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ABSTRACT

Exurban development is the fastest growing form of land use in the southeastemh US a
the primary driver of habitat and biodiversity loss. Species with long geretines such as
the eastern box turtl§ érrapene carolina carolinagan persist in an urbanizing environment but
have higher mortality than in forested habitat and show a response lag which diselysrdef
population decline. | quantify land use and land cover change over a forty year pguloutdoy
interpreting historic imagery that is orthorectified using a direct ditraasformation model. A
GIS database is created for three study sites and landscape patigrachttatietermine the
effects of historic land use on the eastern box turtle habitat using a sundsifdpe metrics. A
core habitat loss model is created usingcitre patch metric and box turtle life history traits,
home range diameter, dispersal distance and re-generation. Spatialesttittagmentation
across time is characterized using global and local autocorrelatictictadind residual analysis
of ordinary least squares (OLS) and geographically weighted regresdiiR)(@odels using
core as dependent variable and area, perimeter and mean slope as indepeallast. vari
Increasing fragmentation and road density over time is indicated by thedpadsetrics for site
2 and 3. Regression model residual analysis suggests that the fragmematiat site 2 is
clumped and scattered at site 3. All three sites lost forest and agrico#ar@na show an
increase in urban and transportation area. Significantly 20% of the area osdieiryi
converted to urban land use since 1963. The rate per year of core forest lest ahdi2 is
decreasing and increasing at site 3 where the highest rate per gess fifrest habitat loss was
8% between 1997 and 2007. Rate of core habitat loss per year is decreasing at sitentland 3 a

increasing at site 2 which lost 6% between 1997 and 2007. These rates of habitat Ie$s sugge



that site 1 could sustain three generations of box turtles until all core hasitdishppeared.
However, sites 2 and 3 could not sustain one generation of box turtles until all core sabitat i

gone.
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INTRODUCTION

Exurban and Edge Effects

For the first time in a century there are more people moving to rural areastthaities,
which places increasing pressure on the wildland-urban interface (Brakr2605, Hansen et
al. 2005, Turner et al. 2003, Wear and Greis 2002). Exurban development, that is, loy-densit
housing (< 25 homes/km?) in a landscape dominated by native vegetation occurs along major
roads and in isolated natural areas, resulting in fragmentation of theandstape (Hansen et
al. 2005, Weng 2007). This type of development is the fastest growing form of land use in the
United States, and has increased from 5% of land in 1950 to 25% in 2000 (Brown et al. 2005).
Land use change of this form in the southeastern United States impactsdpegitixin of land
cover types by fragmenting and reducing the core interior of a once contiguests
Moreover, introduction oédge effectsanprofoundly impact how free ranging organisms use

and move through a heterogeneous landscape (Dale et al. 2005, Hilty et al. 2006).

Biodiversity Loss and Fragmentation

The unprecedented scale of natural areas converted for human use is the pruaaof dri
biodiversity loss (Forman and Godron 1986, Gagne and Fahrig 2007, Gardner and Urban 2007).
Specifically, smaller and less vagile vertebrates such as amphélbeadeclining regionally and
globally due to habitat loss (Vos and Chardon 1998, Blaustein et al. 1994, Gibbons et al. 2000).
Rate of habitat loss may impact wildlife populations more than the actual loagmehtation

of habitat (Schrott et al. 2005a). Species with long generation times sucleastdra box



turtle (Terrapene carolina carolinacan persist in an urbanized environment but suffer higher
mortality than in forested habitat and show a response lag to habitat lobsdetaigs detection

of population decline (Budischak et al. 2006, Dodd 2001, Ernst et al. 1994, Fahrig 2001). Turtles
being K-selected vertebrates are characterized by long lives, lavitmeent rates and delayed

sexual maturity with high adult survival rates, making mature individuassspéor long periods

within the landscape (Congdon et al. 1993). Because of their specialized naotdlityabitat
specificity, many box turtle populations in eastern North America exisbliatéxl forest

fragments in urban and suburban areas (Nazdrowicz et al. 2008, Klemens et aln@d@20) a

become functionally extinct (Dodd 2001, Wilson pers. comm.).

Landscape Pattern and Fragmentation

Within the current context of rapid landscape change, there are few stuthiespécific
effects of urban and exurban expansion on biodiversity (Hansen et al. 2005). Miller and Hobbs
(2002) reviewed 217 landscape studies in recent volumes of Conservation Biology and only 6%
are related to exurban and urban land use. There is an urgent landscape managenoent need t
understand and predict the impact of exurban development and increased road densiigten the
of habitat loss and the effects on biodiversity (Hawbaker et al. 2006, Sclab®2@d5a). In
response to this need, there is a growing demand by public and private conservatiowl and |
management organizations for quantitative data of landscape pattern changaitand ha
fragmentation for effective conservation policy guidelines (Gustafson 199&Tetral. 2001,

Vos and Chardon 1998).



Rates of Habitat Loss

Landscape ecological theory suggests the rate of habitat change igiticaie@
wildlife population viability than the pattern of change (Forman et al. 2003). The radéitdt
loss is unique to each landscape and cannot be extrapolated from landscapes thmatléiave s
amounts of habitat and fragmentation but dissimilar disturbance historiest{®ttal. 2005b).
When the rate of landscape change exceeds the re-generation time of the ppeaiasons
may exhibit a lagged response to habitat loss (Schrott et al.)200%&rate of change is a
spatio-temporal gradient which varies across a landscape and gesifecgSchrott et al.
2005a). An important research priority is the rate of disturbance patteheslandscape such

as an increase in road density (Forman et al. 2003).

Roads Density and Small Vertebrates

Exurban development increases road density which bisects otherwise continutats habi
Animal populations are fragmented by roads which can act as barriers & arorement either
through avoidance or mortality (Forman et al. 2003, Shepard et al. 20R&ad. kill of small
vertebrates is not well documented when compared to large mammals (Tronmalfisaell
2000). However, Allard (1935, 338) reported from the Washington DC area thgréthte
scourge in the box turtle’s life” is getting crushed by passing cars on theayighand Klemens
(2000, 22) defines roads as a box turtle “kill zone”. Reptiles and amphibians thatdsveate
migrations as part of their natural history are particularly vulnerable to (dagisco 2003,
Dodd 2001, Fahrig et al. 1995, Gibbons et al. 2000, Shepard et al. 2008b, Steen and Gibbs 2003,

2004, Steen et al. 2006, Trombulak and Frissell 2000). Mortality of female freshuvtésr
3



when crossing roads on nesting migrations can be the cause of populations indheeUS
increasingly male biased which will make turtle populations decliree(Sind Gibbs 2004,
Steen et al. 2006). For example, the mortality rate of turtle populations in theasiatn US is
partly due to road fatalities that are greater than 5% annually, and escsémiaable levels
(Steen and Gibbs 2004). Road density in the US is ~ 6.5 million km, and exerts a significant
ecological footprint on the landscape (Forman et al. 2003). Negative effectxls are often
underestimated but are recognized as drivers of land use change and habigithagn

(Hawbaker et al. 2006, Turner et al. 1996, Vos and Chardon 1998).

Habitat and Landscape Change Detection Rationale

Land cover data compiled from satellite imagery (i.e., Landsat TM and M®negg),
aerial photography, a combination of the two or computer-simulated landscapeiaionally
used for landscape pattern analysis (Burgii et al. 2002, Pearson et al. 1999 ali@d@l,
Turner et al. 1996, Wear and Bolstad 1998, Wickham et al. 2007; (Appendices A-1 & 2).
Whether using historic aerial photography or satellite imagery theresaetrens to consider.
Fewer landscape studies strictly use historic aerial photography becavsdatfility and
resolution constraints (Freeman et al. 2003, Hawbaker et al. 2006, Bartel(81. The
earliest systematic collection of satellite imagery is in 19@&ftandsat 1, and is limited by
insufficient spatial resolution. While conducting national level landscape chianijessor the
US Geological Survey, Brown et al. (2005) remarks that Landsat imageryhadesblution to
detect changes in natural habitats within metropolitan areas. Another soaroa @fith
satellite imagery is the difference in solar illumination of rugged teftdichol and Wong

2008). The use of spectral signature algorithms, i.e., Normalized Differegstation Index
4



(NDVI) introduces another potential source of misinterpretation error. fBonge, a Loblolly
Pine plantation, which is a commercial or agricultural land use, would have thasigaatere as
a natural conifer forest. However, manual photo interpretation would distinguish tistamns
row pattern to be a manmade and not natural construct (Lillesand et al. 2008). These
shortcomings of satellite imagery however, are offset by the resoueosiitgtof manual photo
interpretation and the project specific availability of aerial phopdgra

Landscape pattern and habitat fragmentation analyses are custooadlilgted using
traditional landscape metrics software programs such as Fragssajstéies Landscape Ecology
Programvers 3.3-4; McGarigal et al. 2002). More recently, landscape ecologists are using
spatial statistics and spatial regression models for species and &idlias to explore the
spatial effects of autocorrelation and heterogeneity in spatial datarfRgtieem et al. 2002,
Legendre 1993). Heterogeneity of a landscape impacts organisms whéraltiair is
fragmented anddge effectand dispersal distances are important (Hilty et al. 2006, Turner et al.

2001).

Spatial Effects and Land Use Change Data Rationale

Spatial structures are traditionally considered by ecologists marawtance than
source of information about the landscape (Legendre and Fortin 1989). There araitw
categories of spatial effects, which are spatial autocorrelation, tleatislations among
neighbors over space, and spatial heterogeneity, which is variation ove(Zpaicg et al.
2008). With spatial data, there usually is a relationship between variables|dicatitn
dependent, that is, different from one location to another. Spatial heterogeneity (non-

stationarity) is when the linear relationship between variables is not coastass the



geographic area of interest (Zhang et al. 2008). This patch dynamic is a pvbmdssgaries in
space and time as a result of disturbances that differ in frequency, intezsitgnd shape
(Turner et al. 2001). “Spatial structure is a mix of both induced spatial dependenaca(iable
response to the spatial structure of exogenous process) and inherent spatsaiedatioa (i.e.,
inherent in the ecological process of the variable of interest)” (Fortirbale 2005, 124).

Global Moran’s | is used to determine autocorrelation and is similar tsdtesr
correlation coefficient, whereas the Local Moran’s | (LISA) statishows how neighboring
values are associated with each other (Fortin and Melles 2009). The LISAcstaimplements
Fragstats classification based analysis in interpretation of thalspatingement of data in the
landscape (Southworth et al. 2004). Geographically Weighted Regression (&W/i)atively
recent addition to the spatial ecology toolbox and is used to model wildlife distribaton)se
change, climate change, forestry stands and is used with landscape rGéties$ &l. 2009,
Foody 2003, Foody 2004, Fortin and Melles 2009, Guo et al. 2008, Kimsey et al. 2008, Kupfer
and Farris 2007, Osborne and Suarez-Seoane 2002, Osborne et al. 2007, Platt 2004, Shi et al.

2006, Wimberly et al. 2008, Zhang et al. 2008).

Research Objectives

The spatial structure of Hamilton County is strongly influenced by the addevalley
topography of the Tennessee Valley, with its closely furrowed ridgebdlia a northeast-
southwest trend and the flood plain of the Tennessee River which cuts the county in half. The
southeastern limits are defined by steep forested slopes of the AppalachiaaiMoand its
northwestern limits by the Cumberland Plateau Escarpment (Amick 1934 cH@osing three

study sites located in northern Hamilton County to process and photo interpret 40fyears
6



historic aerial photography to create a set of temporal land use and landa@asets. Specific
objectives Include:

1. Create orthorectified imagery using fine scale historic aerial photogoaen
the last 40 years at three sites in Hamilton County that is suitable for photo
interpretation.

2. Photo interpret imagery using a land use land cover (LULC) classificatieme
and creating a GIS database that can be implemented in a temporal and &ox turtl
habitat model analysis.

3. Create eastern box turtle and temporal LULC change models that caedbéofitt
statistical analysis.

4. Perform analysis using landscape ecology metrics, autoregressiyeaintl s
statistics and map fragmentation patterns and box turtle habitat changdlthat wi

expedite inferences about fragmentation trends and box turtle conservation.

METHODS AND MATERIALS

Study Site Descriptions

Site 1 was in the Soddy Daisy Municipality, flanked on the northwest by the Camderl
Escarpment and on the southeast by Highway 27 and encompassed the old town of Soddy and
the Highway 111 / 27 Interchange. The southeast was bounded where Soddy Creekr@mpties i
Soddy Lake and was in the Soddy Creek Watershed. Dominant forest communitiedrigr the
slopes of the Cumberland Escarpment are Dry-Mesic Oak of Middle and EassJem(idinkle

1989, quoted in Tennessee GAP Analysis Land Cover Manuel 2006) and Loblolly Pine



Plantation (pers. obs.). Mixed Mesophytic Hardwood Forest is in protectecbatbas
escarpment slopes, coves and deep ravines (Hinkle 1989, quoted in Tennessee GAP Analysis
Land Cover Manuel 2006). The lower elevations were predominately open land aith sm
upland patches of Xeric to Mesic Mixed Conifer/Hardwoods (Figure 1).

Site 2 was in the Chattanooga Municipality between the Soddy Daisy and Red Bank
Municipalities, flanked northwest by the Cumberland Escarpment and Highway 2fedent
around the Highway 153 and the 27 Interchange and North Chickamauga Creekin ltheas
Lower North Chickamauga Creek Watershed. Dominant forest communitiBsyakéesic Oak
Forest and Xeric-Dry Oak Forest of Middle and East Tennessee mixed witfaopdn the
lower elevations.

Site 3 encompassed the Lakesite Municipality, approximately 70% is uninataghor
The southern end included Dallas Bay and the northern tip of Big Ridge which at 305 ime was t
highest elevation in site 3. Tennessee Valley Authority (TVA) SequoyaledRRlant was
approximately 0.9 km (0.6 miles) east. This site was in the Tennessee Ritezshéd.

Dominant forest communities were Dry Mesic Oak Forest and Xeric-RkyForest of Middle
and East Tennessee and there was a patch of White Pine/Hemlock Forest in the axadhefr
the site.

The above mentioned floristic references of tree species were frddatiomal
Vegetation Classification System (NVCS) vegetation alliance grgugfithe TNveg database

Metadata (Tennessee GAP Analysis Land Cover Manuel 2006; Appendix C).
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Figure 1. Vicinity map of study sites in Hamilton Countyefinesseea) Site 1 was in the Soddy Creek Watershed.
This site was bound by Highway 27 on the southaagton the northwest by the Cumberland Platep8ite 2 was
in the Lower North Chickamauga Creek Watershed, allsng Highway 27 around the Highway 153/27 Irtarge
and North Chickamauga Cree&) Site 3 was in the Tennessee River Watershed,étlas Bay and the northern

tip of Big Ridge along the southeast boundary.



Spatial pattern of geophysical phenomena has been reported to influenceldata wi
anisotropy, a spatial effect that had a dominant gradient and will be edfiadhe metric results
(Gustafson 1998, Wu et al. 2002). My study areas had a northeast to southwest trendyfollowin
the ridge and valley topography of Hamilton County, which was also mirrored bythesste
linear rectangular shape, inherited from the aerial photography fimgdst liThis anisotropy may
have precluded the application of parametric statistical analysis btivotd the assumption of

stationarity of the data.

Data Acquisition
Countywide comprehensive coverage of panchromatic aerial photography for 1997 was
readily available from the State of Tennessee Base Mapping Perjd@007 color
orthophotography was obtained from Aerials Express (a private consultantgrid-herial film
was obtained from the TVA Historic Aerial Photography Repository (Tabl&tlidy site
selection was dictated by availability of photography, thus was not rapadtiwdéen. However,
this did not affect assumptions of statistics because the extent of easlasiexhaustively
sampled (Fortin and Dale 2005); but, selection of parametric tests and landsiegewas

sensitive to site extent and spatial resolution (i.e., pixel size).

Orthorectification

Each 9 in. x 9 in. frame of film was scanned at 1000 dpi using a roll film scanner
(Vexcel® Ultra Scan 5000). |then co-registered the historic framiet1997 orthophoto by
selecting six to nine evenly spaced known tie points on the base orthophoto and selected th

same point with precision on the historic aerial photo (Leica® Photogragn8igte Autosync
10



Table 1. Source list of aerial photography, DEM, road wedtata. All of the historic aerial photographgrfr the
TVA Repository was the same scale 1:12000.

