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Abstract 

The current study aims to compare the accuracy of decision trees to logistic regression in a 

personnel selection context. To make this comparison, two studies are proposed. The first study 

uses simulated applicant data.  For each applicant, there will be a cognitive ability score, 

conscientiousness rating, and a structured interview score.  Job performance will be simulated as 

a function of the simulated scores.  Additionally, different selection ratios will be applied to the 

simulated data to mimic how organizations select applicants and to determine whether the 

selection ratio has an impact on the accuracy of each analytic approach.  A second purpose of 

this study is to examine whether the decision strategies used by decision makers in a real 

selection context (graduate school admission decisions) reflect the strategies that the decision 

makers should be using.  For each graduate school applicant, the predictors of undergraduate 

grade point average (GPA) and graduate record examination (GRE) scores will be used. To 

measure performance, final graduate GPA will be used.  The performance data will be used to 

determine the accuracy of the decision tool in a real selection context.  Additionally, there will be 

information on the decision of whether the applicant was admitted to the program.  Whether an 

applicant was admitted will be matched to the prediction made by the regression analysis and the 

decision tree analysis to determine if what was done matches what the regression and decision 

tree models.  This is meant to determine which analysis more closely matches how individuals 

actually make decisions. 
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Summary 

Background 

Actuarial methods such as logistic regression have been shown to be more accurate in predicting 

applicant’s future performance when compared clinical judgments (Dawes, 1971, 1979).  Despite 

this, organizations continue to use suboptimal methods when making decisions (Highhouse, 

2008).  Decision trees have gained continued research interest as a fast and easy to interpret 

actuarial method (Raab & Grigerenzer, 2015).  Decision trees are an attractive alternative due to 

the ease of interpretation.  With methods like logistic regression, prior statistical knowledge is 

needed in order to interpret the model.  Decision trees require no such prerequisites to interpret.  

This has led to numerous studies in fields ranging from finance to medicine that have 

demonstrated decision trees to be as accurate as other actuarial methods (Sinha & May, 2004).  

Hypothesis 1:  Decision tree analysis will be as accurate as logistic regression in 

predicting performance outcomes in the simulated environment. Accuracy of decision 

trees will not be significantly different from that of regression. 

Hypothesis 2: Decision tree analysis will be as accurate as logistic regression in 

predicting acceptance into a graduate school program. Accuracy of decision trees will not 

be significantly different from that of regression. 

 

There are three commonly used selection ratios: fixed quota, threshold selection, and mixed 

quota/threshold decision (De Corte, 1999, 2002).  These different ratios will be used to simulate 

how different organizations hire employees.   

Hypothesis 3: More stringent selection ratios will reduce both logistic regression and 

decision tree models ability to accurately identify the top performing applicants. 

Hypothesis 4: Decision trees will be more robust to changes in selection ratio than 

logistic regression.  

Methods 

Study One  
A population will be simulated using conscientiousness, GMA, and structured interview scores.   

Coefficients for the regression equation can be seen below (Cortina, Goldstein, Payne, Davison, 

& Gilliland, 2000).  The population will then be split into a training sample and a test sample 

consisting of 250 applicants, the average number of applicant to many white collar jobs (Joyce, 

2016).  The training sample is used to create both a logistic regression and decision tree model.  

The test sample is used to apply the models and obtain classification accuracy.  This will be done 

under three different selection ratios, fixed quota (performance in the top ten percent), fixed 

threshold (performance above .371) and mixed model (performance in the top ten percent and 

above .371).  To analyze this data a factorial ANOVA will be used to compare methods. 

  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒̂̂ =𝛽0+ .43 ∗𝐺𝑀𝐴+ .24 ∗𝐶𝑜𝑛𝑠𝑖𝑒𝑛𝑡𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠+ .58 ∗ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝑖𝑛𝑡𝑒𝑣𝑖𝑒𝑤+𝐸𝑟𝑟𝑜𝑟 

 

Study Two  

This study will use archival data from MTSU’s I/O psychology graduate program to compare the 

decision trees to logistic regression in a real sample.  Predictors will be GPA, GRE verbal, and 

GRE quantitative with the outcome variable being whether or not they were selected to the 

program.  The data will be split into thirds with one third being training data and the other test 

data.  An independent samples t-test will be used to compare methods. 
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