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ABSTRACT

In this project, we investigate positive definite sequences and their associated Jacobi

matrices in Hilbert space. We set out to determine the Jacobi matrix associated to the Hilbert

sequence by methods described in Akhiezer’s book The Classical Moment Problem. Using

methods in Teschl’s book Jacobi Operators and Completely Integrable Nonlinear Lattice, we

determine the essential spectrum of the corresponding Jacobi matrix.
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CHAPTER 1

INTRODUCTION

The investigation of positive definite sequences often leads to interesting results. By

a result due to Hilbert in 1894 [2] the sequence h = { 1
k+1
}∞k=0 is positive definite. In the book

The Classical Moment Problem, Akhiezer establishes a one-to-one correspondence between

positive definite sequences and Jacobi matrices. The goal of this thesis is to find the Jacobi

matrix associated to h and to locate its essential spectrum.

Akhiezer [1, Sections 1.2–1.4] describes in detail the construction by which one may

calculate the Jacobi matrix associated to a given positive definite sequence. A Jacobi matrix

is a semi-infinite, tridiagonal matrix of the form:

J =


a0 b0 0 0 0 · · ·
b0 a1 b1 0 0 · · ·
0 b1 a2 b2 0 · · ·
...

. . . . . . . . . . . . . . .

 ,
where {ak}∞k=0 and {bk}∞k=0 are sequences of real numbers with bk > 0 for all k ∈ N0.

Here N0 = N ∪ {0} is an abbreviation for the natural numbers including zero. Akhiezer

derives general expressions for the terms ak and bk. The expression for bk is simpler in

the sense that bk is directly expressed in terms of the entries of the given positive definite

sequence. However, Akhiezer’s expressions for ak involve a functional and a three-term

recurrence relation. Therefore, these expressions for ak are difficult to work with in practice.

To calculate the bk corresponding to h, we use Akhiezer’s expressions for bk and a known
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formula for the determinant of a Cauchy matrix. To calculate the ak corresponding to h,

we apply our formula for bk and exploit the arbitrary nature of a parameter in Akhiezer’s

three-term recurrence relation.

Finally, using an abstract result on the essential spectrum of a Jacobi matrix from

[6], we apply our expressions for ak and bk to locate the essential spectrum of the Jacobi

matrix associated to h. We find that the essential spectrum is the interval [0,1].
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CHAPTER 2

Mathematical Preliminaries

2.1. Positive Sequences and Jacobi Matrices

In The Moment Problem, Schmüdgen defines a sequence of real numbers s = {sk}∞k=0

to be positive definite if for every n ∈ N0,

n∑
j,k=0

sj+kxjxk > 0 for every (xj)
n
j=0 ∈ Rn+1 (2.1.1)

(see [4, Section 3.2]). Equivalently, by [4, Proposition 3.11], s is positive definite if and only

if the following determinant condition holds:

Dk =

∣∣∣∣∣∣∣∣
s0 s1 . . . sk
s1 s2 . . . sk+1
...

...
. . .

...
sk sk+1 . . . s2k

∣∣∣∣∣∣∣∣ > 0, k ∈ N0, (2.1.2)

where |M | denotes the determinant of a square matrix M . The determinant Dk in (2.1.2) is

called a Hankel subdeterminant corresponding to s since the matrix under the determinant

sign in (2.1.2) is a Hankel matrix.

Akhiezer [1, Sections 1.2–1.4] constructs a bijection between the set of positive definite

sequences and the set of Jacobi matrices. The one-to-one nature of this correspondence is also

described in Schmüdgen [4, Sections 5.1–5.3], and a statement of the result is summarized

in [4, Theorem 5.14].

A Jacobi matrix is a semi-infinite matrix of the form

3



J =


a0 b0 0 0 0 · · ·
b0 a1 b1 0 0 · · ·
0 b1 a2 b2 0 · · ·
...

. . . . . . . . . . . . . . .

 , (2.1.3)

where {ak}∞k=0 and {bk}∞k=0 are sequences of real numbers and

bk > 0, k ∈ N0. (2.1.4)

The Jacobi matrix J in (2.1.3) is symmetric in the sense that J is equal to its

transpose, J = J T . Jacobi matrices play a special role in operator theory where, by a

theorem due to Stone [5, Theorem 7.13], they arise as a model for operators with a simple

spectrum ([5, Definition 7.2]).