Date Project Scale Resolution Allztlil'[ngTjte Medium Source
10/02/1963| Dev. Hwy 27 1:12,000 Historic
03/11/1972| Pump Storage 1:12,000 6.000 ft panchromatic
10/21/1977| Milfoil Studies 1:12,000 a,bove " | aerial Tennessee
06/09/1980| Sequoyah Nuclear| 1:12,000 101t mean photography | Valley
Plant T round Authority
09/06/1984| Milfoil Studies 1:12,000 I%vel 1984 color Repository
negative
02/21/1985| Flood Studies 1:12,000 panchromatic
corretg?epdh?r?m State of
1997 _ 1:30,000 2.0 ft. _ anchromatic Tennessee
1:7,600 0.5 ft. gerial Base Mapping
photography Program
Digital color
fltszoo?/e orthophqto Aerials
5/1/2007 ~ ~ 0.5m . from aerial
mean digital Express
ground gita
level camera
Hamilton
County
Parcel Data: | Hamilton
1997 ~ ~ ~ ~ Edge-of- County GIS
pavement Department
line
shapefiles
. USDA/NRCS
National (downloaded
04/2007 ~ 1:24,000 10m ~ | Elevation f
rom Data
Data (NED) G
ateway)

11



software Version 9.1; Okeke and Karnieli 2006). The easiest locationgabimgmanual

control were road intersections because they usually had not relocated timeughd stood

out on the low contrast historic photos (Freeman et al. 2003). | looked for tie points located
within the 60% overlap of the historic photos. | chose a Direct Linear Transionmnaodel to
geometrically correct the input images. This model was a good approxinatioanhe

cameras without calibration reports and it used a DEM for 3D transformatiorotoaidgally
place control points (Leica 2007). Each registered historic photo was “draped’Iiven a
resolution DEM to reduce vertical displacement (Leica GeosystemsnienAgtosync™ 9.1
software, 2007; Freeman et al. 2003, Wear 1998). During the process of solving theeacidel
photo was geographically referenced with each control point from both the babe &nstdric
images and tie points were automatically generated (an average rafrhBBrtie points).

The accuracy of how well the calculated solution of the rectification prdittesisthe
original data was a measure of the residual of the x and y axes for e&ch point and was
reported with a root mean square error determination (RMSE) value. | eevibese results,
deleting points with a RMSE > 8 m. In some cases, | deleted or adjusted mansaapadireg-
ran the model for a better fit. RMSE errors reported were often not connediqubgitional
errors so they could be misleading. Hence, it was possible to collect too feal poirits and
still maintain a low RMSE (Rocchini and Di Rita 2005) so it was necessary tdlyisispect
the rectified historic image with the ortho-rectified reference andge-sampled the block, and
repeated this process for each historic frame of film. | then edgdedathe resulting

individual orthophotos to create a mosaic for each study area with 0.5 m pdleticn,
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projected into Tennessee State Plane North American Datum (NAD83) withnufieies

(Freeman et al. 2003).

Temporal Resolution

Transportation vector data was obtained from the parcel mapping component ofgéhe Sta
of Tennessee Base Mapping Project for 1997. | photo interpreted land cousrddiaim the
1997 orthophoto first because this dataset would be the template (point of departuee) for th
subsequent datasets. The land cover features were classified with a maaifezdoh
classification system using the heads-up digitizing technique (Tabl@ér2screen photo
interpretation was supplemented with a stereoscope to obtain synoptic view. niinemni
mapping unit (MMU) used was 0.5 hectare.

| copied the 1997 dataset to create the next dataset and modified it witbahst y
imagery. If a polygon was unchanged, | left it alone, according to methodasdegyby Comber
et al. (2003). This was an iterative process of deleting, reshaping or addung$eo conform
to the imagery. This process was repeated for each study site foreaactvhich resulted in
thirteen datasets. Overall, the technique of using each dataset as teonpletenéxt dataset
avoided some of the common cartographic issues and uncertainty that could aniskeendaane

area was mapped on two occasions.

Data Clean up and Metrics
| analyzed the datasets using Fragstats landscape metrics agvieise-Ifeature (patch,
class (land use land cover (LULC) type) and landscape (year). | used a subssé ohetrics

which considers patch type adjacency, (such as the calculations of neajeisbr)ebr were
13



Table 2. Classification Codés Modified Anderson Classification System (Anderst al. 1976).

Code Type Description ;A)Cglgver
1 Urban Residential, commercial, light industry 50-100%
14 Transportation Roads, railroads, airports 100%
145 Txline ROW  Electric transmission right of way 100%
2 Agriculture Pasture, crops 50-100%
3 Range land Shrubs and/or small trees, usually 0.5to 5 m tago_loo%

with individuals or clumps widely spaced not
touching generally forming >25% canopy cover

4 Forest Trees usually over 5 m tall, crowns interlocking  60-100%
47 Plantation Commercial tree farm 100%

5 Water Lakes, ponds, rivers 100%

6 Wetland All wetlands 100%

7 Barren land Disturbed, without structures or vegetation cover  100%

14



based on edge length to calculate segments that represent true edge. r Hbesvenetrics did
not recognize when segments are artificially truncated by the study bght#zarigal et al.
2002). In order to address this problem, | created a buffer strip (i.e., border), wiaimded
the study area boundary of each dataset. This border strip area was natezhloubther
metrics involved in the analysis (i.e., such as area quantification). Edfatis artificial edge
imposed on patches by the site boundary were mitigated by this processq@u$e48).

| created an edge depth file with tb@re patch metric to measure what constituted the
core area of a habitat patch (Table 3). The edge depth file wastanesisoefficient matrix
which represented the distance at which edge effects penetrated ifth.aTas weighting
scheme provided unique edge depths (m) for each edge type (i.e., each pair wisatcmmfi
patch types). Resistance coefficients indbiee metric specified edge depth at 300 m between
non-habitat matrix (i.e., roads, urban) and 0 depth between habitat matrix (i.e, donesiture,

transmission line right-of-way (txline ROW).

Accuracy Assessment

Uncertainty issues of polygon boundary detection in land cover mapping have been
reported in the literature to compound with land cover change analysis and can lead to
inappropriate inference in subsequent analysis (Lo and Yeung 2007, Longley et al. 2001).
Hence, accuracy assessment was impacted by a variety of factolnswene magnified with
land cover change maps. Examples of such influences were conditions at the nrageof i
acquisition, mis-registration of datasets, thematic classification &nd aggregation of

heterogeneous polygons (Foody 2002).
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Table 3. Edge weight file used witbore metrics. The buffer around potential core tuntiitat patches
agriculture, rangeland, forest, plantation, wetland txline ROW was the maximum 300 m when thesehpa
boundaries were coincident with transportation pegc All transportation and urban patches hadduffer.
The 50 m was for patches coincident with waterwhdn certain potential core habitat patches weircment
with each other.

Numeric | Land Use Class 1 2 3 4 47 5 6 7 14 145
1| Urban o 0o 0o 0 0 0 0O O o0 o0
2 | Agriculture 50 0 0 O 5 O O 0 300 O
3 | Rangeland 50 0 O 50 50 50 50 O 300 0
4 | Forest * 300 0 0 0O O O O 50 300 O
47 | Plantation 30050 50 0O O 50 O 50 300 O
5 | Water 50 50 50 50 50 O 50 50 50 50
6 | Wetland 300 50 50 O O 50 O 50 300 50
7 | Barren O 0 O 50 50 50 50 O 300 50
14| Transportation oo o0 o o o o0 o 0 0
145 | Txline ROW 300 0 0 0O O O O 030 O

*Focal habitat patch
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After all land cover maps were completed, assessment of attribute andi¢heesnatacy was
estimated by an independent, expert photo interpreter employed by TVA. Saropngrs
were randomly selected, comprising 10% of the total dataset area withuaa@y requirement
of 90% of each sample. This was within the US National Map Accuracy Standards for
horizontal ground accuracy of geospatial data that USGS specified for mapsioatjmurbl
scales larger than 1:20,000 and not more than 10% of the points tested could be in error by more
than 0.03333 inch (0.1 cm) on the map. | used the equation:
0.03333 x 12,000 x 2.54 / 100
This would be 10.2 m on a 1:12,000 scale map. (US Geological Survey

http://rockyweb.cr.usgs.gov/nmpstds/nmas.html accessed 10/31/2009

Development of Box Turtle Habitat Model

Life history records and observations of the eastern box turtle have repottége: tha
eastern box turtle used multiple habitat types, mesic forests for tregyutation and
overwintering, and fields and open areas for nesting sites and basking (Dodd 2004t, &lrns
1994). As a habitat generali3t, c. carolinahas been reported to have less restrictive habitat
requirements for dispersal than a specialist. | developed a habitat mattel éastern box
turtle to explore how habitat loss affected the capacity of the landscayeptartstheoretical box
turtle populations (Schrott et al. 2005a). Empirical data on the eastern box spéeds
ecology for Hamilton County was absent, but life-history derived from thetliteraould be
used as a surrogate (Congdon et al. 1993, Pearson et al. 1999). | was speci@oadieain
these traits: area sensitivity, home range size, dispersal abilagjrigrhabits and length of time

for cohort re-generation (Schrott et al. 2005a; and see Appendix B).
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A box turtle’s success in traversing an inhospitable or (i.e., roads, subdivismhsubt
optimal (i.e., plantation and transmission line ROW) matrix will be influencetidglistance to
the patch and the turtle’s ability to find a corridor through the matrix (idtlgl. 2006). |
averaged the home range diameter and dispersal distance of the eastertelitatuvas
reported in the literature which resulted in a home range area with a 266 etetiéhable 4).
Therefore, | defined the box turtle minimum home range diameter andséikgistance as 300
m (Bender et al. 2003). The radius distance parameter of the proximity patchatse was
defined as 300 m. Hence, the proximity metric measured the distance betwees thatche
represented the dispersal capacity of the box turtle on average (Bead@0863, Dodd 2001,
Dolbeer 1971, Donaldson and Echternacht 2005, Ernst et al. 1994, Gustafson and Parker 1994,
Gustafson et al. 1994, Stickel 1989). Huge effectesponse | modeled for box turtles was
based on their lack of avoidance of edges that acted as dispersal iagriexsads), and

subsequently, box turtles needed additional protection from the effects of edges.

Core Habitat and Edge Effects
In this model the capacity of the landscape to support box turtle populations wasatdnsthe
amount of forested habitat that was not juxtaposed to roads and urban development.nAfmargi
safety interfacing a core box turtle habitat patch and an inhospitable masritefined using a
300 m buffer. In this scenario, the matrix functioned as a dispersal sink betweahpgeatblies
(Hilty et al. 2006) because the matrix was either sub-optimal or inhospitaigle relative to the
habitat patches and the distance between habitat patches can be large. Edges dthacent

to potential open areas for nest site selection by females were noedssigeight in the edge

18



depth between a forest patch and agriculture, range, plantation and txline ROW becmnisd
to make a distinction between hospitable and inhospitable matrix (Table 4). Thejandsc
metric parameters for the core habitat model were:

e Proximitymeasure > 1000 (unit less)

e Core>0 (ha)
Potential box turtle land use classes weseest, Agriculture, TXline ROW, Wetlands, Plantation
and Rangeland Each box turtle habitat subset was created by deletingralpatches with
values less than 0 and those that priakimity values less than 1000 (Microsoft Office Excel
2007). Proximity values were relative, the larger value associated with a clumping foictide
patch.

Vulnerability to Habitat Loss
This model evaluated the sensitivity of the box turtle response to habitat losshilifhefaa
box turtle population to persist in the landscape has been reported to be affectedhteydhe
habitat loss which was calculated from current and historic land use changeulddrability
threshold has been defined as a measure of sensitivity to the rate of habaatlegs
calculated by scaling the rate of box turtle re-generation timé 1o the rate of habitat loss (r )
(Schrott et al. 2005a). Rate of habitat loss was calculated by dividing the bhbitge Ah =
total area) of habitat lost withnumber of yearshj by x number of years that have laps&@))
by the total core area (ha) of habitat of the previous detdgde (

r=[(Ah)/h?)]
The definition of box turtle re-generation time | employed in this model way#nage

length of time between birth of an individual and the age its own offspring reprodwaisd B).
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Table 4. Summary ofTerrapene carolina carolindaome range statistics from literature but see ttehal. 1994,

Dodd 2001
Linear
Area (ha) Distance (m) State Reference
Range Mean Min. Max.

1 03-0.6 ~ ~ ~ 89 — 265 TN Davis 1981

TN Dolbeer 1971

1.88 Donaldson et al.
2 (+.49) 0.28 6.5 TN 2005
3 ~ ~ ~ ~ 228 NY Nichols 1939
4 ~ ~ ~ ~ 167 PA Strang 1983
Williams et al.
5 ~ ~ ~ ~ 1713 176.49% IN 1987
1.208 :
6 1130 MD Stickel 1989
7 ~ 174 57 469 ~ MD Hall 1999
Outside 300 m Home Range
1 ~ 323 0 408 ~ MD Hall 1999
2 ~ ~ ~ ~ 457-716 MD Stickel 1989
Summed
Average
266
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Table 5. Cohort re-generation sources used to deterthbox turtle re-generation time and to calculhée
lagged response of a population to the rate ofthiloiss.

Annual

Age at Cohort Pop.

reproductive generation Annual  Growth
Species maturity (yrs.) ¢) time (yrs.) Rate Rate {)  Source

range  mean mean

Emydoidea
blandingii 14 to 20 37.5 0.03 Congdon et al. 1993
Terrapene carolina Wilson pers. obs.
carolina 20.0 (unpubl. data)
Terrapene carolina
carolina 18.0 Ernst et al. 1994
Clemmys insculpta 14 to 18 16.0 Ernst et al. 1994
Chelydra serpentina 11 to 16 12.0 25 0.04 Congdon et al. 1994
Clemmys insculpta 12.0 Garber et al. 1995
Terrapene ornata
ornata 1.0060 Converse et al. 2005
Terrapene carolina
ornata 1.0200 Bowen et al. 2004
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| used Congdon’s cohort generation time of 37.5 years because the reproductigg ecol
of Emydoidea blandingivas similar tolerrapene carolina carolin@Vilson pers. obs).

Box turtle re-generation time was calculated as:

A =1/37.5=0.03 (2.67%lyr.)
Number of generations of box turtle until core habitat = 0
[h /(cumulativeAh )(Ar)]

Box turtle populations have been reported to exhibit a lagged response to habitat fodsewhe
rate of loss was greater than turtle re-generation rate:

r > M

Data Analysis

Landscape Change Pattern Analysis

Landscape metrics have been reported to be highly correlated, and most oftieva
of spatial heterogeneity in landscape pattern has been explained by five indépende
compositional components which were: average patch compaction, overall ixtage, te
average patch shape, patch perimeter-area scaling and number of atagsge Riitters et al.
1995). Eastern box turtle core habitat was quantified with the following patch letretsn
which were:

1. area

2. core
3. perimeter
4. proximity index

Thecoremetric was a very useful metric in determining core habitat patdimesdent with non

habitat patches because it selectively defined a buffer around the habitat patphoxirniy
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metric did a good job of determining patches within proximity of other hgtatahes, however,
did not adequately differentiate between inhospitable matrix (i.e., roads, wrelessentially
dispersal barriers) and hospitable matrix.

Because each study site was a magnitude larger than the next, | chas® thredtr
showed consistent and linear scaling relations with respect to extent and caxtichpel&ted or
interpolated across spatial scales for comparisons between stud\W\sit28@4). Fragstats class
level metrics were evaluated for pattern analysis via graphs and bar chagtmetrics used to

make comparisons between study sites were as follows:

total edge

number of patches
class area

landscape shape index

PwpbPE

For characterization of fragmentation patterns across each studyrsitaded the
following indices:

patch density

largest patch index

area weighted mean patch size
area weighted mean shape index
area weighed mean core area index

agrwnE

Themeshlandscape level metric was used to characterize road density anfifratgnentation
across the landscape of each study site. Forman et al. (2003) have deseshsde, the area

of patches enclosed within a network, as an effective measure of how roaasdyate affected

the landscapeMeshsize was defined to be inversely related to road density. Road density
equaled the total length of roads in unit area (Forman and Godron 1986, Hawbaker et al. 2006),
as road density increasedeshsize shrank. Effectiveneshsize included the parameters of

pattern and width of road zone, as fragments got smaller, the landscape waontdlegpatchy
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and isolated (Forman and Godron 1986). Effectieshsize has been used as a suitable proxy
measure for assessment of relationships between structural propamtissape function and the
direction of landscape change (Jaeger 2000). | listed all Fragstatssmstd in the statistical
analysis with their acronyms in Table 6, and Appendix C can be referencexinplete metric

derivation.

