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Abstract

The budding yeast Saccharomyces cerevisiae is an effective model for studying cellular
aging. We can measure the lifespan of yeast cells in two ways: replicative and chronological
lifespans. Chronological focuses on the time that a cell can survive. The replicative lifespan
(RLYS) is the number of cell divisions that a single mother cell can go through before ceases to be
dividing. RLS is a measurement of individual cells and is more informative on the aging process
than in chronological lifespan. Many genes that influence yeast RLS have been shown to be
highly conserved and have a similar effect on aging in humans. Hence, studies on cellular aging
typically focus on RLS. RLS is traditionally measured by micro-dissection — a tedious and time-
consuming process. Recently, a high-throughput yeast aging analysis (HYAA) based on
microfluidics measurement of replicative aging has been developed. Each mother cell is captured
by a trap on the microfluidic device. This device generates an enormous amount of dataset, but
the process to manually track these objects is tedious and time consuming and would take years
with how large a single dataset can be. This thesis is to address the challenges on how to
efficiently and reliably infer the RLS from thousands of time-lapse microscopic images. We
implemented two deep learning methods, Faster R-CNN and MASK R-CNN to detect cell the
objects. Our results show that Mask R-CNN is a promising method to automate the HYAA

image analysis compared to Faster R-CNN approach.
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Introduction

The huge traction in Computer Vision in recent years has led to great advancements in
the field. We focus on the medical field, but it does not limit the advancements to just this field.
Computer vision has allowed for faster and more accurate diagnoses. The manual tedious and
time-consuming tasks over time can be passed on to computers to handle, which saves not only
time but could provide faster diagnoses. A computer can do a far better job at recognition than

the human eye can do in a short amount of time.

Microfluidics-based time lapse imaging has the potential to transform biomedical
research [12]. One important application of microfluidics-based microscopic imaging is the
research on cellular aging. One of the most important tasks in the microscopic image analysis is
cell segmentation, as reviewed recently [4]. The primary challenges for microscopic cell
segmentation include a poor contrast between cells, their background and irregular morphology
[4]. Recently deep learning-based methods for microscopic cell image include a Mask Recurrent
CNN, a U-net method that contains a convolutional layer and deconvolutional layer with skip
connections, a pyramid-based multi-layered fully convolutional neural networks, a combined

method with distance estimation and fully convolutional neural network approach [4].

Mask R-CNN deep learning-based approaches generally outperform traditional cell
segmentation methods, such as water-shade algorithms. Mask R-CNN as written by the author is
simple, flexible, and is a general framework for object instance segmentation [5]. It extends from
Faster R-CNN and adds a branch for object mask which runs in parallel with the bounding box
[5]. Justin Clark, an MS graduate student, in Dr. Qin’s group compared the performance of

several deep learning methods on yeast microfluidic trap images. Mehran Ghafari, a PhD



student, in Dr. Qin’s group, applied the Recurrent CNN approach to detect cell objects in
rectangular boxes. These current and previous studies were things that laid the foundations for
this thesis work. This thesis focuses on Faster R-CNN and Mask R-CNN, which are

improvements made on Recurrent CNN and Fast R-CNN.

RolAlign

Y

Figure 1 Mask R-CNN framework. [5]

The approach focused on this paper is Mask R-CNN, developed by the Facebook Al
Research Team (FAIR) in 2017. Mask R-CNN uses a similar feature extraction model that is
used within Faster R-CNN, but there are a few key differences. The first major difference
between the two is that ROI-Pooling used in Faster R-CNN is replaced with ROI-Align, which
according to the authors leads to a large improvement. Another difference between the two is
that there is a network head in Mask R-CNN which generates the image segmentation see Figure

1 for more detail [5].

The HY AA instrument which is used automate lifespan tracking process. This instrument

has 4 modules, and each module contains 4 channels per module, so in total there are 16



channels [14]. Each channel contains approximately 520 single traps structures and the device
itself has a total of 8,320 single trap structure. Typically, HY AA images are taken every 10
minutes to record the division events of these mother cells. The picture that the instrument takes
has about ~100 traps per image as shown in Figure 2. We end up taking the image with 100 traps
and breaking them into individual trap structures. By breaking these large images into smaller
ones, we generate an enormous amount of data. Taking that into consideration this process would
be tedious and time consuming to do all manually. This thesis is to address the challenges on

how to efficiently track the cell objects efficiently and reliably on a large dataset.

Figure 2. One of the many pictures taken showing mother cell and traps at one point in time lapse.

Methodology

There were two methods used in this thesis work: the first uses a faster R-CNN with
Inception V2 [9], and the second uses the Mask R-CNN [5]. The dataset we used for this
comprised 100 images, 80 for training, and 20 for validation. We randomly selected these images
from a batch of images that contained anywhere between 1-3 cells per image. The training set

had around 40 images that were much higher in contrast, which may have affected the



performance of the training. The dataset contained a time-lapse image of the mother cell and
daughter cells which are recorded every 10 minutes as mention previously. Both methods we
approached required using a python script to resize the original images from 60x60 pixels to

512x512 pixels using cv2 and cubic interpolation on the resize [10].

The first attempt used to tackle this challenge was by using faster R-CNN with
Inception v-2. This method generated an image with bounding boxes that outline the object and
the confidence score. This approach required manual boxing of the cell object using Labellmg
which generated an XML file which corresponding x min, y min, X max, y max corresponding to
edges of the box where the object is located shown in Figure 3 [1]. For each of the images in the
test and train directory, there’s a corresponding XML. After generating XML, we ended up
generating TFRecords which was used to import data to the TensorFlow training model. The
results for Faster R-CNN were very good however they generate a box and not a mask, so we

shifted focus to Mask R-CNN which looked to be more promising.

Figure 3. Faster R-CNN dataset format. On the left is an example trap with a pair of mother-daughther cells. On the right is the

corresponding XML generated by Labellmg [1].



The second approach we used MatterPort’s Mask R-CNN implementation to build a
model that detects the generates the object mask. To prepare the dataset, we used VGG image
annotator to outline the cell objects which gives us the output as JSON with an x and y

coordinates as shown in Figure 4 [6].

Figure 4. Mask R-CNN dataset format. On the left is an example trap with a pair of mother-daughter cells. On the right is the

JSON file generated based on manually outlining the object

After generating the dataset, we used Matterport’s implementation for Mask R-CNN for
our object detection. This was a very well designed and had great documentation for anyone to
use on their project. After hours of trying to get a specified version to run with their
implementation of Mask R-CNN, we were able to get files running. The final version that ended
up working for us was python 3.7 with TensorFlow version 1.5.0 with Keras 2.0.8. For the
backbone, we ended up using resnet50 to make sure we could run this on the virtual machine
without any performance problems. Resnet101 or feature pyramid network (FPN) would have
also been great choices since both are said to be faster and more accurate than resnet50 but
require more resources [5]. We started by using weights from the MSCOCO dataset [8]. We

trained the network for a total of 50 epochs with 50 steps per epoch. The learning rate was .001



and momentum of .9 with weight decay of .001. For the batch size, we kept it at 2 since we had a

very small dataset on a virtual machine.

Figure 5. Ubuntu specification and Jupyter Lab running the code on a Linux virtual machine.