Example 2.1. An explicit example of a positive definite sequence is Hilbert’s sequence,

h =

{
1

k + 1

}∞
k=0

=

{
1,

1

2
,
1

3
, . . .

}
. (2.1.5)

In fact, Hilbert calculated the Hankel subdeterminant (2.1.2) for h in [2] and found

Dk =

∣∣∣∣∣∣∣∣∣
1 1

2
. . . 1

k+1
1
2

1
3

. . . 1
k+2

...
...

. . .
...

1
k+1

1
k+2

. . . 1
2k+1

∣∣∣∣∣∣∣∣∣ =
{1k2k−1 · · · (k − 1)2k1}4

12k+122k · · · (2k)2(2k + 1)1
, k ∈ N0. (2.1.6)

Since the right-hand side of (2.1.6) is a positive real number for all k ∈ N0, the

sequence h is positive definite. Thus, according to the construction provided by Akhiezer in [1,

Sections 1.2–1.3], there is a unique Jacobi matrix Jh corresponding to the Hilbert sequence h.

The matrix under the determinant sign in (2.1.6) is a Cauchy matrix. Therefore, the identity

in (2.1.6) may also be deduced from a known closed-form expression for the determinant of

a Cauchy matrix. The expression for the determinant of a Cauchy matrix will be used later

in a different context, so we have included the formula and its proof in Appendix A.
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2.2. The Associated Jacobi Matrix

In order to find the Jacobi matrix Jh corresponding to h, it is necessary to find

the two sequences which make up the Jacobi matrix: {ak}∞k=0 and {bk}∞k=0. According to

Akhiezer’s construction, the equation for the bk is

bk =

√
Dk−1Dk+1

Dk

, k ∈ N0, (2.2.1)

where Dk is the determinant in (2.1.6); that is,

Dk =
{1k2k−1 · · · (k − 1)2k1}4

12k+122k · · · (2k)2(2k + 1)1
=

[
∏k

j=1 j
k−j+1]4∏2k+1

j=1 j2k−j+2
, k ∈ N0. (2.2.2)

Thus, applying (2.2.2) in (2.2.1), the full representation of bk is,

bk =
[
∏k−1

j=1 j
k−j]2

[
∏2k−1

j=1 j2k−j]1/2

[
∏k+1

j=1 j
k−j+2]2

[
∏2k+3

j=1 j2k−j+4]1/2

∏2k+1
j=1 j2k−j+2

[
∏k

j=1 j
k−j+1]4

=
(k + 1)2[

∏2k−1
j=1 j2k−j+2](2k)2(2k + 1)

[
∏2k−1

j=1 jk−
j
2 ][
∏2k−1

j=1 jk−
j
2
+2](2k + 1)1/2(2k + 2)(2k + 3)1/2

=
k + 1

2
√

2k + 1
√

2k + 3
, k ∈ N0. (2.2.3)

Also, Akhiezer describes the process of determining the ak in [1, Sections 1.2–1.3].

To recall the main elements of Akhiezer’s construction, let us first define the set of all

polynomials on R with real coefficients as P(R). Here, each p ∈ P(R) may be written as

p(λ) = a0 + a1λ+ a2λ
2 + · · ·+ anλ

n, λ ∈ R, (2.2.4)

for some n ∈ N0 = N ∪ {0} and {ak}nk=1 ⊂ R.

If s = {sk}∞k=0 is a positive definite sequence, then we define the functional S :

P(R)→ R associated to s by

S{p} = s0a0 + s1a1 + s2a2 + · · ·+ snan, p ∈ P(R). (2.2.5)
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The sequence s gives rise to a sequence of polynomials {Pk(λ)}∞k=0 defined by,

P0(λ) = 1, Pk(λ) =
1√

Dk−1Dk

∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sk
s1 s2 . . . sk+1
...

...
. . .