Statistical Analysis

Normality and homogeneity of variance of dependent variables were tested and when
those assumptions were not met, hliggansformed the data. Each study site was analyzed
separately because of the varying extents. Variables used in this anedyesi

1. area log
2. perim_log

Categorical variables used:

1. yr
2. type

The effect of time on the area and perimeter of patch #gasulture, Forest, Urban
and Transportatiorwas tested with a Repeated Measures first order autoregressive ntbhdel wi
PROC MIXED(SAS Institute Inc., 20083 = 0.05). Proc Mixed estimated the covariance
parameters using the method of restricted maximum likelihood (REML). HBhtefder
autoregressive covariance structure has been used for observations that have ®ddeghiv
correlated when they were closer in time than when farther apart. Tiee data has been

reported to be autocorrelated and the effect on regression models could inflateniieeof
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Table 6. Fragstats metrics with their acronyms. (a) Pdtolrel metrics used to measure eastern box turbéadta
change. (b) Class level metrics for descriptivéistias, characterizing fragmentation. (¢) Landsckgvelmesh

metric characterized road density. See Appendiar@éfinitions of each metric.

b)

Patch Level

Area (AREA)

Proximity Index (P

Euclidian Nearest Neighbor (ENN)

Shape Index (sh

CORE (CORE)

Class Level

Class Area (CA)

Number of Patches (NP)

Total Edge (TE)

Landscape Shape Index (LSI)

Patch Density (PD)

Percent of landscape (Pland)
Largest Patch Index (LPI)

Area Weighted Mean Patch Size (AREA _AM)
Area Weighted Mean Shape Index (SHAPE_AM)
Area Weighted Mean Core Area Index (CAI_AM)
Landscape L evel

Mesh mesh
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coefficients (Hawbaker et al. 2006). Autoregressive models incorporated tornrstauctures to
account for autocorrelation.

| used a Student’s Paired T-Test to test the relationship of vaauaalelogof forestand
agriculturetypewith area_logof urban andtransportationtype (Microsoft Office Excel 2007;
one-tailedo = 0.05;df = 4, Site 1df = 3, Site 2 and 3). Each dataset was tested with Mauchly’s
Criterion test for sphericity betwegearandtype (area_logusing PROC GLM and for
autocorrelation | used a generalized Durbin-Watson Statistic tésPRIOC AUTOREG (SAS

Institute Inc., 2008; p < .0001).

Exploratory Data Analysis

It has been recommended that it is a good idea to conduct exploratory spatial dat
analysis (ESDA) to get an overview of trends with the datasets, such as Eldbdioor and
heterogeneity (Fortin and Melles 2009, Fotheringham et al. 2002, Johnston et al. 2@0dy Lon
et al. 2001, Wong and Lee 2005). Global statistics have been reported to assumedhat spati
relationships were constant across space which may be problematic Wwénergeographic
differences in the relationship (Brunsdon et al. 1996). Spatial statistiesban reported to
offer an option to map and describe spatial variation. The inclusion of spatsicstand
models in landscape ecology research could complement traditional mgplicateons and
may be of increasing interest to landscape ecologists (Kupfer et al. 200My&Sdhtet al.
2004).

In this study, spatial structures (autocorrelation and heterogeweitg)considered part
of the ecological process under investigation (Legendre 1993). | used spatizdstatiderive

pattern and rate of land use change and | evaluated normality of theesvigihl histograms.
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The linear relationship between dependent and independent variables was @vathateatter
plots and collinearity between indicator variables was evaluated withdPéaProduct Moment
correlation coefficients (SAS Institute Inc., 20085 0.05). | constructed separate Ordinary
Least Squares (OLS) and Geographically Weighted Regression (GWdg)siior each dataset
to explain fragmentation of core habitat over time. Autocorrelation and hebtsibgwere
assessed by calculating Global and Local Moran’s | statistics|(BSBIS 9.3 Spatial Analyst,
2008).
| created a new variable for spatial regression analysis:
mean slopewhich was extracted from a USGS 30 M digital elevation model (DEM).
This variable was used as a weight in the models to specify topography influereek istudy
area (Tables 7-1 & 7-2).
Variables used in spatial analysis were:
1. core
2. area
3. perim
4. mean_slope
Core, areaandperimwere derived from the Fragstats analysis. The dependent variable
in these regression models wase, which measured the effective patch size after it was
buffered 300 m from transportation or urban polygons (Hilty et al. 2006). This variabthevas
basis for the box turtle core habitat analysis. Indicator variablesaneaeperimandmean
slope Areawas patch area in hectares and was the principal component that made up the core

area. Perimwas the perimeter of each polygon in meters and was a measure of edge, which

contributed to the shape and location of patches (Hawbaker et al. 2006). The waeiable
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Table 7-1 Description of derivation of variabldgea_log, Perim_logndmean_slope

Variable Description
Area_log Area mLog10 transformed (all land use classes).
Perim_log Perimeter/Area ratio Log10 transformed
Mean Slope - USGS 30 M DEM converted in ArcGIS
Statistical Analysis to slope (degrees) shapefile polygon,
spatial join (one to many) shapefile polygons in dataset to
slope; create summary statistic table with frequency, mean,
Mean_slope

maximum, median, range and standard deviation in ArcGIS
Spatial Statistics Toolbox; joined statistics table to dataset
polygons. The field value is unitless (see Table 7F for
GRIDCODE index).

Table 7-2. Mean Slopevariable values are the GRIDCODE, a unit less remnépresenting the degrees of slope
converted from the 30 Meter USGS DEM raster toapsfile.

GRIDCODE Degrees Slope
1 1-5
2 5-10
3 10-15
4 15-20
5 20-25
6 25-30
7 30-35
8 35-40
9 40-45

10 45-50
11 50-55
12 55-60
13 60-65
14 65-70
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slopehas been reported to influence the core area because of the relationship tetdese
and forest with slope (Fu et al. 2006, Kimsey et al. 2008).

The variablecore had values of 0, so log transformation was not an option. Histograms
for thecorevariable for each data site showed that this variable did not have a normal Gaussia
distribution, and was skewed to the right with high kurtotic values. Varialdesndperim
had a normal distribution, although sites 1 and 2 were negatively skewed, albeit slightly, but
mean slopavas normally distributed (Appendix F). | did not transform the variatie
therefore, | did not log transform the other variables for analysis.

| tested three models which were:

Model  Dependent Variable Independent Variable(s)

A core area
B core area, perim
C core area, perim, mean_slope

| created scatter plots with the dependent variedae on the y axis andrea, perimandmean
slopeindependent variables on the x axis to determine the relationship and createdrisialy

each variable to evaluate normality.

Measures of Autocorrelation

Regression model errors were assessed for autocorrelation byatatcMoran’s |
spatial autocorrelation coefficient for the residual errors (Fortin aglteM2009, Kupfer et al.
2007, Zhang et al. 2008). | evaluated the GWR residuals for autocorrelation ussiglihe
Moran’s | and Local Indicator of Spatial Autocorrelation (LISA) (Ansdl995). Heterogeneity

was explored by analyzing coefficient of determination (R?) and paranus#icient values.
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| assessed clustering and dispersal patterns in each dataseulgtiogl&lobal Moran’s
| autocorrelation coefficient at fixed distance bands 600, 900, 1200 and 1500 m to gain a baseline

trend before regression analysis (ESRI ArcGIS 9.3, 2008)5); (Fortin and Melles 2009).

Moran’s | has been defined by its variables:

TLZZWL']' (xl- - f)(x]— f)
W ¥ (xi- X)?

[ =

wherex; andx were values of the variabkeat sampling locationandj; x was the mean value

of the variableWW was the sum af;; i.e., the number of pairs of sampling locations per distance

class;n was the number of sampling locations. (Wong and Lee 2005, Fortin and Melles 2009).
The Moran’s | evaluated whether the pattern was clustered, dispersedamrand

values ranged from -1 (extreme negative autocorrelation) to 1 (extreitiegoasgtocorrelation).

The Global Moran’s Coefficient was an average value of spatial autotiomeiar all spatial

locations (Fortin and Melles 2009). | plotted the Global Moran’s | coefficienegagainst

distance classes in a correlogram to interpret characteristipatailgattern (Fortin and Dale

2005).

Ordinary Lease Squares Analysis
| used the global regression technique ordinary least squares (OLS) to explpagitie s
relationship ottorewith area, perimandmean slopeand to gain a baseline trend of the pattern

of change of core habitat over time.
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The global regression model has been stated as:

p
i =B+ Zﬁjxij + g
-

]

wherey; was the value of response variaplat location i. o was the intercepfjj was the

slope coefficient for predictor variablex; was the value of predictor varialjlat location, and

€ was the random error term (Kupfer and Farris 2007).

GWR Technique

Spatial non-stationarity of relationships between variables has bisetedieand
accounted for with a GWR model because this technique allowed regressioefeas to vary
in space (Kupfer and Farris 2007, Leung et al. 2000). | used this technique tieskital

regression parameters (Brunsdon et al. 1996). The model for GWR was:

Yi = Bo (Ui, Vi) + Dk Br (Ui, Vi)Xik + &
where(u;, ) was the coordinates of thik point in space angl (u, ) was the realization of the
continuous functioy (u, v)at pointi (Fotheringham et al. 2002Briefly, the GWR estimation
procedure was to draw a circle around a locaticompute a weight for neighboring
observations and estimate the model coefficients using a weighted leassgd@ihang et al.

2008, Leung et al. 2000).

Bandwidth Selection
The weighting function and kernel (i.e., bandwidth which defined the distance decay)

selection were the most critical components of a GWR analysis becaukmpthpaameter
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estimates between the independent variables and the dependent variable uesrecdiby their
selection (Foody 2003). The wider the bandwidth the parameter estimatiendioward a
global estimate (Foody 2003), the smaller the bandwidth the parametersrgasingly
variable. Previous experimental trial runs of GWR models with this data wsaagdfandwidth
distance lags showed that as the distance lag increased the corteiediAformation
Criterion (AIC) values, Condition Index values, rangecoéfficient values, but the range of
GWR model R values decreased.

| used an adaptive kernel method to determine the best bandwidth and weighting function
values and minimization of the Al{QFotheringham et al., 2002, Foody 2003). The adaptive
kernel adapted where data were sparse the bandwidth was larger aadiathexvere more
dense the bandwidth was smaller (Kupfer and Farris 2007). This was importaagésrof the
study area where the number of neighbors around a data point will often hehekmall
(Brunsdon et al. 1996).

AIC. was defined as:

AIC. = 2n log.(6) + nlog.,(2m) + n{ n+Hr(S) }

n-2-tr(s)
wheretr(S) was the trace of the hat matrix am&/as the number of observations (Fotherington
et al. 2002).

The GWR best fit model was determined for each site by examining R? @gdcures.
AIC. was useful for comparing models with different independent variables but the same
dependent variable (ArcGIS Spatial Statistics 2008). | ran several GRanhs using various
combinations of independent variables and compared #d@es by examining the output.

Between each study site, the model combination of independent variables with titeAbEst
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score varied. The best fit model had the lowest.Akdre and a difference of at least three

(Fotheringham et al. 2002).

Model Fit and Analysis

| explored differences in the coefficient of determination (R?) valuegdsst each year
of each study site to determine variation across the site for each regtesbingue. | mapped
and analyzed the parameter coefficients for each independent variable iatamarity.

| tested for collinearity of GWR model coefficients using the variance+dgosition
proportion and condition index diagnostic tool (Wheeler 2008). Coefficients with condition
index values > 30 have been reported to be highly correlated with each other (ArcGIS

spatial_stastics_tools 2009, Wheeler 2008).

GWR Model Analysis With Global and Local Moran’s |

| ran the Global Moran’s | again and created a correlogram for ezt Ste using the
GWR Model residuals (600 m — 1500 m distance lag) to determine a global autacorrelat
trend. In addition | mapped the local spatial variability of the residualg U$EA, the local
version of Moran’s | (ESRI ArcGIS 9.3, 2008; Anselin 1995). The value derived for each
polygon using this statistic included the standardizecbre ¢ = 0.05 and 0.01) which was the
interpreted value compared to the expected value (Wong and Lee 2005). These p&gsasn ana
tools reported global and local Moran’s | z scores using a 95% CI (£1.96 SD).s &ibng
outside that range indicated a pattern that is not typically random (ESRI 20&28hputed the
z-scores of the GWR model residuals using Local Moran’s | to model the aetation

directionality for each study site and each year.
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The local Moran statistic for areal univas defined as

Ii = Zizwij Zj
J

wherez andz were deviations from the mean for correspondinglues (Anselin 1995)

(Figure 2).

RESULTS

Quantifying Landscape Fragmentation Trend over Time

Several of the 1963 historic photos did not have enough recognizable control points to
match to the reference image or were within the 60% overlap and also weepitestain, so in
these areas there was an offselt5 m. During the photo interpretation process, these areas were
interpolated, based on surroundings. Figure 3 shows an example of an area wherer¢heoe w
control points in 1963 which would match subsequent photos.

Results of tests for sphericity and autocorrelation betweanandtypevariables were
highly significant for all three sites (p < .0001). Site 2 was the only siteote that there was a
significant effect ofyearon variablesarea logand perim_logfor land useypesurbanall years
andforestin 1985(a < .05); (Table 8). Across time)and cover classdsrestandagriculture
decreased iareaandurbanandtransportationincreased irmreafor all three sites Since 1963,
loss offorestandagriculture at study site 1 was 137 ha and loss at site 2 was 404 ha. Study site

3 lost 603 ha since 1977 (Figures 4-6).
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Figure 2. Flow chart ofstatistical applications and variables used.
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Figure 3. Historic aerial photography with few recognizabdatures on the ground is prohibitive to placing
matching control points to a reference image anidaffect the accuracy of the ortho rectificatiompess,
particularly in rugged terrain. An example in stgike 2 where it was not possible to place 6 éwénly spaced
control points in the frame. In 1963 (a) and 1885the northwest area of the image is steep slopesntiguous
forest without roads (or roads obscured by tre®ggnor other recognizable features. The 1997ic) 2007 (d)
images of same location have road intersectiortsatigaeasily identified between the two photosfeR® Table 2

for sources of aerial photography.
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Table 8. Site 2 results of SAS Proc mixed First Order Aetpessive Model for effect of year. Bold text dixb
significance (alpha < 0.05). Of the 3 sites, 2itg@as the only one to show that there was a sgmifieffect of year
on variablesarea_logand perim_logfor urbanall years andorestin 1985.

Est. SE df  Pr>|t Est. SE df  Pr>|t
Area log transformed (ha)
Ag Forest
n =196 n= 263
Intercept 4.3884 0.0899 55.0 <.0001 4.8361 0.0828 115.0 <.0001
1963 0.0000 0.1273 55.0 1.0 0.0000 0.1172 115.0 1.0000
1985 -0.1696 0.1503 55.0 0.2294 -0.3804 0.1130 115000010
1997 -0.1642 0.1503 55.3 0.2794 -0.0348 0.1160 115.0 6487
2007 -0.1911 0.1558 55.8 0.2251 -0.0657 0.1155 115.0 7085
Trans Urban
n =63 n=565
Intercept 3.7082 09134 15 0.08 4.0570 0.0526 1680001
1963 0.0000 1.2917 1.5 1.00 0.0000 0.0744 168100000
1985 -0.0707 1.2049 1.4 0.96 0.3466 0.0762 169490001
1997 -0.0613 1.2049 1.4 0.96 0.3941 0.0768 16940001
2007 -0.1144 1.1699 1.4 0.93 0.3887 0.0761 1680001
Perimeter log transformed (m)
Ag Forest
n =196 n=263
Intercept 3.0489 0.5515 56.8 <.0001 3.3285 0.0549 101.0 <.0001
1963 0.0000 0.0780 56.8 1.0000 0.0000 0.0776 101.0 0.000
1985 -0.0986 0.0855 57.2 0.2539 -0.1988 0.0748 10100092
1997 -0.0662 0.0922 57.6 0.4738 -0.0082 0.0768 101.0 1509
2007 -0.0888 0.0955 57.8 0.3564 -0.0269 0.0765 101.0 2597
Trans Urban
n =63 n=565
Intercept  3.2333 0.6002 3.0 0.0127| 2.8473 0.0343 175.0 <.0001
1963 0.0000 0.8488 3.0 1.00 0.0000 0.0485 175.0 1.0000
1985 -0.1341 0.7827 2.8 0.87 0.2336 0.0497 17500001
1997 -0.1307 0.7827 2.8 0.87 0.2565 0.0502 17500001
2007 -0.1965 0.7578 2.8 0.81 0.2515 0.0496 17500001
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Figure 4. Results of photo interpretation of study siterid use land cover (LULC) classified with a mosiifi
Anderson Classification System. An imposing cleaimgthe 1997 landscape was the construction ofidiy27
and the Highway 111 Interchange (red) in the 198Bsaph shows the trend of change through timerefst,
urban, agriculture and transportation area patches.
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Figure 5. Results of photo interpretation of study sitard use land cover (LULC) classified with a moeiifi
Anderson Classification System. After 1963, thastruction of the Highway 153/27 Interchange (reatyidor cut
through the wetlands around Chickamauga creekbamr(pink) classes increasingly replaegdiculture (orange)
andforest(green) classes along the highway corridor.
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Figure 6. Results of photo interpretation of study sitar® use land cover (LULC) classified with a mogiifi
Anderson Classification System. Between 1977 &y 2heurban classes (pink) increasingly replaced the
agriculture (orange) classes around Dallas Bay and the aif{har red rectangle in the lower southwest corner)
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Fragmentation and Connectivity

Class level Fragstats metrics characterized fragmentation .treattsh densityandmean
patch sizevere proxies for connectivity, fragmentation and dominanderestin landscapes. |
defined sites 2 and 3 as fragmented because each site showed a distinct trencreasing
number offorestpatches accompanied with smaller values fotdhgest patch index, mean
patch size, the area weighted mean patchamzkethearea weighted mean core areRercent
land of forest and agriculture decreased in all three sites. The notali@edge (mjor
agriculturedecreased in all three sites andftoestat sites 1 and 2 (Table 9). Two unit less
indices measuring average patch shape complexity weshdpe indexandarea weighted
mean shape indethe latter was more meaningful because it gave greater weitgnger
polygons. Both indices increased at site 3, decreased at sites 1 and 2. The te@doht sit
higher values of tharea weighted mean shape indedicated that patch shapes were becoming
more complex as they became fragmented. The numliemrestpatches in site 1 was fewer and
the largestorestpatch andnean patch sizerere getting smaller each decade but the meen
area was getting larger (Figure 7). The relationshiprestpatches withransportationpatches
was significantly negative at site 2 aiodestpatcheswith urbanpatches at site b 0.05);

(See Table 10 and Figures 8-1 & 8-2).