For this project, we used an Ubuntu 18.04.4 Virtual Machine (VM). The VM had 16gb of
Ram and Intel Xeon Processor with 6 cores as shown in Figure 5. The virtual graphics for this is
unknown but it is a Nvidia Graphics card. We used Jupyter Lab for running our code. Jupyter
Notebook was having problems running the code, so we switched over to Jupyter Lab. For our
purposes, the training and detection done were smooth, and the specifications were more than

enough for this project. The training for Mask R-CNN was done with in few hours.

Results

Two approaches were taken, both of which yielded great results. The Faster R-CNN did a
splendid job tracking the cells, but only provided the boxes, which were not very useful for our
purpose, however, generated very accurate results. The second attempt was the Mask R-CNN,
which was more difficult to set up and generate a dataset, but it yielded the best result by having
an accurate outline of the objects. The first attempt at Mask R-CNN was a failure for some

reason generated a model that wouldn’t predict anything. The second attempt with Mask R-CNN



with help from a collaborator was very accurate with a small dataset that had 80 images for
training and 20 for the validation. After leaving the model to train on an OpenStack Virtual
Machine for just a few hours, the results were accurate but still presented some problems. The
model did a good job of tracking cell objects that were close together, but had a hard time
finding objects that were very irregular in shapes. However, with a bigger dataset and more
training, we believe this could be resolved. For smaller datasets, the predictions made by the

model yielded very accurate results.

The result was a Mask R-CNN model that was accurately predicting the cell objects
within the image. It did not distinguish by color which was mother cell, and which was the
offspring’s but that is something that we will be focused on in the future. Figure 6 shows the best
results from running the model of a set of images. More results from the model can be found in

the Appendix.

Figure 6. Results from the ResNet-50 Mask R-CNN model.



Conclusions

Computer vision has a lot of uses varying from facial recognition, self-driving cars,
shopping, and many other things. With the huge traction in recent years, there are a lot of
advancements being made in a brief span of time. While working on this project it’s been
interesting looking at how companies like Tesla have been using Al for their self-driving or how
Apple has been using Al for face detection or how machine learning can find abnormalities to
better treat patients. The possibilities are endless for this field and there are a lot of great things
come from Al in the coming years. This research uses computer vision to automate the process
of manually segmenting the cell objects in a large set of data which can save a lot of time. Mask
R-CNN can generate instance segmentation and is more promising than Faster RCNN to
improve the computational analysis of time-lapse images for microfluidics images for yeast

lifespan inference.

Discussion

This work lays the groundwork to switch from manually segmenting to fully automated
segmentation for this specific application. This will allow for hours or days’ worth of work to be
done within minutes. With more training and a bigger dataset which we plan to auto-generate
based on previous results will lead to a much larger dataset in a short period. The results above

are based on just the initial tests and will be improved in the future.

Lesson learned
Things learned through this is that it’s difficult to set up environments to get programs to
run. The TensorFlow version and Keras version must match with what MatterPort used. We also

ran into issues with generating a model that detected anything. Not sure what exactly caused the



issue but with the help from a collaborator we could generate a new model which detected
objects. Another important thing learned is to keep worked constantly updated on GitHub [13].
Some things work for a few minutes and making minor changes that end up breaking the
program with no way of backtracking. There are also many ways to approach a project like this
because there are a couple of different frameworks out there to extend from, but some
outperform others. There have been major improvements in this field, so we researched different

options and compare results to select the best framework.

Future Work

Dr.Qin’s group has multiple people working on a different aspect of this project, and this
IS just one of those pieces. This model is excellent at detecting the cell object, but still has
problems distinguishing the hard edges around the object and some irregular objects shapes that
are not being detected at all. The plan to improve this is by generating a larger dataset by using
previously generated results. This will allow for the dataset getting larger without having to

manually do all the outlines.

The predictions generated now are colored somewhat randomly, however, making sure
the mother cell is the same color is something that will be worked on to improving object
detections. To pinpoint the mother cell, we often look for the biggest one in the groups because
the mother cell is often the largest one. After we have a successful model that generates a mask
accurately, we will need to track the object to generate a how many offspring the mother has

throughout the time lapse.

There are already studies out there that focus on this. The study that we investigated was
Usiigaci’s software, which takes input as a mask and original image in a time series and tracks

the positions [11]. Mask R-CNN only generated a Mask so we will try to use what Usiigaci’s has



worked on seeing if results generated by their software yields accurate results for our purpose.
We’ve not gotten an opportunity to try our output in the software yet, but we are interested in

trying to see how they are presented.
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Appendix

Cell.py
Impor

os

import sys

import itertools

import math

import logging

import json

import re

import random

from collections import OrderedDict
import numpy as np

import matplotlib

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.lines as lines
from matplotlib.patches import Polygon

import skimage.draw

ROOT_DIR = "'Mask_RCNN-master 3'
DATASET DIR = os.path.abspath('dataset/")
assert os.path.exists(ROOT_DIR), 'ROOT_DIR does not exist. Did you forget to read

the instructions above?'

sys.path.append(ROOT_DIR)

from mrcnn.config import Config

import mrcnn.utils as utils

from mrcnn import visualize

from mrcnn.visualize import display_images
import mrcnn.model as modellib

from mrcnn.model import log

class CellConfig(Config):

nun

Configuration for training on the cell dataset.

nun

# Give the configuration a recognizable name
NAME = "cell"

# Train on 1 GPU and 1 image per GPU. Batch size is 1 (GPUs * images/GPU).

12



GPU_COUNT = 1
IMAGES_PER_GPU = 1

# Number of classes (including background)
NUM_CLASSES = 1 + 1 # background + 2 (cell)

# All of our training images are 512x512
IMAGE_MIN_DIM = 512
IMAGE_MAX_DIM = 512

# You can experiment with this number to see if it improves training
STEPS_PER_EPOCH = 50

DETECTION_MIN_CONFIDENCE = 0.9

# This is how often validation is run. If you are using too much hard drive
space

# on saved models (in the MODEL_DIR), try making this value larger.

VALIDATION_STEPS = 5

# Matterport originally used resnetl0l, but I downsized to fit it on my
graphics card
BACKBONE = 'resnet50’

# To be honest, I haven't taken the time to figure out what these do
RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128)
TRAIN_ROIS_PER_IMAGE = 32
MAX_GT_INSTANCES = 50
POST_NMS_ROIS_INFERENCE = 500
POST_NMS_ROIS_TRAINING = 1000
config = CellConfig()

class HSYAADataset(utils.Dataset):
def load_data(self, dataset_dir, subset):
"""Load a subset of the gns dataset.
dataset_dir: Root directory of the dataset.
subset: Subset to load: train or val

# Add classes. We have two classes to add.
self.add_class("objects", 1, "cell")

self.class_name_to_ids = {'cell':1}

# Train or validation dataset?

13



assert subset in ["train", "val"]

dataset_dir = os.path.join(dataset_dir, subset)

# Load annotations
# VGG Image Annotator (up to version 1.6) saves each image in the form:
# { 'filename': '28503151 5b5b7ecl40 b.jpg’,

# 'regions': {

# '0': {

# 'region_attributes': {},

# 'shape_attributes': {

# 'all points_x': [...],
# 'all points y': [...],
# 'name': 'polygon'}},
# . more regions ...

# 1,

# 'size': 100202

# }

# We mostly care about the x and y coordinates of each region

# Note: In VIA 2.0, regions was changed from a dict to a list.

annotations = json.load(open(os.path.join(dataset_dir,
"via_region_data.json")))

annotations = list(annotations.values()) # don't need the dict keys

#if '_via_img metadata' in annotations:
# annotations = list(annotations['_via_img_metadata'].values()) # don't

need the dict keys

# The VIA tool saves images in the JSON even if they don't have any
# annotations. Skip unannotated images.

annotations = [a for a in annotations if a['regions']]

