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ABSTRACT 

 

Evidence suggests that harsh and variable environmental conditions modulate the fitness 

benefits associated with increased group size in some species. Social network analysis is a more 

powerful approach to examine this relationship, as the quality of interactions is more important than 

quantity. Using 9 years of data, I determined how mean and coefficient of variation (CV) of nine 

ecological variables modulated the relationship between social network metrics on direct fitness in the 

plurally breeding rodent, Octodon degus.  As predicted, increased social structure was most beneficial 

when food abundance was more variable, mean monthly rainfall was highest, predator abundance was 

more variable, soil hardness was more variable, and ectoparasitic flea intensity was low and more 

variable. In contrast, the observed effect of the CV of burrow density and mean food abundance on the 

relationship between strength and direct fitness contradicted our predictions. Overall, our results 

illustrate that the harshness and unpredictability of ecological conditions are not mutually exclusive 

explanations for social structure-direct fitness covariation.  
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CHAPTER 1 
 
 

INTRODUCTION 
 

 
Social Behavior and Social Systems 

Social systems characterize the extent to which individuals overlap and interact with conspecifics 

in the population (Kappeler and van Schaik 2002) and represent emergent properties of individual social 

behavior and strategies (Hinde 1976). Being a member of a social group may increase individual fitness 

through benefits such as reduced predation risk (through collective vigilance or dilution) or improved food 

or territory acquisition (Caro 1994; Mosser and Packer 2009). To date, a major aim of social system 

research has been to examine the associated reproductive fitness consequences of variation in social 

systems. In some groups of organisms, physical and ecological constraints allow for fairly easy 

classification and description of social systems (Whitehead 1997). However, classification of social 

systems can be challenging and often varies between and within species (Whitehead 1997). Social systems 

can range from long-term associations, often kin-groups such as in elephant herds (Emlen 1995; 

Wittemyer et al. 2005), to temporal aggregations or colonies, such as in socially roosting bats (Kappeler 

and van Schaik 2002; Kerth et al. 2002; Krause and Ruxton 2002). Although often defined differently 

(Whitehead 1997; Müeller and Thalmann 2000) there are three widely accepted and interrelated 

components of social systems: mating systems, social organization, and social structure (Kappeler and van 

Schaik 2002).  

One component of social systems, mating systems, is defined as social interactions between 

mates, called the social mating system, and the reproductive consequences of those interactions, referred 
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to as the genetic mating system (Kappeler and van Schaik 2002). Thus, when determining the fitness 

consequences of mating systems, both social and genetic components must be examined (Kappeler and 

van Schaik 2002). Across species, there is a wide array of mating systems ranging from long-term 

monogamy to promiscuity (Clutton-Brock 1989). In mammals, variation in mating systems between 

different genders is dependent on a large number of ecological and physiological factors including 

territory quality, defensibility of mates, and offspring care (Clutton-Brock 1989).  

Social organization, or the composition and size of a social unit (typically group size), is the most 

widely used of the three components when studying the fitness consequences of social systems. However, 

across and within vertebrate taxa, there are inconsistent patterns in the direct fitness consequences of 

social organization (Balshine et al. 2001; Clayton and Emery 2007; Ebensperger et al. 2012a; Schradin et 

al. 2012). Studies of social organization show that the reproductive success of breeders can be unaffected, 

decrease, or increase with increasing number of adults per group (Vehrencamp and Quinn 2004; Silk 2007; 

Ebensperger et al. 2012a). Similarly, there is considerable variation in the effects of adult group 

composition (Silk et al. 1981) and the number of non-breeding “helpers” in groups (Moehlman 1979; 

Russell et al. 2003) on direct fitness. These inconsistent patterns are likely due to the fact that social 

organization, alone, cannot capture the complexity and variation across social systems (Kappeler and Van 

Schaik 2002; Wey et al. 2008).  

Social structure, the third component of social systems, is defined as the patterns of interactions 

between individuals and the resulting relationships those interactions produce (Kappeler and Van Schaik 

2002). These relationships often persist because they represent fitness maximizing behavioral strategies 

(Van Schaik 1989). Social structure can be characterized by examining the difference in the frequency, 

types, or intensity of interactions between two conspecifics. Determining the fitness consequences 

associated with social structure involves comparing these interactions across groups or populations.  
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Ecological Constraints on Social Systems 

 The concept that environmental or ecological variables modulates or constrains social systems 

emerged in the 1970s (Crook 1970; Emlen and Oring 1977; Terborgh and Janson 1986). Since then, many 

socio-ecological models have been proposed that examine the relationships between components of 

social systems and ecological variables (Emlen 1982; Terborgh and Winter 1983; Van Schaik and Van 

Hooff 1983; Terborgh and Janson 1986; Emlen 1995). In particular, socio-ecological research has focused 

on the causes of delayed dispersal and group formation (Emlen 1982; Komdeur 1992; Emlen 1995; 

Schoech 1996; Arnold and Owens 1999; Lucia et al. 2008) and the costs and benefits of cooperation 

(Hamilton 1964; Trivers 1971; Cockburn 1998). More recently, studies have focused on determining how 

species distributions (Rubenstein and Lovette 2007; Jetz and Rubenstein 2011) and reproductive 

consequences of social systems (Rubenstein 2011; Ebensperger et al. 2012a, 2014) are influenced by 

spatio-temporal variation in ecology. However, the modulating role of spatio-temporal variation in 

ecology on the fitness consequences of social systems is still a topic of debate in behavioral ecology 

(Cockburn and Russell 2011; Gonzalez et al. 2013). In most social vertebrates, determining this effect 

requires multi-generational, long-term studies of individually marked animals (Clutton-Brock and 

Sheldon 2010). Two recent long-term studies, one on mammals (Ebensperger et al. 2014) and one on 

birds (Rubenstein 2016), shed light on how ecological conditions may modulate the relationship 

between social organization and fitness.  Ebensperger et al. (2014) determined that the relationship 

between the number of adult female group members (an indicator of communal care) and direct fitness 

in a plurally breeding mammal was modulated by inter-annual variation in mean food availability, animal 

density, and precipitation. Their study, an analysis of an 8-year database, revealed an important 

modulating effect of ecological “harshness” on the relationship between social organization and direct 

fitness in a plurally breeding species. Specifically, their study indicated that increased group size was 

more beneficial under harsh conditions, represented by low rainfall, low food abundance and low 
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animal density (Ebensperger et al. 2014).  Using a 10-year dataset, Rubenstein (2016) found that 

variation in annual precipitation influenced all aspects of superb starling (Lamprotornis superbus) life 

history (i.e., breeding role, helping behavior), supporting the hypothesis that plural breeding and 

“helpers at the nest” may reduce environmentally induced variation in fecundity.  

 

Social Network Analysis 

Finding measures that accurately reflect the complexities of social relationships among individuals 

is one of the biggest challenges when studying social species. Social network analysis (SNA) allows 

researchers to study and measure complex social relationships directly (Wey et al. 2008).   Social network 

models are made up of nodes, which represent individuals or groups, and ties, which represent some form 

of connection between two nodes at a given time. For example, a tie can represent any type of social 

interaction such as grooming, learning, or pathogen transfer (Wasserman and Faust 1994). Social network 

analysis (SNA) provides the tools necessary to examine variation in social structure across all levels of 

organization in social species using formal descriptors (Wey et al. 2008). Thus, SNA provide the 

quantitative measures necessary to test statistical models that examine the relationships in the network 

(Wasserman and Faust 1994; Wey et al. 2008; Farine and Whitehead 2015). Network analyses are broadly 

applicable across a wide range of topics including disease transmission (Wey et al. 2013), hierarchical 

position (Formica et al. 2012), kin structure and fitness (Hirsch et al. 2013; Davis et al. 2015), and fission-

fusion dynamics (where group size and composition are fluid; Carter et al. 2013).  A particularly important 

aspect of SNA is that relationships among individuals can be measured directly through trapping overlap 

or behavioral observations, and unlike group size, more accurately represent the frequency or intensity 

of interactions between members of a group or population (Wey et al. 2008).  Additionally, SNA can be 

linked to fitness, which allows an examination of social systems in an evolutionary context (Farine and 
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Whitehead 2015). A current challenge in developing a comprehensive model for sociality using network 

studies is that, despite the broad range of topics that network analyses can be used to examine, network 

analyses have been focused on a limited number of contexts (Kurvers et al. 2014). Recent evidence 

suggests that social structure affects a broader range of ecological and evolutionary processes that have 

not been fully explored (Kurvers et al. 2014). 

  

Thesis Objectives 

 The extent to which spatio-temporal ecological variation modulates the relationship between 

social structure and reproductive success is unknown. Thus, the goal of this research is to describe the 

modulating effect of spatio-temporal variation in ecological conditions on the relationship between 

social network structure and per capita direct fitness, shown in Figure 1.1 below. This figure illustrates 

the conceptual framework for the present study, showing how ecological variables influence different 

components of a social system and two resulting per capita fitness correlates. Each of the four 

components of social systems are likely effected by changes in ecological conditions and the reference 

(Ebensperger et al. 2014) listed below social organization denotes a study in which the fitness 

consequences of this component were previously examined. Between the two fitness correlates is 

dispersal, where offspring can leave their natal burrow system, or philopatry, where an individual can 

remain at their natal burrow (Quirici et al. 2011). The decision by an individual to remain at or leave 

their natal burrow typically occurs between weaning and reproductive age (Quirici et al. 2011). The aim 

of this study was to determine if certain ecological variables had a modulating effect on the relationship 

between social structure (in bold below) and the two fitness correlates aforementioned.  

Here, we use a 9-year dataset to examine this relationship in the Common degu (Octodon degus, herein 

referred to simply as degu), a caviomorph rodent endemic to central Chile.  Specific predictions and 
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Dispersal or Philopatry 
Quirici et al. 2011 

models were used test two hypotheses: the “benefits under harsh conditions” using the mean values of 

ecological variables and “benefits under variable conditions” using the coefficient of variation values of 

ecological variables.  

 

  

Figure 1.1 Conceptual framework of the present study. This framework was designed based on previous 
research conducted by Hayes et al. 2009, Quirici et al. 2011, and Ebensperger et al. 2014. This 
figure illustrates that ecological variables influence all components of social systems which not 
only influence individual fitness but also the decision of offspring to disperse or remain 
philopatric to their natal territory.   

   

 

Significance 

 Research on the fitness consequences of social systems often uses group size (a component of 

social organization) as a proxy for social systems. The use of group size in social system studies has not 

been successful in revealing patterns of fitness consequences of different social systems and has 

Per Capita 
Offspring 
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Reproductive 
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•PCOS

•Fitness Correlate

•Ebensperger et al. 2011
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Offspring 
Weaned

•PCOW
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•Hayes et al. 2009

Social Systems:

•Mating System

•Breeding Strategy

•Social Organization

•Ebensperger et al. 
2014

•Social Structure

•SNS

Ecological 
Variables:

•Food Abundance

•Animal Density

•Burrow Density
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generated conflicting results. The contradictory results generated by group size studies only further the 

confusion about the importance of social systems on direct fitness. Alternatively, social network 

analysis, an indicator of social structure, provides the tools necessary to  study social complexity 

(Stanton and Mann 2012) in species where social interactions are challenging to observe or document 

(Wey et al. 2008). The use of social structure, as opposed to social organization, may reveal novel and 

exciting insights into the direct fitness consequences of social systems.  Additionally, with the use of a 

long-term dataset, the modulating effect of spatio-temporal variation in ecological conditions on social 

structure and direct fitness covariation may be elucidated. These long-term studies can potentially 

provide important insight into how future changes in ecological conditions (due to human impacts i.e., 

climate change or habitat modification) will affect the social structure and direct fitness of plurally 

breeding species.  
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CHAPTER 2 

 

HARSH AND VARIABLE ECOLOGICAL CONDITIONS MODULATE THE RELATIONSHIP BETWEEN SOCIAL 

STRUCTURE AND DIRECT FITNESS IN A PLURALLY BREEDING SMALL MAMMAL 

Introduction 

 Social systems characterize the extent to which individuals overlap and interact with 

conspecifics in the population (Kappeler and Van Schaik 2002). A major aim of research on social 

systems is to identify sources of inter- and intraspecific variation and to analyze the associated 

reproductive fitness consequences. This is challenging because social systems can be complex 

(Wittemyer et al. 2005) and group stability varies extensively (Port and Johnstone 2013), with some 

species exhibiting frequent changes in group membership (Aureli et al. 2008). Moreover, there is a 

diverse spectrum of social systems ranging from temporal aggregations or colonies which are typically 

formed to exploit a resource or group size benefit (Kappeler and Van Schaik 2002; Kerth et al. 2002; 

Krause and Ruxton 2002) to relatively stable, long-term associations which are typically kin groups 

(Emlen 1995).  

