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Abstract  

In this paper, the mathematical modelling of a rocket with varying mass is investigated to 

construct a function that can describe the velocity and position of the rocket as a function of 

time. This research is geared more towards small scale rockets where the nonlinear drag term is 

of great interest to the underlying dynamics of the rocket. A simple force balance on the rocket 

using Newton’s second law of motion yields a Riccati differential equation for which the 

solution yields the velocity of the rocket at any given time. This solution can then be integrated 

with respect to time to get the position function. The Differential Transform Method (DTM) is 

applied to the Riccati differential equation while yields a polynomial series solution 

approximation. This solution is then compared to numerical solutions from existing commercial 

rocket flight simulators, and to experimental data from rocket flights. A parametric study is also 

performed to survey the effects of density, diameter of the rocket airframe, drag coefficient, mass 

flow rate, and thrust on the overall motion of the rocket. The comparisons of the DTM solution 

to existing data showed almost a perfect match and the parametric study provides an insight into 

the various effects of the variables listed above. The goal of this research is to aid rocket design 

teams, especially in university rocketry competitions, to use as an additional tool with the flight 

simulators. While the flight simulators yield outstanding results, it is difficult for the user to 

study the fundamental physics of the flight from the simulator alone, and therefore the DTM 

solution and its results can be enlightening and helpful.  
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Nomenclature 

𝜌              = Density 

𝐴𝑝             = Projected area 

𝐶𝑡𝑜𝑡𝑎𝑙       =  Total drag coefficient  
𝑚,𝑚(𝑡)    = Mass 
𝑔              = Graviational acceleration 

𝑣, 𝑣(𝑡)       = Velocity  
 𝐷              = Drag Force 

𝑇              = Thrust 
𝑣𝑒              = Propellant exhaust velocity 

𝑃𝑒              = Exit pressure 
𝑃𝑎              = Atmospheric pressure 
𝐴𝑒              = Exit area 
𝐺               = Weight of rocket 
𝑚0              = Initial mass 
𝑠                = Stage seperation time 
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I. Introduction 

This research was originally inspired by the University of Tennessee at Chattanooga’s (UTC) 

rocket team that competed in the 2018 National Students for the Exploration and Development of 

Space (SEDS) University Rocketry Challenge (URC). The goal of the competition was to build a 

multistage rocket to achieve maximal altitude. One of the main problems in analysis of the 

design was to optimize the stage separation event. The team had difficulty in determining the 

point that exists between the booster burnout time and the time at booster apogee, to separate the 

two stages to achieve maximum altitude. This analysis first required an accurate model of the 

rocket’s flight which was challenging as most large-scale rocket’s equations like in Martinez-

Sanchez’s example ignores the dynamic drag resistance by evaluating a drag to weight ratio [2]. 

For large scale rocket’s, the drag force is negligible compared to the weight and thrust and 

therefore it is dropped to simplify the calculations. However, for small scale rockets such as the 

one used by UTC’s rocket team [1], 

     𝜌 = 0.25
𝑘𝑔

𝑚3
     𝐴𝑝 = 0.009𝑚2     𝐶𝑡𝑜𝑡𝑎𝑙 = 0.26     𝑣 = 210

𝑚

𝑠
     𝑚 = 2.063 𝑘𝑔              (1) 

                                                             
0.5𝜌𝐴𝑝𝐶𝑡𝑜𝑡𝑎𝑙𝑣

2

𝑚𝑔
= 0.429                                                             (2)   

It is evident that 42.9% of the dynamic resistance on the rocket is contributed by the drag force 

and therefore it cannot be ignored in the calculations. The introduction of the drag term in the 

analysis creates a non-linear first order Riccati differential equation that must be solved to gain a 

solution for the velocity of the rocket as a function of time. This solution can then be integrated 

with respect to time to yield the position of the rocket as a function of time. The subject of this 

study is to compare this analytical solution to numerical solutions from existing commercial 
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rocket flight simulators, and to experimental data from small scale rocket launches. This solution 

can aid in many parametric studies which will also be explored in the paper along with 

applications that can be further investigated.  

 

II. Theoretical Framework 

In this section, the forces acting on the rocket are considered. Shown below is a free body 

diagram illustrating the different forces acting on the rocket. 

