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ABSTRACT

We consider self-adjoint extensions of the minimal operator generated by the differ-

ential expression L = −d2/dx2 +V on the half-line [0,∞), where V is a real-valued function

integrable with respect to the weight 1 + x. The self-adjoint extensions are of Schrödinger-

type and form a one-parameter family formally given by Hα = −d2/dx2 +V , α ∈ [0, π), with

the boundary condition sin(α)f ′(0) = cos(α)f(0) at x = 0. We derive a formula that relates

the resolvent operator of Hα to the resolvent operator of H0 in terms of the Jost solution

corresponding to the underlying differential equation Lu = zu. Combining this resolvent

formula and properties of the Jost solution, we compute the trace of the difference of the

resolvents of Hα and the free operator H
(0)
α with V ≡ 0 in terms of the parameter α and the

Jost function for Lu = zu.
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CHAPTER 1

INTRODUCTION

1.1. Overview

The central topic of this thesis is the family of self-adjoint operators generated by the

formal differential operator

L = − d2

dx2
+ V (1.1)

acting on suitable functions on the interval [0,∞), where V : [0,∞) → R, in L2(0,∞) and

it is assumed that ∫ ∞
0

(1 + x)|V (x)| dx <∞. (1.2)

Here, L2(0,∞) is the set of (equivalence classes of) complex-valued functions on (0,∞) which

are square integrable with respect to Lebesgue measure.

These self-adjoint operators are usually called Schrödinger operators and play an

important role in quantum mechanics where they arise in the study of Schrödinger’s equation

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V ψ, (1.3)

for the wave function ψ = ψ(x, t). To obtain a self-adjoint operator H from L, we must

impose a boundary condition at x = 0 on functions in the domain of H. For example, by

imposing the boundary condition

f(0) = 0, (1.4)
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we obtain a self-adjoint realization of L which physically corresponds to an impenetrable

barrier at x = 0, [10, p. 166]. The boundary condition in (1.4) is usually called a Dirichlet

boundary condition, and we denote the corresponding self-adjoint operator by H0.

The function V is called the electrostatic potential because in physical applications, V

is a smooth function and −V ′(x) is the force on a charged particle at x. In the special case

when V (x) = 0 for all x ∈ [0,∞), there is no force on the charged particle, and the particle

is called a free particle. In this case we use the symbol H
(0)
0 to denote the corresponding

self-adjoint operator generated by L with the Dirichlet boundary condition (1.4).

Since H0 and H
(0)
0 are both self-adjoint operators, any point z ∈ C\R belongs to their

resolvent sets. That is, the operators H0 − zIL2(0,∞) and H
(0)
0 − zIL2(0,∞) are bijections in

L2(0,∞), so their inverses (H0− zIL2(0,∞))
−1 and (H

(0)
0 − zIL2(0,∞))

−1 exist and are bounded

operators defined on all of L2(0,∞). Moreover, the difference of these two resolvent operators

belongs to the trace class B1(L2(0,∞)), [10, Lemma 4.5.1 and Proposition 4.5.3]:

(H
(0)
0 − zIL2(0,∞))

−1 − (H0 − zIL2(0,∞))
−1 ∈ B1(L2(0,∞)), z ∈ C\R, (1.5)

and therefore has a trace equal to the sum of its eigenvalues,

trL2(0,∞)

(
(H

(0)
0 − zIL2(0,∞))

−1 − (H0 − zIL2(0,∞))
−1) =

N0∑
n=1

λ0(z, n), (1.6)

where N0 ∈ N∪{∞} denotes the number of eigenvalues and {λ0(z, n)}N0
n=1 is an enumeration

of the eigenvalues of (H
(0)
0 − zIL2(0,∞))

−1 − (H0 − zIL2(0,∞))
−1.

In practice, it is not possible to obtain expressions for the eigenvalues {λ0(z, n)}N0
n=1

for general V , so other representations for the trace in (1.6) are of interest. For example,

the trace in (1.6) can be computed in terms of the Jost function associated to Lu = zu. The

assumption in (1.2) guarantees that for each z ∈ C\[0,∞), there exists a unique solution
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θ(ζ, · ) : [0,∞)→ C to Lu = zu that satisfies

θ(ζ, x) = eiζx[1 + o(1)] (1.7)

as x → ∞. Here, o(1) denotes a term that converges to zero as x → ∞ the precise form

of which is immaterial, and ζ is the unique square root of z fixed according to Im(ζ) ≥ 0.

For z ∈ C\R, the condition in (1.7) implies θ(ζ, · ) ∈ L2(0,∞) and the function θ(ζ, · ) is

called the Jost solution to Lu = zu. In turn, the function w defined in the upper half of the

complex plane by

w(ζ) = θ(ζ, 0) (1.8)

is called the Jost function. The Jost function is analytic in the open upper half of C and it is

an important function for two reasons. First, the squares of its zeros are the eigenvalues of

the Schrödinger operator H0 with Dirichlet boundary conditions (see Remark 1.46 below).

Second, the trace in (1.6) can be computed in terms of the Jost function, a fact that is

summarized in the following theorem.

Theorem 1.1 (Proposition 4.5.3 in [10]). If V satisfies (1.2), then

trL2(0,∞)

((
H

(0)
0 − zIL2(0,∞)

)−1 − (H0 − zIL2(0,∞)

)−1)
=

ẇ(ζ)

2ζw(ζ)
, z ∈ C\R, (1.9)

where ẇ(ζ) denotes the complex derivative of w(ζ) with respect to ζ.

The formula in (1.9) is called a trace formula as it provides a formula to compute the

trace of the difference of resolvents in terms of other, related functions.

The Dirichlet boundary condition (1.4) is not the only boundary condition at x = 0

that yields a self-adjoint realization of L. In fact, there are uncountably many boundary

conditions at x = 0 that give rise to a self-adjoint realization of L. These boundary conditions
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can be characterized in terms of a single real-valued parameter: every boundary condition

of the form

sin(α)f ′(0) = cos(α)f(0), (1.10)

where α ∈ [0, π) is fixed, gives rise to a self-adjoint realization of L, which we denote by

Hα. In the case of a free particle, V ≡ 0, we denote the self-adjoint realization by H
(0)
α . The

Dirichlet boundary condition (1.4) is now a special case which comes from choosing α = 0.

Like the Dirichlet case, for each z ∈ C\R, the difference of the resolvent operators of

H
(0)
α and Hα also belongs to the trace class B1(L2(0,∞)):

(H(0)
α − zIL2(0,∞))

−1 − (Hα − zIL2(0,∞))
−1 ∈ B1(L2(0,∞)), (1.11)

and then

trL2(0,∞)

(
(H(0)

α − zIL2(0,∞))
−1 − (Hα − zIL2(0,∞))

−1) =
Nα∑
n=1

λα(z, n), (1.12)

where Nα ∈ N∪{∞} denotes the number of eigenvalues and {λα(z, n)}Nαn=1 is an enumeration

of the eigenvalues of (H
(0)
α − zIL2(0,∞))

−1 − (Hα − zIL2(0,∞))
−1.

The individual eigenvalues λα(z, n) are no simpler to compute than those in the

Dirichlet case, so it is of interest to have an alternative expression for the trace in (1.12). In

particular, it is natural to ask if (1.9) may be generalized from the case α = 0 to arbitrary

α ∈ [0, π).

The Dirichlet trace formula (1.9) was generalized to arbitrary α ∈ [0, π) in 2011 by

Demirel and Usman, [2]. To be precise, Demirel and Usman work with a boundary condition

at x = 0 in the form

f ′(0) = γf(0), (1.13)
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where γ ∈ R is a fixed parameter. Writing γ = cot(α), the formulation of the boundary

condition in (1.13) is equivalent to the formulation of the boundary condition in (1.10) when

α 6= 0.

The arguments in [2] rely on the fact that (Hcot−1(γ) − zIL2(0,∞))
−1 is an integral

operator with an integral kernel that can be computed in terms of θ(ζ, · ) and the solution

φ(ζ, · ) : [0,∞)→ C to Lu = zu determined by the initial conditions

φ(ζ, 0) = 1 and φ′(ζ, 0) = γ. (1.14)

The difference of resolvent operators (H
(0)

cot−1(γ)
− zIL2(0,∞))

−1 − (Hcot−1(γ) − zIL2(0,∞))
−1 is

then also an integral operator with an integral kernel. Demirel and Usman derive properties

of φ(ζ, · ) and use them to compute the trace by integrating this integral kernel along the

diagonal. This approach is a generalization of the approach used to prove Theorem 1.1 in

[10]. The result of Demirel and Usman is summarized in the following theorem.

Theorem 1.2 (Theorem 1.1 in [2]). If γ ∈ R, then

trL2(0,∞)

(
(H

(0)

cot−1(γ)
− zIL2(0,∞))

−1 − (Hcot−1(γ) − zIL2(0,∞))
−1)

=
1

2ζ

(
ω̇(ζ)

ω(ζ)
+

i

γ − iζ

)
, z ∈ C\R, (1.15)

where

ω(ζ) = γθ(ζ, 0)− θ′(ζ, 0), z = ζ2, Im(ζ) > 0, z ∈ C\R. (1.16)

Written explicitly in terms of α = cot−1(γ), (1.15) takes the form

trL2(0,∞)

(
(H(0)

α − zIL2(0,∞))
−1 − (Hα − zIL2(0,∞))

−1)
5



=
cos(α)ẇ(ζ)− sin(α)θ̇′(ζ, 0)

2ζ[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]
+

i sin(α)

2ζ[cos(α)− iζ sin(α)]
. (1.17)

In this thesis, we derive (1.17) directly using an approach that is different from that

in [2]. Both (1.9) and (1.17) are trace formulas for self-adjoint realizations of the same

underlying differential expression. Thus, we view the trace formula problem as a problem

in the theory of self-adjoint extensions. Taking the result in (1.9) for granted, our approach

is to first derive a formula that relates the operator (Hα− zIL2(0,∞))
−1 to (H0− zIL2(0,∞))

−1

and the operator (H
(0)
α − zIL2(0,∞))

−1 to (H
(0)
0 − zIL2(0,∞))

−1. With these relations, we have

(H(0)
α − zIL2(0,∞))

−1 − (Hα − zIL2(0,∞))
−1

= (H
(0)
0 − zIL2(0,∞))

−1 − (H0 − zIL2(0,∞))
−1 + T1,α(z) + T2,α(z), z ∈ C\R, (1.18)

where T1,α(z) and T2,α(z) are operators of rank one. These formulas are special cases of

Krein’s resolvent formula, and their application allows us to relate the trace in (1.12) to the

trace for the Dirichlet boundary condition in (1.9) by

trL2(0,∞)

(
(H(0)

α − zIL2(0,∞))
−1 − (Hα − zIL2(0,∞))

−1)
= trL2(0,∞)

(
(H0 − zIL2(0,∞))

−1 − (H
(0)
0 − zIL2(0,∞))

−1)
+ trL2(0,∞)

(
T1,α(z)

)
+ trL2(0,∞)

(
T2,α(z)

)
, z ∈ C\R. (1.19)

We explicitly compute the operators T1,α(z) and T2,α(z) in (1.18), and we compute their

traces using properties of θ(ζ, · ) derived in [10].