 Understanding the evolutionary significance of long-term associations among conspecifics 

requires an understanding of four inter-related components of a social system: i) mating system, ii) 

breeding strategy, iii) social organization, and iv) social structure. The mating system describes the 

number of mates that individuals have (i.e., monogamy, polygyny) and is thought to be influenced by 

ecology, the potential to monopolize mates, and sex-specific strategies of investment in reproduction 

(Bateman 1948; Emlen and Oring 1977; Kokko and Johnstone 2002; Kokko and Jennions 2008). Breeding 
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strategy describes the extent to which direct reproduction is monopolized by and parental care is shared 

among group members (Silk 2007). Breeding strategies includes singular breeding where one dominant 

breeder and non-breeders care for offspring; also cooperative breeders (Lukas and Clutton-Brock 2012) 

and plural breeding where multiple group members breed, with and without communal offspring care 

(Brown 1978; Silk 2007). Social organization refers to the composition and size of social groups, while 

social structure includes the types and patterns of interactions among adult group members (Kappeler 

and Van Schaik 2002). Our understanding of the evolutionary significance of vertebrate social systems is 

based largely on studies of social organization, mainly the number and composition of adult group 

members (Silk et al. 1981; Forrester 1991; Ebensperger et al. 2012a). This is problematic because of the 

interdependent nature of the different components of a social system (Kappeler and Van Schaik 2002). 

For example, there is strong evidence that individual direct fitness is affected by both breeding strategy 

(Ebensperger et al. 2012a) and social structure, including the extent of cooperation among adult group 

members (Clutton-Brock et al. 1976) and the type of care provided by “helpers” (König 1997; Cockburn 

1998; Taborsky et al. 2007). Thus, how two or more components of social systems interact to influence 

fitness should enhance our understanding of the evolutionary significance of social systems significantly.  

This understanding also requires a theoretical framework linking individual fitness-enhancing 

behavior (the level at which selection occurs) to group traits (the level at which social system research is 

conducted; Kappeler and Van Schaik 2002). The socio-ecological model provides this link and indicates 

that ecological factors shape interactions between conspecifics (Kappeler and Van Schaik 2002).  

Although there is evidence that ecology plays a role in shaping the direct fitness consequences of social 

organization (Rubenstein 2011; Ebensperger et al. 2012b), the extent to which spatio-temporal variation 

in ecology modulates the fitness consequences of different components of a social system is a topic of 

debate in behavioral ecology (Cockburn and Russell 2011; Gonzalez et al. 2013). In particular, spatio-
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temporal variation in ecology can alter or reinforce social interactions (i.e., cooperative vs. competitive) 

among group members, which in turn could affect the fitness consequences of variation in social 

organization (Ebensperger et al., in review).    

 Two non-mutually exclusive hypotheses for the modulating effect of spatio-temporal variation 

in ecology on the relationship between social organization and direct fitness are the “benefits under 

harsh conditions” and “benefits under variable conditions” (Rubenstein 2011; Ebensperger et al. 2014). 

The “benefits under harsh conditions” hypothesis posits that increasing group size improves direct 

fitness under extreme or harsh environmental conditions. Support for this hypothesis comes from 

research on cooperatively breeding birds (Magrath 2001; Covas et al. 2008; Shen et al. 2012) and a 

plurally breeding mammal (Ebensperger et al. 2014). The “benefits under variable conditions” 

hypothesis posits that increasing group size enhances direct fitness or allows some reproductive success 

when environmental conditions are variable, including both inter- and intra-annual variation 

(Rubenstein and Lovette 2007; Rubenstein 2016). This hypothesis is supported by comparative studies 

showing cooperative breeding in birds is positively associated with unpredictable inter-annual rainfall 

and most commonly occurs in semiarid habitats (Rubenstein and Lovette 2007; Jetz and Rubenstein 

2011).  Further support comes from a long-term field study in which variation in annual precipitation 

influenced all aspects of superb starling (Lamprotornis superbus) life history (including  breeding roles, 

helping behaviors, etc.), supporting the hypothesis that plural breeding reduces environmentally 

induced variation in fecundity (Rubenstein 2011; 2016).  

 The aim of our study was to determine if the “benefits under harsh conditions” and “benefits 

under variable conditions” hypotheses explain social structure-direct fitness relationships in a plurally 

breeding mammal where the relationship between social organization and direct fitness has already 

been examined (Ebensperger et al. 2014). To quantify social structure, we used social network analyses, 
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a powerful method of determining variation in social structure across groups and populations 

(Wasserman and Faust 1994; Farine and Whitehead 2015). When social interactions are difficult to 

observe, social network analysis can be used to estimate interactions in species with complex social 

structure (Wey et al. 2008) and under a wide range of ecological conditions (Wey et al. 2013; Farine and 

Whitehead 2015; Firth and Sheldon 2015). Furthermore, social network analyses reveal important 

information about the quality and nature of social interactions, which is more important than the 

number of associations (group size) alone (Stanton and Mann 2012). Variation in social structure can be 

described using social network metrics that indicate (i) how connected an individual is to other 

individuals (strength) and (ii) how well connected an individual is and to whom (eigenvector centrality) 

(Whitehead 2009).   Here, we use a 9-year dataset to examine how mean and variation in ecological 

conditions modulate the relationship between social network structure and direct fitness in the 

common degu (Octodon degus, herein degu), a caviomorph rodent endemic to central Chile. Our study 

builds on previous field work that revealed an important modulating role of spatio-temporal variation in 

ecology on the direct fitness consequences of group size in degus (Ebensperger et al. 2014) and patterns 

in direct fitness of plural breeding in mammals (Ebensperger et al. 2012a). In light of this previous work, 

our study of social structure will generate important insights into the evolutionary significance of social 

systems. 

 

Model Species and Hypotheses 

 Degus forage aboveground during the daytime and share underground nests with conspecifics 

at night (Ebensperger et al. 2014). Degu social groups vary in size and composition (Hayes et al. 2009; 

Ebensperger et al. 2011, 2014). The average relatedness of individuals within groups is not different 

from the average relatedness of randomly selected individuals in the population (Quirici et al. 2011; 
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Davis et al. 2015), suggesting that direct reproduction is the primary avenue to inclusive fitness. Within 

social groups, all adult females reproduce (>95%; Hayes et al. 2009; Ebensperger et al. 2011) and nurse 

offspring communally (Ebensperger et al. 2006; Jesseau et al. 2009), implying that degus are plural 

breeders. Previous studies of 2-3 years in duration suggests that increasing group size has direct fitness 

costs to females (Hayes et al. 2009; Ebensperger et al. 2011). A recent analysis of an 8-year dataset 

suggests that increasing group size is most beneficial in years or in patches with the lowest mean food 

abundance (Ebensperger et al. 2014). Degu social network structure is highly variable at the group 

(Davis et al. 2015) and population (Wey et al. 2013) level. The extent to which spatio-temporal 

ecological variation modulates the relationship between network structure and direct fitness is 

unknown.  To test the “benefits under harsh conditions” and “benefits under variable conditions” 

hypotheses, we quantified the extent to which mean and variance in ecological factors modulate social 

network structure–direct fitness covariation, respectively. Based on relevant ecological conditions and 

social theory we considered harsh environmental conditions to be represented by i) low mean food 

abundance ii) high mean degu density (due to high competition for resources; based on the between-

group contest competition hypothesis; Harris 2006) iii) low mean precipitation iv) high mean predation 

risk, including high predator abundance and low availability of burrows (refuges), v) high mean soil 

hardness vi) extreme (high or low) monthly ambient temperature, and vii)  high mean ectoparasitic flea 

intensity (EFI; Burger et al. 2012; Ebensperger et al. 2014). We consider variable environmental 

conditions to be represented by i) variable food abundance ii) variable degu density iii) variable 

precipitation iv) variable predation risk, including variable predator abundance and variable availability 

of burrows (refuges), v) variable soil hardness vi) variable monthly ambient temperature and vii) variable 

ectoparasitic flea intensity (Ebensperger et al. 2014). Specific predictions and models (i.e., food 

abundance and degu density) used to test predictions for the two are outlined in Table 2.1.  
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Table 2.1 Models, predictions and trends of modulating ecological variables. Models, predictions and 
trends examining how ecological variables modulate the relationship between social network 
metrics and direct fitness for two hypotheses. Direct fitness metrics included both per capita 
offspring weaned (PCOW) or per capita offspring surviving to reproductive age (PCOS). Best fit 
models are based on decreasing Akaike Information Criterion (AIC) and included null model as 
possible best fit. Only relationships between strength and direct fitness are included, as 
eigenvector centrality models never had AIC values lower than the null models (Table G1). 
CV=coefficient of variation 

 

Model Prediction(s) Best fit model Observed trend* 

 
(1) Benefits under harsh (mean) conditions 

Food and degu 
density 
(within groups) 

Relationship between PCOW (or PCOS) 
and strength of all adult group 
members females (or female group 
members) becomes more positive with 
decreasing mean food abundance and 
increasing mean degu density  

Food, only  
PCOW-All 
 

Less negative 
relationship with 
increasing mean food 
abundance. 

Burrow density 
and predation 
(within groups) 

Relationship between PCOS and 
strength of all adult group members 
females (or female group members) 
becomes more positive with increasing 
mean predation and increasing mean 
burrow density (many places to hide) 

Null model No predictor 
interactions 
detected. 

Soil hardness and 
precipitation 
(within groups) 

Relationship between PCOW (or PCOS) 
and strength of all adult group 
members females (or female group 
members) becomes more positive with 
increasing mean soil hardness and 
decreasing mean monthly precipitation  

Precipitation, 
only  
PCOS-All 

Less negative 
relationship with 
decreasing mean 
monthly 
precipitation. 

Ectoparasitic flea 
intensity  
(within groups) 

Relationship between PCOW (or PCOS) 
and strength of all adult group 
members females (or female group 
members) becomes more positive with 
increasing mean ectoparasitic flea 
intensity (EFI) 

EFI 
PCOS-All 

Less negative 
relationship with 
decreasing mean EFI. 

EFI 
PCOW-Females 

Less negative 
relationship with 
decreasing mean EFI. 

Ectoparasitic flea 
intensity  
(population level) 

Relationship between PCOW (or PCOS) 
and strength (or eigenvector centrality) 
of all adult group members females (or 
female group members) becomes 
more positive with decreasing mean 
EFI 

EFI 
PCOS-All  

Less negative 
relationship with 
decreasing mean EFI. 
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Table 2.1 Continued 
 
 (2) Benefits under variable (CV) conditions 

Food and degu 
density 
(within groups) 

Relationship between PCOW (or PCOS) 
and strength of all adult group 
members females (or female group 
members) becomes more positive with 
more variable food abundance and 
more variable mean degu density  
 

Food 
abundance, 
only  
PCOW-All 

Less negative 
relationship with 
decreasing CV of 
food abundance. 

Food 
abundance, 
only  
PCOW-Females 

Less negative 
relationship with 
increasing CV of food 
abundance. 

Burrow density 
and predation 
(within groups) 

Relationship between PCOS and 
strength of all adult group members 
females (or female group members) 
becomes more positive with more 
variable predation and more variable 
burrow density (many places to hide)  

Burrows, only  
PCOW-All  

Less negative 
relationship with 
decreasing CV of 
burrow density.  

Predation, only  
PCOS-All 
 

Less negative 
relationship with 
increasing CV of 
predator abundance. 

Soil hardness and 
precipitation 
(within groups) 
 

Relationship between PCOW (or PCOS) 
and strength of all adult group 
members females (or female group 
members) becomes more positive with 
more variable soil hardness and more 
variable monthly precipitation  
 

Soil hardness, 
only 
PCOW-All 

Less negative 
relationship with 
decreasing CV of soil 
hardness. 
 

Soil hardness, 
only 
PCOW-Females 

Less negative 
relationship with 
increasing CV of soil 
hardness. 

Ectoparasitic flea 
intensity (within 
groups) 

Relationship between PCOW (or PCOS) 
and strength of all adult group 
members females (or female group 
members) becomes more positive with 
more variable ectoparasitic flea 
intensity (EFI) 

EFI 
PCOS-All 

Less negative 
relationship with 
increasing CV of EFI. 