...
sk−1 sk · · · s2k−1

1 λ · · · λk

∣∣∣∣∣∣∣∣∣∣
, λ ∈ R, k ∈ N. (2.2.6)

The polynomial Pk(λ), k ∈ N0, is a polynomial of degree k. Also, we may observe that the

sequence of these polynomials are orthonormal in the sense that,

S{Pj(λ)Pk(λ)} = δj,k, j, k ∈ N0, (2.2.7)

where δj,k denotes the Kronecker delta function. Akhiezer shows that the polynomials

{Pk(λ)}∞k=0 satisfy the three-term recurrence relation:

a0P0(λ) + b0P1(λ) = λP0(λ),

bk−1Pk−1(λ) + akPk(λ) + bkPk+1(λ) = λPk(λ), k ∈ N,
(2.2.8)

where {bk}∞k=0 is given by (2.2.1) and {ak}∞k=0 is given by

ak = S{λPk(λ)Pk(λ)}, k ∈ N0. (2.2.9)

The first equation in (2.2.8) is called the “initial condition.” Formally, the recurrence relation

(2.2.8) may be expressed as the semi-infinite matrix equation,
a0 b0 0 0 0 · · ·
b0 a1 b1 0 0 · · ·
0 b1 a2 b2 0 · · ·
...

. . . . . . . . . . . . . . .


︸ ︷︷ ︸

Js


P0(λ)
P1(λ)
P2(λ)

...

 = λ


P0(λ)
P1(λ)
P2(λ)

...

 , λ ∈ R, (2.2.10)

where Js is the Jacobi matrix associated to h. Algebraically manipulating this recurrence

relation yields both the initial condition and the recurrence relation in terms of ak,

a0 = λP0(λ)− b0P1(λ),

ak =
λPk(λ)− bk−1Pk−1(λ)− bkPk+1(λ)

Pk(λ)
if Pk(λ) 6= 0, λ ∈ R, k ∈ N. (2.2.11)

6



Seemingly, this does us no service, as we are still reliant upon the Pk, but the equations

(2.2.11) are valid for all values of λ for which Pk(λ) 6= 0. Thus, we choose the most convenient

value of λ = 0. With this value of λ, the recurrence relation now yields,

a0 = −b0P1(0),

ak =
−bk−1Pk−1(0)− bkPk+1(0)

Pk(0)
, k ∈ N,

(2.2.12)

provided that Pk(0) 6= 0. The fixed value Pk(0) is simpler to compute since by (2.2.6):

P0(0) = 1, Pk(0) =
1√

Dk−1Dk

∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sk
s1 s2 . . . sk+1
...

...
. . .

...
sk−1 sk · · · s2k−1

1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
, k ∈ N. (2.2.13)

For k ∈ N, the determinant in (2.2.13) may be reduced by expanding about the last row.

The result is:

Pk(0) =
(−1)k√
Dk−1Dk

∣∣∣∣∣∣∣∣
s1 s2 . . . sk
s2 s3 . . . sk+1
...

...
. . .

...
sk sk+1 · · · s2k−1

∣∣∣∣∣∣∣∣ , k ∈ N. (2.2.14)

In the particular case when s = h, for each k ∈ N, the matrix under the determinant sign in

(2.2.14) is a Cauchy matrix of the form

Sk =


s1 s2 . . . sk
s2 s3 . . . sk+1
...

...
. . .

...
sk sk+1 · · · s2k−1

 =


1
2

1
3
· · · 1

k+1
1
3

1
4
· · · 1

k+2
...

...
. . .

...
1

k+1
1

k+2
· · · 1

2k

 . (2.2.15)

We recall that an n× n matrix Cn ∈ Rn×n, where n ∈ N is fixed, is a Cauchy matrix if Cn

can be written in the form

Cn =


1

x1+y1
1

x1+y2
· · · 1

x1+yn
1

x2+y1
1

x2+y2
· · · 1

x2+yn
...

...
. . .

...
1

xn+y1
1

xn+y2
· · · 1

xn+yn

 (2.2.16)

for some pair of finite sequences of real numbers, {xk}nk=1, {yk}nk=1 with the property that

xj + yk 6= 0 for all 1 ≤ j, k ≤ n. The determinant of Cn may be computed in closed form,

according to the following lemma.

7



Lemma 2.2. If n ∈ N and Cn is the Cauchy matrix given by (2.2.16), then the

determinant of Cn is given by

|Cn| =
∏

1≤i<j≤n(xj − xi)(yj − yi)∏
1≤i,j≤n(xi + yj)

. (2.2.17)

The proof of Lemma 2.2 is by mathematical induction on n and uses the well-known

ways in which elementary row operations affect the determinant. Due to the length and

technical nature of the proof, we sketch the proof in Appendix A.

