
University of Tennessee at Chattanooga University of Tennessee at Chattanooga 

UTC Scholar UTC Scholar 

Honors Theses Student Research, Creative Works, and 
Publications 

5-2020 

A contribution to the characterization of the diversity of A contribution to the characterization of the diversity of 

ectomycorrhizal fungi associated with American chestnut at the ectomycorrhizal fungi associated with American chestnut at the 

UTC Fortwood Street nursery UTC Fortwood Street nursery 

Colton Jones 
University of Tennessee at Chattanooga, mjm783@mocs.utc.edu 

Follow this and additional works at: https://scholar.utc.edu/honors-theses 

 Part of the Plant Biology Commons 

Recommended Citation Recommended Citation 
Jones, Colton, "A contribution to the characterization of the diversity of ectomycorrhizal fungi associated 
with American chestnut at the UTC Fortwood Street nursery" (2020). Honors Theses. 

This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications 
at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. 
For more information, please contact scholar@utc.edu. 

https://scholar.utc.edu/
https://scholar.utc.edu/honors-theses
https://scholar.utc.edu/student-research
https://scholar.utc.edu/student-research
https://scholar.utc.edu/honors-theses?utm_source=scholar.utc.edu%2Fhonors-theses%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=scholar.utc.edu%2Fhonors-theses%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.utc.edu/honors-theses/272?utm_source=scholar.utc.edu%2Fhonors-theses%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@utc.edu


 

 

 

A contribution to the characterization of the diversity of ectomycorrhizal fungi associated 

with American chestnut at the UTC Fortwood Street nursery 

 

 

Colton Jones 

Departmental Honors Thesis 

The University of Tennessee at Chattanooga 

Department of Biology, Geology, and Environmental Sciences 

March 2020 

 

  

 

Dr. Hill Craddock 

Professor  

Biology, Geology, and Environ. Sci. 

Thesis director 

 

 

Dr. Jose Barbosa 

Associate Professor 

Biology, Geology, and Environ. Sci. 

Department Examiner 

 

 

 

Dr. Margaret Kovach 

Professor 

Biology, Geology, and Environ. Sci. 

Department Examiner 

 



 1 

Table of Contents 

I. Abstract……………………………………………………………………………….2 

II. Introduction 

Endo- vs Ectomycorrhizas…………………………………………………..…….4-5 

Evolution of the mycorrhiza………………………………………………..……..5-6 

Ectomycorrhizal Morphology………………………………………………..…......7 

Plant Symbionts. ……………………………………………………………....….…8 

Fungal Symbionts……………………………………………………………..……..8 

Benefits of Ectomycorrhizal Symbiosis……………………………………..……8-9 

American chestnut Background……………………………………..…………….10 

Project Outline……………………………………………………………..……11-12 

III. Methods 

Sampling……………………………………………………………………...….12-13 

DNA Extraction and Precipitation………………………………………..……….13 

DNA Amplification………………………………………………………..………..13 

PCR Product Purification………………………………………………..……..14-15 

DNA Sequencing………………………………………………………..…………..15 

IV. Results……………………………………………………………………………15-18 

V. Discussion………………………………………………………………..………18-21 

VI. References………………………………………………………………………..22-27 

 

 

 



 2 

I. Abstract 

Ectomycorrhizas play several essential roles in the biosphere and have immeasurable 

implications on the ecosystems in which they exist. Much has been discovered about the 

relationships between ectomycorrhizal fungi and the trees with which they associate, but there is 

still much to learn. Due to the nature of ectomycorrhizal morphology, DNA analysis is 

frequently required in order to accurately identify the fungal partner. Some ectomycorrhizal 

fungi produce above-ground fruiting bodies that presumably contain the same DNA sequences as 

the fungi encapsulating corresponding plant root tips below the soil; these fruiting bodies have 

been frequently observed growing in nursery containers at the UTC Fortwood Street nursery. We 

hypothesized that DNA extracted from fruiting bodies found in these containers would match the 

DNA of fungi enveloping the tree’s root tips. Additionally, we hypothesized that the variety of 

sequences produced by ectomycorrhizal root tips may display a greater diversity of mycorrhizal 

fungi than is represented by hypergeous fruiting bodies alone. In the course of this thesis, 

genomic DNA was extracted from mycorrhizal American chestnut root tips and fruiting bodies 

found in nursery containers at the Fortwood Street nursery; the DNA underwent PCR and was 

purified prior to sequencing and BLAST alignment. However, due to complications in the 

preparation of DNA for sequencing and the finite timeframe provided, the results of this project 

are limited. An ITS sequence from one fruiting body was successfully amplified and sequenced; 

the identity of this sporocarp was determined to be the obligate ectomycorrhizal fungus 

Hebeloma hiemale s.l. 
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II. Introduction 

A mycorrhiza is a symbiotic relationship between a plant root and a mycorrhizal fungus. 

