
University of Tennessee at Chattanooga University of Tennessee at Chattanooga 

UTC Scholar UTC Scholar 

Honors Theses Student Research, Creative Works, and 
Publications 

5-2018 

Phospholipid membrane remodeling through exogenous fatty Phospholipid membrane remodeling through exogenous fatty 

acid incorporation in certain bacterial species acid incorporation in certain bacterial species 

Josh Herndon 
University of Tennessee at Chattanooga, nmd773@mocs.utc.edu 

Follow this and additional works at: https://scholar.utc.edu/honors-theses 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
Herndon, Josh, "Phospholipid membrane remodeling through exogenous fatty acid incorporation in 
certain bacterial species" (2018). Honors Theses. 

This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications 
at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. 
For more information, please contact scholar@utc.edu. 

https://scholar.utc.edu/
https://scholar.utc.edu/honors-theses
https://scholar.utc.edu/student-research
https://scholar.utc.edu/student-research
https://scholar.utc.edu/honors-theses?utm_source=scholar.utc.edu%2Fhonors-theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=scholar.utc.edu%2Fhonors-theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.utc.edu/honors-theses/154?utm_source=scholar.utc.edu%2Fhonors-theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@utc.edu


Phospholipid membrane remodeling through exogenous fatty acid incorporation in 

certain bacterial species 

 

Joshua Luke Herndon 

 

 

Departmental Honors Thesis 

The University of Tennessee at 

Chattanooga  

Department of Chemistry and 
Physics 

 

 

Examination Date: 04/02/2018 

 

 

 

 

 

 

Steven J. Symes David K. Giles 

Professor of Chemistry Professor of Biology 

Thesis Director Department Examiner 

 

 

 

 

Kyle S. Knight 

Professor of 
Chemistry 

Department 
Examiner 

 

 

 

 



Abstract 

Phospholipid membrane remodeling through exogenous fatty 

acid incorporation in certain bacterial species 

by Joshua Luke Herndon 

Multi-drug resistant bacteria have become problematic in healthcare settings. Recent studies 

have documented the ability of some bacteria, such as Vibrio species, to assimilate exogenous 

fatty acids into their membrane phospholipids.  Therefore, the current research was performed 

to determine whether the three virulent, multi-drug resistant bacteria Acinetobacter baumannii, 

Klebsiella pneumoniae, and Escherichia coli can remodel their cell membranes following 

exposure to a range of exogenous polyunsaturated fatty acids (PUFAs). Furthermore, we 

hypothesized that PUFAs would influence phenotypes associated with growth and virulence. 

Extracted phospholipids were examined by UPLC/MS analysis to confirm assimilation of 

exogenous PUFAs into the bacterial phospholipids. A. baumanii, K. pneumoniae, and E. coli 

were found to incorporate all exogenous PUFAs into their cell membranes, with the exception 

of docosahexaenoic acid (22:6) for E. coli. Membrane permeability assays were performed 

using Crystal violet (CV) and ethidium bromide (EtBr).  Notably, E. coli samples exposed to 

22:6 or arachidonic acid (20:4) took up approximately 35% or 60% more CV than the control 

sample, respectively. All PUFA-exposed E. coli samples demonstrated higher uptake of EtBr 

than the control sample, suggesting that every fatty acid tested increased membrane 

permeability. An assay for biofilm formation revealed that α-linolenic acid (18:3α), γ-linolenic 

acid (18:3γ), 20:4, and 22:6 significantly (p < 0.002) increased biofilm production in E. coli. 

Strikingly, 18:3 γ and 20:4 tripled biofilm formation when compared to the control sample. 

Similar phenotypic shifts were observed in A. baumannii and K. pneumoniae. Motility assays 

and minimum inhibitory concentration (MIC) assays using membrane-active cyclic peptide 

antibiotics were also performed. Taken together, the results of the experiments presented in 

this thesis suggest that exogenous PUFAs may be utilized in the future as combatants of multi-

drug resistant bacteria in conjunction with antibiotics. 
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CHAPTER ONE 

1. Introduction 

 

1.1 Emergence of Multi-Drug Resistant Bacteria and Membrane Remodeling 

Virulent, multi-drug resistant (MDR) bacteria have become more prevalent over the last 

few decades partially due to the selective pressure exerted by antibiotic use1. Non-MDR 

bacteria may acquire resistance genes via transformation or directly from MDR bacteria 

via bacterial conjugation1, further increasing the number of MDR bacteria. MDR bacteria 

are especially problematic in environments consisting largely of immunocompromised 

individuals such as hospitals and are responsible for the increase in nosocomial 

infections.2 The leading causes of nosocomial infections across the world are the 

ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, 

and Enterobacter species)3. Therefore, the rise of MDR bacteria is one of the most 

pervasive challenges in the healthcare industry2 and has necessitated the development of 

novel treatments for MDR bacteria. Rather than attempt to synthesize new antibiotics or 

improve the efficiency of current ones, the focus of this research was on the manipulation 

of the phospholipid membranes of MDR bacteria via exposure to exogenous 

polyunsaturated fatty acids (PUFAs). Previous research has shown that some bacteria are 

capable of assimilating PUFAs into their phospholipid membranes rather than 

metabolizing them through β-oxidation4.  This process is referred to as membrane 

remodeling and was first observed in Escherichia coli5. In gram-negative bacteria, 
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membrane remodeling is proposed to be carried out by FadL, an outer membrane 

transporter, by delivering exogenous fatty acids to the cytosolic face of the inner 

membrane and activating them to produce acyl-coenzyme A5. The assimilation process 

proceeds after the fatty acids have been converted to this form. Alterations of several 

phenotypes important to the virulence of MDR bacteria such as motility, biofilm 

formation, and antimicrobial resistance have been observed following membrane 

remodeling6,7,8,9,10. 

Three gram-negative, MDR bacteria were subjected to PUFA exposure and subsequent 

experimentation in this research: Escherichia coli, and two of the six ESKAPE 

pathogens, Acinetobacter baumannii and Klebsiella pneumoniae.  

1.2 Fatty Acids and Phospholipids 

Lipids may be broadly defined as hydrophobic molecules composed of carbon, hydrogen, 

and oxygen atoms. Carbon and hydrogen atoms greatly outnumber oxygen atoms in lipid 

molecules and as a result, they often feature long hydrocarbon chains. Fatty acids are 

characteristic lipid molecules that consist of a carboxyl group (COOH) and a 

hydrocarbon chain of the structural form [(CH)m(CH2)n(CH3)], where m is the number of 

double bonds between two carbon atoms and n is the number of  methylene groups. 

Written in standard notation, a fatty acid may be represented as a:b (Δp
1

, p
2

,…p
j), where a is 

the total number of carbon atoms in the fatty acid, b is the total number of double bonds 

between two carbon atoms, and (Δp
1

, p
2

,…, p
j) describes the location(s) of any double 

bond(s) relative to the carbonyl carbon atom. An example of this nomenclature as it 

pertains to the fatty acid arachidonic acid is 20:4 (Δ5, 8, 11, 14). Often, the (Δp
1

, p
2

,…p
j) term 

is omitted for simplicity. Fatty acids may be either saturated, monounsaturated, or 
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polyunsaturated, meaning they may possess no double bonds, one double bond, or more 

than one double bond, respectively. Unsaturated fatty acids that have two hydrocarbon 

chains on the same side of each double bond are known as cis isomers, whereas 

unsaturated fatty acids that have two hydrocarbon chains on opposite sides of each 

double bond are known as trans isomers. Some bacteria may convert cis fatty acids to 

trans fatty acids in response to toxic molecules or temperature, since trans isomers have 

an increased melting point and increase membrane rigidity11. Unsaturated fatty acids may 

either be ω-3 or ω-6 fatty acids, meaning that the last double bond along the hydrocarbon 

chain is either three carbons away from the terminal methyl group or six carbons away 

from the terminal methyl group, respectively. 

The exogenous PUFAs used in this experiment were linoleic acid (18:2), α-linolenic acid 

(18:3-α), γ-linolenic acid (18:3-γ), dihomo-γ-linolenic acid (20:3), arachidonic acid 

(20:4), eicosapentaenoic acid (20:5), and docosahexaenoic acid (22:6). The structures of 

18:2, 18:3-α, 18:3-γ, 20:3, 20:4, 20:5, and 22:6 are given in Figures 1.1, 1.2, 1.3, 1.4, 1.5, 

1.6, and 1.7, respectively.  
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Figure 1.1: The structure of linoleic acid (18:2) 

Figure 1.2: The structure of α-linolenic acid (18:3-α) 
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Figure 1.3: The structure of γ-linolenic acid (18:3-γ) 

Figure 1.4: The structure of dihomo-γ-linolenic acid (20:3) 
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Figure 1.5: The structure of arachidonic acid (20:4) 

Figure 1.6: The structure of eicosapentaenoic acid (20:5) 
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It should be noted that 18:3-α, 20:5, and 22:6 are ω-3 PUFAs, and 18:2, 18:3-γ, 20:3, and 

20:4 are ω-6 PUFAs. 

Phospholipids are more complex lipids than fatty acids and are essential for both 

prokaryotic and eukaryotic cellular function, since they are the major component of the 

cell membrane12. A diagram of a typical gram-negative cell membrane is presented in 

Figure 1.8. 

Figure 1.7: The structure of docosahexaenoic acid (22:6) 
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Figure 1.8: Diagram of a Gram-negative Cell Membrane43 

 Phospholipids are amphipathic molecules consisting of a polar head group, a phosphate 

group, a glycerol backbone, and two fatty acyl chains in the sn-1 and sn-2 positions. 

Examples of phospholipid structures are shown in Figures 1.9 and 1.10. The fatty acyl 

chains are derivatives of fatty acids that have been bonded to the glycerol backbone 

through a condensation reaction involving the carboxyl group of a fatty acid and one of 

the hydroxyl groups of the glycerol backbone. The final result is an ester linkage between 

the carbonyl carbon of the fatty acyl chain and an oxygen atom bonded to the glycerol 

backbone.  