# Add images
for a in annotations:
# Get the x, y coordinaets of points of the polygons that make up
# the outline of each object instance. These are stores in the
# shape_attributes (see json format above)
# The if condition is needed to support VIA versions 1.x and 2.Xx.
if type(a['regions']) is dict:
polygons = [r['shape_attributes'] for r in a['regions'].values()]
class_names = [list(r['region_attributes']['name']) for r in
a[ 'regions'].values()]
else:

polygons = [r['shape_attributes'] for r in a['regions']]

14



class_names = [r['region_attributes']['name’'] for r in

a[ 'regions']]

# load_mask() needs the image size to convert polygons to masks.
# Unfortunately, VIA doesn't include it in JSON, so we must read
# the image. This is only managable since the dataset is tiny.
image_path = os.path.join(dataset_dir, a['filename'])

image = skimage.io.imread(image_path)

height, width = image.shape[:2]

self.add_image(
"objects",
image_id=a['filename'], # use file name as a unique image id
path=image_ path,
width=width, height=height,
polygons = polygons,

class_names = class_names

def load_mask(self, image_id):
"""Generate instance masks for an image.
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks.
# If not a gns dataset image, delegate to parent class.
image_info = self.image_info[image_id]
if image_info["source"] != "objects":

return super(self.__class__, self).load_mask(image_id)

# Convert polygons to a bitmap mask of shape

# [height, width, instance_count]

info = self.image_info[image_id]

mask = np.zeros([info["height"], info["width"], len(info["polygons"])],
dtype=np.uint8)

class_ids = np.ones([mask.shape[-1]], dtype=int)

for i, p in enumerate(info["polygons"]):
# Get indexes of pixels inside the polygon and set them to 1
rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x'])

mask[rr, cc, i] = 1

15



# for i,cname in enumerate(info["class_names"]):

# class_ids[i] = self.class_name_to_ids[cname]

# Return mask, and array of class IDs of each instance. Since we have
# one class ID only, we return an array of 1s
# Map class names to class IDs.

return mask.astype(np.bool), class_ids

def image_reference(self, image_id):

Return the path of the image.

info = self.image_info[image_id]

if info["source"] == "objects":
return info["path"]

else:

super(self.__class__, self).image_reference(image_id)

def train(model, epochs, dataset_folder):
"""Train the model."""

# Training dataset.

dataset_train = HSYAADataset()

dataset_train.load_data(dataset_folder, "train")

dataset_train.prepare()

# Validation dataset
dataset_val = HSYAADataset()
dataset_val.load data(dataset_folder, "val")

dataset_val.prepare()

# *** This training schedule is an example. Update to your needs ***
# Since we're using a very small dataset, and starting from
# COCO trained weights, we don't need to train too long. Also,
# no need to train all layers, just the heads should do it.
print("Training network heads™)
model.train(dataset_train, dataset_val,

learning_rate=config. LEARNING_RATE,

epochs=epochs,

layers="heads")

def color_splash(image, mask):
"""Apply color splash effect.

image: RGB image [height, width, 3]

mask: instance segmentation mask [height, width, instance count]

Returns result image.

16



nun

# Make a grayscale copy of the image. The grayscale copy still

# has 3 RGB channels, though.

gray = skimage.color.gray2rgb(skimage.color.rgb2gray(image)) * 255

# Copy color pixels from the original color image where mask is set

if mask.shape[-1] > ©:
# We're treating all instances as one, so collapse the mask into one layer
mask = (np.sum(mask, -1, keepdims=True) >= 1)
splash = np.where(mask, image, gray).astype(np.uint8)

else:

splash = gray.astype(np.uint8)

return splash

def detect_and_color_splash(model, image_path=None, video_path=None):

assert image_path or video_path

# Image or video?
if image_path:
# Run model detection and generate the color splash effect
print("Running on {}".format(args.image))
# Read image
image = skimage.io.imread(args.image)
# Detect objects
r = model.detect([image], verbose=1)[0]
# Color splash
splash = color_splash(image, r['masks'])
# Save output
file_name = "splash_{:%Y%m%dT%H%M%S}.png" .format(datetime.datetime.now())
skimage.io.imsave(file_name, splash)
elif video_path:
import cv2
# Video capture
vcapture = cv2.VideoCapture(video_path)
width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = vcapture.get(cv2.CAP_PROP_FPS)

# Define codec and create video writer
file name = "splash_{:%Y%m%dT%H%M%S}.avi".format(datetime.datetime.now())
vwriter = cv2.VideoWriter(file_name,

cv2.VideoWriter fourcc(*'MIPG'),

fps, (width, height))

17



count = @
success = True
while success:

print("frame: ", count)
# Read next image
success, image = vcapture.read()
if success:
# OpenCV returns images as BGR, convert to RGB
image = image[..., ::-1]
# Detect objects
r = model.detect([image], verbose=0)[0]
# Color splash
splash = color_splash(image, r['masks'])
# RGB -> BGR to save image to video
splash = splash[..., ::-1]
# Add image to video writer
vwriter.write(splash)
count += 1
vwriter.release()

print("Saved to ", file_name)

18



Train.ipynb

In

import os

import sys

import itertools

import math

import logging

import json

import re

import random

from collections import OrderedDict
import numpy as np

import matplotlib

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.lines as lines
from matplotlib.patches import Polygon

# Root directory of the project
ROOT DIR = 'Mask RCNN-master 3'

# Import Mask RCNN
sys.path.append (ROOT DIR) # To find local version of the library
from mrcnn import utils

from mrcnn import visualize
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from mrcnn.visualize import display images
import mrcnn.model as modellib

from mrcnn.model import log

import Cell

Using TensorFlow backend.

In [2]:
model dir = "../logs/"
model file = "coco.h5"
coco_path = os.path.abspath(model dir + model file)

In [3]:
model dir = "../logs/"
model file = "coco.h5"
coco_path = os.path.abspath(model dir + model file)

In [4]:

model = modellib.MaskRCNN (mode="training", config=Cell.config, model dir=mode
1 dir)
WARNING:tensorflow:From /home/ubuntu/anacondal3/lib/python3.7/site-packages/ke

ras/backend/tensorflow backend.py:517: The name tf.placeholder is deprecated.

Please use tf.compat.vl.placeholder instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:74: The name tf.get default graph is deprec
ated. Please use tf.compat.vl.get default graph instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:4138: The name tf.random uniform is depreca

ted. Please use tf.random.uniform instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:1919: The name tf.nn.fused batch norm is de

precated. Please use tf.compat.vl.nn.fused batch norm instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:3976: The name tf.nn.max pool is deprecated

Please use tf.nn.max pool2d instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:2018: The name tf.image.resize nearest neig
hbor is deprecated. Please use tf.compat.vl.image.resize nearest neighbor ins
tead.
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WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/te
nsorflow/python/ops/array ops.py:1354: add dispatch support.<locals>.wrapper
(from tensorflow.python.ops.array ops) is deprecated and will be removed in a
future version.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where
WARNING:tensorflow:From Mask RCNN-master 3/mrcnn/model.py:553: The name tf.ra

ndom_shuffle is deprecated. Please use tf.random.shuffle instead.