Ectoparasitic flea 
intensity 
(population level) 

Relationship between PCOW (or PCOS) 
and strength (or eigenvector centrality) 
of all adult group members females (or 
female group members) becomes 
more positive with less variable EFI 
 

EFI 
PCOS-All 

Less negative 
relationship with 
increasing CV of EFI. 

EFI 
PCOS-Females 

Less negative 
relationship with 
increasing CV of EFI. 

*Abbreviated trends  
PCOW-All: relationship between PCOW and strength (or eigenvector centrality) of all adult group 
members 
PCOW-Females: relationship between PCOW and strength (or eigenvector centrality) of adult female 
group members 
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PCOS-All: relationship between PCOS and strength (or eigenvector centrality) of all adult group 
members 
PCOS-Females: relationship between PCOS and strength (or eigenvector centrality) of adult female 

group members 

 

 

Methods 

Study Site 

 Field work was conducted at the Universidad de Chile Estación Experimental Rinconada de 

Maipú (33°23’S, 70°31’ W, altitude 495 m) in 2005-2013. The study site is characterized by a 

Mediterranean climate with strong inter-annual and seasonal variation in rainfall and plant abundance 

(Ebensperger et al. 2014). The landscape consists of uniformly distributed grasses and shrubs (Proustia 

pungens, Acacia caven, and Baccharis spp.) that on average cover 14.5% of the ground (Ebensperger and 

Hurtado 2005). The abundance of adult degus in this population at this site ranged between 25 and 109 

over the period of study.  

 

Social Group Identification and Membership 

 Social group composition was determined between late August and early November, a time 

encompassing the period of parturition to weaning (Hayes et al. 2007; Ebensperger et al. 2014). The 

main criterion used to assign degus to social groups was the sharing of burrow systems during the night-

time (Ebensperger et al. 2004; Hayes et al. 2009). A burrow system was defined as a group of burrow 

openings surrounding a central location where individuals were repeatedly found during telemetry (Fulk 

1976). Burrow sharing was determined by means of burrow trapping and night telemetry conducted 

between August–October, the period of pregnancy and lactation of degus. Each year, Tomahawk 
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(Tomahawk model 201, Tomahawk Live Trap Company, Tomahawk, WI) and locally produced traps 

(similar to Sherman live traps [H. B.  Sherman Traps, Inc., Tallahassee, FL] in design) were placed at 

burrow systems covering an area of 1-2 hectares. The area was dependent on the abundance and 

spacing of degu groups each year. Traps were set prior to the emergence of adults during morning hours 

(06:00 h) and remained opened for 1.5 hours (Ebensperger et al. 2014). Eight to fourteen traps were 

opened during the early morning and closed 1–2 hours after sunrise. Some burrow systems were added 

to trapping effort after animals were tracked to these systems during telemetry observations made 

during August-September (see below). Burrow systems were trapped for 13–36 days per month during 

September and October. Trapping ended when less than 5% of captured offspring were new individuals, 

always by late October or early November. 

We determined the identity, location, sex, and body mass (to 0.1 g) of all degus, and 

reproductive condition of all females (perforated, pregnant, or lactating). Each degu was marked with 

unique tags (Monel 1005-1, National Band and Tag Co., Newport, KY) on each ear at the time of first 

capture. Adult individuals weighing greater than 170 g were fitted with a 6–7 g radio collar (BR radio-

collars, AVM Instrument Co., Colfax, CA) with unique pulse frequencies. Approximately one hour after 

sunset, radio-collared adults were radiotracked to their burrows through “homing” (Kenward 2001). 

Nighttime telemetry was conducted using a LA 12-Q receiver (for radio-collars tuned to 150.000–

151.999 MHz frequency) or FM-100 receiver (for radio-collars tuned to 164.000–164.999 MHz; 

Advanced Telemetry Systems, Isanti, MN, USA) and a hand-held three-element Yagi antenna (AVM 

Instrument Co. or Advanced Telemetry Systems). 

 Social group membership was determined following methods described in Hayes et al. 2009 and 

Ebensperger et al. 2014. To determine overlap of individuals, we calculated similarity matrices based on 

pairwise associations using SOCPROG 2.5 software (Whitehead 2009). For each pair of individuals, we 
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calculated a “simple ratio” index which is defined as the number of times two individuals are caught at 

the same burrow, divided by the total number of times those individuals are caught on the same day 

(Ginsberg and Young 1992). The association indices for pairs of individuals indicate the proportion of 

burrow use overlap within the population (Wey et al. 2013). These values ranged from 0 “never caught 

together” to 1 “always caught together” (Wey et al. 2013). Only associations with a value greater than 

0.1 (i.e., 10% overlap of trapping/telemetry locations) were used to assign individuals to groups (Hayes 

et al. 2009; Ebensperger et al. 2011; Ebensperger et al. 2014). We confirmed the fit of data with the 

cophenetic correlation coefficient, a correlation between the actual association indices and the levels of 

clustering in the diagram. In this procedure, values above 0.8 indicate that hierarchical cluster analysis 

has provided an effective representation of the data (Whitehead 2008). We chose maximum modularity 

criteria (Newman 2004) to cut off the dendrogram and define social groups. All adults with radio collars 

that survived the period of parturition and lactation (September–October) were included in this analysis. 

Additionally, adults without radio collars had to be captured with another individual in the same burrow 

system at least four times to be included in this analysis (Hayes et al. 2009; Ebensperger et al. 2011).  

 

Social Network Analysis 

Only degus that were trapped on at least five days were included in social network analyses to 

exclude individuals that were poorly sampled (Wey et al. 2013). Using the program SOCPROG 2.5 

(Whitehead 2009), we calculated the social network metrics strength and eigenvector centrality from 

pairwise association matrices: 

(i) Strength (s) is defined as the sum of an individual’s associations (where aIJ is the association 

index of interaction rate between individuals I and J) including both the number of associates 

and the intensity of associations, representing gregariousness (Whitehead 2008). 
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High strength indicates a high total amount of spatial and temporal overlap between individuals, 

resulting from strong associations, many associations, or a combination of both. There were two 

metrics of strength. Within group strength refers to strength calculated from pairwise 

association matrices for group members only (separately for all adults, adult females). Within 

group strength is important because direct fitness is measured at the level of the social group 

(parental care is shared by group members) and DNA based maternity analyses were not 

conducted. Population level strength indicates the extent of interaction among group members 

and other individuals in the population (i.e., non-group members). Calculating population level 

strength required two steps (Davis et al. 2015). First, we calculated pairwise association matrices 

for all adults with five or more captures, regardless of social group membership. We then 

calculated average strength of individuals assigned to the same group (separately for all adults, 

adult females). This analysis was only conducted for EFI and was important in examining how 

ectoparasitic fleas, which can move between individuals, influenced interactions of individuals 

across the population.  

(ii) Eigenvector centrality (e) is a measure of how well an individual is associated to other individuals 

and how well its close associates are themselves associated (where a is the association index 

and I represents an individual). 

 

This index ranks importance, based on accessibility to a single individual within the network 

taking into account the degree of connectivity of its neighbors: high eigenvector centrality 

indicates that an individual is globally important for being connected to other individuals that 
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have also strong associations. Eigenvector centrality was only examined at the population level 

(Whitehead 2008).   

 

Ecological Sampling 

  Ecological conditions thought to be relevant to degus included food availability, soil hardness, 

predation risk (burrow density and predator abundance), ambient temperature, precipitation levels, 

degu density, and ectoparasitic flea intensity (EFI; sum of two flea species: Xenopsylla cheopis and 

Leptopsylla segnis; Burger et al. 2012). For each variable, we calculated means (benefits under harsh 

conditions hypothesis) and coefficients of variation (CV; benefits under variable conditions hypothesis).  

 Food availability was quantified by collecting all the above ground vegetation within a 250 x 250 

mm area at 3 m and at 9 m from the center of each burrow system in one of the cardinal directions 

and was randomly selected for each distance at each burrow system. The biomass of food was 

determined by drying above-ground green herbs at 60°C degrees for 72 hours to determine 

abundance of primary food (Ebensperger et al. 2014). Data from 3 and 9 m was averaged per 

burrow system, values were standardized to grams per square meter for analysis. Mean and CV of 

values were calculated for groups based on data collected at burrow systems used by each group.  

 Soil hardness was recorded because it is related to the energetic cost of burrow digging 

(Ebensperger and Bozinovic 2000a, 2000b). Soil hardness was determined using soil penetrability 

measurements taken at 3 and 9 m from the center of each burrow system using a handheld soil 

compaction meter (Lang Penetrometer Inc., Gulf Shores, AL) in a randomized cardinal direction 

(Ebensperger et al. 2014). We calculated the mean value of samples collected at 3 and 9 m for 

each burrow system and transformed units to kPa.  
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 Burrow density, an indicator of predation risk (i.e., available refuges to evade predators), 

was determined by counting the number of burrow openings within a 9 m radius from the center 

of each burrow system and standardized to burrows per square meter. Scan sampling for predators 

was conducted at two fixed vantage points approximately 50-100 m from areas of active degus. 

Predators known to prey on degus (i.e., culpeo fox, Lycalopex culpaeus; and birds of prey) were 

recorded every 30 minutes during a 20 minute circular sweep of the entire area.  A total of 40 scan 

samples were conducted per year from 2006 to 2013 during morning (7:30-12:00h) and afternoon hours 

(17:00-19:30h), times when degus were observed aboveground.  

 Mean monthly temperature (°C) and precipitation (mm) were recorded 5-10 km north of the 

study site (at the Pudahuel weather station, 33°23′S, 70°47′W, 475 m of altitude) from June through 

October. Ambient temperature and precipitation were examined as monthly values at the level of the 

study population (Ebensperger et al. 2014).  

 Degu density was estimated on two permanent trapping grids approximately 150 m apart with 

similar distribution of plants (Hayes et al. 2007). The grids were approximately 0.18 ha (30 x 60 m; grid 

1) and 0.25 ha (50 x 50 m; grid 2) in size respectively.  Grid trapping was conducted over 5 days in June 

using locally produced metal live traps (similar to Sherman live traps [H. B. Sherman Traps, Inc., 

Tallahassee, FL] in design). Traps baited with rolled oats were set at fixed stations ever 5 m resulting in 

91 traps and 121 traps in grids 1 and 2 respectively. Traps were opened during the morning prior to 

degu emergence from burrows and closed in the afternoon (8:00-3:00h). Data from the two grids were 

used to calculate mean and coefficient of variation (CV) of degu density yearly from 2005-2013.  

 EFI (X. cheopis and L. segnis) was sampled during burrow trapping conducted in September-

October 2007 to 2013. Using a flea comb, we removed ectoparasitic fleas following methods in Burger et 

al. (2012). Ectoparasites were stored in 95% ethanol and identified using a dissecting microscope at 4x 

magnification (Burger et al. 2012). Identification of ectoparasites was conducted in the Laboratorio de 
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Química Clínica Especializada (LQCE), Santiago, Chile. Data from sampled individuals were used to 

calculate mean and CV of EFI (synonymous parasite load; Bush et al. 1997) each year.  

 

Measures of Reproductive Success 

 We determined the total number of offspring emerging from burrow systems (weaned) by each 

social group during the months of September and October. Per capita offspring weaned (PCOW, a 

measure of direct fitness) was calculated by dividing the number of offspring caught at a group’s burrow 

systems by the number of adult female degus in those groups (Ebensperger et al. 2014). Per capita 

estimates of direct fitness are reliable indicators of individual direct fitness in degus (Hayes et al. 2009; 

Ebensperger et al. 2011) and correlate well with estimates based on DNA based maternity analyses 

(Ebensperger, L.A. and Hayes, L.D., unpublished). In the wild the mortality of degu offspring by 2 months 

of life is high at >65% (Meserve and Rodriguez 1984). Thus, per capita number of offspring surviving to 

reproductive age (PCOS) was also examined. PCOS values were based on the number of offspring 

recaptured in the austral autumn (May to June) divided by the number of females from the social group 

in which offspring were born (Ebensperger et al. 2014). The values for PCOS were likely not 

underestimated because both sexes are equally likely to disperse and adult degus typically settle within 

30 to 40 m of their natal burrow systems (Quirici et al. 2011).  