Comparing (2.2.15) and (2.2.16) confirms that the matrix in (2.2.15) is, indeed, a

Cauchy matrix with n = k and {xj}kj=1 and the finite sequences {yj}kj=1 given by

xj = yj = j, 1 ≤ j ≤ k. (2.2.18)

By Lemma 2.2, the determinant of Sk may be computed as follows:

|Sk| =
∏

1≤i<j≤k(xj − xi)(yj − yi)∏
1≤i,j≤k(xi + yj)

=

∏k
j=1

∏j−1
i=1 (j − i)2∏n

j=1

∏n
i=1(i+ j)

, k ∈ N. (2.2.19)

In a similar fashion, the matrix under the determinant sign in (2.1.6) is also a Cauchy matrix

(this time with xj = j and yj = j − 1 for 1 ≤ j ≤ k + 1), so Lemma 2.2 permits Dk to be

recast in the form

Dk =

∏k+1
j=1

∏j−1
i=1 (j − i)2∏n+1

j=1

∏n
i=0(i+ j)

, k ∈ N. (2.2.20)

Using (2.2.19) and (2.2.20) in (2.2.14), the value Pk(0) may be calculated for each k ∈ N as

follows:

Pk(0) = (−1)k

√√√√∏k
j=1

∏k−1
i=0 (i+ j)∏k

j=1

∏j−1
i=1 (j − i)2

·
∏k+1

j=1

∏k
i=0(i+ j)∏k+1

j=1

∏j−1
i=1 (j − i)2

∏k
j=1

∏j−1
i=1 (j − i)2∏n

j=1

∏n
i=1(i+ j)

, (2.2.21)

which, after taking cancellations into account, simplifies to

Pk(0) = (−1)k
√

2k + 1, k ∈ N. (2.2.22)
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Since P0(0) = 1 by (2.2.13), the formula given in (2.2.22) extends to k ∈ N0; that is,

Pk(0) = (−1)k
√

2k + 1, k ∈ N0, (2.2.23)

which confirms that Pk(0) 6= 0 for all k ∈ N0. Finally, applying (2.2.23) and (2.2.3) in

(2.2.12), we obtain:

ak =

− (−1)k−1k
√

2k − 1

2
√

2k − 1
√

2k + 1
− (−1)k+1

√
2k + 3

2
√

2k + 1
√

2k + 3

(−1)k
√

2k + 1

=
1√

2k + 1

[
k

2
√

2k + 1
+

k + 1

2
√

2k + 1

]
=

k

2(2k + 1)
+

k + 1

2(2k + 1)

=
����2k + 1

2�����(2k + 1)

=
1

2
, k ∈ N, (2.2.24)

and for k = 0:

a0 = −b0P1(0) = − 1

2
√

3
(−1)

√
3 =

1

2
. (2.2.25)

Therefore,

ak =
1

2
, k ∈ N0. (2.2.26)

Summarizing the findings of (2.2.3) and (2.2.26), we have proved the following the-

orem that explicitly identifies the Jacobi matrix Jh uniquely associated with the Hilbert

sequence h.

Theorem 2.3. If h =

{
1

k + 1

}∞
k=0

denotes the positive definite Hilbert sequence, then

the Jacobi matrix Jh associated to h is given by the right-hand side of (2.1.3) with

ak =
1

2
, bk =

k + 1

2
√

(2k + 1)(2k + 3)
, k ∈ N0. (2.2.27)

9



2.3. Locating the Essential Spectrum

Before we delve into finding the essential spectrum of Jh, there must be a just

explanation of what exactly an essential spectrum is. Firstly, we recall the definition of a

Hilbert space. In [7, Sections 1.1], a Hilbert space is defined in the following way.

Definition 2.4. A (complex) Hilbert space is a vector space H over C paired with an

inner product 〈·, ·〉 such that H is complete in the metric d(x, y) = ‖x− y‖ = 〈x− y, x− y〉 12 ,

x, y ∈ H.

Example 2.5. The vector space of square summable sequences of complex numbers

`2(N0) =

{
{un}∞n=0 ⊂ C

∣∣∣∣∣
∞∑
n=0

|un|2 <∞

}
(2.3.1)

is a Hilbert space when paired with the inner product

〈
{un}∞n=0, {vn}∞n=0

〉
2

=
∞∑
n=0

unvn, {un}∞n=0, {vn}∞n=0 ∈ `2(N0). (2.3.2)

The associated norm ‖ · ‖2 is given by

‖u‖2 =

[
∞∑
n=0

‖un‖2
]1/2

, u = {un}∞n=0 ∈ `2(N0). (2.3.3)

A function A : H→ H is called a linear operator if

A(αx+ βy) = αAx+ βAy, α, β ∈ C, x, y ∈ H. (2.3.4)

Following MacCluer [7, Section 2.1], we define a bounded linear operator as follows.