Rate of Core Forest Habitat Loss

Site 1 lost 4% o€ore foresthabitat area per year between 1972 and 1980, but between

1997 and 2007 gained 2% per year. At this rate, it will be 117 years untr@lforesthabitat
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Table 9. Fragstats class metrics. High patch density andmh@an patch size suggested an urbanizing landscape
(Weng 2007).

No. of Mean patch Class Percent  Patch Total
Year patches size (ha) Area (ha) Land density  edge (m)

Study Site 1 Forest 1963 35 16.6 579.6 615 3.7 79,512
1972 33 17.2 567.1 60.1 35 73,975

1980 32 17.1 545.9 57.9 34 76,225

1997 26 18.3 475.4 50.4 2.8 69,594

2007 27 18.1 489.7 52.1 2.9 68,132

Agriculture 1963 23 3.2 74.1 7.9 2.4 25,027
1972 16 4.3 69.0 7.3 1.7 19,750

1980 20 3.6 71.8 7.6 2.1 21,685

1997 6 4.9 29.4 3.1 0.6 6,469

2007 6 4.6 27.5 2.9 0.6 6,337

Transportation 1963 3 7.8 23.3 25 0.3 85,385
1972 4 5.9 23.7 25 0.4 86,979

1980 5 4.8 24.0 25 0.5 88,551

1997 6 9.1 54.7 5.8 0.6 94,202

2007 6 9.1 54.8 5.8 0.6 94,530

Urban 1963 74 2.1 153.2 16.3 7.8 61,548

1972 70 25 175.3 18.6 7.4 66,381

1980 64 3.0 190.3 20.2 6.8 67,495

1997 75 3.3 245.8 26.1 8.0 81,236

2007 79 3.2 254.9 27.1 8.4 84,031

Study Site 2 Forest 1963 50 18.5 926.1 51.8 2.8 156,686
1985 58 13.7 793.8 44.4 3.2 136,291

1997 52 15.1 783.8 43.9 2.9 147,990

2007 53 14.1 747.5 41.8 3.0 141,826

Agriculture 1963 52 7.4 382.2 214 2.9 89,124
1985 37 5.9 216.5 12.1 21 52,070

1997 29 5.9 170.9 9.6 1.6 43,193

2007 26 6.0 156.3 8.7 15 37,609

Transportation 1963 13 32.2 43.6 2.4 0.7 118,201
1985 18 59.4 725 4.1 1.0 146,683

1997 18 67.3 80.5 4.5 1.0 153,846

2007 21 66.6 81.9 4.6 1.2 157,692

Urban 1963 121 6.5 272.3 15.2 6.8 111,620

1985 110 13.8 539.0 30.2 6.2 183,049

1997 107 16.6 596.3 334 6.0 193,347

2007 111 16.8 621.1 34.8 6.2 196,831
Study Site 3 Forest 1977 141 10.8 1524.5 47.9 4.4 276,644
1984 150 9.8 1472.7 46.3 4.7 291,646

1997 148 8.5 1265.2 39.7 4.6 304,611

2007 152 7.2 1093.4 34.4 4.8 286,293

Agriculture 1977 113 18.3 429.7 13.5 3.6 132,890
1984 119 17.5 397.6 12.5 3.7 131,676

1997 111 15.2 320.2 10.1 3.5 114,883

2007 92 9.6 257.9 8.1 2.9 98,005

Transportation 1977 12 6.1 72.9 2.3 0.4 216,156
1984 11 6.8 74.6 2.3 0.3 222,104

1997 17 4.9 83.3 2.6 0.5 247,398

2007 19 5.3 100.4 3.2 0.6 270,959

Urban 1977 308 2.0 624.8 19.6 9.7 262,403
1984 330 2.0 673.9 212 10.4 280,994

1997 398 2.2 867.9 27.3 12.5 351,520
2007 374 2.8 1050.1 33.0 11.7 392,471
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Figure 7. Fragstats class level metrics used to charactenestfragmentation trends. (aumber of patchegb)
percent land (c) total edge (d) patch density(e)area weighted mean shape indéxarea weighted mean core
area. Sites 2 and 3 were becoming more fragmented as demonstrated by the increabeimffarestpatches,
smaller values for tharea weighted mean core area (lza)d increase iforest patch densitfnumber of

patches/100 ha)Patch densityandmean patch sizevere proxies for connectivity, fragmentation and dominance of

forestlandscapes (Cho et al 2009). A unit less index measuring average patcboshplesity was tharea
weighted mean shape indekich was more meaningful as weighted because it gave greater weigbeto la
polygons. This index increased in site 3, decreased in sites 1 and 2.
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Table 10. Student’s Paired t-Test Results of relationstgfwieen patches Forest — Urban, Forest —

Transportation, Agriculture — Urban and Agriculter@ransportation. The forest — transportatioatiehship
was significant for all 3 sites. Significance ecaétion adjusted after Bonferroni correction tgst .0125).
See Figures 7-1 and 7-2.

Site Student's Paired t-Test Probability Value, 1 tail df

Forest - Urban

1 0.00060 4

2 0.04130 3

3 0.03622 3
Forest - Transportation

1 0.00003 4

2 0.00029 3

3 0.00063 3
Agriculture - Urban

1 0.00390 4

2 0.06399 3

3 0.02234 3
Agriculture - Transportation

1 0.18684 4

2 0.03806 3

3 0.00465 3

* Significant ata .05
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Figure 8-1 a-h These regressions showed a negative relatphativeerforestandurban (a) and betweeforest

andtransportation(b). The regression line of site 1 in graph bywhort, suggesting that the sample duration was
too small to capture the trend adequately.
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agricultureandurban (d). As an aside, these graphs were an excalenple of the relatively robust scaling
relations of theareametric with respect to the three magnitudes ofmixtor each successive studysite 1, 2 and 3

(Wu 2004).
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will be gone at site 1. Trends for sites 2 and 3 as shown in Table 11-1 indicated aingcrea

rate of loss otore foresthabitat area over the years. Between 1997 and 2007 site 2 lost over 3%
core foresthabitat per year and in nine years all core forest habitat will be gone aedadnd
inhospitable for box turtles. Site 3 laxireforesthabitat at 7.5% per year between 1997 and

2007, which was the highest ratecofe foresthabitat loss of all 3 sites and at this rate it will be
gone in six years. Site 1 and 2 lost 52% and 83%, respectively, acfdogdorestabitat area

since 1963 and site 3 lost 84% since 1977.

Rate of Core Box Turtle Habitat Loss and Re-generation Potential

All three sites had an overall decline in total areaocpé turtle habitat over the years
(Figure 9). After 1963 site 1 and 2 lost 31% and 80%ooé turtle habitat area, respectively,
while site 3 lost 66%oreturtle habitat after 1977. Thwerebox turtle habitat maps showed the
pattern of habitat fragmentation and eventual disappearance (Figure 10-12; Appendix E

Site 1 rate otorehabitat loss decreased from 1.40% per year between 1963 and 1972 to
0.02% per year between 1997 and 2007 and at this rate all will be gone in 110 years. Site 1 could
sustain over three future generations of box turtles. The highest cateebfabitat area loss was
at site 2 between 1997 and 2007 at 5.52% per year. In 11 yeaosedihbitat will be gone at
this rate. Rate afore habitat loss at site 3 has fluctuated. However, between 1997 and 2007 site
3 lostcore habitat at 2.5% per year and at this rate it will be gone in 16 years. Site 2 and 3 could
not sustain any future generations of box turtles, given the remamiagabitat and rate of

habitat loss between 1997 and 2007 (Table 11-2).
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Table 11-1 Coreforest patch rate of change

between 1997 and 2007.

. The highest ratadforest patch loss was at site 3 at 7.5% per year

Total Total Number of
area of areaof Core years until Generations
core core forest core forest of box
forest Number forest habitat % Rate habitat turtle until
Study habitat  of years habitat  lost/yr habitat completely O core
Area Year (ha) lapse Interval lost (ha) (ha) loss/yr  gone habitat left
1 1963 134.6
1 1972 126.7 From 1963-1972 7.9 0.88 0.7%
1 1980 86.83 From 1972-1980 39.87 4.98 3.9%
1 1997 81 17  From 1980-1997 5.83 0.34 0.4%
1 2007 97.7 10 From 1997-2007* 16.7 1.67 ok BI6. 3.49
2 1963 235.1
2 1985 65.8 22  From 1963-1985 169.3 7.70 3.3%
2 1997 60.4 12  From 1985-1997 5.4 0.45 0.7%
2 2007 41 10  From 1997-2007 19.4 1.94 3.2% 9.29 0.28
3 1977 182.3
3 1984 184.9 7  From1977-1984 2.6 0.37 0.2%
3 1997 117.7 13 From 1984-1997 67.2 5.17 2.8%
3 2007 29.5 10 From1997-2007 88.2 8.82 7.5% 5.60 0.17

** 2.1% ore foresthabitat gain
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Figure 9. From 1963 to 2007, the eastern box turtle 188 %nd 82.5% of potential core habitat in site 1and
2, respectfully, and since 1977 site 3 lost 84%aiéntial habitat.
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Figure 10. Potential eastern box turtle habitat patcheg¥eest, agriculture, rangeland, TXline ROW, plaidgat
andwetlandLULC classes .Core habitat patches were 300 m distance from a contiguowdan or
transportationpatch and had a proximity of 300m from anotheeptial habitat patch. Site 1 lost 52%re habitat
area since 1963. The numbers in each potentigtighqatch corresponded with the Patch ID (PID) harrin

Appendix E.
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Figure 11 Study Site 2 lost 82.5%ore habitat between 1963 and 2007. The potentiatdtadJLC classes that
were the most vulnerable aagricultureandforest The large agriculture patch in the northeasti@edn 1963 was
dissected by the highway corridor in 1985, and ¢osé area.
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Figure 12 In 1977 site 3 had approximately 1,015cbee habitat. The rate of habitat loss between 19471884
and 1984 and 1997 was 2.43% and 3.42 %, respgctiml2007 there was approximately 350cae habitat left.
This site lost 7.5% ofore habitat between 1997 and 2007, the highest raadl 8fsites.
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Table 11-2 Corearea of potential box turtle habitat rate of creang§otentiatore LULC class types were defined
asforest, agriculture, transmission line right of waptantation, wetlané@ndrange land. The highest rate afore
habitat loss was at site 2 at 5.52% per year beti687 and 2007. The rate of change was fastarttigabox
turtle can rebound. Site 1 lost 31% core habitates1963, site 2 lost 80% since 1963 and sitesBA6% since
1977.

Number of
Total Total years until
area of area of % core Generations*
core  Number core habitat Rate habitat of box turtle
Study habitat of years habitat  lost/yr habitat completely until 0
Area Year (ha) lapse Interval lost (ha) (ha) loss/yr gone habitat left
1 1963 426.9
1 1972  372.7 9 From 1963-1972 54.2 6.02 1.40%
1 1980 363.73 8 From 1972-1980 8.97 1.12 0.03%
1 1997 301.1 17 From 1980-1997 62.63 3.68 0.13%
1 2007 293.2 10 From 1997-2007 7.9 0.79 0.02% P09.4 3.28
2 1963 724.6
2 1985 405.6 22 From 1963-1985 319 1450 2.00%
2 1997 317.8 12 From 1985-1997 87.8 7.32 1.80%
2 2007 142.4 10 From 1997-2007 175.4 1754 5.52% 7610 0.32
3 1977 1015.6
3 1984 843 7 From 1977-1984 172.6 2466 2.43%
3 1997  468.7 13 From 1984-1997 374.3 28.79  3.42%
3 2007 349.8 10 From 1997-2007 118.9 11.89 2.54% .7615 0.47

*Congdon et al. (1993) cohort generation time ftarilings turtle = 37.5 yrs. (rate as .03/yr).
Cohort generation time was the average lengthmef between birth of an individual and birth @$ i
own offspring .
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Mesh Landscape Metric

Themeshlandscape level metric was a proxy for characterizing road density in the
matrix. The lower limit of theneshmetric was achieved when the landscape was maximally
subdivided. Theneshmetric was the same as the area-weighted mean patch size where the
proportional area of each patch was based on total landscape area. The maistcrange in
averaganeshsize was in study site 3 which went from 61.8 ha in 1977 to 43 ha in 2007, the
average patch was reduced by 19 ha. Since 1963, the mean patch size at site 1 fabsiieha a

2 lost 9 ha. The trend for all three study sites was toward increased ritagore(Figure 13).

Exploratory Spatial Statistics

| mapped spatial distribution over time of the varialsle® (column 1),area(column 2),
perim(column 3) andnean_slopécolumn 4) (Figures 14-1 - 3). Spatial distribution of
mean_slop&alues at sites 1 and 3 did not vary over the years. This trend was reflebd in t
Global Moran’s | correlograms fanean_slopevhich indicated that this variable was highly
autocorrelated all years and distances, except for site 2 where themoveggaificant values at
distance classes 1200 m and 1500 m (Figures 15-1 - 3). Site 2 variatieannslopavas
attributed to the dissection of polygons over time which modified the mean slope values. The
variablesareaandperim showed little autocorrelation at all three sites. Site 2 was not
significant forcorein all years except in 1963 at 1500 m. This trend was shown in Figure 14-2
column 1 by the clumped areas with reducexe values increasing over time. Sites 1 and 3 did

not have extensive significant autocorrelation valuesdoe.
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Figure 13. Maximum value ofmesh(hectares) was when the landscape consistediofie patch. Lower limit
was achieved when the landscape was maximally gidledi; when every cell was a separate patch (Foehah
2003). Values represented area weighted mean pathwhere the proportional area of each patchhaaed on
total landscape (McGarigal and Marks 1994).
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Figure 14-1. Site 1 — Quantitative spatial distribution of ieescore (ha), area (ha), perimeter (mjdmean
slope(unitless—refer to Table for conversion to degree intervdlhe spatial analysis “switched gears” and focused
on core patch area fragmented over time as a umofithe area, perimeter and mean slope of trehpdtand use
class was not considered but the size and configaraf patches as they changed through time.
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Figure 14-2. Site 2 — Quantitative spatial distribution of iedlescore, area, perimeteandmean slope
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1) 2) 3) 4)
CORE (ha) Area (ha) Perimeter (m) Mean Slope
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Figure 14-3. Site 3 — Quantitative spatial distribution of iednlescore, area, perimeteandmean slope
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Figure 15-1. Site 1 Global Moran’s | correlogram of each modaliable. | used a correlogram to graph a trend
with the distance class on the x axis and thessimtioefficient on the y axis. Global Moran’s d&fficient was a
standardized value based on procedure, not an@d#ssification; positive autocorrelation valuaaged from @
to 1, negative values ranged from G>tel. (a) core -significant values at 1200 and 1500 m were in 1863 1972.
(b) area -significant values at 600 and 900im1997(c) perim -one significant value at 900 m in 199d)
mean_slope- significant all years and distance classes. $3@tbols indicated significant Moran’s | valuegpat
0.05.
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Figure 15-2. Site 2 Global Moran’s | correlogram of each modaliable. (a) core, (b) area, (c) perimand(d)
mean_slope No significant values faareaandperim Red symbols indicated significant Moran’s | vaup <
0.05. Mean_slopeawas significant all years at 600 m and 900 m ari?@0 m in 1997. The Global Moran’s |
coefficient demonstrated that as the distance &sarg, the lines attenuate to O indicating the patiecomes more
random.
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Figure 15-3. Site 3 Global Moran’s | correlogram of each modaliable. (a) core, (b) area, (c) perimand(d)
mean_slope Red symbols indicated significant Moran’s lued afp < 0.05. Areaandcore did not have any

significant autocorrelation values apdrimhad one significant value at 1500m in 1984ea¥ slopavas
significantly autocorrelated at all distance classed years.
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Global OLS Regression
Significant results of the Joint Wald Statistic indicated robust overalkefrsignificance.
The Jarque-Bera statistic indicated that residuals deviated from a mbstnélution. Koenker
Statistic had significant results indicating biased standard errdrsgigorted the Robust
probability estimates which include:
Model A (ared
Corehad a significant positive relationship waheaat all sites and yearp €
.05).
Model B (area, perim
Coredid not have aignificant relationship witlareaat site 2 in 1985 and 1997

or at site 3 in 2007.
Perimeterwas not significant at site 1 in 1963 and 1972.

