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ABSTRACT 

Saccharomyces cerevisiae is a microorganism that is commonly used in industries, but its 

productivity is significantly hindered by its inability to resist high stress levels found in industrial 

processes. By increasing stress tolerance in S. cerevisiae, its role in industrial processes could be 

maximized. The objective of this study is to determine if complementation of lipocalin genes 

into the wildtype and knockout strains of S. cerevisiae can increase stress tolerance against a 

variety of stressors. We identified the knockout yeast strains, ALD3, ALD4, PDX3, and ILV1, as 

being sensitive to various stressors including salinity, heat, oxidative, and osmotic stresses. 

Arabidopsis thaliana At-TIL (AT5G58070) and Homo sapiens OBP2B (AY358981), two 

identified lipocalin genes, were cloned into the yeast shuttle vector, p415 GPD, and transformed 

into the wildtype, BY4743, and knockout strains of yeast. Growth phenotypes of both 

transformants and non-transformant cells of the wild type and knockout strains were tested 

against heat, oxidative, and osmotic stresses, in addition to their alcohol tolerance levels. 

Compared to the wildtype and knockout strains, ALD4::TIL showed increased stress tolerance 

against heat when exposed to 50°C for 10 minutes. BY4743::TIL and ALD4::TIL showed 

increased stress tolerance against oxidative stress when exposed to 1mM H2O2 , but none of the 

transformants showed increased tolerance when exposed to 2mM H2O2. The cells showed no 

improvement in osmotic stress tolerance with either of the lipocalins, At-TIL or OBP2B, when 

exposed to 1.0M sorbitol. The ALD4::TIL and ILV1::TIL transformants showed increased stress 

tolerance against salinity when exposed to 0.8 M NaCl, while the OBP2B transformants seem to 

be irresponsive to the salinity stress. 

 



 

2 

 

 

INTRODUCTION 

Saccharomyces cerevisiae plays a significant role in industrial fermentation because it is 

able to metabolize sugars into alcohol. Nonetheless, it is faced with many stressors arising from 

operative conditions, so its productivity is significantly hindered.  By transforming S. cerevisiae 

with lipocalin genes, stress tolerance in the yeast could increase, and its productivity could be 

maximized. 

Lipocalins are a family of small extracellular proteins found in a variety of organisms that 

are able to bind to small hydrophobic compounds, making them critical for sequestration, 

detection, and transportation. Recent studies have further shown that lipocalins not only function 

as transporters, but also function in stress response in various organisms.1, 2 One such study has 

observed that when the gene encoding for the Arabidopsis thaliana temperature-induced 

lipocalin protein (At-TIL) is expressed in the wild type strain of S. cerevisiae, it shows a higher 

tolerance to stressors in comparison to the parental strain.3 This finding suggests that lipocalin-

mediated increased tolerance in S. cerevisiae could play a key role in industrial processes, 

particularly alcohol fermentation. Though, this is the case, At-TIL may not be the only lipocalin 

able to increase stress tolerance of the yeast cells to their full potential. Research has not shown 

whether human lipocalin proteins could maximize stress tolerance in yeast, as well. Due to the 

roles that lipocalins have shown to play in other organisms, we suspect that lipocalins from not 

only Arabidopsis thaliana, but also Homo sapiens, could show lipocalin-mediated increased 

stress tolerance in yeast cells through genetic complementation.  
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The productivity of yeast cells is limited by their own byproducts and the environmental 

conditions found in fermentative processes. By minimizing the effects of stress during 

fermentation, efficiency in yeast could be maximized. The results from our research could lead to 

increased efficiency in fermentation and the mutant strain’s implementat ion into industrial 

processes. Here we consider the expression of two lipocalin protein genes, At-TIL (AT5G58070) 

and Homo sapiens OBP2B (AY358981), in wildtype and knockout strains of Saccharomyces 

cerevisiae. 

BACKGROUND 

Role of Yeast in Fermentation 

 Saccharomyces cerevisiae is a workhorse in industrial fermentation due to its 

metabolism and innate traits. It is used for the production of alcoholic beverages, baked foods, 

biocontrol agents, enzymes, probiotics, chemical commodities, therapeutic proteins, 

biopharmaceuticals, and flavoring and coloring agents.4 S. cerevisiae is a yeast essential in 

alcoholic fermentation because it is able to metabolize sugars into alcohol and carbon dioxide.4 

However, during industrial fermentation, S. cerevisiae is faced with various significant stressors 

caused by operative conditions such as fluctuations in temperature and product accumulation.3 

They are often limited in their productivity by their inability to withstand high levels of stress. 

Therefore, it is critical to optimize industrial S. cerevisiae strains to improve production 

efficiency of industrial fermentative processes.  