 

Figure 1: Free Body Diagram of Rocket [14] 

 

For this study, a few assumptions are made to simplify the model. The flight is considered purely 

vertical and therefore, the lift force is neglected and only the weight, drag and thrust forces are 
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considered. The weight and drag forces are variable and change with time, however an average 

thrust value is maintained through the calculations. The thrust is also assumed to be optimal 

which makes it independent of the pressure of the surrounding fluid. Various aspects affect the 

drag and it acts opposite and parallel to the velocity [3]. For a rocket that has a cylindrical 

geometry, the drag force is defined as [4]: 

                                                                   𝐷 =  
1

2
𝐶𝑡𝑜𝑡𝑎𝑙𝐴𝑝𝜌𝑣

2                                                                   (3) 

Thrust is defined as [5]: 

                                                              𝑇 =  
𝑑𝑚

𝑑𝑡
𝑣𝑒 + (𝑃𝑒 − 𝑃𝑎)𝐴𝑒                                                          (4) 

However, optimal thrust simplifies to [5]: 

                                                                          𝑇 =  
𝑑𝑚

𝑑𝑡
𝑣𝑒                                                                           (5) 

Here the mass flow rate and exhaust gas velocity are assumed to be constant which is used to 

calculate the constant average thrust. Finally, the weight of the rocket is: 

                                                                              𝐺 = 𝑚𝑔                                                                            (6) 

Given the above three forces, Newton’s second law can be applied: 

                                                                  ∑𝐹𝑦 = 𝑇 − 𝐷 − 𝐺                                                            (7) 

                                                     
𝑑(𝑚(𝑡)𝑣(𝑡))

𝑑𝑡
= 𝑇(𝑡) − 𝐷(𝑡) − 𝐺(𝑡)                                            (8) 

                            𝑚(𝑡)
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑣(𝑡)

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑇(𝑡) − 0.5𝜌𝐴𝑝𝐶𝑡𝑜𝑡𝑎𝑙𝑣(𝑡)

2 −𝑚(𝑡)𝑔                 (9) 
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𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑚(𝑡)−1

𝑑𝑚(𝑡)

𝑑𝑡
𝑣(𝑡) = 𝑚(𝑡)−1𝑇(𝑡) − 𝑚(𝑡)−10.5𝜌𝐴𝑝𝐶𝑡𝑜𝑡𝑎𝑙𝑣(𝑡)

2 − 𝑔      (10) 

                  
𝑑𝑣(𝑡)

𝑑𝑡
=  −𝑚(𝑡)−10.5𝜌𝐴𝑝𝐶𝑡𝑜𝑡𝑎𝑙𝑣(𝑡)

2 −𝑚(𝑡)−1
𝑑𝑚(𝑡)

𝑑𝑡
𝑣(𝑡) +

𝑇(𝑡)

𝑚(𝑡)
− 𝑔               (11) 

Assuming that the mass flow rate is constant and substituting equation (5) for thrust, equation 

(11) can be rearranged and written as, 

   (𝑚0 −
𝑑𝑚(𝑡)

𝑑𝑡
𝑡)
𝑑𝑣(𝑡)

𝑑𝑡
+ 0.5𝜌𝐴𝑝𝐶𝑡𝑜𝑡𝑎𝑙𝑣(𝑡)

2 −
𝑑𝑚(𝑡)

𝑑𝑡
𝑣(𝑡) −

𝑑𝑚(𝑡)

𝑑𝑡
𝑣𝑒 + (𝑚0 −

𝑑𝑚(𝑡)

𝑑𝑡
𝑡)𝑔 = 0        (12)  

 

Equation (12) is the Riccati differential equation of interest that needs to be solved analytically. 

To do this, the Differential Transform Method (DTM) is employed.  

 

III. Differential Transform Method 

The Differential transform method is a unique analytical method that is based on the Taylor 

series expansion. It differs from the standard high order Taylor series expansion because it does 

not need any symbolic calculation of the derivatives of the function of interest [6]. It was 

originally applied by Zhou [7] and since then many researchers have attempted to apply this 

method to various nonlinear equations. For instance, Aruna and Kanth used DTM to solve the 

Klein-Gordon equation [8], Ghafoori et al. utilized the DTM to solve an important oscillation 

equation that yielded more accurate results than both HPM and VIM [7]. Eslami and Biazar used 

DTM for solve a Riccati differential equation [9] which was similar in anatomy to (12) and is 

where the inspiration for this paper was found. Evidently, many authors used DTM to solve 

various nonlinear equations and yielded promising results and therefore the credibility of the 



A.SAM 
 

10 
 

method has been established. This paper intends to employ the analytical method described 

above to solve, at least in approximation, the differential equation presented in (12). Much like 

any other transform method, the DTM transforms a function from a domain D, to a domain K 

where appropriate techniques are applied and then the inverse transform is taken to revert to the 

domain D. A unique advantage of DTM is the ability to directly apply it to nonlinear ODEs 

without utilizing discretization, or perturbation [1].  