Phospholipids are categorized by their head groups. The two most abundant head groups 

for the phospholipids that form the cell membrane of gram-negative prokaryotes are 

ethanolamine and glycerol13. Phospholipids that have an ethanolamine head group are 

referred to as phosphatidylethanolamines (PEs) and those that have a glycerol head group 
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are referred to as phosphatidylglycerols (PGs). PEs were found to be more abundant than 

PGs in the gram-negative bacteria used in this experiment. Phospholipids with the same 

head group are said to be in the same “class” and may be distinguished from one another 

by their fatty acyl chains, which are often referred to as fatty acid tails. Conventional 

phospholipid nomenclature follows the format PX a1:b1/a2:b2, where PX is the 

abbreviation for the phospholipid class, a1 is the total number of carbon atoms in the fatty 

acid tail in the sn-1 position, b1 is the total number of double bonds along the fatty acid 

tail in the sn-1 position, a2 is the total number of carbon atoms in the fatty acid tail in the 

sn-2 position, and b2 is the total number of double bonds along the fatty acid tail in the 

sn-2 position. An example of phospholipid nomenclature is PE 16:0/18:1, which is a 

phosphatidylethanolamine phospholipid that has sixteen carbons and zero double bonds 

within the fatty acid tail in the sn-1 position, and eighteen carbons and one double bond 

within the fatty acid tail in the sn-2 position. Example structures of 

phosphatidylethanolamine and phosphatidylglycerol, the two most common 

phospholipids found within the cell membranes of gram-negative bacteria, are displayed 

in Figure 1.9 and Figure 1.10 respectively.  
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Figure 1.9: Phosphatidylethanolamine (PE) 16:0/18:1 
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1.3 Gram-negative Bacteria and Cell Membranes 

In 1884, biologist Christian Gram developed a staining method that allowed bacteria to 

be separated into two broad categories: bacteria that retained a violet dye (Gram-

positive), and bacteria that did not retain the violet dye but instead retained a red dye 

(Gram-negative)14. Therefore, gram-positive bacteria appear purple and gram-negative 

bacteria appear red following the Gram staining. The distinction arises from 

morphological differences between the membranes of the two groups. Gram-positive 

bacteria possess a single phospholipid bilayer that is encapsulated by a thick mesh of 

Figure 1.10: Phosphatidylglycerol (PG) 16:0/18:1 
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peptidoglycan layers, whereas gram-negative bacteria possess two lipid membranes 

separated by a thin layer of peptidoglycan in a space known as the periplasm14.  The two 

lipid membranes are the inner membrane, which is composed of a phospholipid bilayer, 

and an outer membrane, composed of a lipid bilayer14. The outer membrane of Gram-

negative bacteria is referred to as a lipid bilayer rather than a phospholipid bilayer 

because the inner leaflet of the outer membrane is composed of phospholipids, but the 

outer leaflet of the outer membrane is composed of glycolipids, particularly 

lipopolysaccharides14,15. The human immune system is sensitive to lipopolysaccharides 

since they are indicators of infection14. Despite the differences between the membranes of 

Gram-positive and Gram-negative bacteria, the general structure of a phospholipid 

bilayer is conserved between them. A phospholipid bilayer is composed of an inner 

leaflet and an outer leaflet, and the phospholipids that form each leaflet are arranged in a 

way such that the polar headgroups of the phospholipids face away from the opposing 

leaflet, and the hydrophobic fatty acid tails of the phospholipids face toward the opposing 

leaflet. This arrangement, along with integral proteins located within phospholipid 

bilayers, allows for the cell membrane to be semipermeable to molecules both inside and 

outside the cell.  

Gram-negative bacteria were the focus of this research since they are generally more 

resistant to antimicrobial treatments and, as a consequence, may be considered more 

infectious than Gram-positive bacteria in some cases14. The increased resilience of Gram-

negative bacteria may be attributed to the presence of lipopolysaccharides in the outer 

membrane and the periplasm14. The periplasm of Gram-negative bacteria is an aqueous 

environment located between the polar headgroups of the outer and inner membranes that 

12 



is an effective site for sequestering harmful enzymes like RNAse and alkaline 

phosphatase that degrade molecules essential for survival14, and it is even considered to 

be an evolutionary precursor to eukaryotic lysozymes14,16. Some of the cellular functions 

that are carried out by membrane bound organelles in eukaryotes are performed by the 

inner membrane in Gram-negative bacteria14. Membrane proteins that are involved in 

energy production, lipid synthesis, and protein secretion in eukaryotes are mostly 

conserved in Gram-negative bacteria and are located within the inner membrane14. Thus, 

the inner membrane is essential for the survival of all Gram-negative bacteria. The 

majority of the fatty acid tails of the phospholipids in native Gram-negative bacteria are 

either saturated or monounsaturated and consist of sixteen or eighteen carbon atoms.  

1.4 Acinetobacter baumannii 

Acinetobacter baumannii is a MDR, Gram-negative bacteria that is listed as one of the 

ESKAPE pathogens3. Resistance to all existing antibiotic classes has been acquired 

among the species in the Acinetobacter genus17. Accordingly, A. baumannii is considered 

as one of the most difficult MDR Gram-negative bacteria to treat18. A. baumannii 

infection rates of hospitalized patients and individuals with compromised immune 

systems (nosocomial infections) have been increasing since the 1970s18, and recent 

attention for the infectious bacteria was garnered following a surge in infection rates 

among wounded soldiers returning from Iraq18,19. Immunocompromised individuals 

receiving ventilation care are particularly susceptible to A. baumannii infection20, and 

these infections have a high mortality rate21.  
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Antimicrobial-inactivating enzymes and point mutations are two common mechanisms of 

resistance in A. baumannii20,22. A. baumannii has shown extensive resistance to 

carbapenems, which is a class of antibiotics that possess a β-lactam ring within their 

structure and include antibiotics such as penicillin and imipenem20. Resistance to 

carbapenems may be attributed to A. baumannii’s ability to synthesize class B metallo-β-

lactamases that hydrolyze carbapenems20,23. Other antibiotics that work through different 

mechanisms of action such as polymyxins have been used in desperation, but A. 

baumannii has shown resistance to these antibiotics as well through 

phosphoethanolamine modification of Lipid A24. A. baumannii’s propensity for biofilm 

formation on a variety of common abiotic surfaces such as polystyrene and glass in 

hospital settings also contributes to its overall robustness and survivability25. 

1.5 Klebsiella pneumoniae 

Klebsiella pneumoniae is also an MDR, Gram-negative bacteria listed as one of the 

ESKAPE pathogens3. To the surprise of some, K. pneumoniae can normally be found 

within the gastrointestinal reservoir of humans26. Harmful infections resulting in diseases 

such as pneumonia arise when K. pneumoniae is acquired through other means or when it 

penetrates the intestinal barrier; however, the mechanism by which it penetrates the 

intestinal barrier is not well understood27. K. pneumoniae recently acquired resistance to 

the carbapenem class of antibiotics via expression of the enzyme Klebsiella pnuemoniae 

carbapenemase (KPC) in 1996 and has since caused numerous hospital outbreaks in 

various parts of the world28. While other pathogenic Gram-negative bacteria have been 

shown to express KPCs, K. pnuemoniae is the most common species capable of 

expressing them28.  
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K. pnuemoniae has been shown to form biofilms on polystyrene and other abiotic 

surfaces found within hospital settings29. Biofilm formation increases the difficulty of 

effectively treating K. pneumoniae, and previous research has even documented the 

inability of ampicillin to penetrate the biofilms of wild-type K. pnuemoniae30. 

1.6 Escherichia coli 

Escherichia coli is a Gram-negative bacteria that is regarded as a model organism due to 

its hardiness, versatility, and ease of handling, and has consequently become one of the 

most well-understood organisms in the world31. Despite the extensive research conducted 

on E. coli, little to no attention has been given to its ability to remodel its membrane with 

exogenous fatty acids, even though it is the organism that was used to determine some of 

the mechanisms involved in membrane remodeling5. 

 Most E. coli strains are harmless to humans and are even found within the intestines of 

humans and other mammals, but pathogenic strains of E. coli do exist32. Pathogenic E. 

coli strains may be separated into two broad categories: those that cause intestinal 

infections and those that cause extraintestinal infections33. Intestinal infections typically 

result in severe diarrhea, while extraintestinal infections may manifest as urinary tract 

infections, meningitis, and septicaemia33. Previous research has shown that some urinary 

tract isolates of E. coli displayed resistance to at least three of the following antibiotics: 

ampicillin, cephalothin, ciprofloxacin, nitrofurantoin, and trimethoprim-

sulfamethoxazole, allowing the isolates to be considered multi-drug resistant34. Some E. 

coli strains have also demonstrated the ability to express β-lactamases35 similar to K. 

pneumoniae. 
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The overall goals of this study were to determine if A. baumannii, K. pneumoniae, and E. 

coli are capable of assimilating exogenous PUFAs into the phospholipids of their cell 

membranes, and if so, to determine the impact that these modifications have on their 

virulence and survivability.   
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CHAPTER TWO 

2. Materials and Methods 

2.1 Bacteria Growth and Exogenous PUFA Supplementation 

 2.1.1 Growth Procedure 

The following growth procedure was used for Acinetobacter baumannii ATCC17978 and 

Klebsiella pneumoniae ATCC13883: 

 Eight overnight cultures were aseptically prepared by transferring an isolated bacterial 

colony from an agar plate into a test tube containing G56 minimal medium [0.4 % 

glucose, 0.4 % casaminio acids (Fisher BioReagents), supplemented with 150 mM NaCl] 

near an open flame. On the following morning, seven cultures were supplemented with 

one of the seven PUFAs (see Ch. 1) at a final concentration of 300 µM while the eighth 

culture had no fatty acid supplemented and served as a control sample. All cultures were 

then grown to roughly OD600 = 0.9 in a Thermo Scientific MaxQ 4000 Benchtop 

Incubating/Refrigerating Shaker set to 200 RPM and 37.0 °C. Absorbance measurements 

were made using a Thermo Scientific Genesys 10S UV-Vis Spectrophotometer set to 

transmit light at a wavelength of 600 nm. A nearly identical growth procedure was used 

for Escherichia coli MG1655, with the only difference being that E. coli cultures were 

grown in M9 minimal media rather than G56 minimal media. For the sake of coherence, 

only the experimental conditions for the assays performed on E. coli will be delineated in 

the following sections. 
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2.1.2 Growth Curves 

Two growth curves were performed for E. coli. One growth curve was performed by 

growing E. coli cultures within a Thermo Scientific MaxQ 4000 Benchtop 

Incubating/Refrigerating Shaker set to 200 RPM and 37.0 °C in CM9 or M9 minimal 

medium supplemented with or without glucose and one of the seven PUFAs or no PUFA. 

The latter growth curve is referred to as the sole carbon source growth curve. Both 

growth curves were conducted for a period of 12 hours, and absorbance measurements 

were made every hour at 600 nm with a Thermo Scientific Genesys 10S UV-Vis 

Spectrophotometer to monitor growth progress. 

2.2 Lipid Extraction via Bligh and Dyer Method 

Lipids were extracted from bacterial cultures by following the Bligh and Dyer method36. 