Industrial Fermentation 
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 The market is continuously changing to be more sustainable, alter alcohol content, and 

increase company profit. Due to the market changing, new and more efficient yeast are required 

to solve the challenges that result from consumer demand. Yeast strain selection in alcoholic 

fermentation is important for both economic efficiency and product quality for the consumer. 

The use of genetically engineered strains could increase industrial productivity caused by the 

varying media conditions found across different technological processes. 

During the process of fermentation, the yeast are exposed to several stress factors which 

include hyperosmotic stress, increase in temperature, cold stress, high carbon dioxide levels, high 

alcohol levels, and oxidative stress.4 Yeast survival in alcoholic fermentation depends on the 

stress response mechanisms of the cells which involves sensor systems and signal transduction 

pathways that activate transcription factors. Yeast undergo fermentation in anaerobic conditions 

because they must produce ethanol for redox balancing and energy during sugar consumption.4 

Thus, the NAD+/NADH ratio is maintained, and intracellular electron balance can be 

accomplished.4 

In alcohol production, S. cerevisiae undergoes glycolysis, converting glucose through 

sugar catabolism and producing 2 pyruvate, 2 ATP, and reduced NADH.4 During anaerobic 

conditions, fermentation begins, and the pyruvic acid is converted to 2 carbon dioxide and 

then to 2 ethanol via acetaldehyde.4 Finally, alcohol dehydrogenase catalyzes the regeneration of 

NAD+ to allow for glycolysis and ATP production to repeat.4 

Osmotic and Salinity Stress 

The main stress condition at the beginning of vinification is hyperosmotic stress caused 

by the high concentration of sugars and/or salt in the medium. As the sugars are converted, the 
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nutrients begin to deplete and the ethanol levels increase, both which affect the stress tolerance 

of the yeast cells and can cause deleterious impacts on alcoholic fermentation.4 Osmotic stress 

can lead to the overproduction of glycerol, a stress-protectant molecule, during fermentation.4 As 

a response to osmotic stress, yeast will maintain redox balance by production of glycerol through 

generation of NAD+ via dihydroxyacetone phosphate.4 This mechanism occurs in response to 

compensate for water loss.4 

Oxidative Stress 

Oxidative stress occurs when there is an imbalance between prooxidant and antioxidants 

and the cell does not have proper cell antioxidant defenses to prevent reactive oxygen species 

(ROS) accumulation. This can lead to severe oxidative damage of important cell biomolecules, 

such as nucleic acids, proteins, lipids, and structures which compromise cell homeostatic 

functions and viability of the cells.5, 6, 7, 8  ROS accumulation can also be an important factor in 

programmed cell death or necrosis.9, 10, 11 High exposure to hydrogen peroxide can cause necrosis 

to occur as a result of oxidative damage to cellular components.9, 12, 13 This poses a big challenge 

in alcoholic fermentation because yeast cells should be able to respond to greater stress levels 

without viability loss. 

Alcohol and Temperature Stress 

High ethanol concentrations, a byproduct of alcoholic fermentation, and temperature can 

have deleterious impacts on the cell membrane structure and function of yeast cells and impair 

fermentation efficiency. Therefore, thermotolerance and ethanol tolerance are highly desirable 

characteristics for yeast involved in industrial fermentation. Though temperature during 

vinification is carefully controlled, small fluctuations are still possible, and some wineries use 
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different temperature due to the difference in the organoleptic properties of the product.4 In 

response to ethanol and temperature stress, cells increase membrane integrity by synthesizing 

heat shock proteins and disaccharide trehalose which function as chaperones and cellular 

protectants, respectively.4 With alcohol and temperature playing such an important role in 

membrane integrity and homeostatic functions, it is important to minimize the effects of the 

stressors.  

 The rate of fermentation is directly correlated with the rate of cellular reproduction 

during active cell growth.4 Therefore, minimizing the effects of stressful conditions that 

compromise cell growth is critical. Genetically engineered yeasts can increase ethanol yields, 

increase stress tolerance, lower the levels of glycerol, and reduce the dependency on exogenous 

enzymes and nutrients, making the fermentation process significantly more efficient. Yeast cells 

must be able to withstand non-optimal stresses caused by fluctuating temperature, toxic 

compounds, and product accumulation. These fluctuations affect cellular function and viability, 

in turn affecting production yields.4  

Lipocalins 

Lipocalins are a diverse family of extracellular proteins found in plants, bacteria, protists, 

arthropods, and chordates.2, 3 There are more than thousand lipocalin genes among bacteria, 

plants, fungi, and animals.14 Lipocalins have low amino acid sequence identity with three 

