

TinyTermite: A Secure Routing Algorithm

A Thesis Presented for the

Master of Science Degree

The University of Tennessee at Chattanooga

Joshua L. Patterson

December 2008

To the Graduate Council:
 I am submitting a thesis written by Joshua L. Patterson entitled “TinyTermite: A
Secure Routing Algorithm”. I have examined the final copy of this thesis and recommend
that it be accepted in partial fulfillment of the requirements for the degree of Master of
Science with a major in Computer Science.

Dr. Mina Sartipi, Chairperson

We have read this thesis and recommend its acceptance:

Dr. Billy Harris

Dr. Li Yang

Accepted for the Graduate Council:

Interim Dean of the Graduate School

 i

Dedication

I would like to dedicate this master’s thesis and my master’s degree to my parents.
Without their support neither would be possible.

 ii

Abstract

In this thesis, we introduce TinyTermite. TinyTermite is a novel probabilistic

routing algorithm that is secure against selective forwarding and replay attacks. We use

suspicion pheromone to build a flexible map of possible compromised neighbors. As

suspicion builds up and decays for each neighbor, TinyTermite is able to deal with

uncertain stimulus and react properly. TinyTermite is fully implemented on TinyOS

based Intel Mote 2 platform and the experiments were done to compare its performance

with that of the traditional Termite algorithm. The experimental results show that

TinyTermite is significantly more secure against replay and sinkhole attacks by lowering

the packet loss from 88.5% to 32.9% with 12.7% normal packet loss. The experimental

results also demonstrate that the TinyTermite provides high throughput and low latency.

 Suspicion pheromone is added to Termite that defends against the selective

forwarding and replay attacks. In our experiments we implemented a detection scheme

for the replay attack and show how countermeasures can be employed in TinyTermite.

We found the suspicious pheromone technique to be quite effective against a replay

attack coupled with a selective forwarding attack. The suspicion defense mechanism in

TinyTermite provided a significantly better defense against the attacker than Termite

alone.

 The implementation of TinyTermite on the Imote2 platform was measured with

respect to throughput, latency, and packet loss. We examine and measure the basic packet

transmission mechanics between nodes on the Imote2 platform and suggest settings for

better quality operations.

 iii

TABLE OF CONTENTS

Abstract ... ii
TABLE OF CONTENTS... iii
LIST OF TABLES... iv
LIST OF FIGURES .. v
LIST OF FIGURES .. v
CHAPTER 1 ... 6
CHAPTER 2 ... 10

2.1 Introduction To Wireless Ad Hoc Networks .. 10
2.2 Routing Algorithms for MANETs .. 14

2.3.1 DSR... 20
2.2.1 DSDV.. 23
2.2.2 AODV... 26
2.2.3 OLSR .. 29

2.3 Summary ... 31
CHAPTER 3 ... 34

3.1 Introduction... 34
3.2 Principles of Self Organization... 36

3.2.1 Feedback ... 37
3.2.2 Stigmergy.. 38

3.3 Pheromone .. 38
3.4 Packet Types and Layout .. 43
3.5 Comparison to AODV .. 44

CHAPTER 4 ... 48
4.1 Introduction... 48
4.2 Contribution .. 48
4.3 Attacks On MANETs.. 49

4.3.1 Replay Attack.. 50
4.3.2 Selective Forwarding .. 55

4.5 Implementation ... 56
4.6 Testing Procedures.. 59
4.7 Results... 63

CHAPTER 5 ... 79
5.1 TinyTermite Implementation.. 79
5.2 Suspicious Pheromone .. 79
5.3 Suggestions for Future Work .. 80

APPENDIX A... 81
REFERENCES ... 85

 iv

LIST OF TABLES

Table 1: Strengths and Weaknesses of the four routing algorithms we review................ 33
Table 2: Comparison of Termite and AODV with respect to eight key measures. 47
Table 3: Results of exploratory pass on radio backoff window parameters with radio

power setting of 7... 66
Table 4: Comparison of throughput between two nodes (raw throughput), a line network

with a preset path, and then multipath routing on a 6 node graph (Figure 9) with
TinyTermite. .. 75

Table 5: Comparison of TinyTermite with Termite with regards to security. Experiments
performed on network in Figure 9 where baseline packet loss for network is
assumed to be 12.7%.. 77

 v

LIST OF FIGURES

Figure 1: The Bellman Ford Algorithm.. 16
Figure 2: Packet movement through Termite network.. ... 39
Figure 3: Pheromone table update.. .. 39
Figure 4: Routing in Termite. ... 42
Figure 5: Termite packet layout.. 43
Figure 6: Replay attack diagram.. ... 51
Figure 7: TinyTermite packet layout. ... 56
Figure 8: Single line test scenario... 60
Figure 9: Six node graph for experimental setup to test throughput and latency. 61
Figure 10: Showing radio range of nodes at power 1 in a single line setup. 64
Figure 11: Show radio range of nodes at power 2 in a single line setup. 65
Figure 12: Packet drop percentage versus radio power, single line setup, 1 hop, Preset

path with no routing. .. 68
Figure 13: Throughput versus radio power, single line setup, 1 hop, preset path with no

routing. ... 69
Figure 14: Packet drop rate versus radio power; Each test uses nodes in a line formation

with a preset path and no routing... 70
Figure 15: Throughput versus radio power; Each test uses nodes in a line formation with

a preset path and no routing. .. 71
Figure 16: Packet drop rate versus radio power; Each test uses nodes in a line formation

with active Termite routing.. 73
Figure 17: Throughput versus radio power; Each test uses nodes in a line formation with

active Termite routing.. 74

 6

CHAPTER 1

Introduction

Mobile ad hoc networks (MANETs) use a group of nodes to move information

from a source node to a destination node without having a central authority directing the

operations. MANETs can be quickly and inexpensively set up as needed and require no

centralized administration or fixed network infrastructure such as base stations or access

points. In recent years there has been tremendous growth in the laptop, small internet

capable device, and smartphone markets [1]. Lately interest in MANETs has risen due to

availability of license free wireless communication platforms. MANETs have begun to

move into commercial industry as a way to track inventory, route traffic, and move

information. For example, field technicians may need to work in a cluster to take

readings, a class of students with laptops may need to interact in a peer to peer manner, or

a group of business people may need to share files in an airport [2]. Secure and reliable

communication is a necessary prerequisite for applications such as military exercises,

disaster relief, and mine site operation.

With MANETs, we do not assume every node can hear every other node and that

this characteristic is typical with these types of networks in terms of lack of complete

connectivity. Wireless networks are inherently less reliable than wired networks.

Routing is a key problem in any information network. In most networks such as the

internet the topology is relatively static, with new changes taking a certain amount of

time to propagate across the network. With an ad-hoc network we need to be able to route

information even as the network topology changes, adapting on the fly. Routing protocols

 7

for existing networks are not designed for the conditions demanded of MANETs. In

addition, it is critical that ad-hoc networking be secure against many types of attacks

before they can be employed in the field. Since nodes themselves communicate via the

wireless medium which is open to most attackers with a Wi-Fi unit, attacks on wireless

MANETs are relatively easy.

Termite [3] is a biologically inspired routing algorithm for MANETs that is based

on previous work in adapting the effects of stigmergy [4]. Stigmergy is defined as

information gathered from work in progress [5] and is a principle mechanic of self

organizing systems. Termite models how termite colonies lay pheromone to

communicate in a decentralized manner. The concept of a pheromone value is taken from

the social insect world where insects such as termites lay small deposits of pheromone as

they move to indirectly communicate with one another. The Termite algorithm [3] is very

interesting from the perspective of its “on-line” training of the network via routing

information “piggybacking” on top of normal network traffic, as opposed to the more

common technique of sending packets for the purpose of purely updating routing

information.

Self organizing systems exhibit emergent properties, where emergence refers to a

process by which a system of interacting agents or nodes acquires qualitatively new

properties that cannot be understood as the simple addition of their individual

contributions [5]. Termites, just like all other social insects, have no centralized control,

blueprints, or coordinators. All of their work coordination is done by examining their

localized environment and using that as input into a rule base which tells them which task

 8

to perform (sometimes a repeated encounter of a stimulus is necessary to perform a task

switch [5]).

We secured the existing Termite algorithm against selective forwarding and

replay attacks [6]. The new algorithm is called TinyTermite. Our contributions are the

addition of suspicion and the implementation of Termite on the Imote2 platform.

Suspicion is a technique inspired by task response thresholds in ant colonies which

allows a MANET to detect certain classes of attacks even given inconclusive information

and alter its behavior in a proportional response. In our experiments we implemented a

detection scheme for the replay attack. We also show how countermeasures can be

employed in TinyTermite. We propose an alternative method to deal with selective

forwarding attacks based around disjointed paths taken by pairs of packets. We describe

these attacks in sections 4.3.1 and 4.3.2.

We also implemented Termite on the Imote2 platform [7] under the TinyOS

operating system [8] and with the nesC programming language [9]. We investigated the

properties of the Imote2 platform by measuring its one hop performance, radio subsystem

backoff windows, theoretical throughput across many hops, and how radio power affects

performance. We also measured Termite with respect to throughput, latency, and packet

loss on the Imote2 platform and found it to be an effective routing algorithm for the

platform. We found the suspicion pheromone defense to be highly effective against the

replay and selective forwarding attacks coupled together and the system successfully

routed significantly more packets to the intended destination than it did without the

defense mechanism.

 9

We review existing ad-hoc network routing protocols in Chapter 2, comparing

four of the major ad-hoc routing protocols. In Chapter 3 we examine Termite and the

principles of self organization. We also review how feedback and stigmergy drive

emergent systems at the local levels. To conclude the chapter we compare AODV and

Termite. We introduce TinyTermite in Chapter 4 and discuss the attacks we are

defending against. We also introduce the disjoint path mechanism and the suspicion

defense mechanism to combat the attacks. We then discuss our experiments concluding

with our results. In Chapter 5 we list our conclusions and future work.

 10

CHAPTER 2

Routing in Wireless Ad-Hoc Networks

2.1 Introduction To Wireless Ad Hoc Networks

Wireless ad-hoc networking uses a group of nodes to move information from a

source node to a destination node without having a central authority direct the operations.

In certain situations users will want to communicate in situations where no fixed wired

infrastructure exists, either because it may not be economically practical or physically

possible. Wireless ad-hoc networks provide capabilities that service these type conditions

where infrastructure is unavailable for more traditional wired approaches.

Ad hoc networks can be quickly and inexpensively set up as needed and require

no centralized administration or fixed network infrastructure such as base stations or

access points. In recent years there has been tremendous growth in the laptop, small

internet capable device, and smartphone markets [1]. These smaller machines are

equipped with sufficient amounts of memory, storage, high resolution displays, and

wireless communication adapters. Given their increasing battery life, they are free to

roam for hours without the constraint and tether or a wired infrastructure. These devices

are quickly becoming a pervasive part of everyday computing infrastructure.

A mesh network is a type of ad hoc network where all nodes are connected via

multiple hops. As mesh networks tend to be stationary, another development in this

technology has been Mobile Ad-hoc Networks (MANETs) which allow for the individual

nodes to move and self organize on the fly. The idea of forming a mobile network of ad

 11

hoc nodes on the fly dates back the DARPA packet network radio days [10, 11].

MANETs share few properties with centrally oriented networks. First and foremost, the

topology can be quite dynamic and change frequently, something traditional wired

networks aren’t focused on. Second, with an ad hoc network users do not want to perform

administration tasks to set up such a network. Lately interest in MANETs has risen due to

availability of license free wireless communication platforms. Growing interest within

the Internet Engineering Task Force (IETF) has amounted to the formation of a new

working group [12, 13] whose charter is to develop a framework for routing in ad-hoc

networks.

With MANETs, it is not assumed that every node can hear every other node. This

characteristic is typical with these types of networks in terms of lack of complete

connectivity and because the wireless physical medium is limited and variable in range,

in distinction to existing wired media. With wireless ad-hoc networks if only two nodes

or hosts are in close proximity to one another in an ad-hoc network, no real routing is

required. However, if multiple nodes are spread out in an ad-hoc network, and some of

them can only hear a subset of the network, then routing is required and their neighbors

nodes will have to route their packets for them. Wireless networks are inherently less

reliable than wired networks. In a wireless environment, network connectivity between

two nodes does not always work consistently in both directions. This is due to differing

propagation or interference patterns around the two hosts [14, 15]. Also with the wireless

medium, battery, computational power, and communication bandwidth are scarce.

Routing is a key problem in any information network. However with the addition

of a topology in flux and wireless medium obstacles to overcome, routing becomes an

 12

even more complex problem to deal with. In most networks such as the internet the

topology is relatively static, with topology changes taking a certain amount of time to

propagate across the network. With an ad-hoc network we need to be able to route

information even as the network topology changes, adapting on the fly. Routing protocols

for existing networks are not designed for the conditions demanded of MANETs. Ad-hoc

networks demand a routing protocol that can provide the kind of dynamic, self starting

behavior needed. Most conventional routing protocols provide their worst performance

when faced with a highly dynamic interconnection topology since conventional routing

protocols are not designed to endure frequent topology changes that tend to occur in ad-

hoc networks.

