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Outline

• Introduction
• Reduced Order Modeling Strategy
• Computational Setup
• Results
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Introduction
• Prediction of reacting flow physics in energy

conversion and propulsion devices: challenging to
experiments and simulations

• Experimental challenges: measurements limited
to fewer quantities, expensive, etc.

• Challenges to simulations: uncertainties in
geometry, boundary conditions, kinetics, closures,
etc.

• Large Eddy Simulation (LES) is promising tool for 
prediction of reacting flow physics

• HPC advancements have allowed to perform high-
fidelity LES, but computational expense still huge 
for design and optimization studies:
– Grid resolution requirements 
– Tedious nonlinear calculation of thermodynamics, 

transport and chemical kinetics
– Complex geometries

Spray Combustion3

Unstable Rocket Combustion2

1Ranjan et al., AIAA-2016-4999; 2Srinivasan et al., FTC (2015); 3Ranjan et al., AIAA-2016-4895

Stable Rocket Combustion1
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Introduction
• Typical cost of high-fidelity LES of practical devices: about 𝑶𝑶(𝟏𝟏𝟏𝟏𝟓𝟓 − 𝟏𝟏𝟏𝟏𝟔𝟔) CPU 

hours
• Parametric design studies under wide range of operating conditions to assess 

performance of propulsion device is computationally prohibitive 
• High-fidelity reduced-order modeling (ROM): a viable alternative
• Several techniques to perform ROM of turbulent reacting flows: missing point 

estimation1, linearization of governing system and weighted combination2, 
empirical interpolation method3, etc.

• Reduced Basis Modeling (RBM) is one of the ROM strategies, which can be used 
to perform computationally affordable high-fidelity simulations

• Preliminary investigation using ROM for LES showed promising results, but 
challenges also observed4

• Objectives:
– Demonstrate features of two RBM based ROM strategies on a canonical setup
– Assess accuracy and stability aspects of ROM strategies
– Assess computational requirements for LES studies

1Astrid et al., IEEE Trans. Auto Control (2008); 2Rewienski & White, IEEE Trans. CDICS (2003); 
3Grepl et al., ESAIM (2007); 4Ranjan et al., AIAA-2018-4871 



Reduced Order Modeling Strategy
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Conventional vs ROM Enabled CFD
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𝑑𝑑𝒒𝒒(𝒙𝒙, 𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑨𝑨𝒒𝒒 + �𝒇𝒇(𝒙𝒙, 𝑡𝑡)

𝒒𝒒 𝒙𝒙, 𝑡𝑡 ≈ 𝑸𝑸(𝒙𝒙)�𝒒𝒒(𝒕𝒕)

Semi-discrete PDE

Reduced-order representation of state vector

𝒒𝒒: Composite state vector
𝑨𝑨: Linear dynamics
�𝒇𝒇: Nonlinear terms
𝑸𝑸(𝒙𝒙) : Space-dependent POD based 
basis functions of 𝒒𝒒(𝒙𝒙, 𝑡𝑡)

Mathematical Formulation

𝑑𝑑�𝒒𝒒
𝑑𝑑𝑡𝑡 = 𝑸𝑸𝑻𝑻𝑨𝑨𝑸𝑸�𝒒𝒒 + 𝑸𝑸𝑻𝑻�𝒇𝒇 𝑸𝑸�𝒒𝒒

POD1 based ROM
𝑑𝑑�𝒒𝒒
𝑑𝑑𝑡𝑡 = 𝑸𝑸𝑻𝑻𝑨𝑨𝑸𝑸�𝒒𝒒 + (𝑸𝑸𝑻𝑻𝑼𝑼) 𝑷𝑷𝑇𝑇𝑼𝑼 −1�𝒇𝒇 𝑷𝑷𝑇𝑇𝑸𝑸�𝒒𝒒

POD-DEIM2 based ROM

• Suitable for non-linear problems
• Snapshots required for state vector, fluxes 

and source terms
• Significant gain for non-linear problems

• Suitable for linear problems
• Snapshots required for only state vector
• No gain in efficiency for non-linear problems

1Wilcox & Peraire, AIAA J., 40 (2002)
2Chaturantabut & Sorensen, SIAM J. Sci., 32 (2010) 

𝒒𝒒 ∈ ℝ𝑟𝑟×1, �𝒇𝒇 ∈ ℝ𝑟𝑟×1,𝑨𝑨 ∈ ℝ𝑟𝑟×𝑟𝑟

𝒒𝒒 = 𝜌𝜌,𝜌𝜌𝒖𝒖,𝜌𝜌𝒗𝒗,𝜌𝜌𝒘𝒘,𝜌𝜌𝜌𝜌, 𝜌𝜌𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝜌𝜌𝑌𝑌1,𝜌𝜌𝑌𝑌2, … ,𝜌𝜌𝑌𝑌𝑠𝑠 𝑇𝑇
𝑸𝑸 ∈ ℝ𝑟𝑟×𝑘𝑘 , �𝒒𝒒 ∈ ℝ𝑘𝑘×1,
𝑼𝑼 ∈ ℝ𝑟𝑟×𝑘𝑘 ,𝑷𝑷 ∈ ℝ𝑟𝑟×𝑛𝑛