  

Statistical Analysis 

 We used a Pearson correlation to verify that group size is an inherent component of within 

group strength (all adult group members: slope= 0.24; r=0.43; r2=0.20; P=0.00006; adult female group 

members: slope= 0.37; r=0.46; r2=0.21; P=0.0008) (Whitehead 2008). To determine the modulating 

effect of ecological conditions on the relationship between social network measures (i.e., strength) and 
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direct fitness, we used hierarchical regression and random effects techniques (i.e., linear mixed effects 

models) similar to those used by Ebensperger et al. (2014). These models are appropriate to examine 

data sets with a nested or hierarchal structure. All models predicted the effect of mean and CV of 

ecological conditions on direct fitness (PCOW or PCOS). For all groups, we determined how the 

relationship between strength and direct fitness was affected by: i) mean and coefficient of variance 

(CV) of food abundance and degu density, ii) mean and CV of soil hardness and rainfall, iii) mean and CV 

of predation risk, iv) mean and CV of temperature, and v) mean and CV of EFI. Additionally, we 

examined mean and CV of EFI both within groups and for the population (parasite transmission).  

Separate models were used for strength estimates for female group members and all adult group 

members. For analyses of adult female group members, 2010 and 2011 were excluded because there 

were fewer than three social groups in those years. A total of 76 different models are reported for a 

total of 24 independent statistical tests of hypothesis (Supplementary Document; S1).  

For each analysis, a hierarchical model was defined where social variables were declared at level 

1 layer and ecological factors were declared at level 2 in the model hierarchy. Study years were used as 

grouping factors to control for correlations among contrasting ecological conditions. Slope and intercept 

of predictors at level 1 were allowed to vary between years, and effects of level 2 ecological variables on 

the social network-direct fitness slopes were tested by means of interactive terms involving the level 1 

predictors (i.e., strength and eigenvector centrality), all customary routines in mixed modeling analysis 

(Zuur et al. 2009). Model fit was tested against a null random intercept model with study year as a 

grouping variable only. The Akaike information criterion (AIC) accompanied by likelihood ratio test were 

used to assess goodness of fit of each full model against their respective null models. We further verified 

model fit with the use of heterogeneous variance structure followed by examination of residuals and 

outliers. All analyses were conducted in R Statistical Software (version 3.2.2, R Development Core Team 

2015) using library lme4. 
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Results 

Modulating Effect of Ecological Variables 

The 76 models examined are listed in Supplementary Table G2 and the outputs of the 11 significant 

models are outlined in Table G1. The modulating effects of mean and CV of ambient temperature are 

not reported in detail below because all models for ambient temperature were not statistically 

significant (models 49-56).  
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Figure 2.1 Representative social network maps. These maps are from 2005 and 2006 and show all 
individuals assigned to a social group. Males are represented by white circles, females by grey 
circles, and the thickness of the lines indicates the amount of trapping overlap between any two 
individuals. There were 8 social groups in both 2005 and 2006. However, there were three 
solitary adult males (no trapping overlap with any other individuals) in 2006 that are not shown 
in the network map. This figure illustrates that the individuals studied interact both within their 
social group as well as with individuals in other groups.  Network maps were visually examined 
to determine how social structure varied year to year relative to ecological conditions. In 2005, 
CV of food abundance, CV of burrow density, and mean monthly temperature (°C) were the 
lowest of all years examined (2005-2013). Additionally, mean monthly precipitation was highest 
in 2005. In 2006, CV of food abundance, CV of burrow density, mean predator abundance, and 
CV of soil hardness were highest of all years examined and CV of predator abundance was the 
lowest. Social network maps for all other years are available in Appendix I. 
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Modulating Effect of Food Abundance and Degu Density 

The models for food abundance and degu density included food abundance, degu density, and a food 

abundance x degu density factor interaction. The model with the lowest AIC was food abundance only 

(Figure 2.2a, b, c; models 1-16). Yearly mean and CV of food abundance influenced the relationship 

between strength and per capita offspring weaned (PCOW), but not per capita offspring surviving to 

adulthood (PCOS).  The relationship between strength among adult group members (but not strength 

among adult female group members) and PCOW became less negative in social groups using burrows 

with increasing mean food abundance (Figure 2.2a; model 2). The relationship between strength and 

PCOW among all adults in groups became less negative in social groups using burrows with decreasing 

CV of food abundance (Figure 2.2b; model 2). The relationship between strength and PCOW of adult 

female group members became less negative in groups with increasing CV of food abundance (Figure 2c; 

model 6). 
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Figure 2.2 Modulating effect of food abundance. Relationship between strength of all adult group 
members (panels a, b) or strength of adult female group members (c) and the per capita number 
of offspring weaned (PCOW). Panel a illustrates how this relationship becomes more negative 
with decreasing mean food abundance. Panel b illustrates how this relationship becomes more 
negative with increasing CV of food abundance. Panel c illustrates how this relationship 
becomes more negative with decreasing CV of food abundance. Levels of food abundance 
represent the conditions below, near and above mean and CV of recorded values based on 
samples collected at active degu burrow systems.  These results correspond to model numbers 2 
and 6. 
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Modulating Effect of Predation Risk 

The models for predation risk included burrow density, predator abundance, and a burrow density x 

predator abundance factor interaction. The models with the lowest AIC values were burrow density for 

PCOW (Figure 2.3a), and predator abundance for PCOS (Figure 2.3b; models 17-32). The relationship 

between strength among all adult group members (but not adult female group members) and PCOW 

became less negative in social groups using burrow systems with decreasing CV of burrow density 

(Figure 2.3a; model 18). The relationship between strength among all adult group members (but not all 

adult female group members) and PCOS changed from negative to positive during years with increasing 

CV of predator abundance (Figure 2.3b; model 27). 

 

 

 

Figure 2.3 Modulating effect of predation risk. Relationship between strength of all adult group 
members and the per capita number of offspring weaned (PCOW; panel a) or per capita 
offspring surviving to reproductive age (PCOS; panel b). Panel a illustrates how this relationship 
becomes more negative with increasing CV of burrow density. Panel b illustrates how this 
relationship becomes more positive with decreasing CV of predator abundance. Levels of 
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burrow density and predator abundance represent the conditions below, near and above CV of 
recorded values. These results correspond to model numbers 18 and 27. 

 

 

Modulating Effect of Soil Hardness and Precipitation 

The models examined included soil hardness, precipitation, and a soil hardness x precipitation factor 

interaction. The models with the lowest AIC values were precipitation (with all group members and 

PCOS; Figure 2.4a), CV soil hardness (with all adult group members and PCOW; Figure 2.4b), and CV soil 

hardness (with adult female group members and PCOW; Figure 2.4c) (models 33-48). The relationship 

between strength and PCOS (all adult group members) became more positive in years with decreasing 

mean monthly precipitation for all adult group members (Figure 2.4a; model 43). The relationship 

between soil hardness and PCOW (all adult group members) became less negative with decreasing CV of 

soil hardness across burrow systems used (Figure 2.4b; model 34). The same relationship (soil hardness 

and PCOW) switched from negative to positive for adult female group members with increasing CV of 

soil hardness (Figure 2.4c; model 38).  
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Figure 2.4  Modulating effect of precipitation and soil hardness. Relationship between strength of all 
adult group members (panel a, b) or strength of female adult group members (panel b) and per 
capita offspring surviving to reproductive age (panel a) or per capita offspring weaned (panel b, 
c). Panel a illustrates how this relationship becomes less negative with decreasing mean monthly 
precipitation. Panel b illustrates how this relationship becomes more negative with increasing 
CV of soil hardness. Panel c illustrates how this relationship becomes more positive with 
increasing CV of soil hardness. Levels of monthly precipitation and soil hardness represent the 
conditions below, near and above mean or CV of recorded values. These results correspond to 
model numbers 34, 38 and 43. 
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Modulating Effect of Ectoparasitic Fleas 

The effect of EFI (total number of X. cheopis and L. segnis fleas) on strength-direct fitness relationships 

was calculated for both within group (Figure 2.5a, b, e) and population level strength (Figure 2.5c, d, f). 

Thus, there were 12 models included in this analysis (models 57-68). The models with the lowest AIC 

values were within group strength of adult female group members and PCOW, within group strength of 

all adult group members and PCOS, and population level strength of both adult female group members 

and all adults and PCOS. Within groups, the relationship between PCOS and strength of all adult group 

members changed from negative to positive as mean EFI decreased (Figure 2.5a; model 64). The 

relationship between PCOS and within group strength of all adult group members became positive with 

increasing CV of EFI (Figure 2.5b; model 64). The relationship between PCOW and within group strength 

of adult female group members became less negative with decreasing mean EFI (Figure 2.5e; model 61). 

At the population level, the relationship between strength of all adult group members and PCOS 

switched from negative to positive as mean EFI decreased (Figure 2.5c; model 65).  Additionally, at the 

population level the relationship between strength of both adult female group members and all adult 

group members and PCOS switched from negative to positive with as CV of EFI increased (Figure 2.5d, f; 

models 68 and 65 respectively). For all best-fit population level models, there was not a statistically 

significant relationship between eigenvector centrality and PCOW or PCOS (; models 69-76). 
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Figure 2.5 continued on next page. 
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Figure 2.5 Modulating effect of ectoparasitic flea intensity. Relationship between within group strength 
of all adult group members (panels a, b) or adult female group members (e) and PCOS or PCOW. 
Relationship between population level strength of all adult group members (c, d) or adult female 
group members (f) and PCOS. Panels a, c, and e illustrate how this relationship becomes less 
negative with decreasing mean ectoparasitic flea intensity (EFI). Panels b, d, and f illustrate how 
this relationship becomes more positive with increasing CV of EFI. Levels of EFI represent the 
conditions below, near and above mean and CV of recorded values based on samples collected 
from individual degus.  These results correspond to model numbers 61, 64, 65, and 68. 
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models supporting the “benefits under variable conditions” hypothesis included CV of food abundance 

and soil hardness (adult female group members), CV of predator abundance (all adult group members), 
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and CV of EFI within groups (models 6, 27, 38, and 64). All other models for CV of ecological conditions 

either were not the best-fit model (based on AIC) or generated contradictory predictions (models 2, 3, 

18, 34, 65, and 68). To summarize, we observed that increased strength of interactions among adult 

females group members has the most positive (or least negative ) relationship with per capita direct 

fitness (PCOW or PCOS) when i) food abundance is less predictable (high CV), ii) soil hardness is less 

predictable (high CV), and iii) EFI is low but less predictable (low mean, high CV). Alternatively, increased 

strength of all adult group members has the most positive (or least negative) relationship with per 

capita direct fitness (PCOW or PCOS) when i) food abundance is high and more predictable (high mean, 

low CV), ii) soil hardness is more predictable (low CV), iii) predator abundance is less predictable (high 

CV), iv) burrow density is more predictable (low CV), v) mean monthly precipitation is low (low mean), 

and vi) EFI is low but less predictable (low mean, high CV). Moreover, when comparing adult female 

group members and all adult group members, differences in the relationship between social structure 

and direct fitness (for food abundance and soil hardness) emerge, suggesting that the interactions 

among females and males have different impacts on direct fitness, adding further complexity to this 

story.  

 

Modulating Effects of Ecology on Social Structure-Direct Fitness Relationships 

The effect of spatio-temporal variation in ecology on animal social systems has re-emerged as a 

prominent and exciting topic in behavioral ecology. For decades, emphasis was on the causes of delayed 

dispersal and group formation (Emlen 1982; Komdeur 1992; Emlen 1995; Schoech 1996; Arnold and 

Owens 1999; Lucia et al. 2008) and the costs and benefits of cooperation (Hamilton 1964; Trivers 1971; 

Cockburn 1998). Recently, attention has turned to determining how species distributions (Rubenstein 

and Lovette 2007; Jetz and Rubenstein 2011) and reproductive consequences of social systems 
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(Rubenstein 2011; Ebensperger et al. 2012a, 2014) are influenced by spatio-temporal variation in 

ecology. In passerine birds, the prevalence of cooperative breeding is associated with variation in 

precipitation (Rubenstein and Lovette 2007; Jetz and Rubenstein 2011) and reproductive success 

declines with increasing group size, territory quality, and environmental quality (Rubenstein 2011). 

Conversely, in two non-passerine birds, “helpers at the nest” have the most beneficial effect on fitness 

in environments characterized by less variable or less harsh conditions (Koenig et al. 2011; Gonzalez et 

al. 2013; Koenig and Walters 2015).   