Research on packet routing in wireless networks of mobile hosts dates back to at

least 1973 when the DARPA Packet Radio Network (PRNET) was started [16]. Its

successor was the Survivable Adaptive Networks (SURAN) project [15]. Originally

designed for military applications, mesh networks have begun to move into commercial

industry as a way to track inventory, route traffic, and move information, among other

uses. For example, a class of students with laptops may need to interact in a peer to peer

manner, field technicians may need to work in a cluster to take readings, or a group of

business people may need to share files in an airport [2]. In all of these situations a

collection of hosts with wireless interfaces may form a temporary network without any

sort of pre-existing infrastructure of administration.

Although mobile computers can be modeled as routers, it is very clear that

conventional routing protocols coupled with this concept alone places too heavy a

computational burden on each mobile device. With conventional networks, links between

 13

routers occasionally go down or come up and the cost of a link may change due to

congestion, but the routers do not move around. Also, the convergence mechanics of

existing routing protocols are generally not acceptable when used with MANETs. In

networks with mobile nodes, however, convergence to new stable routes can take time or

be very slow given that the new routing information has to propagate across the network.

 MANETs (unless mentioned otherwise, from this point onwards we’ll consider

this term to mean wireless ad hoc networks) face many challenges as a result of attacks,

frequent changes of network topology, and natural physical layer interferences.

Furthermore, the techniques of split horizon and poisoned reverse [17] are not useful

within the wireless environment due to the broadcast nature of the wireless medium.

Secure and reliable communication is a necessary prerequisite for applications

such as military exercises, disaster relief, and mine site operation. While these type

operations may benefit from ad hoc networking, it is paramount that ad-hoc networking

be secure against many types of attacks before they can be employed in the field [18]. Up

until recently researchers in ad hoc networking have mostly studied the routing problem

in sandbox type conditions, assuming a trusted environment; very little research has been

performed in a more realistic arena where adversaries can deploy and array of attacks in

attempts to disrupt the network.

Attacks on wireless MANETs are relatively easy since the nodes themselves

communicate via the wireless medium which is open to most attackers with a WI-FI unit.

The attacks on ad hoc network routing protocols generally fall into one of two categories;

First we have routing-disruption attacks, where the attacker attempts to cause legitimate

data packets to be routed in dysfunctional ways. Then we have resource-consumption

 14

attacks, where the attacker injects packets into the network in an attempt to consume

valuable network resources such as bandwidth [18]. One of the major type of attacks we

will focus on later in this thesis is the replay attack where an attack takes a valid packet

and replays it to a neighbor node. This type of attack can not only drain valuable

resources but also influence routing patterns in certain types of networks. Other attacks

we look at are selective forwarding and sinkhole attacks, where packets are sometimes

routing maliciously or not at all, respectively.

2.2 Routing Algorithms for MANETs

Routing takes place in many types of networks such as telephone, electronic data,

and transportation networks. Popular routing methods attempt to achieve the common

objective of routing packets along the optimal path. There are two main types of routing

algorithms in wireless ad hoc networks. They are Distance Vector [17, 19, 20, 21, 22] and

Link State [23, 24, 25] algorithms. Typically conventional wired networks use either

distance vector or link state routing algorithms. Ad hoc On Demand Distance Vector

(AODV) is a routing algorithm that is of the distance vector class. The researchers behind

AODV state that an ad hoc routing protocol needs to have support for multi hop paths, it

needs to be self starting, have dynamic topology maintenance, be loop free, have low

consumption of memory and bandwidth, be scalable to large node populations, localize

the effect of link breakage, have minimal overhead for data transmission, and be able to

rapidly converge [26].

The distance vector approach assigns a cost to each of the links between each

node in the network. Each node will send information from point A to point B along the

 15

determined set of nodes, or the path, that will result in the lowest total cost. Nodes

transmit the distance metric to each node to all of their neighbors. Nodes then compute

the shortest path to all other nodes based on the information advertised by its neighbors.

In addition to being used in wired networks, distance vector algorithms have been

adapted for use in wireless ad hoc networks where each node is essentially a router in the

network [16, 27, 28]. Most distance vector algorithms use the Bellman-Ford algorithm

[29]. The Bellman-Ford algorithm solves the single source shortest paths problem in the

general case in which edge weights may be negative. As explained in the algorithm is as

follows:

Given a weighted, directed graph G = (V, E), We have a set of vertices V and a

set of edges E, with source s and weight function

w : E R

the Bellman-Ford algorithm [30] returns a boolean value indicating whether or not there

is a negative weight cycle that is reachable from the source. If there is such a cycle, the

algorithm indicates that no solution exists. If there is no such cycle, the algorithm

produces the shortest paths and their weights.

The algorithm also uses relaxation, progressively decreasing an estimate d[v] on

the weight of a shortest path from the source s to each vertex v ∈ V until it achieves the

actual shortest-path weight δ(s, v). For each vertex v ∈ V, we maintain an attribute d[v],

which is an upper bound on the weight of a shortest path from source s to v. We call d[v]

a shortest-path estimate. The algorithm returns TRUE if and only if the graph contains no

negative-weight cycles that are reachable from the source.

 16

After Initialize-Single-Source (G, s) , π[v] = NIL for all v ∈ V, d[s] = 0, and d[v]

= ∞ for v ∈ V – {s}, (where π[v] is a predecessor vertex). The algorithm calls Initialize-

Single-Source (G, s) and then repeatedly relaxes the edges of the graph G with the

RELAX(u, v, w) function. The RELAX(u, v, w) function [30] performs the technique

of relaxation. The process of relaxing an edge (u, v) consist of testing whether we can

improve the shortest path to v found so far by going though u, and, if so, updating d[v]

and π[v]. The algorithm is listed in Figure 1 below.

RELAX(u, v, w)

1 if d[v] > d[u] + w(u, v)

2 then d[v] d[u] + w(u, v)

3 π[v] u

Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i 1 to |V[G]| - 1

3 do for each edge (u, v) ∈ E[G]

4 do RELAX(u, v, w)

5 for each edge (u, v) ∈ E[G]

6 do if d[v] > d[u] + w(u, v)

7 then return FALSE

8 Return TRUE

Figure 1: The Bellman Ford Algorithm

 17

Each node monitors the cost of its outgoing links and periodically broadcasts

updates of its current estimates of the shortest distance to every other node in the network

to its neighbors in order to keep distance estimates up to date. As the updates are received

by each node, the distance estimates are recalculated. This described technique is the

classical distributed bellman-ford algorithm [31]. It is computationally more efficient

than compared to link state methods, and easier to implement while requiring less amount

of storage space.

One shortcoming of the distributed bellman-ford protocol is that it is not loop-free

[32]. The paths implied by the routing-tables of all nodes taken together can have loops at

any moment. This means that if a path to a destination is traced going from the routing-

table of one node to that of another node, a node may be visited more than once before

the destination is reached. Looping of data to be routed may occur resulting in

considerable overhead if such routing-table loops persist for a long time.

With link-state routing each node broadcasts to all other nodes in the network its

view of the status of each of its adjacent network links. Each node then computes the

shortest distance to each host based on the complete picture of the network formed from

the most recent link information from all nodes. This approach is closer to the centralized

version of the shortest path computation method, with each node maintaining a view of

the network topology with a cost for each link. To maintain fresh state across the

network, each node periodically broadcasts the link costs of its outgoing links to all other

 18

nodes using flooding or a similar technique. As a node receives the information, it

updates its own state table to reflect the changes in the network conditions and applies the

shortest path algorithm for each destination to choose the preferred next hop neighbor.

Open Shortest Path First (OSPF) [25] is an early example of a link state algorithm. It is

one of the dynamic routing protocol for use in IP networks.

Some disadvantages of link-state algorithms surface when link costs in a node’s

view can be incorrect because of long propagation delays or partitioned networks. These

causes of inconsistent views of the network topology can lead to routing loops. These

routing loops are generally short lived. A short lived routing loop is any loop that

disappears in the time it takes a message to traverse the diameter of the network [24].

Link state algorithms also must maintain up to the date routing state for every node in the

network, which creates a natural constraint in terms of bounding the network size due to

excessive storage and communication overhead in a highly dynamic network.

Simplicity is one of the most preferred attributes of a routing protocol to be

implemented in operational networks, with Routing Information Protocol (RIP) [17]

being a classic example of this. Ad-hoc routing protocols can also have many

classifications in terms of how they discover their routing information. Aspects of ad-hoc

networks include:

• Node mobility

• Path maintenance

• Route table management

• Path loop prevention

• Local connectivity management

 19

• Link layer mechanics

Ad-hoc networks generally end up in two main groups: proactive networks and

reactive networks.

• Proactive: A proactive ad-hoc network seeks to constantly have the best possible

global routing information in its routing tables, updating the routing table

as new information comes online. [27]

• Reactive: A reactive ad-hoc network only caches routing information in its tables

relative to the routes it has seen recently or needs to forward the current

packets in its queue [33]. These algorithms are considered to be pure on-

demand route acquisition systems. Nodes that reside outside active paths

neither maintain routing state nor participate in periodic routing table

exchanges. This thesis is focused on reactive networks, or on-demand

networks, as they have been shown to give better performance than

proactive networks for ad-hoc networks [26, 34, 35, 36].

In the next section, we will discuss four popular wireless mobile ad-hoc routing

protocols and take a look at their strengths and weaknesses. The algorithms we study are

• DSR – Dynamic Source Routing

• AODV – Ad hoc On Demand Distance Vector

• DSDV – Destination Sequenced Distance Vector

• OLSR – Open Link State Routing

 20

2.3.1 DSR

DSR is a routing protocol intended for wireless mesh networks [33]. It is a

reactive protocol as it forms a route on demand when a transmitting computer or packet

requests one. DSR’s primary difference from distance vector protocols is that it does not

rely on the routing table at each hop but rather relies on source routing instead. Source

routing refers to having the source node dictate the path that the packet takes through the

network with the entire path to the destination included in the data inside the packet.

Source routing has been employed in a number of configurations for wired networks,

using either statically defined or dynamically constructed source routes [37, 38]. It has

also been used to route packets in the Tuscon Amateur Packet Radio (TAPR) work for

wireless networks [39].

DSR allows the network to be self organizing and self configuring without

existing infrastructure. The protocol adapts quickly to routing changes when changes in

network topology is frequent, yet demands little to no overhead during periods of less

node movement. Source routing also has the added benefit of producing loop free routes

and eliminates the need for up to date routing information to be pushed to intermediate

nodes along the route. Even up to the highest levels of simulated host movement, the

overhead of DSR is quite low, falling to just 1% of total data packets sent for medium

node movement rates in a network of 24 mobile nodes.

 DSR has two main mechanisms; route discovery and route maintenance. These

two mechanisms work together to allow nodes to discover and maintain source routes to

various destinations in the ad-hoc network. There are no periodic broadcasts for this

protocol. Instead, when a node needs to route to another node, it dynamically determines

 21

one based on cached information and on the information gathered from the route

discovery protocol.

Network nodes cooperate to forward packets for each other to allow for the

delivery of packets to nodes not in direct range of wireless transmission for the source

node. Given that the path length or hop order may change at any time, the nature of the

network topology is highly dynamic. A primary focus in designing DSR was on creating

a routing protocol that had very low overhead yet was able to react to changes in network

topology quickly.

To send packets or data from a source node to a destination node, DSR constructs

a source route giving the address of each hop along the way and the order the hops should

be taken in. The packet is transmitted from node to node, and if the packet is not destined

for the receiver, then the node reads the next hop in the header and forwards it on. Each

node in the ad-hoc network maintains a route cache in which it caches source routes that

is has learned. When a node wishes to send a packet to a destination node, the source

node first checks its route cache for a source route to the destination node. If no entry is

found, then the source node may initiate the route discovery protocol. While waiting for

this procedure to complete, the node may continue to operate on other packets in a

normal fashion, sending and receiving packets with other nodes. During usage of any

source route, a node monitors its correct operation. If any hop in the source route goes

offline, the route cannot be used to reach the destination. This path maintenance

monitoring is employed to detect when the node needs to initiate discovery again to find

a new correct route to the destination.

 22

Route discovery is the mechanism by which DSR allows a node in the ad-hoc

network to dynamically discover a route to any other node in the network. This

destination can be immediately reachable or through other intermediary hops through

other hosts. Route discovery broadcasts (RREQ) are initiated when a new route needs to

be found by sending out a route request packet to the neighbor nodes in wireless range. If

the route discovery process is successful, the initiating node will receive a route reply

packet (RREP) which will list a sequence of nodes in the ad hoc network for the packet to

traverse in order to reach its destination. Each RREQ packet contains a list of the nodes

that it has traversed so far in order to reach the current receiving node. This is referred to

as the route record, and also contains a unique request ID, set by the initiating node from

a locally controlled sequence number. In order to detect duplicate entries, each node

keeps a list of entries keyed with the node ID and the unique request ID pairs. If the node

has seen a RREQ before, it discards it. The node will also discard the packet if its own

address is already in the packet route list, as this prevents loops in the route. If the node is

the destination node listed in the RREQ packet, then it will copy its own address into the

route list record, and send a RREP packet back towards the source node. If it cannot

service the request, the RREQ will be rebroadcast out to the node’s neighbors with the

node’s own address appended to the route record in the packet. The RREQ thus

propagates through the network until it reaches a node which can service the request.