The term, coming from the Greek words mykos and rhizon literally means fungus root (Carlile et 

al., 1994). There are at least seven types of mycorrhizas described in scientific literature, each 

forming unique types of symbioses (Brundrett, 2002). Some of these relationships have existed 

for hundreds of millions of years; however, their significance has only recently been established 

and is still not fully understood (Strullu-Derrien et al., 2018). In the case of a mutualistic 

mycorrhiza, a soilborne fungus becomes physically and chemically associated with a plant’s 

roots; the fungus radiates into the soil, increasing the surface area of the roots and transferring 

essential nutrients (e.g., phosphorus, nitrogen) back to the plant. In exchange, the plant transfers 

photosynthates to the fungus; the fungus uses the carbohydrates acquired as its primary source of 

energy (Carlile et al., 1994). The interactions between mycorrhizal plant roots and fungi involve 

complex cascades of gene expression and molecular mechanisms that are currently being 

researched worldwide (Hilbert & Martin, 1988). Benefits provided by mutualistic mycorrhizal 

symbioses are still being characterized not only in terms of the advantages provided to the host 

plant by the mycobiont, but also in potential ways mycorrhizas can be used in broader 

environmental restoration efforts (Blaudez et al., 2000). Distinguishing the species of 

mycorrhizal fungi colonizing particular plants is the first step to further research concerning the 

implications of mycorrhizal relationships. However, accurate identification of mycorrhizal fungi 

proves to be more difficult than identification of the host plant; for this reason, the modern 

characterization of mycorrhizal fungi often takes a molecular approach (Norris et al., 1994). The 

diversity of mycorrhizal fungi colonizing the American chestnut is of particular interest at the 
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University of Tennessee at Chattanooga, as the campus houses a breeding program that works 

towards re-establishing the vulnerable species in the wild. 

ENDO- VS ECTOMYCORRHIZAS 

Endomycorrhizas, of which there are several types, make up the vast majority of 

mycorrhizal relationships in the biosphere; these types of mycorrhizas occur in more than 80% of 

vascular plants (Brundrett & Tedersoo, 2018). Implied by their name, endomycorrhizas are those 

that penetrate host root cells and form characteristic intracellular structures used to facilitate the 

chemical transactions between fungi and their hosts. Ectomycorrhizal (ECM) fungi do not 

penetrate host cell walls, but are capable of facilitating nutrient exchange through unique 

extracellular structures. Although only ~2% of vascular plants form ectomycorrhizas, this still 

accounts for over 6,000 species of plants colonized by 20,000-25,000 species of ECM fungi 

(Brundrett & Tedersoo, 2018; Christenhusz & Byng, 2016; Tedersoo et al., 2009). 

The majority of ECM fungi can penetrate root cells as the roots begin to senesce or if 

equilibrium between the symbionts is disrupted (Smith & Read, 2017). However, it is rare for an 

ectomycorrhiza-forming fungus to penetrate host root cells; these types of relationships are only 

known to occur in Pinus and Larix spp. and are referred to as ectendomycorrhizas (Yu et al., 

2001) 

Though uncommon, a few tree genera and some shrubs and ferns are susceptible to 

colonization by both vesicular-arbuscular mycorrhizas (VAM) and ectomycorrhizas. Chilvers et 

al. observed an initial colonization of root tips by VAM with relatively high inoculum potential 

and rapid root colonization, followed by secondary infections by ECM fungi. The 

ectomycorrhizal fungi outcompeted the VAM later in terms of colonization of lateral roots and 

hyphal spread, and, while the existing VAM did not inhibit subsequent infection by 
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ectomycorrhizal fungi, the sheath of the latter formed a physical barrier to colonization by other 

VAM (Chilvers et al., 1987).  