For an arbitrary function y(x) in Ck, the transformation of the kth derivative of y(x) is defined as 

[10]: 

 

      (13) 

 

And the inverse transformation of Y(k) is given by [10], 

 

      (14) 

 

Table 1 lists some of the common DTM transformations. 
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Table 1 – Common DTM transformation [1] 

 

 

 

 

                                                                                                                                                                                

 

 

 

 

To illustrate how DTM is used, a simple example is presented below. 

 

Example: 

Let y(x) be a solution to the initial-value problem: 

                                                              𝑦′(𝑥) − 𝑦(𝑥) = 0     ;      𝑦(0) = 1                                           (15) 

Clearly the solution to this problem is y(x) = exp(x) and followingly, the DTM is used check if 

the same solution can be attained. 

Using the definitions in Table 1 and applying it to (15) yields, 
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(𝑘 + 1)! 𝑌(𝑘 + 1)

𝑘!
= 𝑌(𝑘)                                                     (16) 

Which simplifies to: 

                                                                  (𝑘 + 1)𝑌(𝑘 + 1) = 𝑌(𝑘)                                                       (17) 

Now iterating for integer values of k starting from 0 and utilizing the given initial condition gives 

the following. For k = 0, 

                                                                         𝑌(1) =  𝑌(0) = 1                                                            (18) 

For k = 1, 

                                                                              𝑌(2) =
1

2
                                                                      (19) 

For k = 2, 

                                                                               𝑌(3) =
1

6
                                                                      (20) 

For k = 3, 

                                                                               𝑌(4) =
1

24
                                                                    (21) 

      ⋮ 

Now applying the inverse transformation shown in (14) provides: 

               𝑦(𝑥) =  ∑𝑌(𝑘)𝑥𝑘 = 1 + 𝑥 +
1

2
𝑥2 +

1

6
𝑥3 +

1

24
𝑥4 + ⋯ =  ∑

𝑥𝑛

𝑛!
=  𝑒𝑥               (22)

∞

𝑛=0

∞

𝑘=0
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The last equality in equation (22) comes from the Taylor series expansion of the exponential 

solution [11]. This agrees with the solution presented above and thus, how the DTM method is 

applied has been demonstrated.  

 

IV. Applying DTM  

This section will employ the DTM to be used on equation (12). Since the rocket starts at rest the 

initial condition is 

                                                                                 𝑉(0) = 0                                                                    (23) 

Where V(k) is the transformed form of v(t). Using the common transformations shown in Table 

1, equation (12) can be transformed into: 

𝑚0(𝑘 + 1)𝑉(𝑘 + 1) − �̇� ∑ (𝛿(𝑘1 − 1)(𝑘 + 1 − 𝑘1)𝑉(𝑘 + 1 − 𝑘1))

𝑘

𝑘1=0

+ 0.5𝐶𝑡𝑜𝑡𝑎𝑙𝜌𝐴𝑝 ∑(𝑉(𝑘1)𝑉(𝑘 − 𝑘1))

𝑘

𝑘1=0

− �̇�𝑉(𝑘) + (𝑚0𝑔 − �̇�𝑣𝑒)𝛿(𝑘)

− �̇�𝑔𝛿(𝑘 − 1) = 0                                                                                                    (24) 

By using the initial condition in (23) and solving for terms of V(k) by iterating for integer values 

of k starting from 0, 

𝑉(1) =  
�̇�𝑣𝑒 −𝑚0𝑔

𝑚0
 

                                               𝑉(2) =  
𝑚𝑔 + 2�̇�𝑉(1)

2𝑚0
=
�̇�(�̇�𝑣𝑒 −

1
2𝑔𝑚0)

𝑚0
2                                     (25) 
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                                                  𝑉(3) =  
3�̇�𝑉(2) − 

1
4 𝐶𝑡𝑜𝑡𝑎𝑙𝜌𝜋𝑑

2𝑉(1)2

3𝑚0

= − 

1
2𝐶𝑡𝑜𝑡𝑎𝑙𝜌𝜋𝑑

2𝑔2�̇�2 + 3𝑔𝑚0�̇�
2 − 𝐶𝑡𝑜𝑡𝑎𝑙𝜌𝜋𝑑

2𝑔𝑚0�̇�𝑣𝑒 − 6�̇�
3𝑣𝑒 +

1
2𝐶𝑡𝑜𝑡𝑎𝑙𝜌𝜋𝑑

2�̇�2𝑣𝑒
2

6𝑚0
3  

              ⋮ 

V. Verification of DTM 

By substituting the transformed terms V(k) from equation (25) into the definition of the inverse 

transform presented in equation (14), the truncated polynomial approximation can be 

constructed. For instance, UTC’s NASA USLI competition rocket from 2019 had the following 

parameters: ve = 1810.6 m/s, �̇� = 0.289 kg/s , m0 = 3.063 kg, d = 0.1016 m, Ctotal = 0.75, 𝜌 = 

