GATP than the odds for 

someone who had less than these three factors.  The relative frequency of GATP success 

indicates the probability of a student being successful in the GATP who had a high GREq   

(≥ 141.5), took calculus, and had a high uGPA (≥ 3.18) is slightly more than one and half that for 

a student who does not have all three of these factors.  Please note low cell counts (< 5) is cause 

for the fluctuations of the data and large confidence intervals; thus weakening the overall 

analysis and results (Hosmer & Lemeshow, 2000).  Since the Fisher’s Exact Test (one-sided) 

was statistically significant (p = 0.001) a graphic representation of the three-way interaction was 

created (Figure 4.7) 

 

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

All three factors  

(GREq X Calculus X uGPA) 19.5 0.5 

< 3 Factors 61.5 39.5 

Fisher’s Exact Test (one-sided) p = 0.001 

Sn = 0.24 (95% CI: 0.16 – 0.34) Sp = 0.99 (95% CI: 0.89 – 1.00) 

a
OR = 25.05 (95% CI: 1.47 – 426.77) RFS = 1.60 (95% CI: 1.31 – 1.96) 

a
OR calculated with 0.5 added to all cells 



 

141 

 

 

Figure 4.7  Three-way interaction of GREq X Calculus X uGPA for prediction of GATP success 

 

 

The interaction indicates that students who were positive on the GREq (≥ 141.5) 

regardless of whether they took calculus and regardless of uGPA, had a high rate of success 

(uGPA ≥ 3.18, GREq ≥ 141.5 and took calculus = 93%; uGPA < 3.18, GREg ≥ 141.5 and did not 

take calculus = 88%).  Those students who had a low uGPA, positive on the GREq, and took 

calculus had a high rate of success (uGPA < 3.18, GREg ≥ 141.5 and took calculus = 85%).  

Students who were negative on the GREq (≥ 141.5), took calculus, and had a high uGPA  

(< 3.18), were successful only 54% of the time.  Students who were negative on the GREq  

(≥ 141.5), and took calculus, but had a low uGPA (< 3.18), only 25%were successful.  Caution 

should be taken in interpreting this result as only one student took calculus in this category.  
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Regardless of uGPA, students having a low GREq score and not taking calculus were not very 

successful (uGPA ≥ 3.18 = 30%; uGPA < 3.18 = 20%). 

 

Biderman’s Formula Score 

Interaction Effects 

 The second logistic regression analysis included Biderman’s Formula Score.  Potential 

interaction term included in this analysis was: Biderman’s Score X uGPA; Calculus X uGPA; 

Biderman’s Formula Score X Calculus; for prediction of GATP success (success = gGPA ≥ 3.45 

at the end of the first year).  Each set of interactions were examined in the same manner as the 

previous set of analyses. 

 The univariable odds ratio and multivariable adjusted odds ratio for each of the predictor 

variables is shown in Table 4.38.    

 

Table 4.38  Comparison of odds ratios for predictor variables 

 

 Univariable OR Multivariable Adj OR 

uGPA 4.71 (95% CI: 2.17 – 10.23) 2.55 (95% CI: 0.95 – 6.86) 

Biderman’s Score 16.94 (95% CI: 4.81 – 59.66) 8.34 (95% CI: 2.17 – 32.06) 

Calculus 10.06 (95% CI: 2.90 – 34.86) 6.49 (95% CI: 1.67 – 25.23) 

 

 

The existence of an interaction between the univariable odd ratios and the adjusted odds 

ratios is suggested by the differences between the univariable OR and the corresponding 

multivariable adjusted OR.  The next series of tables and figures examine the relationship 

between Biderman’s Score and uGPA (Tables 4.39 to 4.41 and Figure 4.8).   
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Table 4.39  A student with a combination of a high Biderman’s Formula Score (≥ 458.45) and a 

high uGPA (≥ 3.18) for prediction of first-year gGPA ≥ 3.45 

 

 

A student who had a both high Biderman’s Formula Score (≥ 458.45) and had a high 

uGPA (≥ 3.18) had 41.00 times greater odds to be successful in the GATP than the odds for 

someone who had only one or none of the factors.  The relative frequency of GATP success 

indicates the probability of a student being successful in the GATP who had both a high 

Biderman’s Formula Score and a high uGPA is 1.83 times greater probability of a student who 

had only one or none of these factors.  Please note the cell count of “1” is cause to interpret these 

results with skepticism since it weakens the overall analysis and results in highly unstable odd 

ratios (Hosmer & Lemeshow, 2000). 

 

  

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

Both factors,  

Biderman X uGPA (1) 47 1 

≤ 1 Factor, either Biderman 

X uGPA (0) 47 41 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.50 (95% CI: 0.40 – 0.60) Sp = 0.98 (95% CI: 0.88 – 1.00) 

OR = 41.00 (95% CI: 5.41 – 310.47) RFS = 1.83 (95% CI: 1.67 – 2.51) 
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Table 4.40  Stratified analysis of uGPA levels for association of Biderman’s Formula Score as a 

predictor of gGPA  

 

uGPA ≥ 3.18 

 

Success Not successful Total Percentage 

High Biderman 47 1 48 98% 

Low Biderman 21 14 35 60% 

 

OR = 33.57 

  
    

uGPA < 3.18 

 
Success Not successful Total Percentage 

High Biderman 7 2 9 78% 

Low Biderman 19 25 44 43% 

 

 OR = 4.06 

   

 

 

Figure 4.8  Biderman’s Formula Score X uGPA for the prediction of GATP success 
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The possible interaction indicates that students who had a high Biderman’s Formula 

Score (≥ 458.5) were successful regardless of uGPA (uGPA ≥ 3.45 = 98%; uGPA < 3.45 = 

78%).  A student who a high uGPA (≥ 3.45) and had a high Biderman’s Formula Score (≥ 458.5) 

had 33.57 times greater odds for success in the GATP than the odds for someone who had high 

uGPA and a low Biderman’s Formula Score (< 458.5). A student who a low uGPA (< 3.45) and 

had a high Biderman’s Formula Score (≥ 458.5) had 4.06 times greater odds for success in the 

GATP than the odds for someone who had low uGPA and a low Biderman’s Formula Score 

(< 458.5).  A statistical anomaly demonstrates an interaction effect between Biderman’s Formula 

Score and uGPA.  Figure 4.8 demonstrates that it is not a true interaction effect, but the statistical 

interaction effect resolves the divergence of the 2 X 2 ORs and adjusted ORs. 

Controlling for uGPA, the relationship between Biderman’s Formula Score and GATP 

success (gGPA at the end of the first year ≥ 3.45) was examined using a Mantel-Haenszel 

analysis (Mantel-Haenszel ORest = 11.58 [95% CI: 3.34 – 40.15]) and for homogeneity the 

Breslow-Day test.  There is a statistically significant association between Biderman’s Formula 

Score and GATP success (gGPA at the end of the first year ≥ 3.45) and high and low uGPA 

strata (≥ 3.18 OR = 31.33 [95% CI: 3.86 – 254.08]; < 3.18 OR = 4.61 [95% CI: 0.86 – 24.73]); 

Mantel-Haenszel 
2
(1) = 11.577; p < 0.001).  The null hypothesis for the Breslow-Day test 

assumes that the odds ratios for Biderman’s Formula Score by gGPA at the end of the first year 

is equivalent for uGPA categories.  The Breslow-Day test for homogeneity found the odds ratios 

to not be significantly different from one another, Breslow-Day 
2
(1) = 2.158; (p = 0.142).  

Please note the large confidence intervals are due to the low cell counts.  Hosmer & Lemeshow 

(2000) suggest a minimum of five for each cell to have more reliable, valid, and stable model.  
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Table 4.41  Univariable and multivariable comparison of odds ratio for the interaction of 

Biderman’s Formula Score and uGPA with taking calculus 

 

 Univariable OR Multivariable Adj OR 

Biderman’s X uGPA 41.00 (95% CI: 5.41 – 310.47 ) 37.58 (95% CI: 4.87 – 290.25 ) 

Calculus 10.06 (95% CI: 2.90 – 34.86) 8.95 (95% CI: 2.43 – 32.92) 

 

 

This tables demonstrates taking calculus has an independent effect (10.06 – 8.95), but 

there appears to be an interaction between Biderman’s Formula Score and uGPA.  A 2 X 2 

analysis that does not include calculus (Biderman’s Formula Score X uGPA) generates an OR 

that is different from the multivariable adjusted OR derived from a logistic regression analysis 

that did include uGPA (41.00 – 37-58). 

The next series of tables and figures examine the relationship between taking calculus 

and uGPA (Tables 4.42 to 4.43 and Figure 4.9). 

 

Table 4.42  A student with a combination of a high uGPA (≥ 3.18) and took calculus as an 

undergraduate for prediction of first-year gGPA ≥ 3.45 

 

 

  

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

Both factors,  

 uGPA X Calculus (1) 27 1 

≤ 1 factor, either  

 uGPA X Calculus (0) 67 41 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.29 (95% CI: 0.21 – 0.39) Sp = 0.97 (95% CI: 0.88 – 1.00) 

OR = 16.52 (95% CI: 2.16 – 126.23) RFS = 1.54 (95% CI: 1.27 – 1.91) 
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A student who had both a high uGPA (≥ 3.18) and had taken calculus as an 

undergraduate had 16.52 times greater odds to be successful in the GATP than the odds for 

someone who had only one or none of the factors.  The relative frequency of GATP success 

indicates the probability of a student being successful in the GATP who had both a high uGPA 

and had taken calculus as an undergraduate is slightly more than one and half times the greater 

probability of a student who had only one or none of these factors.  Please note the cell count of 

“1” is cause to interpret these results with skepticism since it weakens the overall analysis and 

results in highly unstable odd ratios (Hosmer & Lemeshow, 2000). 

 

Table 4.43 Stratified analysis of uGPA levels for association of calculus history as a predictor of 

gGPA  

  

uGPA ≥ 3.18 

 
Success Not successful Total Percentage 

Calculus - Yes 27 1 28 96% 

Calculus - No 41 14 55 75% 

 

OR = 9.22 

 

     
uGPA < 3.18 

 

Success Not successful Total Percentage 

Calculus - Yes 
14 2 16 88% 

Calculus - No 
12 25 37 32% 

 

OR = 14.58 
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Figure 4.9  Calculus X uGPA for prediction of GATP success 

 

The interaction indicates that students who took calculus had a high rate of success 

regardless of uGPA (uGPA ≥ 3.18 = 96%; uGPA < 3.18 = 88%).  A student who took calculus 

and who had a high uGPA (≥ 3.18) had 9.22 times greater odds for success in the GATP than the 

odds for someone with a high uGPA, who did not take calculus.  Students who took calculus, but 

had a low uGPA (< 3.18) had 14.58 times greater odds for success in the GATP than the odds for 

someone who had a low uGPA and did not take calculus.   

 Controlling for uGPA, the relationship between taking calculus and GATP success 

(gGPA at the end of the first year ≥ 3.45) was examined using a Mantel-Haenszel analysis 

(Mantel-Haenszel ORest = 11.79 [95% CI: 3.15 – 44.12]).  There is a statistically significant 

association between taking calculus and GATP success (gGPA at the end of the first year ≥ 3.45) 

and high and low uGPA strata (≥ 3.18 OR = 9.22 [95% CI: 1.15 – 74.25]; < 3.18 OR = 14.58 

[95% CI: 2.85 – 74.71]); Mantel-Haenszel 
2
(1) = 16.76; (p < 0.001).  The null hypothesis for 
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the Breslow-Day test assumes that the odds ratios for taking calculus by gGPA at the end of the 

first year is equivalent for uGPA categories.  The Breslow-Day test for homogeneity found the 

odds ratios to be significantly different from one another, Breslow-Day 
2
(1) = 6.045; (p = 

0.014).  Please note the large confidence intervals are due to the low cell counts.  Hosmer & 

Lemeshow (2000) suggest a minimum of five for each cell to have more reliable, valid, and 

stable model. 

 An examination of the univariable odds ratio and the multivariable adjusted odds ratio is 

shown in Table 4.44 for uGPA X Calculus and Biderman’s Formula Score. 

 

Table 4.44  Univariable and multivariable comparison of odds ratios for the interaction of 

calculus and uGPA with Biderman’s Formula Score 

 

 Univariable OR Multivariable Adj OR 

Calculus X uGPA 16.52 (95% CI:2.16 – 126.23) 7.63 (95% CI:0.919 – 63.31) 

Biderman’s 

Formula Score 17.55 (95% CI: 5.06 – 60.86) 12.87 (95% CI:3.64 – 45.55) 

 

 

This table demonstrates that Biderman’s Formula Score appears to have an interaction 

effect (17.55 – 12.87), and calculus X uGPA also interact.  A 2 X 2 analysis that does not include 

Biderman’s Formula Score (Calculus X uGPA) generates an OR that is different from the 

multivariable adjusted OR derived from a logistic regression analysis that did include 

Biderman’s Formula Score (16.52 – 7.63).  

 The next series of tables and figures examine the relationship between Biderman’s Score 

and calculus (Tables 4.45 to 4.47 and Figure 4.10). 
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Table 4.45  A student with a combination of a high Biderman’s Formula Score (≥ 458.5) and 

took calculus as an undergraduate for prediction of first-year gGPA ≥ 3.45 

 

 

 

A student who had both a high Biderman’s Formula Score (≥ 458.5) and took calculus 

had 17.39 times greater odds to be successful in the GATP than the odds for someone who had 

only one or none of these factors.  The relative frequency of GATP success indicates the 

probability of a student being successful in the GATP who had both a high Biderman’s Formula 

Score (≥ 458.5) and took calculus was slightly more than one and half times greater probability 

of a student who had only one or none of these factors.  Please note the cell count of “1” is cause 

to interpret these results with skepticism since it weakens the overall analysis and results in 

highly unstable odd ratios (Hosmer & Lemeshow, 2000). 