In the remainder of this chapter, we recall the basic background on Sturm–Liouville

operators needed to rigorously define the Schrödinger operators Hα and the Jost solution

and Jost function. In Chapter 2, we recall the abstract formulation of Krein’s resolvent

identity which relates the resolvent operators of two self-adjoint extensions of a symmetric
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operator. In Section 2.2., we derive the explicit form of Krein’s resolvent identity which

relates (Hα − zIL2(0,∞))
−1 to (H0 − zIL2(0,∞))

−1 and a rank one operator in Theorem 2.13.

Chapter 3 contains our main result. We recall several important properties of solutions to

Lu = zu and investigate some of their consequences in, for example, Corollary 3.4. These

results are then combined with Theorem 1.1 and Theorem 2.13 to prove our main result,

Theorem 3.6, which is an alternative proof of (1.17).

1.2. Background on Sturm–Liouville Operators

In this section, we recall some of the basic elements of the theory of Sturm–Liouville

operators of Schrödinger-type on intervals (a, b) ⊆ R to be used later. By now, Sturm–

Liouville theory is a well-developed subject, and this material may be found in a number of

standard sources (e.g., [6, Chapter 15], [7, Chapter 9], [8, §8.4], and [9]). We closely follow

the presentation of the subject given in [6, Chapter 15].

To define the operators we will work with, we will first recall the following definitions

of sets of measure zero and the spaces L1
loc(α, β), AC[α, β] and ACloc(α, β). Intervals I ⊂ R

of the form (α, β), [α, β), (α, β], and [α, β], with −∞ < α < β < ∞ will be called finite

intervals. If I is a finite interval, its length is denoted by |I| = β − α. If −∞ ≤ a < b ≤ ∞,

then a and b are called the endpoints of the interval (a, b).

Definition 1.3 ([5], p. 5–6). A subset N ⊂ R is called a set of (Lebesgue) measure

zero if for every ε > 0, there exists a countable collection of finite intervals {Ik(ε)}k∈I(ε),

with I(ε) ⊆ N an appropriate indexing set, such that

N ⊆
⋃

k∈I(ε)

Ik(ε) and
∑
j∈I(ε)

|Ik(ε)| < ε. (1.20)
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A statement P (x) about points x ∈ S ⊆ R is said to hold almost everywhere (abbreviated

a.e.) in S if P (x) is true for all x ∈ S\N , for some set N ⊂ S of measure zero. The fact

that P (x) holds almost everywhere in S, is abbreviated by writing

P (x) for a.e. x ∈ S. (1.21)

Definition 1.4. Let −∞ ≤ α < β ≤ ∞. L1
loc(α, β) is the set of all (equivalence

classes of) Lebesgue measurable functions f : (α, β)→ C such that∫ d

c

|f(x)| dx <∞ for all intervals [c, d] ⊂ (α, β). (1.22)

Note that the condition [c, d] ⊂ (α, β) in (1.22) implies that [c, d] is compactly con-

tained in (α, β). If f ∈ L1(α, β), then f ∈ L1
loc(α, β); the converse statement is false.

Example 1.5. If (α, β) = (0,∞) and

f(x) = x, x ∈ (0,∞), (1.23)

then f ∈ L1
loc(0,∞) since |f | is continuous, hence bounded, on any interval [c, d] ⊂ (0,∞).

However, f /∈ L1(0,∞).

Definition 1.6 (§2.7 in [7], Appendix E in [6]). Let −∞ < α < β < ∞. A

function f : [α, β]→ C is absolutely continuous on [α, β] if and only if there exists a function

h ∈ L1(α, β) such

f(x) = f(α) +

∫ x

α

h(t) dt, x ∈ [α, β]. (1.24)

The set of all absolutely continuous functions on [α, β] is denoted by AC[α, β].

Every absolutely continuous function is continuous, so

AC[α, β] ⊂ C[α, β]. (1.25)
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If f ∈ AC[α, β], then f is differentiable almost everywhere on (α, β) by [6, Theorem E.1],

and its derivative f ′ is an integrable function,

f ′ ∈ L1(α, β). (1.26)

In fact, if f is given by (1.24), then f ′ = h almost everywhere on (α, β). Therefore, the

Fundamental Theorem of Calculus holds for absolutely continuous functions.

There is also a local notion of absolute continuity for functions on intervals of infinite

length.

Definition 1.7. Let −∞ ≤ α < β ≤ ∞. A function f : (α, β) → C is locally

absolutely continuous on (α, β) if and only if f ∈ AC[c, d] for all [c, d] ⊂ (α, β) for all

[c, d] ⊂ (α, β). The set of all locally absolutely continuous functions on (α, β) is denoted by

ACloc(α, β).

If f ∈ ACloc(α, β), then f ∈ C(α, β). Moreover, f is differentiable almost everywhere

on (α, β), and its derivative f ′ is a locally integrable function,

f ′ ∈ L1
loc(α, β). (1.27)

Definition 1.8 (Wronskian). If I ⊆ R is an interval and f, g : I → C are con-

tinuously differentiable, then the Wronskian of f with g at the point x ∈ I is denoted by

W (f, g)(x) and defined to be

W (f, g)(x) = f(x)g′(x)− f ′(x)g(x), x ∈ I. (1.28)

With these preliminary definitions, we return to our discussion of some elements of

Sturm–Liouville theory of Schrödinger-type operators on intervals (a, b) ⊆ R. Throughout

this section, we will assume the following hypothesis.

9



Hypothesis 1.9. Suppose that −∞ ≤ a < b ≤ ∞. Let

V ∈ L1
loc(a, b) be real-valued a.e. (1.29)

and define the formal differential expression L on (a, b) by

L = − d2

dx2
+ V (x). (1.30)

Assuming Hypothesis 1.9, the action of the differential expression L on a twice dif-

ferentiable function f : (a, b)→ C is

(Lf)(x) = −f ′′(x) + V (x)f(x), (1.31)

for all x ∈ (a, b) for which the right-hand side is well-defined.

We should note that in [6, Chapter 15], the function V (x) is assumed to be continuous.

However, this assumption is not necessary, [9, p. 27].

In order to use the action of L to define an operator in the Hilbert space L2(a, b),

a domain of definition for the operator must be specified. We begin by defining the class

D(a, b) by

D(a, b) = {f ∈ C0(a, b) | f, f ′ ∈ ACloc(a, b), Lf ∈ L2(a, b)}, (1.32)

where

C0(a, b) = {f ∈ C(a, b) | f(x) = 0, x ∈ (a, b)\[c, d], for some [c, d] ⊂ (a, b)}. (1.33)

The operator H̊ is defined by

(H̊f)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (a, b), f ∈ dom(H̊) = D(a, b). (1.34)

The operator H̊ is densely defined [4, §17.4], though this fact is not obvious, and it is a

symmetric operator.

10



Definition 1.10 (Symmetric operator). If H is a Hilbert space with inner product

〈 · , · 〉H, then a densely defined linear operator A : dom(A) ⊆ H → H is symmetric if

〈u,Av〉H = 〈Au, v〉H, u, v ∈ dom(A). (1.35)

To show that H̊ is symmetric; we integrate by parts twice:

〈f, H̊g〉L2(a,b) =

∫ b

a

f(x)[−f ′′(x) + V (x)g(x)] dx

= −
∫ b

a

f(x)g′′(x) dx+

∫ b

a

f(x)V (x)g(x) dx

= −f(x)g′(x)|ba +

∫ b

a

f ′(x)g′(x) dx+

∫ b

a

V (x)f(x)g(x) dx (1.36)

= f ′(x)g(x)|ba −
∫ b

a

f ′′(x)g(x) dx+

∫ b

a

V (x)f(x)g(x) dx

=

∫ b

a

−f ′′(x) + V (x)f(x)g(x) dx

= 〈H̊f, g〉L2(a,b), f, g ∈ dom(H̊).

Note that we have used the fact that V is real-valued in (1.36).

Since H̊ is densely defined and symmetric, it is closable by [7, Lemma 2.4 (ii)]. The

closure of H̊ is called the minimal operator associated to L, and it is denoted by Hmin:

Hmin = H̊ = (H̊)∗∗. (1.37)

The operator closure in (1.37) may be computed as the double adjoint by [7, Lemma 2.4

(ii)]. The minimal operator is symmetric (by the remarks following [7, Corollary 2.2]) since

it is the closure of a symmetric operator. The maximal operator associated to L is denoted

by Hmax and defined explicitly by

(Hmaxf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (a, b), (1.38)

f ∈ dom(Hmax) =
{
g ∈ L2(a, b)

∣∣ g, g′ ∈ ACloc(a, b), Lg ∈ L2(a, b)
}
.

11



The maximal and minimal operators associated to L are adjoint to one another ([4, Theorem

2 in §17.4] or [9, Theorem 3.9]):

(Hmin)∗ = Hmax, (Hmax)
∗ = Hmin. (1.39)

Definition 1.11. If A : dom(A) ⊆ H → H and B : dom(B) ⊆ H → H are two

linear operators, then B is called an extension of A if dom(A) ⊆ dom(B) and

Av = Bv, v ∈ dom(A). (1.40)

In this case, A is also called a restriction of B.

We will be concerned with extensions of Hmin that are self-adjoint, provided they

exist. The next proposition shows that the action of a self-adjoint extension of Hmin coincides

with the action of Hmax.

Proposition 1.12. Assume Hypothesis 1.9. If H is a self-adjoint extension of Hmin,

then H is a restriction of Hmax.

Proof. Let H denote a self-adjoint extension of Hmin, so that

Hmin ⊆ H. (1.41)

Taking the adjoint on both sides and applying [7, (2.28)] (which states that B∗ ⊆ A∗ if

A ⊆ B for densely defined operators A and B), we obtain

H = H∗ ⊆ H∗min = Hmax, (1.42)

using that H is self-adjoint and the first equality in (1.39). Thus, H is a restriction of

Hmax. �
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Remark 1.13. The importance of Proposition 1.12 is that it shows the action of any

self-adjoint extension of Hmin coincides with the action of Hmax. That is, if H is a self-adjoint

extension of Hmin, then

(Hf)(x) = (Hmaxf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (a, b), f ∈ dom(H). (1.43)

Therefore, a self-adjoint extension is defined by specifying its domain; the action of the

self-adjoint extension on vectors in its domain is already determined by Hmax.

Assuming Hmin has a self-adjoint extension H, Proposition 1.12 shows that H must

be a self-adjoint restriction of Hmax. However, Proposition 1.12 does not guarantee the

existence of a self-adjoint extension of Hmin. It is natural to ask, “When does Hmin have a

self-adjoint extension?” To determine whether the symmetric operator Hmin has self-adjoint

extensions (equivalently, whether Hmax has self-adjoint restrictions), or not, we must study

properties of L near the endpoints of the interval (a, b).

Definition 1.14 (Regular endpoint). The differential expression L is called regular

at a if a ∈ R and V ∈ L1(a, c) for some c ∈ (a, b). If L is not regular at a, L is called

singular at a. The differential expression L is called regular at b if b ∈ R and V ∈ L1(c, b)

for some c ∈ (a, b). If L is not regular at b, L is called singular at b.