1.0 kg/m3 [1]. After substituting the aforementioned parameters into the equation (25), v(t) can 

be determined as, 

                                                       𝑣(𝑡) =  −2.33𝑡3 + 16.07𝑡2 + 161.03𝑡                                        (26) 

Higher order terms can be calculated for increased accuracy if desired but for most practical 

purposes that is discussed in this paper, cubic polynomials are sufficient. The exhaust velocity 

was determined by equation (5) and the mass flow rate was calculated by diving the final change 

in mass of the rocket by the specified motor burn time from the motor manufacturer. Equation 

(26) can be compared to an OpenRocket simulation designed for the same rocket. OpenRocket is 

an opensource rocket flight simulator that uses Runge-Kutta 4 (RK4) integration method as a 

numerical solver [12]. UTC’s experience with OpenRocket has been resourceful and provided 

highly accurate results for their launches. The velocity profile generated by the DTM polynomial 

is compared to the OpenRocket simulation and the comparison is shown below. 



SERIES SOLUTION APPROXIMATION OF ROCKET’S VELOCITY 

15 
 

Figure 2: Comparison of Velocity of DTM vs. OpenRocket [1] 

From Fig. 2, calculations yielded an average difference of 7% for DTM from OpenRocket [1]. 

DTM was also used to generate a velocity curve for UTC’s 2019 Altitude Busters’ rocket that 

broke the world record for highest apogee attained by a rocket with under 640 N-s of impulse. 

The team used a Raven-3 as an onboard altimeter to track their flight and collect data. Shown 

below is a 3D model of the rocket that was used in Kansas: 

 

 



A.SAM 
 

16 
 

 

      Figure 3: Computer generated 3D model of 2019 Altitude Busters' rocket 

 

The parameters of this rocket with the motors it flew on were: ve = 2054.81 m/s, �̇� = 0.124 kg/s 

, m0 = 1.19 kg, d = 0.032 m, Ctotal = 0.50, 𝜌 = 1.0 kg/m3. Using these parameters and applying 

DTM generates the following polynomial.  

                                                           𝑣(𝑡) =  −2.39𝑡3  +  21.70𝑡2  +  203.80𝑡                                                (27) 

 

This compares with the flight data collected from the Raven3 as, 
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Figure 4: Comparison of Velocity of DTM vs. Flight Data 

The data in Figure 4 yielded an average error of 18%  but this is mainly due to assuming a 

constant thrust value. There is a large change in velocity in the neighborhood around the motor 

burn out time but this change is not captured due to the model not accounting for the decreasing 

thrust. A constant mass flow rate could also be a factor in the differences. Obviously, there can 

never be a perfect match with the actual flight given all the assumptions and this is evident with 

OpenRocket as well but how sensitive is the model to the various input parameters? This 

following section does a parametric study to evaluate this. 
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VI. Parametric Study  

The effects of density, diameter, drag coefficient, mass flow rate, and thrust on the velocity are 

investigated in this section. For the following study, the base parameters are established off the 

Kansas launch presented above. The parameter of interest is varied while all other parameters are 

held constant. Estimating the overall drag on the rocket is a daunting task due to variable density 

(with altitude and classification of flow), a changing cross-sectional area, and estimating the drag 

coefficient. 

Density 

The density of the fluid in the boundary layer is of interest here [13] and it is difficult to perfectly 

model. This density obviously decreases with increasing altitude, but it also changes across a 

shock when transitioning to supersonic flight. However, an average density of 1.0 kg/m3 was 

used here for simplification of the math. Demonstrated in the following image is the sensitivity 

of the overall solution to the density input: 
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      Figure 5: Density Parametric Study 

Cleary, for this model the solution is not very sensitive to the density with less than 2% variation 

in the solution. Therefore, most differences in Figure 4 are not from the density. 

