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Detecting and Identifying Single Event Transients 
using IRES and Machine Learning

Joseph Cancelleri, Daniel Loveless Ph.D., Donald Reising Ph.D.
Department of Electrical Engineering

Fig. 2. Example of output frequency IRES analysis and
image generation, where the change in frequency
correlates to the distinct aberration in the IRES image.

Methodology

The introduction of ML to the SET
analysis process adds to the utility of IRES
by being able to manifest nuance contained
in the output data. This utility is further
improved by the introduction of higher
moment generating functions to the IRES
analysis. The long-term goal of this research
is to establish the statistical relationships
that characterize SETs and implement this
knowledge gained to create an on-chip
architecture that can perform IRES-KNN
analysis. This milestone would be a
significant step in mitigating the devastating
effects radiation can have on electrical
circuits and systems.
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A method of detecting and classifying
single event transients (SETs) in devices
and integrated circuits (ICs) using Ionizing
Radiation Effects Spectroscopy (IRES)
[1][2] and machine learning is presented.
IRES is leveraged as a non-invasive
interrogation (i.e., requiring only output
waveforms) of single-event effects (SEE),
revealing vulnerable circuit nodes
identified through statistical measures of
signal features that compose an IRES
image. Machine learning (ML) via a k-
Nearest Neighbors (KNN) algorithm is
then used to classify nominal data and
event data, as well as potentially identify
specific circuit nodes of SETs.

Introduction

Results

Research Question
How can radiation effects on embedded systems, particularly systems in space, be mitigated by leveraging IRES and machine learning?

1. Signal Collection 
and Detection

2. IRES Image 
Generation

3. k-Nearest 
Neighbors

4. Data Classification Fig. 3. The process of selecting nominal and event patches and performing IRES
analysis to generate data for the KNN classifier. (Note: the IRES images in this
figure are shown with additional moment generating function outputs.).

Fig. 4a. The correct acceptance rate at which
additional sample sets affect classification
accuracy for frequency, cycle-to-mean, and
cycle-to-cycle signal transformations.
Fig. 4b. The correct rejection rate at which
additional sample sets affect classification
accuracy for frequency, cycle-to-mean, and
cycle-to-cycle signal

Fig. 1. Example of an output frequency/phase
transient following a laser perturbation in
the CP sub-circuit of the PLL fabricated in a
130 nm CMOS technology. [3]
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TABLE I
Legend for the output confusion matrix.

TABLE II
Output confusion matrix results for the 3 types of signal transformations with individual and all statistical measures using 9 

out of 10 sample sets. (Bold indicates performance greater than 95%).
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• 10 sample sets processed linearly as independent
measurements however, they are features in themselves
and provide a better description of the data when used
as such, thus improving classification.

• Greater than 95% classification is achievable for all
signal transformations when all statistical measures and
9 of 10 sample sets are used.

• Event data requires a better description to be uniquely
classifiable. Achieved by inclusion of additional
statistical measures (5th, 6th, 7th, and 8th moments).

• Additional features boost classification capabilities in
the “nominal versus event” case (greater than 99% rate
using single features) but have a marginal effect on
“event versus event” classification

• The frequency signal transformation requires the least
input data (2 of 10 sample sets) to achieve a greater
than 98% classification rate Variance and standard
deviation in classification of nominal and event data
with greater than 95% in all signal transformations.

• Mean also performs well when used as the single metric
for classification for the frequency metric; least
discriminating feature with cycle-to-mean and cycle-to-
cycle signal transformations (~75% and ~62%
respectively).
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