
University of Tennessee at Chattanooga University of Tennessee at Chattanooga

UTC Scholar UTC Scholar

Honors Theses Student Research, Creative Works, and
Publications

5-2020

Augmented Reality in a Dynamic Drone Based Environment Augmented Reality in a Dynamic Drone Based Environment

Christopher Davis
University of Tennessee at Chattanooga, nzg321@mocs.utc.edu

Follow this and additional works at: https://scholar.utc.edu/honors-theses

 Part of the Aeronautical Vehicles Commons, and the Computer Engineering Commons

Recommended Citation Recommended Citation
Davis, Christopher, "Augmented Reality in a Dynamic Drone Based Environment" (2020). Honors Theses.

This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications
at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar.
For more information, please contact scholar@utc.edu.

https://scholar.utc.edu/
https://scholar.utc.edu/honors-theses
https://scholar.utc.edu/student-research
https://scholar.utc.edu/student-research
https://scholar.utc.edu/honors-theses?utm_source=scholar.utc.edu%2Fhonors-theses%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/219?utm_source=scholar.utc.edu%2Fhonors-theses%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholar.utc.edu%2Fhonors-theses%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.utc.edu/honors-theses/270?utm_source=scholar.utc.edu%2Fhonors-theses%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@utc.edu

Augmented Reality in a Dynamic Drone Based

Environment

Chris Davis

College of Engineering and Computer Science

University of Tennessee at Chattanooga

Supervisor

Dr. Yu Liang

Undergraduate Thesis

Bachelor of Science in Computer Science

Examination Date: March 27, 2020

Abstract

Augmented Reality (AR) and Unmanned Ariel Vehicles (UAVs) are

fast advancing technologies, and this research seeks to combine them

to offer an effective, user friendly approach for monitoring infrastruc-

ture. Drones provide a means to easily access otherwise difficult to

reach locations and visualize useful information with Augmented Re-

ality. A UAV employs a wide-angle view and, when paired with AR,

this will enable the user to better complete their task by effortlessly

providing the critical information they need in the most intuitive way

possible. This research is particularly applicable for civil applications

such as construction and monitoring of difficult to access locations.

The background for these technologies and applications will be dis-

cussed in the next section, but this research is unique in its combined

and interactive application of AR and drone technology. Many existing

techniques which are discussed in this paper already exist for general

applications of AR. Using a drone feed compared to a relatively fixed

camera creates many barriers to the AR process. This research ex-

plores how existing techniques perform under these conditions, such

as fast moving cameras and complex environments that drones often

face. This research also explores potential methods for improving ac-

curacy for AR objects created on a Drone feed. Existing technology

such as object tracking and image filtering are used to improve accu-

racy. Other simple mathematical methods are used, such as Kalman

Filtering and data smoothing algorithms, to improve the appearance

of the AR object in the frame.

Contents

1 Introduction 1

1.1 Background . 1

2 Methods 4

2.1 Augmented Reality Implementation 4

2.2 Object Tracking and Frame Masking 6

2.3 Output Smoothing . 7

3 Results 9

3.1 Improvements to Traditional AR Methods 9

3.2 Program Performance . 9

3.3 Program Output . 10

4 Discussion 17

4.1 The Future of Drone Based AR . 17

4.2 Future Improvements . 17

5 Conclusions 19

References 20

6 Appendix 21

6.1 Full Python Source . 21

ii

Chapter 1

Introduction

1.1 Background

AR or Augmented Reality is the projection of a virtual object into a live or

recorded video or image. This already has many widespread applications, such as

Pokémon Go or Snapchat filters, Google Translate, Google Maps, Amazon’s AR

View and many more. The basis for this technology is key points. Key points are

points calculated from an image with an associated Matrix of values that can iden-

tify it in the frame. There are many different algorithms that can generate these

key points, which will be discussed in detail in the Methods section of this paper,

but they all calculate these values based on the image’s intensity at a point, or

the rate at which the brightness changes between a pixel and surrounding pixels.

This is usually measured from a greyscale image. For any AR application there

are two important components to take into account, the model and the frame.

The frame is simply the image that an AR entity will be projected onto, and the

model is the object in the frame the AR entity needs to be anchored to. Key

points need to be generated for both the model and the frame, and then they

are matched, to make sure the objects location and orientation are correct. The

resulting key points are matched, and then they are sorted by confidence level.