 
 

EVOLUTION OF THE MYCORRHIZA 

Endomycorrhizas were the first real mycorrhizas to evolve following the colonization of 

land by early plants (Strullu-Derrien et al., 2018). In fact, it has been hypothesized that symbiotic 

relationships between aquatic plants and fungi made the transition to a terrestrial lifestyle 

possible (Pirozynski & Malloch, 1975). The first direct evidence concerning the evolution of 

mycorrhizas was found in the 407 million-yr-old Rhynie chert, in which paramycorrhizas 

(structures resembling mycorrhizas) were visible. These included the presence of members of the 

Mucoromycotina and Glomeromycotina in fossils of minute rootless stem vascular plants. By 

315-300 million years ago, arbuscular mycorrhizas, or true mycorrhizas, had begun colonizing 

plant roots; Glomeromycetous arbuscules have been observed in lycopod root fossils from this 

era (Strullu-Derrien et al., 2018).  

Figure A.  

An illustrated cross section of root 

tip in which ectomycorrhizal and 

ectendomycorrhizal morphologies 

are compared with the 

morphologies of three types of 

endomycorrhizas (Weiss et al., 

2016) 
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The Princeton chert of Canada contains the oldest known fossil of an ectomycorrhiza. 

This 48.7 million-yr-old chert shows evidence of Pinus roots with the essential features of an 

ectomycorrhiza: the fungal sheath and a Hartig net extending intercellularly to the endodermis. It 

is thought that ectomycorrhizal symbioses evolved independently more than 18 times in 

Angiosperms and ~78-82 times in fungi over at least 48Ma, indicating a relationship between the 

effects of the symbiosis and biological fitness (Strullu-Derrien et al., 2018).  

Analyses of 12 ECM fungal genomes, some belonging to ectomycorrhizal fungi known 

to colonize C. dentata, suggest that some ECM fungi are the result of the convergent evolution of 

soil saprotrophs and of brown- and white-rot fungi. Many mycorrhizal fungi have exhibited 

decreases in genes encoding plant cell wall-degrading enzymes relative to their primarily 

saprotrophic ancestors; several genes encoding enzymes involved in the decomposition of 

various plant tissues and the cleavage of sucrose have been lost from ECM fungal genomes as 

well. Genes involved in the breakdown of soil particles, which may aid in the acquisition of 

organic nitrogen and phosphorus, have been preserved in these fungi. Consequently, 

ectomycorrhizal fungi have become more dependent on their hosts’ carbohydrate reserves and 

more efficient in acquiring organic nutrients over time (Kohler et al., 2015; Strullu-Derrien et al., 

2018). 

Mycorrhizal symbioses are thought to have greatly impacted the evolution of both 

terrestrial plants and fungi. The benefits of these relationships have likely broadened the 

diversity and ranges of plant and fungal species due to their contributions in the expansion of 

available niches (Duplessis et al., 2001). 
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ECTOMYCORRHIZAL MORPHOLOGY 

An ectomycorrhiza consists of three essential structures: the Hartig net, the mantle, and a 

network of hyphae radiating from the mantle into the surrounding soil. These structures function 

in the collection and transfer of water and nutrients between fungi and plants. The Hartig net 

serves as the extracellular junction of nutrient exchange between symbionts. 

The formation of an ectomycorrhiza begins with stimulation of fungal growth by plant 

metabolites in the soil. As hyphae radiate outward and come into contact with roots, they 

envelop the root tips with denser hyphal networks. ECM fungi cultured on agar media have been 

observed growing significantly faster along root tips than across the media itself. Once hyphal 

envelopes have formed, specialized hyphae penetrate dead root cap cells and colonize 

intercellular spaces within the root tip, forming the Hartig net. The wedge-like hyphal tips 

expand in the plant tissue, separating plant cells and filling the newly-created spaces; hyphae 

may extend to the endodermis or be confined to the outermost layers of the root tip. These 

hyphae envelop individual cortical cells but do not disrupt intercellular plant communication, as 

plasmodesmata are not damaged in the process. Secretion of fibrillary polymers at the fungus-

plant interface facilitates the adhesion of fungal and plant cell walls (Carlile et al., 1994). 

Subsequently, the true mantle is established as specialized hyphae form layer after layer of tissue 

enclosing the root tip. A hyphal network radiates outward from the mantle and spreads 

throughout the soil (Nylund & Unestam, 1981; Kendrick, 2017) 

Colonization of a root tip by an ECM fungus slows rates of cell division at the root tip 

and root hairs and leads to radial elongation of cortical cells; this results in a relatively stumpy 

appearance of the colonized root (Carlile et al., 1994). However, if a root cap penetrates the 

mantle, the root may be subject to colonization by other ECM fungi (Kendrick, 2017). 
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PLANT SYMBIONTS 

Although a relatively small percentage of seed plant species are ectomycorrhizal, these 

plants occupy a disproportionately large land area and dominate in the production of timber. 