Model C @rea, perim, mean_slope
Coredid not have a significant relationship waheaat site 2 in 1985, 1997 and
2007.
Perimeterwas not significant at site 1 in 1963 and 1972.
Mean slopéhad a significant negative relationship withbreat site 3 for all years
and at site 2 in 1972.
Mean slopavas not significant at site 1 any years or site 2 in 1985 and 1997.

(But see Table 12)

Model Comparison and Selection

All GWR Models had lower Algscores and higher R? values than the OLS model which
indicated that GWR was a better fit of the data. The constant global valines@IifS Model
under estimated coefficients compared to the range of GWR model estifradiksy3). For
reasons of consistency and ecological interest witimien_slope&ariable, | chose model C for
further regression analysis.
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Table 12. OLS Statistics Model C. Asterisk denoted signific®Robust Probability valuep  .05. For each
patch (polygon) this model showed the dependencyfarea with the areafea (ha)),perimeter(perim (m))and
mean slopémean slopedf that polygon.

Dataset Site Variable Codf)( StdError t_Stat Prob Robust SE Robust t Robust_Pr

1963_1 1 Area 0.3844 0.0335 11.4855  0.0000 0.1670 .302R 0.0227 =~
1963_1 1 Intercept 0.7880 1.1018 0.7151  0.4756 1490 0.8741 0.3834
1963_1 1 Mean_slope -0.5035 0.5729 -0.8789  0.3808  .6420 -0.7842 0.4341
1963_1 1 Perim 0.0001 0.0001 14826  0.1402 0.0001 .4879 0.1388
1972_1 1 Area 0.3691 0.0364 10.1395  0.0000 0.1715 .152p 0.0331 *
1972 1 1 Intercept 0.4951 1.2154 0.4073  0.6844 4893 0.5296 0.5972
1972_1 1 Mean_slope -0.2585 0.6207 -0.4164  0.6777  .6430 -0.4020 0.6883
1972_1 1 Perim 0.0001 0.0001 1.3482  0.1797 0.0001 1.4293 550.1
1980_1 1 Area 0.2488 0.0277 8.9950  0.0000 0.0913 7263. 0.0072 *
1980_1 1 Intercept 0.3866 0.8911 0.4338 0.6651 39.78 0.4931 0.6227
1980_1 1 Mean_slope 0.1033 0.4557 0.2266  0.8210 250.5 0.1967 0.8443
1980_1 1 Perim 0.0002 0.0001 2.7160  0.0075 0.0000 .2512 0.00001 *
1997_1 1 Area 0.3141 0.0379 8.2891  0.0000 0.1294 4283. 0.0164 *
1997_1 1 Intercept 1.4814 1.0345 14319 0.1544 3091 1.6226 0.1069
1997_1 1 Mean_slope -0.5794 0.5213 -1.1114  0.2683  .5600 -1.0336 0.3031
1997_1 1 Perim 0.0003 0.0001 4.1949  0.0001 0.0002 .1002 0.0375 *
2007_1 1 Area 0.3453 0.0318 10.8503  0.0000 0.0959 .6003 0.0004 *
2007_1 1 Intercept 1.7287 0.9297 1.8595  0.0650 30.86 2.0030 0.0470 *
2007_1 1 Mean_slope -0.7797 0.4583 -1.7013  0.0910  .4750 -1.6383 0.1035
2007_1 1 Perim 0.0003 0.0001 4.6377  0.0000 0.0001 .2922 0.0233 *
1963_2 2 Area 0.3368 0.0222  15.1871  0.0000 0.1074 .1363 0.0019 *
1963_2 2 Intercept 2.4156 0.9299 2.5978  0.0099 50.85 2.8249 0.0051 *
1963_2 2 Mean_slope -1.2162 0.4141 -2.9366  0.0036  .494Q -2.4608 0.0144 *
1963_2 2 Perim 0.0002 0.0000 4.2270  0.0000 0.0001 .0423 0.0026 *
1985_2 2 Area 0.0719 0.0230 3.1259  0.0020 0.0498 4430. 0.1502
1985_2 2 Intercept 0.4230 0.8252 0.5126  0.6087 1848 0.8777 0.3809
1985_2 2 Mean_slope 0.2873 0.3720 0.7724  0.4405 76R.2  1.0404 0.2991
1985_2 2 Perim 0.0005 0.0000 12.1722  0.0000 0.000@.7.8912 0.00001 *
1997_2 2 Area 0.0963 0.0299 3.2219  0.0014 0.0822 17186. 0.2424
1997_2 2 Intercept 0.9392 0.9429 0.9961  0.3201 5955 1.6896 0.0923
1997_2 2 Mean_slope 0.0008 0.4199 0.0018  0.9985 112.3  0.0025 0.9980
1997_2 2 Perim 0.0005 0.0000 11.6128  0.0000 0.000a.0.8828 0.00001 *
2007_2 2 Area 0.1151 0.0303 3.7988  0.0002 0.0893 2880. 0.1988
2007_2 2 Intercept 1.0786 0.9291 1.1609  0.2467 3056 1.9156 0.0564 *
2007_2 2 Perim 0.0005 0.0000 11.3099  0.0000 0.00009.9826 0.00001 *
2007_2 2 Mean_slope -0.0915 0.4140 -0.2210 0.8252  .3178 -0.2879 0.7736
1977_3 3 Area 0.3475 0.0125  27.8581  0.0000 0.1058 .2838 0.0011 *
1977_3 3 Intercept 1.4870 0.6482 2.2939  0.0221 7850 2.9282 0.0035 *
1977_3 3 Mean_slope -0.8020 0.3181 -2.5213 0.0119  .3610 -2.2208 0.0267 *
1977_3 3 Perim 0.0002 0.0000 8.9782  0.0000 0.0000 .3348 0.00001 *
1984_3 3 Area 0.4001 0.0121  32.9272  0.0000 0.1043 .8353 0.0001 *
1984_3 3 Intercept 1.3949 0.5532 25217 0.0119 7844 3.1148 0.0019 *
1984_3 3 Mean_slope -0.8450 0.2726 -3.1001  0.0020  .3226 -2.6195 0.0090 *
1984_3 3 Perim 0.0002 0.0000 9.2533  0.0000 0.0000 .6599 0.00001 *
1997_3 3 Area 0.4123 0.0141  29.2310  0.0000 0.1282 .2152 0.0014 *
1997_3 3 Intercept 1.4061 0.5412 2.5980  0.0095 4045 3.0911 0.0021 *
1997_3 3 Mean_slope -0.7962 0.2672 -2.9804 0.0030  .3198 -2.4895 0.0130 *
1997_3 3 Perim 0.0002 0.0000 8.4263  0.0000 0.0001 5712 0.0004 *
2007_3 3 Area 0.4415 0.0151  29.3160  0.0000 0.1272 .4699 0.0006 *
2007_3 3 Intercept 1.4677 0.5741 2.5564  0.0108 3\52 2.8029 0.0052 *
2007_3 3 Mean_slope -0.8321 0.2803 -2.9687 0.0031  .3276 -2.5410 0.0112 *
2007_3 3 Perim 0.0002 0.0000 9.7743  0.0000 0.0001 .8369 0.0001 *
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Table 13 Comparison of OLS and GWR model fitting statisticorrected Akaike Information Criterion (AICc)
and coefficient of determinatiofRf ). * denoted lowest AlCc Score. | used modele€ause | wanted to
investigate the dependencyaufre with mean slope ** Number of significantly autocorrelated polygworeported
from Local Moran’s | statistic of GWR Model residsi@t 600 m bandwidthu(< .05).

GWR No. of
Site oLS OLS R Neighbors ~ GWR GWRR  Sig. z**

Dataset Model AlCc Adjusted (Adaptive) AlCc Adjusted

1 1963 A 970.220 0.557 18 796.927 0.893 4

B 970.438 0.554 39 803.132 0.867 5

C 971.647 0.553 37 811.125 0.873 4

1972 A 922.309 0.514 21 767.682 0.871 5

B 922.610 0.516 42 766.609° 0.854 6

C 924.432 0.513 42 776.352 0.854 5

1980 A 797.904 0.503 40 740.146 0.708 9

B 791.909 0.527 44 721.619° 0.749 5

C 793.85 0.524 40 726.674 0.762 5

1997 A 888.55 0.459 19 754.403 0.845 8

B 874.45 0.512 28 704,279 0.883 6

C 875.191 0.513 28 731.867 0.876 6

2007 A 893.194 0.548 18 763.291 0.867 9

B 876.519 0.598 25 707.609 0.905 6

C 875.575 0.603 30 760.758 0.871 5

2 1963 A 1783.574 0.513 13 1412.210 0.919 15

B 1768.915 0.538 19 1458.040 0.900 12

C 1762.300 0.550 33 1540.240 0.838 10

1985 A 1684.933 0.203 22 1492.046 0.692 9

B 1568.074 0.488 31 1435.538 0.748 8

C 1569.469 0.487 31 1468.968 0.743 8

1997 A 1764.515 0.224 26 1589.602 0.661 9

B 1655.477 0.484 32 1548.06T° 0.716 8

C 1657.477 0.482 31 1548.823 0.747 11

2007 A 1829.703 0.241 19 1638.776 0.709 12

B 1724.535 0.480 26 1588.348 0.760 10

C 1726.485 0.478 32 1610.730 0.744 11

3 1977 A 3895.797 0.603 17 2474.038 0.971 23

B 3822.770 0.647 42 2739.692 0.945 12

C 3818.405 0.649 60 2944.129 0.923 13

1984 A 4102.009 0.655 19 2718.334 0.965 25

B 4024.716 0.692 45 2842.869 0.952 22

C 4017.117 0.696 65 3014.563 0.937 23

1997 A 4743.495 0.587 18 3305.227 0.952 22

B 4678.371 0.620 74 3546.255 0.916 19

C 4671.493 0.624 74 3572.617 0.916 21

2007 A 4503.120 0.617 19 3277.395 0.945 22

B 4416.079 0.660 69 3335.820 0.927 22

C 4409.270 0.663 83 3418.468 0.919 24
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GWR Coefficients

The linear relationship afore with area perimeterandmean_slop&vas not constant
across each study site (Table 14). Variability in the GWR Model slopgorerts suggested
non-stationarity of all the datasets. Without a Monte Carlo test for sgitii@narity, the
significance was not known (Brunsdon et al. 1996, Fotheringham et al. 2002, Kupfer and Farris
2007, Zhang et al. 2008Rerimetercoefficient margin of difference increased at site 1 and 2 but
decreased at site 3. All three variables displayed non-stationaritg matiation in coefficient

range of values.

Global and Local Moran’s | for GWR Residuals

As indicated by Figure 16-1 - 3 and Table 14, the Global Moran’s | correiognd the
Local Moran’s | map did not appear to relate to each other in a consistent mRanexample,
the correlogram had no autocorrelated values at site 1 and at site 3 haduerie $8IF7 at 1200
m. However, the local statistic map indicated hot and cold spots at both sites and ttadwe
the number of autocorrelated residuals (600 m distance) at site 3 indreasd® to 24
between 1977 and 2007 (Table 13). At site 2 the Local Moran’s | map at 600 m disassce cl
indicated positive and negative autocorrelated clusters in the northeast séthe site in 1963
that drifted south from 1980 to 2007. The global statistic did pick up the negative cius3&3i
at 600 m. However, from 1985 to 2007 there were no autocorrelated values at 600 m. Scatter
plots of GWR estimated and standard residuals indicated the presence of inutizges dataset.
Site 1 outliers constituted lardarestLULC class polygons until 1997 when the new Highway
27 transportationpolygon was addedTransportationLULC class represented all outliers for
years at site 2 and 3.
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Table 14 Comparison of parameter estimates of OLS and GigRel C. Without a Monte Carlo test for spatial
stationarity, the significance of the variabilitythe GWR model slope coefficients was unknownweleer, the
trend over the years in general was an increaserirstationarity (heterogeneity) of the relatiopsti core with the
areaindicator variable for all 3 sites.

OLS B3
OLS OLS B2 Range GWRp2 Mean Range GWRB3 Mean
Yr plarea Range GWRp1 area Perim Perim Slope slope

1 1963 0.3844  -0.6902- 1.0853 0.0001 -0.004 - 0.004 -0.5035 -1.310 - 6.688
1 1972 0.3691  -0.3548- 1.0250 0.0001 -0.004 - 0.003 -0.2585 -0.804 - 4.058
1 1980 0.2488  -0.4328- 1.0254 0.0002 -0.003 - 0.004 0.1033 -0.852 - 6.502
1 1997 0.3141  -1.6731- 1.2915 0.0003 -0.003 - 0.011 -0.5794 -3.476 - 5.717
1 2007 0.3453 -1.7470- 1.2388 0.0003 -0.002 - 0.011 -0.7797 -3.233 - 3.170
2 1963 0.3368  -0.7472- 1.3975 0.0002 -0.003 - 0.006 -1.2162 -4.112 - 3.344
2 1985 0.0719 -1.5042- 1.0548 0.0005 -0.001 - 0.008 0.2873 -5.389 - 1.613
2 1997 0.0963 -1.5928- 1.0618 0.0005 -0.002 - 0.009 0.0008 -12.977 - 2.122
2 2007 0.1151  -1.5460- 1.0648 0.0005 -0.002 - 0.008 -0.0915 -12.577 - 1.899
3 1977 0.3475  -1.4017- 0.8951 0.0002 -0.004 - 0.007 -0.8020 -3.950 - 4.537
3 1984 0.4001  -1.2281- 0.8829 0.0002 -0.005 - 0.007 -0.8450 -5.831 - 4.477
3 1997 0.4123  -1.3115- 1.2119 0.0002 -0.006 - 0.008 -0.7962 -8.633 - 10.993
3 2007 0.4415 -1.1795- 1.4864 0.0002 -0.003 - 0.006 -0.8321 -4.208 - 4.828
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Figure 16-1. Site 1 GWR Model C autocorrelated residudks) Local Moran’s | plot of residuals indicated
autocorrelated values at 600 m that disperse tieeyears.(b) Global Moran’s | correlogram of residuals did
not indicate autocorrelated structures at dist®&@&em thru 1500 m. The Global Moran’s | Coeffidigras
standardized; positive autocorrelation values edrfgom 0> to 1, negative values range from O>tel.
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Figure 15-2. Study Site 2 GWR Model C autocorrelated residuédd.Local Moran’s | plot of residuals at 600 m
distance class agreed with global statistic in 1988tocorrelated structures shifted directionpironortheast of
study area in 1963 and over the years drifted solthGlobal Moran’s | correlogram of residuals. Redbpls
indicated significant values atp 0.05. At 1500 m the trend was becoming randoihasproached 0. In the
absence of autocorrelation an expected value vw@tlglnegative and close to @s the strength of a process
decreased with distance, values of spatial autetzdion decreased and the trend observed coulddubto
characterize spatial pattern (Fortin and Dale 2005)
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Figure 15-3. Study Site 3 Model C GWR autocorrelated residuéd$.Local Moran’s | map of residuals at 600
m distance did not relate to global statistic. Negdy autocorrelated structures increasingly dispd over the
site from 1963 to 2007(b) Global Moran’s | correlogram of residuals.
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DISCUSSION

Exurban Development

Change in land use class and patch area over time was used as a proxy for tleesix pha
of landscape fragmentation conceptualized by Forman (1986) and modified by(2800¢r
which were perforation, incision, dissection, dissipation, shrinkage and attilimalscape
change studies with heterogeneity indices have been reported to function gatsurmeasures
to conceptualize how ecological processes changed over time (Gustafson 1998).

Total land cover class area has been reported to be a reliable index in stafiogs
(Wu 2004) and has been widely used in habitat studies (Fauth et al. 2000, Gustafson et al. 1994,
Tidd et al. 200l) and in habitat fragmentation studies with a shape index (BeatetG3).
Class level statistics have indicated that over the last 40 yearg#hefguotential habitat has
decreased. Surprisingly, all three sites had a |lostal edgefor potential box turtle habitat over
time. This was a result of disturbance patches (i.e., urban and transppdadlescing in size
over time, which caused the edge density to decline in habitat patchesrdhabwagyuous to the
disturbance patches (Hargis et al. 1998). Donovan et al. (2002) reported similanvehldtal
edgein a temporal study of songbird habitat in a fragmented, forested landscape.