Definition 2.6. A linear operator A : H → H is a bounded linear operator in H if

‖Ah‖ ≤ C‖h‖, for all h ∈ H and for some finite constant C ≥ 0. The set of all bounded

linear operators in H is denoted by B(H).
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Example 2.7. The operator I : H→ H defined by Ix = x for all x ∈ H is a bounded

linear operator. I is called the identity operator in H. Since ‖Ix‖ = ‖x‖ ≤ 1 · ‖x‖ for all

x ∈ H, the operator I is bounded, so I ∈ B(H).

Using Definitions 2.4 and 2.6, we define the resolvent set and spectrum of A ∈ B(H)

as follows.

Definition 2.8. If A ∈ B(H), then the resolvent set of A is

ρ(A) = {λ ∈ C |A− λI is a bijection}. (2.3.5)

The complement of ρ(A) in C is denoted by σ(A) and is called the spectrum of A:

σ(A) = C\ρ(A). (2.3.6)

A number λ ∈ C is an eigenvalue of A if there exists a vector h ∈ H such that

Ah = λh. In this case, h is an eigenvector corresponding to λ. If λ ∈ C is an eigenvalue of

A, then A − λI is not a bijection since A − λI is not one-to-one, so λ ∈ σ(A). Therefore,

every eigenvalue of A belongs to the spectrum of A. However, the converse to this statement

is generally false, as there may exist points in σ(A) that are not eigenvalues of A. There

are two separate parts of the spectrum of A: the set of isolated eigenvalues of A with finite

dimensional eigenspaces form the discrete spectrum of A and the complement of the discrete

spectrum in σ(A) is called the essential spectrum of A.

Definition 2.9. The discrete spectrum σdisc(A) of A is the set of all eigenvalues of

A that are isolated in σ(A) and have finite dimensional eigenspaces. The essential spectrum

σess(A) of A is

σess(A) = σ(A)\σdisc(A).

11



If {an}∞n=0 and {bn}∞n=0 are bounded sequences of real numbers, then the corresponding

Jacobi matrix J given by (2.1.3) defines a bounded linear operator in `2(N0) in the following

way: for each u = {un}∞n=0 ∈ `2(N0),

J : u = {un}∞n=0 7→J u =
{

(J u)n
}∞
n=0

, (2.3.7)

where

(J u)n =

{
a0u0 + b0u1, n = 0,

bn−1un−1 + anun + bnun+1, n ∈ N.
(2.3.8)

In particular, J has an essential spectrum, σess(J ). Teschl [6, Section 3.2] contains the

following theorem.

Theorem 2.10. Let J be a Jacobi matrix with corresponding sequences {ak}∞k=0 and

{bk}∞k=0. Define the quantities

c− = lim inf
n→∞

|c−(n)|, (2.3.9)

c+ = lim sup
n→∞

|c+(n)|,

c±(n) = an ± (|bn|+ |bn−1|), n ∈ N.

If

lim
n→∞

(|bn+1| − |bn|) = lim
n→∞

(|an+1| − |an|) = 0, (2.3.10)

then

σess(J ) = [c−, c+]. (2.3.11)

Using Theorem 2.10, we explicitly calculate the essential spectrum of the Jacobi

matrix Jh corresponding to the Hilbert sequence h.

Theorem 2.11. If Jh is the Jacobi matrix corresponding to (2.2.27), then

σess(Jh) = [0, 1]. (2.3.12)

12



Proof. It is easily seen that for our ak = 1
2
, that

lim
k→∞

(|ak+1| − |ak|) = lim
k→∞

(
1

2
− 1

2

)
= 0. (2.3.13)

Now for the more cumbersome bk:

lim
k→∞

(|bk + 1| − |bk|) = lim
k→∞

{
k + 2

2
√

(2k + 3)(2k + 5)
− k + 1

2
√

(2k + 1)(2k + 3)

}

= lim
k→∞

k + 2

2
√

(2k + 3)(2k + 5)
− lim

k→∞

k + 1

2
√

(2k + 1)(2k + 3)

=
1

4
− 1

4
= 0. (2.3.14)

Now to calculate the c−,

c− = lim inf
n→∞

|c−(n)|

= lim
n→∞
|an − (|bn+1|+ |bn|)|

=
1

2
−
(

1

4
+

1

4

)
= 0. (2.3.15)