After this step, all that remains is to compute homography of the surface, and

then render the object. Homography is a two-dimensional plane calculated from

the collection of key points. Rendering the object is the easiest step, since, from

the key points, a plane has already been generated, the object just needs to be

1

1.1 Background

drawn orthogonally on that plane. While there are different ways to implement

these steps, all AR works in this way. For the purposes of this research, a drone

refers to a UAV, or unmanned aerial vehicle, which is a battery powered, propeller

driven remote control device that has a mounted video camera. That camera

can stream to a mobile phone or laptop. The object of this research is to accu-

rately project an object onto the video feed, and make it behave as you would

expect an object actually being recorded, with a constant orientation and position

relative to other objects in the frame. Potential challenges to this research are

abundant. The most widespread application for Augmented reality is on a mobile

phone. The camera on a phone is relatively fixed and moves/rotates at relatively

slow speeds when compared with a camera attached to a drone. The UAV can

rotate 360 degrees in a matter of seconds, and it can easily travel at a speed of

50 miles per hour. Beyond this, drones often fly in highly dynamic environments,

such as construction sights, or over broad areas such as agricultural land. These

environments are often feature saturated, making key point detection computa-

tionally taxing, or feature poor, making key point matching difficult. All of these

potential issues will be addressed in this research. Applications of this research

are abundant, specifically in the area of construction and civil engineering. This

technology would enable virtual object overlays in a drone stream. This could

be useful for viewing infrastructure that isn’t visible on inspection, such as un-

derground or obstructed pipes or wires. Drones are already used for applications

such as bridge inspection and construction. For bridge inspection, important areas

could be highlighted so the technician has an easier job finding it. In construction,

drones are used to monitor progress and develop plans, and both processes could

be enhanced by the addition of augmented reality. Another notable application is

entertainment. Augmented reality is extremely popular on mobile platforms for

entertainment, and recreational drones could by extending their functionality to

support augmented reality. Because of the high demand and applications there

are for these technologies, a lot of research has been done involving drones and

AR. These areas still have many ways they can be improved, and research contin-

ues to be done. In a survey the most beneficial applications of civil applications

of drone technology, it was observed that drone research has been growing ex-

2

1.1 Background

ponentially in recent years. It also notes the applications are widespread across

environmental monitoring, land surveying, and infrastructure monitoring [1].Re-

search involving AR has also been extensive in recent years. This particular study

addresses the challenges of outdoor AR and how a user would use it. It describes

multiple techniques for displaying large scale AR data in an unpredictable out-

door environment [2]. Other research has also been targeted at civil applications

using both UAV’s and Augmented Reality, but very little has been done with both

technologies to create an interactive environment [3]. This project seeks to extend

much of this previous research into a combined user experience enabled by AR

and drone technology. With this advanced technology, there exist many challenges

that this research seeks to overcome. A major issue with rendering virtual objects

on a real 3D background is anchoring the object to a fixed point in the image

and rotating/ scaling/ translating it correctly as the observation point changes.

This is especially problematic when the observation point (a UAV) is moving very

quickly. A drone may also create a unpredictable user experience because of it’s

quick motion and generally low precision sensors.

3

Chapter 2

Methods

2.1 Augmented Reality Implementation

For this research, python was used to load the drone videos, and python OpenCV

(Computer Vision) was used for augmented reality. As discussed in the introduc-

tion, the basis of augmented reality is key points generated for an image or frame.

This research employed the ORB (Orient FAST Rotate BRIEF) algorithm from

OpenCV to create key points. According to OpenCV’s documentation, ORB is

a computationally efficient substitute for the SIFT or SURF key point detection

algorithms. This computational efficiency makes it a clear candidate for this ap-

plication, with drone video’s generally having high resolution and dynamic scenes.