conserved structures that comprise a single eight-stranded antiparallel β-barrel that encloses a 

ligand-binding site.3 In a study by Du et al. in 2015, human lipocalins were analyzed for protein 

sequence alignment and structure comparison. While the sequences were found to be very 

diverse, the tertiary structures are highly preserved and are very similar.15 Lipocalins are usually 
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found in small concentrations in a variety of tissues, organs, and fluids, but their expression 

levels can increase as a response to stress caused by changes in physiological conditions, health, 

and developmental states. Therefore, they can function as biochemical markers of various 

disorders and diseases, such as cancer and inflammatory diseases.16, 17 

Lipocalins bind to small hydrophobic molecules, such as fatty acids, steroids, retinoids, 

pheromones, and odorants, and function in transportation and sequestration, among other 

specialized functions such as invertebrate cryptic coloration, prostaglandin synthesis, regulation 

of homoeostasis, and the modulation of the immune response.1, 3, 18 Because lipocalins have great 

functional diversity and vary in the structure of the cavity and scaffold, they are able to bind to 

ligands of different size, shape, and chemical traits, allowing for great specificity.3, 19 Lipocalins 

can function as carrier proteins in clearance of endogenous or exogenous molecules.1 The 

signaling activity of the lipocalins also correlates with other functions such as cell growth and 

metabolism, binding of cell surface receptors, membrane biogenesis and repair, induction of 

apoptosis, and maintenance of cell homeostasis.3, 17, 20, 21 Not only are the lipocalins transporting 

molecules, but they are also transferring extracellular signals into the cell and nucleus through 

protein-protein interactions.15 

Initially, lipocalins were thought to be specifically a eukaryotic protein.22 Later, new 

members of the lipocalin family were discovered in E. coli as outer membrane proteins 

expressed in response to environmental stress condition. It is believed that bacterial lipocalin 

proteins are involved in the dissemination of antibiotic resistance genes and activation of 

immunity.23 However, lipocalins appear to be restricted to gram-negative bacteria and members 

of the Archea.24, 25 
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Plant Lipocalins, Temperature Induced Lipocalin (TIL) 

Plants have constitutive and inducible defense systems that protect them against 

fluctuating conditions and other environmental stressors.  2, 3, 17, 20, 26, 27 Plant lipocalins are 

classified into two groups, temperature-induced lipocalins and chloroplastic lipocalins.28  In 

addition, plants have violaxanthin de-epoxidases and zeaxanthin epoxidases which is classified 

as lipocalin like proteins such as, violaxanthin de-epoxidases and zeaxanthin epoxidases. These 

two lipocalin-like and the chloroplastic lipocalins possess signal peptide sequence that target 

them to the chloroplast. The temperature induced lipocalins do not show any signaling peptide 

but it is found in the plasm membrane.28 

There are differences among plant species concerning TIL types. Contrary to Arabidopsis 

thaliana that contains only TIL-1 in chromosome 5, species such as Oryza sativa among a group 

of 12 plant species have TIL-1 and TIL-2 in chromosomes 2 and 8 respectively.28 

Temperature induced lipocalin (TIL) is a lipocalin encoded by plant genes and has been 

found to give the plant greater stress tolerance. In preliminary studies, lipocalins in Arabidopsis 

showed an increase in At-TIL expression in response to low and high temperatures, and the TIL1 

knockout showed accumulation of H2O2 and increased stress sensitivity against light, freezing 

temperatures, and Paraquat herbicide, and they accumulate more ROS.2, 17, 26, 27 In contrast, 

overexpression of TIL increased stress tolerance against those same stresses.2, 17, 26, 27  

At-TIL, localized in the cell membrane of Arabidopsis thaliana, has been shown to play a 

critical role in both basal tolerance as well as acquired thermotolerance by potentially preventing 

plasma membrane lipids from peroxidation and protecting the cells against oxidative stress 

caused by heat shock, freezing temperatures, paraquat, and light.2, 27 It has also been shown to 
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protect chloroplasts against salinity stress caused by high NaCl levels through ion homeostasis 

maintenance.17, 26, 27, 29, 30 At-TIL also plays a role in nutrient reservoir activity, cellular response 

to hypoxia, hyperosmotic salinity response, response to reactive oxygen species, response to 

water deprivation, and seed maturation.17, 31 Recent studies have reported the association of At-

TIL with other organelles, which suggests some intracellular role in stress responses, contrary to 

the initial thoughts that the At-TIL functions would be limited to the plasm membrane.32 

 

Odorant Binding Protein 

Odorant binding proteins (OBP) are eight-stranded beta barrel motifs that function in 

transportation. OBPs are expressed in the nasal mucosa, in addition to other locations in the 

body, and are very stable against temperature, organic solvents, and proteolytic digestion.33 