  

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

Both factors,  

Biderman’s X Calculus (1) 28 1 

≤ 1 factor, either 

Biderman’s X Calculus (0) 66 41 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.30 (95% CI: 0.21 – 0.40) Sp = 0.98 (95% CI: 0.88 – 1.00) 

OR = 17.39 (95% CI: 2.28 – 132.75) RFS = 1.57 (95% CI: 1.27 – 2.92) 
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Table 4.46  Stratified analysis of Biderman’s Formula Score for levels of association of calculus 

history as a predictor of gGPA  

 

Biderman ≥ 458.45 

 

Success Not successful Total Percentage 

Calculus - Yes 28 1 29 97% 

Calculus - No 26 2 28 93% 

 

OR = 2.15 

  
 

Biderman < 458.45 

 Success Not successful Total Percentage 

Calculus - Yes 13 2 15 87% 

Calculus - No 27 37 64 42% 

 OR = 8.10 

    

 

 

Figure 4.10  Calculus X Biderman’s Formula Score for the prediction of GATP success 
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The interaction represents student who had a high Biderman’s Formula Score (≥ 458.5) 

tended to be successful regardless of whether or not they took calculus; 97% if they had taken 

calculus versus 93% if they had not taken calculus.  Students with a low Biderman’s Formula 

Score (< 458.5) and took calculus, 87% were successful compared to only 42% who were 

successful if they had a low Biderman’s Formula Score and did not take calculus.  The OR 

indicates a student who had a high Biderman’s Formula Score (≥ 458.5) and took calculus had 

2.15 times greater odds to be successful in the GATP than the odds for someone who had a high 

Biderman’s Formula Score and had not taken calculus.  Students who had a low Biderman’s 

Formula Score (< 458.5) and took calculus had 8.10 times great odds to be successful in the 

GATP than the odds for someone who had a low Biderman’s Formula Score and had not taken 

calculus. 

 Controlling for Biderman's Formula Score (≥ 458.5), the relationship between taking 

calculus and GATP success (gGPA at the end of the first year ≥ 3.45) was examined using a 

Mantel-Haenszel analysis (Mantel-Haenszel ORest = 6.20 [95% CI: 1.71 – 22.53]) and for 

homogeneity the Breslow-Day test.  There is a statistically significant association taking calculus 

and GATP success (gGPA at the end of the first year ≥ 3.45) and high and low Biderman’s 

Formula Score strata (≥ 458.5 OR = 2.154 [95% CI: 0.18 – 25.19]; < 458.5 OR = 8.10 [95% CI: 

1.86 – 42.78]); Mantel-Haenszel 
2
(1) = 7.764; (p = 0.005).  The null hypothesis for the 

Breslow-Day test assumes that the odds ratios for taking calculus by gGPA at the end of the first 

year is equivalent for Biderman’s Formula Score categories.  The Breslow-Day test for 

homogeneity found the odds ratios to not be significantly different from one another, Breslow-

Day 
2
(1) = 0.980; (p = 0.322).  Please note the large confidence intervals are due to the low cell 
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counts.  Hosmer & Lemeshow (2000) suggest a minimum of five for each cell to have more 

reliable, valid, and stable model. 

 

Table 4.47  Univariable and multivariable comparison of odds ratio for the interaction of 

calculus and uGPA with Biderman’s Formula Score 

 

 Univariable OR Multivariable Adj OR 

Biderman’s Score X 

Calculus 17.39 (95% CI: 2.28 – 132.75) 15.46 (95% CI: 1.98 – 121.02) 

uGPA 4.71 (95% CI: 2.17 – 10.23) 4.31 (95% CI: 1.91 – 9.71) 

 

 

This table demonstrates that uGPA appears to have an independent effect (4.71 – 4.31), 

and Biderman’s Formula Score and calculus appear to have an interaction effect.  A 2 X 2 

analysis that does not include uGPA (Biderman’s Formula Score X Calculus) generates an OR 

that is different from the multivariable adjusted OR derived from a logistic regression analysis 

that did include uGPA (17.39 – 15.46).  

 

Three-way interaction 

An examination of the three-way interaction between Biderman’s Formula Score, taking 

calculus and uGPA was made.  The 2 X 2 cross-tabulations table showing the results of this 

analysis is below (Table 4.48).  Please note the upper right cell (All three factors & first-year 

gGPA of < 3.45) had zero (0) subjects in the cell.  In order to computer the odds ratio, 0.5 was 

added to all cells (Hosmer & Lemeshow, 2000).  
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Table 4.48 A student with a combination of a high Biderman’s Formula Score, a high uGPA, and 

took calculus as an undergraduate for prediction of first-year gGPA ≥ 3.45 

 

 

 

A student who had all three positive factors, (Biderman’s Formula Score ≥ 458.5; took 

calculus; uGPA ≥ 3.18) had 18.69 times greater odds to be successful in the GATP than the odds 

for someone who had less than these three factors.  The relative frequency of GATP success 

indicates the probability of a student being successful in the GATP who has a high Biderman’s 

Formula Score (≥ 458.5), has taken calculus, and has a high uGPA (≥ 3.18) is slightly more than 

one and half times greater probability of a student who does not have all three of these factors.  

Please note low cell counts (< 5) is cause for the fluctuations of the data and large confidence 

intervals; thus weakening the overall analysis and results (Hosmer & Lemeshow, 2000).  Since 

the Fisher’s Exact Test (one-sided) was statistically significant (p = 0.002) a graphic 

representation of the three-way interaction was created (Figure 4.11) 

 

 

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

All three factors  

(BID X Calculus X uGPA) 15.5 0.5 

< 3 Factors 65.5 39.5 

Fisher’s Exact Test (one-sided) p = 0.002 

Sn = 0.19 (95% CI: 0.12 – 0.29) Sp = 0.99 (95% CI: 0.89 – 1.00) 

a
OR = 18.69 (95% CI: 1.09 – 321.16) RFS = 1.55 (95% CI: 1.27 – 1.90) 

a
OR calculated with 0.5 added to all cells 
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Figure 4.11  Three-way interaction of taking Calculus X uGPA X Biderman’s Formula Score for 

prediction of gGPA ≥ 3.45 

 

The interaction indicates that students who took calculus and who were positive for 

uGPA (≥ 3.18) and had a high Biderman’s Formula Score (≥ 458.5) were all successful.  

Students who had a high Biderman’s Formula Score regardless of whether or not they took 

calculus or what their uGPA was tended to be successful (Biderman’s Formula Score ≥ 458.5, 

did not take calculus, uGPA < 3.18 = 96%; Biderman’s Formula Score ≥ 458.5, took calculus, 

uGPA ≥ 3.18 = 86%).  Students who took calculus, regardless of their uGPA, but had a low 

Biderman’s Formula Score also tended to be successful (took calculus, uGPA ≥ 3.18, 

Biderman’s Formula Score < 458.5 = 89%; took calculus, uGPA < 3.18, Biderman’s Formula 

Score < 458.5 = 83%).  Only half of the students who had a high Biderman’s Formula Score, did 
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not take calculus and had a low uGPA were successful (50%).  Students with a low Biderman’s 

Formula Score, did not take calculus and had a low uGPA were successful only 31% of the time. 

 

Prediction Model 

To create a final prediction model, the sum of the number of positive variables was used 

as a single variable with four levels (i.e., 0, 1, 2, or 3).  Receiver operating characteristic analysis 

was used to identify the optimum number of positive factors for prediction of first-year gGPA.  

The results of ROC analyses for two different three-factor models are depicted in Figure 4.12 

and Table 4.49 and Figure 4.13 and Table 4.51. 
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Figure 4.12  ROC curve with identification of the optimum cut-point for the number of positive 

factors (out of 3 factors) for prediction of success in the GATP as indicated by 

gGPA at the end of the first year ≥ 3.45 (includes GRE scores) 

  

≥ 2 Factors 

AUC = 0.847 
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Table 4.49  Number of positive factors (out of three), for prediction of success in the GATP as 

indicated by gGPA at the end of the first year ≥ 3.45 (includes GRE scores)  

 

 

 

This prediction model found three positive factors: uGPA ≥ 3.18, GREq ≥ 141.5 (PR  

≥ 12.0), and the student took calculus.  A cut-point of two or more factors was found for 

optimum balance of Sn and Sp.  A student in the GATP who had any combination of two or 

more of the three factors had 17.94 times greater odds of being successful in the GATP than the 

odds for someone who had less than two of the three factors.  The relative frequency of GATP 

success indicates the probability of a student being successful in the GATP with any two or more 

of the three factors was two and half times the probability of a student with less than two factors.  

The success rate (gGPA ≥ 3.45) for a given number of positive factors is presented in Table 4.50. 

 

  

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

≥ 2 Factors 76 8 

< 2 Factors 18 34 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.81 (95% CI: 0.72 – 0.88) Sp = 0.81 (95% CI: 0.67 – 0.90) 

Youden’s Index = 0.598 

OR = 17.94 (95% CI: 7.11 – 45.29) RFS = 2.61 (95% CI: 2.13 – 3.20) 
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Table 4.50  Specific number of factors for a three factor model for prediction of first-year gGPA 

≥ 3.45 

 

Success in the GATP 

Number of 

Positive Factors gGPA ≥ 3.45 gGPA < 3.45 Total Percentage 

Percentage above/ 

below cut point 

0 3 16 19 15.79% 

18/52 = 34.62% 

1 15 18 33 45.45% 

2 49 9 57 85.96% 

76/84 = 90.48% 

3 27 0 27 100.00% 

Total 94 42 136 71.21% 
 

  

 

Students with two or more positive factors demonstrated a 90.48% success rate in the 

GATP, whereas only 34.62% of the students with less than two factors were deemed successful.  

Overall, regardless of the number of factors, 71.21% of all students were “successful” with a 

first-year gGPA ≥ 3.45 indicating the selection committee had made the correct assessment for a 

large proportion of the students admitted to the program. 

 Information related to another alternative three-factor prediction model, are shown in 

Figure 4.13 and Table 4.51. 
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Figure 4.13  ROC curve with identification of the optimum cut-point for the number of positive 

factors for prediction of success in the GATP as indicated by gGPA at the end of 

the first year  ≥ 3.45 (includes Biderman’s Formula Score) 
 

 

Table 4.51  Number of factors for prediction of success in the GATP as indicated by gGPA at the 

end of the first year ≥ 3.45 (includes Biderman’s Formula Score) 

 

 First-year gGPA of ≥ 3.45 First-year gGPA of < 3.45 

≥ 2 Factors 58 3 

< 2 Factors 36 39 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.62 (95% CI: 0.52 – 0.71) Sp = 0.93 (95% CI: 0.81 – 0.98) 

Youden’s Index = 0.546 

OR = 20.94 (95% CI: 6.03 – 72.79) RFS = 1.98 (95% CI: 1.62 – 2.43) 

≥ 2 Factors 

AUC = 0.836 
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The alternative three-factor prediction model for determining success in the GATP 

included Biderman’s Formula Score ≥ 458.45, uGPA ≥ 3.18, and took calculus.  A student in the 

GATP who had any combination of two or more of the three factors had 20.94 times greater odds 

of being successful in the GATP than the odds of someone who had less than two of the three 

factors.  The relative frequency of GATP success indicates the probability of a student being 

successful in the GATP who had two or more of the three factors were almost twice that of a 

student with less than two of these factors.  The success rate (gGPA ≥ 3.45) for a given number 

of positive factors is presented in Table 4.52. 

 

Table 4.52  Specific number of factors for a three factor model for prediction of first-year gGPA 

≥ 3.45 

 

 

 

Students with two or more positive factors demonstrated a 93.94% success rate in the 

GATP, whereas only 48.0% of the students with less than two factors were deemed successful.  

Overall, regardless of the number of factors, 69.12% of all students were “successful” with a 

Success in the GATP 

Number of 

Positive Factors gGPA ≥ 3.45 gGPA < 3.45 Total Percentage 

Percentage above/ 

below cut point 

0 11 24 35 31.43% 
36/75 = 48.0%  

1 25 15 40 62.50% 

2 36 3 39 92.31% 
58/61 = 95.08% 

3 22 0 22 100.0% 

Total 94 42 136 69.12% 
 



 

162 

 

first-year gGPA ≥ 3.45 indicating the selection committee had made the correct assessment on 

selecting students to be a part of the GATP under 70% of the time.   

 

Final Assessment 

This project began in an effort to try to identify predictors for success in a GATP and 

predict success on the BOC exam.  The data gathered came from one specific GATP.  A very 

strong predictor of BOC success was a gGPA at the end of the first-year of 3.45 (OR = 8.30, 

Table 4.2).  It is not likely, nor reasonable to assume, all GATPs will have a cut-point of 3.45 for 

gGPA.  In order for these results to have real utility in the athletic training profession two final 

prediction models were produced.  All of the previously used predictor variables, except for 

gGPA, were entered into another logistic regression.  The results of the logistic regression 

analyses, ROC analyses, and 2 X 2 cross-tabulation tables are presented. 