Taken together, our results and those of recent studies on social vertebrates (Jetz and 

Rubenstein 2011; Gonzalez et al. 2013; Ebensperger et al. 2014; Rubenstein et al. 2016) suggest that the 

effects of spatio-temporal variation in ecology on social system-direct fitness relationships are complex 

and depend, not only on what component of social system is under examination, but also on whether 

interactions are between females (primary care-givers in degus; Hayes et al. 2009) or all adults. For 

example, our observation that the relationship between strength and PCOW became less negative in 

years with high mean (all adult group members) and less variable food abundance (all female group 

members) aligns with observations in non-passerine birds (Koenig et al. 2011; Gonzalez et al. 2013) and 

singularly breeding mammals (Harrington et al. 1983; Solomon and Crist 2008). Increased overlap during 

early morning trapping could suggest greater social cohesion and cooperation (Poirier et al. 1978; Drea 

et al. 1996) or could suggest that adults forage more closely together due to the benefits of reduced 

predation risk (Ebensperger and Wallem 2002). Our observation that the relationship between strength 

of adult female group members and PCOW switched from negative to positive when food abundance 

was variable supported our prediction that increased interactions between potential care-givers is 

important to increasing offspring survival when food resources are not reliably abundant (Rubenstein 

and Lovette 2007). Future intraspecific comparisons should examine how variation in food abundance 
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during different life history stages selects for different social interactions among male and female group 

members, adults and juveniles, and group members of different social status. Interspecific comparisons 

should also focus on how food abundance influences social interactions and direct fitness in social 

species with different modes of parental care.   

 Similar to food abundance, the modulating effect of soil hardness on social structure and 

reproductive success is complex in degus. The modulating role of soil hardness on strength-direct fitness 

covariation was opposite for all adult group members and adult female group members. One 

explanation for these results is that the costs of burrowing (Ebensperger and Bozinovic 2000b) are 

driven by intrinsic factors (i.e., body condition: Zelová et al. 2010) that differ between sexes (Scantlebury 

et al. 2006). Alternatively, variation in social structure within the timeframe of our study may have 

limited benefits in terms of the construction of new burrows. Unlike some fossorial species, such as the 

African bathyerids (mole-rats; Luna and Antinuchi 2006), degus do not excavate burrows to search for 

food or mates (Vleck 1979, 1981; Bennett and Faulkes 2000; Ebensperger and Bozinovic 2000a). Degu 

social groups often use the same burrow systems repeatedly or move into existing burrow systems, 

minimizing the current utility of coordinated digging among group members.  

Predation risk plays an important role in shaping social organization (Ebensperger et al. 2012b) 

and social structure (Eggleston and Lipcius 1992) and can affect population dynamics (Hik 1995). In small 

mammals, predation risk includes two interrelated components, predator abundance (or the number of 

potential predators) and availability of shelter (burrow density for degus; Hayes et al. 2007). While 

foraging above-ground during the daytime, degu offspring are vulnerable to predators such as a foxes 

(Lycalopex culpaeus), raptors (Geranoaetus melanoleucus, Parabuteo unicinctus, Buteo polyosoma), and 

owls (Tyto alba, Bubo virginianus, Speotyto cunicularia, Glaucidium nanum). Thus, we expected the 

relationship between within group network strength and per capita offspring surviving to adulthood 
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(PCOS) to increase with increasing mean and CV of predation abundance and mean and CV of burrow 

density. Our observation that relationship between strength and PCOS increased with increasing CV of 

predator abundance, but not burrow density, partially supports this hypothesis and suggests that 

predation pressure has a greater impact on degu social structure and fitness than burrow density. 

Interestingly, we observed that the relationship between strength and PCOW became more positive 

with increasing CV of burrow density. Predation of degu offspring by snakes is relatively low (Green and 

Jaksic 1992), suggesting that predation risk prior to emergence from burrows is not a driving force for 

social structure-direct relationships. Since degus also use burrows to rear offspring (Hayes et al. 2009; 

Ebensperger et al. 2012b), variation in PCOW may be more sensitive to the number of care-givers 

(Ebensperger et al. 2014) and the types of care they provide (König 1997; Cockburn 1998; Taborsky et al. 

2007). Other factors including the distance to cover during foraging (Molvar and Bowyer 1994; Whitfield 

2003; Hayes et al. 2007) and foraging group size which is related to vigilance or dilution effect (Roberts 

1996; Ebensperger and Wallem 2002; Ebensperger et al. 2006) affect risk in degus and other species, but 

were not measured in the present study.  

In vertebrates, there are energetic (Khokhlova et al. 2002) and reproductive (Møller 1993) costs 

of ectoparasitism. Living in groups may reduce these costs if individuals reduce ectoparasites by 

allogrooming. This hypothesis is supported by observations of negative relationships between 

ectoparasite infection and group size (Bordes et al. 2007; Viljoen et al. 2011) and our observation that 

PCOS increased with strength (among all adult group members) in years with increasing CV of EFI. 

However, our observation that the relationship between strength (among adult female and all adult 

group members) and PCOS became more negative in years with low mean EFI and that increasing group 

size does not result in reduced ectoparasitic flea loads in degus (Burger et al. 2012) and other species 

(i.e., Stanko et al. 2002; Altizer et al. 2003; Hillegass et al. 2008) suggest otherwise. The effectiveness of 
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allogrooming in reducing ectoparasites may decrease with increasing ectoparasite intensity (Johnson et 

al. 2004). We could not quantity allogrooming directly because most degu social interactions occur 

below ground and allogrooming above ground is rare (Ebensperger and Hurtado 2005). Allogrooming 

aligns well with other social interactions in several mammals (Wilkinson 1986; Hart and Hart 1992; 

Kutsukake and Clutton-Brock 2006). Thus, we expect allogrooming to increase with increasing strength 

in degus. A comparison of allogrooming and strength under laboratory conditions or with the use of 

underground cameras will be necessary to test this hypothesis.  

During the daytime, degus forage in temporary groups consisting of social group members and 

conspecifics from other social groups (Ebensperger and Wallem 2002). Under these conditions, 

ectoparasitism of group members could be influenced by contact with non-group members during the 

daytime. Our observations suggest partial support for the prediction that EFI is influenced by social 

interactions of group members with members outside the group. However, modulating effects of mean 

and CV of EFI on the relationship between strength and direct fitness were nearly identical within groups 

(Figure 2.5a, b, e) and at the population level (Figure 2.5c, d, f). The slopes of lines reflecting the 

modulating effect of mean EFI on strength-PCOS relationships and maximum PCOS values (compare y-

axes of Figure 2.5a, c) were similar when comparing within group strength (Figure 2.5a) and population 

level strength (Figure 2.5c). This was also true for the modulating effect of CV of EFI on strength-PCOS 

(Figure 2.5b, d, f) when comparing within groups to the population level. These comparisons suggest 

that population level trends (Figure 2.5c, d, f), which include estimates of strength based on group 

members and all other adults in the population, are largely driven by strength between individuals 

within the same group and not interactions between non-group members.   
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Concluding Remarks 

Our understanding of the evolutionary significance of social systems largely comes from short-

term studies that focus on social organization. Recent long-term field studies (Rubenstein 2011; 

Ebensperger et al. 2014) and meta-analyses (Ebensperger et al. 2012a) have shed light on the 

evolutionary significance of plural breeding.  Studies focusing on the direct fitness consequences of 

social structure focus primarily on singular breeders. By using social networks to assess social structure, 

our study revealed that the impact of spatio-temporal variation in ecology on the relationship between 

social systems and direct fitness is complex.  Furthermore, the relationships we observed for social 

structure are not the same as those from a previous study evaluating social organization in degus 

(Ebensperger et al. 2014), suggesting that selection pressures affect components of social systems 

differently. Ecological harshness and variability interact with elements of social organization (i.e., adult 

sex composition; the present study) and life history attributes to influence social structure-fitness 

relationships (Gonzalez et al. 2013). Disentangling the complexity of these relationships will require the 

further examination of how various components of social systems impact direct fitness in different 

environments. Most attempts to understand the modulating role of ecology on social systems and 

fitness are based on short-term datasets (1-4 years; i.e., White and Cameron 2009; Hayes et al. 2009). 

Complex results generated by long–term studies such as ours reinforce the growing sentiment that 

understanding the evolutionary significance of social living requires the examination of long-term data 

sets (Clutton-Brock and Sheldon 2010). Moreover, long-term studies on the modulating effect of 

ecological conditions may become particularly important as ecological conditions change due to human 

impacts (i.e., climate change, habitat loss) or in response to periodic evens such as El Niño/Southern 

Oscillation (ENSO).  
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CHAPTER 3 
 
 

CONSERVATION IMPLICATIONS 

 

The objective of the present study was to examine the modulating role of ecological conditions on social 

structure-direct fitness covariation. To date, this effect has been poorly examined in social vertebrates, in part 

because social systems are complex and vary across and within species. Evidence from comparative studies on 

birds suggests that cooperative breeding is positively associated with unpredictable inter-annual 

environmental conditions (Rubenstein and Lovette 2007; Jetz and Rubenstein 2011).  My study, along with 

a previous study on the degu (Ebensperger et al. 2014), suggest that harsh or variable ecological 

conditions modulate the relationship between social systems and direct fitness. Thus, when making 

conservation management decisions for social species, understanding the effect of ecological or environmental 

conditions (i.e., animal population density, temperature, rainfall) on social structure-direct fitness covariation 

could have broad ranging conservation implications.  

Understanding the effect of population density, which is often influenced by food abundance, on the 

relationship between sociality and fitness is vital in the conservation management of many social species. For 

example, a socially obligate species, the African wild dog (Lycaon pictus), is reliant on non-breeding “helpers” for 

breeding and resource defense (Courchamp and Macdonald 2001). If the number of members in the pack drops 

too low, a positive feedback loop arises wherein poor reproduction and survival further decreased pack size. This 

feedback loop eventually leads to a loss of the entire pack (Courchamp and Macdonald 2001). This phenomenon, 

known as the Allee effect (Figure 3.1), increases the likelihood of a population going extinct because of the cost 

of retaining sufficient group size and structure (Allee 1931; Courchamp et al. 1999; but see Creel et al. 2015). 
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The Allee effect has potential impacts on conservation strategies and harvest rates of social species. 

Social constraints, such as the Allee effect, influence a variety of taxa including fish (Stephens and Sutherland 

1999; Kuparinen et al. 2014), birds (Marvelde et al. 2009; Votier et al. 2009), and mammals (Courchamp and 

Macdonald 2001; Morris 2002). The collapse of many east coast commercial fisheries operating under maximum 

sustainable yield principles is thought to be a byproduct of Allee-type dynamics (Stephens and Sutherland 1999). 

While the present study does not focus on the Allee effect specifically, understanding the impact of ecological 

variability on social structure could prove vital to conserving populations under the Allee effect. Typically, 

conservation efforts for species under the Allee effect have focused on maintaining sufficient group or population 

size, but the present study illustrates that social structure is also an important component of social systems that 

affects the reproductive success of social species. In the future, conservation biologists working with threatened 

or endangered species should not only focus on group size but should also examine social structure. 

 

 

 

 
Figure 3.1 Allee effect. Representation of the Allee effect showing the positive relationship between population 

growth rate and density at low animal densities.  
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One cause of spatio-temporal variation in ecological conditions is climate change. Climate change 

induced variability in available food is correlated with social group size in bottlenose dolphins (Tursiops 

truncatus) and orca whales (Orcinus orca; Lusseau et al. 2004). This suggests that ecological variability influences 

social organization in some marine mammals (Lusseau et al. 2004). Furthermore, studies on African striped mice 

(Rhabdomys spp.) indicate that behavioral or social flexibility, despite being costly, may be vital to the persistence 

of species under shifting environmental conditions (Rymer et al. 2013).  However, there is limited research on 

how climate variability, either anthropogenic or natural in origin, affects social structure in mammals (Holmgren 

2006; Previtali et al. 2010).  

The present study builds on years of existing research, potentially informing theory on how highly 

variable long-term ecological processes, such as El Niño/Southern Oscillation (ENSO), influence social 

structure. ENSO helps explain irregular variation in climate (i.e., rainfall, ocean surface temperature) 

globally (Philander 1990). Historically, ENSO events have led to population crashes in commercial fisheries, 

such as the Peruvian anchovy population collapse during the 1997-98 El Niño (Broad et al 2002). Long-

term studies that examine the effects of environmental variability, like ENSO, may prove essential to the 

conservation of both economically important species and species at risk of extinction in the future. As 

human impacts continue to alter habitats globally and ecological conditions become less predictable, 

conservation biologists will likely rely on studies that examine how social species are impacted by 

ecological variation. The present study illustrates how social network analysis can be used to examine 

changes in social systems under variable environmental conditions. In the future, the conceptual 

framework of the present study could be applied directly to conditions associated with ENSO events or 

anthropogenic climate change.  