WARNING:tensorflow:From Mask RCNN-master 3/mrcnn/utils.py:202: The name tf.lo

g is deprecated. Please use tf.math.log instead.

WARNING:tensorflow:From Mask RCNN-master 3/mrcnn/model.py:600: calling crop a
nd resize vl (from tensorflow.python.ops.image ops_ impl) with box ind is depr
ecated and will be removed in a future version.

Instructions for updating:

box ind is deprecated, use box indices instead

In [5]
if not os.path.exists(coco _path):
utils.download trained weights (coco path)
In [6]
model.load weights (coco path, by name=True, exclude=[
"mrcnn class logits", "mrcnn bbox fc",
"mrcnn bbox", "mrcnn mask"])
In [7]:
Cell.train(model, 50, "/home/ubuntu/github/2020MaskRCNN/main/dataset")
Training network heads
Starting at epoch 0. LR=0.001
Checkpoint Path: ../logs/cell20200529T1324/mask rcnn cell {epoch:04d}.h5
Selecting layers to train
fpn c5p5 (Conv2D)
fpn cdpi4 (Conv2D)
fpn c3p3 (Conv2D)
fpn c2p2 (Conv2D)
fpn p5 (Conv2D)
fpn p2 (Conv2D)
fpn p3 (Conv2D)
fpn p4 (Conv2D)
In model: rpn model
rpn_conv_shared (Conv2D)
rpn_class raw (Conv2D)
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rpn_bbox pred

(Conv2D)

mrcnn_mask convl (TimeDistributed)
mrcnn_mask bnl (TimeDistributed)
mrcnn_mask conv2 (TimeDistributed)
mrcnn_mask bn2 (TimeDistributed)
mrcnn_class convl (TimeDistributed)
mrcnn_class bnl (TimeDistributed)
mrcnn_mask conv3 (TimeDistributed)
mrcnn_mask bn3 (TimeDistributed)
mrcnn_class_conv2 (TimeDistributed)
mrcnn_class_bn2 (TimeDistributed)
mrcnn_mask convé (TimeDistributed)
mrcnn_mask bni4 (TimeDistributed)
mrcnn_bbox fc (TimeDistributed)
mrcnn_mask deconv (TimeDistributed)
mrcnn_class_logits (TimeDistributed)
mrcnn_mask (TimeDistributed)

WARNING:tensorflow:From /home/ubuntu/anacondal3/lib/python3.7/site-packages/ke
ras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use

tf.compat.vl.train.Optimizer instead.

/home /ubuntu/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/grad
ients util.py:93: UserWarning: Converting sparse IndexedSlices to a dense Ten
sor of unknown shape. This may consume a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/home/ubuntu/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/grad
ients util.py:93: UserWarning: Converting sparse IndexedSlices to a dense Ten
sor of unknown shape. This may consume a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/home/ubuntu/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/grad
ients util.py:93: UserWarning: Converting sparse IndexedSlices to a dense Ten
sor of unknown shape. This may consume a large amount of memory.

"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
/home/ubuntu/anaconda3/lib/python3.7/site-packages/keras/engine/training gene
rator.py:47: UserWarning: Using a generator with ‘use multiprocessing=True  a
nd multiple workers may duplicate your data. Please consider using the keras.
utils.Sequence class.

UserWarning ('Using a generator with ‘use multiprocessing=True '
WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/callbacks.py:850: The name tf.summary.merge all is deprecated. Please use

tf.compat.vl.summary.merge all instead.
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WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/callbacks.py:853: The name tf.summary.FileWriter is deprecated. Please us

e tf.compat.vl.summary.FileWriter instead.

Epoch 1/50
50/50 [ ] - 51s 1s/step - loss: 1.8281 - rpn cla

ss loss: 0.0210 - rpn bbox loss: 0.7169 - mrcnn class loss: 0.0826 - mrcnn bb

ox loss: 0.4626 - mrcnn mask loss: 0.5450 - val loss: 1.6183 - val rpn class_

loss: 0.0359 - val rpn bbox loss: 0.6270 - val mrcnn class loss: 0.0575 - val

_mrcnn_bbox loss: 0.4147 - val mrcnn mask loss: 0.4833

Epoch 2/50

50/50 [ ] - 32s 645ms/step - loss: 1.2629 - rpn_
class loss: 0.0202 - rpn bbox loss: 0.5408 - mrcnn class loss: 0.0668 - mrcnn

_bbox loss: 0.2629 - mrcnn mask loss: 0.3722 - val loss: 1.9032 - val rpn cla

ss loss: 0.0131 - val rpn bbox loss: 1.0978 - val mrcnn class loss: 0.0318 -

val mrcnn bbox loss: 0.4598 - val mrcnn mask loss: 0.3007

Epoch 3/50

50/50 [ ] - 29s 587ms/step - loss: 1.1343 - rpn_
class loss: 0.0174 - rpn bbox loss: 0.4647 - mrcnn class loss: 0.0684 - mrcnn

_bbox loss: 0.2176 - mrcnn mask loss: 0.3663 - val loss: 1.2594 - val rpn cla

ss loss: 0.0177 - val rpn bbox loss: 0.5479 - val mrcnn class loss: 0.0634 -

val mrcnn bbox loss: 0.2834 - val mrcnn mask loss: 0.3469

Epoch 4/50

50/50 [ ] - 30s 607ms/step - loss: 1.2095 - rpn_
class loss: 0.0225 - rpn bbox loss: 0.5814 - mrcnn class_loss: 0.0426 - mrcnn

_bbox loss: 0.2232 - mrcnn mask loss: 0.3398 - val loss: 1.5153 - val rpn cla

ss loss: 0.0152 - val rpn bbox loss: 0.7047 - val mrcnn class loss: 0.1124 -

val mrcnn bbox loss: 0.3384 - val mrcnn mask loss: 0.3446

Epoch 5/50

50/50 [ ] - 31s 627ms/step - loss: 1.2041 - rpn_
class loss: 0.0201 - rpn bbox loss: 0.5172 - mrcnn class_loss: 0.0397 - mrcnn

_bbox loss: 0.1880 - mrcnn mask loss: 0.4391 - val loss: 1.5675 - val rpn cla

ss loss: 0.0194 - val rpn bbox loss: 0.8021 - val mrcnn class loss: 0.1081 -

val mrcnn bbox loss: 0.2705 - val mrcnn mask loss: 0.3674

Epoch 6/50

50/50 [ ] - 33s 656ms/step - loss: 1.1758 - rpn_
class loss: 0.0159 - rpn bbox loss: 0.5649 - mrcnn class loss: 0.0388 - mrcnn

_bbox loss: 0.2370 - mrcnn mask loss: 0.3191 - val loss: 1.3723 - val rpn cla

ss _loss: 0.0263 - val rpn bbox loss: 0.6892 - val mrcnn class loss: 0.0730 -

val mrcnn bbox loss: 0.2521 - val mrcnn mask loss: 0.3317

Epoch 7/50

50/50 [ ] - 32s 633ms/step - loss: 1.0836 - rpn_
class loss: 0.0166 - rpn bbox loss: 0.5941 - mrcnn class loss: 0.0256 - mrcnn