 All of the previous dichotomized predictors were entered into the logistic regression 

analysis with “first-attempt pass – Yes or No, on the BOC exam” as the outcome variable.  The 

predictor variables entered into the logistic regression were: advanced math and science courses 

≥ 3, GREv ≥ 145.5, GREq ≥ 143.5, GREwr ≥ 3.25, Physics – Yes or No, and Calculus – Yes or 

No.  The results of the logistic regression analysis are displayed in Table 4.53.  
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Table 4.53  Logistic regression analysis results including all potential predictors of first-attempt 

BOC exam success 

 

 

Adj. OR 

95% C.I. 

Lower Upper 

Step 1 

Advanced math and science courses ≥ 3 1.927 0.449 8.268 

GREv ≥ 145.5 (PR ≥ 26) 2.682 0.820 8.769 

GREq ≥ 143.5 (PR ≥ 16.5) 6.272 1.783 22.059 

GREwr ≥ 3.25 (PR ≥ 24.5) 2.542 0.663 9.753 

Physics – Yes or No 0.858 0.192 3.842 

Calculus – Yes or No 0.367 0.073 1.835 

Constant 0.417   

Step 2 

Advanced math and science courses ≥ 3 1.796 0.497 6.486 

GREv ≥ 145.5 (PR ≥ 26) 2.664 0.815 8.704 

GREq ≥ 143.5 (PR ≥ 16.5) 6.118 1.782 21.007 

GREwr ≥ 3.25 (PR ≥ 24.5) 2.529 0.659 9.711 

Calculus – Yes or No 0.350 0.075 1.642 

Constant 0.412   

Step 3 

GREv ≥ 145.5 (PR ≥ 26) 2.890 .898 9.297 

GREq ≥ 143.5 (PR ≥ 16.5) 5.911 1.747 20.003 

GREwr ≥ 3.25 (PR ≥ 24.5) 2.245 0.614 8.203 

Calculus – Yes or No 0.480 0.123 1.873 

Constant 0.513   

Step 4 

GREv ≥ 145.5 (PR ≥ 26) 2.700 .866 8.416 

GREq ≥ 143.5 (PR ≥ 16.5) 4.857 1.579 14.942 

GREwr ≥ 3.25 (PR ≥ 24.5) 2.194 0.600 8.024 

Constant 0.495   

Step 5 

GREv ≥ 145.5 (PR ≥ 26) 3.292 1.123 9.655 

GREq ≥ 143.5 (PR ≥ 16.5) 5.334 1.767 16.102 

Constant 0.780   
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This model produced five steps, in which two potential steps can be considered for the 

final prediction model, Step 4 with three predictors (GREv ≥ 145.5 [PR ≥ 26], GREq ≥ 143.5 

[PR ≥ 16.5], and GREwr ≥ 3.25 [PR ≥ 24.5]) and Step 5 with two predictors (GREv ≥ 145.5 [PR 

≥ 26] and GREq ≥ 143.5 [PR ≥ 16.5]).  The Nagelkerke R
2
 is 0.290 at Step 4 and 0.273 at Step 5. 

 To help determine which model was the better choice, ROC analyses were performed for 

each of the final two steps of the logistic regression (Figures 4.14 and 4.15).  This was followed 

by 2 X 2 cross-tabulation analysis for each step (Tables 4.54 and 4.55) 
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Figure 4.14  ROC curve with identification of the optimum cut-point for the number of positive 

factors (including GREv, GREq and GREwr scores) for prediction of first-attempt 

BOC exam success 

 

  

≥ 2 Factors 

AUC = 0.778 



 

166 

 

Table 4.54  Number of factors (including GREv, GREq and GREwr scores) for prediction of 

first-attempt BOC exam success  

 

 

 

 For the three-factor model a GATP student who had ≥ 2 positive factors, (GREv ≥ 145.5 

(PR ≥ 26), GREq ≥ 143.5 [PR ≥ 16.5], GREwr ≥ 3.25 [PR ≥ 24.5]), had 10.69 times greater odds 

of first-attempt BOC exam success than the odds for someone who had less than two of the three 

factors.  The relative frequency of success indicates the probability of a student passing the BOC 

exam on the first-attempt with any two of the three factors is slightly greater than twice the 

probability of a student with one or none of the three positive factors.  

 

 

 

  

 

First-attempt Pass on the BOC exam 

Yes No 

≥ 2 Factors 74 9 

< 2 Factors 10 13 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.88 (95% CI: 0.79 – 0.93) Sp = 0.59 (95% CI: 0.39 – 0.77) 

Youden’s Index = 0.472 

OR = 10.69 (95% CI: 3.64 – 31.36) RFS = 2.05 (95% CI: 1.67 – 2.51) 
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Figure 4.15  ROC curve with identification of the optimum cut-point for the number of positive 

factors (including GREv and GREq scores) for prediction of first-attempt BOC 

exam success 
 

 

Table 4.55  Number of factors (including GREv and GREq scores) for prediction of first-attempt 

BOC exam success  

 

 

First-attempt Pass on the BOC exam 

Yes No 

≥ 1 Factor 80 14 

No Factors 9 12 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.90 (95% CI: 0.82 – 0.95) Sp = 0.46 (95% CI: 0.29 – 0.65) 

Youden’s Index = 0.361 

OR = 7.62 (95% CI: 2.71 – 21.43) RFS = 1.99 (95% CI: 1.62 – 2.43) 

≥ 1 Factor 

AUC = 0.737 
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For the two-factor model a GATP student who had either one of the two positive factors, 

(GREv ≥ 145.5 (PR ≥ 26) or GREq ≥ 143.5 [PR ≥ 16.5]), had 7.62 times greater odds of first-

attempt BOC exam success than the odds for someone who had none of the two factors.  The 

relative frequency of GATP success indicates the probability of a student being successful in the 

GATP with any one of the two factors is about twice the probability of a student with none of the 

positive factors.  

 The process was repeated entering all of the dichotomized predictors were entered into 

the logistic regression analysis with “first-attempt pass – Yes or No, on the BOC exam” as the 

outcome variable.  The predictor variables entered into the logistic regression were: advanced 

math and science courses ≥ 3, Biderman’s Formula Score ≥ 420.5, Physics – Yes or No, and 

Calculus – Yes or No.  The results of the logistic regression analysis are displayed in Table 4.56. 
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Table 4.56  Logistic regression analysis results including all potential predictors (including 

Biderman’s Formula Score) of first-attempt BOC exam success 

 

 

Adj. OR 

95% C.I. 

Lower Upper 

Step 1 

Advanced math and science courses ≥ 3 1.264 0.347 4.610 

Biderman’s Formula Score ≥ 420.5 4.671 1.647 13.243 

Physics – Yes or No 1.858 0.491 7.032 

Calculus – Yes or No 0.591 0.141 2.468 

Constant 1.318   

Step 2 

Biderman’s Formula Score ≥ 420.5 4.670 1.650 13.220 

Physics – Yes or No 2.081 0.636 6.801 

Calculus – Yes or No 0.623 0.154 2.519 

Constant 1.358   

Step 3 

Biderman’s Formula Score ≥ 420.5 4.396 1.589 12.164 

Physics – Yes or No 1.703 0.626 4.634 

Constant 1.368   

Step 4 
Biderman’s Formula Score ≥ 420.5 4.615 1.680 12.679 

Constant 1.733   

 

 

This model produced four steps with the final step having only one variable remaining, 

Biderman’s Formula Score ≥ 420.5.  The Nagelkerke R
2
 is 0.136 at Step 4.  There was no reason 

for ROC analysis with only one predictor variable remaining in the model.  The following 2 X 2 

cross-tabulation analysis was performed (Table 4.57). 
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Table 4.57  Number of factors (including Biderman’s Formula Score) for prediction of first-

attempt BOC exam success  

 

 

 

 

 

 

 

 

For the Biderman’s Formula Score model a GATP student who had a Biderman’s 

Formula Score of ≥ 420.5 had 4.78 times greater odds of first-attempt BOC exam success than 

the odds for someone who had a Biderman’s Formula Score of < 420.5.   

 

Summary of Chapter 

Chapter IV presented the results of this study.  There are two interrelated purposes, both 

of which pertained to the process of admitting students to a graduate professional program.  The 

first component of this study involved the development of a prediction model to identify factors 

associated with eligibility and first-attempt success on the Board of Certification (BOC) 

examination for students who have completed a professional (entry-level) graduate athletic 

training program (GATP).  The analyses produced two prediction models.  The first model had 

three predictors, gGPA at the end of the first year ≥ 3.45, GREv ≥ 145.5, and GREq ≥ 143.5.  A 

GATP student, who had ≥ 2 positive factors, had 6.31 times greater odds of first-attempt BOC 

exam success than the odds for someone who had none or only one of the three factors.  The 

relative frequency of success indicates the probability of a student passing the BOC exam on the 

 

First-attempt Pass on the BOC exam 

Yes No 

Biderman’s Formula Score ≥ 420.5 58 7 

Biderman’s Formula Score < 420.5 26 15 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.69 (95% CI: 0.59 – 0.78) Sp = 0.68 (95% CI: 0.47 – 0.84) 

OR = 4.78 (95% CI: 1.74 – 13.12) RFS = 1.41 (95% CI: 1.15 – 1.73) 
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first-attempt with any two or more of these factors is slightly more than one and half times the 

probability of a student who has less than two of these factors.   

The second model had two predictors, gGPA at the end of the first year ≥ 3.45, and 

Biderman’s Formula Score ≥ 420.5.  A GATP student who had at least one positive factor, had 

10.69 times greater odds of BOC exam success on the first-attempt than the odds for someone 

who had neither of the two factors.  The relative frequency of GATP success indicates the 

probability of a student being successful in the GATP with one or more factors is slightly greater 

than twice the probability of a student with none of the positive factors. 

The second component utilized results from the first analysis to identify program 

applicant characteristics that were most likely to predict both academic success within the 

graduate professional program and subsequent success on the BOC exam.  This also produced 

two prediction models.  The first model produced three predictors; uGPA ≥ 3.18, GREq ≥ 141.5, 

and having taken calculus as an undergraduate.  A student in the GATP who had any 

combination of two or more of the three factors had 17.94 times greater odds of being successful 

in the GATP than the odds for someone who had less than two of the three factors.  The relative 

frequency of GATP success indicates the probability of a student being successful in the GATP 

with any two or more of the three factors was twice the probability of a student with less than 

two factors.   

The second model also produced three predictors; uGPA ≥ 3.18, Biderman’s Formula 

Score ≥ 458.45, and took calculus as an undergraduate.  A student in the GATP who had any 

combination of two or more of the three factors had 20.94 times greater odds of being successful 

in the GATP than the odds of someone who had less than two of the three factors.  The relative 
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frequency of GATP success indicates the probability of a student being successful in the GATP 

who had two or more of the three factors were almost twice that of a student with less than two 

of these factors.   

Since the data gathered for this study came from one specific GATP and gGPA was one 

of the strongest predictors, a subsequent analysis was performed.  The logistic regression was 

repeated with all of the final set of predictors except for gGPA.  Two prediction models were 

produced.  The first had three predictors: GREv ≥ 145.5, GREq ≥ 143.5, and GREwr ≥ 3.25.  A 

student who had any combination of two or more of the three positive factors had 10.69 times 

greater odds of first-attempt BOC exam success than the odds for someone who had less than 

two of the three factors.  The relative frequency of success indicates the probability of a student 

passing the BOC exam on the first-attempt with any two of the three factors is slightly greater 

than twice the probability of a student with one or none of the three positive factors. 

The second model produced only one predictor, Biderman’s Formula Score, ≥ 420.5.  A 

GATP student who had a Biderman’s Formula Score of ≥ 420.5 had 4.78 times greater odds of 

first-attempt BOC exam success than the odds for someone who had a Biderman’s Formula 

Score of < 420.5. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

This final chapter of the dissertation will restate the research questions and review the 

major methods which were used.  This chapter will summarize the results and discuss the 

implications of those results along with addressing potential future study. 

This study had two interrelated hypotheses, both of which pertained to the process of 

admitting students to a professional graduate athletic training program.  The first component of 

this study involved the development of a prediction model to identify factors associated with 

eligibility and first-attempt success on the Board of Certification (Board of Certification) 

examination for students who have been enrolled in a professional (entry-level) graduate athletic 

training program (GATP).  The second component utilized the results of the first analysis to 

identify program applicant characteristics that are most likely to predict both academic success in 

the graduate professional program and subsequent success on the Board of Certification exam.  

The results of this study lead us to accept both of the experimental hypotheses and reject both 

null hypotheses. 

In Chapter II, we reported that nine previous studies had been performed in an attempt to 

predict first-attempt success on the Board of Certification exam; however, none of the studies 

were successful in identifying potential predictors of success on the Board of Certification exam.  

The commonalities of those nine studies are they involved students from undergraduate athletic 

training education programs, and each of them used frequentist statistics to analyze their data.  
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Additionally, several educators for several medical professions have attempted to identify 

predictors of the most qualified (i.e., likely to succeed) applicants to their professional programs.  

All of the studies identified used frequentist statistics to analyze their data. 

For this study, we chose to use Bayesian philosophy to create prediction models for 

success on the Board of Certification exam and to identify characteristics of those candidates 

who are likely to be successful in a graduate athletic training program.  In order to accomplish 

this, we identified all potential predictors of success, then performed univariable analyses using 

receiver operating characteristic (ROC) analyses and 2 X 2 cross-tabulation calculations to 

narrow the selection of predictors.  An examination of multicollinearity (or the degree of 

possible overlap between the variables) was done for the continuous and multi-level discrete 

variables before repeating the process for dichotomous variables.  The remaining predictors were 

then entered into a logistic regression to identify the strongest combination of variables.  For 

both the prediction of first-attempt success on the Board of Certification exam and success in the 

graduate athletic training program, two different prediction models were created.  The remaining 

predictors were finally examined for their degree of interaction or independence. 