Now to calculate the c+,

c+ = lim inf
n→∞

|c+(n)|

= lim
n→∞
|an + (|bn+1|+ |bn|)|

=
1

2
+

(
1

4
+

1

4

)
= 1. (2.3.16)

Therefore, applying (2.10), specifically (2.3.11), we obtain σess(Jh) = [0, 1]. �

2.4. Conclusion

In conclusion, in this thesis we have explicitly determined the Jacobi matrix corre-

sponding to the Hilbert sequence according to Akhiezer’s construction. We have also found

the essential spectrum of the Jacobi matrix. However, as explained in Definition 2.9, the

13



spectrum of Jh consists of two disjoint subsets:

σ(Jh) = σdisc(Jh) ∪ σess(Jh). (2.4.1)

We have not attempted to determine the discrete spectrum σdisc(Jh), which is the set of

all isolated eigenvalues of Jh that have finite dimensional eigenspaces. By Stone’s result

[5, Theorem 7.13], any eigenvalue of Jh has a one-dimensional eigenspace, so Jh precisely

consists of the isolated eigenvalues of Jh. We suggest the following problem for future study.

Problem 2.12. Determine the isolated eigenvalues of Jh or show that none exist;

that is, explicitly determine σdisc(Jh).
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APPENDIX A

Calculation of Cauchy Determinant

Let {xj}nj=1 and {yj}nj=1 be sets of positive numbers. The Hilbert sequence can be substituted

with the following generic matrix by letting xi = i and yj = j − 1, with 1 ≤ i, j ≤ k + 1.

Also, let the Cauchy determinant of order n be,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
x1+y1

1
x1+y2

. . . 1
x1+yn

1
x2+y1

1
x2+y2

. . . 1
x2+yn

...
...

. . .
...

1
xn+y1

1
xn+y2

. . . 1
xn+yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Dn (A.1)

[8] indicates that the value of Dn determinant is,

∏
1≤i<j≤n(xj − xi)(yj − yi)∏

1≤i,j≤n(xi + yj)
(A.2)

Now we will prove by induction that the Hilbert sequence is Cauchy,

Proof. Base case n = 1: {x1}, {y1}. Then,

D1 = | 1

x1 + y1
| = 1

x1 + y1∏
1≤i<j≤1(xj − xi)(yi − yj)∏

1≤i,j≤1(xi + yj)
=

1

x1 + y1
. (A.3)

Since the numerator is an empty product. Inductive Step: Let n ∈ N and {xj}nj=1, {yj}nj=1

Assume

Dn−1 =

∏
1≤i<j≤n−1(xj − xi)(yi − yj)∏

1≤i,j≤n−1(xi + yj)
, where {xj}n−1j=1 , {yj}n−1j=1 (A.4)
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Let Dn denote the determinant in (A.1). We perform row operations on the matrix under

the determinant in (A.1). Subtract the first column from the kth column for 2 ≤ k ≤ n.

Then the (j, 1) entry of the resulting matrix is

1

xj + yk
− 1

xj + y1
=
y1 − yk
xj + y1

1

xj + yk
(A.5)

if k 6= 1. If k = 1, then the (j, k) = (j, 1) entry is

1

xj + y1
, 1 ≤ j ≤ n.

Since adding a multiple of one column to another does not chance the value of the determi-

nant, we have ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
x1+y1

y1−y2
x1+y1

1
x1+y2

. . . y1−yk
x1+y1

1
x1+yk

. . . y1−yn
x1+y1

1
x1+yn

1
x2+y1

y1−y2
x2+y1

1
x2+y2

. . . y1−yk
x2+y1

1
x2+yk

. . . y1−yn
x2+y1

1
x2+yn

...
...

. . .
...

1
xn+y1

y1−y2
xn+y1

1
xn+y2

. . . y1−yk
xn+y1

1
xn+yk

. . . y1−yn
xn+y1

1
xn+yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.6)

Factor 1
xj+y1

from the jth row for each 1 ≤ j ≤ n, and factor y1 − yk from the kth column

for each 2 ≤ k ≤ n to obtain:

Dn = [
∏

1≤j≤n

1

xj + y1
][
∏

2≤j≤n

(y1 − yk)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
x1+y1

. . . 1
x1+yk

. . . 1
x1+yn

1 1
x2+y1

. . . 1
x2+yk

. . . 1
x2+yn

...
...