_bbox loss: 0.1817 - mrcnn mask loss: 0.2656 - val loss: 1.4448 - val rpn cla
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ss loss: 0.0094 - val rpn bbox loss: 0.7166 - val mrcnn class loss: 0.0020 -

val mrcnn bbox loss: 0.4638 - val mrcnn mask loss: 0.2531

Epoch 8/50

50/50 [ ] - 32s 637ms/step - loss: 0.9181 - rpn_
class _loss: 0.0120 - rpn bbox loss: 0.4566 - mrcnn class_loss: 0.0285 - mrcnn
_bbox loss: 0.2035 - mrcnn mask loss: 0.2175 - val loss: 1.4244 - val rpn cla
ss loss: 0.0173 - val rpn bbox loss: 0.8481 - val mrcnn class loss: 0.0192 -
val mrcnn bbox loss: 0.3908 - val mrcnn mask loss: 0.1491

Epoch 9/50

50/50 [ ] - 30s 608ms/step - loss: 0.8509 - rpn_
class _loss: 0.0146 - rpn bbox loss: 0.4294 - mrcnn class_loss: 0.0424 - mrcnn

_bbox loss: 0.1723 - mrcnn mask loss: 0.1922 - val loss: 1.1780 - val rpn cla
ss loss: 0.0161 - val rpn bbox loss: 0.5789 - val mrcnn class loss: 0.0538 -
val mrcnn bbox loss: 0.3316 - val mrcnn mask loss: 0.1975

Epoch 10/50

50/50 [ ] - 32s 643ms/step - loss: 1.0236 - rpn_

class loss: 0.0087 - rpn bbox loss: 0.5480 - mrcnn class_loss: 0.0728 - mrcnn

_bbox loss: 0.1728 - mrcnn mask loss: 0.2213 - val loss: 0.9564 - val rpn cla

ss loss: 0.0112 - val rpn bbox loss: 0.4097 - val mrcnn class loss: 0.1045 -

val mrcnn bbox loss: 0.2287 - val mrcnn mask loss: 0.2022

Epoch 11/50

50/50 [ ] - 33s 662ms/step - loss: 0.8041 - rpn_
class loss: 0.0104 - rpn bbox loss: 0.3322 - mrcnn class_loss: 0.0643 - mrcnn

_bbox loss: 0.1748 - mrcnn mask loss: 0.2223 - val loss: 3.5914 - val rpn cla

ss loss: 0.0261 - val rpn bbox loss: 2.5685 - val mrcnn class loss: 0.0282 -

val mrcnn bbox loss: 0.5553 - val mrcnn mask loss: 0.4134

Epoch 12/50

50/50 [ ] - 32s 649ms/step - loss: 1.0657 - rpn_
class loss: 0.0162 - rpn bbox loss: 0.6846 - mrcnn class loss: 0.0261 - mrcnn

_bbox loss: 0.1322 - mrcnn mask loss: 0.2067 - val loss: 1.4014 - val rpn cla

ss loss: 0.0257 - val rpn bbox loss: 0.6293 - val mrcnn class loss: 0.0392 -

val mrcnn bbox loss: 0.4140 - val mrcnn mask loss: 0.2930

Epoch 13/50

50/50 [ ] - 33s 654ms/step - loss: 0.9671 - rpn_
class loss: 0.0119 - rpn bbox loss: 0.5211 - mrcnn class loss: 0.0448 - mrcnn

_bbox loss: 0.1760 - mrcnn mask loss: 0.2131 - val loss: 0.9678 - val rpn cla
ss loss: 0.0102 - val rpn bbox loss: 0.6220 - val mrcnn class loss: 0.0259 -

val mrcnn bbox loss: 0.1628 - val mrcnn mask loss: 0.1470

Epoch 14/50

50/50 [ ] - 33s 655ms/step - loss: 0.9855 - rpn
class loss: 0.0119 - rpn bbox loss: 0.6009 - mrcnn class_loss: 0.0460 - mrcnn

_bbox loss: 0.1435 - mrcnn mask loss: 0.1830 - val loss: 1.2739 - val rpn cla
ss loss: 0.0163 - val rpn bbox loss: 0.7229 - val mrcnn class loss: 0.0553 -

val mrcnn _bbox loss: 0.1847 - val mrcnn mask loss: 0.2947
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Epoch 15/50
50/50 [ ] - 33s 664ms/step - loss: 0.8248 - rpn_

class _loss: 0.0143 - rpn bbox loss: 0.4894 - mrcnn class_loss: 0.0387 - mrcnn

_bbox loss: 0.1233 - mrcnn mask loss: 0.1590 - val loss: 1.1371 - val rpn cla
ss loss: 0.0142 - val rpn bbox loss: 0.6885 - val mrcnn class loss: 0.0338 -
val mrcnn bbox loss: 0.2085 - val mrcnn mask loss: 0.1922

Epoch 16/50

50/50 [ ] - 34s 683ms/step - loss: 0.9747 - rpn_

class loss: 0.0174 - rpn bbox loss: 0.4858 - mrcnn class loss: 0.0323 - mrcnn

_bbox loss: 0.2314 - mrcnn mask loss: 0.2077 - val loss: 1.3913 - val rpn cla

ss loss: 0.0143 - val rpn bbox loss: 0.8123 - val mrcnn class loss: 0.0811 -

val mrcnn bbox loss: 0.2768 - val mrcnn mask loss: 0.2069

Epoch 17/50

50/50 [ ] - 33s 658ms/step - loss: 0.9311 - rpn_
class loss: 0.0135 - rpn bbox loss: 0.5278 - mrcnn class_loss: 0.0810 - mrcnn

_bbox loss: 0.1328 - mrcnn mask loss: 0.1761 - val loss: 1.1120 - val rpn cla

ss loss: 0.0174 - val rpn bbox loss: 0.4591 - val mrcnn class loss: 0.1246 -

val mrcnn bbox loss: 0.2597 - val mrcnn mask loss: 0.2512

Epoch 18/50

50/50 [ ] - 36s 719ms/step - loss: 0.9906 - rpn_
class loss: 0.0130 - rpn bbox loss: 0.5632 - mrcnn class loss: 0.0592 - mrcnn

_bbox loss: 0.1578 - mrcnn mask loss: 0.1973 - val loss: 1.0112 - val rpn cla

ss loss: 0.0089 - val rpn bbox loss: 0.5209 - val mrcnn class loss: 0.0250 -

val mrcnn bbox loss: 0.1765 - val mrcnn mask loss: 0.2799

Epoch 19/50

50/50 [= ] - 34s 682ms/step - loss: 0.7387 - rpn_
class loss: 0.0134 - rpn bbox loss: 0.4190 - mrcnn class loss: 0.0269 - mrcnn

_bbox loss: 0.1145 - mrcnn mask loss: 0.1649 - val loss: 0.9900 - val rpn cla
ss loss: 0.0100 - val rpn bbox loss: 0.5868 - val mrcnn class loss: 0.0186 -
val mrcnn bbox loss: 0.1387 - val mrcnn mask loss: 0.2360