To predict first-attempt success on the Board of Certification exam, the three-factor 

model included a graduate grade point average, Graduate Record Exam (GRE) verbal score, and 

Graduate Record Exam quantitative score.  Any student with a combination of any two of these 

three predictors or all three of the predictors has over six times greater chance of passing the 

Board of Certification exam on their first-attempt than someone who has less than two of the 

predictors.  This is known as the odds ratio.  Another way of looking at these data is students 

with two or more of the three predictors are over one and half times more likely to pass the 
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Board of Certification exam on their first-attempt than students with less than two of the 

predictors.  This is known as the relative frequency of success. 

An alternative model for predicting first-attempt success on the Board of Certification 

exam had only two predictors, graduate grade point average and a Biderman’s Formula Score.  If 

a student had at least one of these two predictors, then they have over ten and half times greater 

chance of passing the Board of Certification exam than someone who had neither of the 

predictors.  Stated another way, if a student has at least one of the two predictors, then he or she 

is twice as likely to pass the Board of Certification exam on their first-attempt compared to 

someone who did not have either of the predictors.   

 

Graduate Athletic Training Program success – GRE prediction model explained 

Success in the graduate athletic training program was defined as having a graduate grade 

point average at the end of the first-year of 3.45 or above.  To predict success in the graduate 

athletic training program two models were created.  The first model included three predictors 

comprising the student’s undergraduate grade point average, Graduate Record Exam quantitative 

score, and that the student took calculus as an undergraduate.  The receiver operating 

characteristic analysis demonstrates that any combination of two or more of the predictors 

identifies the cut-point (Figure 5.1).  The odds ratio generated from the 2 X 2 cross tabulations 

table found any student with a combination of any two of these three predictors or all three of the 

predictors has almost eighteen times greater odds of being successful in a graduate athletic 

training program compared to a student who has either one or none of the predictors.  Stated 

another way, a student with any combination of two or all three of the predictors are more than 
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twice as likely to be successful in the graduate athletic training program compared to a student 

who does not have one or none of the predictors.  This is known as the relative frequency of 

success. 

 

 

Figure 5.1  Receiver operating characteristic curve with identification of the optimum cut-point 

for the number of positive factors for prediction of success in the graduate athletic 

training program as indicated by graduate grade point average at the end of the first 

year ≥ 3.45 (includes GRE scores) 

 

Although the relationship of having any combination of two of the three predictors is 

quite robust, it does not explain which combination of predictors is strongest.  A series of 

analyses found students who had a high undergraduate grade point average and a high 

quantitative score on the Graduate Record Exam led to the greatest percentage of successful 

≥ 2 Factors 
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students in the graduate athletic training program.  When adding the third predictor to the 

analysis, it is best to have a high undergraduate grade point average, a high GRE quantitative 

score, and to have taken calculus.  Students who fit this profile were almost always successful in 

the graduate athletic training program.  However, if students’ with an undergraduate grade point 

average that was not as high, but they still had a high GRE quantitative score, and had taken 

calculus were still very successful (Figure 5.2). 

 

Figure 5.2  Interaction of GRE quantitative score (GREq) X undergraduate grade point average 

(uGPA) for prediction of graduate athletic training program success (graduate GPA at 

the end of the first year ≥ 3.45) 

 

Graduate Athletic Training Program success – Biderman’s Formula Score prediction model 

explained 

Biderman’s Formula Score was borrowed from the University of Tennessee at 

Chattanooga’s Psychology Department’s graduate application criteria.  They did not explain or 

quantify how much more successful students were who had achieved a score of 480 or above 

over students who had a score below 480.  Biderman’s Formula Score involves a calculation of 
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one’s undergraduate grade point average times 100, plus the sum of the percentile ranks (PR) of 

each of the three parts of the GRE (Biderman, 2013). 

Our prediction model using Biderman’s Formula Score has two predictors in addition to 

Biderman’s Formula Score: undergraduate grade point average as a stand-alone variable and the 

student took calculus as an undergraduate.  An astute observer might criticize this model for 

incorporating undergraduate grade point average twice, once as an individual factor and a second 

time as part of Biderman’s Formula Score.  The justification for its inclusion both times is for 

assessing multicollinearity among the variables.  The statistics show that there was very little 

overlap of the predictors, signifying there is little adverse effect on the model.  

As occurred in the previous model, the receiver operating characteristic analysis 

demonstrates that any combination of two or more of the predictors was the cut-point (Figure 

5.4).  Any student with a combination of any two of these three predictors or all three of the 

predictors has almost twenty-one times greater chance of being successful in a graduate athletic 

training program compared to a student who has either one or none of the predictors.  Stated 

another way, the relative frequency of success found a student with any combination of two or 

all three of the predictors is almost more than twice as likely to be successful in the graduate 

athletic training program compared to a student who does not have one or none of the predictors. 
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Figure 5.3  Receiver operating characteristic curve with identification of the optimum cut-point 

for the number of positive factors for prediction of success in the graduate athletic 

training program as indicated by graduate grade point average at the end of the first 

year ≥ 3.45 (includes Biderman’s Formula Score) 

 

Although the relationship of having any combination of two of the three predictors is 

very strong, it does not explain which combination of predictors is strongest.  A series of 

analyses found students with both a high undergraduate grade point average and a high 

Biderman’s Formula Score led to the greatest percentage of successful students in the graduate 

athletic training program (Figure 5.5).  When adding the third predictor to the analysis, it was 

best to have a high Biderman’s Formula Score, high undergraduate grade point average, and to 

have taken calculus.  In this study, everybody who had all three of these criteria was successful 

≥ 2 Factors 
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all of the time.  However, if the student’s Biderman’s Formula Score was low, but their 

undergraduate grade point average was high and they took calculus, they were still very 

successful too. 

 

 

Figure 5.4   Possible interaction of Biderman’s Formula Score X undergraduate grade point 

average (uGPA) for the prediction of graduate athletic training program success 

(graduate GPA at the end of the first year ≥ 3.45) 

 

Prediction with Class of 2014 – Initial Prediction Model 

The next class of eligible students to take the Board of Certification exam will be in the 

spring 2014 (after the completion of this study).  An analysis of the students in the class of 2014 

based on the initial three factor model (graduate grade point average at the end of the first-year, 

verbal score on the GRE, and the quantitative score on the GRE) and the number of predictor 

variables possessed by the students is shown in Table 5.1.  
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Table 5.1  Specific number of factors for a three factor model for prediction of first-attempt Pass 

versus Fail on the Board of Certification exam for the class of 2014 (GRE model) 

 

 

 

 

 

 

 

 

 

 

 

Working Example for Predicting First-attempt Success on the  

Board of Certification Exam – Initial Model 

As an example of how this model would work, we provide a set of students’ data in Table 

5.2.  This table shows a series of students with the cut point for each of the predictors listed.  If 

the student has a score at or above the cut-point it is listed in red.  The far right column indicates 

the total number predictors the student possesses.  

 

  

Number of positive 

variables 

Number of students with each 

number of variables 

0 1 

1 3 

2 5 

3 11 

Total 20 
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Table 5.2  Example of specific number of factors for the initial three-factor model for prediction 

of first-attempt Pass versus Fail on the Board of Certification exam 

 

Student 

gGPA at the end of 

the first semester  

(≥ 3.45) 

GREv  

(≥ 145.5) 

GREq  

(≥ 143.5) 

Total number of 

positive predictors 

Student #1 4.00 145 144 3 

Student #2 3.40 143 145 1 

Student #3 3.75 150 139 2 

Student #4 4.00 146 150 3 

Student #5 3.05 151 140 1 

Student #6 3.00 140 142 0 

 

Note. gGPA = Graduate Grade Point Average; GREv = Verbal section of the Graduate Record 

Examination; GREq = Quantitative section of the Graduate Record Examination; 

 

 

Based on the data above, Students #1, #3, and #4 all have two or more of the three 

factors.  According to the prediction model these three students have 6.3 times greater odds of 

passing the Board of Certification exam on their first-attempt compared to the odds of Students 

#2, #5, and #6 have of passing the Board of Certification exam on their first-attempt. 

 

Prediction with Class of 2014 – Alternative Prediction Model 

Using the same class data, (Class of 2014), an analysis of the students based on the 

alternative three-factor model (graduate grade point average at the end of the first-year and 

Biderman’s Formula Score) and the number of predictor variables possessed by the students is 

shown in Table 5.3. 
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Table 5.3  Specific number of factors for a two-factor model for prediction of first-attempt Pass 

versus Fail on the Board of Certification exam for the class of 2014 (Biderman’s 

Formula Score model) 

 

 

 

 

 

 

 

 

 

Working Example for Predicting First-attempt Success on the  

Board of Certification Exam – Alternative Model 

As an example of how this alternative model would work, we provide a set of students’ 

data in Table 5.4.  This table shows a series of students with the cut point for each of the 

predictors listed.  If the student has a score at or above the cut-point it is listed in red.  The far 

right column indicates the total number predictors the student possesses.  

 

  

Number of Positive 

Variables 

Number of students with each 

number of variables 

0 2 

1 7 

2 11 

Total 20 
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Table 5.4  Example of specific number of factors for the alternative prediction model for 

prediction of first-attempt Pass versus Fail on the Board of Certification exam  

 

Student 

gGPA at the end of the 

first semester (≥ 3.45) 

a
Biderman’s Formula 

Score (≥ 420.5) 

Total number of 

positive predictors 

Student #1 4.00 465.0 2 

Student #2 3.40 465.0 1 

Student #3 3.75 444.0 2 

Student #4 4.00 527.0 2 

Student #5 3.05 397.0 0 

Student #6 3.00 404.0 0 

 

Note. gGPA = Graduate Grade Point Average 

 
a
Biderman’s Formula Score = (100 * uGPA) + GREv PR + GREq PR + GREwr 

 

 

 

Based on the data above, Students #1, #2, #3, and #4 all have at least one of the two 

predictors.  According to the prediction model these students have 10.7 times greater odds of 

passing the Board of Certification exam on their first-attempt compared to the odds for Students 

#5 and #6 have of passing the Board of Certification exam on their first-attempt. 

 

Comparison of the Models for Passing the Board of Certification Exam 

In the first model, Students #1, #3, and #4 met the criteria for prediction of passing the 

Board of Certification exam.  In the second model, these same students were predicted to be 

successful along with Student #2.  The difference, which is not shown here is that this student 

had a very strong GRE analytical written score, (4.5 out of 6.0, which translates to a percentile 

rank of 72) (Educational Testing Services, 2011a).  Although Student #2 was predicted to not be 
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successful on the Board of Certification exam in the first model, this same student was predicted 

to be successful in the second model.   

A logical question would be to ask which model should be followed. The answer depends 

on what one is looking for: an easier model to use or a model which gives a more complete 

picture of the individual’s academic credentials, but requires a calculation to be performed.  

According to the outcome measures, the second prediction model (uGPA ≥ 3.18 and Biderman’s 

Formula Score ≥ 420.5) produced an odds ratio of 10.7 and a relative frequency of success of 

2.05.  The results for the Class of 2014 remain to be seen; consequently, outside the scope of this 

specific study. 

 

 Examination of 2013 Recruiting Class  

A total of 101 candidates expressed interest in the graduate athletic training program, but 

only 64 candidates had complete data sets to use in this analysis.  From this group of 64 potential 

candidates, 23 candidates were offered positions to the graduate athletic training program.  There 

were 16 students who accepted the offer to join the 2013 cohort, while two additional students 

were offered positions, but chose to defer their place in the program for one-year for personal 

reasons.  Decisions on who to accept or not to accept into the graduate athletic training program 

were made prior to the prediction models found in this study were discovered.  The comparison 

of those candidates offered a position in the graduate athletic training program (n = 23) to those 

candidates who were not offered a position (n = 41) in terms of predicting who would be 

successful in the graduate athletic training program based on the initial prediction model 
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(undergraduate grade point average, Graduate Record Exam quantitative score, and the student 

took calculus as an undergraduate) is found in Table 5.5. 

 

Table 5.5  Summary of positive factors (GRE Model) possessed by applicants to the graduate 

athletic training program (GATP) for the cohort 2013 to predict success in the 

graduate athletic training program 

 

Number of 

Predictors 

Offered a position 

in the GATP 

Not offered a position 

in the GATP Total 

Percentage with 

number of predictors 

0 0 4 4 6.25% 

1 3 14 17 26.56% 

2 11 19 30 46.88% 

3 9 4 13 20.31% 

Total 23 41 64  

 

 

 

Working Example for Predicting Success in the Graduate Athletic Training Program of  

Potential Candidates – Initial Model 

As an example of how this model would work for the initial set of predictors for success 

in the graduate athletic training program, we provide a set of candidates’ data in Table 5.6.  This 

table shows a series of students with the cut point for each of the predictors listed.  If the student 

has a score at or above the cut-point it is listed in red.  The far right column indicates the total 

number predictors the student possesses.  
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Table 5.6  Example of specific number of factors for the initial three-factor model for predicting 

success in the graduate athletic training program, based on candidates’ application 

data 

 

Candidate 

uGPA  

(≥ 3.18) 

GREq  

(≥ 141.5) 

Student took calculus 

as an undergraduate 

(Yes or No) 

Total number of 

positive predictors 

Student #7 3.20 144 Yes 3 

Student #8 3.32 138 No 1 

Student #9 3.11 142 No 1 

Student #10 3.89 145 No 2 

Student #11 3.43 156 No 2 

Student #12 3.05 141 Yes 1 

Student #13 3.68 147 No 2 

Student #14 3.97 151 No 2 

Student #15 4.00 156 Yes 3 

Student #16 2.86 132 Yes 1 

 

Note. uGPA = Undergraduate Grade Point Average; GREq = Quantitative section of the 

Graduate Record Examination 

 

 

Based on the data above, Students #7, #10, #11, #13, #14, and #15 all have two or more 

of the predictors.  According to the prediction model, these six students have almost 18 times 

greater odds of being successful in the graduate athletic training program than Students #8, #9, 

#12, and #16 have of being successful in the graduate athletic training program.  Furthermore, if 

these data had been used for criteria for admission decisions on who is offered a position in the 

graduate athletic training program, offers would be made to the six candidates with two or more 

of the predictors.  
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Working Example for Predicting Success in the Graduate Athletic Training Program of  

Potential Candidates for Accepted to the Graduate Athletic Training Program –  

Alternative Model 

As an example of how this model would work for the alternative set of predictors for 

success in the graduate athletic training program, we provide a set of candidates’ data in Table 

5.7.   