These soluble proteins mediate the transport of odorant molecules from the hydrophobic gas 

phase in the environment across the hydrophilic barrier of the aqueous mucus to the hydrophobic 

binding site of olfactory receptors of sensory neurons found in the nasal epithelia.1, 18 They also 

function as scavengers or as neutralizers of toxic volatile molecules.18 More recent findings have 

suggested, though, that OBPs may not play an olfactory role, as the structural features are more 

similar to human tear lipocalin than OBPs of other mammals.34 Specifically, odorant binding 

protein 2B (OBP2B) is primarily expressed in prostate and mammary glands which may indicate 

functional misidentification.18 

 

MATERIALS AND METHODS/EXPERIMENTAL 

https://www.ebi.ac.uk/QuickGO/term/GO:0071456
https://www.ebi.ac.uk/QuickGO/term/GO:0071456
https://www.ebi.ac.uk/QuickGO/term/GO:0042538
https://www.ebi.ac.uk/QuickGO/term/GO:0000302
https://www.ebi.ac.uk/QuickGO/term/GO:0009414
https://www.ebi.ac.uk/QuickGO/term/GO:0009414
https://www.ebi.ac.uk/QuickGO/term/GO:0010431
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Lipocalin proteins from Arabidopsis thaliana and Homo sapiens were distinguished by 

their known functions and potential to increase stress tolerance levels in yeast. The lipocalins 

chosen were At-TIL and OBP2B. These lipocalin genes were used for transformation and 

heterologous complementation of the yeast strains.  

Selection of Yeast Strains 

To gain a better understanding of the stress response in S. cerevisiae, several yeast cells 

carrying knockouts that rendered them sensitive to different stressors were identified. 

Preliminary data shows sensitivity in knockouts of S. cerevisiae BY4743 wild type strains—

ALD3, ALD4, PDX3, and ILV1—to salinity, osmotic, oxidative, and heat stresses. 

Yeast Growth Conditions 

The yeast strains--BY4743, ALD3, ALD4, ILV1, and PDX3--were grown in YPD medium 

[1% yeast extract, 2% peptone, and 2% dextrose] at 30ºC at 200 rpm. Following transformation 

of the clones, the yeast cells were grown on selective synthetic minimal media (SMM; leucine 

free) and synthetic complete media (SCM). 

Construction of Recombinant Plasmids 

The plasmid vector and lipocalin gene inserts were isolated by double digestion using 

BamHI and XhoI [8 µL DNA, 8 µL water, 1 µL BamHI, 1 µL XhoI, and 2 µL Cutsmart]. The 

digested DNA was run on an agarose gel and compared with a 1 kb ladder. DNA fragment sizes 

corresponding to the digested plasmid and the lipocalin fragment gene were excised from the gel 

and recovered using the geneJET gel extraction kit (Thermo Fisher Scientific)  
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To determine if the knockout yeast strains can recover stress tolerance by 

complementation, each lipocalin gene (OBP2B and At-TIL) was inserted into p415GPD to form a 

functional construct (figure 1). The recombinant plasmids were used to transform each knockout 

and the wild type cells.  

 

 

The ligation reaction [3 µL insert, 1 µL vector, 1 µL T4 ligase, 4 µL water, 1 µL buffer] was 

carried out and left at room temperature for 15 minutes, before placing in the refrigerator 

overnight for cohesive end ligation. 

Amplification of Clone 

Each clone was delivered into the Escherichia coli cells for amplification using heat 

shock. 75 µL of competent E. coli cells (C2987) were mixed with 5 µL DNA (p415GPD::TIL or 

p415GPD::OBP2B) and incubated on ice for 30 min.. The cells were then exposed to a 42°C 

heat bath for 90 seconds. The transformation mix was immediately removed and placed on ice 

for 3-5 minutes. 945µL of LB was added, and the mixture was incubated at 37°C for 45 min. 200 

µL of the mixture was then transferred onto LB+Amp agar plates and incubated at 37°C for 24 

hours. 

Figure 1. Recombinant Functional Construct 
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Isolation and Purification of Clones 

Transformant colonies were picked from the LB+Amp agar plates, and each was 

inoculated into LB broth [5mL LB + 5 µL Amp]. The cells were incubated on a shaker at 37°C 

for 24 hrs. The GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific) was used to extract 

and purify the plasmid DNA. 