Another important factor is SIFT and SURF are patented algorithms, while ORB

is not patented and is free to use. ORB is a modified combination of FAST key

point detection and the BRIEF descriptor algorithms. FAST (Features from Ac-

celerated Segment Test) is a machine learning algorithm that detects corners (or

features) in an image. This is accomplished by comparing the intensity of a center

pixel with a circle of pixels around it. A machine learning algorithm is used to

detect interest points and an intensity threshold value relative to the rest of the

frame. A pixel determined from the interest point algorithm is considered a corner

when there is a contiguous set of pixels around it that are all darker or lighter than

it, illustrated in the figure 2.1. Once the features are detected using FAST, BRIEF

(Binary Robust Independent Elementary Features) is used to calculate descriptors

for the features. This algorithm generates a vector of binary features that is later

4

2.1 Augmented Reality Implementation

Figure 2.1 FAST Feature Detection

used for matching. An example of the ORB key point creation is shown in the

Results section Figure 3.1. There are two images that the above process is applied

to, the model and the current frame. The model can be instantiated many ways,

but it is supposed to be the actual object in the frame where you want an AR

object to be anchored. In this application, the frame is the current frame as it

is recieved from the drone from the drone, and the object the user selects in an

initial frame is defined as the model. With features generated from both images,

OpenCV provides multiple methods for matching features between them. Because

of the limitation of patented algorithms, the Brute Force matcher was chosen. The

Brute Force matcher simply compares the values of the features and the minimum

Euclidian distance between two features (generated by BRIEF) is selected as a

match. An example of the Brute Force Matcher in application is shown in Fig-

ure 3.2 and 3.3. For this research, the best 20 matches were selected as features

used to create homography and project the image onto the frame. Homagraphy is

generated using openCV’s functionality. It is a way of relating the transformation

between two planes, and in this case the frame from the model object to where it

is in the frame. It is represented as a normalized 3X3 matrix. As illustrated in

figure 2.2, a plane is generated by drawing lines between key points.

5

2.2 Object Tracking and Frame Masking

Figure 2.2 Homography Theory

2.2 Object Tracking and Frame Masking

Another important method employed in this research is object tracking. Python

OpenCV provides object tracking functionality through python as well. Many

algorithms are available for object tracking, but this research was developed using

the KCF and the CSRT Trackers. Both trackers are based on Correlation filters.

KCF was chosen for its high accuracy compared to its relatively low computational

cost. The only notable downside to KCF is it fails if the object it is tracking ever

becomes fully occluded, it will not be able to discover it again. CSRT performed

better with occlusion and overall, but at a slightly lower speed. The reason Object

tracking is relevant to AR is how it can improve key point detection and matching.

The CSRT tracker is demonstrated on a drone video in figures 3.5 and 3.6. Using

object tracking, a mask can be applied to each frame of the drone feed to reduce

it to a much smaller region of interest (ROI). A region of interest can be created

by the user, figure 3.4, and then a mask is applied to the frame, figure 3.7, and

then the ROI is updated by the tracker each frame, along with the mask. This

means that the feature creation and matching algorithms only need to be applied

to a small subset of the image, making it significantly more accurate and efficient.

This is illustrated in the arrays in figure ??, since most of the frame after the mask

6

2.3 Output Smoothing

Figure 2.3 Python Mask Computation

is zero, the calculations that need to be done are drastically reduced.

2.3 Output Smoothing

A few other mathematical techniques were applied to further improve performance,

including averaging homography and Kalman filtering. Ideally, an AR object

would have smooth motion as it traveled in the frame. Since many calculations are

made every frame, and sometimes noise is introduced, a few smoothing methods

were applied to improve performance relative to the user. The simplest technique

applied was averaging past values for homography with the current one. Through

trial and error, averaging the past five to ten frames best smoothed the object in

the frame without sacrificing accuracy. Kalman filtering was also applied to the

homography matrix. Kalman filtering is a signal noise processing technique that

has been used for decades. It consists of noise matrices, a state matrix, and an

update matrix that allow for real time signal processing to give smoother feedback

than the actual measurement. When applied to the homography matrix, it helped

7

2.3 Output Smoothing

reduce the amount the object would jump within the frame.

8

Chapter 3

Results

3.1 Improvements to Traditional AR Methods

Each of the methods described above had an impact on the performance (as judged

by the user) of the program. Traditional AR methods generally rely on key point

matching alone to match objects between frames, but that approach was not suffi-

cient for the dynamic environments that drones are often in. While the traditional

methods worked for a fixed camera and a predetermined model, the accuracy of

key point matching did not accurately project the object in the image from frame

to frame when applied to a drone video feed. The addition of masking the object

based on the object tracking before key point matching is what made AR work

for each drone feed sample. The additional smoothing made the object seem more

realistic in the frame. Many of these measures are arbitrary, so sample output is

included in section 3.3, specifically in figures 3.13, 3.13, and 3.11.