 

Table 5.7  Example of specific number of factors for the alternative three-factor model for 

predicting success in the graduate athletic training program, based on candidates’ 

application data 

 

Candidate 

uGPA  

(≥ 3.18) 

aBiderman’s 

Formula Score  

(≥ 458.45) 

Student took calculus 

as an undergraduate 

(Yes or No) 

Total number of 

positive predictors 

Student #7 3.20 402.0 Yes 2 

Student #8 3.32 394.0 No 1 

Student #9 3.11 367.0 No 0 

Student #10 3.89 445.0 No 1 

Student #11 3.43 467.0 No 2 

Student #12 3.05 470.0 Yes 2 

Student #13 3.68 499.0 No 2 

Student #14 3.97 485.0 No 2 

Student #15 4.00 615.0 Yes 3 

Student #16 2.86 438.0 Yes 1 

 

Note. uGPA = Undergraduate Grade Point Average; . 

 
a
Biderman’s Formula Score = (100 * uGPA) + GREv PR + GREq PR + GREwr 
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Based on the data above, Students #7, #11, #12, #13, #14, and #15 all have two or more 

of the predictors.  According to the prediction model, these six candidates have almost 21 times 

greater odds of being successful in the graduate athletic training program than Students #8, #9, 

#10, and #16.  Furthermore, if these data were used for criteria for admission decisions on who is 

offered a position in the graduate athletic training program, offers would be made to the six 

candidates with two or more of the predictors. 

 

Comparison of the Models for Success in the Graduate Athletic Training Program 

In the first model, Students #7, #10, #11, #13, #14, and #15 met the criteria for the 

prediction of success in the graduate athletic training program.  In the second model, there was a 

slight change in which students would be predicted for success in the graduate athletic training 

program as Students #7, #11, #12, #13, #14, and #15 met the criteria.  Student #10 met the 

prediction criteria for the initial model based on the strength of the undergraduate grade point 

average and their GRE quantitative score.  But when the percentile rank scores from all three 

parts of the GRE are used for Biderman’s Formula Score this student drops from the group of 

predicted to be successful.  Student #12 was predicted to be successful in the alternative model 

based on a strong Biderman’s Formula Score and he or she took calculus.  Although this 

student’s GRE quantitative score was just below the cut-point, for the initial model, their other 

GRE scores when used in Biderman’s Formula Score were strong enough to provide this student 

with a second factor and place them in the group to be predicted successful in the graduate 

athletic training program.  Experience has taught the selection committee when a student has a 

low undergraduate grade point average, but has a strong set of GRE scores to examine the 
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student’s entire body of work.  Although it did not prove to be a reliable and valid measure 

across this sample, (likely due to a small sample size), students with this profile also tend to have 

taken more of the hard sciences and advanced math courses as an undergraduate, (i.e., calculus 

and physics, which physics was one of the final factors to drop out of the logistic regression). 

 

Applicability to other Graduate Athletic Training Programs 

The population from which the sample was used came from one specific graduate athletic 

training program.  Although the use of graduate grade point average may be confirmed as a 

predictor of both success in other graduate athletic training programs, and of first-attempt Board 

of Certification exam success, it is not likely that all graduate athletic training programs will 

have a graduate grade point average cut-point equivalent to 3.45 as was determined and used for 

this study.  In order for these results to have utility in the athletic training profession, two final 

prediction models were produced.  All of the previously used predictor variables, except for 

graduate grade point average, were entered into another logistic regression analysis.   

The results of this examination found two potential models using GRE scores and not 

Biderman’s Formula Score: one a three-factor model including GRE verbal score, GRE 

quantitative score, and GRE analytical written score, and a second two-factor model with only 

GRE verbal score and GRE quantitative score.  The three-factor model produced the strongest 

set of predictors for first-attempt success on the Board of Certification exam with any 

combination of two or more of the three variables yielding an odds ratio of 10.69 times and an 

relative frequency of success of 2.05.  The regression analysis was repeated using Biderman’s 
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Formula Score instead of the GRE scores directly, and the outcome yielded a model in which the 

only predictor was Biderman’s Formula Score, and this model produced an odds ratio of 4.78. 

 

Board of Certification exam and graduate athletic training program success 

There are three different facets to athletic training education.  The first is the education 

curriculum.  Each athletic training education program is accredited by the Commission on 

Accreditation of Athletic Training Education (CAATE).  Receiving accreditation certifies the 

athletic training education program is able to provide the requisite educational experience to 

prepare students to sit for the Board of Certification exam (Commission on Accreditation of 

Athletic Training Education, 2013a), which is the second part of athletic training education.   

The certification exam is created and administered by the Board of Certification in order 

to test one’s skills and knowledge as an entry-level athletic trainer (Board of Certification, 

2011a; Ebel, 1999). “The purpose of the Board of Certification exam is to protect the public by 

ensuring that candidates for certification have achieved entry level competence” (Board of 

Certification, 2013a, p. 13).  A 1978 article from Athletic Training – The Journal of National 

Athletic Trainers' Association outlined the first-attempt pass rate during the initial seven years of 

the administration of the certification exam.  The authors cite a first-attempt pass rate of 91%, 

and go on to state: 

A number of failing candidates have been successfully reexamined and others 

have failed repeatedly to meet the high standards of the certification board. Those 

individuals should not be embarrassed by this failure since certification is 

recognition only of the highest level of competence in this field. (Westphalen & 

McLean, 1978, p. 91) 
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The third part of athletic training education is continuing education, which is also under 

the purview of the Board of Certification.  Starting in 2014, a new standard for continuing 

education will be implemented whereby each certified athletic trainer must earn 50 hours every 

two years.  Additionally, athletic trainers must maintain their certification in emergency cardiac 

care (Board of Certification, 2013b).  The intent of continuing education is to “promote 

continued competence” in the knowledge and skill of an athletic trainer (Board of Certification, 

2013b, "New Definition of CE" box).   

The common characteristic among all three components of athletic training education is a 

desire to produce competent athletic trainers.  Competence by definition is having basic skills or 

knowledge in some area or discipline (The Free Dictionary by Farlex, 2000a). In other words, the 

goal of CAATE accredited athletic training education programs and the Board of Certification is 

to produce and maintain professionals who have basic skills and knowledge in athletic training.  

The term proficient means to have a level of understanding, knowledge or skill beyond 

competence (The Free Dictionary by Farlex, 2010).  A search of both the Board of Certification 

and CAATE web sites for the words proficient or proficiency yielded no results.  Many athletic 

training education programs focus solely on preparing and having their students pass the Board 

of Certification exam. With the new standard stating a school must have a pass rate of 70% or 

higher to be in compliance, (Commission on Accreditation of Athletic Training Education, 

2013a) this focus will potentially increase.  

Undergraduate education is intended to provide students with a wide breadth of 

experiences and education.  There are few health professions that do not require graduate level 

education.  The purpose of graduate education is to provide advanced or specialized curriculum 
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in a discipline or profession.  This in-depth education is intended to provide the student 

opportunities to become an expert in their chosen area of study.  Additionally, graduate school 

provides students occasions to engage in higher-order learning and thinking, problem-solving, 

critical thinking, written and oral expression, and the utilization of technology as they applies to 

their particular profession (Pasco, 2009).  Stated differently, the purpose of graduate school is to 

help create proficient clinicians and professionals.  By identifying those candidates who possess 

qualities which are potential indicators of likely success in a graduate athletic training program, 

the goal for a program would be to seek clinicians who will not only be competent, (i.e., pass the 

Board of Certification exam on their first attempt), but will strive further to become proficient 

professionals.   

 

Limitations and Future Research 

The sample used for this research came from one specific graduate athletic training 

program.  In some cases this led to small cell counts when the data were divided into various 

strata causing unstable results and large confidence intervals.  To further validate the prediction 

models produced in this research, the next logical step is to apply them to other graduate athletic 

training programs or combine these data with like data from other graduate athletic training 

programs.    

A final component of any prediction model is to conduct an impact analysis such as 

examining the economic effect the model has upon the associated population is indicated (Bruce 

& Wilkerson, 2010a; Childs & Cleland, 2006).  Future studies examining the impact could be 

done.  These studies could not only examine the financial impact upon students taking the Board 
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of Certification exam multiple times, but studying the personal earning potential upon students 

predicted to be successful versus those predicted not to be successful in the graduate athletic 

training program in terms of the initial salaries or changes in their financial situations over a 

determined period of time.   

Studies examining earning potentials have been conducted in the past.  Generally 

speaking, there is already evidence that “individuals with a bachelor’s degree earn 50% more 

during their lifetime than . . . individuals with . . . (only) a high school diploma” (Barrow, Brock, 

& Rouse, 2013, p. 5).  There is also evidence that individuals in the health support professions 

earn less than their STEM (Science, Technology, Engineering, and Mathematics) counterparts 

(Oreopoulos & Petronijevic, 2013).  Although Oreopoulos & Petronijevic (2013) did not define 

specifically what qualified as a “health support profession,” athletic training can be classified in 

such a category.  In a 2010 study, they found “college graduates in the health professions earned 

about 68% more on average than high school graduates in the health professional sector” 

(Oreopoulos & Petronijevic, 2013, p. 46).  However, those “college graduates” in the health 

support professions earned only 27% more than those with only a high school diploma in the 

health support professions (Oreopoulos & Petronijevic, 2013, pp. 45-46).  A 2011 salary survey 

conducted by the National Athletic Trainers’ Association found those athletic trainers with a 

Master’s degree earned about $5000 more per year than athletic trainers with only a Bachelor’s 

degree (Lowe, 2011).  What has not been studied specifically is the starting salary of graduates 

from a graduate athletic training program versus graduates of an undergraduate athletic training 

program, since they both would enter the profession with no experience as a certified athletic 

trainer.   
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Identifying students who are both likely to be successful in a graduate athletic training 

program, and who are likely to pass the Board of Certification exam on their first attempt, may 

indirectly identify students who are likely to remain in the athletic training profession versus 

pursuing other allied health professions.  Such identification may make it less likely students will 

get toward the end of the educational process only to decide that athletic training is not for them.  

These students have invested considerable time, energy, and money in their education only to 

find they are “stuck” with few options.  This predicament results in a waste of considerable 

resources for all involved.  Research to investigate if early identification of potentially successful 

students results in a long term commitment to the athletic training profession would be valuable. 

Applying the methods of creating prediction models to other allied health professions 

such as physical therapy, occupational therapy, nursing, etc., would yield potentially interesting 

data and results.  None of the procedures, methods, or information used to generate these 

prediction models is exclusive to athletic training.  All of the information available can be 

gathered through standard data collection methods from graduate school application files.  

Variables and cut-points might differ across professions, but how those associated data and 

predictors are generated would remain consistent. 

Biderman’s Formula Score had only been utilized in the University of Tennessee at 

Chattanooga Psychology Department.  Previous research utilizing the methods described in this 

study has not be conducted (Biderman, 2013).  Specific studies to examine its reliability and 

validity across other programs and institutions should also be investigated.   

Previous attempts to predict first-attempt Board of Certification exam success were not 

successful for a variety of reasons.  Each of the previous studies used frequentist statistics where 
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this dissertation utilized Bayesian philosophy.  A study examining potential predictors for first-

attempt Board of Certification exam success at the undergraduate level utilizing the methods 

implemented in our study may produce successful prediction models at the undergraduate level 

of athletic training education. 

A limitation discussed in Chapter I was the effort given by students on the GRE because 

the graduate athletic training program did not have minimum GRE score requirements.  With the 

data generated from these prediction models, and communication of their results, it is reasonable 

to expect potential students to take the GRE more seriously; thus a potential increase in the 

scores may be a result.  There is a likelihood the calculations outlined here may need to be 

revised periodically to reflect an increase in the quality of the students applying to the graduate 

athletic training program. 

 

Clinical Relevance 

The Commission on Accreditation of Athletic Training Education accreditation standards 

require all athletic training education programs to demonstrate a three-year aggregate first-time 

pass rate of 70% (Commission on Accreditation of Athletic Training Education, 2013a).  

Programs will be forced to place greater emphasis of passing the Board of Certification exam on 

the first attempt.  Consequently, programs will need to be able to identify students who are most 

likely to pass the Board of Certification exam on the first attempt.  This study has provided a 

blueprint for accomplishment of this task.   