Verification of Clones 

To verify the presence of the clones, each of the samples, p415 GPD::At-TIL and p415 

GPD::OBP2B, [3 µL DNA, 1 µL 6x dye, 6 µL water] were run on 1% agarose gel at 170V. A 

double digestion of the samples  [8 µL DNA, 8 µL water, 1 µL BamHI, 1 µL XhoI, and 2 µL 

Cutsmart] was also carried out, and the samples [20 µL of DD sample, 1 µL 6x dye] were run on 

a 1% agarose gel at 170V for verification. Lastly, a polymerase chain reaction (PCR)  [10 µL 2x 

LongAmp “Master Mix”, 7.5 µL water, 1 µL forward primer, 1 µL reverse primer, 0.5 µL DNA] 

of the lipocalin gene inserts, At-TIL and OBP2B, was carried out under specific conditions. The 

PCR begins with exposure of the samples to 95°C for 3 minutes. During the first 10 cycles, the 

samples go through a denaturing step at 94°C for 30 seconds, followed by an annealing step at 

60°C for 30 seconds, and an elongation step at 72°C for 45 seconds. This is followed by 35 

cycles that include a denaturing step at 94°C for 30 seconds, an annealing step at 65°C for 30 

seconds, and an elongation step at 72°C for 45 seconds. Then, the samples go through a final 

extension step at 72°C for 10 minutes. The samples were held at 4°C after completion of the 

PCR. The PCR samples were then run on 1% agarose gel  [3 µL water, 1 µL 6x dye, 6 µL DNA] 

at 170V for verification by size. 
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Transformation of Clones into Yeast 

Each clone was delivered into each of the wild type (WT), knockout (KO), and 

transformant yeast cells. Lithium acetate and polyethylene glycol according to the Gietz & 

Woods transformation method was used to allow for high efficiency transformation in the yeast 

cells.35 The yeast cells were grown on selective minimal media (leucine-free) and synthetic 

complete media. Selected colony cells from the selective minimal media (transformed colonies) 

were tested against a variety of stressors.  

Stress Experiments 

  To begin each stress experiment, an overnight culture of the WT, KO, and transformants 

were prepared in YPD [1% (w/v) yeast extract, 2% peptone, and 2% dextrose] and incubated on 

a shaker at 30°C at 200 rpm. The cells were set to OD600 = 0.4 and were allowed to grow to 

OD600 = 0.8 - 1.0. The cells were then centrifuge and resuspended in saline at OD600 = 1.0. 

Treatments for each specific experiment described below were conducted in triplicate. Each data 

point represents the means of the three replicates and its respective standard error. 

Heat Stress 

As described previously cells were grown in an overnight culture and resuspended in 

saline. 300µL of the cells in saline was added into each of 6 microcentrifuge tubes that 

correspond to the strain. The experiment was carried out in triplicate, so three tubes were left on 

ice as the control, and the other three tubes were exposed to heat at 50°C in a water bath for 10 

minutes. The tubes exposed to stress were immediately removed and placed on ice. A 10-fold 

serial dilution was carried out for each of the six tubes corresponding to each strain. 100µL of 
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each of the 10-3 and 10-4 dilutions were plated onto their corresponding YPD agar plates. The 

plates were incubated for 48 hours at 30°C. The colonies were counted. 

Oxidative Stress 

2 µL of each yeast strain (WT BY4743, KO, and transformants) was exposed to 98 µL of 

the control [1x SCM], 1.0 mM H2O2  [1.0 mM H2O2 + 1x SCM], and 2.0 mM H2O2 [2.0 mM 

H2O2 + 1x SCM] media in triplicate. 100 µL of each of the blanks [100 µL 1x SCM; 100 µL 1x 

SCM + 1.0 mM H2O2; 100 µL 1x SCM + 2.0 mM H2O2] were used. All of the samples for the 

growth experiment were conducted in a 96-well plate and placed in the Microplate reader under 

continuous shaking for up to 24 hours. 

Osmotic Stress 

2 µL of each yeast strain (WT BY4743, KO, and transformants) was exposed to 98 µL of 

the control [1x SCM] and 1.0 M sorbitol  [1.0 M sorbitol + 1x SCM] media in triplicate. 100 µL 

of each of the blanks [100 µL 1x SCM; 100 µL 1x SCM + 1.0 M sorbitol] were used. All of the 

samples for the growth rate experiment were conducted in a 96-well plate and placed in the 

Microplate reader under continuous shaking for up to 24 hours. 

Salinity 

2 µL of each yeast strain (WT BY4743, KO, and transformants) was exposed to 98 µL of 

the control [1x SCM] and 0.8 M H2O2 [0.8 M NaCl + 1x SCM] media in triplicate. 100 µL of 

each of the blanks [100 µL 1x SCM; 100 µL 1x SCM + 0.8 M NaCl] were used. All of the 

samples for the growth rate experiment were conducted in a 96-well plate and placed in the 

Microplate reader under continuous shaking for up to 24 hours. 



