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Detecting and Identifying Single Event Transients
RESEARCH
Y T using IRES and Machine Learning

Joseph Cancelleri, Daniel Loveless Ph.D., Donald Reising Ph.D. g&%&lﬁgg‘fﬁ}(

Department of Electrical Engineering CHATTANOOGA

Research Question
How can radiation effects on embedded systems, particularly systems 1n space, be mitigated by leveraging IRES and machine learning?
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