 DSR has an advantage in that it does not employ periodic broadcasting of routing

advertisement messages. This saves on bandwidth overhead especially when there is little

to no activity in the network and also saves on battery power which is a limited resource

in sensor networks and handheld devices, allowing the device to sleep when activity dies

 23

down. Ad-hoc networks inherently have multiple paths in them which a wired network

tends not to have. With distance vector and link state algorithms, there is an increase in

routing table overhead for these multiple path entries which must be maintained, which in

turn requires more CPU overhead and power consumption.

One drawback with DSR is that a long enough path would require an arbitrarily

long enough packet header. That is, as our path length approaches a large number, our

header size will exceed the maximum allowed size of the physical medium in some cases.

2.2.1 DSDV

Destination-Sequenced Distance-Vector Routing (DSDV) is a table-driven

routing scheme for MANETs based on the Bellman-Ford algorithm [27]. The main

contribution of the algorithm, developed by C. Perkins and P.Bhagwat in 1994, was to

solve the Routing Loop problem. It is considered proactive as well as a distance vector

class algorithm that actively pushes out its routing table state periodically as changes

occur.

DSDV uses a distributed version of the shortest path problem [40] where each

node in the graph maintains a table which has an entry indicating a preferred neighbor for

a destination. When a packet is routed to a destination node, the destination node’s

address is place in the header of the packet. As each node receives a packet, if the packet

is addressed to the node, then the packet is passed on up to the application layer. If the

packet is addressed to some other node, then the packet is forwarded to the neighbor

which is preferred for that destination, with the forwarding process continuing until the

packet reaches the destination.

 24

DSDV is a variant of the distance vector routing method and is effective for

creating ad-hoc networks for small populations of mobile nodes. DSDV depends on the

correct operation of the periodic adjustment and global dissemination of routing table

information. Being dependent on this, DSDV is generally considered a brute force

approach. This limits the effective size of ad-hoc network that can employ DSDV when

using frequent system wide broadcasts of routing information as the control message

overhead grows O(n²). DSDV is also required to maintain at least one path for each

possible destination in the network at all times which is quite costly in terms of node

resources and wastes resources given that a lot of this information is never used.

However, keeping complete routing table information does reduce the acquisition latency

before the first packet transmission to a destination node.

The routing table contains entries, each of which has a sequence number which is

generally even; else, an odd number is used. The destination generates this sequence

number and the emitter needs to send out the next update with this number. Nodes send

distribute routing information between themselves by sending full dumps occasionally

and smaller incremental updates more often. The DSDV routing protocol requires that

each node advertise its own routing table to each of its current neighbors. The

advertisements must be made frequently enough as the entries in the list may change

fairly dynamically over time. Each node also agrees to relay packets to other nodes upon

request. The data broadcast by each node will contain its new sequence number, the

destination address, the number of hops required to reach the destination, and the

sequence number of the information received regarding that destination, as originally

 25

stamped by the destination. The transmitted routing tables contain similar information

with some additional fields like hardware address.

Routes received in broadcasts are also advertised by the receiver, propagating

information across the network. The receiver increments the metric before advertising the

route, since packets coming in via this route will require one more hop than before to

reach the destination. A broken link is described by a metric of infinity, or any value

greater than the max allowed for the metric. When the next hop for a destination has been

broken, any route through that next hop is automatically assigned the value of infinity

and an updated sequence number. This results in the broadcast of a routing information

packet since it qualifies as a substantial route change. Some of these broadcasts are full

dumps of a node’s table with others augmenting them serving as partial incremental

updates.

When a node receives new routing information, generally in an incremental

update, the information is compared with existing routing information already available.

Any route with a more recent sequence number is employed, and routes with older

sequence numbers are discarded. Routes with equivalent sequence numbers are

distinguished between by their metric in terms of which has fewer hops. The metrics for

any routes selected out of the update are incremented by one hop, and the new entries are

scheduled for advertisement to local neighbors.

Being available early on has given DSDV an inherent advantage in the market. By

bounding the number of nodes in the network we can achieve good performance from the

algorithm. Although many improved versions of this algorithm have been proposed, there

is no commercial implementation of this algorithm. This is because no formal

 26

specification of this algorithm exists so far. A strength of DSDV is that at all instants the

protocol guarantees loop free paths to each destination

The major downside to DSDV is that it requires a regular update of its routing

tables, which drains a small amount of bandwidth and uses up battery power even when

the network is idle. Also, whenever the topology of the network changes, the network

needs to re-converge which requires new sequence numbers to be generated for each

node. Given these facts, DSDV is not suitable for large or highly dynamic networks.

Another critical constraint of DSDV is the storage requirements for the routing table, as it

can grow to be quite large.

2.2.2 AODV

AODV is a reactive routing protocol for MANETs. It falls into the class of

distance vector algorithms, as its name suggests. Although not specifically dependent on

the wireless physical medium, AODV was designed with limited range broadcast media

in mind. Employing such media, a mobile node can have neighbors which hear its

transmissions and yet may not hear one another. AODV uses symmetric links between

neighboring nodes and does not attempt to use links that are not symmetric. This is due to

the fact that the flow of packets needs to take the same path towards the source that it

took towards the destination, but in reverse. Any link that was not bi-directional would

break this basic mechanic of AODV.

AODV uses a system of route request (RREQ) packets and route reply (RREP)

packets to setup on demand paths through its network. A RREQ packet hops from

neighbor to neighbor actively looking for a node with path information towards a

 27

destination. A RREP packet is sent from the node with information about the destination

back along the path the RREQ packet has taken.

AODV employs a broadcast route discovery system that is similar in nature to the

DSR algorithm. The primary difference is that instead of source routing AODV sets up a

reverse path pointer at each hop on the way towards the destination node with a RREQ

packet. Once the RREQ packet arrives at the destination, a RREP packet then begins to

hop back towards the source node setting up the forward path pointer records. Each table

entry at each node has a sequence number similar to how DSDV employs sequence

numbers in order to keep up with the latest path information. However, unlike DSDV,

each ad hoc node has a monotonically increasing sequence number counter which is used

to supersede stale cached routes. The combination of these two techniques allows AODV

to use its bandwidth efficiently, be responsive to changes in network topology, and

maintain loop free routing. Each soft entry in a node’s routing table has a timeout value

that indicates when it can be removed. This ensures we only keep relevant routing

information and allow the unused information to expire quickly. Routing entries that are

used have their timeout value refreshed as data moves across the path and paths that no

longer exist or are not being used are purged. A routing entry is considered active if a

packet has used it inside the timeout period. With AODV all routes in the route table are

marked with destination sequence numbers which ensure that no routing loops can be

formed which is similar to DSDV.

Path maintenance is key to consistent operation in AODV. Movement of nodes

not on an active path do not affect routing to that path’s destination. If a source node

moves during a data transmission operation, it can repeat the setup sequence and rebuild

 28

the path to the destination which would be a reactive measure. Intermediate nodes and the

destination node on the path send out a special RREQ when they move in order to

perform path maintenance. Every so often each node sends out hello messages to main

symmetric links to its neighbors which provides for timely and consistent operation of the

protocol as new requests come in.

Once a node or the next hop becomes unreachable, the previous node on the path

sends an unsolicited RREP back towards the source with a hop count value of infinity

and an incremented sequence number. This table entry is updated at each hop along the

way, signifying that the destination is no longer accessible. Once a source node receives

this notification, it can restart the path discovery process if it chooses.

Nodes manage connections in their local “neighborhood”, or within the distance

that their physical medium can effectively communicate. Nodes find their neighbors in

one of two ways. Periodically a node can emit a special RREP packet with a time to live

(TTL) of 1 that all of its neighbors will hear and update their routing tables to reflect the

existence of the neighbors node. Also, a node updates its routing table when it hears or

overhears a broadcast from a node within its range. Only node links which can be

traverses or used in a bidirectional manner are employed by AODV and considered to be

neighbors of the node.

On-demand routing protocols such as AODV and DSDV have been shown to

perform better with significantly lower overheads than proactive routing protocols in

many situations [26, 34, 35, 36]. They are able to react quickly to the many changes that

may occur in the network topology while reducing routing overhead in regions of the

network where change occurring less frequently.

 29

2.2.3 OLSR

The Optimized Link State Routing Protocol (OLSR) [41] is a proactive IP routing

protocol meant for ad hoc wireless networks. OLSR performs topology flooding using a

reliable algorithm. Topology flooding is a technique based on periodically sending out a

node’s link state information to its neighbors. This algorithm is not aimed at reliability,

yet simply floods the network often enough to make sure each node’s graph state does

not stay unsynchronized for long periods of time. As each node notices its neighbor

nodes, it distributes the links via flooding and then optimizes its graph state.

OLSR maintains graph state by having each node send out hello messages to

specific nodes in the network to exchange neighborhood information. This hello packet

includes the node’s IP, sequence number, and a list of distance information for its

neighbors. Each node rebuilds its own routing information once it receives an update this

hello packet and recalculates the shortest path to every node in the graph. This routing

information is only updated when:

• A change in the node’s local neighborhood is detected

• A route to another node has expired

• A better or shorter route has been detected for a destination

OLSR employs hello messages to find one hop neighbors, as well as its two hop

neighbors via their responses. It generates a constant overhead of control traffic. Being

that OLSR is a proactive protocol it actively finds routes to all destinations. It maintains

this graph topology as well as routing information actively at all times. With this style

technique there is no route discovery delay, with routes to all destinations are created and

 30

maintained before used. The routing overhead generated does not increase with the

number of routes used, although it is generally greater than that of a reactive protocol.

In order to flood topology information OLSR designates a router on every link for

this function. Using hello messages to discover the two hop neighbors, OLSR performs a

distributed election of a set of multipoint relays (MPRs). The usage of MPRs helps to

minimize the flooding of broadcast messages in the network and reduce the size of hello

messages. Topology control (TC) messages which contain the MPR selectors are

forwarded by the MPR nodes. This gives OLSR some unique attributes as only a subset

of nodes source link state information is shared among all nodes and not all links of a

node are advertised but only those which represent MPR selections.

A common criticism of OLSR is the fact that there is no way for link quality to be

sensed. It was assumed that if hello messages had been received recently over a link that

the link was considered to be up. Given that OLSR is a proactive routing protocol it uses

relatively more power and computation than reactive protocols, thus making it less fit for

sensor networks or meshes of small battery powered devices. OLSR also uses a relatively

large amount of bandwidth and computation to construct its optimal paths through the

network topology. Transient loops can also result from packet loss coupled with

inconsistent state held for the network link state database. Given that link state routing

requires the topology database to be synchronized across the network and reliable

flooding is very difficult in an ad hoc network, OLSR doesn’t bother with reliability; It

simply floods the necessary data for the topology database often enough to make sure the

database does not remain unsynchronized for extended periods of time. Some primary

advantages of OLSR are:

 31

• Minimal latency

• Ideal in high density and large networks

• OLSR achieves more efficiency than classic link state algorithms when networks

are dense

• OLSR avoids the extra work of “finding” the destination by retaining a routing

entry for each destination all the time, providing for low single-packet

transmission latency

OLSR’s disadvantages include:

• When the network is sparse, every neighbor of a node becomes a multipoint

replay, reducing OLSR to a pure link state protocol

• High control overhead (reduced by MPR usage)

• Higher computation

• Storage

• Implementation complexity

2.3 Summary

We’ve taken a look at four algorithms for routing in MANETs, each with its own

design tradeoffs, strengths, and weaknesses. Table 1 summarizes the strengths and

weaknesses of the four routing algorithms we reviewed.

In the next section we will take a look at a routing algorithm, Termite, which

improves on some of the weaknesses of the referenced routing algorithms. MANET

networks are generally based on distance vector or link state routing algorithms created

around fifty years ago [29, 42, 43]. AODV is of particular interest when discussing

 32

Termite as Termite can be viewed as a probabilistic version of AODV in many ways. The

AODV routing protocol is one of the most popular on demand routing protocols for ad-

hoc networks. It was originally based on DSDV and was originally introduced in 1999 by

Perkins and Royer [26]. AODV is in the continuing stages of being standardized by the

IETF MANET working group [44].

Networks such as AODV and OLSR aim to find good routing solutions through

the network topology. This approach, while effective in stable conditions, can see its

performance degrade significantly in high dynamic environments where many routing

updates are needed due to a changing network topology. Termite has the ability to self

organize in an inherent fashion due to its use of pheromone and stigmergy. As packets

move through the network each node updates its pheromone table which serves as a

continual source of online feedback. This allows Termite to be more effective as a

routing algorithm in chaotic environments.

 33

Routing Algorithm Notes Drawbacks

DSR Reactive, Forms route on

demand, path in header of

packet. Low overhead during

periods of low node

movement.

Path size limited by size

of packet.

DSDV Proactive, Table driven,

distance vector, distributed

version of the shortest path

problem.

Requires a regular

update of its routing

tables, creates power

drain.

AODV Reactive, distance vector,

Similar to DSR in that it

builds “paths”. Routes packet

to next hop, which holds

pointer to next hop on pre

setup path.