 

15 

 

Statistical Analysis 

Using statistical analysis of the survival/growth rates, the phenotypes of the transformant 

cells were compared to the wildtype and knockout cells to determine any differences in stress 

response. For the heat stress, % survival of the transformant strains was determined based on 

100% growth of the control (no heat exposure) of the corresponding knockout cell. A histogram 

was created that indicates the percentage of cells survival rate and the values are the means of 

three replicates. For the oxidative, salinity, and osmotic stress, a growth curve carried out over 

the course of 17-18 hours was analyzed. A line graph was created, and the data point represents 

the means of three replicates. A P-value of 0.05 was used to determine statistical significance 

based on a Student’s t-test. Thus, a P-value ≤ 0.05 means that there is a significant difference 

between the knockout/wildtype and the transformant strains exposed to the stressor.  

 

RESULTS 

 The WT BY4743, transformant, and knockout cells were tested for their responses to a 

variety of stresses including 0.8 M NaCl, 1.0 M Sorbitol, 1.0 mM and 2.0 mM H2O2, and 50°C 

for salinity, osmotic, oxidative, and heat stresses, respectively. Yeast cells responses were 

analyzed by growth rate and/or the survival rates of each strain determined by the growth curve 

over 17-18 hours or the number of colonies between the undisturbed samples and the samples 

exposed to the stress, respectively. 
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Heat 

 

 

  

Figure 2. Heat Stress on S. cerevisiae (At-TIL) 

This experiment was carried out in triplicate, with three samples for each of the controls and three 

samples for each of the yeast strains exposed to the stress. The wildtype (BY4743), knockout (ALD3, 

ALD4, ILV1, and PDX3), and transformant (BY4743::TIL, ALD3::TIL, ALD4::TIL, ILV1::TIL, and 

PDX3::TIL) cells were exposed to heat at 50°C in a water bath for 10 minutes. The plates were incubated 

for 48 hours at 30°C. The colonies were counted for each plate, and the average of the 3 replicate plates 

was determined for each experimental and control group. The % survival was calculated in comparison 

with 100% growth of the control (no heat exposure) of the corresponding knockout cell. It 

was determined that only the ALD3::TIL transformant showed an increase in stress tolerance when 

exposed to 50°C for 10 minutes as compared to the knockout strain. The histogram indicates the 

percentage of cells survival rate and the values shown are the means of three replicates (*P < 0.05 

Student's t-test).  

0

10

20

30

40

50

60

70

80

90

100

%
 S

u
rv

iv
al

Yeast Strain

Heat Stress TIL

0 min Heat 10 min Heat

* 



 

17 

 

Oxidative 

 

 

 

 

 

 

  

Figure 3. 1mM H2O2 Oxidative Stress on S. cerevisiae (At-TIL) 

This experiment was carried out in triplicate, with three samples for each of the controls and three samples 
for each of the yeast strains exposed to the stress. The wildtype (BY4743), knockout (ALD3, ALD4, ILV1, 
and PDX3), and transformant (BY4743::TIL, ALD3::TIL, ALD4::TIL, ILV1::TIL, and PDX3::TIL) cells 
were grown in either synthetic complete media (SCM) or SCM+1 mM H2O2 in a 96-well plate and placed in 

the Microplate reader under continuous shaking for 17 hours. Averages of each of the triplicates was 
determined for each hour, and a growth curve was produced. It was determined that the ALD4::TIL showed 
an increase in stress tolerance beginning at about 12 hours when exposed to 1 mM H2O2 as compared to the 
knockout strain. The BY4743::TIL and ALD3::TIL also show some increase in stress tolerance beginning at 
about 15 hours. Each data point represents the means of three replicates (the standard error P<0.05 Students 

t-test). 
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  Figure 4. 2mM H2O2 Oxidative Stress on S. cerevisiae (At-TIL) 

This experiment was carried out in triplicate, with three samples for each of the controls and three samples for 
each of the yeast strains exposed to the stress. The wildtype (BY4743), knockout (ALD3, ALD4, ILV1, and 
PDX3), and transformant (BY4743::TIL, ALD3::TIL, ALD4::TIL, ILV1::TIL, and PDX3::TIL) cells were 
grown in either synthetic complete media (SCM) or SCM+2 mM H2O2 in a 96-well plate and placed in the 

Microplate reader under continuous shaking for 17 hours. Averages of each of the triplicates was determined 
for each hour, and a growth curve was produced. It was determined that none of the strains exposed to the 
stress showed any growth, so none of the transformants showed increase stress tolerance against 2 mM H2O2. 

Each data point represents the means of three replicates (the standard error P<0.05 Students t-test).  