Thus, ECM plants play a significant role in the ecosystems of boreal, temperate, and tropical 

forests, as well as in the infrastructures and economies of countries worldwide (Smith & Read, 

2017; Alexander & Hogberg, 1987).  

FUNGAL SYMBIONTS 

Ectomycorrhizal fungi belong to the phyla Basidiomycota, Ascomycota, and 

Zygomycota. The most diverse orders include Agaricales, Cantharellales, Helotiales, Boletales, 

and Pezizales (Tedersoo et al., 2010).  

BENEFITS OF ECTOMYCORRHIZAL SYMBIOSIS 

The carbohydrates produced from photosynthesis, primarily hexose sugars, are delivered 

to the fungus where they are converted into sugar alcohols, e.g., mannitol, erythritol. This creates 

a hexose gradient that continually translocates sugars towards the fungus via passive diffusion. 

Fungi are able to excise the sugars from root tips by selectively increasing the permeability of 

plant cell membranes (Carlile et al., 1994).  

In addition to increasing water and nutrient uptake in plants, ectomycorrhizal associations 

may confer resistance to a myriad of biotic and abiotic stresses. Some ectomycorrhizal fungi are 

capable of the uptake and compartmentalization of the heavy metal cadmium from soil; this 

reduces uptake by plant roots (Blaudez et al., 2000) and could also provide an effective 

mechanism for the phytoextraction of heavy metals from contaminated soils in land reclamation 

efforts (Sell et al., 2005). Ectomycorrhizal inoculation has also been noted for its role in 



 9 

increasing plant tolerance to stresses inflicted by hyper-saline soils (Bandou et al., 2006) and 

drought conditions. (Wang & Gui-jie, 2013)  

The benefits associated with ectomycorrhizal symbioses are not limited to the symbionts 

directly involved in the relationship; the presence of the ectomycorrhizal fungus Pisolithus 

tinctorius in soil may play a significant role in mitigating the effects of acid rain on below-

ground microbial communities. (Maltz et al., 2019) In addition to decreasing biodiversity, acidic 

conditions can also increase the solubility of metals e.g., aluminum; dissolved aluminum can 

react with phosphorus in the soil, forming AlPO4 and decreasing phosphorus availability in the 

soil. P. tinctorius can extract P from AlPO4, allowing its host plant to benefit from the otherwise 

inaccessible nutrient (Cumming & Weinstein, 1990) 

Underground hyphal connections formed by VAM fungi can serve as a means of plant-

to-plant signaling and can enhance plant resistance to herbivory. Hyphae of a VAM fungus may 

connect multiple plants within a community; when attacked by aphids, a plant may send 

chemical messages through this junction which stimulates the production of chemicals that repel 

aphids and attract aphid parasitoids. Thus, plants not yet under attack can launch a preemptive 

defense to minimize predation (Babikova et al., 2013).  The potential for communication 

between plants via ectomycorrhizal connections is supported by modern evidence, but this is an 

area that requires further research (Wagner et al., 2015). 

VAM fungi are also thought to enhance plant resistance to pathogens in the soil. In the 

formation of an endomycorrhiza, the plant’s immune defenses are modified, leading to a 

moderate systemic activation of the plant’s immune system. The stimulation of primary immune 

responses may aid in the plant’s defense against parasitic bacteria, fungi, plants, and nematodes 

(Jung et al., 2012). This topic also requires further research with respect to ectomycorrhizas. 
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AMERICAN CHESTNUT BACKGROUND 

American chestnut populations have declined by approximately 90% in the past 115 

years. This can be attributed primarily to Cryphonectria parasitica, the pathogenic fungus that 

causes chestnut blight. This necrotrophic parasite likely spread to American chestnuts from 

infected Japanese chestnut trees, which were first imported to North America as nursery stock in 

1876. Japanese and Chinese chestnut trees have developed resistance to chestnut blight through 

natural selection. Contrarily, American chestnut trees had not been previously introduced to 

Cryphonectria parasitica and therefore carried no resistance to the pathogen. Phytophthora root 

rot, caused by the soil-borne oomycete Phytophthora cinnamomi, is another introduced disease 

that has contributed to declines in numbers and ranges of American chestnut. P. cinnamomi may 

be responsible for the permanent retraction of C. dentata from the southern portion of its native 

range and is now spreading to northern regions as temperatures warm (Dalgleish et al., 2015).  