Epoch 20/50

50/50 [ ] - 32s 639ms/step - loss: 0.7415 - rpn_

class loss: 0.0100 - rpn bbox loss: 0.3805 - mrcnn class loss: 0.0607 - mrcnn

_bbox loss: 0.1268 - mrcnn mask loss: 0.1634 - val loss: 0.7809 - val rpn cla

ss loss: 0.0144 - val rpn bbox loss: 0.2906 - val mrcnn class loss: 0.0310 -

val mrcnn _bbox loss: 0.1987 - val mrcnn mask loss: 0.2462

Epoch 21/50

50/50 [ ] - 33s 664ms/step - loss: 0.7526 - rpn_
class loss: 0.0142 - rpn bbox loss: 0.3732 - mrcnn _class_loss: 0.0490 - mrcnn

_bbox loss: 0.1504 - mrcnn mask loss: 0.1658 - val loss: 0.8358 - val rpn cla
ss _loss: 0.0092 - val rpn bbox loss: 0.4532 - val mrcnn class loss: 0.0028 -
val mrcnn bbox loss: 0.1626 - val mrcnn mask loss: 0.2080

Epoch 22/50
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50/50 [ ] - 35s 70lms/step - loss: 0.8432 - rpn_

class _loss: 0.0169 - rpn bbox loss: 0.4374 - mrcnn _class_loss: 0.0324 - mrcnn

_bbox loss: 0.1455 - mrcnn mask loss: 0.2110 - val loss: 0.8577 - val rpn cla

ss loss: 0.0079 - val rpn bbox loss: 0.5787 - val mrcnn class loss: 0.0073 -

val mrcnn bbox loss: 0.1017 - val mrcnn mask loss: 0.1620

Epoch 23/50

50/50 [ ] - 33s 658ms/step - loss: 0.7613 - rpn_
class _loss: 0.0098 - rpn bbox loss: 0.3986 - mrcnn class _loss: 0.0370 - mrcnn

_bbox loss: 0.1496 - mrcnn mask loss: 0.1662 - val loss: 0.7850 - val rpn cla

ss loss: 0.0107 - val rpn bbox loss: 0.3796 - val mrcnn class loss: 0.0339 -

val mrcnn bbox loss: 0.2059 - val mrcnn mask loss: 0.1548

Epoch 24/50

50/50 [ ] - 33s 66lms/step - loss: 0.6658 - rpn
class loss: 0.0129 - rpn bbox loss: 0.3692 - mrcnn class_loss: 0.0207 - mrcnn

_bbox loss: 0.1031 - mrcnn mask loss: 0.1599 - val loss: 0.9166 - val rpn cla
ss loss: 0.0100 - val rpn bbox loss: 0.5662 - val mrcnn class loss: 0.0063 -
val mrcnn bbox loss: 0.0905 - val mrcnn mask loss: 0.2437

Epoch 25/50

50/50 [ ] - 34s 67lms/step - loss: 0.8095 - rpn

class loss: 0.0149 - rpn bbox loss: 0.5017 - mrcnn class_loss: 0.0496 - mrcnn

_bbox loss: 0.0813 - mrcnn mask loss: 0.1621 - val loss: 1.2540 - val rpn cla

ss loss: 0.0051 - val rpn bbox loss: 0.8020 - val mrcnn class loss: 0.0336 -

val mrcnn bbox loss: 0.1647 - val mrcnn mask loss: 0.2487

Epoch 26/50

50/50 [ ] - 34s 674ms/step - loss: 0.6864 - rpn_
class loss: 0.0087 - rpn bbox loss: 0.3404 - mrcnn class loss: 0.0384 - mrcnn

_bbox loss: 0.1280 - mrcnn mask loss: 0.1709 - val loss: 0.9576 - val rpn cla

ss loss: 0.0111 - val rpn bbox loss: 0.5143 - val mrcnn class loss: 0.0386 -

val mrcnn bbox loss: 0.1697 - val mrcnn mask loss: 0.2240

Epoch 27/50

50/50 [ ] - 34s 676ms/step - loss: 0.8523 - rpn_
class loss: 0.0177 - rpn bbox loss: 0.4374 - mrcnn class loss: 0.0620 - mrcnn

_bbox loss: 0.1258 - mrcnn mask loss: 0.2094 - val loss: 0.9856 - val rpn cla

ss loss: 0.0183 - val rpn bbox loss: 0.5802 - val mrcnn class loss: 0.0232 -

val mrcnn bbox loss: 0.1684 - val mrcnn mask loss: 0.1955

Epoch 28/50

50/50 [ ] - 33s 665ms/step - loss: 0.7437 - rpn_
class loss: 0.0139 - rpn bbox loss: 0.3869 - mrcnn class_loss: 0.0421 - mrcnn

_bbox loss: 0.1306 - mrcnn mask loss: 0.1703 - val loss: 0.8788 - val rpn cla
ss loss: 0.0055 - val rpn bbox loss: 0.4578 - val mrcnn class loss: 0.0759 -
val mrcnn bbox loss: 0.1896 - val mrcnn mask loss: 0.1500

Epoch 29/50

50/50 [ ] - 33s 664ms/step - loss: 0.6641 - rpn

class loss: 0.0125 - rpn bbox loss: 0.3666 - mrcnn class_loss: 0.0618 - mrcnn
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_bbox loss: 0.0717 - mrcnn mask loss: 0.1515 - val loss: 1.2376 - val rpn cla

ss _loss: 0.0096 - val rpn bbox loss: 0.7253 - val mrcnn class loss: 0.0900 -

val mrcnn bbox loss: 0.1768 - val mrcnn mask loss: 0.2360

Epoch 30/50

50/50 [ ] - 33s 655ms/step - loss: 0.5305 - rpn_
class loss: 0.0103 - rpn bbox loss: 0.2717 - mrcnn class loss: 0.0250 - mrcnn

_bbox loss: 0.0858 - mrcnn mask loss: 0.1376 - val loss: 0.5782 - val rpn cla

ss loss: 0.0146 - val rpn bbox loss: 0.1060 - val mrcnn class loss: 0.0561 -

val mrcnn bbox loss: 0.2242 - val mrcnn mask loss: 0.1773

Epoch 31/50

50/50 [ ] - 33s 66lms/step - loss: 0.6107 - rpn_
class loss: 0.0128 - rpn bbox loss: 0.3209 - mrcnn class loss: 0.0237 - mrcnn

_bbox loss: 0.0913 - mrcnn mask loss: 0.1620 - val loss: 1.0684 - val rpn cla
ss loss: 0.0081 - val rpn bbox loss: 0.6970 - val mrcnn class loss: 0.0139 -
val mrcnn bbox loss: 0.2216 - val mrcnn mask loss: 0.1278

Epoch 32/50

50/50 [ ] - 34s 677ms/step - loss: 0.6779 - rpn_

class loss: 0.0122 - rpn bbox loss: 0.3383 - mrcnn class loss: 0.0427 - mrcnn

_bbox loss: 0.1218 - mrcnn mask loss: 0.1629 - val loss: 0.9730 - val rpn cla

ss loss: 0.0141 - val rpn bbox loss: 0.3881 - val mrcnn class loss: 0.1079 -

val mrcnn bbox loss: 0.1425 - val mrcnn mask loss: 0.3204

Epoch 33/50

50/50 [ ] - 34s 670ms/step - loss: 0.5099 - rpn_
class loss: 0.0085 - rpn bbox loss: 0.2388 - mrcnn class loss: 0.0217 - mrcnn