The response of freshwater turtle populations in South Carolina ¢alg¢jeeeffectsf
habitat fragmentation was measured by Burke and Gibbons (1995) who recommend a 275 m
upland buffer zone to protect all nest and hibernacula sites. Vos and Chardon (1998) found that
roads within 250 m of a Moor Fro&é&na arvali3 reproduction site affect the population size
negatively. Forman (2000) estimated in general, a minimum 305 m (each side) roadshitiéer a
ecological road-effect zone for primary roads in woodland and for secondary2@ads (each

side).
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Number of forest patches, largest forest patchnaean patch sizeave commonly been
used to measure habitat reduction and fragmentation (Gardner and Urban 200d areaise
weighted mean patch sizestead ofmean patch size characterize forest trends because the
distribution of patch sizes was asymmetric; hence the mean was nobéesietscriptor
(Freeman et al. 2003, Gardner and Urban 2007, Pearson et al. 1999, Turner et al. 2003).

Average, roadless area (ha) of a patch of landscape in site 3 has decreasedwitsi
as much over time as in study site 1 and three times as much as the averagedaradshan
study site 2. Structural change in the pattern of urban buildup along the highways over time
could be observed when one looked at the land cover change maps. “Structural changes in
landscapes such as highway construction and development or shifts in markets andhtebsn ce
may introduce new drivers to the system or change the influence of others” dBdrgurner
2002, 198). The Highway 111 construction in 1980 on study site 1 and Highway 27 in 1960 on
site 2 accelerated fragmentation across each landscape.

The proximity of site 3 on the Tennessee River floodplain which encompassed the
Dallas Bay portion of Chickamauga Lake may influence the rate of cloantlpes site. A
temporal land use study of two lakes in Wisconsin using 1937 historic photography was
conducted by the US Long Term Ecological Research Network (LTER) amelsihies suggested
that “lakes are playing a bigger role in the evolution of the terrestrialdapés surrounding
them” (Riera et al. 2001). Over 75% of site 3 was unincorporated and under a greét de
development pressure. Hamilton County recorded 241 new subdivisions, between 2001 and
2005; and, half of these were in unincorporated areas (Development Trends Hamiltdy, C

TN 2001 - 2006).
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Weng (2007) found that urbanization was positively related to fragmentation. Tine urba
and forest patches in site 2 have changed significantly in area and pesimeel963 and the
rate ofcore habitat loss at site 2 was the highest of all 3 sites at 5.52% per year between 1997
and 2007. There was a 59% loss of farmland in Site 2 since 1963, compared to an 8% loss for
site 1 since 1963 and a 40% loss for site 3 since 1977. These results reflected theedinding
Brown et al. (2005) that in the southeastern United States, forest and agricaterahave
decreased while urban and mechanical disturbances increased in area betweed 200@8.a
The Chattanooga Times Free Press reported in their August 12, 2008 issue thatdhie dra
increase in the average value per acre of farmland in Tennessee wadriveimdpy developers
buying farms to build subdivisions. The USDA National Agricultural StatiS@awice reported
that the values of farms in Hamilton County have doubled from 1987 to 2002. Regional studies
have forecasted a continuing increase of development pressure in the Ridgeleynd V
ecosystem through 2020 (Wear and Greis 2002, NASA Land Cover Land Use ChamgmProg
http://landcovertrends.usgs.gov/east/eco67Report.html).

Species habitat requirements and ecological processes have been impliteted by
humans shape the pattern of the landscape (Cifaldi et al. 2004, Pearson et al. 1999, TYtner 1989
Human induced change such as land ownership effects (Turner et al. 1996) has Indiapaxr no
phenomenon (Fahrig 1998), which influences linear methods of measurement and
characterization of landscape heterogeneity (e.g., the complexityaaiability of a landscape

mosaic) and habitat fragmentation
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Biodiversity Loss and Fragmentation

The vulnerability of box turtle populations to extinction risk because of loss of habitat
can be determined by measuring how quickly their habitat has achieved its statemnd scale
future rate of habitat loss with the demographic potential of turtle population®{{Sethail.
2005a). Populations subjected to a slow rate of habitat loss (i.e., < 0.5% per year@mairhd
relatively stable because the re-generation rate could compensatet(&chitd2005a).

Site 1 gained 2%ore foresthabitat per year between 1997 and 2007, which suggested
that it was possible for a population to persist. The rate of change has bteallgrflactuating
over the last 40 years. Between 1963 and 1971 the rate of change per year wés@slate
of loss, then the rate increased to 4% per year between 1972 and 1980, but slowed down between
1980 and 1997 to 0.4% a year and between 1997 and 2007 has been gaining habitat at 2 % a
year. Socioeconomic and political variables can create patterns in theajaadst provided in
biophysical models such as in this study, “understanding and predicting lamdexuviees
knowledge about land ownership” (Turner et al. 1996, 1169; Appendix G). For example, one of
the largest turtle habitat patches on site 1 was bulldozed by mountain stonerstripactivities
that have been ongoing since late 2006 in a section of Cumberland Trail State PatiateThe s
owned the land in the park but the mineral rights were held by a private canfpagifically,
the Chattanooga Times Free Press reported in their February 15, 2008 issusettiatneof the
trail near Posey Point had to be closed due to damage from strip mining (Appendix H).

Site 2 followed a similar pattern as site 1, but unlike site 1, it lost over 8&@forest
habitat per year between 1997 and 2007. Raterefforestloss on site 2 was at the same rate
as a population can produce one generation of turtles. Potentially, a population oattiilkes
site would be functionally extinct because it was unlikely the population wouldertsate for
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this rate of loss; and, in 6 years @reforesthabitat would disappear. Between 1997 and 2007
site 2 was losing 5.52%ore habitat, twice as fast @sre foresthabitat loss at 3.2% per year.

Site 3 differed from the other two sites because it had a gradient patteme fifres
habitat loss. Between 1977 and 1984 the rate of loss was a slow, sustainable 0.2%enyear, t
loss increased to 3% a year between 1984 and 1997. Between 1997 andr2@fyésthabitat
rapidly disappeared at 7.5% per year which suggested a threshold wasd rea®@®7 when
fragmentation rate exceeded the box turtle re-generation rate. Bexctlrort re-generation
time was 2.7% per year. These results suggested that thetwetferesthabitat in site 3
disappeared over twice as fast as a population could produce one generation @inmiities
about eight years 50% obre foresthabitat will be gone. Site 3 lost twice as muaohe forest
habitat asore habitat between 1997 and 2007.

Based on habitat stability, these results suggested that site 1 niag gareforestbox
turtle habitat so current turtle populations could continue to persist. Furthesme2 at best
may have sustained almost one generation of box turtles until all core adsitgone but site 3
would not sustain any future generations of box turtles. Site 1 had more topographicaelie
sites 2 and 3; therefore, it may not have experienced exurban sprawl to ¢héegpae as sites 2
and 3.

These parameters modeled critical habitat elements at the sodilengthat the box
turtle responded to the heterogeneity of the landscape (Weins 1989). Relative to #p$ abnc
habitat scale was the realization that “habitat patch” was a usefull gpaséruct not fixed in
space (Turner et al. 2001) but was an artifact dependent on the scale afiglbsxperspective

(Thompson and McGarigal 2002).
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Rates of habitat Loss

Road Density/Small Vertebrates

Fragstats descriptive statistics did not capture the non-statiodlaaitacter of the
fragmentation process. Exploratory spatial analysis could model tlomatay changes specific
to each site because the hills and valleys representative of this geogegpinccreated
complex relationships between parameters that varied over space (Brunadb9os).

Regression coefficients of the GWR Model displayed a range of vagahihich suggested
non-stationarity, compared to the constant OLS coefficient value. The OLS bzl
estimated coefficients compared to the GWR model which indicated the gtabisiic was
sensitive to outliers. However, analysis of GWR Model coefficient paresnatavided little
insight into patterns or rate of land use change. The reason for thisawv&peen because the
coredependent variable was not normally distributed, or because outliers weeatan the
datasets.

Spatial distribution omean_slop&alues at sites 1 and 3 did not vary over the years. It
was not surprising thamean_slope&alues at sites 1 and 3 did not vary over the years because it
was not expected that degrees slope will vary over time as macbass perimeter Themean
slopeindependent variable of the OLS modeh&tl a significant negative relationship witbre
at site 3 for all years and in 1972 at site 2, but was not significant at sité diterzain 1985 and
1997. This seemed counter intuitive since site 3 had the least variation in slq@eenito site
1 and 2, hence had the lowest SD (£0.62 in 1977) for mean slope of all 3 sites (in 1963 site 1
had +0.88 SD and site 2 had +0.72 SD). The global measure more than likely was inflyenced b
outliers which would suggest caution in interpreting those results.
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Significantly autocorrelated residuals suggested fragmentationibeh&ite 3 number

of autocorrelated residuals almost doubled between 1977 and 2007. These resultsgreeeiand

with the reported accelerated rate of core habitat change at site 3. {Ene plsignificant residuals

between each decade may have given some clue of the mechanics of halatad leasd use change.

For example, features that were increasing isolated and negativalated. Underlying processes

could have created a pattern of autocorrelated residuals and may have beenaébatr factors:

1.

2.

A missing environmental predictor in the model

Unaccounted for biotic processes

Incorrect model specification

Effects from changes in scale (i.e., resolution and spatial extent; Fudtidelles

2009).

It has been reported that spatial patterns of continuous variables could be@naipg

indices of spatial autocorrelation such as Local Moran’s | that meas@grsahilarity or

dissimilarity of any pair of neighbors (Shi and Zhang 2003, quoted by Zhan®2608). Spatial

autocorrelation of model errors (residuals) could reflect the spatiatpaf variables modeled.

In this studycore habitat exhibited increasing negative autocorrelation as heterogeheity

patches (fragmentation) increased over the years.

The Local Moran’s | statistic was used to decompose the Moran’s | gldhabvdf the

Global Moran’s | results were autocorrelated, the local statistitdl have identified the clusters

or, if the global results were non-stationary, the local statistic coulditiengfied outliers

(Anselin 1995). The pattern demonstrated by the Local Moran’s | was notteahsigh the

pattern indicated by the Global Statistic, which suggested that the pooesdeled by the local

indicators were not stable because parameter coefficients values hge afraariation across
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the site. These local values were very different from the mean value, andutedtmore to the
global statistic (Anselin 1995).

The Global Moran’s Coefficient was an average value of spatial autotiomdiar all
spatial locations (Fortin and Melles 2009). This statistic was sensitive iersudind, the GWR
regression scatter plots of estimated and residual showed outliers in eeset.d@he Global
Moran’s Coefficient was omnidirectional, and it estimated the distanegéetocations but did
not measure the direction, so the spatial pattern as determined by the Globas Vidichnot
take into account anisotropy (Fortin and Dale 2005). However, the Local Moistaisstic
could have demonstrated directional local pattern that may have been atianditaon-

stationarity, which suggested a fragmentation process in the data.

DIRECTIONS FOR THE FUTURE

Reptiles and amphibians are the most under-represented in habitat fragmetudissn s
(McGarigal and Cushman 2002). Habitat fragmentation articles were sdribgyWMcGarigal
and Cushman (2002) and they found only 4% out of 134 articles are of reptiles. This study
defines suitable Eastern Box Turtle habitat within three study sites anesssitjtat the stability
of current populations may be imperiled and the future of populations will be at riskwith t
current rate of habitat fragmentation and loss. Empirical field studiesaded to map the
distribution of occupied and empty habitat (Thomas and Hanski 1997) and to determine how
sensitive populations are to the rate of habitat loss and fragmentation. Siodias such as
this can be used to communicate to Hamilton County elected officials, the Rétjanmang
Agency and the development community to incorporate rationale behind planningraethat

incorporate eastern box turtle conservation along with economic development. Mkneesds
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to be done to quantify the historic variability of landscape pattern in the contexiagieal
processes (Gustafson 1998, Turner et al. 2001) and to create habitat mapsdrganem-

based rather than a strictly human perspective (Wiens 1976).

Road Effects

Exchange of box turtles in the landscape matrix between habitat patches twathsie
due to the extra mortality on roads, which will lower colonization rates, and iadteas
extinction risk of local populations” (Vos and Chardon 1998, 50). Because box turtles are
habitat generalists that have low reproductive rates and long generation tiynaethwre
susceptible to road mortality than other habitat effects associatecbadtt fForman et al. 2003,
Forman and Deblinger 2000). For example, turtles move slow but can be mobile in the
landscape matrix and as such are more vulnerable to road mortality. Roadynstiaked to
box turtle habitat loss because studies suggest that when mortality rate atrik@sinigh (such
as when roads are present), mobile species are actually more vulnerabitatddss (Aresco

2003, Gibbons et al. 2000, Forman et al. 2003).

Permeability of the Matrix

Proximity of remaining habitat patches and neighboring habitat distance
change in landscape depends greatly on three characteristics of the lanusirap@-orman
and Godron 1986):

1) The area of the matrix relative to other land cover types

2) The level of connectivity between land cover types within the matrix

3) The degree of control the matrix has over landscape dynamics
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Site 1 matrix permeability is particularly constrained by the topogréphy steep slopes
of escarpment). The permeability of the matrix by dispersing turtlesfignttion of distance to
neighboring habitat and matrix quality” (Hilty et al. 2006, 126). Box turtlesws distinct
habitats, forest and meadow are used by adult turtles and juveniles exclusigelpland open
land is used by females for nesting and males at times. The measunreroftgraf critical
habitat types and how well box turtles can move between them is critical (Dwtrahd 992,

Pope et al. 2000).

Steep Slopes

Half of Hamilton County’s natural resources that are forested are on tamatergthan a
15% slope (Comprehensive Plan 2030) (100% slope is 45° so 15% slope is 6.6°). Forested and
extremely steep terrain (>15% slope) may not be suitable habitat forsteendaox turtle. In the
southeastern US. Muegel and Claussen (1994) find that box turtles are adepipggiades to

40° but they are more limited in descending slopes -10° to -40°.

Habitat Conservation

Gradual rate of habitat loss (<0.5%/yr) increases the success of halbdedtren efforts
(Schrott et al. 2005b). This study suggests that Study sites 2 and 3 have t@ccedéza of
habitat loss (Table 12A and Table 12B), so the rate of loss in those sites would have tete slow
down for suitable restoration sites. Success also depends on the box turtle peimpgtantial

of each habitat patch (Gustafson et al. 2005).
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Considerations

Conservation plans for box turtles are constrained by four factors. Fipstr<hb
mortality is high for box turtles in the road matrix (Dodd 2001, Klemens 2000) whith wil
constrain the potential for habitat fragments to “mitigate effects ofdidbgs” (Fahrig 2001,
72). Fahrig suggests that conservation strategies consider matrix godlityclude structures
such as fence rows to provide a “microclimate and shelter from prgtgtahnrig 200I, 72).
Box turtles are also especially vulnerable to fragmentation because inth\hdwa limited
ability to successfully migrate between isolated patches, so potentidiatiuals to “rescue”
dwindling populations from extinction is limited (Klemens 2000, Thomas and Hanski 1997,
213). It may be more important to provide box turtles with enhanced quality habitat than
maintain connectivity in a fragmented landscape by providing cleared, uplantyrsstss for
females and supplementing food resources (With and King 1998). The second factor is the
eastern box turtle level of sensitivity to habitat loss. Dodd (2001) believes thass$hend
alternation of box turtle habitat is the single greatest threat to theingedtexistence. Hence a
third factor is the vulnerability of box turtles and their nesting sites to halbiairix edge
effects. For example, urban edges increase predation by raccoons and dbgsalelction of
adult turtles by humans (Klemens 2000). Agriculture and forest interfazésraatening to box
turtle populations because of human induced mortality from crop mowing. Nazdevak
(2009) recommends that agricultural fields adjacent to a forest be plantedopititttat are not
mowed or if they are, mowed at a height of > 15 cm. The fourth factor is the horhangdve
of the eastern box turtle. Relocation is not a suitable option for conservation of the lleox turt

because displaced turtles will attempt to return to their original home aaraeesult of a

80



homing mechanism (Hester et al. 2007). This displacement could expose the tutile-t
threatening, inhospitable matrix (Hester et al. 2007).

Klemens suggests that “long term conservation will require protection of metapopsil
and ecosystems and [the] creation of open-space reservations that corregumsydtem
function and realities” (Klemens 2000, 240). If there is any hope for EasteriuBtas in
Hamilton County, high quality and intense habitat maintenance should be the spatres
priority. A mosaic of habitat is required to support the full range of dynacogystem
processes for turtles; these include mesic forest for estivation inesuamah hibernaculum in
winter and upland edges for female nesting sites. Juvenile box turtles efayast with dense
canopy and understory and high moisture content and dense leaf litter more than alests so t
forested areas are particularly sensitive to juvenile recruitment (@=n2007). Habitat
conservation plans in a fragmented landscape should include forested habitataajhesy
cleared areas for protection, so box turtles do not move into less desirable, edsafighay et
al. 2007).