Although approximately four billion American chestnut trees have been afflicted by 

chestnut blight thus far, the future outlook is hopeful. Scientists are currently working towards 

breeding blight-resistant American chestnuts by crossing susceptible American chestnut trees 

with naturally resistant Chinese chestnut trees. The resulting hybrids are backcrossed with 

American chestnut, producing trees that are essentially American but possess genes for blight 

resistance. Many scientists breeding for blight resistance are now selectively breeding for 

Phytophthora resistance as well (Rellou, 2002). The American Chestnut Foundation (TACF) was 

founded in 1983 in an effort to combat the demise of the American chestnut. Since its 

foundation, TACF has worked towards breeding disease tolerant chestnut trees in order to renew 

decimated native populations (Steiner et al., 2017). 
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PROJECT OUTLINE 

Dr. Hill Craddock runs an American chestnut breeding program on the University of 

Tennessee at Chattanooga campus. Coordinating with TACF, Dr. Craddock breeds pathogen-

resistant chestnut trees in an effort to restore the fungus-ravaged species to its former glory. The 

chestnuts are initially planted in 2-gallon containers containing well fertilized potting medium 

and grown for one year in the nursery before outplanting into experimental orchards and forest 

plots within C. dentata’s natural range. Dr. Craddock has long noticed sporocarps from various 

fungal species fruiting in the nursery containers. The fruiting bodies can be identified with 

reasonable confidence and as most of these fungi are obligate symbionts, they are likely products 

of mycorrhizal relationships within the pot. However, identification of these fruiting bodies may 

not provide a real estimate of ectomycorrhizal biodiversity within the nursery; not all 

ectomycorrhizal fungi produce hypergeous fruiting bodies and those that are produced may be 

ephemeral. Another option in assessing ectomycorrhizal diversity is through visual identification 

of ectomycorrhizal fungi based on mantle and hypha morphologies. This would likely be an 

arduous, if not impossible, task; many species of ectomycorrhizal fungi are indistinguishable 

morphologically, cannot be cultured in vitro, or vary in morphology depending on sexual state. 

Consequently, identification of ectomycorrhizal fungi typically requires genetic analysis (Norris 

et al., 1994). In this project, the internal transcribed spacer (ITS) region was used for fungal 

species identification.   

The ITS region of fungal DNA has been referred to as the universal DNA barcode for the 

identification of fungi. Fungal ITS regions are relatively short (420-825 base pairs) (Manter & 

Vivanco, 2007) and are repeated up to thousands of times in the fungal genome. Additionally, 

the sequences are highly variable between closely related organisms due to their relatively fast 
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evolution (Raja et al., 2017). High rates of amplification via PCR can be partially attributed to 

well-conserved flanking sequences, which allow for one set of primers to be nearly universal 

(Baldwin et al., 1995). The primers ITS1F and ITS4 are particularly effective in priming the 

amplification of the ITS regions of ECM fungi, e.g., Basidiomycetes, Ascomycetes, and 

Zygomycetes (Manter & Vivanco, 2007). 

Although still concerning ECM fungi identification, the scope of this project has changed 

significantly over the past year. The initial proposal for this thesis was ambitious and involved 

multiple sampling locations in a several-hundred-mile radius and the extraction of DNA from 

mycorrhizal root tips and fruiting bodies at each location in an effort to distinguish the 

mycorrhizal diversity of American chestnut in different growing conditions. However, due to 

time constraints and unforeseen difficulties in the extraction and amplification of mycorrhizal 

DNA, the scope of this research was narrowed. This paper serves as a contribution to the 

characterization of the mycorrhizal diversity of the American chestnut at the University of 

Tennessee at Chattanooga Fortwood Street nursery. 

III. Methods 

(Modified from Palmer et al., 2008; Sahu et al., 2012) 

Sampling:  

 Mycorrhizal fruiting bodies were collected from pots containing C. dentata saplings 

located at a container nursery on the UTC campus. The fruiting bodies were dried at 26.7˚C for 

approximately 24 hours and, once dry, were brushed gently with a small paintbrush to remove 

adhering soil particles. Each sample was packaged independently in a ziplock bag and frozen at -

80˚C. Mycorrhizal root tips were collected from pots bearing fruiting bodies, isolated and 
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brushed gently to remove soil particles, and frozen at -80˚C. The root tips and fruiting bodies 

underwent the same treatment after freezing. 