3.2 Program Performance

Together, all these methods are applied together to enable Augmented Reality

in drone video. This research successfully and accurately achieved the result of

anchoring an AR object (in this case a simple cube) and orienting it correctly in

the frame of a drone feed. With the available resources, the python script runs at a

frame rate between 3 and 6 frames per second running on a 2.7 GHz processor with

16 GB of Memory. With more computational power, or some code optimization,

9

3.3 Program Output

this number could reach 24 frames/sec, the usual frame-rate for a 4K drone stream.

As far as the positional accuracy and the pose of the AR object, the code works

well on surfaces with good features, but can perform poorly on surfaces with few

unique points. When there are quality features, the program does a great job

of keeping an objects location, and an acceptable job of estimating the change

in pose over time. When dealing with occlusion of the model, the program will

drop the AR object from the frame until it returns into view according to the

object tracker. This program provides an easy working product that is editable

for a user. All that would need to be done to implement is download or record

an mp4 file from a drone’s camera and point the program to it. The user can

also specify an AR object to project onto the frame in the form of an object

(.obj) file. Once the program is run, it prompts the user to select a subset of

the image as a bounding box on which to anchor the AR object. Once the user

selects this location, the program tracks the location in the frame and projects the

AR object onto the frame. This research is unique in its specific combination of

the techniques of object tracking, frame masking, and Kalman filtering to achieve

accurate Augmented Reality in the dynamic setting of Drone videos.

3.3 Program Output

This section contains samples output from the program developed in this research

applied to multiple open source drone videos.

10

3.3 Program Output

Figure 3.1 Key Point Creation with ORB

Figure 3.2 Key Point Matching with Brute Force Matcher

Figure 3.3 Key Point Matching with Brute Force Matcher (High Confidence
Points Only)

11

3.3 Program Output

Figure 3.4 Selecting a Region of Interest

Figure 3.5 Simple Object Tracking at Beginning of Feed

12

3.3 Program Output

Figure 3.6 Simple Object Tracking at End of Feed

Figure 3.7 Using Object Tracking to Apply a Mask

13

3.3 Program Output

Figure 3.8 Key Point Matching without Masking

Figure 3.9 Key Point Matching with Masking

14

3.3 Program Output

Figure 3.10 Masking with Original Frame Overlay

Figure 3.11 AR Projection

15

3.3 Program Output

Figure 3.12 AR Over Time Position One

Figure 3.13 AR Over Time Position Two

16

Chapter 4

Discussion

4.1 The Future of Drone Based AR

This work successfully establishes the feasibility of drone based augmented reality,

and it provides an introductory framework that can be built on for further appli-

cations. The results above demonstrate a working proof of concept for augmented

reality from a drone video. The challenges facing Drone Based AR mentioned in

the beginning can all be addressed by combining existing sensor processing and

computer vision techniques.

4.2 Future Improvements

There are still many enhancements that could be implemented in a future project

to enhance the functionality offered from this research. In order to speed up the

programming process, python was used to implement this functionality, relying

heavily on the OpenCV library. OpenCV is also an available package for the

C++ programming language. C++ is more intensive upfront to develop, but it

offers many performance increases over python. A future project could implement

all the functionality from this project in C++ and achieve a noticeably higher

frame-rate. Another possible future improvement would be new methods to in-

stantiate the object in the frame. As discussed in the Results section, this research

employs a user selected subset of the frame to serve as the model that the object is

initialized on. Alternatively, this could be done using GPS or object recognition.

17

4.2 Future Improvements

For example, a sensor could send its location to the server computer that hosted

the drone feed, and the position it would be in the frame could be calculated

based on the drone’s GPS coordinates relative to the sensor. Alternatively, object

recognition could be used such that the drone could display useful information in

augmented reality about the object based on what it is recognized as. Another

beneficial feature that could be implemented in further work is object scaling.

This research anchor’s the object in the frame and infers its proper orientation,

but there is no run-time scaling of the object relative to the other objects in the

frame. This research could also be extended to allow for more than one AR object

to be created in the frame. Finally, in the future this program could be applied to a

real time stream from a drone camera, and be able to provide relevant information

to whoever is watching the feed.