When L is regular at an endpoint, more can be said about the behavior of functions

in dom(Hmin) and dom(Hmax) near the regular endpoint.

Proposition 1.15 (Proposition 15.5 in [6]). Assume Hypothesis 1.9, and suppose

that L is regular at a. Then the following items hold:

(i) If f ∈ dom(Hmax), then f and f ′ can be extended to continuous functions on [a, b).
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(ii) The set {(f(a), f ′(a)) ∈ C2 | f ∈ dom(Hmax)} is equal to C2.

(iii) If f ∈ dom(Hmin), then f(a) = f ′(a) = 0.

(iv) If, in addition, L is regular at b then f(a) = f ′(a) = f(b) = f ′(b) = 0 for all f ∈

dom(Hmin).

If a is a regular endpoint of L, then the minimal operator may be computed directly

using boundary conditions and the Wronskian by [9, Theorem 3.12]:

(Hminf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (a, b), (1.44)

f ∈ dom(Hmin) =
{
g ∈ dom(Hmax)

∣∣∣ g(a) = g′(a) = 0 and lim
x→b−

W (g, h)(x) = 0

for all h ∈ dom(Hmax)
}
.

Definition 1.16 (Solution). If z ∈ C and g ∈ L1
loc(a, b), then f is called a solution

to

Lf − zf = g (1.45)

on (a, b) if and only if f, f ′ ∈ ACloc((a, b)) and

(Lf)(x)− zf(x) = g(x) for a.e. x ∈ (a, b). (1.46)

We will adhere to the convention of writing z ∈ C as z = ζ2 where ζ ∈ C is chosen

to satisfy Im(ζ) ≥ 0 throughout this thesis.

Notation 1.17. ζ ∈ C always denotes a complex number which satisfies Im(ζ) ≥ 0.

The next result shows that a solution to (1.45) has additional properties near a regular

endpoint.
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Proposition 1.18 (Theorem 9.1 in [7]). Assume Hypothesis 1.9. Suppose z ∈ C and

g ∈ L1
loc(a, b). The following items hold:

(i) If L is regular at a and f is a solution to (1.45), then the finite limits

f(a) := lim
x→a+

f(x) and f ′(a) := lim
x→a+

f ′(x) (1.47)

exist. That is, f and f ′ extend to continuous functions on [a, b). An analogous statement

holds if L is regular at b.

(ii) Let x0 be a point in (a, b) or a regular endpoint. For each z = ζ2 ∈ C, and pair of

constants c1, c2 ∈ C, there exists a unique solution f(ζ, x) to the initial-value problem{
Lf − zf = g,

f(ζ, x0) = c1, f ′(ζ, x0) = c2,
(1.48)

where the prime denotes differentiation with respect to the second variable, x ∈ (a, b). More-

over, for any fixed x ∈ (a, b), f(ζ, x) is an entire function of the variable z = ζ2.

Remark 1.19. By item (ii) in Proposition 1.18, the solution space to the homoge-

neous differential equation

Lf = zf, (1.49)

with z ∈ C fixed, is a two-dimensional vector space (over C).

A pair {u, v} of linearly independent solutions u and v to Lf = zf is called a fun-

damental system of solutions. We can employ the Wronskian to determine if functions are

linearly independent. If W (f, g)(x0) 6= 0 for some x0 ∈ (a, b), then f and g are linearly

independent. If f and g are solutions to (1.49), then their Wronskian is actually constant,

and the solutions f and g are linearly independent if and only if their Wronskian is nonzero.
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From the point of view of the possible existence of self-adjoint extensions of Hmin, the

importance of the differential equation (1.49) is the fact that the solutions to (1.49) which

lie in L2(a, b) form the null space of Hmax − zIL2(a,b). The dimensions of the two spaces

ker(Hmax ± iIL2(a,b)) determine whether Hmin has self-adjoint extensions, or not.

Definition 1.20 (Deficiency indices). If A is a densely defined, closed, symmetric

operator in the Hilbert space H, then the deficiency indices of A are denoted (d−(A), d+(A)),

where d±(A) ∈ N0 ∪ {∞} and are defined by

d±(A) = dim(ker(A∗ ∓ iIH)). (1.50)

By Remark 1.19, d±(Hmin) are each at most two. The next result shows that

d+(Hmin) = d−(Hmin).

Proposition 1.21 (Proposition 15.4 in [6]). Assume Hypothesis 1.9. The minimal

operator Hmin has deficiency indices (0, 0), (1, 1), or (2, 2).

By von Neumann’s theory of self-adjoint extensions, a symmetric operator has self-

adjoint extensions if and only if its deficiency indices coincide.

Theorem 1.22 (von Neumann, Theorem 8.6 in [8]). A densely defined, closed, sym-

metric operator A in H has a self-adjoint extension if and only if its deficiency indices are

equal,

d+(A) = d−(A), (1.51)

and A is self-adjoint if and only if d+(A) = d−(A) = 0.
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Therefore, by Proposition 1.21, the minimal operator Hmin always possesses self-

adjoint extensions. If Hmin has deficiency indices (0, 0), then Hmin is self-adjoint and, there-

fore, has no nontrivial self-adjoint extension by [7, Corollary 2.2].

By Proposition 1.21, there are exactly three possibilities for the deficiency indices of

Hmin:

(d−(Hmin), d+(Hmin)) ∈ {(0, 0), (1, 1), (2, 2)}. (1.52)

Next, we would like to characterize exactly when each of the three possible cases arises. The

following definition, which deals with certain integrability properties of functions near an

endpoint of (a, b), is a first step in this direction.

Definition 1.23. Let f : (a, b)→ C be a measurable function. Then f is said to lie

in L2 near a if and only if there exists a point c ∈ (a, b) such that∫ c

a

|f(x)|2 dx <∞. (1.53)

Analogously, f is said to lie in L2 near b if there exists a point d ∈ (a, b) such that∫ b

d

|f(x)|2 dx <∞. (1.54)

If z ∈ C\R and c is an endpoint of (a, b), then the equation Lf = zf has a nontrivial

solution that lies in L2 near c.

Proposition 1.24 (Proposition 15.6 in [6]). If z ∈ C\R, then there exist nontrivial

solutions uz and vz to Lf = zf such that uz lies in L2 near a, and vz lies in L2 near b.

In the case of at least one regular endpoint, Proposition 1.24 rules out the possibility

that Hmin has deficiency indices (0, 0). For example, if a is a regular endpoint, then the
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nontrivial solution vz from Proposition 1.24, which lies in L2 near b, must also lie in L2 near a

by Proposition 1.18(i). Thus, vz ∈ L2(a, b). Since Lvz = zvz implies (Hmax−zIL2(a,b))vz = 0,

we see that vz ∈ ker(Hmax − zIL2(a,b)). Since vz is nontrivial, choosing z = ±i shows that

d±(Hmin) ≥ 1. This result, together with the case of two regular endpoints, is summarized

in the following corollary.

Corollary 1.25 (Corollary 15.7 in [6]). If L is regular at a or b, then the deficiency

indices of Hmin are (1, 1) or (2, 2). If L is regular at a and b, then the deficiency indices of

Hmin are (2, 2).

The following alternative is due to H. Weyl and is the key ingredient in characterizing

when the deficiency indices of Hmin are (1, 1) or (2, 2).

Theorem 1.26 (Weyl’s Alternative, Theorem 15.8 in [6]). Assume Hypothesis 1.9.

If c denotes an endpoint of (a, b), then the following alternative holds. Either,

(i) For each z ∈ C, every solution to (1.49) lies in L2 near c, or

(ii) For each z ∈ C, there exists one solution of (1.49) which does not lie in L2 near c.

The important feature of Theorem 1.26 is that the alternative is uniform in z ∈ C.

Therefore, the alternative that arises in practice (either (i) or (ii)) is completely determined

by L, and therefore by V .

Definition 1.27 (Limit point/limit circle classification). Let c denote an endpoint

of (a, b). If alternative (i) of Theorem 1.26 holds, then one says that L is in the limit circle

case at c. If alternative (ii) of Theorem 1.26 holds, then one says that L is in the limit point

case at c.
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Corollary 1.28. Assume Hypothesis 1.9. Let c denote an endpoint of (a, b). If c is

a regular endpoint, then L is in the limit circle case at c.

Proof. If c is a regular endpoint, then c ∈ R and all solutions to (1.49) have finite limits

at c by Proposition 1.18. Hence, every solution to (1.49) is bounded in a neighborhood of c

and must therefore lie in L2 near c. �

Proposition 1.29 (Lemma 15.9 in [6]). Assume Hypothesis 1.9. If L is in the limit

point case at b, then

lim
x→b−

W (f, g)(x) = 0, f, g ∈ dom(Hmax). (1.55)

A similar result holds if L is in the limit point case at a.

By Proposition 1.21, the deficiency indices of Hmin are (0, 0), (1, 1), or (2, 2). Weyl’s

limit point/limit circle classification completely characterizes when each case arises.

Theorem 1.30 (Theorem 15.10 in [6]). Assume Hypothesis 1.9. The minimal oper-

ator Hmin has deficiency indices:

(i) (2, 2) if L is in the limit circle case at a and b,

(ii) (1, 1) if L is in the limit point case at one endpoint and in the limit circle case at the

other endpoint; and

(iii) (0, 0) if L is in the limit point case at both endpoints.

1.3. Schrödinger Operators on the Half-Line, (0,∞)

In this section, we apply the results of Section 1.2 to define Schrödinger operators

on the half-line, (a, b) = (0,∞). However, we strengthen the hypothesis on the potential

coefficient V and assume the following hypothesis.
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Hypothesis 1.31. Suppose that

V ∈ L1(0,∞) is real-valued a.e., (1.56)

with ∫ ∞
0

(1 + x)|V (x)| dx <∞, (1.57)

and define the differential expression L on (0,∞) by

L = − d2

dx2
+ V (x). (1.58)

By assuming Hypothesis 1.31, we see that Hypothesis 1.9 is satisfied with (a, b) =

(0,∞). Moreover, due to the assumption in (1.57), which implies
∫∞
0
|V (x)| dx <∞, we see

that 0 is a regular endpoint for L.

Assuming Hypothesis 1.31, we recall Hmax, the maximal operator associated with L

in L2(0,∞) which is defined by

(Hmaxf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (0,∞), (1.59)

f ∈ dom(Hmax) =
{
g ∈ L2(0,∞)

∣∣ g, g′ ∈ AC[0, R], R > 0, Lg ∈ L2(0,∞)
}
,

and the operator H̊:

H̊f = −f ′′(x) + V (x)f(x) for a.e. x ∈ (0,∞), (1.60)

f ∈ dom(H̊) =
{
g ∈ dom(Hmax)

∣∣ f(x) = 0, x ∈ (0,∞)\[c, d], for some [c, d] ⊂ (0,∞)}.