After growing cultures to roughly OD600 = 0.9, cells were pelleted in a Corning LSE 

Compact Centrifuge set to 4000 RPM for a duration of 10 minutes. The supernatant was 

discarded and the remaining cell pellet was washed with 5 mL of phosphate buffered 

saline (PBS), centrifuged, and the supernatant discarded. The cell pellets were 

resuspended in 5 mL of single-phase Bligh/Dyer mixture (1:2:0.8 

chloroform:methanol:water), capped, vortexed, and allowed to sit in this state at room 

temperature for approximately 20 minutes. The purpose of this step was to lyse the cells, 

thereby allowing any cellular lipids to freely dissolve in the Bligh/Dyer mixture. These 

solutions were then centrifuged for 10 minutes in order to pellet undesirable cell 

fragments such as proteins and DNA. The nonpolar cell lipids dissolved in the 
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Bligh/Dyer supernatant were decanted into clean 10 mL tubes. A volume of 1.3 mL of 

chloroform and 1.3 mL of water were added to convert the single-phase Bligh/Dyer 

mixture into a two-phase Bligh/Dyer mixture, with an aqueous upper phase and an 

organic lower phase. Following another 10-minute centrifugation, the lower organic 

phase containing the cell lipids was removed via glass pipette and transferred into clean, 

fresh tubes. To ensure quantitative lipid extraction, the upper aqueous phase was 

extracted a second time with an additional 2.6 mL of chloroform to reestablish the two-

phase Bligh/Dyer mixture. These solutions were centrifuged for 10 minutes and the 

lower, organic phases were again removed and pooled with their respective first 

extractions. For final purification, 5.2 mL of methanol and 4.68 mL of water were added 

to the pooled lower phases in order to re-establish a two-phase Bligh/Dyer mixture. These 

solutions were centrifuged for 10 minutes. Final, purified total lipid extracts were 

obtained by transferring the lower organic phases into clean test tubes. These total lipid 

extracts were dried under a stream of inert nitrogen gas administered by an Organomation 

N-EVAP 111. The dried lipid extracts were then capped and stored at -20 °C prior to 

UPLC/MS analysis. 

2.3 Weighing of Dried Total Lipid Extracts 

Empty Waters LCMS Certified Amber Screw-Top LC vials were obtained and weighed 

in triplicate on a Mettler Toledo XS205 DualRange Analytical Balance. The empty LC 

vial masses were averaged. Using a 2:1 chloroform:methanol solution, the dried lipid 

extracts were transferred to the pre-weighed LC vials and dried once more under a stream 

of inert N2 gas. The dried lipid extract-LC vial systems were weighed on the analytical 

balance in triplicate and averaged. The masses of the total lipid extracts were obtained by 
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subtracting the average masses of the empty LC vials from the average masses of the 

dried lipid extract-LC vial systems. The dried lipid extracts were dissolved in 1 mL of 2:1 

chloroform:methanol to form parent solutions. The masses of the lipid extracts were then 

used to calculate the volumes of parent solutions needed to form working solutions of 

particular concentrations (250 ppm for A. baumannii, 400 ppm for K. pneumoniae and E. 

coli). After creating the working solutions, both parent and working solutions were dried 

under a stream of inert N2 gas and stored in a freezer. Table 2.1 provides the masses of 

the empty LC vials and the dried lipid extract-LC vial systems for the E. coli samples. 

Table 2.1: Masses of E. coli Dried Lipid Extracts 

E. coli Sample Mass of LC vial (g) Mass of Dried 

Lipid Extract-LC 

Vial System (g) 

Average Mass of 

Dried Lipid Extract 

(mg) 

 

Ec (-) 

2.52613 2.52656  

0.49 2.52605 2.52653 

2.52599 2.52654 

 

Ec 18:2 

2.56071 2.56137  

0.69 2.56067 2.56136 

2.56065 2.56138 

 

Ec 18:3-α 

2.59827 2.59884  

0.63 2.59817 2.59884 

2.59818 2.59882 

 

Ec 18:3-γ 

2.58428 2.58487  

0.60 2.58423 2.58485 

2.58424 2.58484 

 

Ec 20:3 

2.52597 2.52647  

0.53 2.52590 2.52644 

2.52591 2.52645 

 

Ec 20:4 

2.54023 2.54088  

0.65 

 
2.54024 2.54087 

2.54020 2.54086 

 

Ec 20:5 

2.55075 2.55134  

0.59 2.55072 2.55132 

2.55075 2.55134 

 

Ec 22:6 

2.57079 2.57146  

0.68 2.57074 2.57145 

2.57076 2.57143 
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2.4 Ultra Performance Liquid Chromatography Tandem Mass Spectrometry  

Solvents A1 and B1 were used as the mobile phase for the liquid chromatography 

instrument. Solvent A1 was 30:70 25 mM ammonium acetate:MeOH, pH 6.7, and solvent 

B1 was pure MeOH. All solvents used were Optima grade (Fischer Scientific). The 

working solutions were placed within the Sample Manager of a Waters Acquity UPLC 

system to undergo reversed-phase chromatography gradient elution. During the analysis 

of a single sample, the automated syringe within the Sample Manager withdrew 25 µL of 

the sample and passed it through a sample loop that allowed for 5 µL of the sample to be 

injected onto the column. The mobile phase consisted of the aforementioned solvents A1 

and B1, and was subjected to the following gradient: 50:50 A1:B1 held constant for 2 

minutes, a linear increase of solvent B1 over the course of 8 minutes, ultimately reaching 

100 % B1 at the 10 minute mark, followed by a rapid decrease in B1 over the course of 

0.3 minutes, resulting in the reestablishment of 50:50 A1:B1 by 10.3 minutes, which was 

held constant for an additional 0.7 minutes for a total run time of 11 minutes. The column 

used was an Acquity BEH C8 column (2.1 x 100 mm, 1.7 µm particles). The 

chromatographically separated analyte molecules of the sample were then eluted into a 

QuattroTM micro API quadrupole mass spectrometer and ionized via electrospray 

ionization in the negative mode (ESI -) with a capillary of voltage 1.5 kV. The sample 

was desolvated using inert 350 °C nitrogen gas flowing at a rate of 600 L/h to induce a 

Coulombic explosion. The ionized analyte molecules were brought into the quadrupole 

mass spectrometer through a 50 V cone and a series of RF lenses. A photomultiplier tube 

(PMT) was used as the detector for the instrument. Scans were made from 200 m/z to 

21 



1500 m/z within quadrupole 1 (Q1). The scan time was 0.5 seconds with an interscan 

time delay of 0.01 seconds. Resultant chromatograms and mass spectra were analyzed 

using the MassLynx V4.1 software. 

2.5 Assays 

 2.5.1 Motility Assay 

For E. coli, a swimming motility assay was carried out in quadruplicate by adhering to 

the following protocol37,6: Motility assay plate solutions were prepared with 10 g L-1 

tryptone, 10 g L-1 NaCl, 0.35 % agar, and 300 µM of one of the seven PUFAs. These 

solutions were autoclaved at 121 °C for 15 minutes and then cooled in a 50 °C water bath 

for approximately 15 minutes. The plates were partitioned into four quadrants so that 

each plate could be inoculated in quadruplicate after allowing sufficient time for the 

plates to dry. An overnight culture was grown to roughly OD600 0.9 in M9 minimal 

media. The culture was pelleted, washed with PBS, and resuspended in 1 mL of PBS to 

OD600 6.24. Cultures were then diluted in deionized water to OD600 1.0. A volume of 2 

µL of the culture grown in the M9 media was injected into the center of each quadrant of 

each motility assay plate. The plates were then incubated at 30 °C for a period of 12 

hours. The motility of the E. coli bacteria in each plate was assessed following this 

incubation period by measuring the diameter of the motility halo in each quadrant, 

averaging these values, and calculating the standard deviations. Statistical analysis was 

carried out by using student’s t-test (paired, two-tailed, p < 0.01). 
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2.5.2 Permeability Assays 

Two different permeability assays were carried out to determine the effects of 

phospholipid remodeling on membrane permeability in E. coli by following previously 

established procedures6,26. The first assay was a crystal violet (CV) uptake assay. Eight 

separate E. coli cultures were grown to roughly OD600 0.9 in the presence or absence of 

one of the seven PUFAs at a concentration of 300 µM within M9 minimal media 

supplemented with 2 % casamino acids. The cultures were pelleted, washed with PBS, 

and resuspended in 5 mL of PBS to OD 0.4. The hydrophobic compound CV was added 

to each of the cell cultures at a concentration of 5 mg/mL. Measurements were made in 

five-minute intervals (for a total of 20 minutes) by pelleting 1 mL of cell culture via 

centrifugation, decanting the supernatant, and collecting absorbance readings of the 

supernatant with a Thermo Scientific Genesys 10S UV-Vis Spectrophotometer set to 

transmit light at a wavelength of 590 nm. Microsoft Excel was used to determine the 

percentage of CV that was taken up by each culture since the spectrophotometric 

measurements effectively provided the percentage of CV that was not taken up by each 

culture.  

The other permeability assay performed was an ethidium bromide (EtBr) uptake assay. 

Growth conditions for this assay were nearly identical to the growth conditions used for 

the CV uptake assay. The cultures were pelleted, washed with PBS, and resuspended in 5 

mL of PBS to OD600 0.7. Ethidium bromide was added to each cell culture at a 

concentration of 5 mg/mL. Measurements were made in five-minute intervals (for a total 

of 20 minutes) by pelleting 1 mL of cell culture via centrifugation, decanting the 

supernatant, and collecting fluorimetric readings by using an excitation wavelength of 
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530 nm and a detection wavelength of 585 nm. A Varian Cary Eclipse Fluorescence 

Spectrophotometer with a 20-nm excitation slit was used for this assay.  

For both the CV uptake assay and the EtBr uptake assay, statistical significance was 

determined by a student’s t-test (paired, 2-tailed, p < 0.002) after performing three 

biological replicates.  

 2.5.3 Antimicrobial Peptide Susceptibility Assay 

A previously established protocol6,26 was used to determine the effect that PUFA 

exposure has on antimicrobial peptide susceptibility in E. coli. Cultures were grown to 

roughly OD600 0.9 in M9 minimal medium either in the presence of one of the seven 

PUFAs at a concentration of 300 µM or in the absence of PUFAs. Following 

centrifugation, the cultures were washed with M9 minimal medium and resuspended at 

an OD600 0.1. A volume of 170 µL of each E. coli culture was added to the wells of a 96-

well microtiter plate and supplemented with either 300 µM of one of the seven PUFAs or 

no PUFAs. A volume of 30 µL of a two-fold concentration of each antimicrobial peptide 

(polymyxin B and colistin) was added to the wells for a total volume of 200 µL per well. 