18

Chapter 5

Conclusions

Augmented reality has widespread uses today, but there are very few cases where

the technology is paired with drones. Drones are often deployed in complex en-

vironments, and they have extensive uses in commercial and recreational ways.

Many drone use cases could be enhanced by the addition of Augmented reality.

The main challenge with this is that traditional methods for AR are not suffi-

cient when working with the dynamic videos coming from a mobile drone. When

applied, these traditional methods would create an unacceptable user experience.

This research extends these traditional techniques to make augmented reality a

possibility for drone applications. Through the combination of existing methods,

object tracking, and filtering algorithms, this project successfully adds an aug-

mented reality layer to drone videos.

19

References

(1) Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Networks 2018,
72, 411–458.

(2) Veas, E.; Grasset, R.; Kruijff, E.; Schmalstieg, D. IEEE transactions on
visualization and computer graphics 2012, 18, 565–572.

(3) Ham, Y.; Han, K. K.; Lin, J. J.; Golparvar-Fard, M. Visualization in Engi-
neering 2016, 4, 1.

(4) Marchand, E.; Uchiyama, H.; Spindler, F. IEEE Transactions on Visualiza-
tion and Computer Graphics 2016, 22, 2633–2651.

(5) juangallostra Augmented Reality with Python and OpenCV https : / /

bitesofcode.wordpress.com/2017/09/12/augmented-reality-with-

python-and-opencv-part-1/, (accessed: 01.01.2020).

(6) Videezy.com 4K Aerial Drone Shot Of Liberty Place Buildings In Philadel-
phia https://www.videezy.com/aerial- drone/11547- 4k- aerial-

drone- shot- of- liberty- place- buildings- in- philadelphia, (ac-
cessed: 01.01.2020).

(7) Videezy.com Oregon Bridge River 4K Aerial Drone Shot https://www.

videezy.com/aerial-drone/10605-oregon-bridge-river-4k-aerial-

drone-shot, (accessed: 01.01.2020).

(8) Videezy.com Drone Footage Over Large Neighborhood https : / / www .

videezy . com / aerial - drone / 7788 - drone - footage - over - large -

neighborhood, (accessed: 01.01.2020).

(9) Pronios, F. AIPset1 https://github.com/fpronios/AI_Pset1/blob/

master/kalman.py, (accessed: 01.01.2020).

(10) Open CV Documentation https://docs.opencv.org/master/, (accessed:
01.01.2020).

20

https://bitesofcode.wordpress.com/2017/09/12/augmented-reality-with-python-and-opencv-part-1/
https://bitesofcode.wordpress.com/2017/09/12/augmented-reality-with-python-and-opencv-part-1/
https://bitesofcode.wordpress.com/2017/09/12/augmented-reality-with-python-and-opencv-part-1/
https://www.videezy.com/aerial-drone/11547-4k-aerial-drone-shot-of-liberty-place-buildings-in-philadelphia
https://www.videezy.com/aerial-drone/11547-4k-aerial-drone-shot-of-liberty-place-buildings-in-philadelphia
https://www.videezy.com/aerial-drone/10605-oregon-bridge-river-4k-aerial-drone-shot
https://www.videezy.com/aerial-drone/10605-oregon-bridge-river-4k-aerial-drone-shot
https://www.videezy.com/aerial-drone/10605-oregon-bridge-river-4k-aerial-drone-shot
https://www.videezy.com/aerial-drone/7788-drone-footage-over-large-neighborhood
https://www.videezy.com/aerial-drone/7788-drone-footage-over-large-neighborhood
https://www.videezy.com/aerial-drone/7788-drone-footage-over-large-neighborhood
https://github.com/fpronios/AI_Pset1/blob/master/kalman.py
https://github.com/fpronios/AI_Pset1/blob/master/kalman.py
https://docs.opencv.org/master/

Chapter 6

Appendix

6.1 Full Python Source

from __future__ import print_function

import pandas as pd

import sys

import tkinter

import cv2 as cv

import PIL.Image, PIL.ImageTk

import time

import glob

import numpy as np

import matplotlib as plt

import math

import sys

from random import randint

import Kfilter as k

import time

import random

#===

def kalman_xy(x, P, measurement, R,

motion = np.matrix(’0. 0. 0. 0.’).T,

Q = np.matrix(np.eye(4))):

"""

Parameters:

x: initial state 4-tuple of location and velocity: (x0, x1, x0_dot, x1_dot)

P: initial uncertainty convariance matrix

measurement: observed position

R: measurement noise

motion: external motion added to state vector x

Q: motion noise (same shape as P)

"""

return kalman(x, P, measurement, R, motion, Q,

F = np.matrix(’’’

21

6.1 Full Python Source

1. 0. 1. 0.;

0. 1. 0. 1.;

0. 0. 1. 0.;

0. 0. 0. 1.