As noted in Section 1.2, the operator H̊ is densely defined and symmetric in the Hilbert

space L2(0,∞). It is closable, and its closure, Hmin, is the minimal operator associated to L

in L2(0,∞). The minimal and maximal operators are adjoint to one another (cf. (1.39)):

(Hmin)∗ = Hmax and (Hmax)
∗ = Hmin. (1.61)
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Next, we introduce the regular and Jost solutions to the eigenvalue differential equa-

tion

(Lu)(x) = −u′′(x) + V (x)u(x) = zu(x), x ∈ [0,∞), z = ζ2 ∈ C. (1.62)

Definition 1.32 (Regular Solution). For each z = ζ2 ∈ C, the regular solution

φ(ζ, x) of Lu = zu is defined to be the unique solution to the initial-value problem{
−φ′′(ζ, x) + V (x)φ(ζ, x) = zφ(ζ, x), x ∈ [0,∞),

φ(ζ, 0) = 0, φ′(ζ, 0) = 1.
(1.63)

The regular solution is well-defined by Proposition 1.34(ii).

In order to define the Jost solution for (1.62), we recall the following result which

shows that the condition (1.57) allows us to compare the solutions of the equation Lf = zf

with the solutions e±iζx of the equation −f ′′ = zf .

Proposition 1.33 (Lemma 4.1.4 in [10]). Assume Hypothesis 1.31. For all ζ 6=

0 from the closed upper half-plane of C, equation (1.62) has solutions θ(ζ, x) and θ̃(ζ, x)

satisfying as x→∞ the conditions

θ(ζ, x) = eiζx[1 + o(1)], θ′(ζ, x) = iζeiζx[1 + o(1)], (1.64)

θ̃(ζ, x) = e−iζx[1 + o(1)], θ̃′(ζ, x) = −iζe−iζx[1 + o(1)], (1.65)

where in each case o(1) represents a ζ-dependent term that converges to zero as x → ∞.

For any fixed x ≥ 0, the functions θ(ζ, x) and θ̃(ζ, x) are analytic in ζ in the open upper

half-plane of C and continuous in ζ up to the real axis, with the possible exception of the

point ζ = 0.
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Proposition 1.34. Assume Hypothesis 1.31. The differential expression L is in the

limit circle case at 0 and in the limit point case at ∞. In particular, Hmin has deficiency

indices (1, 1).

Proof. The endpoint 0 is a regular endpoint. Therefore, L is in the limit circle case

by Corollary 1.28. By Weyl’s alternative, Theorem 1.26, to show the limit point claim, it is

enough to find a z ∈ C for which Lf = zf has a solution which does not lie in L2 near ∞.

If we take z = −1, then ζ = i, and by (1.65),

θ̃(i, x) = ex[1 + o(1)] as x→∞, (1.66)

so clearly θ̃(i, · ) /∈ L2(c,∞) for all c ∈ (0,∞). That is, θ̃(i, · ) does not lie in L2 near ∞.

Therefore, alternative (ii) must hold in Theorem 1.26, and L is in the limit point case at∞.

Since L is in the limit point case at ∞ and in the limit circle case at 0, Theorem

1.30(ii) implies the deficiency indices of Hmin are (1, 1). �

Assuming Hypothesis 1.31, 0 is a regular endpoint for L. Therefore, the character-

ization of Hmin in (1.44) applies. Furthermore, since L is in the limit point case at ∞ by

Proposition 1.34, Proposition 1.29 implies that the Wronskian condition in (1.44):

lim
x→∞

W (g, h)(x) = 0, h ∈ dom(Hmax), (1.67)

is, in fact, redundant. Hence, the minimal operator Hmin is given explicitly as

(Hminf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (0,∞), (1.68)

f ∈ dom(Hmin) =
{
g ∈ dom(Hmax)

∣∣ g(0) = g′(0) = 0
}
.

Definition 1.35 (Jost solution). For each ζ 6= 0 from the closed upper half-plane of

C, the function θ(ζ, · ) in Proposition 1.33 is the Jost solution to (1.62).
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Remark 1.36. If z = ζ2 ∈ C\[0,∞), then actually Im(ζ) > 0, and the condition

θ(ζ, x) = eiζx[1 + o(1)] as x → ∞ immediately implies θ(ζ, · ) ∈ L2(0,∞). Here we have

also used the fact that θ(ζ, x) has a finite limit at x → 0+, since 0 is a regular endpoint

(see Definition 1.14 and Proposition 1.18). We also conclude that Lθ(ζ, · ) = ζ2θ(ζ, · ) ∈

L2(0,∞). Thus,

θ(ζ, · ) ∈ ker(Hmax − zIL2(0,∞)), z ∈ C\[0,∞), z = ζ2. (1.69)

Since L is in the limit point case at∞, there does not exist another square integrable solution

to Lf = zf that is linearly independent to the Jost solution. Otherwise, every solution to

Lf = zf would be square integrable, and L would be in the limit circle case at∞. Therefore,

any other solution to Lf = zf which is square integrable on (0,∞) is a constant multiple of

the Jost solution.

As an immediate consequence of Remark 1.36, we obtain a spanning vector for

ker(Hmax − zIL2(0,∞)) for each z ∈ C\R.

Corollary 1.37. Assume Hypothesis 1.31. Then the Jost solution θ(ζ, · ) spans

ker(Hmax − zIL2(0,∞)).

Since Hmin has equal and finite deficiency indices, Theorem 1.22 implies that Hmin has

self-adjoint extensions. In fact, since the deficiency indices of Hmin are (1, 1), von Neumann’s

theory of self-adjoint extensions implies that Hmin has a one-parameter family of self-adjoint

extensions Hα, α ∈ [0, π), parametrized by a separated self-adjoint boundary condition at

x = 0:

(Hαf)(x) = −f ′′(x) + V (x)f(x) for a.e. x ∈ (0,∞), (1.70)

23



f ∈ dom(Hα) = {g ∈ dom(Hmax) | cos(α)g(0) = sin(α)g′(0)}, α ∈ [0, π).

The preceding claim is made precise in the following proposition.

Proposition 1.38 (Example 15.5 in [6]). For each α ∈ [0, π), Hα defined in (1.70)

is a self-adjoint extension of Hmin. Conversely, if H is a self-adjoint extension of Hmin, then

H = Hα for some α ∈ [0, π).

The regular and Jost solutions of Lf = zf permit one to define the Jost function.

Definition 1.39 (Jost function). The Wronskian of the Jost and regular solutions

is denoted by w and is called the Jost function:

w(ζ) := W (θ(ζ, · ), φ(ζ, · ))

= θ(ζ, 0)φ′(ζ, 0)︸ ︷︷ ︸
=1

−θ′(ζ, 0)φ(ζ, 0)︸ ︷︷ ︸
=0

= θ(ζ, 0), ζ 6= 0. (1.71)

Proposition 1.40 (p. 165 in [10]). Assume Hypothesis 1.31. The Jost function w(ζ)

is analytic in Im(ζ) > 0 and continuous in Im(ζ) ≥ 0 with the possible exception of the point

ζ = 0. Moreover,

w(ζ) = 1 +O(|ζ|−1) as |ζ| → ∞. (1.72)

In particular,

lim
|ζ|→∞

w(ζ) = 1. (1.73)

Remark 1.41. If z = ζ2 ∈ C with ζ = a + ib, a ∈ R, b ∈ [0,∞), then z = (ζ)2.

However, ζ = a− ib has a nonpositive imaginary part. It is −ζ = −a+ ib that is the square
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root of z with a nonnegative imaginary part. As a consequence, we have [10, equation (1.28),

p. 165]

θ(ζ, x) = θ(−ζ, x) and w(ζ) = w(−ζ). (1.74)

In particular, when z ∈ C\R, θ(−ζ, · ) is a spanning vector for ker(Hmax − zIL2(0,∞)).

For ζ = k > 0, the functions θ(k, · ) and θ(−k, · ) satisfy the same differential equation

−u′′(x) + V (x)u(x) = k2u(x), x ∈ [0,∞), (1.75)

and since their Wronskian is equal to a constant, we may apply the asymptotics in (1.64) to

compute

W (θ(k, · ), θ(−k, · )) = lim
x→∞

W (θ(k, · ), θ(−k, · ))(x)

= lim
x→∞

[θ(k, x)θ′(−k, x)− θ′(k, x)θ(−k, x)]

= lim
x→∞

{
eikx[1 + o(1)](−ik)e−ikx[1 + o(1)]

− ikeikx[1 + o(1)]e−ikx[1 + o(1)]
}

= −2ik, (1.76)

which shows that θ(k, · ) and θ(−k, · ) are actually linearly independent for k > 0. Hence,

{θ(k, · ), θ(−k, · )} forms a fundamental system for (1.75). Thus, the regular solution φ(k, · )

to (1.75) may be expressed as a linear combination

φ(k, x) = c(k)θ(k, x) + d(k)θ(−k, x), x ∈ [0,∞). (1.77)

Taking the Wronskian throughout (1.77) with θ(−k, · ), we have

W (θ(−k, · ), φ(k, · ))(x) = c(k)W (θ(−k, · ), θ(k, · ))(x), x ∈ [0,∞). (1.78)
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By uniqueness of solutions to (1.63), φ(k, · ) = φ(−k, · ), so applying (1.76) in (1.78), we

obtain

W (θ(−k, · ), φ(−k, · ))(x) = 2ikc(k), (1.79)

or that

c(k) = (2ik)−1w(−k), k > 0. (1.80)

In a similar way, we determine

d(k) = −(2ik)−1w(k), k > 0. (1.81)

Therefore, (1.77) becomes

φ(k, x) = (2ik)−1[w(−k)θ(k, x)− w(k)θ(−k, x)], x ∈ [0,∞), k > 0. (1.82)

By combining the representation for the regular solution for k > 0 in (1.82) with

(1.74), we can show the Jost function does not vanish for k > 0.

Proposition 1.42. Assume Hypothesis 1.31. If k > 0, then w(k) 6= 0.

Proof. Let k > 0. If w(k) = 0, then w(−k) = w(k) = 0, by the second equality in

(1.74). However, (1.82) immediately implies φ(k, x) ≡ 0, which is a contradiction. �

We define

A(k) = |w(k)|, η(k) = arg(w(k)), k ∈ R\{0}, (1.83)

which allows us to write

w(k) = A(k)eiη(k), k ∈ R\{0}. (1.84)
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Initially, the function η(k) is only determined up to additive multiples of 2π, but one

can impose the condition η(k) → 0 as k → ∞ (see [10, p. 166]) which determines η(k)

uniquely.

Definition 1.43 (Scattering amplitude and scattering phase). For each k ∈ R\{0},

the coefficients A(k) and η(k) in (1.83) are called the scattering amplitude and the scattering

phase, respectively.

The functions A(k) and η(k) are important because they give the asymptotics of the

regular solution φ(k, x) as x→∞.

Theorem 1.44 (Equations (1.21) and (1.22) in [3] ). Assume Hypothesis 1.31. If

k ∈ R\{0}, then the regular solution φ(k, · ) satisfies

φ(k, x) =
A(k)

k
sin(kx− η(k)) + o(1),

φ′(k, x) = A(k) cos(kx− η(k)) + o(1),

(1.85)

as x→∞, where in each case o(1) represents a k-dependent term that converges to zero as

x→∞.

Theorem 1.44 justifies the terminology for A(k) and η(k) introduced in Definition 1.43. We

also introduce the scattering matrix.