Following an incubation period of 24 hours at 37 °C, absorbance measurements were 

made at 600 nm using a Biotek Synergy microplate reader. Two experiments were 

performed in triplicate for both antimicrobial peptides. 

 2.5.4 Biofilm Formation Assay 

The effect of PUFA exposure on biofilm formation in E. coli was assessed by using a 

previously established protocol38. Overnight E. coli cultures were grown in LB broth and 

transferred to 96-well microtiter plates containing CM9 (M9 minimal medium 
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supplemented with casamino acids) and either one of the seven PUFAs at a concentration 

of 300 µM or, in the case of the control samples, no PUFAs. The plates were incubated at 

37 °C for 24 hours. After this incubation period, planktonic cells were removed and the 

plates were washed with deionized water in triplicate. A volume of 125 µL of 3 % crystal 

violet solution was added to each well, and the plates were incubated at room temperature 

for a period of 15 minutes. Following this incubation period, the plates were washed with 

deionized water in triplicate and dried for approximately 3 hours. After inspecting the 

plates to ensure sufficient dryness, 125 µL of a 30 % acetic acid solution was added to 

each well and the plates were incubated for 15 minutes. The dissolved crystal violet was 

transferred to a fresh 96-well microtiter plate, and absorbance measurements were made 

for each well at 550 nm using a Biotek Synergy microplate reader. The assay was carried 

out in octuplet and statistical analysis was performed using student’s t-test (paired, 2-

tailed, p < 0.002). 
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CHAPTER THREE 

3. Results 

3.1 Overview 

One purpose of this experiment was to determine the effect that exogenous 

polyunsaturated fatty acid (PUFA) exposure has on phenotypes important to the virulence 

and survivability of the Gram-negative bacteria Acinetobacter baumannii, Klebsiella 

pneumoniae, and Escherichia coli. UPLC/MS analysis confirmed that all three of the 

Gram-negative bacteria can undergo membrane remodeling, which is the alteration of the 

phospholipid membrane profile with exogenously supplied fatty acids. With this 

confirmation, a series of biological assays were conducted to determine how membrane 

remodeling with either linoleic acid (18:2), alpha-linolenic acid (18:3-α), gamma-

linolenic acid (18:3-γ), dihomo-γ-linolenic acid (20:3), arachidonic acid (20:4), 

eicosapentaenoic acid (20:5), or docosahexaenoic acid (22:6) affects motility, 

permeability, antimicrobial peptide susceptibility, and biofilm formation in the bacteria. 

The total lipid extracts of each bacterial sample were assessed via UPLC/MS analysis to 

confirm that exogenous PUFA incorporation had occurred. Reversed-phase gradient 

elution was utilized using a BEH C8 column with the conditions described in Section 2.4. 

The sample that was not grown in the presence of 300 µM of a given fatty acid was used 

as a control to verify that the exogenous PUFAs 18:2, 18:3-α, 18:3-γ, 20:3, 20:4, 20:5, 

and 22:6 are not constituents of the native phospholipid species. 
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Since the UPLC/MS analysis was carried out in the negative mode following electrospray 

ionization (ESI-), [M-H]- ions were detected and analyzed in the various mass spectra 

using the MassLynx software. [M-H]- ions are formed via a single deprotonation. Fatty 

acyl chain cone fragment ions ([RxCO2]
-) aided in the identification of parent 

phospholipid ions since they represent the loss of a fatty acyl chain from either the sn-1 

position or sn-2 position of the glycerol backbone as the phospholipids passed through 

the high voltage cone of the quadrupole mass spectrometer. Phospholipids were identified 

with the aid of the LIPID Metabolites and Pathways Strategy (LIPID MAPS)39 database 

and the fatty acyl chain cone fragments generated by the high voltage cone of the mass 

spectrometer. In the negative ionization mode, singly-charged PG phospholipids possess 

an odd m/z value and singly-charged PE phospholipids possess an even m/z value. 

Although biological assays were conducted on each of the gram-negative bacteria, only 

the data for the assays conducted on E. coli will be presented in this chapter for the sake 

of simplicity. The results of the assays performed on A. baumannii and K. pneumoniae 

will be discussed in Chapter 4. 

3.2 Acinetobacter baumannii Results 

 3.2.1 Acinetobacter baumannii Mass Spectra and Chromatograms 

The complete chromatogram of the A. baumannii control sample is given by Figure 3.1. 

“1” represents the free fatty acid region in the chromatogram and “2” represents the 

phospholipid region of the chromatogram. The two distinct regions arise from the drastic 

polarity differences between free fatty acids and phospholipids and the specific LC 

gradient that was used. It is important to note that within the phospholipid region itself, 
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phosphatidylglycerols elute from the column sooner than phosphatidylethanolamines 

since they are the more polar phospholipid type between the two. The phospholipid 

region of the A. baumannii control sample chromatogram is given in Figure 3.2, and the 

mass spectra of specific chromatogram peaks in the phospholipid region are given in 

Figure 3.3 and Figure 3.4. 
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The average mass spectra of the two chromatogram peaks labeled as A and B at 6.92 

minutes and 8.58 minutes respectively were examined to identify the phospholipids 

corresponding to those peaks. The 747.5 m/z value in the average mass spectrum of 

chromatogram peak A corresponds to the [M-H]- ion of PG 16:0/18:1. In addition to 

referencing LIPID MAPS, this was confirmed by the presence of the 16:0 and 18:1 cone 

fragments that correspond to the 255.5 m/z and 281.5 m/z values, respectively. The 716.5 

m/z value in the average mass spectrum of chromatogram peak B corresponds to the [M-

H]- ion of PE 16:0/18:1, as was confirmed by referencing LIPID MAPS and noting the 

presence of the 16:0 and 18:1 cone fragments. The other chromatogram peaks in Figure 

3.2 were labeled following a similar procedure as for peaks A and B. Therefore, the 

average mass spectra of these peaks are not presented for the sake of cogency.  

The phospholipid region of the 18:2 A. baumannii sample chromatogram is presented in 

Figure 3.5 and the average mass spectra of the 6.23 minute, 7.82 minute, and 8.10 minute 

chromatogram peaks labeled as A, B, and C are presented in Figures 3.6, 3.7, and 3.8, 

respectively.  
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The average mass spectra of chromatogram peaks A and B display a PG and PE, 

respectively, that have been doubly substituted with exogenously supplied 18:2 fatty acid 

chains. The 769.5 m/z peak in the average mass spectrum of chromatogram peak A 

corresponds to the [M-H]- ion of PG 18:2/18:2, and the 738.5 m/z peak in the average 

mass spectrum of chromatogram peak B corresponds to PE 18:2/18:2. The identification 

of these phospholipids was achieved by referencing LIPID MAPS and observing the 

relatively high intensity 18:2 cone fragments, which correspond to the 279.5 m/z peaks. It 

should be noted that 255.5 m/z peaks can be observed in the average mass spectra of 

chromatogram peaks A and B, but these peaks do not originate as 16:0 cone fragments 

from the parent ions. The identities of these 255.5 m/z peaks have not yet been elucidated 

and may result from a contaminant or from a higher mass lipid such as a cardiolipin. The 

714.5 m/z peak in the average mass spectrum of chromatogram peak C corresponds to the 

[M-H]- ion of PE 16:0/18:2. This identification was confirmed using LIPID MAPS and 

by the presence of the 16:0 and 18:2 cone fragments. 

The phospholipid region of the 18:3-α A. baumannii sample chromatogram is presented 

in Figure 3.9 and the average mass spectrum of the 7.66 minute chromatogram peak 

labeled as A is presented in Figure 3.10.  

 

38 



 

 

 

 

 

 

 

A
 

A
b

 1
8

:3
 a

lp
h

a
; 

F
u

ll
s

c
a

n

T
im

e
6
.0

0
6
.2

5
6
.5

0
6
.7

5
7
.0

0
7
.2

5
7
.5

0
7
.7

5
8
.0

0
8
.2

5
8
.5

0
8
.7

5
9
.0

0

%

0

1
0
0

0
6
2
2
1
7
_
2
5
0
p
p
m

_
A

b
_
1
8
_
3
_
a
lp

h
a
_
1
1
m

in
_
N

E
G

_
0
1

S
c
a
n
 E

S
- 

T
IC

3
.9

7
e
8

6
.9

3

6
.2

9

6
.1

0

6
.5

1
6
.7

6
6
.5

6

7
.6

6

7
.1

2

7
.4

6
7
.4

1

8
.5

3

7
.8

6

8
.3

4
8
.1

0
8
.7

1
8
.7

5

F
ig

u
re

 3
.9

: 
T

h
e 

p
h
o
sp

h
o

li
p
id

 r
eg

io
n
 o

f 
th

e 
1
8
:3

-α
 A

. 
b
a
u
m

a
n
n
ii

 s
am

p
le

 c
h

ro
m

at
o

g
ra

m
 

39 



 

P
E 

1
6

:0
/1

8
:3

 

18:3  

16:0  A
 

A
b

 1
8
:3

 a
lp

h
a
; 

F
u

ll
s
c
a
n

m
/z

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

%

0

1
0
0

0
6
2
2
1
7
_
2
5
0
p
p
m

_
A

b
_
1
8
_
3
_
a
lp

h
a
_
1
1
m

in
_
N

E
G

_
0
1
 8

2
9
 (

7
.6

6
1
) 

C
m

 (
8
2
4
:8

3
2
)

S
c
a
n
 E

S
- 

7
.5

4
e
6

7
1
2
.6

2
7
7
.5

2
5
5
.7

2
7
8
.2

4
5
2
.5

7
1
3
.1

7
1
3
.3

7
1
4
.4

F
ig

u
re

 3
.1

0
: 

T
h
e 

av
er

ag
e 

m
as

s 
sp

ec
tr

u
m

 o
f 

p
ea

k
 A

 i
n
 t

h
e 

1
8
:3

-α
 A

. 
b
a
u
m

a
n
n
ii

 s
am

p
le

 c
h
ro

m
at

o
g
ra

m
 

40 



The 712.5 m/z peak in the average mass spectrum of chromatogram peak A corresponds 

to the [M-H]- ion of PE 16:0/18:3, as confirmed by LIPID MAPS and the 16:0 and 18:3 

cone fragments corresponding to the 255.5 m/z and 277.5 m/z peaks, respectively.  