’’’),

H = np.matrix(’’’

1. 0. 0. 0.;

0. 1. 0. 0.’’’))

def kalman(x, P, measurement, R, motion, Q, F, H):

’’’

Parameters:

x: initial state

P: initial uncertainty convariance matrix

measurement: observed position (same shape as H*x)

R: measurement noise (same shape as H)

motion: external motion added to state vector x

Q: motion noise (same shape as P)

F: next state function: x_prime = F*x

H: measurement function: position = H*x

Return: the updated and predicted new values for (x, P)

See also http://en.wikipedia.org/wiki/Kalman_filter

This version of kalman can be applied to many different situations by

appropriately defining F and H

’’’

UPDATE x, P based on measurement m

distance between measured and current position-belief

y = np.matrix(measurement).T - H * x

S = H * P * H.T + R # residual convariance

K = P * H.T * S.I # Kalman gain

x = x + K*y

I = np.matrix(np.eye(F.shape[0])) # identity matrix

P = (I - K*H)*P

PREDICT x, P based on motion

x = F*x + motion

P = F*P*F.T + Q

return x, P

def demo_kalman_xy():

x = np.matrix(’0. 0. 0. 0.’).T

P = np.matrix(np.eye(4))*10

R = 0.01**2

N = 20

observed_x = range(0, N)

22

6.1 Full Python Source

observed_y = [0]

for i in range(1, N):

observed_y.append(observed_y[i-1] + random.randint(1,4))

plt.plot(observed_x, observed_y, ’ro’)

result = []

for meas in zip(observed_x, observed_y):

x, P = kalman_xy(x, P, meas, R)

result.append((x[:2]).tolist())

kalman_x, kalman_y = zip(*result)

plt.plot(kalman_x, kalman_y, ’g-’)

plt.show()

class OBJ:

def __init__(self, filename, swapyz=False):

"""Loads a Wavefront OBJ file. """

self.vertices = []

self.normals = []

self.texcoords = []

self.faces = []

material = None

for line in open(filename, "r"):

if line.startswith(’#’): continue

values = line.split()

if not values: continue

if values[0] == ’v’:

v = [float(val) for val in values[1:4]]

if swapyz:

v = v[0], v[2], v[1]

self.vertices.append(v)

elif values[0] == ’vn’:

v = [float(val) for val in values[1:4]]

if swapyz:

v = v[0], v[2], v[1]

self.normals.append(v)

elif values[0] == ’vt’:

self.texcoords.append(map(float, values[1:3]))

#elif values[0] in (’usemtl’, ’usemat’):

#material = values[1]

#elif values[0] == ’mtllib’:

#self.mtl = MTL(values[1])

elif values[0] == ’f’:

face = []

texcoords = []

norms = []

23

6.1 Full Python Source

for v in values[1:]:

w = v.split(’/’)

face.append(int(w[0]))

if len(w) >= 2 and len(w[1]) > 0:

texcoords.append(int(w[1]))

else:

texcoords.append(0)

if len(w) >= 3 and len(w[2]) > 0:

norms.append(int(w[2]))

else:

norms.append(0)

#self.faces.append((face, norms, texcoords, material))

self.faces.append((face, norms, texcoords))

MIN_MATCHES = 15

k_homography = np.zeros((3,3))