DNA extraction and precipitation: 

Approximately 70mg of dried fruiting body or 100mg of root tips were taken directly 

from the -80˚C freezer and immediately ground to a powder with a -80˚C mortar and pestle. The 

powdered tissue was transferred to a 2.5mL microcentrifuge tube and 500µL of cell lysis buffer 

(CLB) was added. CLB consisted of 1.4M NaCl, 0.1M Tris-HCl 20mM 

ethylendiaminetetraacetic acid, and 2% hexadecyltrimethylammonium bromide. Each tube was 

agitated for 20 seconds and then heated at 65˚C for 1 hour. The samples were then centrifuged 

for 5 minutes at 21,130 xg and the supernatants were transferred to clean tubes. This was 

followed by addition of one volume of -20˚C isopropanol and placement in a -80˚C freezer for 

10 minutes. Samples were centrifuged for 15 minutes at 21,130 xg and the supernatants were 

discarded. Pellets were washed three times with 100µL of 70% ethanol and dried in a DNA 

concentrator before resuspension in 25µL of RNAse-free water. 

DNA amplification: 

Polymerase chain reactions were carried out using the fungal ITS primers ITS1F and 

ITS4, diluted to 10µM with deionized RNAse-free water. Ratios of PCR reagents were as 

follows: 0.5µL DNA : 25µL LongAmp master mix : 1µL forward primer : 1µL reverse primer: 

22.5µL water.  The thermocycler was programmed with the following specifications: initial 

denaturing at 94°C for 2 min; 30 cycles of denaturing at 94°C for 40 s, annealing at 53°C for 40 

s, and extension at 72°C for 5 min. 

The PCR product was then used as template for four additional PCR reactions using the 

same primer/buffer ratios. 



 14 

PCR product purification: 

 All PCR products derived from a particular DNA solution were mixed together and 

initially purified using phenol:chloroform:isoamyl alcohol. One volume of 

phenol:chloroform:isoamyl alcohol was added to the PCR product and shaken by hand for 20 

seconds. This was centrifuged at room temperature at 16,000 xg for 5 minutes. The top layer was 

then extracted and placed in a clean microcentrifuge tube. One half volume of ammonium 

acetate (5M) and 2.5 volumes of 100% ethanol were added to the sample and the tube was placed 

at -80˚C for 1 hour. The solution was centrifuged at 21,130 xg for 15 minutes and the 

supernatant was discarded. 150µL of 70% ethanol was added and the sample was centrifuged at 

16,000 xg for 2 minutes; the supernatant was discarded and this step was repeated at 21,130 xg 

for 1 minute. The pellet was dried in a Centrivap DNA concentrator and resuspended in 300µL 

of TE (10 mM Tris-HCl, 1mM EDTA, pH 8). 

 The entirety of the resuspended DNA was electrophoresed in a 1% agarose gel. 

Prominent bands ~750bp were excised from the gel and the DNA within was purified with a 

Thermo Scientific GeneJET Gel Extraction Kit. Gel slices were weighed and placed in individual 

microcentrifuge tubes; one volume (volume: weight) of binding buffer was added to each. Tubes 

were incubated at 60˚C for 10 minutes and then vortexed for 5 seconds. All melted gel solutions 

from a given sample were transferred to a single GeneJET purification column and centrifuged 

for 1 minute at 14,000 xg; the flow-through was discarded. An additional 100µL of binding 

buffer was added to the column, the sample was centrifuged for 1 minute at 14,000 xg, and the 

flow-through discarded. This was followed by the addition of 700µL of wash buffer, 

centrifugation for 1 minute at 14,000 xg, and discarding of flow-through. An additional 

centrifugation of the sample was undertaken to remove residual ethanol. The column was placed 
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into a clean microcentrifuge tube and 30µL of elution buffer was added to the center of the 

purification column membrane. This was centrifuged for 1 minute at 14,000 xg. The DNA 

solution was subsequently concentrated to a volume of approximately 15µL. 

DNA sequencing: 

 Sequencing was performed by Psomagen, Inc. via Sanger sequencing, or the chain-

termination method. The primers ITS1F and ITS4 were used to sequence both strands of the PCR 

product for confirmation. Two tubes were sent for each ITS sequence extracted. Each tube 

contained 5µL of the purified PCR product and 5µL of the forward or reverse primer (diluted to 

5µM). The resulting sequences can be seen in Figure 3. and Figure 4. 