Understanding social structure, using social network analysis (SNA), has already proven useful in 

the conservation of threatened or endangered species, particularly in marine mammals. SNA was used to 

improve the conservation efforts for the threatened Indo-Pacific humpback dolphin (Sousa chinensis) in 
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China (Wang et al. 2015). SNA yielded important insights into how dolphin communities interact and 

suggested that geographic segregation and habitat shifts of two dolphin communities were likely 

adaptations to intensive anthropogenic activities (Wang et al. 2015). Another study, on an endangered 

population of orcas (Orcinus orca), also utilized SNA to aid in the conservation of species under variable 

ecological conditions (Foster et al. 2011). In this study, orca social network structure correlated with food 

availability and was invaluable in the design of conservation management plans (Foster et al. 2011). 

Overall, social network analyses have already been applied and proven useful in helping conservation biologists 

make informed management decisions, particularly in marine mammal research. The present study, though not 

conservation based, provides novel insight into how spatiotemporal variability modulates the social network 

structure and fitness relationship in a plurally breeding mammal and may help conservation biologists make 

informed management decisions in two ways. First, the present study further illustrates the utility of social 

network analysis, in particular for species living in harsh or variable habitats. Second, the present study indicates 

the interdependent nature of different components of social systems and illustrates the necessity of 

understanding not only group size, but other components as well.  Insights from the present study can be used 

to maximize management strategies for protecting endangered or threatened species living in harsh, 

unpredictable, or highly variable environments.  
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SOCIAL GROUPS 
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2005 
 

ID ID ID ID ID ID ID ID 

0010 (F) 1003 (M) 0033 (M) 2004 (M) 0200 (F) 0023 (F) 0005 (F) 0012 (M) 
2200 (F) 4020 (M) 3050 (F) 3002 (F) 3001 (F) 1001 (M) 0011 (M) 0015 (M) 
3100 (F)   4100 (F)  4200 (F) 0120 (F) 0024 (M) 

   4301 (M)   3003 (F) 0300 (F) 
   0140b (F)   4005 (F) 1300 (M) 
       3010 (F) 
       4400 (F) 

 
2006 
 

ID ID ID ID ID ID ID ID 

0040 (F) 0320 (M) 1015 (M) 0053 (M) 0045 (M) 3403 (M) 0441 (M) 3402 (M) 
0455 (F) 0451 (F)   0233 (M) 3410 (M) 1201 (M)  

 1043 (F)   4010 (F)  3330 (F)  
 3032 (F)       
        

 

ID ID ID 

0141 (F) 0115 (F) 0111 (F) 
0155 (F) 0143 (F) 0124 (F) 
0232 (M) 0352 (F) 0141 (F) 
0444 (M)  0151 (F) 

  0153 (F) 

 
2007 
 

ID ID ID ID ID ID ID 

1103 (F) 0141 (F) 1253 (F) 0143 (F) 1312 (F) 1111 (F) 0134 (F) 
1115 (M) 0154 (F) 1354 (F) 2434 (F) 1314 (F) 2453 (F) 1445 (M) 
3102 (F) 0155 (F) 4010 (F) 3323 (M) 2223 (F) 4002 (M) 2053 (F) 
3210 (F) 1012 (M) 4012 (F)  4441 (F)  2202 (F) 

 2352 (F) 4052 (M)    2341 (F) 
 2454 (F) 1041 (F)    3011 (F) 
 4443 (F)      

 
2008 
 

ID ID ID ID ID ID ID 

0100 (M) 0410 (F) 1041 (F) 1311 (F) 0054 (M) 0124 (F) 0252 (F) 
0240 (F) 1021 (M) 3252 (M) 4144 (F) 0243 (F) 3355 (F) 0412 (F) 
0251 (F) 3400 (F) 4243 (F) 4322 (F) 1015 (F)   
0315 (F) 4325 (F)      
1023 (F)       
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2008 cont.  
 

ID ID ID ID ID ID 

0221 (F) 0001 (F) 4422 (F) 0411 (F) 0214 (F) 1150 (F) 
13(15)1 (F) 0203 (F) 4423 (F) 1445 (M) 0255 (F)  

  4455 (F)  3005 (F)  
    3221 (F)  

 
2009 
 

ID ID ID ID ID ID ID 

1027 (F) 883 (F) 986 (F) 879 (M) 989 (F) 1011 (F) 874 (M) 
1033 (F) 1102 (M) 1037 (F) 994 (F) 1029 (M) 1194 (F) 939 (M) 
1034 (M) 1144 (F) 1124 (M) 1089 (M) 1062 (F) 1015 (F) 1066 (F) 
1074 (M) 0130 (F)  1259 (F)  4324 (F) 1261 (F) 

      0252 (F) 

 

ID ID ID 

1101 (F) 866 (M) 974 (F) 
1104 (M) 1106 (M) 1021 (F) 
1108 (F) 1262 (M) 1073 (F) 

 3024 (F) 3025 (F) 
 4325 (F) 4144 (F) 

 
2010 
 

ID ID ID ID ID ID 

1135 (F) 1181 (M) 1177 (M) 1218 (F) 1163 (F) 1270 (M) 
1381 (M) 1247 (F) 1209 (F) 1367 (M)   

 1376 (M) 1368 (M) 1372 (M)   
  1374 (M) 1375 (M)   

 
2011 
 

ID ID ID ID ID ID ID 

1163 (F) 1467 (F) 2010 (M) 1506 (F) 1218 (F) 1473 (M) 1488 (F) 
1504 (M) 1483 (M) 2015 (M) 2136 (F) 1418 (M) 1491 (F) 1503 (M) 

  2132 (F)  1471 (M)   
  2133 (F)     

 

ID ID ID ID 

1478 (M) 1516 (M) 1372 (M) 1515 (F) 
1520 (F) 2123 (M) 1405 (M) 1517 (F) 

 2127 (M) 2121 (F)  
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2012 
 

ID ID ID ID ID ID ID ID ID 

1723 (F) 1722 (F) 1696 (F) 1418 (M) 1714 (F) 1654 (F) 1721 (F) 1561 (F) 1726 (F) 
  1702 (F) 1603 (F) 1717 (F) 1655 (F) 2012 (F)   
  1703 (F)  1719 (M) 1657 (F) 2024 (F)   
  1710 (F)   1727 (M)    

 
2013 
 

ID ID ID ID ID ID ID ID 

1655 (F) 1668 (F) 1561 (F) 1925 (F) 1789 (F) 1758 (F) 1847 (F) 1833 (F) 
1746 (F) 1809 (F) 1772 (M)     1859 (F) 
1757 (F) 1813 (F) 1876 (M)      
1836 (F)  1909 (M)      

 
 

ID ID ID ID ID ID 

1853 (M) 1872 (F) 1794 (F) 1867 (F) 1812 (F) 1717 (F) 
1901 (F) 1883 (F) 1796 (M) 5545 (M) 1903 (F) 1733 (M) 

 1904 (F) 1838 (F)  1905 (M) 1748 (F) 
 1926 (M) 1915 (F)  1910 (F)  
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APPENDIX B 
 

ECOLOGICAL DATA 
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Yearly Averages for All Variables 
 
Degu Density and Food Abundance 
 

Year 

Mean Degu 
Density 

(degus/ha) 

CV of Degu 
Density 

(degus/ha) 
Mean Food Abundance 

(g/m2) 
CV of Food 

Abundance (g/m2) 

2005 132.56 0.30 137.05 0.31 
2006 198.78 0.76 86.52 1.64 
2007 223.78 0.83 106.72 0.34 
2008 62.33 1.23 117.09 0.53 
2009 77.78 1.41 76.06 0.53 
2010 36.11 1.41 124.77 0.55 
2011 22.22 1.41 58.27 0.55 
2012 20.33 0.26 174.17 0.46 
2013 17.11 0.42 207.57 0.78 

 

 

Soil Hardness and Monthly Precipitation 

Year 
Mean Soil 

Hardness (kPa) 
CV of Soil Hardness 

(kPa) 
Mean monthly 

Precipitation (mm) 
CV of Monthly 

Precipitation (mm) 

2005 2875.91 0.06 26.94 1.48 
2006 3037.60 1.04 22.99 1.54 
2007 3031.21 0.04 11.20 1.52 
2008 3109.16 0.02 18.54 1.38 
2009 3042.77 0.03 17.29 1.90 
2010 2978.64 0.04 13.42 1.27 
2011 3020.80 0.05 9.30 1.63 
2012 2865.70 0.06 13.85 1.35 
2013 2925.51 0.04 10.32 2.11 

 

Burrow Density and Predator Abundance (together Predation Risk) 

Year 
Mean Burrow Density 

(#/m2) 
CV of Burrow 

Density (#/m2) 

Mean Predator 
Abundance 

(sightings/hour) 

CV of Predator 
Abundance 

(sightings/hour) 

2005 0.13 0.37   
2006 0.13 1.54 13.04 0.93 
2007 0.14 0.38 6.45 0.93 
2008 0.11 0.37 2.18 1.32 
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2009 0.12 0.38 1.95 1.37 
2010 0.12 0.37 0.45 2.84 
2011 0.17 0.36 0.83 2.01 
2012 0.11 0.40 0.60 2.58 
2013 0.13 0.43 1.05 2.00 

 

Monthly Temperature and Ectoparasitic Flea Intensity (EFI) 

Year 
Monthly Mean 

Temperature (°C) 
Monthly CV of Mean 

Temperature (°C) 
Mean EFI 

(ectoparasites/host) 
CV of EFI 

(ectoparasites/host) 

2005 10.6 0.17   
2006 11.2 0.19   
2007 8.8 0.39 9.39 1.06 
2008 11.2 0.24 11.12 0.73 
2009 10.4 0.27 6.10 0.81 
2010 9.6 0.33 7.33 0.79 
2011 10.0 0.36 8.37 0.82 
2012 10.4 0.23 11.52 1.00 
2013 10.4 0.28 7.14 0.83 
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APPENDIX C 
 

SOCPROG PROCEDURE 
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Select “Input data” 
 

 
 
Under data input select “Excel association matrix” 
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After selecting the tab that contains the matrix hit ‘OK’ and leave the long title the same. 
 

 
 
Select ‘Analyze single association measure 
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Select ‘Network analysis statistics’ and then make sure both boxes are checked on the box ‘Statistics of  
 
Weighted Network: Options’ 
 
Then hit ‘Run’ 
 
Name and save txt file.  
 