N = 6

p_homography = np.empty((10,3,3))

homography = None

camera_parameters = np.array([[1000, 0, 0], [0, 1000, 2000], [0, 0, 1]])

obj = OBJ(’box/box.obj’, swapyz=False)

screen_factor = 2.0

x = np.matrix(’0. 0. 0. 0.’).T

P = np.matrix(np.eye(4))*10

R = (0.01)**2

k_filters = [[{},{},{}],

[{},{},{}],

[{},{},{}]]

for i in range(3):

for j in range(3):

k_filters[i][j] = {’x’:x, ’P’:P,’R’:R}

Set video to load

videoPath = "bridge.mp4"

videoPath = "city.mp4"

videoPath = "houses.mp4"

skip_frames = 0

def projection_matrix(camera_parameters, homography):

"""

From the camera calibration matrix and the estimated homography

24

6.1 Full Python Source

compute the 3D projection matrix

"""

Compute rotation along the x and y axis as well as the translation

homography = homography * (-1)

rot_and_transl = np.dot(np.linalg.inv(camera_parameters), homography)

col_1 = rot_and_transl[:, 0]

col_2 = rot_and_transl[:, 1]

col_3 = rot_and_transl[:, 2]

normalise vectors

l = math.sqrt(np.linalg.norm(col_1, 2) * np.linalg.norm(col_2, 2))

rot_1 = col_1 / l

rot_2 = col_2 / l

translation = col_3 / l

compute the orthonormal basis

c = rot_1 + rot_2

p = np.cross(rot_1, rot_2)

d = np.cross(c, p)

rot_1 = np.dot(c / np.linalg.norm(c, 2) + d / np.linalg.norm(d, 2), 1 / math.sqrt(2))

rot_2 = np.dot(c / np.linalg.norm(c, 2) - d / np.linalg.norm(d, 2), 1 / math.sqrt(2))

rot_3 = np.cross(rot_1, rot_2)

finally, compute the 3D projection matrix from the model to the current frame

projection = np.stack((rot_1, rot_2, rot_3, translation)).T

return np.dot(camera_parameters, projection)

def render(img, obj, projection, model, color=False, colors=[]):

vertices = obj.vertices

scale_matrix = np.eye(3) * 25

h, w, im_slice = model.shape

for i, face in enumerate(obj.faces):

face_vertices = face[0]

points = np.array([vertices[vertex - 1] for vertex in face_vertices])

points = np.dot(points, scale_matrix)

render model in the middle of the reference surface. To do so,

model points must be displaced

points = np.array([[p[0] + w / 2, p[1] + h / 2, p[2]] for p in points])

dst = cv.perspectiveTransform(points.reshape(-1, 1, 3), projection)

imgpts = np.int32(dst)

if color is False:

cv.fillConvexPoly(img, imgpts, (211, 27, 30))

else:

color = colors[i]

cv.fillConvexPoly(img, imgpts, color)

return img

trackerTypes = [’BOOSTING’, ’MIL’, ’KCF’,’TLD’, ’MEDIANFLOW’, ’GOTURN’, ’MOSSE’, ’CSRT’]

def createTrackerByName(trackerType):

25

6.1 Full Python Source

Create a tracker based on tracker name

if trackerType == trackerTypes[0]:

tracker = cv.TrackerBoosting_create()

elif trackerType == trackerTypes[1]:

tracker = cv.TrackerMIL_create()

elif trackerType == trackerTypes[2]:

tracker = cv.TrackerKCF_create()

elif trackerType == trackerTypes[3]:

tracker = cv.TrackerTLD_create()

elif trackerType == trackerTypes[4]:

tracker = cv.TrackerMedianFlow_create()

elif trackerType == trackerTypes[5]:

tracker = cv.TrackerGOTURN_create()

elif trackerType == trackerTypes[6]:

tracker = cv.TrackerMOSSE_create()

elif trackerType == trackerTypes[7]:

tracker = cv.TrackerCSRT_create()

else:

tracker = None

return tracker

def img_resize(img, factor):

height, width, layers = img.shape

new_h= int(height / factor)

new_w= int(width / factor)

return cv.resize(img, (new_w, new_h))

Create a video capture object to read videos

cap = cv.VideoCapture(videoPath)

bboxes = []

colors = []

obj_colors = []

for i in range(6):

obj_colors.append((randint(0, 255), randint(0, 255), randint(0, 255)))

frame_count = 0

success, frame = cap.read()

frame = img_resize(frame, screen_factor)

frame_count += 1

if not success:

print(’Failed to read video’)

sys.exit(1)

bbox = cv.selectROI(’MultiTracker’, frame)