IV. Results 

Over the course of this project, genomic DNA was successfully extracted from nine fruiting 

bodies and nine mycorrhizal root tip samples (Figure 1.). Each sample of genomic DNA was 

prepared for PCR and submitted to thermocycling as described above. Of these 18 samples, one 

ITS sequence was successfully amplified. Overall, seven different methods of genomic DNA 

isolation were tested for their quality and reliability with respect to downstream PCR 

amplification. The initial protocol involved freezing ECM root tips in CLB and using a plastic 

pestle to grind the sample in a plastic microcentrifuge tube. This resulted in a thick brownish 

solution. Genomic DNA could be observed in agarose immediately following extraction, but not 

following PCR. A second method of cell-lysing, bead beating, was used on following samples and 

produced genomic DNA that was not successfully amplified via PCR. PCR of another DNA 

sample purified with phenol:chloroform:isoamyl alcohol was also unsuccessful. Additional 

extractions utilized a mechanical tissue homogenizer; using this method to grind the cells also 

produced a viscous brown solution. This approach resulted in degraded DNA fragments. 
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Additionally, a yeast DNA extraction kit (Masterpure MPY80200) was used along with the 

mechanical cell grinding approach; this also resulted in degraded DNA. The most successful 

method for the lysing of fungal cell walls involved grinding a frozen sample using a -80˚C mortar 

and pestle. Disruption of cell walls was most effective in the absence of CLB; lysing each sample 

without adding reagents produced powdered tissue which was kept relatively cool due to the 

chilled mortar and pestle. Using this method for cell lysis with the remainder of the original 

protocol for DNA isolation, an ITS sequence of a single fruiting body was successfully amplified 

(Figure 2.).   

    

 

 

 

 

 

 

 

Figure 1. Genomic DNA 

representing fourteen of eighteen 

extractions 

Top row left to right: 2log ladder, 

fruiting body, fruiting body, root 

tips, fruiting body, root tips, 

fruiting body 

Bottom row left to right: 2log 

ladder, root tips, fruiting body, 

root tips, root tips, root tips, root 

tips 

 

Figure 2. 

Left column: 2log DNA ladder 

Right column: ITS sequence of 

fruiting body amplified with the 

primers ITS1F and ITS4 and sent for 

sequencing 
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BLAST was used to compare the resulting sequence to those in the NCBI database. Three 

species of Hebeloma were found to be equally likely in terms of alignment. The ITS sequences 

of H. vaccinum,, H. cavipes, and H. helodes were all 97.23% identical to the sample ITS 

sequence (Figure 5.). Each alignment had an E value of 0.0, indicating that one would expect 

zero sequences in a database of this size to match the sample sequence by chance alone. 

 

Figure 3. Forward ITS sequence: primed by ITS1F 

 
Figure 4. Reverse ITS sequence: primed by ITS4 
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Figure 5. partial BLAST alignment of the forward ITS sequence amplified in the lab at UTC 

(Query) and the ITS sequence of H. vaccinum (Sbjct) (NCBI) 

 

 

V. Discussion 

 Chestnut trees are known to form mycorrhizas with a variety of fungi; some of which are 

choice edibles and have economic value. Chanterelle mushrooms, for example, are highly 

sought-after fruiting bodies of obligate ectomycorrhizal fungi belonging to the genus 

Cantharellus. There is some evidence suggesting that widespread cultivation of these 

mushrooms may be plausible (Pilz et al., 2003). Some mycorrhizal fungi associated with 

chestnut trees may be poisonous, as is the case with all species of Hebeloma. These mushrooms, 

if ingested, can cause extreme gastrointestinal distress in humans (Miller & Miller, 2006). This 

provides some context as to why it is important to know what species of fungi form mycorrhizas 

with chestnut trees; some fungi may provide food and industry in thriving forests, and others 

may cause harm if ingested. 

There has been some research done on the mycorrhizal fungi associated with chestnut 

trees at the UTC Fortwood street nursery. In 2012, M. Taylor Perkins studied the effects 

phosphite has on the colonization of chestnut root tips by ectomycorrhizal fungi. The chestnut 

seedlings sampled were separated into four main groups; three of which were inoculated with 

spores from ECM fungi. The species of fungi used to inoculate chestnut seedlings included 

Pisolithus tinctorius, Scleroderma geaster, and Scleroderma citrinum. Each group consisted of 



 19 

two subgroups; one received phosphite treatment and the other did not. The plants inoculated 

with P. tinctorius and S. citrinum and those that were not inoculated formed significantly fewer 

mycorrhizas when treated with phosphite (Perkins, 2012). 