The phospholipid region of the 18:3-γ A. baumannii sample chromatogram is presented 

in Figure 3.11 and the average mass spectra of the 6.17 minute and 7.76 minute 

chromatogram peaks labeled as A and B respectively are presented in Figures 3.12 and 

3.13 respectively.  
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The 743.5 m/z peak in the average mass spectrum of chromatogram peak A corresponds 

to the [M-H]- ion of PG 16:0/18:3, and the 712.5 m/z peak in the average mass spectrum 

of chromatogram peak B corresponds to the [M-H]- ion of PE 16:0/18:3. These identities 

were confirmed by the LIPID MAPS database and by observing the 16:0 and 18:3 cone 

fragments that correspond to the 255.5 m/z and 277.5 m/z peaks, respectively.  

The phospholipid region of the 20:3 A. baumannii sample chromatogram is presented in 

Figure 3.14 and the average mass spectra of the 6.71 minute and 8.31 minute 

chromatogram peaks labeled as A and B respectively are presented in Figures 3.15 and 

3.16 respectively.  
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The 771.5 m/z peak in the average mass spectrum of chromatogram peak A corresponds 

to the [M-H]- ion of PG 16:0/20:3, and the 740.5 m/z peak in the average mass spectrum 

of chromatogram peak B corresponds to the [M-H]- ion of PE 16:0/20:3. These identities 

were confirmed by referencing LIPID MAPS and noting the 16:0 and 20:3 cone 

fragments that correspond to the 255.5 m/z and 305.5 m/z peaks, respectively.  

The phospholipid region of the 20:4 A. baumannii sample chromatogram is presented in 

Figure 3.17 and the average mass spectra of the 6.49 minute and 8.08 minute 

chromatogram peaks labeled as A and B respectively are presented in Figures 3.18 and 

3.19 respectively.  
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The 769.5 m/z peak in the average mass spectrum of peak A corresponds to the [M-H]- 

ion of PG 16:0/20:4, and the 738.5 m/z peak in the average mass spectrum of peak B 

corresponds to the [M-H]- ion of PE 16:0/20:4; these identifications were confirmed by 

referencing LIPID MAPS and by the presence of the 16:0 and 20:4 cone fragments, 

which correspond to the 255.5 m/z and 303.5 m/z peaks, respectively.  

The phospholipid region of the 20:5 A. baumannii sample chromatogram is presented in 

Figure 3.20 and the average mass spectrum of the 7.67 minute chromatogram peak 

labeled as A is presented in Figure 3.21.  
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The 736.5 m/z peak in the average mass spectrum of peak A corresponds to the [M-H]- 

ion of PE 16:0/20:5, which was confirmed through the LIPID MAPS database and by 

observing the 16:0 and 20:5 cone fragments that correspond to the 255.5 m/z and 301.5 

m/z peaks, respectively.  

The phospholipid region of the 22:6 A. baumannii sample chromatogram is presented in 

Figure 3.22 and the average mass spectrum of the 6.27 minute chromatogram peak 

labeled as A is presented in Figure 3.23. 
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The 793.5 m/z peak in the average mass spectrum of peak A corresponds to the [M-H]- 

ion of PG 16:0/22:6. This was confirmed by referencing LIPID MAPS. While the 22:6 

cone fragment signal has a very low intensity, it was found to be present as well. PG 

16:0/22:6 coeluted with PG 16:0/16:1, which is a much more abundant phospholipid 

within A. baumannii that is made natively. The low intensity of the PG 16:0/22:6 signal 

suggests that A. baumannii does not incorporate 22:6 into its cell membrane as well as the 

other PUFAs used in this experiment.  

Mass filtering is a useful technique for finding chromatogram peaks in the total ion 

chromatogram (TIC) of a given sample. It is achieved using the MassLynx software to 

display an extracted ion chromatogram (XIC) featuring only the chromatogram peaks 

corresponding to a chosen m/z value. Mass filtering was employed in this experiment to 

show that PE and PG species possessing one of the seven exogenous PUFAs as a 

constituent are not natively produced by A. baumannii. To avoid excessive repetition, 

only one example of mass filtering in the A. baumannii chromatograms is shown here. 

The XICs generated by mass filtering for the m/z value of PE 16:0/20:4 in the control and 

20:4 A. baumannii samples are presented in Figure 3.24. 
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“A” represents the XIC of the control A. baumannii sample generated after filtering for 

the 738.5 m/z value, and “B” represents the XIC of the 20:4 A. baumannii sample 

generated after filtering for the 738.5 m/z. Clearly, only noise peaks are present in the 

control XIC, but a chromatogram peak corresponding to the [M-H]- ion of PE 16:0/20:4 

(738.5 m/z) is present in the 20:4 XIC. This demonstrates that A. baumannii does not 

natively produce phospholipid species possessing 20:4 acyl chains, and that A. baumannii 

successfully incorporated 20:4 into its cell membrane following exposure to it.  

3.3 Klebsiella Pneumoniae Results 

 3.3.1 Klebsiella Pneumoniae Mass Spectra and Chromatograms 

The complete chromatogram of the K. pneumoniae control sample is presented in Figure 

3.25 and the phospholipid region of the chromatogram is presented in Figure 3.26. The 

average mass spectra of the 6.90 minute and 7.65 minute chromatogram peaks labeled as 

A and B respectively are presented in Figures 3.27 and Figure 3.28 respectively. 
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The regions labeled as 1 and 2 in the complete chromatogram of the K. pneumoniae 

control sample represent the fatty acid region and the phospholipid region respectively. 

These distinct regions arise due to the LC gradient used in this experiment and the 

polarity differences between fatty acids and phospholipids; fatty acids are more polar 

than phospholipids, and as a result they elute from the C8 reversed-phase column sooner 

than the phospholipids. The 747.5 m/z peak in the average mass spectrum of 

chromatogram peak A corresponds to the [M-H]- ion of PG 16:0/18:1, and the 662.5 m/z 

peak in the average mass spectrum of chromatogram peak B corresponds to the [M-H]- 

ion of PE 16:0/14:0. These identifications were confirmed using the LIPID MAPS 

database and by the presence of 16:0 and 18:1 cone fragments in the average mass 

spectrum of chromatogram peak A that correspond to the 255.5 m/z and 281.5 m/z peaks 

respectively, and the 16:0 cone fragment and 14:0 cone fragment that corresponds to the 

227.5 m/z peak in the average mass spectrum of chromatogram peak B. It is important to 

note that although there is a 283.5 m/z peak in the mass spectrum of chromatogram peak 

B, it does not correlate to an 18:0 cone fragment originating from the parent PE 16:0/14:0 

ion. It is possible that this may reflect a contaminant in the system or, more likely, it may 

be an 18:0 cone fragment that originated from another lipid that coeluted with the parent 

ion.  

The phospholipid region of the 18:2 K. pneumoniae sample chromatogram is presented in 

Figure 3.29 and the average mass spectra of the 6.51 minute and 8.07 minute 

chromatogram peaks labeled as A and B respectively are presented in Figures 3.30 and 

3.31 respectively. 
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The 745.5 m/z peak in the average mass spectrum of chromatogram peak A corresponds 

to the [M-H]- ion of PG 16:0/18:2, and the 714.5 m/z peak in the average mass spectrum 

of chromatogram peak B corresponds to the [M-H]- ion of PE 16:0/18:2. These identities 

were confirmed by referencing the LIPID MAPS database and by noting the presence of 

the 16:0 and 18:2 cone fragments that correspond to the 255.5 m/z and 279.5 m/z peaks 

respectively.  

The phospholipid region of the 18:3-γ K. pneumoniae sample chromatogram is presented 

in Figure 3.32 and the average mass spectrum of the 7.74 minute chromatogram peak 

labeled as A is presented in Figure 3.33. 
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The 712.5 m/z peak in the average mass spectrum of peak A corresponds to the [M-H]- 

ion of PE 16:0/18:3. This was confirmed by referencing the LIPID MAPS database and 

by the presence of the 16:0 and 18:3 cone fragments that correspond to the 255.5 m/z and 

277.5 m/z peaks respectively. The [M-H]- ion of PE 16:0/16:1 coeluted with the PE 

16:0/18:3 ion, as evidenced by the 688.5 m/z peak. Although a 227.5 m/z peak is present, 

it does not originate from a 14:0 cone fragment from either of the phospholipid ions 

represented in this mass spectrum. 

The chromatograms and mass spectra of the 18:3-α, 20:3, 20:4, 20:5, and 22:6 K. 

pneumoniae samples are not presented here to avoid excessive repetition. K. pnuemoniae 

was shown to incorporate these PUFAs into its cell membrane via UPLC/MS analysis as 

well, and phospholipid identifications were confirmed using the same methods described 

above: referencing the LIPID MAPS database and observing the characteristic cone 

fragments in the mass spectra for each phospholipid of interest.  

Mass filtering was an efficient technique employed in this experiment to show that 

PUFA-substituted PE and PG species are not natively produced by K. pneumoniae. One 

example of mass filtering in K. pneumoniae is shown here. The XICs generated after 

mass filtering for the m/z value of PE 16:0/20:5 in the control and 20:5 K. pneumoniae 

samples are presented in Figure 3.34. 
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“A” represents the XIC of the 20:4 K. pneumoniae sample after mass filtering for the 

736.5 m/z value, and “B” represents the XIC of the control K. pneumoniae sample after 

mass filtering for the 736.5 m/z value. The peak in the XIC of the 20:4 sample 

corresponds to the [M-H]- ion of PE 16:0/20:5, showing that K. pneumoniae remodeled 

its cell membrane with 20:5. Only noise peaks are present in the control sample following 

mass filtering, suggesting that K. pneumoniae does not natively make phospholipids 

possessing 20:5 acyl chains.  

3.4 Escherichia coli Results 

 3.4.1 Escherichia coli Mass Spectra and Chromatograms 

The complete chromatogram of the E. coli control sample is presented in Figure 3.35 and 

the phospholipid region of the chromatogram is presented in Figure 3.36. The average 

mass spectra of the 6.81 minute and 8.57 minute chromatogram peaks labeled as A and B 

respectively are presented in Figures 3.37 and 3.38 respectively. 
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Region 1 and Region 2 represent the fatty acid region and the phospholipid region of the 

complete chromatogram, respectively. The 719.5 m/z peak in the average mass spectrum 

of chromatogram peak A corresponds to the [M-H]- ion of PG 16:0/16:1. This 

identification was confirmed using the LIPID MAPS database and by observing the 16:0 

and 16:1 cone fragments that correspond to the 255.5 m/z and 253.5 m/z peaks, 

respectively. These peaks nearly overlap, so only the label for the 16:1 cone fragment 

peak is displayed since it is more intense than the 16:0 cone fragment peak. The 702.5 

m/z peak in the average mass spectrum of chromatogram peak B corresponds to the [M-

H]- ion of PE 16:0/17:0 cyclo. The 16:0 and 17:0 cyclo cone fragments can be observed 

in the average mass spectrum; the 267.5 m/z peak corresponds to the 17:0 cyclo cone 

fragment. Further confirmation of this identification was achieved using the LIPID 

MAPS database. 

