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Definitions and Background

An m × n matrix N, with m ≥ n, is said to be of type (m1, . . . ,mn) if it is
partitioned row-wise into n blocks such that the j − th block, N j , is of
dimension mj × n and m =

∑n
j=1mj . That is:

N =

N
1

...
Nn



The vectors w ∈ Rm and q ∈ Rm are also partitioned to conform to the
entries in the block, N j of N:

w =

w
1

...
wn

 , q =

q
1

...
qn


where w j , qj are mj × 1 vectors.
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Definitions and Background

The vertical generalized linear complementarity problem: Given a vertical
block matrix N of type (m1,m2, ...,mn) and a vector q ∈ Rm, find vectors
w ∈ Rm, z ∈ Rn such that

w = Nz + q (1)

w ≥ 0, z ≥ 0 (2)

zj

mj∏
i=1

w j
i = 0 (j = 1, . . . , n) (3)

We will denote this problem by VGLCP(q, N).
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Definitions and Background

Consider the following sets:

K1 = {1, . . . ,m1}, Ki =

{
1 +

i−1∑
t=1

mt , . . . ,

i∑
t=1

mt

}
, i = 2, . . . , n.

The complementarity conditions can be reformulated as follows: Find
vectors z ∈ Rn and w ∈ Rm such that

zi
∏
j∈Ki

wj = 0, i = 1, . . . , n. (4)
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The Algorithm

Complementary Basic Solutions (CBS) for the VGLCP(q,N)
A CBS associated the VGLCP (q,N) consists of basic variables and
nonbasic variables.

The nonbasic variables have zero values and the basic variables are
obtained by solving the linear system (1) above and fixing the values of
the nonbasic variables at zero.

Furthermore, the basic and nonbasic variables are chosen in such a way
that the complementarity condition (3) or (4) holds.

Aniekan Ebiefung (UTC) BP Algorithm for VGLCP March 13, 2020 6 / 18



The Algorithm

Let x = [z w ]T be a CBS.
Denote the basic variables by zF and wT ; and the nonbasic variables by zG
and wR where the sets F ,G ,T , and R are defined as follows:

F ⊆ {1, . . . , n}
G = {1, . . . , n} − F

F ∩ G = ∅
T ⊆ {1, . . . ,m}
R = {1, . . . ,m} − T

T ∩ R = ∅
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The Algorithm

The basic variables, zF and wT , are obtained by solving:[
IT −NTF

0 −NRF

] [
wT

zF

]
=

[
qT
qR

]
(5)

and the nonbasic variables are obtained by setting

zG = 0, wR = 0 (6)

The matrix in (5) is called a basis matrix.
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The Algorithm

Theorem

If N is an m × n vertical block P-matrix of type (m1, . . . ,mn), then the
basis matrix in (5) is nonsingular.
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The Algorithm

Principal Pivoting Algorithms

Let x = [z w ]T be a CBS and F , G , T and R the associated sets.
Allowed principal pivot operations:

(i) A basic variable zi , i ∈ F , is exchanged with a nonbasic variable wj ,
with j ∈ Ki , and the sets are updated as follows:

F = F \ {i}, G = G ∪ {i},
T = T ∪ {j}, R = R \ {j}

(ii) A basic variable wj , j ∈ Ki , is exchanged with a nonbasic variable
zi , i ∈ G , and the sets are updated as below:

F = F ∪ {i}, G = G \ {i},
T = T \ {j}, R = R ∪ {j}
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The Algorithm

Principal Pivoting Algorithms

(iii) A basic variable wj , j ∈ Ki , is exchanged with a nonbasic variable
ws , s ∈ Ki , and the sets T and R are updated by:

T = T \ {j} ∪ {s}, R = R \ {s} ∪ {j}

and the sets F and G are not updated.
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The Block Principal Pivoting Algorithm

Step 0: (Initialization)
Start with the associated sets:
F = ∅, G = {1, . . . , n}, T = {1, . . . ,m}, R = ∅.
The corresponding CBS is x = [z w ]T = [0 q]T .

Step 1: If x ≥ 0, terminate with x as the solution of VGLCP. Otherwise,
go to Step 2.
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The Algorithm

Step 2: Update the sets F ,G ,T ,R by (i) and (ii) as given below:

(i) Define the following sets:

F̄ = {i ∈ F : zi < 0} (7)

T̄1 = {min{j ∈ Ki : wj < 0} : i ∈ G} (8)

T̄2 = {min{j ∈ Ki : wj < 0} : i ∈ F \ F̄} (9)

F̂ = {i ∈ G : j ∈ T̄1} (10)

R̄1 = {j ∈ R ∩ Ki : i ∈ F̄} (11)

R̄2 = {s ∈ R ∩ Ki : i ∈ F \ F̄ and j ∈ T̄2} (12)
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The Algorithm

(ii) Update the sets F , G , T and R by:

F = F \ F̄ ∪ F̂ (13)

G = {1, . . . , n} \ F (14)

T = T \ (T̄1 ∪ T̄2) ∪ (R̄1 ∪ R̄2) (15)

R = {1, . . . ,m} \ T (16)

Step 3: Use the updated sets to solve equations (5) and (6) and obtain a
new CBS x = [z w ]T . Return to Step 1.
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Example

Let N be a veertical block P-matrix of type (2, 2, 2):

N =



4 1 3
5 2 3
3 4 1
4 8 −4
1 3 4
1 6 7

 , q =



−2
−3
−1
−5
−9
−3

 (17)

Then n = 3, m = 6, m1 = m2 = m3 = 2, K1 = {1, 2}
K2 = {3, 4}, K3 = {5, 6}
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Example

Solution in two iterations given by:

w1 = 3.16, w2 = 3.43, w3 = 5.39, w4 = 0, w5 = 0, w6 = 13.70, z1 = 0,
z2 = 1.27, z3 = 1.30.

Remark: A single principal pivoting algorithm developed by Ebiefung et al
[2] gets the same solution in 6 iterations.

Problem: Cycling/finite convergence
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