...
. . .

...

1 1
xn+y1

. . . 1
xn+yk

. . . 1
xn+yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.7)
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Subtract row 1 from row j for 2 ≤ j ≤ n in the matrix under the determinant in (A.7). The

jth tow of the new matrix is:

j = 1 : (1
1

x1 + y2
. . .

1

x1 + yk
. . .

1

x1 + yn
)

2 ≤ j ≤ n : (0
1

xj + y2
− 1

x1 + y2
. . .

1

xj + yk

1

x1 + yk
. . .

1

xj + yn
− 1

x1 + yn
) (A.8)

Then (A.8) becomes,

Dn = [
∏

1≤j≤n

1

xj + y1
][
∏

1≤j≤n

(y1 − yk)]

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
x1+y1

. . . 1
x1+yk

. . . 1
x1+yn

0 x1−x2

(x2+y2)(x1+y2)
. . . x1−x2

(x2+yk)(x1+yk)
. . . x1−x2

(x2+yn)(x1+yn)

...
...

...
. . .

...

0 x1−xn

(xn+y2)(x1+y2)
. . . x1−xn

(xn+yk)(x1+yk)
. . . x1−xn

(xn+yn)(x1+yn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.9)

Factor x1 − xj from the jth row of the matrix in (A.9) for 2 ≤ j ≤ n. Factor 1
x1+yk

from the

kth column of the matrix in (A.9) for 2 ≤ k ≤ n. Then

Dn = [
∏

1≤j≤n

1

xj + y1
][
∏

2≤k≤n

(y1 − yk)][
∏

2≤j≤n

(x1 − xj)][
∏

2≤k≤n

1

x1 + yk
] (A.10)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
x1+y2

. . . 1
x1+yk

. . . 1
x1+yn

0 1
x2+y2

. . . 1
x2+yk

. . . 1
x2+yn

...
...

...
. . .

...

0 1
xn+y2

. . . 1
xn+yk

. . . 1
xn+yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Expand the determinant on the right hand side in (A.10) about the first column.

Dn = [
∏

1≤j≤n

1

xj + y1
][
∏

2≤k≤n

(y1 − yk)][
∏

2≤j≤n

(x1 − xj)][
∏

2≤k≤n

1

x1 + yk
] (A.11)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
x1+y2

. . . 1
x1+yk

. . . 1
x1+yn

1
x2+y2

. . . 1
x2+yk

. . . 1
x2+yn

...
...

...
. . .

...

1
xn+y2

. . . 1
xn+yk

. . . 1
xn+yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which is an (n− 1)x(n− 1) Cauchy matrix with sets {xj}n−1j=1 and {yj}n−1j=1 where

xj = xj+1, yj = yj+1, 1 ≤ j ≤ n− 1

This determinant is calculated using the induction hypothesis, and is equal to the determi-

nant in (A.11)

=

∏
1≤j<k≤n−1(xk+1 − xj+1)(yk+1 − yj+1)∏

1≤j,k≤n−1(xj+1 + yk+1)

=

∏
2≤j<k≤n(xk − xj)(yk − yj)∏

2≤j,k≤n(xj + yk)
. (A.12)

Hence by (A.10, A.11, A.12)

Dn = [
∏

1≤j≤n

1

xj + y1
][
∏

2≤k≤n

(y1 − yk)][
∏

2≤j≤n

(x1 − xj)][
∏

2≤k≤n

1

(x1 + yk)
] (A.13)

×
∏

2≤j<k≤n(xk − xj)(yk − yj)∏
2≤j,k≤n(xj + yk)

.

We are able to combine a few of these products to produce a simpler result:

[
∏

1≤j≤n

xj + y1][
∏

2≤k≤n

(x1 + yk)][
∏

2≤j,k≤n

(xj + yk)] = [
∏

1≤j,k≤n

(xj + yk)] (A.14)
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Another useful reduction:

[
∏

2≤k≤n

y1−yk][
∏

2≤j≤n

(x1−xj)][
∏

2≤j<k≤n

(xk−xj)(yk−yj)] = [
∏

1≤j<k≤n

(xk−xj)(yk−yj)] (A.15)

Finally, combing (A.13, A.15, and A.16) we yield

Dn =

∏
1≤i<j≤n(xj − xi)(yj − yi)∏

1≤i,j≤n(xi + yj)
(A.16)

�
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