Definition 1.45 (Scattering matrix). For each k > 0, the function S(k) defined by

w(−k)

w(k)
= e−2iη(k) (1.86)

is called the scattering matrix.
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Although the quantity defined by (1.86) is scalar-valued, it is customary to refer to it as the

scattering matrix.

The scattering matrix gets its name from the fact that for k > 0, the solution

ψ(k, x) =
k

w(k)
φ(k, x), x ∈ [0,∞), (1.87)

satisfies [10, p. 166]

ψ(k, x) =
i

2

[
e−ikx − S(k)eikx

]
+ o(1) (1.88)

as x → ∞. In quantum mechanics, e−ikx represents a wave of particles incoming from +∞

toward an impenetrable infinite barrier located at x = 0. These waves interact with the

potential V (x), reflect from the barrier, and part of the wave scatters back to +∞. Similarly

eikx represents a wave of particles moving to +∞. Thus, the scattering matrix S(k) measures

the proportion of particles that scatter to ∞ after interaction with V (x) and reflection from

the barrier.

Remark 1.46. The significance of the Jost function, w, is that it contains information

about the eigenvalues of the self-adjoint extension H0. In fact, if w(ζ) = 0 for some ζ ∈ C,

then the regular and Jost solutions must be linearly dependent. Consequently, if Im(ζ) > 0,

then θ(ζ, · ) ∈ L2(0,∞) is an eigenfunction of H0 with the corresponding eigenvalue z = ζ2.

Since H0 can only have negative eigenvalues (if any), it follows that the Jost function can

only vanish on the imaginary axis.

In the special case when V (x) = 0 for a.e. x ∈ (0,∞), we append the superscript (0)

to the operators H̊, Hmin, Hmax, and Hα, and the functions φ(ζ, x), θ(ζ, x), and w(ζ) and

write H̊(0), H
(0)
min, H

(0)
max, H

(0)
α , φ(0)(ζ, x), θ(0)(ζ, x), and w(0)(ζ), respectively. In fact, in this
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case, we explicitly compute:

φ(0)(ζ, x) = ζ−1 sin(ζx), x ∈ [0,∞), ζ 6= 0,

θ(0)(ζ, x) = eiζx, x ∈ [0,∞), ζ 6= 0, (1.89)

w(0)(ζ) = 1, ζ 6= 0.

In particular, since w(0)(ζ) does not vanish for Im(ζ) > 0, the operator H
(0)
0 has no negative

eigenvalues by Remark 1.46.
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CHAPTER 2

KREIN’S RESOLVENT IDENTITY FOR HALF-LINE SCHRÖDINGER OPERATORS

2.1. Abstract Formulation of Krein’s Resolvent Identity

Hypothesis 2.1. Let A0 be a densely defined, closed, symmetric operator in the

Hilbert space H with equal and finite deficiency indices,

m = d−(A0) = d+(A0) ∈ N0, (2.1)

and suppose that A1 and A2 are two self-adjoint extensions of A0:

A0 ⊆ Aj, A∗j = Aj, j ∈ {1, 2}. (2.2)

Definition 2.2 (Common part). A linear operator C : dom(C) ⊆ H → H which

satisfies

C ⊆ Aj, j ∈ {1, 2}, (2.3)

is called a common part of A1 and A2.

Remark 2.3. The operator A0 is a common part of A1 and A2.

Lemma 2.4. Assume Hypothesis 2.1. If the operator Cmax is defined by

dom(Cmax) = {u ∈ dom(A1) ∩ dom(A2) |A1u = A2u}, (2.4)

Cmaxu = A1u = A2u, u ∈ dom(Cmax), (2.5)
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then Cmax is a common part of A1 and A2, and if C is any other common part of A1 and

A2, then C is a restriction of Cmax, that is

C ⊆ Cmax. (2.6)

Proof. To show Cmax is a common part, we must show Cmax ⊆ Aj, j ∈ {1, 2}. Clearly,

dom(Cmax) ⊆ dom(Aj). By definition,

Aju = Cmaxu, u ∈ dom(Cmax). (2.7)

Hence, Cmax ⊆ Aj, j ∈ {1, 2}. Let C denote a common part of A1 and A2, so that

C ⊆ Aj, j ∈ {1, 2}. (2.8)

If u ∈ dom(C), then u ∈ dom(Aj), j ∈ {1, 2}, and

Cu = A1u = A2u. (2.9)

Thus, u ∈ dom(Cmax) and

Cmaxu = A1u = A2u = Cu. (2.10)

Evidently, this proves C ⊆ Cmax. �

Remark 2.5. The operator Cmax is symmetric:

〈u,Cmaxv〉H = 〈u,A1v〉H = 〈A1u, v〉H = 〈Cmaxu, v〉H, u, v ∈ dom(Cmax), (2.11)

and A0 ⊂ Cmax.

Definition 2.6 (Maximal common part). Cmax is the maximal common part of A1

and A2.

Definition 2.7 (Relatively prime). A1 and A2 are relatively prime with respect to

A0 if and only if Cmax = A0
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Remark 2.8. A1 and A2 are relatively prime if and only if the condition u ∈

dom(A1) ∩ dom(A2) implies u ∈ dom(A0).

Lemma 2.9. Assume Hypothesis 2.1. Then A1 and A2 are self-adjoint extensions of

Cmax. Thus, Cmax has equal deficiency indices. In fact,

d+(Cmax) = d−(Cmax) =: r ≤ m. (2.12)

Proof. By Lemma 2.4, in particular (2.6), Cmax is an extension of A0 since A0 is a

common part of A1 and A2. It follows that dom(A0) ⊂ dom(Cmax), so that Cmax is densely

defined. In addition, Cmax is a restriction of Aj for j ∈ {1, 2}. To see this, note that if

u ∈ dom(Cmax), then u ∈ dom(Aj) for j ∈ {1, 2} by the very definition of dom(Cmax),

and then by the definition of Cmax, we have Cmaxu = A1u = A2u. Since A1 and A2 are

self-adjoint, it follows that both A1 and A2 are self-adjoint extensions of Cmax. Since Cmax

has self-adjoint extensions, the deficiency indices of Cmax must be equal by Theorem 1.22,

so we set

r := d+(Cmax) = d−(Cmax). (2.13)

To complete the proof, we must show that r ≤ m. To show this inequality, it suffices to

prove that

ker(C∗max ∓ iIH) ⊆ ker(A∗0 ∓ iIH). (2.14)

Let u± ∈ ker(C∗max∓ iIH) so that C∗maxu± = ±iu±. Since A0 ⊆ Cmax implies C∗max ⊆ A∗0, we

have A∗0u± = ±iu±. We conclude that u± ∈ ker(A∗0 ∓ iIH). �

In order to abbreviate notation, we introduce the following notation for the resolvent

operators of Aj, j ∈ {1, 2}:
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Rj(z) = (Aj − zIH)−1, z ∈ ρ(Aj), j ∈ {1, 2}. (2.15)

Theorem 2.10 (Abstract Krein’s Resolvent Identity, Section VII.84 in [1]). As-

sume Hypothesis 2.1. Fix z ∈ ρ(A1) ∩ ρ(A2), and let {gk(z)}rk=1 and {gk(z)}rk=1 be bases

for ker(C∗max − zIH) and ker(C∗max − zIH), respectively. Then there exist (complex) scalars

{βj,k(z)}rj,k=1 such that

R2(z)−R1(z) =
r∑

j,k=1

βj,k(z)〈gj(z), · 〉Hgk(z). (2.16)

In particular,

trH(R2(z)−R1(z)) = trH

[
r∑

j,k=1

βj,k(z)〈gj(z), · 〉Hgk(z)

]
(2.17)

=
r∑

j,k=1

βj,k(z) trH
[
〈gj(z), · 〉Hgk(z)

]
=

r∑
j,k=1

βj,k(z)〈gj(z), gk(z)〉H.

The identity in (2.16) is called Krein’s resolvent identity.

2.2. Krein’s Resolvent Identity for H0 and Hα

We recall that the operator Hmin defined by (1.68) is closed, densely defined and

symmetric with deficiency indices (1, 1). Let α ∈ (0, π). The operators Hα and H0 defined

by (1.70) are both self-adjoint extensions of Hmin. Therefore, Hypothesis 2.1 is satisfied

with A0 = Hmin, A1 = H0, A2 = Hα, and H = L2(0,∞). Next, we determine the maximal

common of the operators H0 and Hα.

Lemma 2.11. The minimal operator Hmin is the maximal common part of H0 and

Hα. Therefore, H0 and Hα are relatively prime with respect to Hmin.
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Proof. Let Cmax denote the maximal common part of H0 and Hα. To prove the claim,

it suffices to show dom(Cmax) = dom(Hmin). Since, Hmin is a common part of H0 and

Hα, it follows from Lemma 2.4 that Hmin ⊆ Cmax; in particular, dom(Hmin) ⊆ dom(Cmax).

Conversely, if f ∈ dom(Cmax), then f ∈ dom(H0) ∩ dom(Hα). As a result, f ∈ dom(Hmax)

with

f(0) = 0 and sin(α)f ′(0) = cos(α)f(0). (2.18)

Combining the two equations, and noting sin(α) 6= 0 if α ∈ (0, π), we obtain f ′(0) = 0.

Having shown f ∈ dom(Hmax) with f(0) = f ′(0) = 0, we conclude that f ∈ dom(Hmin).

This shows that dom(Cmax) ⊂ dom(Hmin), and we finally conclude that Cmax = Hmin. By

Definition 2.7, H0 and Hα are relatively prime. �

Hypothesis 2.1 is satisfied with A0 = Hmin, A1 = H0, A2 = Hα, and H = L2(0,∞),

and we know that Cmax = Hmin by Lemma 2.11. Since the deficiency indices of Hmin are

r = 1, Theorem 2.10 implies that the difference of the resolvents of H0 and Hα is a rank one

operator with a range contained in ker(H∗min − zIL2(0,∞)):

(Hα − zIL2(0,∞))
−1 − (H0 − zIL2(0,∞))

−1 = −pα(z)〈g1(z), · 〉L2(0,∞)g1(z), (2.19)

z ∈ ρ(H0) ∩ ρ(Hα),

where g1(z) is a basis vector for ker(H∗min − zIL2(0,∞)) and pα(z) is an appropriate complex

scalar. The main result of this chapter is the derivation of the precise form of Krein’s resolvent

identity for the operators H0 and Hα when g1(z) = θ(ζ, · ) is chosen as a basis vector for

ker(H∗min−zIL2(0,∞)). The derivation entails the computation of the corresponding coefficient

pα(z). The proof of the identity relies on the fact that (H0 − zIL2(0,∞))
−1, z ∈ ρ(H0), is an

integral operator.
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Proposition 2.12 (Proposition 4.2.1 in [10]). For each z ∈ ρ(H0), the resolvent

(H0 − zIL2(0,∞))
−1 is an integral operator with integral kernel given by

G0(z;x, x′) =
1

w(ζ)

{
φ(ζ, x)θ(ζ, x′), 0 ≤ x ≤ x′ <∞,
φ(ζ, x′)θ(ζ, x), 0 ≤ x′ ≤ x <∞.