𝒌𝒌 ≪ 𝒓𝒓, 𝒏𝒏 ≪ 𝒓𝒓
POD: Proper Orthogonal Decomposition
DEIM: Discrete Empirical Interpolation Method



8

POD and POD-DEIM based ROM
• Consider the linear 1D advection equation:

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 0
• POD based RBM: u ≈ 𝜙𝜙(𝑥𝑥) �𝜕𝜕(𝑡𝑡)

𝜙𝜙
𝑑𝑑�𝜕𝜕
𝑑𝑑𝑡𝑡

= − 𝝓𝝓 �𝒖𝒖
𝑑𝑑𝝓𝝓
𝑑𝑑𝑥𝑥

�𝒖𝒖 ≈ 𝑁𝑁(𝜕𝜕)

• POD-DEIM based RBM:
• Approximates nonlinear term
• Evaluates nonlinear term only at certain points in the domain, which are determined

using a greedy algorithm referred as Discrete Empirical Interpolation Method (DEIM)1

POD Modes of 
nonlinear term

Field 𝜕𝜕

POD Modes of 
solution

Initial Mode 
Coefficients

• Time evolve mode 
coefficients

• Reconstruct 𝜕𝜕
• Compute 

nonlinear term at 
every point (POD 
based RBM) or at 
selected points 
(POD-DEIM 
based RBM)

Reconstruct 
solution

Unknown

Known

1D gridDEIM 
points

1Chaturantabut & Sorensen, SIAM J. Sci., 32 (2010) 
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ROM Enabled CFD Solver
• ROM based approaches implemented within LESLIE1

• LESLIE is a fully compressible, multi-species Navier-Stokes solver2 

• Three stage solution strategy:
– Stage 1: assembly of snapshots
– Stage 2: extraction of POD modes and selection of DEIM points
– Stage 3: computation of ROM solution

• Implementation details:
– All stages are memory intensive compared to a baseline CFD solver: 

challenging for 3D and complex applications
– Stage 1 and 3 are fully parallel: use parallel decomposition
– Stage 2 is serial

• Key Challenges:
– Memory requirements and complex data-structure
– Offline analysis is tedious: parallelization may help or other approaches can 

be considered to reduce memory footprint
1Ranjan et al., AIAA-2018-4871; 2Genin & Menon, AIAA J. (2010)
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Example:1D Complex Ginzburg-Landau Equation
• Complex Ginzburg-Landau equation (GLE):

𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+ 𝜈𝜈
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

= 𝛾𝛾
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝜇𝜇𝜙𝜙 − 𝑎𝑎|𝜙𝜙|2𝜙𝜙
𝑥𝑥 ∈ −50,50

𝜙𝜙 𝑥𝑥 = −50, 𝑡𝑡 = 0,
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

�
𝑥𝑥=50

= 0

• Coefficients 𝜈𝜈 and 𝛾𝛾 are complex leading to complex solution
• Time evolution of solution at a specified location shows a limit cycle 

behavior
• Simulation details: 

– Number of points = 101
– Number of snapshots = 251
– Number of POD modes = 6
– Number of DEIM points = 6

• Results compared at final time T = 200 units
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Example: Comparison of Final Solution

Real part of solution at T = 
200 units

Imaginary part of solution at 
T = 200 units

• Solutions with POD (6 modes) and POD-DEIM (6 modes and 6 DEIM points) 
methods show excellent agreement with exact solution at T = 200 units

• Solution exhibit a limit cycle behavior over a long period of time
• Comparison of cost:

– Exact: 32.5 s, POD: 19.9 s, POD-DEIM: 2.5 s
– Cost reduces by around 16 times with POD-DEIM approach

• Although fewer number of modes yield accurate results, but 251 snapshots 
were used during analysis stage 

Time evolution of real part 
of solution at x = 8.5



Computational Setup
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3D Turbulent Premixed Flame
• LES of freely propagating methane/air 

turbulent premixed flame
• Flame Conditions1,2: 𝜙𝜙 = 0.8, Tref =

300 K, Pref = 1 atm
• Finite-rate kinetics effects employed using 

a 4-step and 8-species mechanism3

• 3D domain with characteristic based 
inflow/outflow boundary conditions and 
periodic conditions in transverse and 
spanwise directions

• Initialization based on laminar solution 
imposed on background turbulent flow 

Schematic of computational domain

1Ranjan et al., CST (2016); 2Panchal et al., CST (2019); 3Peters (2000)

Case Nx x Ny x Nz u’/SL l/𝜹𝜹
A 963 10 6.2

B 1283 50 9.6

Simulation Parameters Premixed flame regime diagram
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Numerical Methodology

• Baseline simulations are performed using LESLIE1:
– Block structured finite-volume solver
– Spatial discretization: hybrid scheme blending 2nd order MacCormack
– Time integration: 2nd order explicit
– Characteristics based boundary conditions
– Power law transport with thermally perfect gas assumption for EoS