 

 



 

19 

 

Osmotic 

 

 

 

 

 

 

 

 

 

Figure 5. Osmotic Stress on S. cerevisiae (At-TIL) 

This experiment was carried out in triplicate, with three samples for each of the controls and three samples 
for each of the yeast strains exposed to the stress. The wildtype (BY4743), knockout (ALD3, ALD4, ILV1, 
and PDX3), and transformant (BY4743::TIL, ALD3::TIL, ALD4::TIL, ILV1::TIL, and PDX3::TIL) cells were 

grown in either synthetic complete media (SCM) or SCM+1.0 M sorbitol in a 96-well plate and placed in the 
Microplate reader under continuous shaking for 18 hours. Averages of each of the triplicates was determined 
for each hour, and a growth curve was produced. It was determined that the transformants showed no 
increase in stress tolerance when exposed to 1.0 M sorbitol. Each data point represents the means of three 

replicates (the standard error P<0.05 Students t-test).  
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  Figure 6. Osmotic Stress on S. cerevisiae (OBP2B) 

This experiment was carried out in triplicate, with three samples for each of the controls and three samples for 
each of the yeast strains exposed to the stress. The wildtype (BY4743), knockout (ALD3, ALD4, ILV1, and 

PDX3), and transformant (BY4743::OBP2B, ALD3::OBP2B, ALD4::OBP2B, ILV1::OBP2B, and 
PDX3::OBP2B) cells were grown in either synthetic complete media (SCM) or SCM+1.0 M sorbitol  in a 96-
well plate and placed in the Microplate reader under continuous shaking for 18 hours. Averages of each of the 
triplicates was determined for each hour, and a growth curve was produced. It was determined that the 
transformants showed no increase in stress tolerance when exposed to 1.0 M sorbitol. Each data point 

represents the means of three replicates (the standard error P<0.05 Students t-test).   
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Figure 7. Salinity Stress on S. cerevisiae (At-TIL) 

This experiment was carried out in triplicate, with three samples for each of the controls and three samples 

for each of the yeast strains exposed to the stress. The wildtype (BY4743), knockout (ALD3, ALD4, ILV1, 
and PDX3), and transformant (BY4743::TIL, ALD3::TIL, ALD4::TIL, ILV1::TIL, and PDX3::TIL) cells 
were grown in either synthetic complete media (SCM) or SCM+0.8 M NaCl  in a 96-well plate and placed in 
the Microplate reader under continuous shaking for 18 hours. Averages of each of the triplicates was 
determined for each hour, and a growth curve was produced. It was determined that ALD4::TIL and 
ILV1::TIL showed an increase in stress tolerance when exposed to 0.8 M NaCl. Each data point represents 

the means of three replicates (the standard error P<0.05 Students t-test).   
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  Figure 8. Salinity Stress on S. cerevisiae (OBP2B) 

This experiment was carried out in triplicate, with three samples for each of the controls and three samples for 
each of the yeast strains exposed to the stress. The wildtype (BY4743), knockout (ALD3, ALD4, ILV1, and 
PDX3), and transformant (BY4743::OBP2B, ALD3::OBP2B, ALD4::OBP2B, ILV1::OBP2B, and 
PDX3::OBP2B) cells were grown in either synthetic complete media (SCM) or SCM+0.8 M NaCl in a 96-well 
plate and placed in the Microplate reader under continuous shaking for 17 hours. Averages of each of the 
triplicates was determined for each hour, and a growth curve was produced. It was determined that the 

transformants are irresponsive to the salinity stress. Furthermore, ALD3::OBP2B, ILV1::OBP2B, and 
PDX3::OBP2B show a decrease in stress tolerance when exposed to 0.8 M NaCl as compared to the respective 

knockouts. Each data point represents the means of three replicates (the standard error P<0.05 Students t-test).   
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DISCUSSION 

Heat Stress  

Compared to the wildtype and knockout strains, ALD4::TIL showed increased stress 

tolerance against heat when exposed to 50°C for 10 minutes (figure 2). ALD4 is the gene that 

codes for mitochondrial aldehyde dehydrogenase (ALD4). ALD4 is an enzyme that plays a role 

in scavenging in response to oxidative stress.36 Because the TIL also functions in stress response 

against heat and oxidative stress, we see an increase in stress tolerance against those stressors 

because TIL becomes a source of relief for the transformant cells in the absence of ALD4. Two 

of the most important products of these heat shock response (HSR) are the synthesis of trehalose 

and heat shock proteins.37 Heat shock proteins are involved in many routine cell functions. They 

assist in the folding, protecting and movement of newly synthesized proteins. Fungi and 

invertebrates only posse one form of the HSF. Although it is not clear what role lipocalins may 

play in heat shock response, we suspect that their ability to cluster and binding to other 

molecules may provide the protective effect to heat stress. Furthermore, heat stress may disturb 

the normal cell metabolic process, which could lead to synthesis of compounds similar to those 

caused by the oxidative stress and consequently triggering similar stress response.  