The significance of these results is timely.  The Executive Committee for Education 

(ECE) of the NATA is in the process of exploring the most appropriate professional degree for 
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athletic trainers to be eligible to sit for the Board of Certification exam.  In 2012, the ECE 

published a white paper entitled the Future Direction in Athletic Training Education (Brown, 

2012) which includes 14 different recommendations.  The second recommendation has created 

the strongest passions and debate among the membership: 

Recommendation #2: The NATA, with support from the Strategic Alliance, 

should conduct a detailed analysis specifically focused on professional education 

in athletic training that will be completed by June 2014. A key outcome of this 

analysis will be a determination of the most appropriate professional degree to 

position athletic trainers to provide positive patient outcomes and ensure the 

longevity of the profession of athletic training. (Brown, 2012, p. 2) 

 

 

Presently, the debate throughout the athletic training profession is whether or not a 

Master’s degree should be the minimum requirement in order for a student to sit for the Board of 

Certification exam.  There are approximately 350 accredited athletic training education 

programs, of which 26 are graduate professional (entry-level) athletic training education 

programs (Commission on Accreditation of Athletic Training Education, 2013d).  Several 

athletic training education curricula are in the process of converting from the undergraduate 

model to the graduate professional (entry-level) athletic training education program in 

anticipation of the direction professional education appears to be moving (Commission on 

Accreditation of Athletic Training Education, 2013c). 

Although the final recommendations from the ECE have not been made to the NATA 

Board of Directors, much discussion has taken place regarding the direction the profession 

should take for a minimum academic degree to be eligible to sit for the Board of Certification 

exam.  Many who have expressed their concern over moving to a graduate professional (entry-

level) athletic training education program have a background rooted in the undergraduate 
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curricula, so an obvious bias appears to exist in their writings (Grantham, 2013; Hauth, 2012; 

Henning, 2012; Hooker, 2013; Meyer, 2013; Pitney, 2012; Prentice, 2013).  Only one article has 

been published in favor of the graduate professional (entry-level) athletic training education 

program from faculty who have experience in both undergraduate and graduate education 

programs (Wilkerson, Colston, & Bogdanowicz, 2006).  A strong argument was made that 

graduate professional (entry-level) athletic training education is needed to advance the 

profession.  The significant role the GRE has in all of the prediction models producing large 

odds ratios, and significant relative frequency of success values, cannot be discounted.  None of 

the previous studies attempting to predict Board of Certification success at the undergraduate 

level were successful, and to be eligible to take the GRE a student must be near the end of 

baccalaureate studies.  Hence, converting to graduate professional (entry-level) athletic training 

education programs for Board of Certification eligibility makes the most sense. 

The single point all individuals seem to agree upon is the clear need for substantial 

change, but pursuing a graduate professional (entry-level) athletic training education program as 

the only route to certification has many concerned and fearful about what might happen after 

implementation of such a requirement.  Should a mandated conversion from undergraduate 

athletic training education to a graduate professional (entry-level) athletic training education 

program be issued, then the results of this study will likely be valued by program directors.  A 

likely future goal of athletic training program directors will be to identify objective methods to 

use in their search to identify those students who are likely to pass the Board of Certification 

exam on their first attempt, are likely to be successful in their graduate athletic training programs 

and become proficient professionals after graduation.  
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Conclusion 

The prediction models created for identifying students likely to pass the Board of 

Certification exam on their first attempt and for identifying students who will be successful in a 

graduate athletic training program generated very strong odds ratios.  The predictors associated 

with success were related to past academic performance either through grade point average, GRE 

performance, or that the student took calculus as an undergraduate.  A very strong predictor 

which incorporates both undergraduate grade point average and GRE (PR) scores was 

Biderman’s Formula Score.  With the increased demands by the accrediting body for a minimum 

Board of Certification exam pass rate to be in compliance, and with a potential shift to a graduate 

professional (entry-level) athletic training education as the entry-point to sit for the Board of 

Certification exam, the methods for the generation of the specific prediction models created in 

this study will have potential uses throughout not only athletic training, but other professions too. 
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APPENDIX A 

Univariable analysis results for each of the potential predictors related to first-attempt 

pass – Yes or No, on the BOC exam are provided in Figures A.1 to A.7 and Tables A.1 to A.7.  

 

 
 

Figure A.1  ROC curve with identification of the optimum cut-point for GREq (PR) for 

prediction of first-attempt BOC exam success 

  

≥ 143.5 (≥ 16.5) 

AUC = 0.758 
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Table A.1  GREq (PR) score for prediction of first-attempt BOC exam success 

 

 

 

 

 

 

 

 

 

A student in the GATP who had a GREq score of ≥ 143.5 (PR ≥ 16.5) , had 5.76 times 

greater odds of passing the BOC exam on their first-attempt than the odds for someone who had 

a GREq score of < 143.5 (PR < 16.5).  

 

 

1
st
 Attempt Pass on the BOC exam 

Yes No 

≥ 143.5 (16.5) 64 8 

< 143.5 (16.5) 25 18 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.72 (95% CI: 0.62 – 0.80) Sp = 0.69 (95% CI: 0.500 – 0.84) 

Youden’s Index = 0.411 

OR = 5.76 (95% CI: 2.22 – 14.93) RFS = 1.53 (95% CI: 1.25 – 1.87) 
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Figure A.2  ROC curve with identification of optimum cut-point for GRE – Composite score for 

prediction of first-attempt BOC exam success 

 

 

Table A.2  GRE – Composite score for prediction of first-attempt BOC exam success 

 

 

 

 

 

 

  

 

1
st
 Attempt Pass on the BOC exam 

Yes No 

≥ 290.5 55 10 

< 290.5 34 19 

Fisher’s Exact Test (one-sided) p = 0.001 

Sn = 0.70 (95% CI: 0.60 – 0.78) Sp = 0.69 (95% CI: 0.50 – 0.84) 

Youden’s Index = 0.389 

OR = 5.17 (95% CI: 2.00 – 13.33) RFS = 1.48 (95% CI: 1.20 – 1.81) 

≥ 290.5 

AUC = 0.736 
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A student in the GATP who had GRE – Composite score of 290.5 or greater, had 5.17 

times greater odds of passing the BOC exam on their first-attempt than the odds for someone 

who had a GRE - Composite score of less than 290.5. 

 

 
 

Figure A.3  ROC curve with identification of the optimum cut-point for Biderman’s Formula 

Score for prediction of first-attempt BOC exam success 

 

 

  

≥ 420.5 

AUC = 0.698 
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Table A.3  Biderman’s Formula Score for prediction of first-attempt BOC exam success 

 

 

 

 

 

 

 

 

A student in the GATP, who had a Biderman’s Formula Score of 420.5 or greater, had 

4.78 times greater odds of passing the BOC exam on their first-attempt than the odds for 

someone who had a Biderman’s Formula Score of less than 420.5. 

 

  

 

1
st
 Attempt Pass on the BOC exam 

Yes No 

≥ 420.5 58 7 

< 420.5 26 15 

Fisher’s Exact Test (one-sided) p = 0.003 

Sn = 0.69 (95% CI: 0.59 – 0.78) Sp = 0.68 (95% CI: 0.47 – 0.84) 

Youden’s Index = 0.372 

OR = 4.78 (95% CI: 1.74 – 13.12) RFS = 1.41 (95% CI: 1.15 – 1.73) 
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Figure A.4  ROC curve with identification of the optimum cut-point for GREwr (PR) for 

prediction of first-attempt BOC exam success 

 

 

Table A.4  GREwr (PR) score for prediction of first-attempt BOC exam success 

 

 

 

 

 

 

  

 

1
st
 Attempt Pass on the BOC exam 

Yes No 

≥ 3.25 (24.5) 75 14 

< 3.25 (24.5) 9 8 

Fisher’s Exact Test (one-sided) p = 0.007 

Sn = 0.89 (95% CI: 0.81 – 0.94) Sp = 0.36 (95% CI: 0.20 – 0.57) 

Youden’s Index = 0.257 

OR = 4.76 (95% CI: 1.57 – 14.45) RFS = 1.59 (95% CI: 1.30 – 1.95) 

≥ 3.25 (24.5) 

AUC = 0.587 
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A student in the GATP who had a GREwr score of ≥ 3.25, ( PR ≥ 24.5), had 4.76 times 

greater odds of passing the BOC exam on their first-attempt than the odds for someone who had 

a GREwr score of < 3.25 (PR < 24.5). 

 

 
 

Figure A.5  ROC curve with identification of the optimum cut-point for GREv (PR) for 

prediction of first-attempt BOC exam success 

 

  

≥ 145.5 (≥ 26) 

AUC = 0.682 
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Table A.5  GREv (PR) score for prediction of first-attempt BOC exam success 

 

 

 

 

 

 

 

 

A student in the GATP who had a GREv score of ≥ 145.5, (PR ≥ 26) had 4.25 times 

greater odds of passing the BOC exam on their first-attempt than the odds for someone who had 

a GREv score of < 145.5 (PR < 26) 

  

  

 

1
st
 Attempt Pass on the BOC exam 

Yes No 

≥ 145.5 (26) 69 12 

< 145.5 (26) 20 14 

Fisher’s Exact Test (one-sided) p = 0.005 

Sn = 0.78 (95% CI: 0.68 – 0.85) Sp = 0.54 (95% CI: 0.36 – 0.71) 

Youden’s Index = 0.538 

OR = 4.25 (95% CI: 1.61 – 10.11) RFS = 1.45 (95% CI: 1.18 – 1.78) 
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Figure A.6  ROC curve with identification of the optimum cut-point for the number of advanced 

math, science or athletic training courses for prediction of first-attempt BOC exam 

success 
 

 

Table A.6  Number of advanced math, science or athletic training courses for prediction of first-

attempt BOC exam success 

 

 

 

 

 

  

 

1
st
 Attempt Pass on the BOC exam 

Yes No 

≥ 4 Courses 55 10 

< 4 Courses 34 19 

Fisher’s Exact Test (one-sided) p = 0.017 

Sn = 0.62 (95% CI: 0.51 – 0.71) Sp = 0.66 (95% CI: 0.47 – 0.80) 

Youden’s Index = 0.273 

OR = 3.07 (95% CI: 1.28 – 7.39) RFS = 1.32 (95% CI: 1.08 – 1.62) 

≥ 4 Courses 

AUC = 0.640 
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A student in GATP who took four or more advanced math, science or athletic training 

courses had 3.07 times greater odds of passing the BOC exam on their first-attempt than the odds 

for someone who took less than four advanced math, science or athletic training courses. 

 

 

Figure A.7  ROC curve with identification of the optimum number of advanced math and science 

courses for prediction of first-attempt BOC exam success 

 

 

  

≥ 3 Courses 

AUC = 0.586 
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Table A.7  Number of advanced math and science courses for prediction of first-attempt BOC 

exam success 

 

 

 

 

 

 

 

 

 

A student in the GATP who took three or more advanced math and science courses had 

2.27 times greater odds of passing the BOC exam on their first-attempt than the odds for 

someone who took less than three advanced math and science courses. 

 

 

 

  

 

1
st
 Attempt Pass on the BOC exam 

Yes No 

≥ 3 Courses 45 9 

< 3 Courses 44 20 

Fisher’s Exact Test (one-sided) p = 0.087 

Sn = 0.51 (95% CI: 0.40 – 0.61) Sp = 0.70 (95% CI: 0.51 – 0.83) 

Youden’s Index = 0.196 

OR = 2.27 (95% CI: 0.93 – 5.53) RFS = 1.21 (95% CI: 0.99 – 1.49) 
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APPENDIX B 

 

UNIVARIABLE ROC ANALYSES AND 2 x 2 CROSS TABULATION TABLES FOR 

POTENTIAL PREDICTORS RELATED TO ACADEMIC PROFILE 

OF UNDERGRADUATE INSTITUTIONS (APUI) 
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APPENDIX B 

Univariable analysis results for each of the potential APUI-related predictors of gGPA at 

the end of the first-year are provided in Tables B.1 to B.8 and Figures B.1 and B.2 

 

Table B.1  Percentile statistics for undergraduate institutions (N = 194) of students admitted to 

GATP  

 

 

Institution SAT 

mean/median  

(N = 110) 

Institution ACT 

mean/median  

(N = 121) 

Percentiles for all undergraduate 

institutions represented 

50 1143.5 24.0 

75 1195.0 26.0 

80 1238.0 27.0 
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Table B.2  Summary of univariable analysis results for predictions of first-year gGPA (≥ 3.45) derived from APUI data for students 

admitted to GATP 

 

Academic Profile of 

Undergraduate Institution Cut-point Sn 1 - Sp Sp 

Youden’s 

Index AUC OR RFS 

Fisher’s 

Exact Test 

(one-sided) 

p-value 

Institution SAT 

mean/median ≥ 80
th

 pctl 
≥ 1238.0 0.28  0.97   11.58 1.46 0.002 

Institution ACT 

mean/median  
≥ 25.5 0.48 0.14 0.86 0.341 0.710 5.82 1.54 0.001 

Institution ACT 

mean/median ≥ 75
th

 pctl 
≥ 26.0 0.48  0.86   5.82 1.54 0.001 

Institution ACT 

mean/median ≥ 80
th

 pctl 
≥ 27.0 0.29  0.92   4.53 1.39 0.009 

Institution SAT 

mean/median ≥ 75
th

 pctl 
≥ 1195 0.32  0.90   4.32 1.36 0.013 

Institution SAT 

mean/median  
≥ 1132.5 0.61 0.29 0.71 0.318 0.697 3.78 1.44 0.003 
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Table B.3  Institution SAT mean/median ≥ 80
th

 pctl for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

The OR of 11.58 (Fisher’s Exact Test (one-sided) p = 0.002) for Institution SAT 

mean/median 80
th

 pctl ≥ 1238 cut-point met the criterion for inclusion in a multi-variable 

analysis of potential predictors.   