In 2014, J. Miles Jorgensen tested the effects that inoculating chestnut seedlings with P. 

tinctorius and administering different levels of phosphite have on seedling survival. Inoculation 

with P. tinctorius was associated with a significant increase in seedling survival, regardless of 

phosphite concentration. Lower phosphite levels were associated with significant increases 

seedling growth but not with significant changes in mycorrhiza formation, while higher 

phosphite levels were associated with decreased seedling growth, survival, and mycorrhiza 

formation (Jorgensen, 2014). The experiments carried out by Perkins and Jorgensen provided 

valuable information with respect to chestnut breeding, but there was no confirmation that the 

fungi used to inoculate the seedlings was the same species that formed the mycorrhizas observed. 

Despite the successful extraction of genomic DNA from mycorrhizal fungi found at the 

UTC Fortwood Street nursery, the final results of this thesis were limited by failures in 

consistently amplifying target DNA sequences via PCR. One possible cause of a failed 

polymerase chain reaction is contamination of the DNA solution with secondary metabolites. 

Certain polysaccharides have been shown to hinder the efficacy of eukaryotic DNA polymerases 

and increase the viscosity of the solutions in which DNA molecules are dissolved (Shioda & 

Murakami-Murofushi, 1987). Additionally, the oxidation of polyphenols (due to exposure to 

atmospheric oxygen during cell lysis) can lead to their binding to DNA molecules; this can cause 

the DNA to appear brownish in color (Sahu et al., 2012). Phenolic compounds present in plant 

tissues play a role in resistance to pests and pathogens, and they can also inhibit amplification 

reactions (Barakat et al., 2009). Fragmentation of DNA samples from tissues homogenized via 
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bead-beating was likely due in part to overbeating. The root tips were never fully homogenized; 

this may be attributed to their submersion in CLB, which warmed the root tips and decreased 

their rigidity. Similarly, the DNA extracted from mechanically-ground root tips was likely 

fragmented for the same reason; failed attempts to fully homogenize samples led to the shearing 

of DNA from already lysed cells. Grinding the samples with a -80˚C mortar and pestle was likely 

more successful due to the sustained low temperature of the sample. Colder temperatures 

decrease the rates of oxidation reactions, therefore minimizing the opportunities for these 

reactions to occur. Utilization of liquid nitrogen in the cell-lysing stage may significantly 

increase the success rate of the protocol outlined above. Due to the obstacles outlined above, 

impending DHON deadlines, and expected graduation at the end of the Spring 2020 semester, 

the results of this thesis were limited. One fungal fruiting body was identified via DNA 

sequencing and BLAST alignment. Due to most members of Hebeloma being obligate 

symbionts, it is reasonable to suspect the sporocarp sampled to be an ectomycorrhizal fruiting 

body (Hacskaylo & Bruchet, 1972). 

 The ITS sequence of H. vaccinum is reported to be distinct from all known species of 

Hebeloma except for H. cavipes; these species must be distinguished by their ecology and 

morphology. H. vaccinum is primarily found in arctic habitats and dunes; it is usually associated 

with trees belonging to the genera Populus and Salix. H. cavipes is said to be capable of 

associating with most trees; it is typically found with broadleaf trees but has also been observed 

with some conifers. This fungus can live in most soil types and has been found in the continental 

United States (Eberhardt et al., 2015). However, it is not known to occur in Tennessee. H. 

helodes has been used as a synonym to H. cavipes in some literature, and both species fall under 

the more general species Hebeloma hiemale s.l. (Grilli, 2007). The mushroom in question was a 
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little brown mushroom (LBM). These kinds of mushrooms are notoriously difficult to identify; 

for this reason, consumption of LBMs is generally not advised. Furthermore, the taxonomy of 

these mushrooms is frequently debated as species overlap and are often described independently 

by multiple researchers. It is not plausible to assign definite, lasting taxonomic labels to many of 

these organisms, i.e., the taxonomy is confused. The taxonomic intricacies/ debate of these fungi 

are beyond the scope of this research; therefore, identification as Hebeloma hiemale s.l. is 

adequate for this report. 
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