Multiple RREPs for a

single RREQ can lead to

heavy control overhead.

Periodic beaconing leads

to unnecessary

bandwidth consumption.

OLSR Proactive, Performs topology

flooding with a reliable

algorithm. Ideal in high

density networks.

Excessive flooding can

use a large amount of

bandwidth and CPU

resources.

Table 1: Strengths and weaknesses of the four routing algorithms we review.

 34

CHAPTER 3

Termite

3.1 Introduction

Termite [3] is a biologically inspired routing algorithm that was based on previous

work in adapting the effects of stigmergy [4]. Stigmergy is defined as information

gathered from work in progress [5]. Termite models how termite colonies lay pheromone

to communicate in a decentralized manner. The concept of a pheromone value is taken

from the social insect world where insects such as termites lay small deposits of

pheromone as they move to indirectly communicate with one another. The reliance on

pheromone as a routing metric estimator creates a mechanic by which the network can

continuously adjust and balance itself to best meet the chaotic nature found in MANETs.

Termite has an inherent stochastic nature while employing a distance vector strategy to

route its packets while adapting to changing conditions in the network. Termite is a

reactive routing algorithm that uses a routing metric based on a pheromone values carried

by each packet across the network.

The Termite algorithm [3] is very interesting from the perspective of its “on-line”

training of the network via routing information “piggybacking” on top of normal network

traffic, as opposed to the more common technique of sending packets for the purpose of

purely updating routing information. All routing information is carried on each normal

packet as a pheromone factor, and this factor degrades each time the packet hops. At each

hop, the amount of pheromone on the packet is used to update the node’s internal routing

or pheromone table. As packets move through the network, at each hop they are routed

 35

independently based on a table of pheromone values. This table is generated by a set of

probabilistic equations that govern the buildup and decay of destination links and their

associated neighbors. Termite’s internal routing tables are very tuned towards how

packets move as observed locally as opposed to relying on the explicit routing

information received from other neighbor nodes. This also provides for a much lower

overhead in terms of control packets. The pheromone for each link is constantly decaying

towards a value of zero, yet as traffic comes in across that link, information is built up by

the pheromone value on the packet itself. The pheromone table is updated in a manner

such that the link updated is where the packet came from, not where it is headed. The

update to the pheromone table constructs a local map of the network traffic in reverse.

As each packet moves from node to node, it deposits its pheromone in each

node’s pheromone table for the previous hop’s link. High levels of pheromone in an area

will attract more termites to the area while the continuous evaporation of pheromone

eases the attraction towards the area for the termites. The pheromone is built up leading

back towards the source for a packet as it moves through the network. As packets move

through the network, pheromone continuously builds up and decays with high quality

paths emerging through the network. Each node periodically updates its pheromone table

to decay the pheromone on each destination via neighbor link. The pheromone buildup

and decay mechanics allow the network to not become locked in on any one good

solution. These mechanics of attraction and repulsion are used in Termite to drive the

flow of network traffic across the network. Exploring the network in a continuous manner

also helps adaptation of the network in chaotic and uncertain routing conditions.

 36

Termite minimizes control overhead as it distributes routing information with

pheromone carried on data packets. Routing algorithms such as DSDV and OLSR send

out control packets specifically meant to distribute state information. Since control

overhead is minimized, this adaptive approach to routing has an increased ability to

maintain network performance in a distributed manner. To understand what pheromone is

and how it drives self organization within MANETs, we have to take a look at the

underlying principles of self organization.

3.2 Principles of Self Organization

In this section we give a quick review of some of the core properties of self

organization. Self organizing systems exhibit emergent properties, where emergence

refers to a process by which a system of interacting agents or nodes acquires qualitatively

new properties that cannot be understood as the simple addition of their individual

contributions [5]. These emergent properties arise unexpectedly from nonlinear

interactions among a system’s components. Case studies such as bark beetle larvae

clustering [45] show how interactive components in nature demonstrate these processes.

Self organization is prevalent across the natural world and permeates most every corner

of nature.

Termite takes a strong cue from the mechanics of termite hill construction.

Termites, just like all other social insects, have no centralized control, blueprints, or

coordinators. All of their work coordination is done by examining their localized

environment and using that as input into a rule base which tells them which task to

perform (sometimes a repeated encounter of a stimulus is necessary to perform a task

 37

switch). This process is generally referred to as stigmergy, and is the method by which

workers communicate to one another by incomplete work left in their environment.

Positive and negative feedback are used as agents of amplification and control

respectively. Feedback and stigmergy are two core principles that drive and control self

organizing processes and are discussed in the following sections.

3.2.1 Feedback

Feedback is a driving mechanic in the process of self organization. Positive

feedback generally promotes change in a system where negative feedback slows down a

reactive process. A termite’s attraction towards large piles of pebbles biases it towards

adding to large piles, which is positive feedback. Large piles tend to have more

pheromone which attracts more termites that in turn potentially drop more pebbles on the

pile. The amplifying effect of positive feedback takes an initial change in a system and

reinforces that change in the same vector as the original deviation. Positive feedback

amplifies fluctuations in populations in interacting subunits. The nature of positive

feedback implies that it has the potential to cause large scale and unwieldy implosions or

explosions in the pattern where it plays a role. Negative feedback is the mechanism by

which we keep positive feedback and amplification under control.

With social insect societies, such as termites, evaporation provides the system a

source of negative feedback, as it weakens the pheromone over time resulting in less

gradient. As the pheromone gradient weakens, it will attract less termites and therefore

less pebbles will be deposited in the area. Negative feedback is what keeps our system

from converging on sub-optimal solutions too quickly. Biological termites employ

 38

negative feedback in the form of pheromone evaporation which keeps their pebble piles

from clustering in many small piles too quickly.

3.2.2 Stigmergy

Stigmergy is defined as information gathered from work in progress [5]. Termite

is based off of the classic effect of stigmergy, although more towards qualitative

stigmergy than the more common quantitative stigmergy found in ant colonies [4].

Stigmergy refers to indirect communications between individuals, generally through their

environment. Qualitative stigmergy is based on taking into account the relative quality of

the stimulus encountered. Quantitative stigmergy is based on the number of successive

encounters of a type of stimulus. Self organizing systems can also use information

acquired directly from other individuals. Stigmergy allows for scalable decentralized

coordination amongst relatively unsophisticated agents. Top down control hierarchies

tend to lose the ability to efficiently manage large groups of agents whereas self

organizing processes scale with much success [5]. In termite colonies, pheromone is

employed to create the stigmergic effect. Termites lay pheromone in order to cluster

pebbles to create their nest and chambers. In the next section, we take a look at the

specific mechanics of pheromone and how it works with Termite.

3.3 Pheromone

Pheromone is the biologically inspired aspect of Termite that creates a

probabilistic goodness-map of quality pathways through the ad-hoc network based on

topology and network conditions. Termite runs in an on-line manner, so all packets carry

pheromone on them and update each node’s pheromone table along their path. The

amount of pheromone on a neighbor link for a destination in a node’s neighbor table

indicates the quality of the route for that destination via that neighbor as the next hop.

Figure 2: Packet movement through Termite network. A packet moves from node 4 to node 6 on its final
hop to the destination node 6.

Figure 3: Pheromone table update. As the packet in Figure 2 hops to node 6, node 6 updates its pheromone
table to reflect the incoming packet’s information. The pheromone table is updated such that neighbor node
4’s destination entry for node 0 (source node) has its value adjusted. The rows in node 6’s pheromone table

reflect the nodes that node 6 can hear locally. The destinations are nodes that node 6 knows about.

 39

Each node in the network has a pheromone table which contains a matrix of

values for neighbor and destination pairs. As neighbors are discovered, they are entered

as a new row in the matrix. As destinations are discovered, they are entered as a column

 40

for a neighbor. Each neighbor-destination pair has a pheromone value that indicates the

goodness rating for that particular next hop neighbor for the intended destination. In

Figure 2 above we show a sample network with a packet hopping from node 4 to node 6.

In Figure 3 we see the pheromone table entry for the neighbor node 4 and destination

node 0 (the source of the packet) being updated. Periodically each value in the matrix is

degraded according to an equation described in Termite [3]. This simulates the effect of

pheromone evaporation and allows the network to continuously explore alternative paths

while not prematurely converging on solution. Once the amount of pheromone decays to

zero for a destination cell on a neighbor row in the pheromone table, the destination entry

is removed for that neighbor.

The routing mechanics in Termite are such that each packet is routed on a per hop

basis. As packets arrive the pheromone value for the source via the previous hop are

updated. Termite creates a pheromone map of the network in reverse as the source is

treated as the destination and the previous hop is treated as the next hop in the local

pheromone map. Packets moving towards the source of the current packet will now be

affected by the information carried from the current packet’s path. In Figure 2 above, as

packets move through node 4 to node 6, node 6’s pheromone table is updated to reflect

the information carried from source node 0.

Once pheromone accounting has been taken care of, the node then checks to see if the

packet’s destination exists in its pheromone table. If it does, then the packet is given a

next hop based on the sets of probabilistic equations described in Termite [3] and is sent

onwards towards its next hop. The routing mechanics of Termite are illustrated in Figure

4 below. If the node does not have a destination cached in its pheromone table, then the

 41

packet is queued and a RREQ packet is generated for the desired destination. The RREQ

packet hops from node to node where each node checks to see if it has an entry in its

pheromone table for the destination. If the node has an entry, it generates a RREP packet

and sends it back towards the source of the RREQ packet. The RREP packet follows the

source trail of pheromone back to the source of the RREQ. Once the originating node

receives the RREP packet it updates its pheromone table and then forwards the original

packet onwards with a new next hop based on the information returned from the RREP.

Figure 4: Routing in Termite. In (a) our source node 0 has 2 neighbors to choose from. The neighbor link
for node 1 has a pheromone value of 0.9 and the link for node 2 has a value of 0.1. The next hop is selected
by a set of probabilistic equations and in this case node 0 routed the packet via node 1 in (b). In (c) node 1

has 3 possible next hop neighbors excluding the previous hop from node 0. Again the next hop is generated
by the set of probabilistic equations and node 4 is selected as shown in (d). In (e) we see that node 4 has 2

other possible neighbor hops other than its previous hop. Node 4 determines that neighbor 5 is the
destination node, and forwards the packet in (f).

 42

 43

3.4 Packet Types and Layout

Termite employs 3 types of packets:

• DATA – a packet carrying actual data

• RREQ – a route request packet

• RREP – a route reply packet

Some routing protocols use a Hello packet to advertise the existence of a node. In

Termite this is accomplished with a RREQ setup with a route request for sending node

itself. In the initial stage a newly powered on node will send out this pseudo hello packet

with a 1 hop Time to Live (TTL).

Bit Offset 0-3 4-7 8-15 16-31

0 Source IP Address

32 Destination IP Address

64 Previous Hop IP Address

96 Next Hop IP Address

128 Pheromone Amount

160 Packet Type Packet TTL Data Length Flags

192+

Data

Figure 5: Termite packet layout. Bit offset describes the starting bit for the row relative to the first bit.

A Termite packet is represented by an array of memory with bit ranges being slotted

for the different values to be transmitted. The bit offset in Figure 5 above indicates where

 44

the value starts in relation to the beginning of the byte array. Termite has multiple types

of packets but all packet types have the same packet format. The first four fields are each

32-bit IP-addresses for Source IP Address, Destination IP Address, Previous Hop IP

Address, and Next Hop IP Address. The next field is a 32-bit value representing the

amount of pheromone the packet carries. This value is read at each hop and updated

before being sent out again towards its next hop. The pheromone field is followed by four

more 8-bit values Packet Type, Packet TTL, Data Length, and Flags.

The packet type field indicates whether the packet is a Data, RREQ, or RREP packet.

The packet TTL field indicates a TTL value, or how many more hops the packet can

travel before being dropped. This value is decremented at each hop. The data length field

indicates the size of the data payload region of the packet. The data payload region of the

packet, as shown in figure 5 above, contains the data for the Data packets. This region is

not used for RREQ or RREP packets. The flags field is specified in the Termite paper but

does not have a specific use listed.

3.5 Comparison to AODV

Termite can be considered a probabilistic version of AODV, as they share many

common traits. Termite employs an order of magnitude less control overhead as it does

not attempt to maintain strict paths for routing. It does employ the RREQ / RREP packet

overhead for path discovery as AODV does, but it does not flood the network with

overhead for new route discovery every time a route breaks.

Termite is compared with AODV with respect to the following criteria:

 45

• Data Goodput – the fraction of successfully delivered data packets.

• Control Packet Overhead – measures the ratio of control packets to the total number

of transmitted packets in the system.

• Control Packet Distribution – measures how many of each type of control packet

were transmitted.

• Medium Load – the ratio of data packets successfully delivered versus the total

number of packet transmissions. It characterizes how inefficient an

algorithm is in delivering packets.

• Medium Efficiency – the ratio of the number of transmissions of successfully

arriving data packets to the number of total packet transmissions, where

multiple transmissions of the same packet are counted individually.

• Medium Inefficiency – the ratio of transmitted packets versus the number of

packets offered to the network for delivery.

• Link Failure Rate – the average number of links that are lost per node per second. It

is a measure of how chaotic the network is and how much time each node

has to acquire a routing solution before the topology will change again.