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 1238 22 1 

< 1238 57 30 

Fisher’s Exact Test (one-sided) p = 0.002 

Sn = 0.28 (95% CI: 0.19 – 0.39) Sp = 0.97 (95% CI: 0.84 – 0.99) 

OR = 11.58 (95% CI: 1.49 – 90.14) RFS = 1.46 (95% CI: 1.19 – 1.79) 
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Figure B.1  ROC curve with identification of the optimum cut-point for Institutions’ ACT 

mean/median for prediction of first-year gGPA (≥ 3.45) 

 

 

Table B.4  Institution ACT mean/median for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 25.5 40 5 

< 25.5 44 32 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.48 (95% CI: 0.37 – 0.58) Sp = 0.86 (95% CI: 0.72 – 0.94) 

Youden’s Index = 0.341 

OR = 5.82 (95% CI: 2.07 – 16.38) RFS = 1.54 (95% CI: 1.25 – 1.88) 

AUC = 0.710 

≥ 25.5 
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The OR of 5.82 (Fisher’s Exact Test (one-sided) p < 0.001) for Institution ACT 

mean/median ≥ 25.5 cut-point met the criterion for inclusion in a multi-variable analysis of 

potential predictors.    

 

Table B.5  Institution ACT mean/median ≥ 75
th
 pctl for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

The OR of 11.58 (Fisher’s Exact Test (one-sided) p = 0.002) for Institution SAT 

mean/median 80th pctl ≥ 1238 cut-point met the criterion for inclusion in a multi-variable 

analysis of potential predictors.    

 

Table B.6  Institution ACT mean/median ≥ 80
th
 pctl for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 26 40 5 

< 26 44 32 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.48 (95% CI: 0.37 – 0.58) Sp = 0.86 (95% CI: 0.72 – 0.94) 

OR = 5.82 (95% CI: 2.07 – 16.38) RFS = 1.54 (95% CI: 1.25 – 1.88) 

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 27 24 3 

< 27 60 34 

Fisher’s Exact Test (one-sided) p = 0.009 

Sn = 0.29 (95% CI: 0.20 – 0.39) Sp = 0.92 (95% CI: 0.79 – 0.97) 

OR = 4.53 (95% CI: 1.27 – 16.17) RFS = 1.39 (95% CI: 1.14 – 1.71) 
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The OR of 11.58 (Fisher’s Exact Test (one-sided) p = 0.002) for Institution SAT 

mean/median 80th pctl ≥ 1238 cut-point met the criterion for inclusion in a multi-variable 

analysis of potential predictors.    

 

Table B.7  Institution SAT mean/median ≥ 75th pctl for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

The OR of 4.32 (Fisher’s Exact Test (one-sided) p = 0.013) for Institution SAT 

mean/median ≥ 1195 cut-point met the criterion for inclusion in a multi-variable analysis of 

potential predictors.   

 

 

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 1195 25 3 

< 1195 54 28 

Fisher’s Exact Test (one-sided) p = 0.13 

Sn = 0.32 (95% CI: 0.23 – 0.43) Sp = 0.90 (95% CI: 0.75 – 0.97) 

OR = 4.32 (95% CI: 1.20 – 15.57) RFS = 1.36 (95% CI: 1.11 – 1.66) 
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Figure B.2  ROC curve with identification of the optimum cut-point for Institution SAT 

mean/median for prediction of first-year gGPA (≥ 3.45) 

 

 

  

AUC = 0.697 

≥ 1132.5 
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Table B.8  Institution SAT mean/median for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

The OR of 3.78 (Fisher’s Exact Test (one-sided) p = 0.003) for Institution SAT 

mean/median ≥ 1132.5 cut-point met the criterion for inclusion in a multi-variable analysis of 

potential predictors.    

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 1132.5 48 9 

< 1132.5 31 22 

Fisher’s Exact Test (one-sided) p = 0.003 

Sn = 0.61 (95% CI: 0.50 – 0.71) Sp = 0.71 (95% CI: 0.53 – 0.89) 

Youden’s Index = 0.318 

OR = 3.78 (95% CI: 1.54 – 9.29) RFS = 1.44 (95% CI: 1.18 – 1.77) 
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APPENDIX C 

ACT/SAT MEAN/MEDIAN SCORES FOR UNDERGRADUATE COLLEGES  

AND UNIVERSITIES ATTENDED BY GATP STUDENTS 

 

 

 

  



 

243 

 

APPENDIX C 

Table C.1  Undergraduate colleges and universities attended by GATP students with ACT and 

SAT mean/median scores 

 

Undergraduate College or University for 

GATP Students ACT mean/median SAT mean/median 

Alma College 24 1080 

Auburn University 27 1180 

Austin Peay State University 22 980 

Belhaven University 22 1030 

Bellarmine University 24 1080 

Berry College 26 1145 

Bethel College 25 1156 

Brevard College 19 910 

California Polytechnic State University 29 1311 

California State University - Chico 22 1020 

California State University - Northridge 19 925 

California State University - Sacramento 20 945 

Centre College 28 1265 

Clemson University 28.5 1245 

College of Charleston 25 1205 

Colorado State University 24 1140 

Cornell University 26 1238 

Dartmouth College 32 1455 

East Tennessee State University 22 995 

Elmhurst College 24 1098 

Emmanuel College 24 1105 

Eureka College 23 1165 

Fayetteville State University 18 860 

Florida A&M University 20 950 

Freed-Hardeman University 24 1060 

Friends University 22 1030 

Gannon University 23 1050 

Georgia College & State University 26 1170 
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Undergraduate College or University for 

GATP Students ACT mean/median SAT mean/median 

Georgia Institute of Technology 30 1355 

Georgia State University 23 1093 

Gettysburg College  1285 

Gonzaga University  
 

Grand Valley State University 24 1110 

Hendrix College 29 1225 

Houston Baptist University 24 1102 

Huntington College 22 924 

Indiana University - Bloomington 27 1195 

Indiana University - Purdue - University 22 1005 

Jacksonville State University 22.5 970 

James Madison University 26 1190 

Kennesaw State University 22 1075 

King University (TN)  
 

Lee University 23 1070 

Lipscomb University 25 1125 

Longwood University 22 1030 

Louisiana State University 25 1142 

Maryville College 23 1070 

Milligan College 23 1080 

Mississippi State University 24 1110 

Mississippi University for Women 22 1000 

Northeastern University 30 1370 

Oakland University 22 1030 

Oglethorpe University 25 1145 

Pepperdine University 29 1300 

Pfeifer College 20 950 

Rutgers - Newark  1045 

Rutgers University - New Brunswick 27 1220 

San Francisco State University 22 995 

Santa Clara University 29 1290 
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Undergraduate College or University for 

GATP Students ACT mean/median SAT mean/median 

Siena College 25 1160 

Sonoma State University 20.5 1050 

South Carolina State University 16.5 820 

Southeastern LA University 22 1030 

Southern University and A & M College 19 910 

St Cloud State University 22 1046 

St. Joseph's College 24 1125 

SUNY - Fredonia 24 1090 

Taylor University 27 1145 

Tennessee State University 19 900 

Tennessee Tech University 23.5 
 

Texas A&M University 27 1215 

Texas Tech University 24 1115 

Trevecca Nazarene University 22 950 

Union University 26 1195 

University of Alabama  
 

University of Alabama - Huntsville 26 1145 

University of California - Davis 29 1295 

University of California - Santa Barbara 28 1243 

University of Central Florida 27 1245 

University of Central Missouri 22 1030 

University of Connecticut 28 1230 

University of Delaware 29 1300 

University of Florida 28 1265 

University of Georgia 30 1355 

University of Illinois – Urbana - Champaign 30 1370 

University of Kentucky 25 1150 

University of Louisville 24 1120 

University of Memphis 22 1020 

University of Minnesota 27.5 1295 

University of Mississippi 18 830 
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Undergraduate College or University for 

GATP Students ACT mean/median SAT mean/median 

University of Nevada - Reno 23.5 1065 

University of North Carolina - Chapel Hill 30 1305 

University of North Carolina - Greensboro 22 1035 

University of Oregon 24 1110 

University of Pittsburgh 28 1205 

University of Portland  
 

University of Puget Sound 28 1249 

University of South Alabama 26 1166 

University of South Carolina - Aiken 24 1100 

University of Tennessee - Chattanooga 23 1060 

University of Tennessee - Knoxville 26 1175 

University of Texas - Pan American 20 970 

University of Washington 27 1215 

University of Wisconsin - Oshkosh 22 1030 

University of Wisconsin - Whitewater 22 1020 

University of West Georgia 20.5 980 

Valdosta State College 21.5 1030 

Valparaiso University 26 
 

Virginia Tech University 28 1250 

Wartburg College  
 

Wayne State University 22 1030 

Western Michigan University 22 1030 

Western Washington University 25 1125 

Wheaton College 30 1320 

Xavier University (OH) 25.5 1100 

Xavier University of Louisiana 22 990 

Youngstown State 20 950 
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APPENDIX D 

MULTIVARIABLE ANALYSES AND 2 x 2 CROSS TABULATION TABLES FOR 

POTENTIAL PAIRS OF PREDICTORS RELATED TO ACADEMIC PROFILE OF 

UNDERGRADUATE INSTITUTIONS (APUI) 
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APPENDIX D 

 

Multivariable analysis results for each of the potential pairs of predictors related to APUI 

for gGPA at the end of the first-year are provided in Tables D.1 to D.9. 

A summary of potential predictor variables derived from APUI data are presented in 

Table D.1, which lists them in order of OR magnitude. 

 

Table D.1  Summary of the best combination of reported Institution ACT and SAT scores to 

define high versus low AUPI 

 

Combination of Institution 

ACT and SAT scores Sn Sp OR RFS 

Fisher’s Exact 

Test (one-sided)           

Either ACT ≥ 25.5 or SAT 

80
th
 pctl ≥ 1238 

0.47 0.88 6.51 1.56 0.001 

Either ACT mean/median ≥ 

25.5 or SAT 75
th

 pctl ≥ 1195 

0.47 0.88 6.51 1.56 0.001 

Either ACT 75
th
 pctl ≥ 26 or 

SAT 75th pctl ≥ 1195 

0.47 0.88 6.47 1.56 0.001 

Either ACT 75
th
 pctl ≥ 26 or 

SAT 80
th
 pctl ≥ 1238 

0.47 0.88 6.47 1.56 0.001 

Either ACT 80
th
 pctl ≥ 27 or 

SAT 80
th
 pctl ≥ 1238 

0.32 0.93 6.09 1.46 0.001 

Either ACT ≥ 25.5 or SAT 

mean/median ≥ 1132.5 

0.56 0.81 5.39 1.59 0.001 

Either ACT 75
th
 pctl ≥ 26 or 

SAT mean/median ≥ 1132.5 

0.56 0.78 4.51 1.52 0.001 

Either ACT 80
th
 pctl ≥ 27 or 

SAT mean/median ≥ 1132.5 

0.55 0.79 4.54 1.52 0.001 
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Table D.2  Either Institution ACT mean/median ≥ 25.5 or an Institution SAT mean/median 80
th
 

pctl ≥ 1238 for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

The OR of 6.51 (Fisher’s Exact Test (one-sided) p < 0.001) for Either Institution ACT 

mean/median ≥ 25.5 or an Institution SAT mean/median 80
th

 pctl ≥ 1238 cut-point met the 

criterion for inclusion in a multi-variable analysis of potential predictors.   

 

Table D.3  Either Institution ACT mean/median ≥ 25.5 or Institution SAT mean/median 75
th

 pctl 

≥ 1195 for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Either ACT ≥ 25.5 or 

SAT 80
th
 pctl ≥ 1238 44 5 

Neither ACT ≥ 25.5 nor 

SAT 80
th
 pctl ≥ 1238 50 37 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.47 (95% CI: 0.37 – 0.57) Sp = 0.88 (95% CI: 0.75 – 0.95) 

OR = 6.51 (95% CI: 2.35 – 18.02) RFS = 1.56 (95% CI: 1.28 – 1.92) 

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Either ACT mean/median ≥ 25.5 

or SAT 75
th
 pctl ≥ 1195 44 5 

Neither ACT mean/median ≥ 

25.5 nor SAT 75
th
 pctl ≥ 1195 50 37 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.47 (95% CI: 0.37 – 0.57) Sp = 0.88 (95% CI: 0.75 – 0.95) 

OR = 6.51 (95% CI: 2.35 – 18.02) RFS = 1.56 (95% CI: 1.28 – 1.92) 
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The OR of 6.51 (Fisher’s Exact Test (one-sided) p < 0.001) for Either Institution ACT 

mean/median ≥ 25.5 or Institution SAT mean/median 75
th

 pctl ≥ 1195 cut-point met the criterion 

for inclusion in a multi-variable analysis of potential predictors.   

 

Table D.4  Either Institution ACT 75
th
 pctl ≥ 26 or Institution SAT mean/median ≥ 1132.5 for 

prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The OR of 4.51 (Fisher’s Exact Test (one-sided) p < 0.001) for Either Institution ACT 

75
th
 pctl ≥ 26 or Institution SAT mean/median ≥ 1132.5 cut-point met the criterion for inclusion 

in a multi-variable analysis of potential predictors.   