Diameter 

The rocket airframe has a changing diameter for the nose cone, and two different diameters for 

the body and airframe as seen in Figure 3. The airframe diameter is used in this model, but it is 

shown below that velocity as predicted by the model is not very sensitive to the diameter used 

with also less than 2% variation. Therefore, most differences in Figure 4 are not from the 

diameter. 
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Figure 6: Diameter Parametric Study 

 

Drag Coefficient  

The drag coefficient, like density, changes with classification of the flow around the rocket and 

with other parameters. A constant drag coefficient is used in this model. This drag coefficient 

was estimated by running a CFD simulation in ANSYS, but it is shown below with less than 1% 

variation that the velocity as predicted by the model is not very sensitive to the drag coefficient 

used either. Therefore, most differences in Figure 4 are not from the drag coefficient. 
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Figure 7: Drag Coefficient Parametric Study 

 

Mass Flow Rate 

The mass flow rate is assumed to be linear and therefore calculated by dividing the mass of the 

propellant that is specified on the rocket motor manufacturer’s page by the burn time that is also 

specified on the page. This assumption coupled with the assumption of an optimal motor yields 

the propellant exhaust velocity given by equation (5). This assumption simplifies the math but 

assuming a variable mass flow rate can provide more accurate results. The next figure shows the 

effect that varying the mass flow rate has on the overall solution. 



A.SAM 
 

22 
 

 
Figure 8: Mass Flow Rate Parametric Study 

 

Clearly, unlike the other parameters mentioned above, the mass flow rate solution starts to 

diverge at values in the neighborhood of the burn time. Therefore, more careful measures need to 

be taken in estimating mass flow rate. 

Thrust 

A constant average thrust value is used for the model. This average value is also provided on the 

rocket motor manufacturer’s page. This assumption is solely made to simplify the math as a 

variable thrust would inhibit the use of the DTM on equation (12). Therefore, like the mass flow 

rate, there is a tradeoff in accuracy for values in the neighborhood of the burn time as is 

demonstrated below. 
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Figure 9: Thrust Parametric Study 

 

VII. Conclusions  

In this paper, the mathematical modelling of a variable mass rocket’s dynamics is examined by 

utilizing the Differential Transform Method (DTM). Newton’s second law was applied to a 

straight rocket in flight and DTM was used on the resulting differential equation for which the 

solution yielded the velocity of the rocket as a function of time. This solution was compared with 

numerical solutions from OpenRocket which showed a correlation with only an average 

difference of 7%. However, when compared with experimental data, the solution diverged for 
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times about the burn time with an average error of 18%. As shown in the parametric study, this is 

mainly due the assumption of a constant mass flow rate and a thrust. These assumptions are to 

simplify the mathematics but the decrease in velocity near the burn time is not captured in the 

model and therefore results in a poor comparison. If the model is corrected to account for a 

variable mass flow rate and thrust while also having a dependency on its rotational dynamics, 

turbulence, etc. then more accurate results can be found.  

In future work, it is expected that wider parametric studies will be implemented to ensure that 

adequate studies are conducted on the various dependencies and improvements mentioned above. 

Additionally, the original inspiration for this research as mentioned in the introduction was to 

optimize the stage separation event for a multistage rocket. The method illustrated in this paper 

can be used to do this for a two-stage rocket by allowing velocity to be written as a piecewise 

function of both time and stage separation time: 

                                                   𝑣(𝑡, 𝑠) =  

{
 

 
𝑣1(𝑡) ,         𝑡0 ≤ 𝑡 ≤ 𝑡1
𝑣2(𝑡) ,         𝑡1 ≤ 𝑡 ≤ 𝑠

𝑣3(𝑡) ,         𝑠 ≤ 𝑡 ≤ 𝑡3
𝑣4(𝑡) ,         𝑡3 ≤ 𝑡 ≤ 𝑡4

                                                    (28) 

Where v(t,s) is the velocity of the rocket for the from launch to apogee and s is the time at which 

separation happens. vn is the solution from DTM and s existst between booster burn out time (t1) 

and the time to booster apogee. To maintain continuity, vn(tn) = vn+1(tn), and the initial conditions 

for DTM will be applied appropriately. Depending on the choice of s, vn will be determined 

uniquely for n = 2,3,4. Integrating equation (28) with respect to time from initial time to time at 

apogee will result in the altitude of the rocket. If we let s be written as t2 then the apogee as a 

function of s can be written as: 
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                                                      𝐻(𝑠) =  ∫ 𝑣(𝑡, 𝑠)𝑑𝑡
𝑡4

𝑡0

=∑∫ 𝑣𝑛+1(𝑡)𝑑𝑡
𝑡𝑛+1

𝑡𝑛

3

𝑛=0

                         (29) 

Where H(s) is the apogee as function of the separation time. This function can be optimized 

using basic calculus to find the optimal separation point, s.  
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