• End-To-End Delay – the average of the delay for all packets delivered, where a

lower number if better.

The results in [3] demonstrated that Termite delivers 95% of the packets while

AODV delivered 90% of the packets. The original paper also compared Data Goodput

versus Node Speed, where Termite again outperformed AODV. Termite has an order of

magnitude less control packet overhead and produces a nearly constant amount over a

large range of node mobility. Whenever there is a route break, AODV must issue a route

 46

discovery flood. However with Termite a full route discovery is almost never needed

given its retransmission link repair policy. With AODV the proportion of control packets

increases with node speed because links break more often and the limiting factor is the

number of RREQ packets. Termite generates more RREPs than RREQs due to a liberal

route reply policy and its route caching mechanisms. Termite works better as more

pheromone is seeded around the network as it provides hints on regions the destinations

might be located.

With regards to medium load Termite was able to beat AODV. Both algorithms

show an increasing load on the medium as the network volatility increases. For AODV

this is caused by the increasingly large amount of control traffic generated. For Termite,

this is a result of the fact that data packets must take longer paths to find their destination

because the network topology is changing faster. With regards to medium efficiency,

Termite is able to easily deliver packets at low node speeds. Both AODV and Termite

have to expend more resources to deliver a packet as node speed increases. Medium

efficiency for both routing algorithms decreases linearly as node speed increases. Both

Termite and AODV performed at a similar level with respect to medium inefficiency.

Termite and AODV also had similar results when compared for link failure rate. For end-

to-end delay AODV has a constant performance due to the fact that packets are only sent

when a full route is known to exist. Termite’s delay results are not positive given the fact

that AODV’s delay is nearly an order of a maginude lower at higher speeds. Table 2

summarizes the comparison of Termite with AODV. As we can see, Termite compares

well with and exceeds AODV in many ways. Given these measures we chose Termite as

 47

our base routing algorithm. The robustness and flexibility of Termite gave us a good

foundation to improve on and secure with TinyTermite.

Metric Comparison

Data Goodput Termite delivers 95% of the packets while

AODV delivered 90% of the packets.

Control Packet Overhead Termite has an order of magnitude less

control packet overhead.

Control Packet Distribution Termite issues more RREPs than RREQs

due to a liberal route reply policy.

However, Termite still uses much less

control traffic compared to AODV.

Medium Load Outperforms AODV, but both algorithms

struggle in this area as network volatility

increases.

Medium Efficiency Termite outperforms at low node

movement speeds, but both algorithms

struggle as node speed increases.

Medium Inefficiency Outperforms AODV, but both algorithms

tend to struggle as node speed increases.

Link Failure Rate Termite performs very similarly to AODV

End-to-End Delay AODV’s delay is nearly an order of a

maginude lower at higher speeds.

Table 2: Comparison of Termite and AODV with respect to eight key measures.

 48

CHAPTER 4

TinyTermite

4.1 Introduction

TinyTermite is a fully implemented routing algorithm for MANETs that is secure

against a replay attack [6] in conjunction with a selective forwarding attack. The two

major contributions of this work are adding security to the Termite algorithm and the

implementation of Termite on a MANET. We propose a technique called “suspicion” to

defend against replay attacks. We also implemented Termite on the Berkley mote sensor

mote variant Imote2 [7] under the TinyOS operating system [8] and with the nesC

programming language [9]. We extended Termite with the suspicion technique to create

TinyTermite.

4.2 Contribution

Our contributions are the addition of suspicion and the implementation of Termite

on the Imote2 platform. Suspicion is a technique inspired by task response thresholds in

ant colonies which allows an ad hoc network to detect certain classes of attacks even

given inconclusive information and alter its behavior in a proportional response. In our

experiments we implemented a detection scheme for the replay attack and show how

countermeasures can be employed in TinyTermite. We also propose an alternative

method to deal with selective forwarding attacks based on disjointed paths taken by

packets. The other major component of our contribution is the implementation of Termite

on the TinyOS based platform and the measurement of the system’s performance in a

 49

real-world setting. (We also measure some of the properties of the Imote2 platform such

as raw throughput and note the realities of implementing on this platform.)

4.3 Attacks On MANETs

Most MANETs by default are very insecure and are susceptible to common

attacks. Our major focus with this project was to develop some defense mechanisms

against the more basic attacks and provide a foundation to build on. Our primary addition

was focused around adding an aspect to each neighbor entry in the pheromone table

called “suspicion”. Termite can be disrupted in a number of ways such as selective

forwarding and replay attacks. Security in MANETs is viewed from the perspective of

confidentiality, integrity, availability, authentication, and reliability. We chose the replay

and selective forwarding attacks to demonstrate TinyTermite’s effectiveness with respect

to network integrity and availability.

A network’s integrity and reliability are compromised with a selective forwarding

attack. With a replay attack, the network’s availability is challenged as resources are

drained during the attack and not used to service normal network behavior. Although

Termite cannot prevent these attacks, its inherent nature minimizes their affect. One

possible solution is to use link layer security [46] with Termite, which can help protect

against certain vulnerabilities, but it cannot eliminate them. A routing algorithm must be

designed with security in mind.

A replay attack can be devastating to a MANET given that resources are limited

and flooding a node quickly drains these resources. Using this strategy a rogue node can

quickly effectively disable many nodes in a MANET. Another attack we consider is the

 50

selective forwarding attack where a rogue node either only forwards a subset of packets

or no packets. In our experimental setup, our rogue node uses both of these attacks to

probabilistically route more packets through it and then not route them at all. This is

shown to be quite disruptive to the network.

4.3.1 Replay Attack

 In a replay attack (Figure 6 below), a rogue node will capture or create a valid

packet and repeatedly send this packet to a neighbor. To the neighbor, the packet will

have valid fields and or cryptographic information as the rogue node has not changed any

of the bits in the packet. However, the unassuming neighbor node still has to use

resources to process each incoming replayed packet. In a setup where the node is running

off limited battery power, this can quickly deplete resources and effectively disable the

neighbor node.

 With Termite, incoming packets influence a node’s pheromone table. Each

outbound packet for this node is then influenced by the same pheromone table. If a

replayed packet continuously comes from a neighbor rogue node, it will heavily influence

the pheromone table of the good node. The good node will quickly rate the rogue node as

a good next hop for the source node listed in the incoming packets, which sets the rogue

node up for more nefarious behavior as it now sits on a high quality route for the network

towards a particular destination. Once this situation is setup, the rogue node can then

execute a selective forwarding attack where it only forwards a subset of the received

packets or none of them at all. To counter this situation and create a basis to counter other

attacks, we introduced the technique of Suspicion.

Figure 6: Replay attack diagram. In (a) we have a source node s wanting to send data to destination node d.
Source node s has two neighbors, node t and node v. Each link in source node s’s pheromone table has a

pheromone value p and a suspicion value s denoted as [p, s]. Node t is the attacker. In (b) we see that each
neighbor entry in the source node’s pheromone table has an equal amount (0.5) of pheromone and no (0.0)
suspicion. In (c) the attacker begins sending a valid or captured packet to source node s. The packets appear

to have come from source node d with the attacker as the previous hop and quickly raise the pheromone
level for the traversed neighbor hop in source node s’s pheromone table. In (d) we see where node s has

engaged the suspicion countermeasure, detecting the replayed packet. The suspicion factor for the neighbor
link quickly rises towards the threshold level. In (e) the suspicion factor on the neighbor link to the attacker

is above the threshold and node s is now actively routing packets around the attacker towards the
destination d.

 51

In order to come up with Suspicion, we drew on inspiration from the fields of

Bayesian networks [47], Neural networks [48], and division of labor and task allocation

in ant colonies as well as the mechanics of pheromone deposit and decay [3]. Bayesian

networks are interesting in this situation because they take incomplete information and

 52

determine a decision. Neural networks share a similar topology to a mesh of nodes, and

output “activates” based on the strength of the signal coming and the weight on the

connection. These provided interesting inspiration for the effect of what we wanted, but

our major influence became how ants divide labor and balance their task allocations in

real time without centralized control as well as the utility of pheromone deposit and

decay over time.

With Termite each neighbor link was simply understood to exist or not exist, and

the strength of the connection was based on the amount of pheromone on the link. Our

model creates a more sophisticated neighbor link relationship as we give each neighbor a

level of “suspicion”. This suspicion factor is similar to the pheromone used for each

destination, but it represents a small amount of temporally affected information about

how much we trust the neighbor or are more worried about their recent activities. The

difficult part in most MANET algorithms is that it becomes very difficult to separate out

the good input (normal control traffic, data packets) from the bad (replayed packets,

compromised packets) especially in such an uncertain environment with only local

information. The one thing that TinyTermite does focus on with its suspicious

functionality was that we wanted to be able to define certain types of observable neighbor

behavior that might pique a node’s interest, and as that behavior continued, we wanted it

to affect how that node dealt with the offending node. However, if the behavior was

simply a result of any number of normal but fluctuating traffic effects, then we wanted

the node to ease its interest or penalties on the offending node. With this in mind we

combined the effects of an ant colony task stimulus threshold mechanic with the

properties of pheromone deposit and decay to for our suspicion mechanic.

 53

Each neighbor link has an associated threshold factor for suspicious input. When

the suspicion factor on that link exceeds the threshold, the node then may take defensive

precautions that attempt to preserve its own operation or pro-active attack operations that

seek to disable or combat the offending node. Another more latent use of the suspicion

factor is another weight on the normal termite routing algorithm, however we leave that

for future experimentation. The following equations represent the suspicion build up and

decay mechanics of TinyTermite.

S S + y (1)

S S – d (2)

In (1), S represents the level of suspicion on the link to neighbor r and y

represents the constant amount of suspicion that is being deposited on this link. This

equation is executed anytime a stimulus occurs that was predefined as a suspicious

behavior for a neighbor node. Once the buildup of suspicion on the link surpasses a

threshold level, our node ceases communication with the neighbor node until the

suspicion decays below the threshold level. This type of mechanic allows for a “forgive

but not forget” system.

Equation (2) deals with how a TinyTermite node degrades the buildup of

suspicion on a neighbor link over time. At each timestep this equation is applied to each

existing neighbor link in the routing or pheromone table. Variable S refers to the

suspicion level on node r and d is the constant amount by which the suspicion factor

degrades. Although this is a simple set of linear equations, their effect allow for a quick

buildup and slow back off of suspicion levels given the proper parameters. For our

experimentation, we used y = 7 and d = 1 with a threshold for suspicion of 20. We also

 54

capped the maximum amount of suspicion on a neighbor link to 100, and if the amount of

suspicion on a link was above the threshold then pheromone could not be laid on the link

but could continue to evaporate. The suspicion could then continue to buildup past the

threshold but our routing system will ignore any next hop node with a suspicion level

beyond the threshold. Another slight change is that a link was not removed until all

pheromone had evaporated and the suspicion was under the threshold so as to create a

memory of a rogue neighbor even after the pheromone was gone. This gave the link a

zero percent chance of being selected as a next hop for a packet while keeping it in a

suspended state. We used round integers in this case since it is easier to work with for a

base case experiment.

To implement the detection scheme for this stimulus, we implemented a seen

packet list. (This suspicious input could be the rate at which packets are arriving, the size

of the packets, or malformed packets.) This list of packets allows the node to detect any

repeated packets that have occurred in the last N seconds, where N is typically the route

timeout factor used in routing the packets. For our experiment we used a packet timeout

of 1000ms. As packets come in from neighboring nodes they are checked against our

seen packet list. The Imote2 throughput theoretically is 250 kbps, which is equivalent to

32 KB/s. At 32 KB/s and 128 bytes per packet we can have 256 maximum messages per

second ((32 *1024) / 128 = 256) that the node could possible hear. Our packet timeout is

1 second so we should see at the most (1 x 256 = 256) messages at any given moment.

Each forwarding structure is 9 bytes, so (9 x 256 = 2304 bytes) of space taken up to track

messages coming through our node.

 55

4.3.2 Selective Forwarding

A selective forwarding attack [6] is performed by a node either forwarding only a

subset of the packets sent through it, or forwarding none. Highly decentralized routing

algorithms such as Termite depend on all nodes acting reliably to achieve nominal

operations. Selective forwarding attacks have been shown to be countered by multipath

routing [6]. In this thesis, we introduce a scheme using dual packets to route packets in an

edge disjoint manner. (Two edge disjoint paths consist of two paths that can share

vertexes or nodes but cannot share edges.) Termite coupled with edge disjoint paths make

it difficult for attackers to completely disrupt the network. This is due to the fact that each

packet has a copy of it moving through the network and Termite routes packets in a

probabilistic manner.

Our design for multipath routing was setup by a bit flag in the packet header to

indicated the A or B packet and then a seen packet list. TinyTermite reserves 8 bits of the

packet header for a series of flags as shown below in Figure 7. We designate one of the

bits in the flag region for the A / B flag which indicates whether the packet is the A or B

version of a packet pair in the dual packet scheme. Each node in TinyTermite maintains a

list of packets it has seen recently as well as which neighbor the packet took for its next

hop. The source node for a packet sends out two copies of the same packet each with the

second copy having the A / B bit flag set to 1. As each packet is forwarded, the

forwarding node checks this seen packet list to see if it has seen the packet before. If the

node has seen the packet before, then it forwards the packet to a next hop that ensures an

edge disjoint path. We implemented the packet flag and the seen packet list, but did not

implement and test the actual routing modifications due to time constraints.