26

6.1 Full Python Source

bboxes.append(bbox)

colors.append((randint(0, 255), randint(0, 255), randint(0, 255)))

print(’Selected bounding boxes {}’.format(bboxes))

trackerType = "CSRT"

multiTracker = cv.MultiTracker_create()

for bbox in bboxes:

multiTracker.add(createTrackerByName(trackerType), frame, bbox)

found_count = 0

first_frame = True

orb = cv.ORB_create()

Process video and track objects

start = time.monotonic()

while cap.isOpened():

success, frame = cap.read()

frame_count += 1

if not success:

break

frame = img_resize(frame, screen_factor)

gray = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)

success, boxes = multiTracker.update(frame)

for i, newbox in enumerate(boxes):

p1 = (int(newbox[0]), int(newbox[1]))

p2 = (int(newbox[0] + newbox[2]), int(newbox[1] + newbox[3]))

m1 = int(newbox[1])

m2 = int(newbox[1] + newbox[3])

m3 = int(newbox[0])

m4 = int(newbox[0] + newbox[2])

cv.rectangle(frame, p1, p2, colors[i], 2, 1)

if first_frame:

model_base = gray[m1:m2,m3:m4]

c_model_base = frame[m1:m2,m3:m4]

model = gray[m1:m2,m3:m4]

c_model = frame[m1:m2,m3:m4]

f_mask = np.zeros(gray.shape,np.uint8)

f_mask[m1:m2,m3:m4] = gray[m1:m2,m3:m4]

c_mask = np.zeros(frame.shape,np.uint8)

c_mask[m1:m2,m3:m4] = frame[m1:m2,m3:m4]

27

6.1 Full Python Source

bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)

kp_model, des_model = orb.detectAndCompute(model_base, None)

kp_frame, des_frame = orb.detectAndCompute(f_mask, None)

matches = bf.match(des_model, des_frame)

matches = sorted(matches, key=lambda x: x.distance)

h, w = model.shape

if len(matches) > MIN_MATCHES:

differenciate between source points and destination points

src_pts = np.float32([kp_model[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)

dst_pts = np.float32([kp_frame[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)

compute Homography

homography, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 1.0)

if first_frame:

k_homography = homography

first_frame = False

KFILTER IMPLEMENTATION OPTIONAL

for i in range(0,3):

for j in range(0,3):

x_u, P_u = kalman_xy(

k_filters[i][j][’x’],

k_filters[i][j][’P’],

(frame_count, homography[i][j]),

k_filters[i][j][’R’])

k_filters[i][j][’x’] = x_u

k_filters[i][j][’P’] = P_u

k_homography[i][j] = x_u[1]

if frame_count > N:

p_homography = np.concatenate((p_homography, [homography]),axis=0)

p_homography = np.delete(p_homography,0,0)

smooth_homography = p_homography.mean(axis=0)

else:

p_homography = np.concatenate((p_homography,[homography]),axis=0)

smooth_homography = homography

h, w = model.shape

28

6.1 Full Python Source

pts = np.float32([[0, 0], [0, h], [w, h], [w, 0]]).reshape(-1, 1, 2)

dst = cv.perspectiveTransform(pts, smooth_homography)

if homography is not None:

projection = projection_matrix(camera_parameters, smooth_homography)

frame = render(frame, obj, projection, c_model, True, obj_colors)

Show matching explicitly

frame = cv.drawMatches(model_base, kp_model, f_mask, kp_frame, matches[:MIN_MATCHES], 0, flags=2)

cv.imshow(’MultiTracker’, frame)

if cv.waitKey(1) & 0xFF == 27: # Esc pressed

break

end = time.monotonic()

total = end - start

framerate = frame_count/total

print(’Frame rate: {} f/s’.format(framerate))

29

	Augmented Reality in a Dynamic Drone Based Environment
	Recommended Citation

	1 Introduction
	1.1 Background

	2 Methods
	2.1 Augmented Reality Implementation
	2.2 Object Tracking and Frame Masking
	2.3 Output Smoothing

	3 Results
	3.1 Improvements to Traditional AR Methods
	3.2 Program Performance
	3.3 Program Output

	4 Discussion
	4.1 The Future of Drone Based AR
	4.2 Future Improvements

	5 Conclusions
	References
	6 Appendix
	6.1 Full Python Source