_bbox loss: 0.1046 - mrcnn mask loss: 0.1363 - val loss: 0.8117 - val rpn cla

ss loss: 0.0067 - val rpn bbox loss: 0.4346 - val mrcnn class loss: 0.0875 -

val mrcnn bbox loss: 0.1013 - val mrcnn mask loss: 0.1816

Epoch 34/50

50/50 [ ] - 33s 665ms/step - loss: 0.5187 - rpn
class loss: 0.0080 - rpn bbox loss: 0.2056 - mrcnn class_loss: 0.0261 - mrcnn

_bbox loss: 0.1010 - mrcnn mask loss: 0.1780 - val loss: 0.9894 - val rpn cla
ss loss: 0.0072 - val rpn bbox loss: 0.6238 - val mrcnn class loss: 0.0108 -
val mrcnn bbox loss: 0.1539 - val mrcnn mask loss: 0.1935

Epoch 35/50

50/50 [ ] - 33s 663ms/step - loss: 0.4663 - rpn_

class _loss: 0.0086 - rpn bbox loss: 0.1940 - mrcnn class_loss: 0.0355 - mrcnn

_bbox loss: 0.0913 - mrcnn mask loss: 0.1369 - val loss: 0.7886 - val rpn cla
ss loss: 0.0122 - val rpn bbox loss: 0.5112 - val mrcnn class loss: 0.0132 -
val mrcnn _bbox loss: 0.0893 - val mrcnn mask loss: 0.1627

Epoch 36/50

50/50 [ ] - 34s 674ms/step - loss: 0.5016 - rpn_

class loss: 0.0084 - rpn bbox loss: 0.2044 - mrcnn class loss: 0.0654 - mrcnn

_bbox loss: 0.0722 - mrcnn mask loss: 0.1512 - val loss: 0.7997 - val rpn cla
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ss loss: 0.0114 - val rpn bbox loss: 0.4152 - val mrcnn class loss: 0.0363 -

val mrcnn bbox loss: 0.1518 - val mrcnn mask loss: 0.1850

Epoch 37/50

50/50 [ ] - 34s 674ms/step - loss: 0.5879 - rpn
class _loss: 0.0113 - rpn bbox loss: 0.2687 - mrcnn class_loss: 0.0325 - mrcnn

_bbox loss: 0.1050 - mrcnn mask loss: 0.1704 - val loss: 0.4812 - val rpn cla

ss loss: 0.0027 - val rpn bbox loss: 0.0886 - val mrcnn class loss: 0.0948 -

val mrcnn bbox loss: 0.1227 - val mrcnn mask loss: 0.1724

Epoch 38/50

50/50 [ ] - 33s 652ms/step - loss: 0.5808 - rpn_
class _loss: 0.0093 - rpn bbox loss: 0.2617 - mrcnn class_loss: 0.0421 - mrcnn

_bbox loss: 0.1065 - mrcnn mask loss: 0.1612 - val loss: 1.5786 - val rpn cla
ss loss: 0.0082 - val rpn bbox loss: 0.8140 - val mrcnn class loss: 0.4038 -
val mrcnn bbox loss: 0.2236 - val mrcnn mask loss: 0.1289

Epoch 39/50

50/50 [ ] - 31s 628ms/step - loss: 0.5086 - rpn_

class loss: 0.0073 - rpn bbox loss: 0.1683 - mrcnn class_loss: 0.0612 - mrcnn

_bbox loss: 0.1226 - mrcnn mask loss: 0.1492 - val loss: 1.0686 - val rpn cla
ss loss: 0.0063 - val rpn bbox loss: 0.5805 - val mrcnn class loss: 0.1328 -
val mrcnn bbox loss: 0.1675 - val mrcnn mask loss: 0.1815

Epoch 40/50

50/50 [ ] - 31s 627ms/step - loss: 0.5313 - rpn_

class loss: 0.0110 - rpn bbox loss: 0.2644 - mrcnn class_loss: 0.0385 - mrcnn

_bbox loss: 0.0664 - mrcnn mask loss: 0.1510 - val loss: 0.6062 - val rpn cla

ss loss: 0.0037 - val rpn bbox loss: 0.3833 - val mrcnn class loss: 0.0155 -

val mrcnn bbox loss: 0.0670 - val mrcnn mask loss: 0.1367

Epoch 41/50

50/50 [ ] - 33s 659ms/step - loss: 0.5273 - rpn_
class loss: 0.0091 - rpn bbox loss: 0.2155 - mrcnn class loss: 0.0412 - mrcnn

_bbox loss: 0.1131 - mrcnn mask loss: 0.1485 - val loss: 0.9857 - val rpn cla

ss loss: 0.0051 - val rpn bbox loss: 0.6867 - val mrcnn class loss: 0.0449 -

val mrcnn bbox loss: 0.1062 - val mrcnn mask loss: 0.1427

Epoch 42/50

50/50 [ ] - 33s 655ms/step - loss: 0.5280 - rpn
class loss: 0.0103 - rpn bbox loss: 0.2633 - mrcnn class loss: 0.0369 - mrcnn

_bbox loss: 0.0670 - mrcnn mask loss: 0.1506 - val loss: 1.3616 - val rpn cla
ss loss: 0.0327 - val rpn bbox loss: 1.0616 - val mrcnn class loss: 0.0269 -

val mrcnn _bbox loss: 0.1111 - val mrcnn mask loss: 0.1294

Epoch 43/50

50/50 [ ] - 34s 676ms/step - loss: 0.5386 - rpn
class loss: 0.0114 - rpn bbox loss: 0.2349 - mrcnn class_loss: 0.0466 - mrcnn

_bbox loss: 0.1105 - mrcnn mask loss: 0.1352 - val loss: 1.0406 - val rpn cla
ss loss: 0.0115 - val rpn bbox loss: 0.2693 - val mrcnn class loss: 0.0879 -

val mrcnn bbox loss: 0.3130 - val mrcnn mask loss: 0.3589
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Epoch 44/50
50/50 [ ] - 35s 706ms/step - loss: 0.5267 - rpn_

class _loss: 0.0083 - rpn bbox loss: 0.2056 - mrcnn class_loss: 0.0424 - mrcnn

_bbox loss: 0.0949 - mrcnn mask loss: 0.1755 - val loss: 0.6450 - val rpn cla

ss _loss: 0.0091 - val rpn bbox loss: 0.2131 - val mrcnn class loss: 0.0176 -

val mrcnn bbox loss: 0.2218 - val mrcnn mask loss: 0.1834

Epoch 45/50

50/50 [ ] - 39s 782ms/step - loss: 0.5541 - rpn_
class loss: 0.0111 - rpn bbox loss: 0.2744 - mrcnn class loss: 0.0386 - mrcnn

_bbox loss: 0.0812 - mrcnn mask loss: 0.1488 - val loss: 1.1043 - val rpn cla

ss loss: 0.0104 - val rpn bbox loss: 0.3476 - val mrcnn class loss: 0.0897 -

val mrcnn bbox loss: 0.3340 - val mrcnn mask loss: 0.3226

Epoch 46/50

50/50 [ ] - 32s 649ms/step - loss: 0.4966 - rpn_
class loss: 0.0164 - rpn bbox loss: 0.2024 - mrcnn class_loss: 0.0317 - mrcnn

_bbox loss: 0.0925 - mrcnn mask loss: 0.1536 - val loss: 0.7521 - val rpn cla

ss loss: 0.0175 - val rpn bbox loss: 0.3457 - val mrcnn class loss: 0.0351 -

val mrcnn bbox loss: 0.2000 - val mrcnn mask loss: 0.1537

Epoch 47/50

50/50 [ ] - 35s 708ms/step - loss: 0.4430 - rpn_
class loss: 0.0063 - rpn bbox loss: 0.1752 - mrcnn class loss: 0.0350 - mrcnn