The phospholipid region of the 18:2 E. coli chromatogram is presented in Figure 3.39, 

and the average mass spectra of the 7.01 minute and 8.34 minute chromatogram peaks 

labeled as A and B respectively are presented in Figures 3.40 and 3.41 respectively. 
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The 745.5 m/z peak in the average mass spectrum of chromatogram peak A corresponds 

to the [M-H]- ion of PG 16:0/18:2, which was confirmed by the LIPID MAPS database 

and by the presence of the 16:0 and 18:2 cone fragments that correspond to the 255.5 m/z 

and 279.5 m/z peaks respectively. The 714.5 m/z peak in the average mass spectrum of 

chromatogram peak B corresponds to the [M-H]- ion of PE 16:0/18:2. This identity was 

confirmed using the same technique described above for PG 16:0/18:2. 

The phospholipid region of the 20:4 E. coli sample chromatogram is presented in Figure 

3.42 and the average mass spectrum of the 8.23 minute chromatogram peak labeled as A 

is presented in Figure 3.43.  
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The 738.5 m/z peak in the average mass spectrum of chromatogram peak A represents 

the signal of the [M-H]- ion of PE 16:0/20:4. This identification was confirmed by the 

LIPID MAPS database and by the presence of the 16:0 and 20:4 cone fragments that 

correspond to the 255.5 m/z and 303.5 m/z peaks respectively. The 738.5 m/z peak is not 

the dominant peak in this mass spectrum, possibly reflecting the limited capability of E. 

coli to undergo membrane remodeling with exogenous PUFAs. The [M-H]- ions of PE 

16:1/18:1 and PE 16:0/16:1 coeluted with the [M-H]- ion of PE 16:0/20:4. This is shown 

in the mass spectrum by the 714.5 m/z and 688.5 m/z peaks and the abundant 16:1 and 

18:1 cone fragments that correspond to the 253.5 m/z and 281.5 m/z peaks respectively.  

Although E. coli was shown to remodel its cell membrane with the exogenous PUFAs 

18:3-α, 18:3-γ, 20:3, and 20:5 via UPLC/MS analysis, the chromatograms and mass 

spectra for the E. coli cultures grown in the presence of these PUFAs are not presented to 

avoid excessive repetition. Interestingly, E. coli was shown to be incapable of remodeling 

its cell membrane with 22:6 following UPLC/MS analysis. This will be discussed further 

in Chapter 4.  

The technique of mass filtering was employed to show that phospholipids possessing any 

of the PUFAs used in this experiment are not natively found in the cell membranes of E. 

coli cells. One example of mass filtering in the E. coli samples is shown here. The XICs 

generated after mass filtering for the m/z value of PE 16:0/18:3 in the control and 18:3-α 

E. coli samples are presented in Figure 3.44. 
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“A” represents the XIC generated after mass filtering for 712.5 m/z in the E. coli sample 

grown in the absence of PUFAs, and “B” represents the XIC generated after mass 

filtering for 712.5 m/z in the E. coli sample grown in the presence of 18:3-α. Only noise 

peaks are present in the XIC of the control sample. The large peak in the XIC of the 18:3-

α sample corresponds to the [M-H]-ion of PE 16:0/18:3. This shows that E. coli does not 

natively produce phospholipids with 18:3-α acyl chains, but it is capable of remodeling 

its cell membrane with 18:3-α following exposure to it. Mass filtering was performed on 

the other PUFA-exposed E. coli samples and showed similar results (except for the 

culture exposed to 22:6). 

3.4.2 Escherichia coli Motility Results 

E. coli cultures were grown in M9 minimal medium to roughly OD600 0.9, pelleted, 

washed with PBS, resuspended in PBS, and diluted to roughly OD600 1.0. A volume of 2 

µL of the diluted culture was injected into the center of each quadrant of each motility 

plate that had been prepared. Eight motility plates were prepared, one containing no 

PUFA and the other seven containing one of the seven PUFAs used in this experiment. 

The plates were incubated for 12 hours at 37 °C. Following this incubation period, the 

diameter of the motility halo in each quadrant of each plate was measured. The 

measurements from each plate were averaged together and the standard deviations were 

calculated. The average swimming motility of the E. coli culture on each plate is 

presented in Figure 3.45 and the standard deviations are represented by the error bars. 
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The E. coli cells grown in the presence of 18:2 exhibited significantly (p < 0.01) higher 

swimming motility than the control cells. The 20:3, 20:4, and 20:5 samples exhibited 

significantly lower levels of swimming motility than the control sample. 
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Figure 3.45: The motility of E. coli cells following PUFA exposure. 

Asterisks indicate significant deviations in motility from the control 

sample (α = 0.01, p < 0.01). 
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3.4.3 Escherichia coli Permeability Results 

E. coli cultures were grown in M9 minimal medium at 37 °C in either the presence or 

absence of exogenous PUFAs to roughly OD600 0.8. The cultures were pelleted, washed 

with PBS, and resuspended in PBS. The hydrophobic compound crystal violet (CV) was 

added to each of the cultures to yield a final concentration of 5 µg/mL. The cultures were 

agitated at 50 rpm, and a 1 mL aliquot was removed from each of the cultures in 5 minute 

increments to be centrifuged. Following centrifugation, the supernatant of each culture 

was spectrophotometrically measured at a wavelength of 590 nm to determine the 

percentage of CV in the supernatant of each culture; these percentages were used to 

determine the percentage of CV taken up by each culture. A control sample containing 

CV but no E. coli culture was included in this experiment to allow for normalization of 

the data. The percentage of CV taken up by each culture over a 20 minute time period is 

presented in Figure 3.46.  
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The E. coli cells grown in the presence of 20:4 and 22:6 exhibited significantly (p < 

0.002) greater permeability to CV than the culture grown in the absence of PUFAs, which 

is indicated by the asterisks. The culture grown in the presence of 20:4 demonstrated the 

greatest permeability to CV out of all of the cultures used in this assay.  

Similar growth conditions were used for the ethidium bromide (EtBr) uptake assay. EtBr 

was added to each of the samples to yield a final concentration of 5 μg/mL. The cultures 

were agitated at 50 rpm, and a 1 mL aliquot was removed from each culture in 5 minute 
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Figure 3.46: The % CV uptake of E. coli cells following PUFA exposure. Asterisks 

indicate significant deviations in membrane permeability from the control sample 

(α = 0.002, p < 0.002). 
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increments to be pelleted via centrifugation. The supernatants were measured 

fluorimetrically using an excitation wavelength of 530 nm, an emission wavelength of 

585 nm, and a slit width of 20 nm. A control containing EtBr but no E. coli cells was 

included to allow for normalization of the data and was measured using an excitation 

wavelength of 420 nm. The average fluorescence intensities of three biological replicates 

for each of the E. coli cultures are presented in Figure 3.47. 
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Figure 3.47: The fluorescence intensities of E. coli cells following PUFA 

exposure. Asterisks indicate significant deviations in membrane permeability from 

the control sample (α = 0.002, p < 0.002). 
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The average fluorescence intensities measured over the 20 minute period of each E. coli 

culture grown in the presence of a particular PUFA were lower than the control. This 

indicates that each of the seven PUFAs used in this assay increased the permeability of 

the cell membrane to EtBr, with 18:3-γ increasing permeability the most. The average 

fluorescence intensities of the E. coli cultures grown in the presence of 18:2, 18:3-α, 

18:3-γ, 20:4, 20:5, and 22:6 were all significantly (p < 0.002) different from the average 

fluorescence intensities of the E. coli culture grown in the absence of PUFAs. 

3.4.4 Escherichia coli Biofilm Formation Results 

E. coli cultures were prepared in 96-well microtiter plates containing M9 minimal 

medium supplemented with casamino acids (CM9) and either one of the seven exogenous 

PUFAs used in this experiment or no exogenous PUFAs. The cultures were inoculated 

onto the plates in octuplet and incubated for 24 hours at 37 °C to allow for biofilm 

formation within the wells. A volume of 125 µL of a 3 % crystal violet solution was 

added to each of the wells, and following a short incubation period, 125 µL of a 30 % 

acetic acid solution was added to each well to solubilize the crystal violet. The 

solubilized crystal violet was transferred to a fresh 96-well microtiter plate and 

absorbance measurements were made at 550 nm with a Biotek Synergy microplate 

reader. The results of the biofilm assay are presented in Figure 3.48.  
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The absorbance values for each of the samples are reported as the average absorbance of 

three biological replicates and the standard deviations are represented by the error bars. 

The asterisks indicate the 18:3-α, 18:3-γ, 20:4, and 22:6 samples displayed significantly 

different (p < 0.002) biofilm formation from the control sample. This was determined 

after performing a student’s t-test. Therefore, 18:3-α, 18:3-γ, 20:4, and 22:6 appear to 

increase biofilm formation in E. coli, and the greatest increases were observed in the 20:4 

and 22:6 samples. The other PUFAs used in this assay did not significantly alter biofilm 

formation in E. coli.  

 

0

0.1

0.2

0.3

0.4

A
b

so
rb

an
ce

 (
O

D
5

5
0
) 

* 

* * 

* 

Figure 3.48: E. coli biofilm formation following PUFA exposure. 

Asterisks indicate significant deviations in biofilm formation from the 

control sample (α = 0.002, p < 0.002). 
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3.4.5 Escherichia coli Antimicrobial Peptide Susceptibility Results 

E. coli cultures were grown to approximately OD600 0.9 in M9 minimal medium 

supplemented with casamino acids and either 300 µM of one of the seven PUFAs or no 

PUFAs. The cultures were pelleted, washed with CM9, resuspended in CM9, and diluted 

to OD600 0.1. Using two 96-well microtiter plates, each of the E. coli samples were 

exposed to increasing concentrations of the antimicrobial peptide colistin in triplicate and 

incubated at 37 °C for 20 hours in an enclosed shaker. Following this incubation period, 

the plates were spectrophotometrically assessed at 600 nm using a Biotek Synergy 

microplate reader. The average absorbance values of the three biological replicates for 

each E. coli culture grown in the presence of different colistin concentrations are 

presented in Figure 3.49. 
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The E. coli samples grown in the presence of 20:4 and 22:6 increased the resistance of E. 

coli to colistin at each concentration compared to the culture that was grown in the 

absence PUFAs. The E. coli cultures grown in the presence of 18:2 and 20:5 were more 

susceptible to colistin than the culture grown in the absence of PUFAs at concentrations 
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Figure 3.49: The colistin susceptibility of E. coli cells following PUFA exposure 
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greater than 0.4 µg/mL. The E. coli cultures grown in the presence of 20:4 and 22:6 

displayed significantly (two-fold MIC) different susceptibility to colistin than the control 

sample at all concentrations greater than 0.4 µg/mL. The E. coli cultures grown in the 

presence of 20:5 and 18:2 displayed significantly different susceptibility to colistin than 

the control sample at a concentration of 0.8 µg/mL, and the culture grown in the presence 

of 20:3 displayed significantly different susceptibility to colistin than the control at a 

concentration of 1.6 µg/mL. 