 56

Bit Offset 0-3 4-7 8-15 16-31

0 Source Node ID Destination Node ID

32 Previous Hop Node ID Next Hop Node ID

64 Packet Type Packet TTL Pheromone Amount

96 Sequence Number AB Thr Lat 0 0 0 0 0 Data Length Data

128+

Data

Figure 7: TinyTermite packet layout. Bit offset describes the starting bit for the row relative to the first bit.

4.5 Implementation

 TinyTermite is an implementation of the MANET routing algorithm Termite

implemented on the TinyOS platform with the addition of the aforementioned security

measures. This new system was implemented in around 10,000 lines of code and we

made no modifications to the base radio stack or the TinyOS base code. We did change

the base packet size from 29 bytes to 128 bytes, the maximum allowed by the CC2420

chip’s hardware. TinyOS is an open source operating system and platform intended for

wireless sensor networks. It is meant for embedded operating systems and employees the

nesC programming language. TinyOS was designed with a focus on limited resources,

reactive concurrency, flexibility, and low power constraints [8].

TinyOS features a component-based architecture which helps to minimize code

size as required by the severe memory constraints inherent in sensor networks. TinyOS's

component library includes distributed services, sensor drivers, network protocols, and

data acquisition tools. These components can be extended or combined to create new

components. TinyOS has an event-driven execution model which provides for fine-

 57

grained power management while allowing the scheduling flexibility required by the

chaotic nature of wireless communication. For this project we used the Crossbow Imote2

mote which has the Intel Xscale2 processor onboard as well as the Chipcon CC2420

WIFI chipset. The Imote2 runs at 415 MHZ and has 32 Megabytes of ram which makes it

one of the top motes on the market today.

Due to the role that probability plays in the Termite routing equations and

pheromone updates, any implementation of Termite needs to be able to deal with floating

point numbers. The Xscale2 processor does not have a floating point unit included with

its ALU, which presents a problem since allowing the system to do floating point

calculations via software can be up to 100 times slower. Since many of the probabilistic

equations are run on a per packet schedule, we needed to minimize the impact our

floating point calculations would make on our performance due to energy and efficiency

considerations. With efficiency in mind, we constructed all of our TinyTermite equations

with fixed point operands. Fixed point is a mechanism by which we assign the floating

point bit representation of a number to an integer with the decimal point set to the middle

of the bits, and then allow the integer to be used inside the data path of the processor. The

operations of add and subtract work the same for fixed point and integer value so they

could be used without any changes. The multiply and divide operations required special

functions to be done properly.

Another issue that we faced was exponentiation and floating point values in the

probabilistic equations. In C libraries functions exist to do these approximations, yet with

the TinyOS platform we did not have access to these functions. For the function of our

prototype implementation, we implemented a solution that created an array of pre-

 58

calculated values and a function which takes a floating point exponent and returns the

nearest curve value for that value.

Given the nature of TinyOS’s architecture, most programs built for it do not

allocate memory at runtime since memory is such a limited resource. We implemented a

minor memory management system for pre allocated packet queues such that the size of

our queue was known at compile time, and linked lists were used to maintain a free list

and an allocated list of packet slots. As a task requested a free packet slot from the queue,

the linked list data structures are updated and a pointer to the free queue slot is returned

to the task, which gave us a similar mechanic to using new and free in a traditional

programming environment while keeping our memory usage in good bounds for our

architecture.

We maintain two queues, the active-packet queue and the passive-packet queue.

The active packet queue only contains packets that have already been assigned a next hop

for their destination and are only waiting on the radio subsystem to be broadcasted over

the wireless physical medium. Packets do not timeout in the active queue since they are

already considered to be routed. The passive queue contains packets that we do not

currently have next hops for given the destination. This queue is built the same way as

the active queue and holds packets waiting on RREPs to be received for their destination.

If a packet waits longer than the active timeout in this queue, it is removed and its slot is

returned to the free list. Once a RREP is received, the pheromone table updated, and the

packet is given a next hop for its destination, the packet is moved to the active queue. The

separation of the passive and active queues allowed for tasks to scan shorter lists of

packets which lowered task execution time.

 59

Since TinyOS is an event driven architecture, the code had to be constructed

differently than it would be for a traditional process based operating system. As events

occur, the system will call events which preempt any executing task. For our code the

main event was the message received callback function, and we had to be careful how we

updated data structures inside the event method body since another task could be

updating the same data structure or packet queue when it got preempted. Anything other

than minor variable updating had to be done with a new task that was posted to the task

queue.

The pheromone table was implemented as a simple pre allocated array of structs.

Given our test bed of motes could not exceed a certain size, we could constrain the

pheromone table maximum entries to an arbitrary size and mark entries as unused until

they were needed. In an unbounded system of arbitrary size, this limitation could be

overcome by simple dropping the lowest pheromone value destination or neighbor when

a new one was added to a full table.

4.6 Testing Procedures

We tested and measured the TinyTermite performance implementation in four

different ways:

• Single line test with preset path

• Thoughput with Termite routing engaged, 6 node graph

• Latency with Termite routing engaged, 6 node graph

• Attacker simulation using replay attack coupled with selective forwarding.

First, we measured the throughput of the network in a static route with multiple

hops to see how the system degraded as load increased. Next we tested the network’s

throughput when the TinyTermite routing algorithm is used. Then we tested the latency

of a packet going from source to destination and back to source. Lastly, we examined

how a simple replay attack degraded system performance, and how the suspicion

mechanic affected the system under attack.

The single line test bed (Figure 8 below) was setup such that we had N nodes in a

line, where each node on average could only hear its immediate neighbor. Due to the

properties of the wireless physical medium, sometimes nodes would not be able to hear

anyone else, or would be able to overhead nodes multiple hops away. We spaced the

nodes horizontally with a 11 to 12 inch gap between each node.

Figure 8: Single line test scenario. (For this setup, nodes are hard coded.)

Our routing tests for throughput, latency, and the attacker were measured using

the six-node graph (Figure 9 below) where the source node is on the left side, the

destination node is on the right side, and there are 4 nodes in the middle in a square

formation between the source and destination.

 60

Figure 9: Six node graph for experimental setup to test throughput and latency.

Packets routed by the TinyTermite algorithm may take their own independent

path through the network from the source to the destination. To measure the throughput,

we count the number of packets received for the session at the destination node, and then

multiply that number by the size of each packet to get a total number of bytes transmitted.

We then take the timestamp of the last packet received for the session, and subtract the

first packet’s timestamp to get the elapsed time of the session. We then divide the total

number of bytes transmitted by the elapsed time to get the system throughput, or number

of bytes per second.

Latency is tested in a similar manner as throughput, using the same classic six-

node graph in Figure 9. We send a RREQ out for the destination node, with a specialized

flag set in the packet so we can identify it on return. The destination sends back a RREP

with the latency flag set in the packet header, and when the RREP is received by the

source node, the difference between the sent timestamp and the received timestamp is

calculated.

We tested the suspicion aspect of TinyTermite to see how it performed with an

active attacker. The attacker periodically sends a data packet that is marked as being from

the destination so as to update the pheromone table and quickly build up pheromone for

 61

 62

the attacker neighbor as a good next hop candidate for the destination. First we ran the

six-node routing simulation with no suspicion and the attacker sending out a data packet

in a replay attack (in conjunction with a sinkhole attack) to measure how many packets

were successfully sent from source to destination compared to the simulation with no

attacker. Then, we ran the simulation with suspicion turned on, and compared the results.

One of the four nodes in the middle (Figure 6 (a)) acted as the rogue node and executed

special routines which attacked the source in an attempt to derail normal operation of the

network. With a replay attack a node simply sends out a captured packet over and over

again as it is considered by the rest of the network to be a valid packet. Replaying the

packet at high rates can degrade overall quality of the network and drain valuable

resources in a wireless ad hoc network. The rogue node influences how Termite views its

local neighbors by giving more weight to the neighbor with the replay attack as this

influences the pheromone table. This makes the node more likely to send a packet via the

rogue neighbor setting up the sinkhole attack. A sinkhole attack is when a node simply

does not forward packets as a normal node would, which in this case provides a fairly

effective attack as we demonstrate with our data.

Our rogue node was setup to send out a replayed packet once a second, and the

source node queued five normal packets to be routed to the destination node once a

second. The rogue and the source nodes both began sending packets at the same time.

Each session 100 packets were sent, and the source node queued five packets up at a time

until it had queued 100 total packets. We ran each set of experiments 10 times.

 63

4.7 Results

We initially implemented the Termite routing algorithm and attempted to measure

some basic throughput tests. These efforts resulted initially in inconsistent results.

Rebuffed, we studied the system parameters, theoretical bounds, and physical limitations

of the software and hardware that makes up the Imote2 radio subsystem in order to move

forward and truly measure the platform. One of the major things we found in our early

prototype was that we had trouble getting the basic routing mechanisms of TinyTermite

working correctly due to high levels of dropped control packets.

Once we reviewed the state of our research and consulted with other universities

doing TinyOS research, we concluded that we needed to study the rate at which we

pushed bytes onto the radio subsystem and the effects of IEEE 802.11 interference. We

found out from other researchers that a backoff or timeout period is needed after the radio

subsystem reports that the radio is finished sending the bytes of the packet. Our other

main obstacle to testing was radio interference.

We knew we had to find a way to configure the motes such that we could

consistently and reliably reproduce all results. We also had to find a radio backoff

window that would reliably send all packets yet not keep Termite packets waiting in

queue unnecessarily. A radio backoff window is the number of milliseconds we wait until

we send another packet after the radio reports the last send call as complete and we

denote it as [min, max]. We obtain this value by generating a pseudo random number

that lines in a range. We created a series of exploratory stress tests in order to build a

rudimentary map of the performance of various configurations. We looked at the

variables:

• Distance, layout and obstacles – simulating obstacles and interference

• Radio backoff window – the length of time before we can send another packet

• Radio power setting – what power to test on, and how this works with

distance

Our first exploratory test was intended to gather some course data in order to get

an idea of how to proceed. We used the single line network (Figure 8) with a spacing

interval of 11 to 12 inches between nodes. This provided an easy visual designation and

was simple to setup. Since data gathering tests are run many times, this gave us an easy

way to lay out a group of motes in different configurations. Every mote was adjusted or

shifted slightly between each run of a test as interference patterns could change greatly

based on a slight difference in mote position on a flat surface. In Figures 10 and 11 below

we see the average node radio broadcast distance in a single line setup (Figure 8). Figures

10 and 11 are versus radio powers of 1 and 2, respectively, based off our setup.

Figure 10: Showing radio range of nodes at power 1 in a single line setup.

 64

Figure 11: Show radio range of nodes at power 2 in a single line setup.

Our first basic stress test involved sending 500 packets through the system as fast

as the radio subsystem would allow for given the radio backoff window. Our source mote

would send a packet to the radio subsystem as soon as it reported done with the last send

message call and the radio backoff window had passed. We ran an initial test with 5

motes (4 hops) in a line setup as shown in Figure 8 but the test only included nodes 0 to

4. The route was pre-programmed so that the packet would hop through each node in a

specific sequence so as to make sure each packet made 4 hops. We set we set the radio

power to 7 in order to absolutely rule out poor connection as it gave a strong connection

well outside the testing area. We treated the results of this test as a rough pass and only

used them to guide our observation of where to explore next in terms of backoff window

settings. In Table 1 below we see the results of our settings test for the backoff window.

 65

 66

Backoff Window

Min

Backoff Window

Max

Packet Drop

Percentage

Throughput

2ms 125ms 5.6% 1.82 KB/s

7ms 80ms 6.6% 2.24 KB/s

1ms 16ms 20.6% 3.16 KB/s

1ms 32ms 12.8% 3.28 KB/s

1ms 64ms 9.6% 2.65 KB/s

16ms 32ms 2.8% 3.39 KB/s

16ms 64ms 2.6% 2.46 KB/s

32ms 64ms 3.8% 1.98 KB/s

Table 3: Results of exploratory pass on radio backoff window parameters with radio power setting of 7.

With our exploration of finding a good setting for the backoff timing window setting we

started with a very wide window of [2ms, 125ms] and a throughput of 1.82 KB/s. This

meant that the backoff window at any given time could be as low as 2ms or as high as

125ms. We used this initial wide backoff window as a baseline value to compare other

results with. Our next parameter setting was a window of [7ms, 80ms], which attempted

to narrow our range considerable while still keeping the minimum window relatively low

at 7ms. At this setting the drop rate increased slightly to 6.6% which was slightly worse

than the previous setting, but the throughput increased to 2.24 KB/s which was better.