• Subgrid-scale (SGS) closures:
– Momentum and energy flux: eddy viscosity based on the SGS turbulent

kinetic energy2

– Turbulent combustion: quasi-laminar chemistry (QL3)
• ROM based LES for each case:

– 100 snapshots saved from baseline simulation for 1 eddy turnover time
– POD and POD-DEIM based ROM performed using different number of

modes and DEIM points
1Genin & Menon, AIAA J. (2010); 2Kim & Menon, (1999); 3Grinstein & Kailasanath, CF (1995)



Results
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Modal Analysis: Eigenvalues

• Normalized eigenvalues shown for some components of state vector and 
nonlinear term: behavior is same in case B

• Eigenvalues decay with increase in mode index: ROM can be performed
• Rate of decay differs for different variables and for nonlinear terms
• Overall 10 modes seem to be adequate

Normalized eigenvalues for Case A

State Vector Nonlinear terms
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Modal Analysis: Spatial Behavior

First mode Second mode Third mode

�𝝆𝝆�𝒖𝒖

�𝝆𝝆�𝒀𝒀𝑪𝑪𝑯𝑯𝟒𝟒

�𝝆𝝆�𝒀𝒀𝑪𝑪𝑶𝑶

Normalized modes shown
for Case A in central x-y
plane
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Analysis using DEIM (Case A)

• Location of points identified by DEIM across the flame brushes for 
representative variables

• Points are concentrated in preheat region and regions of heat release
• Points for thermo-chemical quantities correspond to region of heat release 

as these quantities vary significantly in such regions
• DEIM appropriately responds to underlying dynamics of this problem

Number of POD modes: 10
Number of DEIM points: 10

Number of POD modes: 10
Number of DEIM points: 20
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Structural Features of Flame Brush
• Structure of flame brush 

captured very well by POD 
based ROM compared to 
baseline cases after 1 eddy 
turnover time

• Disruption of initially planar flame 
by turbulent eddies

• Continuous reaction zone as 
expected for flames in TRZ 
regime

• Increase in length scales in post-
flame region due to thermal 
expansion

Baseline POD based ROM
Case B

Case A
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Spatially Averaged Flame Structure

• Comparison of spatially averaged flame structure obtained using POD based ROM 
cases (10 modes) with baseline cases after t/t0 = 1

• Good agreement observed where effect of increase in turbulence level captured by 
POD based ROM
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Spatially Averaged Flame Structure (Case A)
• Comparison of spatially averaged flame 

structure obtained using POD based 
ROM cases with baseline cases after t/t0
= 1

• Effect of increase in number of POD 
modes from k = 10 to k =100 shows no 
significant improvements in results

• Overall, 10-20 modes tend to be 
reasonable

• Profiles of outputs of interest show 
excellent agreement, but differences are 
observed in profiles of reaction rate

• Till t/t0 = 0.5, even reaction rate profiles 
yield excellent agreement (not shown 
here)

Results from Case A at t/t0 = 1
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Time Evolution of Turbulent Flame Speed (Case A)

• Evolution of normalized turbulent flame speed used as a 
global metric to assess accuracy of results from Case A

• A maximum differences by about 8% occurs at final time
• Again, 10-20 modes can be considered adequate 
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Baseline, POD and POD-DEIM (Case A)
• POD-DEIM based ROM observations:

– 10 POD modes considered
– Numerical instability observed beyond t/t0

= 0.5 irrespective of number of DEIM 
points

– Results compared for case with 10 POD 
modes and 10 DEIM points at t/t0 = 0.2

• Profile of temperature show excellent 
agreement with baseline and POD results

• Intermediate species show a minor over-
prediction in peak values

• Reaction rate of fuel is underpredicted: 
only at 10 points evaluation of reaction 
rate performed with POD-DEIM based 
ROM

• Instability tend to be associated with 
thermodynamics
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Instability with POD-DEIM based ROM (Case A)

• Contours of temperature shown in central plane at t/t0 = 0.24 for Case A
• Abrupt increase and decrease in temperature occurs in POD-DEIM near 

flame region
• Further analysis underway (results from these studies will be included):

– Increase in DEIM points do not improve results
– Increase in POD modes for fixed number of DEIM points being evaluated
– Evolution of extremum of pressure field underway

Baseline POD POD-DEIM
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Summary and Future Directions
• Assessment of high-fidelity ROM approaches for LES of  canonical 

chemically reacting turbulent flows
• Two ROM strategies considered: POD and POD-DEIM
• Both approaches are implemented in a well-established multiphysics

compressible flow solver
• POD based ROM yields good agreement with baseline results for flames 

interacting with different levels of turbulence
• POD-DEIM showed onset of spurious numerical oscillations after certain 

time leading to divergence of results
• Further studies:

– Improve computational efficiency of offline analysis stage
– Assess stability aspects of POD-DEIM in terms of role of 

thermodynamics
– Reduce memory footprint to allow for efficient simulation of practical 

systems and simplify data-structure
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Thank You

Questions?

Case A Case B
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