Box turtles were listed as near threatened on the 2000 IUCN Red Lisinge2007),
and it is important that conservation strategies are implemented. It dosemented that box
turtles can live longer than a century, and may live longer than any othdirasstéErnst et al.
1994) because they have a long generation time; an adult turtle could take apetg3@that
years to become viable. For these reasons they show a response lag to &aiigatt&tion and
loss which delays the detection of population decline (Fahrig 2001). This is furthemnpatble
because even though they appear to persist in an urbanizing environment thegocae b

functionally extinct (Ernst et al. 1994, Rockwood 2006, Wilson pers. comm.).
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Appendix A-1

Landscape and habitat pattern studies using satellite, aerial photographylatesl landscapes.

Satellite Aerial Photography Simulated

O’Neill et al. 1996 AVHRR

Cifaldi et al. 2004

Madden 2004

Griffith et al. 2000,
Saunders et al. 2002 Landsat TM

Gustafson and Parker
1994 Landsat TM

Hargis et al. 1998

Donovan and Flather
2002

Thompson and
McGarigal 2002
Bender et al. 2003
Gustafson and

Gardner 1996 Landsat TM
Riitters et al. 1997 Landsat TM

Fauth et al. 2000 Landsat TM

Tischendorf 2001 Landsat TM

Gardner et al. 2007 Landsat TM
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Appendix A-2

Land cover and habitat change studies, including studies using a combination of seellit
aerial photography or simulated landscapes.

Satellite Aerial Photography Simulated
Landsat TM (30 m)
Wickham et  resolution for 1984 —
al. 2007 2001
1992 Landsat TM
Birgii et al. with 1938 tabular

2002 survey data

Land-use Change
Pearson et al. System model (LUCAS)
1999 Landsat MS projected

1963 espionage

satellite imagery

(resolution 200 m)

and Landsat MS

(resolution 79 m) for
Tidd et al. the years 1973, 1984
2000 and 1993

1975, 1980, 1986 and
Turner etal. 1991 Landsat MS and
1996 1991 Landsat TM

1950 panchromatic
Wear and 1990 Landsat TM aerial photography

Bolstad 1998 imagery at 1:20,000 scale
1990 Landsat TM
imagery, 1970 1950 panchromatic
Turner etal. Landsat MSS and aerial photography
2003 projected to 2030 at 1:20,000 scale

1937, 1938, 1940,
1965, 1967 and

Freeman et al. 1968 (1:20,000
2003 scale) 1990
Hawbaker et

al. 2006 1937 and 1999
Bartell et al. 1967, 1987, 1943
2002 1994
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Appendix B
Summary of Natural history of Terrapene carolina carolina

Terrapene carolina caroling found in Eastern North America in open woodlands,
pastures and marshy meadows (Ernst et al. 1994) and has been one of the most common
terrestrial reptiles in the eastern United States (Claussen et al. 199T)atuirad plant
communities in Northern Hamilton County are mostly Dry-Mesic Oak Fofddiddle and East
Tennessee and Xeric-Dry Oak Forest of Middle and East Tennessee (€erfaAssAnalysis
Land Cover Manual 2006). According to species habitat association informatioreddtam
the Tennessee Wildlife Resource Agency (TWRPrapene carolina carolinanhabits all of
the plant communities in Tennessee (GAP database file obtained from TWRA E@87rn
Box Turtles like to over winter on moist, south, southwest slopes (Dodd 2001) in at least a .8 cm
deep hibernaculum within the soil and a thick mat of leaf litter cover at least d8epn
(Dolbeer 1971), or they may spend the winter in the muddy bottom of a puddle (Ernst et al.
1994).

Donaldson and Echternacht (2005) observed box turtles in Tennessee thermoregulating by
spending weeks at a time during the summer submerged in pondl@uwdpenecarolinaliving
in isolated and fragmented habitat patches in Delaware have been observed tomuyéeas
frequently than turtles in more favorable habitat (Iglay 2007) but home rasageraay be larger
in unfavorable habitat (Stickel 1948, 1950). Experiments with captured box turtles fiiormO
the laboratory report that box turtles are good at going up grades up to 40° but hade limi
ability to descend slopes (-10° to -40°) (Muegel and Claussen 1994). It is known tHat fema
turtles can travel long distances to find suitable nesting sites and made tantl make frequent
and long movements in search of mating opportunities (Gibbons 1986). Nesting generall
occurs in June, the female prefers just before, during or after rainfall afténeoon (Dodd
2001). Flitz and Mullins (2006) studied 24 female box turtles in Illinois all of whichdhéste
open, disturbed clearings. The subjects of the study had some daily straight lineemtsvem
greater than 500 meters prior to nesting. It is generally agreed that thex jpuefer an open,
elevated patch of sandy, loamy soil for nesting (Ernst et al. 1994). Home ranigexdaiuatle is
the area normally traveled in its activities and territory is a deferréadtzat may include home
range or part of a home range (Stickel 1950).

Juvenile and adult box turtles may exhibit differential habitat use. On EgnegrinKclorida
Jennings (2007) found that juveniles rarely used open areas but used areas it |eaid

soil more frequently, substrates with high moisture content (>75%) dense caxey rauidi-

story, and canopy heights. Precipitation stimulates increased movementiatadefa foraging

in terrestrial species likEerrapene carolingShepard et al. 2008a).
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Appendix C
Fragstats Metric Description

Patch Level Metrics

Area - Calculates area in hectares

Proximity Index (PI); (unitless) — First, theearch radiusis specified (i.e., the distance [in
meters] from a focal patch within which neighboring patches are evaluated). 8@ the
sum of patch area @ndivided by the nearest edge-to-edge distance squafetié¢tween the
patch and the focal patch of all patches of the corresponding patch type whasaredgighin a
specified distance (m) of the focal patch, as opposed to the nearest-neighboe diseant
patch within the search radius, which could be to a patch other than the focal patcludphis st
uses a 300 m search radius buffer distance (Distanced determined for coraerhathtathabitat
models and the average box turtle home range diameter). This metric sum®s$hef @tch
area to distance for all habitat patches that fall at least partidfilnvgome specified distance of
the focal patch and is based on patch edge-to-edge distance, computed from ced celiter
center. Index is based on Island Biogeography theory and is a measuretiohisola

Range — PROX > 0. PROX = 0 if a patch has no neighbors of the same patch typ8Qathi
search radius. PROX increases as the neighborhood (defined by the spemitipdadius) is
increasingly occupied by patches of the same type and as those patches beerrapdinsre
contiguous (or less fragmented) in distribution. The upper limit of PROX is exifégt the
search radius and the minimum distance between patches.

Euclidian Nearest Neighbor(ENN); (unit m) - Distance between patches of the same class
based on edge-to-edge distance.

Shape Index(Sl); (unitless) - Equals patch perimeter (m) divided by the square root bf patc
area (M). Sl equals 1 when all patches are circular (or square in raster) ag@bgewithout
limit as the patch shapes become more irregular.

CORE (ha) - Equals the area (unit m?) within the patch that is further than théespdepth-
of-edge distance from the patch perimeter divided by 10,000 (to convert to ha). Q@dREG
when every location within the patch is within the specified depth-of-edge didtanc the
patch perimeter. CORE approaches AREA as the specified depth-of-cdgeelis) decreases
and as patch shape is simplified (McGarigal et al. 2002).
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Class Level Metrics

Class Area(CA); (units ha) > areas (m?) of all patches of the corresponding patch type divided
by 10,000 to convert to hectares Area of patch class.

Number of Patches(NP) - Number of patches in respective land cover class.

Percent land (CPLAND); (unit %) - Area (m?) of corresponding patch type divided by total
landscape area, multiplied by 100 (to convert to a percentage) Percent of lantlass.e

Patch Density(PD); (unit - number per 100 ha) - Equals the number of patches of the
corresponding patch type divided by total LS area, multiplied by 10,000 and 100 (tat ¢onver
100 hectares). (n/total LS area)*10,000.

Total Edge (TE); (unit m) -’ lengths (m) of all edge segments involving the corresponding
patch type. Equals O when there is no class edge in the LS; that is, when thamdicage
consists of the corresponding patch type. Includes a user-specified proportiokgrbbad
edge segments involving corresponding patch type.

Mean Shape Index (SHAPE_MN); (unitless) - Average patch shape complexity for patches
comprising the class; equals 1 when all patches are circular and ina@sgstshes become
noncircular.

Area Weighted Mean Shape IndeXSHAPE_AM); (unitless) - When sampling relatively small
areas, the AWMSI is considered more meaningful than MSI because it ghatsrgreight to
large polygons (see Perry et al. 2002).

Area Weighted Mean Core Area CORE_AM); (%)— Sum of the core areas of each patch) (m
of the corresponding patch type, divided by the sum of the areas of each Fiwhtli® same
type multiplied by 100 (to convert to percentage).

Area Weighted Mean Patch Sizd AREA_AM); (ha) — Computed by dividing the summation of
the squared patch sizes (see Turner et al. 1996, Gardner et al. 2007).

Mean Patch Siz AREA _MN); (ha) - Average size of the patches comprising the class.

Median Patch Sizel/AREA _MD); (unit ha) - Median size of patches comprising the
class.

Patch Size RangéAREA _RA); (unit ha) - Range size of the patches comprising the class.
Standard Deviation Patch Siz§ AREA_SD)

Patch Size Coefficient of Variation(AREA_CV); (%) - Measures relative variability about the
mean. Only use with MPS (see Cifaldi et al. 2004).
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Largest Patch Index(LPI), (%) - Equals the area of the largest patch of the corresponding
patch type divided by total landscape area, multiplied by 100 (to convert to atpgejeln
other words, equals the percent of the landscape comprised by the largest patch.

Mean Core Area(CORE_MN); (units ha) - The area remaining after removing thecdredge
influence, which is defined by buffering the patch with a specified edget eistance inward

from the patch boundary. The sum of the core areas of each patch (m?) of the corresponding
patch type, divided by the number of patches of the same type, divided by 10,000 (to convert to
hectares).

Core Area Index Mean(CAIl_MN); (unit %), weighted mean (aka TCAI) -Quantifies core area
for the entire class as a percentage of total class area.

Landscape Level Metric

MESH (units ha) - Area Weighted Mean Area (ha) Equals 1 divided by the total landseape a
(m?2) multiplied by the sum of patch area (m?2) squared, summed across all jpattiees
landscape. MESH is maximum when landscape consists of a single patch. Arater |
achieved when the landscape is maximally subdivided; that is, when everyacedparate

patch. MESH and area-weight mean patch size are almost identical. AREAvédMIite area-
weight mean patch size, where the proportional area of each patch is basedlamdstape

area.
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Appendix D

Dry-Mesic Oak Forest of Middle and East Tennessee (based on aspect): These forests are
found in the Interior Low Plateau, Cumberland Plateau, Ridge and Valley, and Unak#aMs
Physiographic Provinces. Dominant trees include sugar mapde §accharum)chinquapin

oak Quercus prinoides)white oak Quercus alba)scarlet oak,Quercus coccineaporthern

red oak Quercus borealis)black oak Quercus nigra)hickory speciesCarya sp), chestnut oak
(Quercus prinus)and southern red oa®qercus rubrg Hydrologic conditions range from dry
to mesic.

White oak dominated forests are the most widespread in the Ridge and Valley withatiestgr
frequency being on mesic sites (Martin 1989). Northern red oak is a common adsareiate
(Martin 1989). In the Cumberland Plateau, these forests are found on drier upper slopes of
ravines to middle and lower slopes (Hinkle 1989). American che@astanea dentataan
extinct alliance replaced in part by chestnut oak, northern red oak, and rexg wespfound in
the provinces east of the Cumberland Plateau, with a low American chestnut compadnent i
Cumberland Plateau (Hinkle 1989). In the Eastern Highland Rim, mesic upland &oeeqtite
abundant, where historically, American chestnut comprised a significapboemt of forest
(McKinney 1989).

Mixed Mesophytic Hardwood Forest: These forests are found in the Mississippi Alluvial Plain,
Loess Plain, Southern Coastal Plain, Interior Low Plateau, CumberlardPlahd Ridge and
Valley Physiographic Provinces. Dominant trees are sugar maple, chimga&piAmerican
beech Fagus grandifolia, tulip tree Liriodendron tulipiferg, white oak, northern red oak,
bitternut hickory Carya cordiformi$, sweetguml(iquidambar styraciflug Appalachian
basswoodTilia heterophylld, and yellow buckeyeAesculus flava Hydrologic conditions
range from sub-mesic to mesic. In the Cumberland Plateau, these &eetund in protected
sites of escarpment slopes, coves, and deeper ravines (Hinkle 1989). In the Eaktana Hig
Rim, mixed mesophytic forests are not common but are occasionally found in cogs gexl
(McKinney 1989).

Xeric-Dry Oak Forest of Middle and East Tennessee (based on aspect): These forests are found
in the Interior Low Plateau, Cumberland Plateau, Ridge and Valley, and Unaka Msunta
Physiographic Provinces. Dominant trees are white oak with southern red oak and post oak
(Quercus stellatg as well as chestnut oak with scarlet oak and black oak. Blackjack oak
(Quercus marilandicamay be found with these on the driest sites (Clebsch 1989). Common
associates include tuliptree, elbifhus sp), maple Acer sp), and black walnutJuglans nigra.
Hydrologic conditions range from xeric and subxeric to dry.

In the Cumberland Plateau and Cumberland Mountains, this mixed oak forest is found on
uplands (Hinkle 1989). In the Eastern Highland Rim, subxeric oak-hickory forests are found on
many upland slopes and on xeric ridges (McKinney 1989). Also on the Eastern Higimgnd R
xeric and sub-xeric upland flatwoods are dominated by southern red oak, post oakgllackja
oak, and scarlet oak (McKinney 1989). American chestnut, an extinct alliance once found in
Middle and East Tennessee, was replaced in part by stands of chestnut oak, reattbaknand
red maple.

In the Ridge and Valley, white oak-dominated forests are the most widesprestdcOommunity
and they occupy a wide range of soils and landforms except the most extrerseamektgriest
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(Martin 1989). On the drier sites, chestnut oak, black oak, and other upland oaks become
important (Martin 1989).

Xeric to Mesic Mixed Conifer/Hardwood Forest: These forests are found in the Southern
Coastal Plain, Interior Low Plateau, Cumberland Plateau, Ridge and Valieynaka

Mountains Physiographic Provinces. Dominant trees are eastern redJdcetaerus

virginiana) with chinquapin oak, post oak, black oak, and blackjack oak; shortleaffimes (
echinatg with white oak, southern red oak, post oak, black oak, and blackjack oak; shortleaf
pine, loblolly pine Pinus taed® and/or Virginia pineRinus virginiang with white oak,

northern red oak and tuliptree. Other combinations are pitch Pinegrigidg and/or Table
Mountain pine Pinus pungenswith chestnut oak and scarlet oak; Virginia pine with white oak,
post oak, southern red oak, and black oak; Virginia pine with scarlet oak and chestnut oak; and
shortleaf pine with scarlet oak, southern red oak and chestnut oak. Hydrologic conditiens ran
from xeric, sub-xeric, dry, to mesic.

In the Cumberland Plateau, shortleaf pine-white oak stands represent the typjzaled®rests
(Hinkle 1989). Virginia pine is found on old field sites and is associated with seveispeaes
(Hinkle 1989). In addition several stands of Virginia pine occur on dry promontories above the
Tennessee and Cumberland Rivers (Chester and Ellis 1989).

(Referenced from the Tennessee GAP Analysis Land Cover Manual 2006, reprinted with
permission from Jeanette Jones, GIS Manager, Tennessee Wildlife ResourceTAgRAJy

Tnveg Metadata

Originator: Tennessee Wildlife Resources Agency
Publication_Date: 1997

Title: Detailed Vegetation of Tennessee
Geospatial_Data_Presentation_Form: raster digital data

Description:

Abstract The land cover types were derived from classification techniques performed on
Landsat TM imagery. The strip mines/rock quarries/gravel pits clagstalegn

from ancillary data sets and added to the classification file. The scubb/shr

class was not attainable for all TM scenes and therefore is not valid for a
state-wide representation of that class. It should be noted that the
pasture/grassland class includes winter wheat, hay, as well as pashee

forest classes from the land use/land cover file were extracted from the

satellite imagery and reclassified. Forest communities were iatedofrom

aerial videography acquired April 1995 and correlated to the satellite imagery

The Nature Conservancy, An Alliance Level Classification of the Vegatafi

the Southeastern United States (May 1997) was used to guide the labeling. process

Purpose: This map was prepared in compliance with the National Gap Analygg&n®ro
effort. The map provides current information on the geographic location and extent
of major vegetation and land cover types in the state of Tennessee. The primary
purpose of the map is to estimate the current spatial distribution of habitat that
is available for terrestrial vertebrate species. The intent of all Gdysisra
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Program products is to provide tools for conservation planning purposes.