_bbox loss: 0.0845 - mrcnn mask loss: 0.1420 - val loss: 1.0256 - val rpn cla

ss loss: 0.0182 - val rpn bbox loss: 0.6128 - val mrcnn class loss: 0.1406 -

val mrcnn bbox loss: 0.1192 - val mrcnn mask loss: 0.1348

Epoch 48/50

50/50 [ ] - 34s 690ms/step - loss: 0.4131 - rpn_
class loss: 0.0045 - rpn bbox loss: 0.1494 - mrcnn class loss: 0.0340 - mrcnn

_bbox loss: 0.0790 - mrcnn mask loss: 0.1461 - val loss: 1.6007 - val rpn cla
ss loss: 0.0163 - val rpn bbox loss: 1.1491 - val mrcnn class loss: 0.0577 -
val mrcnn bbox loss: 0.1596 - val mrcnn mask loss: 0.2181

Epoch 49/50

50/50 [ ] - 32s 647ms/step - loss: 0.4665 - rpn_

class loss: 0.0114 - rpn bbox loss: 0.1986 - mrcnn class loss: 0.0242 - mrcnn

_bbox loss: 0.0777 - mrcnn mask loss: 0.1547 - val loss: 0.6317 - val rpn cla

ss loss: 0.0061 - val rpn bbox loss: 0.3042 - val mrcnn class loss: 0.0493 -

val mrcnn _bbox loss: 0.0960 - val mrcnn mask loss: 0.1761

Epoch 50/50

50/50 [ ] - 33s 658ms/step - loss: 0.4245 - rpn_
class _loss: 0.0081 - rpn bbox loss: 0.1827 - mrcnn class_loss: 0.0303 - mrcnn

_bbox loss: 0.0683 - mrcnn mask loss: 0.1352 - val loss: 0.6966 - val rpn cla
ss loss: 0.0122 - val rpn bbox loss: 0.3828 - val mrcnn class loss: 0.0093 -

val mrcnn bbox loss: 0.1142 - val mrcnn mask loss: 0.1782
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Python predictions.ipynb

import os

import sys

import itertools

import math

import logging

import json

import re

import random

from collections import OrderedDict
import numpy as np

import matplotlib

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.lines as lines
from matplotlib.patches import Polygon

import skimage

# Root directory of the project
ROOT DIR = 'Mask RCNN-master 3'

# Import Mask RCNN

sys.path.append (ROOT DIR) # To find local version of the library
from mrcnn import utils

from mrcnn import visualize

from mrcnn.visualize import display images
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import mrcnn.model as modellib

from mrcnn.model import log

import Cell

import cv2

Using TensorFlow backend.

In [2]:
model dir = "../logs/cell20200529T1324/" # 60 epochs
model file = "mask rcnn cell 0050.h5"
coco_path = os.path.abspath(model dir + model file)

In [3]:
model dir = "../logs/cell20200529T1324/" # 200 epochs
model file = "mask rcnn cell 0050.h5"
coco_path = os.path.abspath(model dir + model file)

In [4]:

model = modellib.MaskRCNN (mode="inference", config=Cell.config, model dir=mod
el dir)
WARNING:tensorflow:From /home/ubuntu/anacondal3/lib/python3.7/site-packages/ke

ras/backend/tensorflow backend.py:517: The name tf.placeholder is deprecated.

Please use tf.compat.vl.placeholder instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:74: The name tf.get default graph is deprec
ated. Please use tf.compat.vl.get default graph instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:4138: The name tf.random uniform is depreca

ted. Please use tf.random.uniform instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:1919: The name tf.nn.fused batch norm is de

precated. Please use tf.compat.vl.nn.fused batch norm instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:3976: The name tf.nn.max pool is deprecated

Please use tf.nn.max pool2d instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/ke
ras/backend/tensorflow backend.py:2018: The name tf.image.resize nearest neig
hbor is deprecated. Please use tf.compat.vl.image.resize nearest neighbor ins
tead.
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WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/mr
cnn/model.py:341: The name tf.log is deprecated. Please use tf.math.log inste
ad.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/mr
cnn/model.py:399: add dispatch support.<locals>.wrapper (from tensorflow.pyth
on.ops.array ops) 1s deprecated and will be removed in a future version.
Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where
WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/mr
cnn/model.py:423: calling crop and resize vl (from tensorflow.python.ops.imag
e ops_impl) with box ind is deprecated and will be removed in a future versio
n.

Instructions for updating:

box ind is deprecated, use box indices instead

WARNING:tensorflow:From /home/ubuntu/anacondal3/lib/python3.7/site-packages/mr
cnn/model.py:723: The name tf.sets.set intersection is deprecated. Please use

tf.sets.intersection instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/mr
cnn/model.py:725: The name tf.sparse tensor to dense is deprecated. Please us

e tf.sparse.to dense instead.

WARNING:tensorflow:From /home/ubuntu/anaconda3/lib/python3.7/site-packages/mr
cnn/model.py:775: to float (from tensorflow.python.ops.math ops) is deprecate
d and will be removed in a future version.

Instructions for updating:

Use “tf.cast’ instead.

model.load weights (coco path, by name=True)

Re-starting from epoch 50

# Function taken from utils.dataset
def load image (image path):
"""Load the specified image and return a [H,W,3] Numpy array.
o
# Load image
image = skimage.io.imread (image path)
# If grayscale. Convert to RGB for consistency.
if image.ndim != 3:
image = skimage.color.gray2rgb (image)
# If has an alpha channel, remove it for consistency
if image.shape[-1] == 4:

image = image[..., :3]
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return image

In [7]:
def get ax(rows=1l, cols=1l, size=16):
"""Return a Matplotlib Axes array to be used in
all visualizations in the notebook. Provide a
central point to control graph sizes.
Adjust the size attribute to control how big to render images
mmrn
_, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows))
return ax
In [8]:

import os
for root, dirs, files in os.walk('/home/ubuntu/github/2020MaskRCNN/inputImage
s/"):
for file in files:
if file.endswith('.Jjpg'):
img path = os.path.join(root,file)
image = load image (img path)
skimage.io.imshow (image)
plt.show()

dataset = Cell.HSYAADataset ()
dataset.load data("dataset/", "train")

dataset.prepare ()

# Run object detection

results = model.detect ([image], verbose=1)

# Display results

ax = get ax (1)

results[0]
a = visualize.display instances(image, r['rois'], r['masks'], r['
class_ids'],

dataset.class names, r['scores'], ax=

ax,
title="Predictions")
file name = "splash {:3Y%m%dT%H3M%S}.png".format (datetime.datetim
e.now())
# splash = Cell.color splash(image, r['scores'])
# skimage.io.imsave (file name, splash)
name = '/home/ubuntu/github/2020MaskRCNN/main/output/"' + file
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plt.savefig(name,bbox inches='tight', pad inches=-0.5,orientation

= 'landscape')

Results from mass predictions

n-11-Trm - - - D - Beacon-11-Tn
1Tp004pg_512x5 5 p 009jpg 5125 1Tp010jpg
12ipg Jp: 3 ) 124p9
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