Copy and paste data from txt file into excel.  
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APPENDIX D 
 

SOCPROG OUTPUTS/NETWORK DATA 
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2005 – Entire Population 
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2005 – Group Values 
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2006 – Entire Population 
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2006 – Group Values 
 

 



68 
 

2007 – Entire Population 
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2007 – Group Values 
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2008 – Entire Population 
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2008 – Group Values 
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2009 – Entire Population 
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2009 – Group Values 
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2010 – Entire Population 
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2010 – Group Values 
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2011 – Entire Population 
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2011 – Group Values 
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2012 – Entire Population 
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2012 – Group Values 
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2013 – Entire Population 
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2013 – Group Values 
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APPENDIX E 
 

STATISTICAL PROGRAMMING CODE (SAS) 
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SAS Code and Outputs for All Individuals 
 
data PCOSxAffinity; 
input year$   GS    PCOW  SN1; 
cards; 
 
; 
proc mixed; 
class year; 
model PCOW= SN1 GS SN1*year GS* year year/cl; 
LSmeans year / adjust=tukey pdiff; 
run; 
quit;  
 
 
PCOW x Strength 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 38 1.84 0.1831 

GS 1 38 0.30 0.5846 

SN1*year 8 38 0.80 0.6090 

GS*year 8 38 0.59 0.7799 

year 8 38 1.33 0.2603 

 
PCOW x Eigenvector Centrality 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 38 1.86 0.1802 

GS 1 38 0.87 0.3577 

SN1*year 8 38 0.75 0.6438 

GS*year 8 38 1.61 0.1542 

year 8 38 1.03 0.4306 

PCOW x Reach 
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Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 38 0.59 0.4488 

GS 1 38 0.88 0.3555 

SN1*year 8 38 0.64 0.7378 

GS*year 8 38 0.57 0.7994 

year 8 38 0.96 0.4831 

 
PCOW x Clustering Coefficient  

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 23 1.13 0.2992 

GS 1 23 5.36 0.0299 

SN1*year 8 23 0.99 0.4664 

GS*year 7 23 1.54 0.2043 

year 8 23 1.42 0.2400 

 
PCOW x Affinity 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 36 0.91 0.3469 

GS 1 36 0.25 0.6208 

SN1*year 8 36 0.84 0.5756 

GS*year 8 36 0.78 0.6206 

year 8 36 1.27 0.2902 

 
PCOS x Strength 

Solution for Fixed Effects 

Effect year Estimate Standard 
Error 

DF t Value Pr > |t| Alpha Lower Upper 

SN1*year 2005 -2.0326 1.0644 38 -1.91 0.0637 0.05 -4.1874 0.1221 

SN1*year 2006 0.6993 1.2901 38 0.54 0.5909 0.05 -1.9124 3.3110 
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Solution for Fixed Effects 

Effect year Estimate Standard 
Error 

DF t Value Pr > |t| Alpha Lower Upper 

SN1*year 2007 0.02658 0.4924 38 0.05 0.9572 0.05 -0.9703 1.0235 

SN1*year 2008 -1.8503 0.5063 38 -3.65 0.0008 0.05 -2.8752 -0.8253 

 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 38 0.07 0.7946 

GS 1 38 0.57 0.4536 

SN1*year 8 38 2.43 0.0314 

GS*year 8 38 0.89 0.5340 

year 8 38 1.16 0.3456 

 
 
PCOS x Eigenvector Centrality 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 38 0.04 0.8487 

GS 1 38 0.14 0.7076 

SN1*year 8 38 1.13 0.3661 

GS*year 8 38 0.95 0.4886 

year 8 38 1.20 0.3248 

 
PCOS x Reach 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 38 0.07 0.7936 

GS 1 38 0.15 0.7052 

SN1*year 8 38 1.52 0.1828 

GS*year 8 38 0.47 0.8701 

year 8 38 0.45 0.8799 
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PCOS x Clustering Coefficient 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 23 0.00 0.9792 

GS 1 23 0.02 0.8792 

SN1*year 8 23 0.79 0.6144 

GS*year 7 23 1.02 0.4415 

year 8 23 0.92 0.5164 

 
PCOS x Affinity 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 37 0.63 0.4315 

GS 1 37 3.01 0.0913 

SN1*year 8 37 1.09 0.3904 

GS*year 8 37 0.48 0.8590 

year 8 37 1.19 0.3331 

 
SAS Code and Outputs for Females Only 

data PCOSxAffinity; 
input year$   GS    PCOW SN1; 
cards; 
 
; 
proc mixed; 
class year; 
model PCOW= SN1 GS SN1*year GS* year year/cl; 
LSmeans year / adjust=tukey pdiff; 
run; 
quit;  
 

PCOW x Strength 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 24 1.36 0.2552 
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Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

GS 1 24 0.10 0.7504 

SN1*year 6 24 1.89 0.1247 

GS*year 6 24 0.87 0.5296 

year 6 24 1.36 0.2713 

 
PCOW x Eigenvector Centrality 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 24 2.46 0.1295 

GS 1 24 1.82 0.1903 

SN1*year 6 24 0.57 0.7523 

GS*year 6 24 1.37 0.2675 

year 6 24 0.67 0.6747 

 
 
PCOW x Reach 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 24 0.23 0.6378 

GS 1 24 0.61 0.4421 

SN1*year 6 24 0.69 0.6576 

GS*year 6 24 1.76 0.1503 

year 6 24 1.85 0.1308 

PCOW x Clustering Coefficient 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 13 1.82 0.2002 

GS 1 13 2.01 0.1800 

SN1*year 5 13 0.26 0.9258 
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Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

GS*year 5 13 1.43 0.2787 

year 5 13 1.57 0.2367 

 
PCOW x Affinity 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 22 0.00 0.9551 

GS 1 22 0.93 0.3457 

SN1*year 6 22 0.26 0.9498 

GS*year 5 22 1.04 0.4193 

year 6 22 1.05 0.4194 

 
PCOS x Strength  
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 24 0.01 0.9242 

GS 1 24 0.96 0.3364 

SN1*year 6 24 0.72 0.6344 

GS*year 6 24 0.39 0.8784 

year 6 24 0.07 0.9985 

 
PCOS x Eigenvector Centrality 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 24 0.82 0.3739 

GS 1 24 0.49 0.4915 

SN1*year 6 24 0.34 0.9082 

GS*year 6 24 0.54 0.7723 
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Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

year 6 24 0.26 0.9496 

PCOS x Reach 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 24 0.31 0.5807 

GS 1 24 2.56 0.1229 

SN1*year 6 24 0.88 0.5276 

GS*year 6 24 0.61 0.7162 

year 6 24 0.33 0.9126 

 
PCOS x Clustering Coefficient 
 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 13 0.01 0.9426 

GS 1 13 4.15 0.0625 

SN1*year 5 13 0.70 0.6342 

GS*year 5 13 0.98 0.4683 

year 5 13 0.94 0.4875 

 
PCOS x Affinity 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

SN1 1 22 0.06 0.8020 

GS 1 22 4.31 0.0499 

SN1*year 6 22 0.89 0.5183 

GS*year 5 22 1.43 0.2524 

year 6 22 1.14 0.3741 
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APPENDIX F 
 

STATISTICAL PROGRAMMING CODE (R) 
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R Code Sample 
 
#########                              
######### Mixed model analysis script  
#########                              
# DESCRIPTION OF VARIABLES IN OBJECT data 
# 
# Response variables modeled 
# PCOW: offspring 
# offspring.fall: offspring next fall  
# 
# Predictor variables 
# mean.alim, cv.alim, Females, etc 
# 
# random factor: sampling year 
 
 
library(nlme) 
 
SNdata =read.csv("C:/Users/xmv694/Desktop/Thesis/cvs for R females only 11.13.csv", sep=",", head=T) 
 
m0<-gls(PCOW~1,data=SNdata,na.action=na.omit,method="ML") 
 
### intercept model only for offsping in fall, with no grouping variable 
m0a<-gls(offspring.fall~1,data=SNdata,na.action=na.omit,method="ML") 
 
### null models for PCOW and offsping in fall using year as grouping factor 
m1<-lme(PCOW~1,random=~1|as.factor(year),na.action=na.omit, method="ML",data=SNdata) 
summary(m1) 
m1a <-lme(offspring.fall~1,random=~1|as.factor(year),na.action=na.omit, method="ML",data=SNdata) 
summary(m1a) 
 
#### OBJECT NAMES ASSIGNED TO MIXED MODELS. COMBINATIONS REPRESENT MODELS AT THE 
LOWEST LEVEL 
 
############################################################################ 
##### Model PCOWxFoodxfemales 
PCOWxFoodxfemales <-lme(PCOW~mean.alim*females+cv.alim*females, 
                       random=~1|as.factor(year),na.action=na.omit,method="ML", 
                       data=SNdata) 
summary(PCOWxFoodxfemales) 
 
##### Model offspringxFoodxfemales 
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m2b<-lme(offspring.fall~mean.alim*females+cv.alim*females, 
         random=~1|as.factor(year),na.action=na.omit, method="ML", 
         data=SNdata) 
summary(m2b) 
#####################################################################################
##Clust.Coeff 
##### PCOWxFoodxClust.Coeff 
PCOWxFoodxClust.Coeff <-lme(PCOW~mean.madr*Clust.Coeff+cv.madr* Clust.Coeff, 
                           random=~1|as.factor(year),na.action=na.omit, method="ML", 
                           data=SNdata) 
 
summary(PCOWxFoodxClust.Coeff) 
 
##### offspringxFoodxClust.Coeff 
offspringxFoodxClust.Coeff <-lme(offspring.fall ~mean.madr*Clust.Coeff+cv.madr*Clust.Coeff, 
                                 random=~1|as.factor(year),na.action=na.omit,method="ML", 
                                 data=SNdata) 
 
summary(offspringxFoodxClust.Coeff) 
##################################################################################### 
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  APPENDIX G  
 

OUTPUTS FROM STATISTICAL PROGRAMMING (R) 
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Table G1. Models used to examine the influence of yearly mean and variance (based on CV) in ecological 
conditions on the relationship between strength and either per capita offspring weaned or per 
capita offspring surviving to reproductive age. Only significant models are included. A list of all 
models is included in Table G2.  

Source of variation Estimate  SE of 
estimate 

DF t-value p-value 

Model 2: modulating roles of food abundance on the relationship between strength of all adult group 
members and per capita offspring weaned 

Intercept 5.87 1.70 56 3.46 0.0011 

Strength -0.88 1.19 56 -0.74 0.4622 

Mean food abundance -0.02 0.01 6 -1.42 0.2066 

CV food abundance 4.98 1.74 6 2.86 0.0290 

Mean food 
abundance*strength 

0.01 0.01 56 2.02 0.0478 

CV food abundance*strength -3.91 1.73 56 -2.26 0.0277 

Model 6: modulating roles of food abundance on the relationship between strength of adult female 
group members and per capita offspring weaned 

Intercept 7.36 2.0 34 6.14 0.0000 

Strength -1.02 1.19 34 -0.86 0.3949 

Mean food abundance 0.00 0.01 4 0.07 0.9414 

CV food abundance -8.30 3.55 4 -2.33 0.0256 

Mean food 
abundance*strength 

-0.00 0.01 34 -1.04 0.3034 

CV food abundance*strength 8.10 3.62 34 2.26 0.0319 

Model 18: modulating roles of burrow density on the relationship between strength of all adult group 
members and per capita offspring weaned 

Intercept 6.70 3.02 56 2.22 0.0304 

Strength -1.17 2.48 56 -0.47 0.6384 

Mean burrow density -18.37 20.86 6 -0.88 0.4125 

CV burrow density 5.99 2.03 6 2.95 0.0255 

Mean burrow density*strength 16.29 17.27 56 0.94 0.3497 

CV burrow density*strength -5.19 2.31 56 -2.25 0.0286 
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Model 27: modulating roles of predator abundance on the relationship between strength of all adult 
group members and per capita offspring surviving to reproductive age 

Intercept 3.37 0.98 50 3.46 0.0011 

Strength -1.87 0.79 50 -2.36 0.0221 

Mean predator abundance -0.08 0.08 5 -0.99 0.3644 

CV predator abundance -1.34 0.47 5 -2.87 0.0349 

Mean predator 
abundance*strength 

0.12 0.08 50 1.37 0.1771 

CV predator 
abundance*strength 

0.91 0.36 50 2.52 0.0149 

Model 34: modulating roles of soil hardness on the relationship between strength of all adult group 
members and per capita offspring weaned 

Intercept -30.58 18.98 56 -1.61 0.1129 

Strength 23.47 12.38 56 1.90 0.0631 

Mean soil hardness 0.01 0.01 6 1.94 0.1001 

CV soil hardness 7.40 2.30 6 3.21 0.0183 

Mean soil hardness*strength -0.01 0.00 56 -1.96 0.0553 

CV soil hardness*strength -6.67 2.61 56 -2.56 0.0133 

Model 38: modulating roles of soil hardness on the relationship between strength of adult female 
group members and per capita offspring weaned 

Intercept 17.81 15.07 34 1.18 0.2455 

Strength -22.37 15.26 34 -1.47 0.1518 

Mean soil hardness -0.59 0.83 4 -0.71 0.4840 

CV soil hardness -84.77 44.14 4 -1.92 0.0632 

Mean soil hardness*strength 1.14 0.84 34 1.135 0.1856 

CV soil hardness*strength 107.37 44.55 34 2.41 0.0215 

Model 43: modulating roles of precipitation on the relationship between strength of all adult group 
members and per capita offspring surviving to reproductive age 

Intercept -3.67 2.34 56 -1.57 0.1225 

Strength 2.36 1.90 56 1.25 0.2175 

Mean precipitation 0.08 0.02 6 4.37 0.0047 
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CV precipitation 2.53 1.95 6 1.29 0.2437 

Mean precipitation*strength -0.06 0.01 56 -3.85 0.0003 

CV precipitation*strength -1.04 1.55 56 -0.68 0.5019 

Model 61: modulating roles of ectoparasitic flea intensity (EFI)  on the relationship between within 
group strength of adult female group members and per capita offspring weaned 