(2.20)

We now state and prove the main result of this chapter.

Theorem 2.13 (Krein’s Resolvent Identity for H0 and Hα). Assume Hypothesis 1.31.

If α ∈ (0, π), then the resolvent operators of H0 and Hα satisfy

(Hα − zIL2(0,∞))
−1 − (H0 − zIL2(0,∞))

−1 = −pα(z)〈θ(−ζ, · ), · 〉L2(0,∞)θ(ζ, · ), (2.21)

z = ζ2 ∈ ρ(H0) ∩ ρ(Hα),

where

pα(z) =
sin(α)

θ(ζ, 0)[sin(α)θ′(ζ, 0)− cos(α)θ(ζ, 0)]
, z = ζ2 ∈ ρ(H0) ∩ ρ(Hα). (2.22)

Proof. Let z ∈ ρ(H0) ∩ ρ(Hα) be fixed, and define the bounded operator Tα(z) by

Tα(z) = (H0 − zIL2(0,∞))
−1 − pα(z)〈θ(−ζ, · ), · 〉L2(0,∞)θ(ζ, · ), (2.23)

dom(Tα(z)) = L2(0,∞).

To prove the theorem, it suffices to show

(Hα − zIL2(0,∞))Tα(z) = IL2(0,∞), (2.24)

where

dom((Hα − zIL2(0,∞))Tα(z)) = {f ∈ dom(Tα(z)) |Tα(z)f ∈ dom(Hα)}, (2.25)

and that

Tα(z)(Hα − zIL2(0,∞)) = IL2(0,∞)|dom(Hα)
, (2.26)
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where S|K denotes the restriction of an operator S to the subspace K. Indeed, the identities

in (2.24) and (2.26) imply that Tα(z) is the inverse of Hα − zIL2(0,∞). Since the inverse of

an invertible operator is unique, and (Hα − zIL2(0,∞))
−1 is the inverse of Hα − zIL2(0,∞), we

conclude that

Tα(z) = (Hα − zIL2(0,∞))
−1. (2.27)

It remains to justify the identities in (2.24) and (2.26). To this end, let f ∈ L2(0,∞).

We claim that

Tα(z)f ∈ dom(Hα). (2.28)

By the very definition of Tα(z),

Tα(z)f = (H0 − zIL2(0,∞))
−1f − pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ(ζ, · ). (2.29)

The fact that dom(Hmax) is a subspace, along with (2.29) and the containments

[
(H0 − zIL2(0,∞))

−1f
]
∈ dom(H0) ⊂ dom(Hmax) and θ(ζ, · ) ∈ dom(Hmax) (2.30)

imply Tα(z)f ∈ dom(Hmax). The first containment in (2.30) is clear; see Remark 1.36 for an

explanation of the second containment. Thus, the proof of the containment in (2.28) reduces

to showing that Tα(z)f satisfies the boundary condition for elements of dom(Hα), that is

that

cos(α)[Tα(z)f ](0) = sin(α)[Tα(z)f ]′(0). (2.31)

To verify that Tα(z)f satisfies the boundary condition, we begin by computing the

left-hand side in (2.31):

cos(α)[Tα(z)f ](0) = cos(α)
[
(H0 − zIL2(0,∞))

−1f − pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ(ζ, · )
]
(0)

= cos(α)
[
(H0 − zIL2(0,∞))

−1f
]
(0)
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− cos(α)pα(z)〈θ(−ζ, · ), f〉L2(0,∞) θ(ζ, 0)︸ ︷︷ ︸
=w(ζ)

= − cos(α)pα(z)〈θ(−ζ, · ), f〉L2(0,∞)w(ζ),

where we use the fact that
[
(H0 − zIL2(0,∞))

−1f
]
∈ dom(H0) and, therefore, satisfies the

Dirichlet boundary condition at x = 0:

[
(H0 − zIL2(0,∞))

−1f
]
(0) = 0. (2.32)

To compute the right-hand side of (2.31), we begin with [Tα(z)f ]′(0). By (2.29), we

have

[Tα(z)f ]′(0) =
[
(H0 − zIL2(0,∞))

−1f
]′

(0)− pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ
′(ζ, 0). (2.33)

We use the integral kernel in (2.20) to compute
[
(H0 − zIL2(0,∞))

−1f
]′

(0). Equation (2.20)

implies

[
(H0 − zIL2(0,∞))

−1f
]
(x) =

∫ ∞
0

G0(z;x, x′)f(x′) dx′ (2.34)

=

∫ x

0

G0(z;x, x′)f(x′) dx′ +

∫ ∞
x

G0(z;x, x′)f(x′) dx′

=
1

w(ζ)

∫ x

0

φ(ζ, x′)θ(ζ, x)f(x′) dx

+
1

w(ζ)

∫ ∞
x

φ(ζ, x)θ(ζ, x′)f(x′) dx, x ∈ [0,∞).

Now, by differentiating, we have

[
(H0 − zIL2(0,∞))

−1f
]′

(x) =
1

w(ζ)

[
d

dx

∫ x

0

φ(ζ, x′)θ(ζ, x)f(x′) dx′︸ ︷︷ ︸
=I1(x)

+
d

dx

∫ ∞
x

φ(ζ, x)θ(ζ, x′)f(x′) dx′︸ ︷︷ ︸
=I2(x)

]
, x ∈ [0,∞). (2.35)
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Computing I1(x) and I2(x), we have

I1(x) =
d

dx

[
θ(ζ, x)

∫ x

0

φ(ζ, x′)f(x′) dx′
]

(2.36)

= θ′(ζ, x)

∫ x

0

φ(ζ, x′)f(x′) dx′ + θ(ζ, x)φ(ζ, x)f(x) for a.e. x ∈ [0,∞),

and upon reversing the order of integration in I2(x),

I2(x) = − d

dx

[
φ(ζ, x)

∫ x

∞
θ(ζ, x′)f(x′) dx′

]
(2.37)

= −φ′(ζ, x)

∫ x

∞
θ(ζ, x′)f(x′) dx′ − φ(ζ, x)θ(ζ, x)f(x) for a.e. x ∈ [0,∞).

Then

1

w(ζ)

[
I1(x) + I2(x)] (2.38)

=
1

w(ζ)

[
θ′(ζ, x)

∫ x

0

φ(ζ, x′)f(x′) dx′ + φ′(ζ, x)

∫ ∞
x

θ(ζ, x′)f(x′) dx′
]
, x ∈ [0,∞).

Taking x = 0 in (2.35) and applying (2.38), we have

[
(H0 − zIL2(0,∞))

−1f
]′

(0) =
1

w(ζ)

[
θ′(ζ, 0)

∫ 0

0

φ(ζ, x′)f(x′) dx′︸ ︷︷ ︸
=0

+ φ′(ζ, 0)︸ ︷︷ ︸
=1

∫ ∞
0

θ(ζ, x′)f(x′) dx′
]

=
1

w(ζ)

∫ ∞
0

θ(ζ, x′)f(x′) dx′

=
1

w(ζ)

∫ ∞
0

θ(−ζ, x′)f(x′) dx′ (2.39)

=
1

w(ζ)
〈θ(−ζ, · ), f〉L2(0,∞),

where we have applied (1.74) in (2.39). Now, to show (2.31), we compute the difference

between cos(α)[Tα(z)f ](0) and sin(α)[Tα(z)f ]′(0):

cos(α)[Tα(z)f ](0)− sin(α)[Tα(z)f ]′(0)

= cos(α){[(H0 − zIL2(0,∞))
−1f ](0)︸ ︷︷ ︸

=0

−pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ(ζ, 0)}
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− sin(α){[(H0 − zIL2(0,∞))
−1f ]′(0)− pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ

′(ζ, 0)}

= −pα(z)〈θ(−ζ, ·), f〉L2(0,∞)[cos(α)θ(ζ, 0)− sin(α)θ′(ζ, 0)]

− sin(α)[(H0 − zIL2(0,∞))
−1f ]′(0)

= pα(z)〈θ(−ζ, ·), f〉L2(0,∞)[sin(α)θ′(ζ, 0)− cos(α)θ(ζ, 0)]

− sin(α)[(H0 − zIL2(0,∞))
−1f ]′(0)

=
sin(α)〈θ(−ζ, · ), f〉L2(0,∞)

θ(ζ, 0)[sin(α)θ′(ζ, 0)− cos(α)θ(ζ, 0)]
[sin(α)θ′(ζ, 0)− cos(α)θ(ζ, 0)]

− sin(α)[(H0 − zIL2(0,∞))
−1f ]′(0)

=
sin(α)〈θ(−ζ, · ), f〉L2(0,∞)

θ(ζ, 0)
− sin(α)[(H0 − zIL2(0,∞))

−1f ]′(0)

= sin(α)

[
〈θ(−ζ, · ), f〉L2(0,∞)

θ(ζ, 0)
− [(H0 − zIL2(0,∞))

−1f ]′(0)

]

= sin(α)

[
〈θ(−ζ, · ), f〉L2(0,∞)

θ(ζ, 0)
−
〈θ(−ζ, · ), f〉L2(0,∞)

θ(ζ, 0)︸ ︷︷ ︸
=0

]

= 0. (2.40)

This completes the proof of (2.28).

Having shown (2.28), we proceed to verify the identity in (2.24) by computing (Hα−

zIL2(0,∞))Tα(z)f as follows:

(Hα − zIL2(0,∞))Tα(z)f

= (Hα − zIL2(0,∞))
[
(H0 − zIL2(0,∞))

−1f − pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ(ζ, · )
]

= (Hmax − zIL2(0,∞))
[
(H0 − zIL2(0,∞))

−1f − pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ(ζ, · )
]

= (Hmax − zIL2(0,∞))
[
(H0 − zIL2(0,∞))

−1f
]

− (Hmax − zIL2(0,∞))
[
pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ(ζ, · )

]
= (H0 − zIL2(0,∞))

[
(H0 − zIL2(0,∞))

−1f
]

(2.41)
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− (Hmax − zIL2(0,∞))
[
pα(z)〈θ(−ζ, · ), f〉L2(0,∞)θ(ζ, · )

]
= f − pα(z)〈θ(−ζ, · ), f〉L2(0,∞) (Hmax − zIL2(0,∞))θ(ζ, · )︸ ︷︷ ︸

=0

= f (2.42)

= IL2(0,∞)f,

where we used H0 ⊂ Hmax to obtain (2.41). In (2.42), we have used the fact that (Hmax −

zIL2(0,∞))θ(ζ, · ) ≡ 0 since θ(ζ, · ) satisfies (1.62). This proves (2.24). It remains to prove

(2.26).