A similar assay was performed using the cAMP polymyxin B. The average absorbance 

values of the three biological replicates for each E. coli culture grown in the presence of 

different polymyxin B concentrations are presented in Figure 3.50. 
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The E. coli samples grown in the presence of 18:2, 20:3, 20:4, and 22:6 increased the 

resistance of E. coli to polymyxin B at all concentrations tested. The cultures grown in 

20:4 and 22:6 increased the resistance to E. coli the most at concentrations greater than 

0.5 µg/mL; the 20:4 culture showed growth at a concentration of 16 µg/mL when all 
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Figure 3.50: The polymyxin B susceptibility of E. coli cells following PUFA exposure 
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other samples demonstrated no growth at that concentration. The 20:4 and 22:6 samples 

displayed significantly (two-fold MIC) higher resistance to polymyxin B compared to the 

control sample at concentrations of 2 µg/mL, 4 µg/mL, and 8 µg/mL; 22:6 also displayed 

significantly different growth at the concentration of 16 µg/mL. The 20:5 sample 

displayed significantly lower resistance to polymyxin B from the control sample at a 

concentration of 2 µg/mL, and the 20:3 sample displayed significantly higher resistance 

to polymyxin B compared to the control at a concentration of 4 µg/mL. 
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CHAPTER FOUR 

4. Discussion 

4.1 Discussion and Future Direction 

Multi-drug resistant bacteria have become a major concern for public well-being, 

particularly in health care facilities housing numerous immunocompromised individuals. 

Nosocomial infection rates have increased over the past few decades along with the 

advent of MDR bacteria, resulting in the need for novel techniques or outright treatments 

to deal with these bacteria. Rather than investigating novel antimicrobial agents as 

treatments for MDR bacteria, the research presented in this thesis focused on 

polyunsaturated fatty acids (PUFAs) as potential vectors for MDR bacteria treatment; the 

PUFAs were not hypothesized to be treatments themselves, but rather to induce 

phenotypic changes in the bacteria that influence survivability and virulence. The PUFAs 

used were linoleic acid (18:2), α-linolenic acid (18:3-α), γ-linolenic acid (18:3-γ), 

dihomo-γ-linolenic acid (20:3), arachidonic acid (20:4), eicosapentaenoic acid (20:5), and 

docosahexaenoic acid (22:6). The three MDR, Gram-negative bacteria experimented on 

in this research were Acinetobacter baumannii ATCC17978, Klebsiella pneumoniae 

ATCC13883, and E. coli MG1655. A. baumannii and K. pneumoniae are notorious MDR 

bacteria and members of the ESKAPE pathogens, a group of infectious bacteria largely 

responsible for the nosocomial outbreaks around the world; E. coli is a model organism 

that is mostly harmless to humans, but some strains of E. coli are infectious and have 

demonstrated resistance to common antibiotics.  
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Before some of the conclusions could be drawn about the phenotypic consequences of 

membrane remodeling following PUFA exposure to any of the three bacteria, 

confirmation that membrane remodeling had even occurred was necessary. This was 

achieved by extracting the lipids from bacterial samples that had been grown in the 

presence of one kind of PUFA or in the absence of PUFAs, which was the case of the 

control samples. The total lipid extracts were subjected to reversed-phase gradient elution 

ultra performance liquid chromatography/mass spectrometry analysis. The purpose of the 

UPLC/MS analysis was to simply show that phospholipid modifications had been made 

to at least one of the fatty acyl chains of the phospholipid species, not to quantify the 

degree of modification. The specific UPLC gradient that was used allowed for the 

formation of a distinct region in time where the phospholipid species eluted from the C8 

column, typically between 6 and 9 minutes from sample injection. Within this 

phospholipid elution region, phosphatidylglycerol species were found to elute from the 

column sooner than phosphatidylethanolamine species due to their slightly more polar 

headgroups, effectively partitioning the phospholipid regions of the chromatograms into 

PG and PE regions. In Gram-negative bacteria, PE species are much more abundant than 

PG species, and 16:0 fatty acyl chains are the most common phospholipid constituents 

followed by 18:1 fatty acyl chains. Therefore, the most common PUFA-modified 

phospholipids were PE 16:0/X species, where X represents a polyunsaturated fatty acyl 

chain. Generally, given the two fatty acyl chains of a phospholipid, the shorter and more 

saturated of the two will be located at the sn-1 position40. In addition to this, the cone 

fragments generated from the sn-2 position (R2CO2
-) are generally of higher abundance 

than cone fragments generated from the sn-1 position (R1CO2
-)41. Consequently, signal 
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intensities of sn-2 cone fragments are greater than the signal intensities of sn-1 cone 

fragments, which is reflected by the peak height differences between the two signals in 

mass spectra. Using this knowledge, the PUFA chains on PUFA-modified phospholipids 

were identified as being at the sn-2 position since they formed the more intense peak 

signals. The chain positions could not be explicitly determined by m/z values alone.  

The chromatograms and mass spectra of various A. baumannii, K. pneumoniae, and E. 

coli samples were presented in Figures 3.1-3.44. The chromatograms and mass spectra 

presented in Chapter 3 were not exhaustive; however, examination of all the 

chromatograms and mass spectra generated from the UPLC/MS analysis of the A. 

baumannii and K. pneumoniae samples showed successful phospholipid modification 

with each of the PUFAs they were exposed to during growth; E. coli demonstrated 

successful phospholipid modification with all PUFAs other than 22:6. XICs were 

generated to show that the three bacteria do not natively produce phospholipid species 

with PUFA chain constituents. 

Double substitutions with exogenous PUFAs were observed in some A. baumannii 

samples, namely in the 18:2, 18:3-α, 18:3-γ, 20:3, and 20:4 samples. The double 

substitutions were found in PE species and have the form PE X/X, where X is a PUFA 

chain. The doubly substituted PE species in order of greatest abundance to least 

abundance were PE 18:2/18:2, PE 18:3-α/18:3-α, PE 18:3-γ/18:3-γ, PE 20:3/20:3, and PE 

20:4/20:4. PE 18:3-α/18:3-α appeared to be approximately two times more abundant than 

PE 18:3-γ/18:3-γ, and PE 20:3/20:3 appeared to be approximately four times more 

abundant than PE 20:4/20:4. These estimates were made by comparing chromatogram 

peak areas and assumes that the true concentrations of all A baumannii samples were 
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actually equal to each other (in this case, 250 ppm). PE species doubly substituted with 

20:5 and 22:6 were not found in the A. baumannii samples. While other bacteria are 

suspected to doubly substitute both PE and PG species, only the ability of A. baumannii 

to doubly substitute PE species was investigated in this research, leaving the investigation 

of doubly substituted PE and PG species in other bacteria open to future work.  

In general, shorter, more saturated PUFAs were used to remodel the phospholipid 

membranes of each of the three bacteria more readily than longer chain PUFAs, which 

was evidenced by the decrease in phospholipid signal intensities going from 18:2-

modified phospholipid species to 22:6-modified phospholipid species. No quantitation of 

the phospholipid species was performed for any of the samples, but this conclusion was 

made based on the signal intensities of the phospholipids relative to one another. While 

the comparison of phospholipid signal intensities is a natural step to take for a set of mass 

spectra generated from samples originating from the same bacteria, comparisons were 

also able to be made between each of the three bacteria since the lipid extraction 

procedure was conserved across the three bacteria and the total lipid extracts were raised 

to similar concentrations. The concentrations of the total lipid extracts of A. baumannii, 

K. pneumoniae, and E. coli were 250 µg/mL, 400 µg/mL, and 400 µg/mL respectively. 

Moreover, after comparing the mass spectra of the samples grown in the absence of 

PUFAs (the control samples) to each other, the signal intensities of identical phospholipid 

species were greater in the A. baumannii control sample than both the K. pneumoniae and 

E. coli control samples, despite the A. baumannii total lipid extract being less 

concentrated. For example, the signal intensities of PE 16:0/18:1 in the mass spectra of 

the A, baumannii, K. pneumoniae, and E. coli control samples were 1.48 X 107, 7.20 X 
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106, and 4.64 X 105, respectively. This general trend of decreasing signal intensity among 

the three bacteria was also observed for the PUFA-modified phospholipid species, 

possibly implying that either A. baumannii has a greater number of phospholipids to 

begin with or a greater propensity for membrane remodeling than K. pneumoniae or E. 

coli. Likewise, it is possible that K. pneumoniae has a greater propensity for membrane 

remodeling than E. coli.  

The suspicion that the trend for decreasing membrane remodeling capability with PUFAs 

among the three bacteria follows the sequence A. baumannii, K. pneumoniae, and E. coli 

was supported after investigating the nature of membrane remodeling. Membrane 

remodeling in E. coli relies on a long-chain fatty acid transporter (FadL), a long-chain 

fatty acyl-CoA synthetase (FadD), and acyltransferases (PlsB/C/X/Y)6,26,42. A. baumannii 

and K. pneumoniae have been shown to possess several homologs to these enzymes, with 

A. baumannii having more homologs than K. pneumoniae6,26. Since A. baumannii and K. 

pneumoniae possess a greater number of homologs for enzymes involved in the 

acquisition and incorporation of exogenous PUFAs, it follows that they should have a 

greater propensity for membrane remodeling than E. coli, which can be inferred from the 

results of the UPLC/MS analysis. The greater number of FadL, FadD, and acyltransferase 

homologs in A. baumannii and K. pneumoniae may also explain why they were able to 

remodel their membranes with 22:6, but E. coli was not.  

The results of the motility, permeability, biofilm formation, and antimicrobial peptide 

susceptibility assays performed on E. coli were presented in Figures 3.45-3.50. Although 

similar assays were performed on A. baumannii and K. pneumoniae, the results of these 

assays were not presented in this thesis. However, the results are discussed here in 
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conjunction with the E. coli assay results. Student’s t-test was used to statistically assess 

the results of the assays. 