The next three ([1ms, 16ms], [1ms, 32ms], [1ms, 64ms]) runs were all based on a

much narrower window and lower values. We saw that as the maximum window value

 67

was raised from 16ms to 64ms, with a minimum window value of 1ms, that the packet

drop rate declined from 20.6% to 9.6%. However, the throughput tended to decline from

3.16 KB/s to 2.65 KB/s. We then moved our minimum window backoff up to 16ms for

the next 2 runs of ([16ms, 32ms], [16ms, 64ms]). Here the packet drop percentage

became considerably lower and the throughput spiked to 3.39 KB/s at [16ms, 32ms],

which was the best so far at that point. We made another set of runs at [32ms, 64ms]

which showed to have a slightly higher drop rate but a much lower throughput. Since we

were looking for a good configuration to test with, we decided that the backoff window [

16ms, 32ms] gave us a very good packet drop rate of 2.8% while giving us the best

throughput on the board at 3.39 KB/s. We saw that the backoff window needed to be a

relatively low value, but not too far under 16ms. We also saw that after 32ms throughput

tended to decrease as it created a relatively long waiting period between packets.

 Once we had selected a backoff window, we had to decide what power setting we

would use such that our motes would be able to maximize Termite’s routing potential for

the Imote2 platform. For our next test, we wanted to see how the Imote2 platform fared

on a range of single line setups as described in Figure 8. We started with a simple 1 hop

experiment as a baseline, and progressively added hops to see how Imote2 would

respond. This test (and all further ones) used the radio backoff window derived from the

previous section of [16ms, 32ms]. In this test every packet took a preset path through

the nodes where each node had a hard coded next hop for ever previous hop possible.

This ensured that regardless of how many other nodes the forwarding node could hear, it

always forwarded to its next preset node on the path. Termite routing was not used in this

test and no RREQs or RREPs were used during this test. All packets on the network were

data packets on a preset path which allowed us to see the effects of a packet moving N

number of hops consistently. This allowed us to compare network load and other

platform attributes based off of power settings and hop count.

In Figure 12 below we see the results of a single line setup (Figure 8) for a single

hop with a preset path. The graph in Figure 12 compares packet drop percentage versus

radio power for 2 nodes. The test was run 5 times for each power setting. We sent 500

packets per run and measured both throughput and latency. In Figure 12 we see that at a

power of 1 the loss rate for packets is quite high at 22.24% which shows that a mote can

deliver a packet 1 foot at that power, but not very reliably. At power 2 for the radio we

see a dramatic drop in the number of lost packets at 3.04%. Beyond a radio power of 2

the dropped packet percentage levels off to 0.62% on average.

Figure 12: Packet drop percentage versus radio power, single line setup, 1 hop, Preset path with no routing.

 68

We next examined how throughput correlated with the radio power setting as

shown in Figure 13 below. At the minimum power setting of 1, the 1 hop setup yielded a

throughput of 2.62 KB/s and 3.18 KB/s for a power level of 2. Again, performance of the

system levels off beyond the power level of 2 at an average of 3.24 KB/s.

Figure 13: Throughput versus radio power, single line setup, 1 hop, preset path with no routing.

We then ran this same test for setups of 1, 2, 3, 4, and 5 hops in a single line setup

as shown in Figure 8. In Figure 14 below we see the similar pattern of dropped packet

percentage getting better as it approaches the radio power of 3 and then it levels off.

 69

Figure 14: Packet drop rate versus radio power; Each test uses nodes in a line formation with a preset path
and no routing.

This same correlation is true in Figure 15 (as shown below) as we see throughput

rising as it approaches the radio power level of 3, and then levels off. However, in Figure

14 we can see that although the trend between each of the test setups look similar, as the

number of hops increases for the test the minimum amount of dropped packets gets worse

at every single power level. This effect can also be observed in Figure 15 where as the

number of hops increases in a test, the throughput is worse at each power level compared

to tests with a few number of hops.

 70

Figure 15: Throughput versus radio power; Each test uses nodes in a line formation with a preset path and
no routing.

 After talking to engineers involved with the Imote2 project, we found out that the

TinyOS’s radio stack only has a limited amount of space for incoming radio tasks at any

given time. As the radio operates or hears traffic, it creates tasks for the operating system.

If a task is generated that cannot fit onto the queue, then the task is lost. As the power

level for the radio rises, it can transmit further and more nodes can hear it. As more of the

nodes in the single line setup can hear one another, the amount of radio overhead they

have to process increases dramatically. This follows with both figures as after the power

level of 2, neither packet drop rate nor throughput gets any better for that number of

nodes no matter how high the power gets raised. However, as the number of nodes

 71

 72

increase, the overall performance of that test gets worse. We concluded that as we

generated successively more network traffic due to increasing power levels, the nodes

began to drop packets as they simply could not process the amount of traffic coming in

off the physical radio medium.

The next set of tests we ran were to judge the same setup as the previous test, but

now we no longer preset the path. The nodes were in the same formation as the previous

test (single line as shown in Figure 8), but each node actively used the Termite routing

algorithm in order to get a packet to its intended destination. This meant that a node such

as the source node could attempt to forward a packet to the destination directly if it

detected the destination as a neighbor. All routing traffic overhead such as RREQs and

RREPs were active in this test. The tests were run in a similar manner as the preset path

test where for each power setting and number of hops we sent 5 runs of 500 packets each.

This test showed the same basic trends as the first preset path test as shown in Figure 16

and Figure 17 below. However, the level off point at the radio power of 3 showed a

significantly narrower range as the number of hops (where nodes = hops + 1) increases.

A radio power setting of 1 (Figure 16 below) still yielded a similarly spread results,

where less hops meant much better performance. However, as the radio power increased

to 3 and beyond, the packet loss increased a very slight rate and the throughput decreased

at a much slower rate. This led us to believe that at a power level of 1 Termite was using

multiple hops to move a packet from source to destination but had trouble with poor

connectivity at a power of 1 which led to high percentages of dropped packets.

Figure 16: Packet drop rate versus radio power; Each test uses nodes in a line formation with active
Termite routing.

At a radio power of 2, our packet drop percentage (Figure 16 above) was cut in

half and our throughput (Figure 17 below) increased considerably which led us to believe

that Termite was still using multiple paths. As the power increased beyond a power of 2

(Figure 16 above), the results were very similar which led us to believe that at that power

all nodes could reliably hear one another as neighbors, and Termite was simply doing as

it was instructed to do which was choose the destination if it is a neighbor. To confirm

this we re-ran the test but this time saving the previous hop for each packet at the

destination and discovered that this was true as most of the packets beyond a radio power

of 2 were being sent directly from source to destination.

 73

Figure 17: Throughput versus radio power; Each test uses nodes in a line formation with active Termite
routing.

 In order to run multipath experiments on Termite, we had to make some

assumptions about our test environment. We knew we could not simulate every type of

obstacle or interference pattern, so we decided to use the standard six-node graph shown

in Figure 9. We also shifted each node to adjust radio interference patterns between run.

Our radio backoff window of [16ms, 32ms] had proven reliable in Imote2 platform

tests, but we still had to figure out how to reliably test mutipath routing where all the

nodes did not hear one another as neighbors. However, we needed them to hear one

another well enough such that the drop rate was not so high that it disrupted normal

operations of Termite (dropped RREQs or RREPs are hard to detect). We decided that to

 74

 75

simulate normal MANET deployments we needed to take into account nodes that had bad

reception and nodes that had acceptable reception, but not take into account the case of

all nodes hearing one another. We believe the case of all nodes to hear one another to be

non-existent since a MANET is designed for decentralized operation where only subsets

of the nodes can hear one another. To approximate this we decided to run our multipath

routing tests on the 6 node graph (Figure 9) at both a radio power setting of 1 and 2. Then

we would take those results and average them together to get a more accurate picture

with regards to performance of Termite. Figure 10 and Figure 11 above show how the

radio powers overlap with regard to their setting. In Table 4 below, we see a comparison

of throughput between two nodes (their raw throughput), a single line network (Figure 8)

with a preset path, and multipath routing on a six-node graph (Figure 9) with

TinyTermite.

Raw Throughput 2.9 KB/s

Throughput of line network with preset

path

2 KB/s

TinyTermite Throughput 1.84 KB/s

Table 4: Comparison of throughput between two nodes (raw throughput), a line network with a preset path,
and then multipath routing on a 6 node graph (Figure 4) with TinyTermite.

To calculate throughput on the six-node graph (Figure 9) we made 10 runs of the

algorithm each with 500 packets being sent across the network. This was done as

described above for radio power settings of 1 and 2, and then the measurements were

 76

averaged together. The throughput we measured for this implementation of TinyTermite

was 1.844 Kbytes per second. In Table 4, we see raw throughput at 2.9 KB/s which is the

amount of data we could move over one hop with no routing. (In Table 3 we see a

throughput value of 3.39 KB/s but that was at a radio power of 7. The raw throughput of

2.9 KB/s (single hop) is based on the average of the throughputs of the six power settings

in Figure 13.) We also see the throughput of a line network with a preset path as 2 KB/s

compared to the throughput we calculated for TinyTermite at 1.84 KB/s. This shows that

TinyTermite does not reduce the throughput significantly.

Next we measured the packet drop rate for TinyTermite. TinyTermite’s packet

drop rate was found to be 33%. The throughput test put the system under a high level of

stress and moved as much data as possible for a period of time. We also calculated a

baseline packet loss where we sent 2 packets a second across the six-node graph (Figure

9) for powers of 1 and 2 and averaged the drop rates together. The baseline packet loss

for this graph was found to be 12.7%. Latency was calculated by sending a packet across

the graph from the source node to the destination node, and then back to the source node.

We ran the test 10 times and calculated the average. This round trip time, or latency, for

the TinyTermite algorithm was 47.813ms on the same 6 node graph setup (Figure 9).

We simulated the attacker as shown in Figure 6 (c) where a neighbor node was

replaying a valid packet that appeared to come from the destination. The rogue node was

also actively performing a selective forwarding attack where it forwarded no node other

than its own replay packets meant to attack the source node. This strongly influenced the

source node’s routing table to route packets through the attacker for the intended

destination. In the first run of this experiment, no suspicion defense was employed and

 77

the rogue was free to disrupt the network as it could. On average 11.5 packets were

received by the destination node and the rogue node captured 70.2 packets. This works

out to an 88.5% effective loss rate for packets when the network is under siege by the

single rogue node.

In the second experiment, the rogue was setup the same as in the first experiment,

but this time we engaged the suspicion defense mechanism on the source node as

illustrated in Figure 6 (d) and (e). On average 67.1 packets were received and the rogue

node only captured 12.9 packets. The effective loss rate dropped to 32.9%. For both of

these experiments we must also consider that our drop rate is 12.7% on average for a 6

node graph (Figure 9) of the same topology from source to destination. The summary of

the results for the comparison of TinyTermite with Termite with regards to security are

listen below in Table 5.

Method Number Packets

Received by

Destination Node

Number Packets

Captured by

Attacker Node

Packet Loss Rate

Termite 11.5 70.2 88.5%

TinyTermite 67.1 12.9 32.9%

Table 5: Comparison of TinyTermite with Termite with regards to security. Experiments performed on
network in Figure 9 where baseline packet loss for network is assumed to be 12.7%.

The suspicion defense was able to both increase the number of packets delivered

and decrease the number of packets captured while the network was under attack. With

 78

suspicion defense active we delivered 583% more packets, from 11.5 packets on average

up to 67.1 packets on average per 100 packets sent from source. We also were able to

significantly reduce the number of packets captured with the sinkhole attack. Initially the

rogue node captured 70.2 packets per 100 with no suspicion defense on and we improved

that to a capture rate of 12.9 packets per 100 with suspicion defense active. This works

out to a decrease of 81.6% less packets in terms of number of packets the rogue was able

to capture.

 79

CHAPTER 5

Conclusions

The goal of this thesis was to introduce a secure routing algorithm for MANETs.

For this purpose, we proposed TinyTermite a novel probabilistic routing algorithm that is

secure, distributed, and suitable for dynamic networks. TinyTermite is implemented on

Imote2 and its performance is measured in a real world setting.

5.1 TinyTermite Implementation

First, we investigated the properties of the Imote2 platform by measuring its one

hop performance, radio subsystem backoff windows, theoretical throughput across many

hops, and how radio power affects performance. Then, we implemented Termite and

TinyTermite on the Imote2 platform and measured their performance. We compared

these two routing algorithms with respect to throughput, latency, and packet loss, and

found TinyTermite to be an effective routing algorithm for the platform.

5.2 Suspicious Pheromone

 We studied the effects of attacks on MANETs and came up with a defense

mechanism called “Suspicious Pheromone”. We examined how the replay attack and

selective forwarding can disrupt routing in MANETs with the TinyTermite

implementation. We then measured how well the suspicious pheromone defense

successfully routed packets around the attacker and towards the intended destination in

our implementation. We found that this defense mechanism was highly effective against

 80

these attacks coupled together and successfully route significantly more packets to the

intended destination than without the defense mechanism.

5.3 Suggestions for Future Work

This thesis examined the properties of the Imote2 platform and Termite as implemented

in TinyTermite. In the following, several opportunities are listed for future investigation.