To prove (2.26), we use (2.24) and properties of the operator adjoint. By (2.24) with

z replaced by z, we have

(Hα − zIL2(0,∞))Tα(z) = IL2(0,∞). (2.43)

Taking adjoints on both sides of (2.43), and using the relation (AB)∗ ⊇ B∗A∗, we have

IL2(0,∞) = I∗L2(0,∞) = [(Hα − zIL2(0,∞))Tα(z)]∗

⊇ Tα(z)∗(Hα − zIL2(0,∞))
∗

= Tα(z)∗(H∗α − (zIL2(0,∞))
∗)

= Tα(z)∗(Hα − zIL2(0,∞)) (2.44)

= Tα(z)(Hα − zIL2(0,∞)). (2.45)

To get (2.44), we used the fact that (A− wI)∗ = A∗ − wI for any densely defined operator

A and any w ∈ C together with the self-adjointness property of Hα, H∗α = Hα. In (2.45), we

used Tα(w) = Tα(w)∗ for any w ∈ ρ(H0) ∩ ρ(Hα), which follows from (2.23), (1.74), and the

procedure for taking the adjoint of a rank one operator: if H is a separable Hilbert space
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and f, g ∈ H, then the operator A defined by

Ah = 〈f, h〉Hg, h ∈ dom(A) = H, (2.46)

is a bounded linear operator on H, and its adjoint is given by

A∗ = 〈g, h〉Hf, h ∈ H. (2.47)

With (2.45) we have now shown that Tα(z)(Hα − zIL2(0,∞)) is a restriction of the identity

operator IL2(0,∞). Since Tα(z) ∈ B(L2(0,∞)) (in particular dom(Tα(z)) = L2(0,∞)), we

have

dom(Tα(z)(Hα − zIL2(0,∞))) = dom(Hα), (2.48)

and we conclude that Tα(z)(Hα − zIL2(0,∞)) is the restriction of the identity operator to

dom(Hα), which is precisely the statement in (2.26). �
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CHAPTER 3

A TRACE FORMULA FOR HALF-LINE SCHRÖDINGER OPERATORS

If H is a separable Hilbert space and f, g ∈ H, then the operator A defined by

Ah = 〈f, h〉Hg, h ∈ dom(A) = H, (3.1)

is a bounded linear operator on H. It is customary to write

A = 〈f, · 〉Hg. (3.2)

Clearly, A is a finite rank operator since the range of A is contained in the one-dimensional

subspace spanned by the vector g. In fact, A has rank equal to zero if at least one one of f

or g is the zero vector; otherwise, A has rank equal to one.

Proposition 3.1. If H is a separable Hilbert space and f, g ∈ H, then the operator

A = 〈f, · 〉Hg belongs to the trace class B1(H) with

trH(A) = 〈f, g〉H. (3.3)

Proof. If at least one of f or g is the zero vector, then A is the zero operator and all

of the claims are trivial. Therefore, we may assume without loss that f, g ∈ H\{0}. Since

A is finite rank, and every finite rank operator belongs to the trace class, it follows that

A ∈ B1(H).

To compute trH(A), let {hj}νj=1, where ν = dim(H) ∈ N∪{∞} is the dimension of the

separable Hilbert space H, denote an orthonormal basis of H, chosen so that h1 = ‖g‖−1H g.
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This choice implies

〈hj, g〉H = δ1,j‖g‖H, 1 ≤ j ≤ ν, j ∈ N, (3.4)

and then by the definition of the trace functional,

trH(A) =
ν∑
j=1

〈hj, Ahj〉H

=
ν∑
j=1

〈
hj, 〈f, hj〉Hg

〉
H

=
ν∑
j=1

〈f, hj〉H〈hj, g〉H

= 〈f, ‖g‖−1H g〉H‖g‖H

= 〈f, g〉H. (3.5)

�

To prove the main theorem of this chapter, we need several properties of solutions to

Lf = zf . The first result shows that the product of two solutions is a derivative.

Proposition 3.2 (Lemma 4.5.2 in [10]). Assume Hypothesis 1.9. For any two solu-

tions u(ζ, x) and v(ζ, x) of Lf = ζ2f , one has

2ζu(ζ, x)v(ζ, x) =
(
u′(ζ, x)v̇(ζ, x)− u(ζ, x)v̇′(ζ, x)

)′
. (3.6)

Proof. Take v(ζ, x) as a solution to Lf = ζ2f , then

−v′′(ζ, x) + V (x)v(ζ, x) = ζ2v(ζ, x). (3.7)

Differentiate throughout with respect to ζ to obtain

−v̇′′(ζ, x) + V (x)v̇(ζ, x) = ζ2v̇(ζ, x) + 2ζv(ζ, x). (3.8)

43



If we multiply by u(ζ, x), we have

−u(ζ, x)v̇′′(ζ, x) + V (x)u(ζ, x)v̇(ζ, x) = ζ2u(ζ, x)v̇(ζ, x) + 2ζu(ζ, x)v(ζ, x). (3.9)

Now take u(ζ, x) as a solution to Lf = ζ2f and multiply by v̇(ζ, x):

−u′′(ζ, x)v̇(ζ, x) + V (x)u(ζ, x)v̇(ζ, x) = ζ2u(ζ, x)v̇(ζ, x). (3.10)

Taking the difference of the above two equations, we then have

u′′(ζ, x)v̇(ζ, x)− u(ζ, x)v̇′′(ζ, x) = 2ζu(ζ, x)v(ζ, x). (3.11)

Note that

u′′(ζ, x)v̇(ζ, x)− u(ζ, x)v̇′′(ζ, x) (3.12)

= u′′(ζ, x)v̇(ζ, x) + u′(ζ, x)v̇′(ζ, x)− u′(ζ, x)v̇′(ζ, x)− u(ζ, x)v̇′′(ζ, x)

= [u′(ζ, x)v̇(ζ, x)]′ − [u(ζ, x)v̇′(ζ, x)]′

= [u′(ζ, x)v̇(ζ, x)− u(ζ, x)v̇′(ζ, x)]′.

Then 2ζu(ζ, x)v(ζ, x) = [u′(ζ, x)v̇(ζ, x)− u(ζ, x)v̇′(ζ, x)]′, as desired. �

The next result gives the limiting behavior of the ζ-derivative of e−iζxθ(ζ, x) and its

x-derivative as x→∞.

Proposition 3.3 (Lemma 4.1.7 in [10]). Assume Hypothesis 1.31 and define the

function b(ζ, x) by

b(ζ, x) = e−iζxθ(ζ, x), x ∈ [0,∞). (3.13)

For each fixed x ≥ 0, ḃ(ζ, x) is a continuous function of ζ in the closed upper half plane,

with the possible exception of ζ = 0, and

lim
x→∞

ḃ(ζ, x) = 0, (3.14)
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lim
x→∞

ḃ′(ζ, x) = 0. (3.15)

As a consequence of this proposition, we obtain similar results for θ(ζ, · ).

Corollary 3.4. If Hypothesis 1.31 holds and ζ2 = z ∈ C\R, then

lim
x→∞

θ̇(ζ, x) = 0,

lim
x→∞

θ̇′(ζ, x) = 0.

Proof. Let b(ζ, x) be defined as in (3.13). Taking the derivative of b(ζ, x) with respect

to ζ using the product rule, we have

ḃ(ζ, x) = −ixe−iζxθ(ζ, x) + e−iζxθ̇(ζ, x), x ∈ [0,∞), (3.16)

and then

θ̇(ζ, x) = eiζxḃ(ζ, x) + ixθ(ζ, x), x ∈ [0,∞). (3.17)

As a result, by (1.64) and (3.14)

lim
x→∞

θ̇(ζ, x) = lim
x→∞

eiζxḃ(ζ, x) + i lim
x→∞

xθ(ζ, x)

= lim
x→∞

eiζxḃ(ζ, x) + i lim
x→∞

xeiζx[1 + o(1)]

= 0, (3.18)

since eiζx = eiRe(ζ)xe−Im(ζ)x goes to zero exponentially as x→∞ if ζ2 = z ∈ C\R.

Now, differentiating (3.17) with respect to x,

θ̇′(ζ, x) = iζeiζxḃ(ζ, x) + eiζxḃ′(ζ, x) + iθ(ζ, x) + ixθ′(ζ, x), x ∈ [0,∞), (3.19)

and then by (1.64), (3.14), and (3.15)

lim
x→∞

θ̇′(ζ, x) = iζ lim
x→∞

[eiζxḃ(ζ, x)] + lim
x→∞

[eiζxḃ′(ζ, x)] + i lim
x→∞

θ(ζ, x) + i lim
x→∞

[xθ′(ζ, x)] = 0.

�
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As a final preparation, we recall the following result which computes the trace of the

difference of the resolvents of H
(0)
0 and H0.

Proposition 3.5 (Proposition 4.5.3 in [10]). If Hypothesis 1.31 holds, then

trL2(0,∞)

((
H

(0)
0 − zIL2(0,∞)

)−1 − (H0 − zIL2(0,∞)

)−1)
=

ẇ(ζ)

2ζw(ζ)
, z ∈ C\R. (3.20)

With these preparations in place, we may now state and prove the main theorem of

this thesis.

Theorem 3.6. If Hypothesis 1.31 holds, then

trL2(0,∞)

((
H(0)
α − zIL2(0,∞)

)−1 − (Hα − zIL2(0,∞)

)−1)
(3.21)

=
cos(α)ẇ(ζ)− sin(α)θ̇′(ζ, 0)

2ζ[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]
+

i sin(α)

2ζ[cos(α)− iζ sin(α)]
, z ∈ C\R.

Proof. Let z ∈ C\R. It follows that Im(ζ) > 0. The main strategy for the proof is to

apply Krein’s resolvent identity, specifically Theorem 2.13, to relate the resolvent of H
(0)
α to

the resolvent of H
(0)
0 and to relate the resolvent of Hα to the resolvent of H0. By (2.21), and

linearity of the trace functional,

trL2(0,∞)

((
H(0)
α − zIL2(0,∞)

)−1 − (Hα − zIL2(0,∞)

)−1)
= trL2(0,∞)

((
H

(0)
0 − zIL2(0,∞)

)−1 − (H0 − zIL2(0,∞)

)−1
− p(0)α (z)〈θ(0)(−ζ, ·), ·〉L2(0,∞)θ

(0)(ζ, ·) + pα(z)〈θ(−ζ, ·), ·〉L2(0,∞)θ(ζ, ·)
)

= trL2(0,∞)

((
H

(0)
0 − zIL2(0,∞)

)−1 − (H0 − zIL2(0,∞)

)−1)
− p(0)α (z) trL2(0,∞)

(
〈θ(0)(−ζ, ·), ·〉L2(0,∞)θ

(0)(ζ, ·)
)

+ pα(z) trL2(0,∞)

(
〈θ(−ζ, ·), ·〉L2(0,∞)θ(ζ, ·)

)
=

ẇ(ζ)

2ζw(ζ)
− p(0)α (z)〈θ(0)(−ζ, ·), θ(0)(ζ, ·)〉L2(0,∞) + pα(z)〈θ(−ζ, ·), θ(ζ, ·)〉L2(0,∞), (3.22)
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where in the last line, we applied Proposition 3.5.