Accuracy of the original land use/land cover map for the entire state was 85%.
Subsets taken from the original land cover file were used to map the forest coesnunit
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Appendix E

Study Site 1 potential habitat metrics (Forest). The patch ID numiti@rd@responds to the PID
number identifying patches in Core Habitat Maps. A patch is a thgoodygon that is coincident
with all other polygons in a dataset.

PATCH AREA PERIM SHAPE CORE

D (ha) (m) INDEX  (ha) PROX
1963 103 0.4 324 1.3 0.4 29,851
64 28.2 6,024 2.8 1.3 6,891
4 25 6,338 3.2 2.7 12,127
8 69 6,602 2 2.7 26,086
65 33.5 5,366 2.3 8.7 23,959
15 61.1 4,894 1.6 12.3 4,679
87 99.7 11,148 2.8 21.1 8,354
151 110 7,952 1.9 85.4 46,475
Total 426.9 48,648 134.6
1972 7 68.5 6,674 2 0.3 25,655
51 37.5 4,810 2 8.6 26,089
14 61.1 4,894 1.6 12.3 4,603
75 1003 10,766 2.7 21.1 8,232
136 105.3 7,104 1.7 84.4 46,477
Total 372.7 34,248 126.7
1980 87 0.19 232 1.33 0.19 21,349
5  69.11 6,696 2.01 0.32 25,499
46 37.79 5,620 2.28 8.5 26,394
12 61.09 4,894 156  12.31 4,574
69  90.48 11,950 3.14  17.09 8,245
127  105.07 8,142 1.98  48.42 46,448
Total 363.73 37,534 86.83
1997 13 50.1 4,870 1.7 0.2 1,336
5 69.1 6,696 2 0.3 25,499
73 98.5 10,560 2.7 22 8,232
133 83.4 8,308 2.3 58.5 46,472
Total 301.1 30,434 81
2007 18 51.6 5,920 2.1 0.1 1,425
7 41.4 3,388 1.3 3.1 2,432
76 117.7 9,898 2.3 36.3 8,235
133 82.5 8,196 2.3 58.2 46,527
Total 2932 27,402 97.7
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Study Site 2 potential habitat metrics.

PATCH AREA PERIM SHAPE CORE
ID TYPE (ha) (m) INDEX (ha) PROX
1963 10 Agriculture 11.3 3308.0 25 0.1 16768.5
34 Agriculture 0.3 316.0 1.4 0.3 15862.8
38 Agriculture 0.5 360.0 1.3 0.5 6226.6
43 Agriculture 51.5 11438.0 4.0 0.8 12256.9
40 Agriculture 0.9 902.0 2.4 0.9 12597.3
37 Agriculture 3.3 1558.0 2.1 3.2 26017.1
39 Agriculture 4.2 2336.0 2.8 41 16907.9
31 Agriculture 4.5 1090.0 1.3 4.5 3890.8
82 Agriculture 4.8 1746.0 2.0 4.8 4923.5
14 Agriculture 13.1 2672.0 1.8 6.1 11435.1
80 Agriculture 33.8 7046.0 3.0 7.3 174355
46 Agriculture 132.5 14966.0 3.3 73.9 1760.3
69 Forest 27.6 3902.0 1.9 0.3 21519.9
81 Forest 27.5 12880.0 6.1 0.3 19221.8
54 Forest 11.8 1786.0 1.3 0.3 2594.6
110 Forest 2.6 1568.0 2.4 1.2 10678.5
116 Forest 51.8 7798.0 2.7 1.4 5061.8
22 Forest 2.1 1142.0 2.0 2.1 1007.5
91 Forest 58.6 7596.0 25 3.2 1723.3
134 Forest 4.2 1706.0 2.1 4.2 22945.9
117 Forest 43.6 6006.0 2.3 4.4 2163.1
196 Forest 66.2 5798.0 1.8 6.8 8764.7
157 Forest 40.8 13206.0 5.2 25.2 7486.1
224 Forest 118.3 11022.0 25 75.5 4128.5
230  TXlineROW 3.1 3842.0 5.5 1.0 4369.2
298  TXlineROW 5.7 4818.0 5.1 2.7 2372.0
Total 724.6 130808.0 235.1
1985 141 Agriculture 7.5 2756.0 2.5 0.2 2232.2
218 Agriculture 3.3 1558.0 2.1 3.2 12487.3
197 Agriculture 4.2 2336.0 2.8 4.1 4509.3
122 Agriculture 131 2672.0 1.8 6.0 1092.4
203 Agriculture 16.2 3834.0 2.4 12.0 3723.8
252 Forest 3.2 1190.0 1.7 0.1 10482.2
53 Forest 1.0 1434.0 3.5 0.4 1232.6
96 Forest 1.3 1778.0 3.8 0.9 4067.5
33 Forest 72.3 5682.0 1.7 1.1 9464.3
59 Forest 54.4 7112.0 2.4 2.0 1517.2
98 Forest 44.0 5570.0 2.1 2.7 1650.7
80 Forest 334 7248.0 3.1 5.6 5244 .4
132 Forest 118.5 10360.0 2.4 215 2898.7
29  TXlineROW 9.6 8336.0 6.7 1.0 2379.4
90 TXlineROW 3.1 3842.0 55 1.0 7372.3
104 Wetland 20.5 3672.0 2.0 4.0 1215.1
Total 405.6 69380.0 65.8
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Continued. Study Site 2 potential habitat metrics.

PATCH AREA PERIM SHAPE CORE
ID TYPE (ha) (m) INDEX  (ha) PROX
1997 222  Agriculture 3.3 1558.0 2.1 3.2 10560.9
202  Agriculture 4.2 2336.0 2.8 41 3814.4
209  Agriculture 13.7 3056.0 2.1 10.0 3722.7
142 Forest 92.6 10808.0 2.8 0.1 35645
20 Forest 22.7 10572.0 55 0.3 96415
134 Forest 9.5 2486.0 2.0 0.3 1469.7
46 Forest 1.0 1434.0 35 0.4 23304
65 Forest 0.9 570.0 15 0.9 6592.6
139 Forest 1.1 744.0 1.7 1.1 7588.9
52 Forest 54.4 7112.0 2.4 2.0 42958
94 Forest 445 5576.0 2.1 27 2075.6
69 Forest 21.1 5260.0 2.9 15,9 2097.0
77 Forest 36.1 4592.0 1.9 174 1528.6
25 TXlineROW 9.6 8336.0 6.7 1.0 23789
85 TXlineROW 3.1 3842.0 5.5 1.0 74127
Total 317.8 68282.0 60.4
2007 233  Agriculture 3.3 1558.0 2.1 3.2 10560.9
213  Agriculture 4.2 2336.0 2.8 41 3814.4
221  Agriculture 13.7 3056.0 2.1 10.0 3722.7
148 Forest 11 744.0 1.7 0.2 7514.2
51 Forest 1.0 14340 3.5 0.4 12418
57 Forest 54.4 7112.0 2.4 20 1623.6
80 Forest 36.1 4592.0 1.9 17.4 14284
26 TXlineROW 9.6 8336.0 6.7 1.0 2378.9
88 TXlineROW 3.1 3842.0 5.5 1.0 74127
107 Wetland 15.9 2806.0 1.8 1.7 1030.8
Total 142.4 35816.0 41.0
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Study Site 3 potential box turtle habitat.

PATCH AREA PERIM SHAPE CORE
ID TYPE (ha) (m) INDEX (ha) PROX
1977 129 Agriculture 22.1 4,674.0 25 0.1 9,955.5
436 Agriculture 20 3,534.0 2 0.3 1,616.1
588 Agriculture 0.3 292.0 1.3 0.3 3,243.7
138 Agriculture 18.4 5,566.0 3.2 1.7 6,148.3
399 Agriculture 9.1 3,136.0 2.6 2.6 1,093.4
99 Agriculture 17.4 4,968.0 3 5.1 6,508.0
613 Agriculture 12.5 2,376.0 1.7 12.5 1,621.1
223 Forest 0.1 192.0 1.7 0.1 1,065.6
623 Forest 0.1 264.0 1.8 0.1 2,127.4
221 Forest 0.1 158.0 15 0.1 4,874.3
201 Forest 0.8 824.0 2.3 0.1 6,266.3
57 Forest 73.1 9,628.0 2.8 0.2 36,553.9
205 Forest 25.2 4,182.0 2.1 0.8 40,743.9
189 Forest 3.3 2,726.0 3.7 25 16,157.0
558 Forest 32.2 8,438.0 3.7 46 31,394.4
193 Forest 71.5 10,026.0 3 6.3 22,847.4
240 Forest 117.3 12,326.0 2.8 6.9 22,898.3
2 Forest 150 14,328.0 29 18.7 1,318.4
586 Forest  140.7 12,128.0 2.6 23 25,826.9
194 Forest 72 7,114.0 2.1 25.4 22,0125
92 Forest 172 10,900.0 2.1 542 15,103.8
44 Plantation 22.2 2,598.0 1.4 0.1 3,654.0
177  TXlineROW 13.8 2,674.0 1.8 6.1 7,185.3
174  TXlineROW 21.4 9,616.0 5.2 10.5 4,091.9
Total 1015.6 132,668.0 182.3
1984 160 Agriculture 5.4 1,974.0 2.1 0.1 5,930.7
153 Agriculture 21.3 4,390.0 2.4 0.1 8,169.6
646 Agriculture 0.3 292.0 1.3 0.3 3,243.7
484 Agriculture 20.3 2,980.0 1.7 1.2 1,685.3
451 Agriculture 7.9 2,514.0 2.2 3.4 1,542.8
118 Agriculture 16.6 4,836.0 3 4.8 6,268.7
668 Agriculture 12.5 2,376.0 1.7 12.5 1,621.1
248 Forest 0.1 192.0 1.7 0.1 1,014.0
679 Forest 0.1 264.0 1.8 0.1 2,127.4
67 Forest 5.1 1,754.0 1.9 0.1 2,813.5
245 Forest 0.1 158.0 15 0.1 4,648.2
224 Forest 0.8 824.0 2.3 0.1 6,034.5
273 Forest  100.7 14,528.0 3.6 0.3 12,983.3
83 Forest 7.7 1,728.0 1.6 0.7 5,066.3
212 Forest 3.3 2,726.0 3.7 25 16,115.7
608 Forest 32.2 8,438.0 3.7 46 31,267.0
216 Forest 72.7 9,506.0 2.8 6.3 22,813.3
2 Forest 47 9,010.0 3.3 7 26,349.5
7 Forest 89.3 5,808.0 15 184 15,2481
644 Forest  140.3 12,352.0 2.6 23 25,231.6
217 Forest 71.8 7,116.0 2.1 249 22,354.7
110 Forest  152.3 8,788.0 1.8 57.7 8,928.1
200 TXlineROW 13.8 2,674.0 1.8 6.1 7,185.3
197 TXlineROW 21.4 9,616.0 5.2 10.5 4,140.0
Total 843.0 114,844.0 184.9

108



Continued. Study Site 3 potential Box turtle habitat.

PATCH AREA PERIM SHAPE CORE
ID TYPE (ha) (m) INDEX (ha) PROX
1997 777  Agriculture 0.3 292.0 1.3 0.3 2,650.8
549  Agriculture 79 2,514.0 2.2 1.7 1,521.6
139  Agriculture 17.7 4,514.0 2.7 48 6,826.4
800  Agriculture 125 2,372.0 1.7 125 1,322.8
296 Forest 0.1 158.0 1.5 0.1 4,646.6
304 Forest 0.1 192.0 1.7 0.1 1,011.9
81 Forest 3.8 1,400.0 1.8 0.1 2,648.7
261 Forest 0.8 824.0 2.3 0.1 5,983.0
817 Forest 0.1 264.0 1.8 0.1 2127.1
136 Forest 10.8 1,650.0 1.3 0.8 8,048.4
2 Forest 44,2 9,084.0 3.4 1.6 23,155.9
249 Forest 3.3 2,726.0 3.7 25 12,509.1
774 Forest 1229 16,516.0 3.7 3.0 16,344.2
733 Forest 37.9 12,048.0 4.9 4.6 5,300.5
8 Forest 78.7 7,242.0 2.0 10.6 13,517.1
148 Plantation 28.7 3,474.0 1.6 11.6 4,368.2
141 Plantation 63.7 3,996.0 1.3 542 1,994.8
234 TXlineROW 21.4 9,616.0 5.2 2.8 4,140.0
237 TXlineROW 13.8 2,674.0 1.8 6.1 7,185.3
Total 468.7 81,556.0 117.7
2007 113  Agriculture 22.9 6352 3.3 3.7 7287.5
775 Forest 0.1 264 1.8 0.1 2118.3
2 Forest 42.1 10004 3.9 1.6 20050.0
9 Forest 68.2 7290 2.2 2.2 12799.3
256 Forest 3.3 2726 3.7 25 11078.9
728 Forest 122.0 16532 3.7 2.8 16045.0
689 Forest 34.6 9810 4.2 4.6 4331.9
158 Plantation 18.9 4692 2.7 5.0 1316.4
242 TXlineROW 21.4 9616 5.2 2.3 4864.6
245 TXlineROW 16.3 2726 1.7 4.7 7497.0
Total 349.8 70,012.0 29.5
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Appendix F

Frequency 10 Frequency *10°*
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8.56 0.64 0.73 0.81 0.89 0.98 1.06 1.14 1.23 1.31 1.39 2»25 2.63 3 3.38 3.76 4.14 451 4.89 5.27 5.64 6.02
Data“10™ Data
Data Source: site 1_1963 Attribute: area_log  Data Source: site 1_1972 Attribute: area_log
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2.56 272
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1.28 1.36
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Data Data
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Data Source: site 1_2007 Attribute: area_log

Figure F-1. Site 1. Histograms of variable area_log. 110
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Figure F-2. Site 2. Histograms of variable area_log.
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Figure F-3. Site 3. Histograms of variable area_log.
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Figure F-4. Site 1. Histograms of variable perim_log. 113
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Figure F-5. Site 2. Histograms of variable perim_log.
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Figure F-6. Site 3. Histograms of variable perim_log.
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Appendix G

Historic Land Loss

This region has a long history of land use conversion for human development. Prior to
the construction of the Chickamauga Dam in 1941, the Tennessee Valley AuthgAly (T
extensively studied the Tennessee River basin documenting that the previouseauespr
destruction of the forest by settlements was apparent by the strederemes from
unprotected, eroding soils, which would reduce hydro-electric possibilities Hadsl. 1939).
The building of Chickamauga reservoir diverted North Chickamauga Creek daamdtoen
the dam, relocated the town of Soddy (The Chickamauga Project 1942) and flooded tholusands
acres of farm land in Hamilton County (Rural Families of the Chickamaager®ir Area
1937).

During the late 1930s in Hamilton County, it was common practice to have 108 acre
farms half in corn and hay and half in woodland (Rural Families of the ChickarRasgavoir
Area 1937). In 2002, the average size farm was 91 acres (USDA 2002). Most of the land use
conversions from farming are to housing developments (RPA Comp. Plan 2006); between 2001
and 2005 half of the new major subdivision recordings in Hamilton County were in
unincorporated areas (Chattanooga - Hamilton County Regional Planning AgentyplDreard
Trends). Between 1990 and 2000 Hamilton County population has increased 8% (Chattanooga-
Hamilton County Regional Planning Agency (RPA) Comprehensive Plan 2030) but thgisount
reflecting a nationwide trend of decline of urban population and growing developmerslin r
and forested areas. Cho et al. (2009) found that the amenity value of foreststhteal e
increased during the 1990s in the Southern Appalachian Highlands.
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Appendix H

Posey Point is in the state owned Cumberland Trail State Park and near wherithtaaltis
located. Since late 2006, this area has been actively strip mined for mountain ptymdaa

type of sandstone exclusively found on the Cumberland Plateau. In February 200@atbis ar
the trail was closed because it was destroyed by strip miners (Chattanoega-fee Press,
Thursday, February 15, 2007). As of summer 2008, the state, who own the land but not the
mineral rights, filed an injunction to prevent mining within 25 feet of the trail. Tee Press
article goes on to quote the harvesters who say they will “smooth out the landasevarul
replant trees when they are done”. The mineral rights owner argues thatehg ts{ang to

“take” the mineral rights from him. The Chattanooga Times Frees Sagbs their Thursday,
June 19, 2008 issue that the case is being decided by the Tennessee Appeals Court and the
outcome will affect 11 Cumberland Plateau Counties.
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Appendix |

The average market value (per acre) of a farm in Hamilton County

1987 $1,577
1992 $1,761
1997 $2,752
2002 $3,074

Source: USDA National Agricultural Statistics Seev— 1992 & 2002 Census of Agriculture — CountyeDa
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Birmingham until she was twelve years old, then moved to Atlanta, Georgia, \lleere s
graduated from Towers High School in 1967. She moved to San Francisco, California in 1970
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with a major in Environmental Science. In Marie’s senior year at UTC ahiedgstvorking at
TVA in the Geographic Information and Engineering Department and afguajran she
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Analyst. Marie has been a member of the American Society of PhotognanameétRemote
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