• Problems related to implementation

o Finer tuning of the backoff window

• Problems related to Suspicion

o More types of attacks tested against

o Different types of buildup and decay models

o Other uses for suspicion in normal routing

• Problems related to Disjoint Path

o Implementation and testing of disjoint path in TinyTermite

 81

APPENDIX A

WIRING FILE FOR MAIN TINYTERMITE MODULE

configuration TinyTermite {

} implementation {

 components
 Main, TinyTermiteM, BluSHC, RadioCRCPacket as Comm, CC2420ControlM,
 TimerC, LogicalTime, LedsC, RandomLFSR
 ;

 // Time Interfaces
 TinyTermiteM.Time -> LogicalTime.Time;
 TinyTermiteM.TimeUtil -> LogicalTime.TimeUtil;

 // Timer Interfaces
 TinyTermiteM.TimerControl -> TimerC;
 TinyTermiteM.Timer -> TimerC.Timer[unique("Timer")];
 TinyTermiteM.TimerData -> TimerC.Timer[unique("Timer")];
 TinyTermiteM.TimerTxBackoff -> TimerC.Timer[unique("Timer")];

 // LED Control Interface
 TinyTermiteM.Leds -> LedsC;

 // Standard Control Interfaces
 Main.StdControl -> TinyTermiteM.StdControl;
 Main.StdControl -> LogicalTime;

 // CC2420 Radio Chip Control Interface

TinyTermiteM.CC2420Control -> CC2420ControlM;

 // Messaging Subsystem Interfaces

TinyTermiteM.RadioControl -> Comm;
TinyTermiteM.RadioSend -> Comm;
TinyTermiteM.RadioReceive -> Comm;

 // Random Number Generator Interface
 TinyTermiteM.Random -> RandomLFSR.Random;

 // BluSH Shell Command Interfaces
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.Hello;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.Debug;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.Chirp;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.NodeID;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.Suspects;
 //BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.CogMapDump;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.MessagesRecieved;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.MessagesSent;

 82

 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SendHello;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SendRREQ;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SendData;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.CheckPTable;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ListNeighbors;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DebugHello;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DebugRREQ;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DebugRREP;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DebugData;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.MessageStats;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.PrvMsg;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ClearPTable;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SetupTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.RunTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.AddDebugDest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.AddDebugNeighbor;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.RunRREQBounceTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SeenData;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SeenRREQ;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.LastRREQ;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SetupStartNode;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SetupMidHop;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SetupEndNode;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest1;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest1_a;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest2;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest3;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest3_a;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest3_b;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest4;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest4a;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest5;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest5a;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest6;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest7;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest8;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest9;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest10;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest10a;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.EqTest10b;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TestSeenPackets;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TestSeenPackets2;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TestFwdQueue;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TestFwdQueue2;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.Timestamp;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ExpLookupIndex;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.RefreshDemoLink;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SetupTable;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.RouteSelData;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.RouteSelRREQ;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.RouteSelRREP;

 83

 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TurnPDecayOn;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TurnPDecayOff;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SimPktIn;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TestForward;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.LastRREP;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.CycleDemoDst;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DebugFwdQ;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DPkt;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.c;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.m;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.IncPow;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DecPow;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TurnDataTestOn;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.TurnDataTestOff;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SimRepeats;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.i;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StartLatTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StopLatTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ViewLatStats;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StartThroughputTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ResetThroughputTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StopThroughputTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ViewThroughputStats;

 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.s; // StartThroughputTest
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.r; // ResetThroughputTest
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.v; // ViewThroughputTest
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.t;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.q; // run suspicion bursts
 //BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.l; // latency start
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.p; // start packet drop test

 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StartRangeTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StopRangeTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StartBounceTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StopBounceTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ParamEx;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ClearRouteQueue;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DebugRouteQueue;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DebugRouteHeap;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ScanPassive;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StartDropTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StopDropTest;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StartRogue;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.StopRogue;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.RogueStats;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.IncMaxBackoffDelay;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DecMaxBackoffDelay;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.IncNumPkts;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.DecNumPkts;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ContactOn;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.ContactOff;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SuspicionOn;

 84

 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SuspicionOff;

 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SinkOn;
 BluSHC.BluSH_AppI[unique("BluSH")] -> TinyTermiteM.SinkOff;

}

// end of module file

 85

REFERENCES

1. M. Burk, “Smartphones: State of the Market”,
http://mobilemonday.org.uk/MMetrics%20MoMo%20Feb%204.pdf, 2008

2. I. Chakeres, E. M. Belding-Royer, “Utilizing Resource-Rich Nodes in Ad Hoc
Networks,” ACM SIGMOBILE Mobile Computing and Communications Review, Volume
7, Issue 3 (July 2003)

3. M Roth, S Wicker, “Termite: Ad-Hoc Networking With Stigmergy,” Global
Telecommunications Conference, 2003. GLOBECOM ’03. IEEE, Vol. 5 (2003), pp. 2937
– 2941 vol.5.

4. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems, Oxford University Press, 1999.

5. S. Camazine, J.L. Deneubourg, N. Franks, J. Sneyd, G. Theraluz, E. Bonaneau. Self
Organization in Biological Systems, Princeton University Press, 2001

6. C. Karlof, D. Wagner, Secure routing in wireless sensor networks: attacks and
countermeasures. Elsevier’s AdHoc Networks, 1:293-315, September 2003.

7. Crossbox, “Imote2 platform”,
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Imote2_Datasheet.pdf

8. Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin, Whitehouse,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler, “TinyOS:
An Operating System for Sensor Networks,” Ambient Intelligence, Springer Berlin
Heidelberg, 2005.

9. D. Gay, P. Levis, R. von Behren, M.Welsh, E. Brewer, and D. Culler. “The nesC
language: A holistic approach to networked embedded systems,” In Proceedings of
Programming Language Design and Implementation (PLDI), June 2003.

10. J. Jubin and J. D. Tornow, “The Darpa packet network radio protocols,” In
Proceedings of IEEE vol. 75, 1, pages 21 – 32, Jan. 1987

11. B. M. Leiner, D. L. Nielson, and F. A. Tobagi, “Issues in packet radio network
design,” Proceedings of the IEEE Special Issue on “Packet Radio Networks”, 71, 1:6-20,
1987

12. S. Corson, J. Macker, and S. Batsell. “Architectural Considerations for Mobile Mesh
Networking,” http://tonnant.itd.nrl.navy.mil/mmnet/mmnetRFC.txt, 1996

 86

13. J. Macker and S. C. (chairs). “Mobile Ad-hoc Networks (MANET),”
http://www.ietf.org/html.charters/manet-charter.html, 1997.

14. David F. Bantz and Frederic J. Bauchot. “Wireless LAN design alternatives,” IEEE
Network, 8(2):43-53, March/April 1994.

15. George S. Lauer. “Packet-radio routing,” In Routing in Communications Networks,
chapter 11, pages 55-76. Prentice-Hall, Englewood Cliffs, New Jersey, 1995.

16. John Jubin and Janet D. Tornow. “The DARPA packet radio network protocols,”
Proceedings of the IEEE, 75(1):21-32, January 1987.

17. C. Hedrick, “Routing Information Protocol,” Internet Request for Comments RFC
1058, June 1988.

18. YihChun Hu, Adrian Perrig, David B. Johnson, “Ariadne: A Secure OnDemand
Routing Protocol for Ad Hoc Networks,” Proceedings of the Eighth Annual International
Conference on Mobile Computing and Networking (MobiCom 2002), pp. 12-23, ACM,
Atlanta, GA, September 2002.

19. J. M. McQuillan, David C. Walden. “The ARPA network design decisions,”
Computer Networks, 1(5):243-289, August 1977.

20. Gursharan S. Sidhu, Richard F. Andrews, and Alan B. Oppenheimer. Inside Apple
Talk. Addison Wesley, Reading, Massachusetts, 1990.

21. Paul Turner. “NetWare Communications Processes,” Netware Application Notes,
Novell Research, pages 25-81, September 1990.

22. Xerox Corporation. “Internet transport protocols,” Xerox System Integration Standard
028112, December 1981.

23. International Standards Organization. “Intermediate system to intermediate system
intra-domain routing exchange protocol for use in conjunction with protocol for
providing the connectionless-mode network service (ISO 8473),” ISO DP 10589,
February 1990.

24. John M. McQuillan, Ira Richer, and Eric C. Rosen. “The new routing algorithm for
the ARPANET,” IEEE Transactions on Communications, COM-28(5):711-719, May
1980.

25. J. Moy. “OSPF version 2,” Internet Request For Comments RFC 1247, July 1991.

26. C. Perkins, E. Belding-Royer, S. Das, “Ad-hoc On-demand Distance Vector

 87

(AODV) Routing,” http://moment.cs.ucsb.edu/AODV/aodv.html, 2004.

27. Charles E. Perkins, Pravin Bahgwat, “Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers,” ACM SIGCOMM Computer
Communication Review, Volume 24, Issue 4 (October 1994), Pages: 234 - 244

28. Nachum Shacham and Jil Westcott. “Future directions in packet radio architectures
and protocols,” Proceedings of the IEEE, 75(1):83-99, January 1987.

29. R. Bellman, “On a Routing Problem,” Quarterly of Applied Mathematics, vol. 16, pp.
87-90, 1958.

30. T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms. The MIT
Press, second edition. 2002.

31. D. Bertsekas and R. Gallager. Data Networks, pages 297-333. Prentice Hall, Inc.,
1987.

32. C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves. “A loop-free
Bellman-Ford routing protocol without bouncing effect”, In ACM SIGCOMM ’89, pages
224-237, September 1989.

33. D. Johnson, D. Maltz, “Dynamic Source Routing in Ad-hoc Wireless Networks,”
SIGCOMM ’96, 1996.

34. Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta G.
Jetcheva. “A Performance Comparison of Multi-Hop Wireless Ad Hoc Network
Routing Protocols.” In Proceedings of the Fourth ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom’98), pages 85–97, October
1998.

35. Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Mielczarek, and Mikael
Degermark. “Scenario-based Performance Analysis of Routing Protocols for Mobile
Ad-hoc Networks”, In Proceedings of the Fifth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom’99), pages
195–206, August 1999.

36. David A. Maltz, Josh Broch, Jorjeta Jetcheva, and David B. Johnson. “The Effects
of On-Demand Behavior in Routing Protocols for Multi-Hop Wireless Ad Hoc
Networks,” IEEE Journal on Selected Areas in Communications, 17(8):1439–
1453, August 1999.

37. Roy C. Dixon and Daniel A. Pitt. “Addressing, bridging, and source routing,” IEEE
Network, 2(1):25-32, January 1988.

 88

38. Deborah Estrin, Daniel Zappala, Tony Li, Yakov Rekhter, and Kannan Varadhan.
“Source Demand Routing: Packet format and forward specification (version 1),” Internet
Draft, January 1995. Work in progress.

39. Philip R. Karn, Harold E. Price, and Robert J. Diersing. “Packet radio in amateur
service,” IEEE Journal on Selected Areas in Communications, SAC-3(3):431-439, May
1985.

40. M. Schwartz and T.E. Stern. “Routing techniques used in computer communications
networks,” IEEE Transactions on Communications, COM-28(4):539-552, April 1980.

41. Network Working Group, “Optimized Link State Routing”,
http://www.ietf.org/rfc/rfc3626.txt, 2003.

42. L. Ford Jr., D. Fulkerson, “Maximal Flow Through a Network,” Canadian Journal
of Mathematics, vol. 8, pp. 399-404, 1956.

43. E. Dijkstra, “A note on two problems in connection with graphs,” Numerische
Mathematik, Vol. 1, 269-271, 1959.

44. C. Perkins, E. Belding-Royer, S. Das, “Ad-hoc On-demand Distance Vector
(AODV) Routing,” http://www.faqs.org/rfcs/rfc3561.html, 2003.

45. J. L. Deneubourg, J. C. Gregoire, and E. Le Fort, Kinetics of the larval gregarious
behaviour in the bark beetle Dendroctonous micans. Journal of Insect Behavior 3:169-
182. 1990a.

46. C. Karlof, N. Sastry, D. Wagner, TinySec: A link layer security architecture for
wireless sensor networks. Proc. SensSys, page 162-175, November 2004.

47. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, D. J. Spiegelhalter, Probabilistic
Networks and Expert Systems. Springer-Verlag, New York, 1999.

48. M. M. Gupta, L. Jin, N. Homma, Static and Dynamic Neural Networks: From
Fundamentals to Advanced Theory. Wiley-IEEE Press, April 2003.

	Abstract
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	CHAPTER 2
	2.1 Introduction To Wireless Ad Hoc Networks
	2.2 Routing Algorithms for MANETs
	2.3.1 DSR
	2.2.1 DSDV
	2.2.2 AODV
	2.2.3 OLSR

	2.3 Summary

	CHAPTER 3
	3.1 Introduction
	3.2 Principles of Self Organization
	3.2.1 Feedback
	3.2.2 Stigmergy

	3.3 Pheromone
	3.4 Packet Types and Layout
	3.5 Comparison to AODV

	CHAPTER 4
	4.1 Introduction
	4.2 Contribution
	4.3.1 Replay Attack
	4.3.2 Selective Forwarding

	4.5 Implementation
	4.6 Testing Procedures
	4.7 Results

	CHAPTER 5
	5.1 TinyTermite Implementation
	5.2 Suspicious Pheromone
	5.3 Suggestions for Future Work

	APPENDIX A
	REFERENCES