Oxidative Stress 

BY4743::TIL, ALD3::TIL, and ALD4::TIL showed increased stress tolerance against 

oxidative stress when exposed to 1 mM H2O2 (figure 3), but none of the transformants showed 

increased tolerance when exposed to 2 mM H2O2 (figure 4). It is believed that At-TIL participates 

in the scavenging of reactive oxygen intermediates (ROIs) either exogenously applied or 

generated after abiotic stress conditions. ROIs are able to damage DNA leading to sugar damage, 
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single strand breaks, and DNA-protein crosslinking.38 ROIs also have the ability to damage 

lipids, leading to impairment of the structure integrity of the membrane and increases membrane 

fluidity and damage proteins leading to protein crosslinking.38 TIL may act in preserving cell 

viability and restoring the integrity of cell membranes, a mechanism previously described in 

plants.17, 39, 40 

Osmotic Stress 

The cells showed no improvement in osmotic stress tolerance with either of the 

lipocalins, At-TIL or OBP2B, when exposed to 1.0 M sorbitol (figure 5 & figure 6). TIL has 

been implicated in a myriad of stress responses which may protect yeast cells from stress 

induced damages that can occur during industrial processes.3 However, most lipocalin proteins 

seem to have just a transient protective effect to most stresses, particularly those whose 

protective effect depend on the binding of lipocalins to specific stressor agents.3 Such protective 

model mechanism could be explained if considering the possibility of saturation of lipocalins 

binding site by the stressor agents. These findings could explain the lack of osmotic stress 

alleviation by either of the lipocalins.  

Salinity Stress 

The ALD4::TIL and ILV1::TIL transformants showed increased stress tolerance against 

salinity when exposed to 0.8 M NaCl (figure 7), while the OBP2B transformants seem to be 

irresponsive to the salinity stress.  The odorant binding proteins are notable for their ability to 

bind to volatile compounds1,18.   They mediate the transport of odorant molecules from the 

hydrophobic gas phase in the environment across the hydrophilic barrier of the aqueous mucus to 

the hydrophobic binding site of olfactory receptors of sensory neurons found in the nasal 
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epithelia.1,18 There are no indication in the literature that they may play any role in stress 

alleviation. They specifically bind to the organic volatile compounds and not to inorganic 

molecules such NaCl. Moreover, they function as scavengers or as neutralizers of toxic volatile 

molecules.18 Their putative involvement in stress alleviation may be tissue and stresses specific, 

considering that OBP2B is primarily expressed in prostate and mammary.18 Additional studies of 

function of this protein, isolated or combined with other lipocalins under a myriad of stresses, 

may deem necessary for better understanding and characterize the function of OBP2B.  

Limitations 

Because our experimentation was conducted at a small scale, the 96 well microplate 

reader, we are faced with some limitations. For the oxidative, osmotic, and salinity stress, the 

cells were grown in 100 µL on a 96-well plate for 17-18 hours. One approach to combat this is to 

widen the time frame of the growth curves to determine if the stress tolerance results are 

maintained or if there is actually a significant difference between the knockout and transformant 

strains. Additionally, the small volume of the medium poses a stress on the cells as the nutrients 

begin running out. A smaller ratio of inoculum to media would be needed to combat this 

limitation. The growth rate experiments could be run at larger volumes in culture tubes to 

provide a greater amount of nutrients to a smaller inoculum of yeast. Particularly, this was a 

broad study, which included four yeast knockouts and the wild-type strain and two different 

lipocalins (the OBP2B and the At-TIL). This approach creates some level of difficulty for 

specific stress response analysis. Most research available in the literature just analyzes specific 

effects of the lipocalin without relating it to a specific stress mechanism created in a gene 

knockout.     
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CONCLUSION 

Understanding how some lipocalins may be inhibiting or causing a reduction in stress 

resistance is important for determining which lipocalins function in stress tolerance when 

transformed into yeast cells and which ones cause cell viability loss. 

Further experimentation with different genes and/or strains would give us a greater 

understanding of their potential roles in industrial fermentation as well as an in-depth knowledge 

of the underlying mechanisms employed by the yeast in response to a variety of stressors to 

further improve fermentation yeasts. Future work would involve engineering a genetic construct, 

where several lipocalins are placed in tandem and transformed into the wild type S. cerevisiae. 

The transformant yeast cells could potentially withstand abnormal levels of industrial stressors 

from various factors.   
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