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Either ACT 75
th
 pctl ≥ 26 or 

SAT mean/median ≥ 1132.5 52 9 

Neither ACT 75
th
 pctl ≥ 26 

nor SAT mean/median ≥ 

1132.5 41 32 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.56 (95% CI: 0.468 – 0.66) Sp = 0.78 (95% CI: 0.63 – 0.88) 

OR = 4.51 (95% CI: 1.94 – 10.50) RFS = 1.52 (95% CI: 1.24 – 1.86) 
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Table D.5  Either Institution ACT 80
th
 pctl ≥ 27 or Institution SAT mean/median ≥ 1132.5 for 

prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The OR of 4.54 (Fisher’s Exact Test (one-sided) p < 0.001) for Either Institution ACT 

80
th
 pctl ≥ 27 or Institution SAT mean/median ≥ 1132.5 cut-point met the criterion for inclusion 

in a multi-variable analysis of potential predictors.   

 

Table D.6  Either Institution ACT 75
th
 pctl ≥ 26 or Institution SAT 75th pctl ≥ 1195 for 

prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Either ACT 80
th
 pctl ≥ 27 or 

SAT mean/median ≥ 1132.5 52 9 

Neither ACT 80
th
 pctl ≥ 27 

nor SAT mean/median ≥ 

1132.5 42 33 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.55 (95% CI: 0.45 – 0.65) Sp = 0.79 (95% CI: 0.64 – 0.88) 

OR = 4.54 (95% CI: 1.96 – 10.53) RFS = 1.52 (95% CI: 1.24 – 1.87) 

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Either ACT 75
th
 pctl ≥ 26 or 

SAT 75th pctl ≥ 1195 44 5 

Neither ACT 75
th
 pctl ≥ 26 

nor SAT 75th pctl ≥ 1195 49 36 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.47 (95% CI: 0.38 – 0.57) Sp = 0.88 (95% CI: 0.75 – 0.95) 

OR = 6.47 (95% CI: 2.33 – 17.93) RFS = 1.56 (95% CI: 1.27 – 1.91) 
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The OR of 6.47 (Fisher’s Exact Test (one-sided) p < 0.001) for Either Institution ACT 

75
th
 pctl ≥ 26 or Institution SAT 75th pctl ≥ 1195 cut-point met the criterion for inclusion in a 

multi-variable analysis of potential predictors.   

 

Table D.7  Either Institution ACT 80
th
 pctl ≥ 27 or Institution SAT 80

th
 pctl ≥ 1238 for prediction 

of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The OR of 6.09 (Fisher’s Exact Test (one-sided) p < 0.001) for Either Institution ACT 

80
th
 pctl ≥ 27 or Institution SAT 80

th
 pctl ≥ 1238 cut-point met the criterion for inclusion in a 

multi-variable analysis of potential predictors.    

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Either ACT 80
th
 pctl ≥ 27 or 

SAT 80
th
 pctl ≥ 1238 30 3 

Neither ACT 80
th
 pctl ≥ 27 

nor SAT 80
th
 pctl ≥ 1238 64 39 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.32 (95% CI: 0.23 – 0.42) Sp = 0.93 (95% CI: 0.81 – 0.98) 

OR = 6.09 (95% CI: 1.74 – 21.31) RFS = 1.46 (95% CI: 1.19 – 1.79) 
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Table D.8  Either Institution ACT mean/median ≥ 25.5 or an Institution SAT mean/median 80
th
 

pctl ≥ 1238 for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The OR of 6.40 (Fisher’s Exact Test (one-sided) p < 0.001) for Either Institution ACT 

mean/median ≥ 25.5 or an Institution SAT mean/median 80
th

 pctl ≥ 1238 cut-point met the 

criterion for inclusion in a multi-variable analysis of potential predictors.   

 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Either ACT 80
th
 pctl ≥ 27 or 

SAT 75
th
 pctl ≥ 1238 31 3 

Neither ACT 80
th
 pctl ≥ 27 

nor SAT 75
th
 pctl ≥ 1238 63 39 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.33 (95% CI: 0.24 – 0.43) Sp = 0.93 (95% CI: 0.81 – 0.98) 

OR = 6.40 (95% CI: 1.83 – 22.34) RFS = 1.48 (95% CI: 1.20 – 1.81) 
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APPENDIX E 

UNIVARIABLE ANALYSES AND 2 x 2 CROSS TABULATION TABLES FOR 

POTENTIAL PREDICTORS RELATED TO FIRST-YEAR SUCCESS (≥ 3.45) 
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APPENDIX E 

Univariable analysis results for each of the potential predictors of first-year success 

(gGPA (≥ 3.45)) are provided in Figures E.1 to E.8 and Tables E.1 to E.11. 

 

 

 
 

Figure E.1  ROC curve with identification of the optimum cut-point for Biderman’s Formula 

Score for prediction of first-year gGPA (≥ 3.45) 

 

 

  

AUC = 0.816 

≥ 458.45 
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Table E.1  Biderman’s Formula Score for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

A student in the GATP who had a Biderman’s Formula Score of ≥ 458.45 had 16.94 

times greater odds to be successful in the GATP than the odds for someone who had a 

Biderman’s Formula Score of < 458.45. 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 458.45 54 3 

< 458.45 34 32 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.61 (95% CI: 0.51 – 0.71) Sp = 0.91 (95% CI: 0.78 – 0.97) 

Youden’s Index = 0.528 

OR = 16.94 (95% CI: 4.81 – 59.66) RFS = 1.84 (95% CI: 1.50 – 2.25) 
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Figure E.2  ROC curve with identification of the optimum cut-point for GREq (PR) for 

prediction of first-year gGPA (≥ 3.45) 

 

 

Table E.2  GREq (PR) for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 141.5 (12.0) 85 18 

< 141.5 (12.0) 9 20 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.90 (95% CI: 0.838 – 0.95) Sp = 0.53 (95% CI: 0.37 – 0.68) 

Youden’s Index = 0.430 

OR = 10.49 (95% CI: 4.11 – 26.78) RFS = 2.66 (95% CI: 2.17 – 3.26) 

  

AUC = 0.772 

≥ 141.5 (≥ 12.0) 
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A student in the GATP who had a GREq score of ≥ 141.5 (PR ≥ 12.0), had 10.49 times 

greater odds to be successful in the GATP than the odds for someone who had a GREq score < 

141.5 (PR < 12.0). 

 

Table E.3  Taking calculus as an undergraduate for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

A student in the GATP who took calculus as an undergraduate had 10.06 times greater 

odds to be successful in the GATP than the odds of someone who did not take calculus. 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Took calculus 41 3 

Did not take calculus 53 39 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.44 (95% CI: 0.34 – 0.54) Sp = 0.93 (95% CI: 0.81 – 0.98) 

OR = 10.06 (95% CI: 2.90 – 34.86) RFS = 1.62 (95% CI: 1.32 – 1.98) 
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Figure E.3  ROC curve with identification of optimum cut-point for GRE Composite Score for 

prediction of first-year gGPA (≥ 3.45)  

 

 

Table E.4  GRE Composite Score for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 292.5 66 9 

< 292.5 28 29 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.70 (95% CI: 0.60 – 0.79) Sp = 0.76 (95% CI: 0.61 – 0.87) 

Youden’s Index = 0.465 

OR = 7.60 (95% CI: 3.19 – 10.11) RFS = 1.79 (95% CI: 1.46 – 2.20) 

  

≥ 292.5 

AUC = 0.795 
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A student in the GATP who had a GRE Composite Score ≥ 292.5 had 7.60 times greater 

odds of being successful in the GATP than the odds for someone who had a GRE Composite 

Score < 292.5. 

 

 
 

Figure E.4  ROC curve with identification of the optimum cut-point for GREv (PR) for 

prediction of first-year gGPA (≥ 3.45)  

 

 

  

≥ 150.5 (≥ 46.5) 

AUC = 0.754 
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Table E.5  GREv (PR) for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

A student in the GATP who had a GREv Score ≥ 150.5 (PR ≥46.5) had 7.48 times greater 

odds to be successful in the GATP than the odds for someone who had a GREv Score < 150.5 

(PR < 46.5). 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 150.5 (46.5) 44 4 

< 150.5 (46.5) 50 34 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.47 (95% CI: 0.37 – 0.57) Sp = 0.89 (95% CI: 0.76 – 0.96) 

Youden’s Index = 0.363 

OR = 7.48 (95% CI: 2.46 – 22.75) RFS = 1.54 (95% CI: 1.26 – 1.89) 
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Figure E.5  ROC curve with identification of the optimum cut-point for uGPA for prediction of 

first-year gGPA (≥ 3.45) 

 

 

Table E.6  uGPA for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 3.18 68 15 

< 3.18 26 27 

Fisher’s Exact Test (one-sided) p < 0.001 

Sn = 0.72 (95% CI: 0.63 – 0.80) Sp = 0.64 (95% CI: 0.49 – 0.77) 

Youden’s Index = 0.380 

OR = 4.71 (95% CI: 2.17 – 10.23) RFS = 1.67 (95% CI: 1.36 – 2.05) 

  

≥ 3.18 

AUC = 0.715 
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A student in the GATP who had an uGPA ≥ 3.18 had 4.71 times greater odds of being 

successful in the GATP than the odds for someone who had an uGPA < 3.18. 

 

 
 

Figure E.6  ROC curve with identification of the optimum cut-point for the number of advanced 

math and science courses for prediction of first-year gGPA (≥ 3.45) 

 

  

≥ 4 courses 

AUC = 0.632 
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Table E.7  Number of advanced math and science courses for prediction of first-year gGPA       

(≥ 3.45) 

 

 

 

 

 

 

 

 

 

The OR of 3.30 (Fisher’s Exact Test (one-sided) p = 0.009) for the number of advanced 

math and science courses cut-point of four courses met the criterion for inclusion in a multi-

variable analysis of potential predictors.   

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 4 courses 33 6 

< 4 courses 60 36 

Fisher’s Exact Test (one-sided) p = 0.009 

Sn = 0.36 (95% CI: 0.27 – 0.46) Sp = 0.86 (95% CI: 0.72 – 0.93) 

Youden’s Index = 0.212 

OR = 3.30 (95% CI: 1.26 – 8.65) RFS = 1.35 (95% CI: 1.11 – 1.66) 
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Figure E.7  ROC curve with identification of the optimum cut-point for the number of advanced 

courses for prediction of first-year gGPA (≥ 3.45) 

 

 

Table E.8  Number of advanced courses for prediction of first-year gGPA (≥ 3.45)  

 

 

 

 

 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 5 courses 35 8 

< 5 courses 58 34 

Fisher’s Exact Test (one-sided) p = 0.045 

Sn = 0.38 (95% CI: 0.29 – 0.48) Sp = 0.81 (95% CI: 0.67 – 0.90) 

Youden’s Index = 0.186 

OR = 2.56 (95% CI: 1.07 – 6.17) RFS = 1.29 (95% CI: 1.05 – 1.58) 

≥ 5 courses 

AUC = 0.624 
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A student in the GATP who took five or more advanced science, math and athletic 

training courses during their undergraduate years had 2.56 times greater odds of being successful 

in the GATP than the odds for someone who took less than five advanced science, math and 

athletic training courses. 

 

 
 

Figure E.8  ROC curve with identification of the optimum cut-point for GREwr (PR) for 

prediction of first-year gGPA (≥ 3.45) 

 

 

  

AUC = 0.648 

≥ 3.75 (≥ 44.5) 
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Table E.9  GREwr (PR) for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

A student in the GATP who had a GREwr Score ≥ 3.75 (PR ≥ 44.5) had 2.30 times 

greater odds to be successful in the GATP than the odds for someone who had a GREwr score < 

3.75 (PR < 44.5.) 

 

Table E.10  Student graduated from a Research Intensive Institution for prediction of first-year 

gGPA (≥ 3.45) 

 

 

 

 

 

 

 

 

 

 

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

≥ 3.75 (44.5) 58 16 

< 3.75 (44.5) 30 19 

Fisher’s Exact Test (one-sided) p = 0.044 

Sn = 0.66 (95% CI: 0.56 – 0.750) Sp = 0.54 (95% CI: 0.38 – 0.70) 

Youden’s Index = 0.202 

OR = 2.30 (95% CI: 1.03 – 5.01) RFS = 1.28 (95% CI: 1.04 – 1.57) 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Graduated from a Research 

Intensive Institution 43 14 

Did not graduate from a 

Research Intensive 

Institution 51 28 

Fisher’s Exact Test (one-sided) p = 0.121 

Sn = 0.46 (95% CI: 0.36 – 0.56) Sp = 0.67 (95% CI: 0.51 – 0.79) 

OR = 1.69 (95% CI: 0.79 – 3.60) RFS = 1.17 (95% CI: 0.95 – 1.43) 
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A student in the GATP who graduate from a research intensive institution had 1.69 times 

greater odds of being successful in the GATP than the odds for someone who did not graduate 

from a research intensive institution.  

 

Table E.11  Taking physics as an undergraduate for prediction of first-year gGPA (≥ 3.45) 

 

 

 

 

 

 

 

A student in the GATP who had taken physics as an undergraduate had 1.52 times greater 

odds to be successful in the GATP than the odds for someone who did not take physics. 

  

 1
st
 Year gGPA ≥ 3.45 1st Year gGPA < 3.45 

Took physics 54 20 

Did not take physics 39 22 

Fisher’s Exact Test (one-sided) p = 0.173 

Sn = 0.58 (95% CI: 0.48 – 0.68) Sp = 0.52 (95% CI: 0.38 – 0.67) 

OR = 1.52 (95% CI: 0.73 – 3.17) RFS = 1.14 (95% CI: 0.93 – 1.40) 
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