Intercept 3.76 5.03 28 0.75 0.4612 

Strength 2.22 3.83 28 0.58 0.57 

Mean EFI 0.29 0.24 2 1.21 0.3498 

CV EFI -0.07 5.22 2 -0.016 0.9894 

Mean EFI*strength -0.39 0.19 28 -2.07 0.0473 

CV EFI*strength 0.50 4.01 28 0.12 0.9021 

Model 64: modulating roles of ectoparasitic flea intensity (EFI)  on the relationship between within 
group strength of all adult group members and per capita offspring surviving to reproductive age 

Intercept 1.19 1.96 44 0.61 0.5476 

Strength -1.17 1.25 44 -0.94 0.3527 

Mean EFI 0.29 0.11 4 2.57 0.0620 

CV EFI -3.52 1.97 4 -1.78 0.1501 

Mean EFI*strength -0.16 0.07 44 -2.20 0.0334 

CV EFI*strength 3.10 1.33 44 2.34 0.0241 

Model 65: modulating roles of ectoparasitic flea intensity (EFI)  on the relationship between population 
level strength of all adult group members and per capita offspring surviving to reproductive age 

Intercept 0.95 2.22 44 0.43 0.6706 

Strength -0.90 1.29 44 -0.70 0.4882 

Mean EFI 0.35 0.12 4 2.83 0.0473 

CV EFI -3.85 2.27 4 -1.70 0.1649 

Mean EFI*strength -0.20 0.08 44 -2.50 0.0163 

CV EFI*strength 3.01 1.38 44 2.20 0.0338 

Model 68: modulating roles of ectoparasitic flea intensity (EFI)  on the relationship between population 
level strength of adult female group members and per capita offspring surviving to reproductive age 

Intercept 3.45 2.47 28 1.40 0.1729 

Strength -2.16 1.39 28 -1.55 0.1315 
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Mean EFI 0.16 0.14 2 1.17 0.3635 

CV EFI -4.27 2.28 2 -1.87 0.2026 

Mean EFI*strength -0.07 0.08 28 -0.87 0.3914 

CV EFI*strength 3.00 1.33 28 2.26 0.0320 
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Table G2. Models used to examine the effect of mean and coefficient of variation (CV) of ecological 
variables on the relationship between social network metrics and per capita offspring weaned 
(PCOW) and the relationship between social network metrics and per capita offspring surviving to 
reproductive age (PCOS). Models were examined for both all adult group members (A) and adult 
female group members (F) based on trapping overlap. Bold type indicates best fit models based on 
decreasing AIC values and significant p-values. Hypothesis supported indicates whether mean 
(harsh) ecological conditions, CV (variable) of ecological conditions, both mean and CV of ecological 
conditions, or neither mean nor CV of ecological conditions were significant in the model. Models 1-
68 correspond to models examining strength and models 69-76 correspond to models examining 
eigenvector centrality. Models for EFI were examined for both within group (WG) strength and 
population level (PL) strength. 

Model 
Number 

Source of variation All Adults 
(A) or 

Females 
(F) 

Direct 
Fitness 

Correlate 

AIC Hypothesis 
Supported 

1 Null A PCOW 317.8180  
2 Food Abundance A PCOW 304.3481 Both 
3 Degu Density A PCOW 305.0116 Neither 
4 Food Abundance x Degu Density A PCOW 305.8600 Neither 
5 Null F PCOW 194.3667  
6 Food Abundance F PCOW 181.9357 Variable 
7 Degu Density F PCOW 192.3009 Neither 
8 Food Abundance x Degu Density F PCOW 187.9537 Neither 
9 Null A PCOS 175.1417  

10 Food Abundance A PCOS 178.8810 Neither 
11 Degu Density A PCOS 174.8335 Neither 
12 Food Abundance x Degu Density A PCOS 181.0343 Neither 
13 Null F PCOS 114.3182  
14 Food Abundance F PCOS 115.6589 Neither 
15 Degu Density F PCOS 118.1938 Neither 
16 Food Abundance x Degu Density F PCOS 120.6647 Neither 
17 Null A PCOW 317.8180  
18 Burrow Density A PCOW 303.9374 Variable 
19 Predator Abundance A PCOW 276.4828 Neither 

20 
Burrow Density x Predator 

Abundance 
A PCOW 280.5329 Neither 

21 Null F PCOW 194.3667  
22 Burrow Density F PCOW 189.3690 Neither 
23 Predator Abundance F PCOW 172.5700 Neither 

24 
Burrow Density x Predator 

Abundance 
F PCOW 172.6019 Neither 

25 Null A PCOS 175.1417  
26 Burrow Density A PCOS 178.5085 Neither 
27 Predator Abundance A PCOS 156.2027 Variable 

28 
Burrow Density x Predator 

Abundance 
A PCOS 158.2723 Variable 
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29 Null F PCOS 114.3182  

30 Burrow Density F PCOS 120.2991 Neither 
31 Predator Abundance F PCOS 107.7124 Neither 

32 
Burrow Density x Predator 

Abundance 
F PCOS 114.1267 Neither 

33 Null A PCOW 317.8180  
34 Soil Hardness A PCOW 300.2612 Variable 
35 Monthly Precipitation A PCOW 300.3701 Neither 

36 
Soil Hardness x Monthly 

Precipitation 
A PCOW 300.9658 Neither 

37 Null F PCOW 194.3667  
38 Soil Hardness F PCOW 185.4810 Variable 
39 Monthly Precipitation F PCOW 190.5321 Neither 

40 
Soil Hardness x Monthly 

Precipitation 
F PCOW 190.0278 Variable 

41 Null A PCOS 175.1417  
42 Soil Hardness A PCOS 177.7651 Harsh 
43 Monthly Precipitation A PCOS 162.9760 Harsh 

44 
Soil Hardness x Monthly 

Precipitation 
A PCOS 166.5473 Harsh 

45 Null F PCOS 114.3182  
46 Soil Hardness F PCOS 114.4831 Neither 
47 Monthly Precipitation F PCOS 115.5260 Neither 

48 
Soil Hardness x Monthly 

Precipitation 
F PCOS 114.6463 Neither 

49 Null A PCOW 317.8180  
50 Temperature A PCOW 311.5103 Neither 
51 Null F PCOW 194.3667  
52 Temperature F PCOW 192.1340 Neither 
53 Null A PCOS 175.1417  
54 Temperature A PCOS 169.6826 Neither 
55 Null F PCOS 114.3182  
56 Temperature F PCOS 113.1700 Neither 
57 Null A PCOW 238.0259  
58 Ectoparasite Flea Intensity (WG) A PCOW 232.1658 Neither 
59 Ectoparasitic Flea Intensity (PL) A PCOW 233.2664 Neither 
60 Null F PCOW 157.1688  

61 Ectoparasite Flea Intensity (WG) F PCOW 154.6643 Harsh 

62 Ectoparasitic Flea Intensity (PL) F PCOW 157.1688 Neither 
63 Null A PCOS 139.8505  
64 Ectoparasite Flea Intensity (WG) A PCOS 138.3267 Both 
65 Ectoparasitic Flea Intensity (PL) A PCOS 137.506 Both 
66 Null F PCOS 93.45992  
67 Ectoparasite Flea Intensity (WG) F PCOS 93.33148 Neither 

68 Ectoparasitic Flea Intensity (PL) F PCOS 92.01377 Variable 

69 
Null A PCOW 238.0259  
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70 Ectoparasitic Flea Intensity A PCOW 238.5218 Neither 

71 Null F PCOW 157.1688  

72 Ectoparasitic Flea Intensity F PCOW 163.8251 Neither 

73 Null A PCOS 139.8505  

74 Ectoparasitic Flea Intensity A PCOS 141.8681 Neither 

75 Null F PCOS 93.45992  

76 Ectoparasitic Flea Intensity F PCOS 96.11983 Neither 
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APPENDIX H 
 

MATHEMATICAL DESCRIPTION OF THE MODEL BUILDING APPROACH (EBENSPERGER ET AL. 2014) 
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The following information (Appendix H) was published as supplementary material in a previous study 

(Ebensperger et al. 2014). 

Herein, we illustrate the general approach used to analyze our Degu Database. For the sake of simplicity 

we provide the mathematical formulation that includes two ecological predictors. The mixed effect 

model used for a two level hierarchy takes the following form: 

(Eq. 1)    𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗 (𝑥)𝑗 + 𝜀𝑖𝑗  

(Eq. 2)    𝛽0𝑗 = 𝛾00 + 𝛾01 (𝑧1̅)𝑗 + 𝛾02 (𝑧2̅)𝑗 +  𝜇0𝑗 

𝛽1𝑗 = 𝛾10 + 𝛾11 (𝑧1̅)𝑗 + 𝛾12 (𝑧2̅)𝑗 + 𝜇1𝑗 

 

Where Eq. 1 represents the relationship between the i-th fitness observation of variable y (i.e., per 

capita offspring produced, or per capita offspring that survived to breeding age) and a sociality 

measurement x (i.e., group size, or number of females) grouped at the j-th sampling year. This simple 

linear regression was declared at level-1 of the model hierarchy, whose subscripts allowed us to model 

independently its intercept  𝛽0𝑗 and slope 𝛽1𝑗 as functions of environmental and ecological variables 

measured al level-2 in the model hierarchy (Eq. 2). Thus, Eq. 2 allowed to model level-1 regression 

parameters as a function of mean values for the set of  𝑧̅ variables measured every j-th sampling year. As 

a result, the effects of ecological variables on fitness were assessed on a single modeling step without 

sacrificing degrees of freedom.  

Combining Eq. 1 and Eq. 2 give us the mixed effects model, 

(Eq 3)   𝑦𝑖𝑗 = 𝛾00 + 𝛾01 (𝑧1̅)𝑗 + 𝛾02 (𝑧2̅)𝑗 + 𝛾10(𝑥) + 𝛾11 (𝑧1̅)𝑗(𝑥)𝑗 + 𝛾12 (𝑧2̅)𝑗 (𝑥)𝑗 + 𝜇0𝑗 +

𝜇1𝑗 + 𝜇1𝑗(𝑥)𝑗 + 𝜀𝑖𝑗  
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Note that this model formulation appropriately isolate the error terms  𝜀𝑖𝑗  , 𝜇0𝑗 and 𝜇1𝑗 , reducing the 

probability of committing type-II errors. 

Eq. 3 specifies that the effects of mean ecological conditions 𝑧̅ over fitness response 𝑦 are propagated 

through sociality variable 𝑥. Accordingly, their ecological relevance can be statistically assessed using 

parameters 𝛾11 and  𝛾12 accompanying the 1 and 2-level interactions terms. If more than two 𝑧̅ variables 

were modeled, their respective interaction terms can be used to test these effects. 
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APPENDIX I 
 

SOCIAL NETWORK MAPS (2007-2013; NETDRAW) 
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Figure I1. Representative social network maps from 2007 (left) and 2008 (right) showing all individuals 
assigned to a social group. Males are represented by white circles, females by grey circles, and 
the thickness of the lines indicates the amount of trapping overlap between any two individuals. 
There were 7 social groups in 2007 and 13 in 2008. There was one solitary adult females (no 
trapping overlap with any other individuals) in 2008 that is not shown in the network map. 
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Figure I2. Representative social network maps from 2009 and 2010 showing all individuals assigned to a 
social group. Males are represented by white circles, females by grey circles, and the thickness 
of the lines indicates the amount of trapping overlap between any two individuals. There were 
10 social groups in 2009 and 6 in 2010. There were 2 solitary adults (no trapping overlap with 
any other individuals; one male and one female) in 2010 that are not shown in the network 
map. 
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Figure I3. Representative social network maps from 2011 (right) and 2012 (left) showing all individuals 
assigned to a social group. Males are represented by white circles, females by grey circles, and 
the thickness of the lines indicates the amount of trapping overlap between any two individuals. 
There were 11 social groups in 2011 and 9 in 2012. There were 4 solitary adult females (no 
trapping overlap with any other individuals) in 2012 that are not shown in the network map. 
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Figure I4. Representative social network maps from 2013 showing all individuals assigned to a social 
group. Males are represented by white circles, females by grey circles, and the thickness of the 
lines indicates the amount of trapping overlap between any two individuals. There were 13 
social groups in 2013. There were 4 solitary adult females (no trapping overlap with any other 
individuals) in 2013 that are not shown in the network map. 
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