Motility is an important phenotype for virulence and survivability in some Gram-negative 

bacteria. Therefore, the motilities of A. baumannii and E. coli in the presence and absence 

of PUFAs were assessed using motility plates. The motility of K. pneumoniae was not 

assessed because K. pneumoniae is not motile. The twitching motility of A. baumannii 

was significantly (p < 0.01) reduced in the presence of each of the seven PUFAs 

compared to the control sample. Interestingly, only 20:3, 20:4, and 20:5 significantly 

reduced motility in E. coli compared to the control sample. These results suggest that A. 

baumannii and E. coli have drastically different chemotactic responses to PUFAs and 

may also imply that A. baumannii is more sensitive to PUFAs than E. coli. Furthermore, 

PUFAs may serve as effective motility retardants for A. baumannii.  

Cell membrane permeability is an essential characteristic vital to the survival of all 

bacteria since it influences what passes into and out of the cell. Permeability assays with 

the hydrophobic compound crystal violet (CV) were performed on A. baumannii, K. 

pneumoniae, and E. coli after growing the three bacteria in the presence or absence of 

PUFAs. Since the PUFAs used in this experiment were cis-isomers, it was hypothesized 

that as the degree of unsaturation increased, cell membrane permeability would increase 

accordingly. Surprisingly, exposure to each of the seven PUFAs decreased membrane 

permeability to CV compared to the control sample in A. baumannii; 18:3-α, 20:4, 20:5, 

and 22:6 decreased permeability significantly (p < 0.002) in A. baumannii. However, 

increased membrane permeability to CV was observed in all but the 18:2 and 18:3-α 

PUFA-exposed K. pneumoniae samples compared to the control sample; 20:4 and 22:6 
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significantly increased membrane permeability to CV in K. pneumoniae. Likewise, the 

20:4 and 22:6 samples showed significantly increased membrane permeability to CV in 

E. coli. It is interesting to note that 22:6 and 20:4 increased membrane permeability in K. 

pneumoniae the greatest and second greatest, respectively, but in E. coli, 20:4 and 22:6 

increased membrane permeability the greatest and second greatest, respectively. The 

reason for this flip between the two bacteria is not clear. Additional permeability assays 

with ethidium bromide (EtBr) were performed on K. pneumoniae and E. coli. All PUFAs 

except for 18:2 significantly (p < 0.002) decreased the membrane permeability of K. 

pneumoniae to EtBr, and all PUFAs except for 20:3 significantly decreased the 

membrane permeability of E. coli to EtBr. Clearly, PUFAs can be used to manipulate the 

membrane permeabilities of A. baumannii, K. pneumoniae, and E. coli to various 

molecules, giving them tremendous utility in dealing with these MDR bacteria.  

Biofilm formation is an important phenotype for bacterial survival and virulence. Biofilm 

formation assays were performed on A. baumannii, K. pneumoniae, and E. coli samples 

in the presence and absence of PUFAs. In M9 minimal medium, 18:3-γ, 20:4, 20:5, and 

22:6 significantly (p < 0.002) increased biofilm formation in A. baumannii compared to 

the control sample while 18:2 significantly lowered biofilm formation. In M9 minimal 

medium supplemented with casamino acids, 20:4 and 22:6 significantly (p < 0.002) 

increased biofilm formation in K. pneumoniae compared to the control sample while 18:2 

and 20:3 significantly lowered biofilm formation. The biofilm increase caused by 22:6 in 

K. pneumoniae was drastic, as the control sample showed approximately OD600 0.3 and 

the 22:6 sample showed approximately OD600 1.0. In M9 minimal medium supplemented 

with casamino acids, 18:3-α, 18:3-γ, 20:4, and 22:6 all significantly increased biofilm 
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formation in E. coli. Interestingly, the influence of the PUFAs on biofilm formation may 

not be directly related to the ability of the bacteria to assimilate the PUFAs into their cell 

membranes, since 22:6 was shown to significantly increase biofilm formation in E. coli 

despite the inability of E. coli to remodel its membrane with 22:6. Nevertheless, PUFAs 

can be used to manipulate biofilm formation in these MDR, Gram-negative bacteria. 

Susceptibility to certain antimicrobial agents is clearly an important factor for the 

virulence and survivability of bacteria. Therefore, antimicrobial peptide susceptibility 

assays were performed on A. baumannii, K. pneumoniae, and E. coli in the presence and 

absence of PUFAs to determine the effect that the PUFAs have on the minimum 

inhibitory concentrations (MICs) of the antimicrobial agents. Two of the antimicrobial 

agents used in these assays were the cationic antimicrobial peptides (cAMPs) polymyxin 

B and colistin. All PUFAs increased the susceptibility of A. baumannii to polymyxin B at 

a concentration of 12.8 µg/mL compared to the control sample, with 18:2, 18:3-α, and 

20:5 significantly (two-fold MIC) increasing susceptibility at that concentration; 20:4 

significantly increased susceptibility to polymyxin B at a concentration of 6.4 µg/mL. All 

PUFAs increased the susceptibility of A. baumannii to colistin at concentrations of 3.2 

µg/mL, 6.4 µg/mL, and 12.8 µg/mL compared to the control sample. Notably, all PUFAs 

other than 22:6 and 20:3 significantly increased colistin susceptibility at concentrations of 

3.2 µg/mL and 6.4 µg/mL; 20:3 significantly increased colistin susceptibility at a 

concentration of 12.8 µg/mL along with those PUFAs. The exogenous PUFAs 18:3-α, 

18:3-γ, and 20:5 significantly increased the susceptibility of K. pneumoniae to polymyxin 

B at a concentration of 12.8 µg/mL compared to the control sample; 18:2 significantly 

increased polymyxin B susceptibility at a concentration of 25.6 µg/mL along with those 
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PUFAs. All PUFAs except for 20:3 significantly increased the susceptibility of K. 

pneumoniae to colistin at a concentration of 32 µg/mL compared to the control sample; 

20:3 significantly increased susceptibility at a concentration of 64 µg/mL along with 

those PUFAs. Interestingly, 20:4 and 22:6 significantly decreased the susceptibility of E. 

coli to both polymyxin B and colistin at most concentrations tested compared to the 

control sample. The PUFA 20:5 significantly increased the susceptibility of E. coli to 

polymyxin B at a concentration of 2 µg/mL; 20:3 significantly decreased susceptibility at 

a concentration of 4 µg/mL. The PUFA 18:2 significantly increased the susceptibility of 

E. coli to colistin at a concentration of 0.8 µg/mL compared to the control; 20:3 

significantly decreased susceptibility at a concentration of 1.6 µg/mL. Most PUFAs 

tended to increase the susceptibility of A. baumannii and K. pneumoniae to polymyxin B 

and colistin at the various concentrations tested, but PUFA-exposed E. coli cells 

demonstrated more variability in their susceptibility to these cAMPs. E. coli was shown 

to be incapable of remodeling its cell membrane with 22:6, yet 22:6 caused a significant 

decrease in susceptibility of E. coli to polymyxin B and colistin at most concentrations 

tested. Significant decreases in the susceptibility of either A. baumannii or K. 

pneumoniae to polymyxin B or colistin caused by 22:6 were not observed at any of the 

concentrations tested, suggesting that 22:6 as a membrane constituent increases the 

efficiency of cAMPs, but as a free fatty acid serves to impede the efficiency of cAMPs. 

Additional antimicrobial assays were performed on A. baumannii and K. pneumoniae 

using the β-lactam imipenem. No significant deviations in susceptibility compared to the 

control samples were observed in any of the PUFA-exposed A. baumannii or K. 

pneumoniae samples. Polymyxin B and colistin operate by different mechanisms of 
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action compared to β-lactam antibiotics such as imipenem. Polymyxin B and colistin 

directly interact with the cell membrane when attacking Gram-negative bacteria, whereas 

imipenem does not. Therefore, the efficiency of polymyxin B and colistin were expected 

to be affected by membrane remodeling, and imipenem was expected to be largely 

unaffected by membrane remodeling. The results of the assays affirm this hypothesis. 

In conclusion, the multi-drug resistant, Gram-negative bacteria Acinetobacter baumannii, 

Klebsiella pneumoniae, and E. coli were shown to be able to remodel their cell 

membranes with exogenously supplied polyunsaturated fatty acids. These PUFAs 

profoundly altered phenotypes important to virulence and survivability, such as motility, 

biofilm formation, membrane permeability, and susceptibility to antimicrobial agents. 

Therefore, PUFAs may be utilized in the future as tools for treating these MDR, Gram-

negative bacteria as well as many others. 

There are many potential topics to consider for the future work of this research project. 

The most obvious is the extension of this research to other multi-drug resistant bacteria. 

Another possible endeavor for future work could be further optimization of the mobile 

phase and gradient used in the UPLC/MS analysis. The UPLC conditions used in this 

research allowed for chromatographic separation of 18:3-α and 18:3-γ; the separation 

time was approximately 0.1 minutes. Perhaps the chromatographic separation of ω-3 and 

ω-6 PUFAs like 18:3-α and 18:3-γ could be investigated in the future. In addition to this, 

the mass spectrometric technique of multiple reaction monitoring (MRM) could be 

employed to fragment parent phospholipid ions via collision with inert argon gas to aid in 

the identification of unknown phospholipid peaks. An investigation into the modification 

of large lipids like cardiolipins with exogenous PUFAs could yield interesting results. 
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Assays designed to investigate the roles of various enzymes produced by MDR bacteria 

that are involved in the recognition, retrieval, and assimilation of PUFAs into the cell 

membrane could be utilized in future work. Finally, the anomalous observations 

presented in section 4.2 could be investigated further in the future. 

4.2 Anomalous Observations 

Although Gram-negative bacteria were thought to not natively produce phospholipid 

species with polyunsaturated fatty acyl chains, PE 16:0/16:3 species were found in the 

18:3-α, 20:3, and 20:4 A. baumannii samples. In addition to this, strange high m/z peaks 

were found in all bacterial samples subjected to UPLC/MS analysis. It is suspected that 

these peaks may be related to phospholipid dimers, but this suspicion has not yet been 

validated. The average mass spectrum of a 7.23 minute peak in the 20:4 A. baumannii 

sample chromatogram is presented in Figure 4.1 to show both of these anomalies. It 

displays the 684.5 m/z peak, which corresponds to the [M-H]- ion of PE 16:0/16:3, as 

confirmed by LIPID MAPS and the 16:0 and 16:3 cone fragments that correspond to the 

255.5 m/z and 249.5 m/z peaks respectively. The high m/z peaks in the 1100-1500 m/z 

range are displayed as well. The 1370.0 m/z peak is most notable. 
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