Using (1.89), the inner product 〈θ(0)(−ζ, ·), θ(0)(ζ, ·)〉L2(0,∞) may be explicitly com-

puted as follows:

〈θ(0)(−ζ, ·), θ(0)(ζ, ·)〉 =

∫ ∞
0

e−iζxeiζxdx

=

∫ ∞
0

e−ix[Re(ζ)+iIm(ζ)]eiζxdx

=

∫ ∞
0

e−ix[Re(ζ)−iIm(ζ)]eiζxdx

=

∫ ∞
0

e−ixRe(ζ)−xIm(ζ)eix[Re(ζ)+iIm(ζ)]dx

=

∫ ∞
0

eixRe(ζ)−xIm(ζ)eixRe(ζ)−xIm(ζ)dx

=

∫ ∞
0

e2ixRe(ζ)e−2xIm(ζ)dx

=

∫ ∞
0

e2ix[Re(ζ)+iIm(ζ)]dx

=

∫ ∞
0

e2ixζdx

= lim
t→∞

e2ixζ

2iζ

∣∣∣∣t
0

=

[
lim
t→∞

e2iRe(ζ)te−2Im(ζ)t

2iζ

]
− 1

2iζ

= − 1

2iζ

=
i

2ζ
, (3.23)

where we used Im(ζ) > 0 to conclude that limt→∞ e
−2Im(ζ)t = 0.

The inner product 〈θ(−ζ, ·), θ(ζ, ·)〉L2(0,∞) may also be computed using Proposition

3.2 as follows:
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〈θ(−ζ, ·), θ(ζ, ·)〉

=

∫ ∞
0

θ(−ζ, x)θ(ζ, x)dx

=

∫ ∞
0

θ(ζ, x)θ(ζ, x)dx

=

∫ ∞
0

1

2ζ

[
θ′(ζ, x)θ̇(ζ, x)− θ(ζ, x)θ̇′(ζ, x)

]′
dx

=
1

2ζ

[
θ′(ζ, x)θ̇(ζ, x)− θ(ζ, x)θ̇′(ζ, x)

]∣∣∣∣∞
0

=
1

2ζ
lim
x→∞

[
θ′(ζ, x)︸ ︷︷ ︸
→0

θ̇(ζ, x)︸ ︷︷ ︸
→0

− θ(ζ, x)︸ ︷︷ ︸
→0

θ̇′(ζ, x)︸ ︷︷ ︸
→0

−
[
θ′(ζ, 0)θ̇(ζ, 0)− θ(ζ, 0)θ̇′(ζ, 0)

]]

= − 1

2ζ

[
θ′(ζ, 0)θ̇(ζ, 0)− θ(ζ, 0)θ̇′(ζ, 0)

]
, (3.24)

where in the last equality we applied (1.64) and Corollary 3.4 to conclude that the first two

terms converge to zero as x→∞ if Im(ζ) > 0.

Returning to (3.22), and applying (3.23), (3.24), and (1.89), we then have

trL2(0,∞)

((
H(0)
α − zIL2(0,∞)

)−1 − (Hα − zIL2(0,∞)

)−1)
=

ẇ(ζ)

2ζw(ζ)
− i

2ζ
p(0)α (z)− 1

2ζ
pα(z)[θ′(ζ, 0)θ̇(ζ, 0)− θ(ζ, 0)θ̇′(ζ, 0)]

=
ẇ(ζ)

2ζw(ζ)
− i

2ζ

sin(α)

θ(0)(ζ, 0)︸ ︷︷ ︸
=1

[sin(α) θ(0)′(ζ, 0)︸ ︷︷ ︸
=iζ

− cos(α) θ(0)(ζ, 0)︸ ︷︷ ︸
=1

]

− 1

2ζ

sin(α)[θ′(ζ, 0)θ̇(ζ, 0)− θ(ζ, 0)θ̇′(ζ, 0)]

θ(ζ, 0)︸ ︷︷ ︸
=w(ζ)

[sin(α)θ′(ζ, 0)− cos(α) θ(ζ, 0)︸ ︷︷ ︸
=w(ζ)

]

=
ẇ(ζ)

2ζw(ζ)
+

i

2ζ

sin(α)

cos(α)− iζ sin(α)
+

1

2ζ

sin(α)[θ′(ζ, 0)ẇ(ζ)− w(ζ)θ̇′(ζ, 0)]

w(ζ)[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]

=
ẇ(ζ)[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]

2ζw(ζ)[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]
+

i sin(α)

2ζ[cos(α)− iζ sin(α)]
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+
sin(α)[θ′(ζ, 0)ẇ(ζ)− w(ζ)θ̇′(ζ, 0)]

2ζw(ζ)[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]

=
cos(α)ẇ(ζ)w(ζ)− sin(α)w(ζ)θ̇′(ζ, 0)

2ζw(ζ)[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]
+

i sin(α)

2ζ[cos(α)− iζ sin(α)]

=
cos(α)ẇ(ζ)− sin(α)θ̇′(ζ, 0)

2ζ[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]
+

i sin(α)

2ζ[cos(α)− iζ sin(α)]

=
cos(α)θ̇(ζ, 0)− sin(α)θ̇′(ζ, 0)

2ζ[cos(α)θ(ζ, 0)− sin(α)θ′(ζ, 0)]
+

i sin(α)

2ζ[cos(α)− iζ sin(α)]

=
cos(α)ẇ(ζ)− sin(α)θ̇′(ζ, 0)

2ζ[cos(α)w(ζ)− sin(α)θ′(ζ, 0)]
+

i sin(α)

2ζ[cos(α)− iζ sin(α)]
, (3.25)

which concludes the proof. �

The main idea in the proof of Theorem 3.6 is the Krein resolvent identity which holds

in an abstract setting. By abstracting the key elements from the proof, we obtain a general

abstract result for pairs of self-adjoint operators. In order to introduce this abstract result,

we introduce the following hypothesis.

Hypothesis 3.7. Let A0 and B0 denote densely defined closed symmetric operators

in the Hilbert space H, each with equal and finite deficiency indices:

d±(A0) := dim(ker(A∗0 ∓ iIH)) = m <∞, d±(B0) := dim(ker(B∗0 ∓ iIH)) = n <∞,
(3.26)

for some m,n ∈ N0.

By von Neumann’s theory of self-adjoint extensions, both A0 and B0 possess self-adjoint

extensions.

Hypothesis 3.8. In addition to Hypothesis 3.7, suppose that:

(i) A1, A2 are two self-adjoint extensions of A0, and that B1, B2 are two self-adjoint exten-

sions of B0.
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(ii) r ∈ N0 denotes the common deficiency index of the maximal common part A of A1 and

A2 so that

d±(A) = dim(ker(A∗ ∓ iIH)) = r ≤ m, (3.27)

(iii) s ∈ N0 denotes the common deficiency index of the maximal common part B of B1 and

B2 so that

d±(B) = dim(ker(B∗ ∓ iIH)) = s ≤ n. (3.28)

(iv) For each z ∈ ρ(A1) ∩ ρ(A2), let {fk(z)}rk=1 denote a basis for ker(A∗ − zIH), and for

each z̃ ∈ ρ(B1) ∩ ρ(B2), let {gk(z̃)}sk=1 denote a basis for ker(B∗ − z̃IH), so that

(A2 − zIH)−1 = (A1 − zIH)−1 −
r∑

j,k=1

αj,k(z)(fk(z), · )Hfj(z), z ∈ ρ(A1) ∩ ρ(A2), (3.29)

(B2 − z̃IH)−1 = (B1 − z̃IH)−1 −
s∑

j,k=1

βj,k(z̃)(gk( z̃ ), · )Hgj(z̃), z ∈ ρ(B1) ∩ ρ(B2). (3.30)

for an appropriate choice of scalars

{αj,k(z)}1≤j,k≤r ⊂ C and {βj,k(z̃)}1≤j,k≤s ⊂ C (3.31)

by Krein’s resolvent formula.

With these hypotheses in place, the trace of the resolvent difference of A2 and B2

may be computed in terms of the trace of the resolvent difference of A1 and B1.

Theorem 3.9. If Hypothesis 3.8 holds and for some z0 ∈ C\R,

[
(A1 − z0IH)−1 − (B1 − z0IH)−1

]
∈ B1(H), (3.32)

then [
(A2 − zIH)−1 − (B2 − zIH)−1

]
∈ B1(H), z ∈ C\R, (3.33)
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and

trH
(
(A2 − zIH)−1 − (B2 − zIH)−1

)
= trH

(
(A1 − zIH)−1 − (B1 − zIH)−1

)
−

r∑
j,k=1

αj,k(z)(fk(z), fj(z))H +
s∑

j,k=1

βj,k(z)(gk(z), gj(z))H, z ∈ C\R. (3.34)

Proof. We begin by noting that (3.32) implies

[
(A1 − zIH)−1 − (B1 − zIH)−1

]
∈ B1(H), z ∈ C\R, (3.35)

which follows from the following resolvent identity taken from [8, Exercise 7.8]:

(S2 − z0IH)−1 − (S1 − z0IH)−1 = (S2 − zIH)(S2 − z0IH)−1

×
[
(S2 − zIH)−1 − (S1 − zIH)−1

]
(S1 − zIH)(S1 − z0IH)−1, (3.36)

z, z0 ∈ ρ(S1) ∩ ρ(S2),

for any pair of linear operators S1 and S2 in H with ρ(S1) ∩ ρ(S2) 6= ∅.

Let z ∈ C\R be fixed. Subtracting (3.30) from (3.29), we have

(A2 − zIH)−1 − (B2 − zIH)−1

= (A1 − zIH)−1 − (B1 − zIH)−1

−
r∑

j,k=1

αj,k(z)(fk(z), · )Hfj(z) +
s∑

j,k=1

βj,k(z)(gk(z), · )Hgj(z), z ∈ C\R. (3.37)

By the assumption in (3.35), the resolvent difference on the right-hand side of (3.37) belongs

to the trace class B1(H). In addition,[
−

r∑
j,k=1

αj,k(z)(fk(z), · )Hfj(z) +
s∑

j,k=1

βj,k(z)(gk(z), · )Hgj(z)

]
∈ B1(H), (3.38)
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since the operator under square brackets in (3.38) has finite rank at most equal to r+ s, and

every finite rank operator belongs to the trace class. Since the trace class is a vector space,

the right-hand side of (3.37) belongs to the trace class B1(H), and (3.33) follows.

To prove (3.34), we apply linearity of the trace functional trH( · ) and Proposition 3.1:

trH
(
(A2 − zIH)−1 − (B2 − zIH)−1

)
= trH

(
(A1 − zIH)−1 − (B1 − zIH)−1 −

r∑
j,k=1

αj,k(z)(fk(z), · )Hfj(z)

+
s∑

j,k=1

βj,k(z)(gk(z), · )Hgj(z)

)

= trH
(
(A1 − zIH)−1 − (B1 − zIH)−1

)
− trH

(
r∑

j,k=1

αj,k(z)(fk(z), · )Hfj(z)

)

+ trH

(
s∑

j,k=1

βj,k(z)(gk(z), · )Hgj(z)

)

= trH
(
(A1 − zIH)−1 − (B1 − zIH)−1

)
−

r∑
j,k=1

αj,k(z) trH
(
(fk(z), · )Hfj(z)

)
+

s∑
j,k=1

βj,k(z) trH
(
(gk(z), · )Hgj(z)

)
= trH

(
(A1 − zIH)−1 − (B1 − zIH)−1

)
−

r∑
j,k=1

αj,k(z)(fk(z), fj(z))H

+
s∑

j,k=1

βj,k(z)(gk(z), gj(z))H, (3.39)

which proves (3.37). �
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