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ABSTRACT 
 
 

The invasive Western Mosquitofish (WMF), Gambusia affinis, has facilitated the 

extinction and endangerment of multiple freshwater fish species, including the Barrens 

Topminnow (BTM), Fundulus julisia. In my study, I investigated if BTMs are capable of socially 

learning conditioned predator recognition, and I hypothesized that BTMs are capable of social 

learning and that such learning might improve survival of BTMs. To explore the role of 

conditioning and subsequent learning in the conservation of BTMs, I conducted a series of 

experiments in which I 1) attempted to condition BTMs to exhibit antipredator behavior 

when faced with WMF, and 2) created a situation in which naive BTMs could potentially learn 

from conditioned individuals. I found no evidence of conditioning or of social learning, and 

there were no significant differences in behavior, body condition, or survival among my 

treatment groups.  
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CHAPTER I 
 

INTRODUCTION 
 

 
Throughout an animal’s life, many behaviors and decisions influence the fitness (i.e., 

the relative lifetime reproductive success) of an individual. In some cases, an individual’s 

behaviors and decisions are influenced by the observations of other individuals, particularly 

conspecifics in similar ecological situations. This adjustment of one’s own behavior through 

observation of other individuals, known as social learning, has been observed in a range of 

vertebrates (Griffin, 2004; Galef and Laland, 2005; Reader and Biro, 2010). Social learning can 

provide a way for individuals to learn quickly and behaviorally respond to their environment, 

and it can be associated with a number of fitness benefits. Indeed, social learning has been 

found to increase individual survival in a range of taxonomic groups (Griffin, 2004; Galef and 

Laland, 2005; Reader and Biro, 2010). 

 
 

Social Learning Can Increase Survival 
 

Numerous studies have shown that individuals in populations learn from conspecifics 

and that this social learning can cause individuals to adjust their own behavior in response to 

a novel ecological challenge (i.e., an ecological challenge that individuals have observed other 

individuals face and respond to;  Griffin et al., 2004; Galef and Laland, 2005; Bool et al., 2011; 

Manassa et al., 2013; Reader and Biro, 2010). From an evolutionary viewpoint, social learning 

is expected to evolve and be maintained in a population if it increases individual fitness. 
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Survival has large effects on fitness, and as such, one key fitness benefit of social learning is 

likely to be increased survival. A major factor that affects survival in many species is 

predation, and in many animal populations, social learning likely increases survival by 

allowing individuals to learn to avoid predation (Griffin, 2004; Ferrari et al., 2005; Manassa et 

al., 2013). Specifically, a change in one’s behavior through social learning can potentially 

allow individuals to exhibit plasticity in response to novel predators in a given environment 

and therefore increase survival and ultimately an individual’s fitness. 

In natural ecosystems, the introduction of a novel predator into a naïve prey 

population has been shown to rapidly lead to the spread of predator recognition among 

individuals in the population, allowing the individuals to avoid the predators (Chivers and 

Smith, 1995; Griffin, 2004; Ferrari et al., 2005; Cornell et al., 2012; Manassa et al., 2013 ). For 

example, naïve Fathead Minnows (Pimephales promelas) introduced into a pond 

simultaneously with Northern Pike (Esox lucius) quickly acquired recognition of the predator’s 

odor and exhibited significantly more dashing and cover use than control individuals (Chivers 

& Smith, 1995). However, there are limits to the effect that learning has on long-term 

predator recognition. In Iberian Green Frog tadpoles (Pelophylax perezi) individuals acquired 

predator recognition, but this predator recognition was only retained without reinforcement 

for nine days, after which there was a lack of response without reinforcement (Gonzalo et al., 

2009). 

Some studies have found that learning is more likely to lead to anti-predator behavior if 

individuals observe cues from conspecifics that are in similar life stages. For example, in 

juvenile Spiny Chromis (Acanthochromis polyacanthus), individuals conditioned using juvenile 
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chemical cues from a predator displayed antipredator responses, whereas those conditioned 

using adult chemical cues did not (Mitchell & McCormick, 2013). Some studies have also 

suggested that individuals can even learn to recognize predators by observing experienced 

heterospecifics. In one experiment, Ward’s Damselfish (Pomacentrus wardii) were found to 

transmit predator recognition to a closely related fish, Lemon Damselfish (Pomacentrus 

moluccentris), and to a distant relative, Threespot Cardinalfish (Apogon trimaculatus), 

through observation (Manassa et al., 2013). 

 
 
Social Learning as a Way to Escape Evolutionary History? 

 

Environmental change is prevalent on both short and long time scales, and in many 

cases environmental change results in organisms experiencing environments that they are 

not well adapted to. When organisms are in a novel environment and face novel cues, but 

because of their evolutionary history they continue to display responses to those cues that 

are not currently adaptive, they are in an evolutionary trap (Schlaepfer, 2002; Robertson, 

2013). In other words, evolutionary traps are evolutionary engrained responses to ecological 

cues that were once adaptive but are no longer are associated with relatively high fitness.  

Behavioral modification has previously been highlighted as a way to rescue organisms 

from evolutionary traps (Griffin et al., 2000). For example, reintroduction programs are often 

used when a native species faces decimation from an introduced predator, and conditioning 

reintroduced individuals to acquire predator recognition is one way to address and mediate 

the lack predator experience that individuals in reintroduction programs often have (McLean 

et al., 1999; Griffin et al., 2000). However, it is currently unclear how effective conditioning is 
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as a long- term solution to rescuing organisms from evolutionary traps. To be an effective 

long-term conservation method that improves overall population persistence, any learned 

behavior must spread through the population. The spread of learned behavior through a 

population may occur naturally through social learning. 

Relatively few studies have examined the role that social learning can play in 

conservation efforts; as such, more work is needed to fully understand whether social 

learning can rescue organisms from novel ecological challenges. In particular, it will be critical 

to determine whether conditioning followed by social learning can free imperiled populations 

from evolutionary traps. In one of the few studies on the topic, Ferrari et al. (2005) found 

that Fathead Minnow can learn by observation, allowing predator recognition to spread to 

naïve individuals and also suggested that the intensity of the social learning behavior may be 

associated with the perceived risk of predation (Helfman, 1989). 

I hypothesize that conditioning and social learning together can rescue organisms from 

evolutionary traps. Utilizing the endangered Barrens Topminnow (BTM), Fundulus julisia, as a 

model species, I evaluated this hypothesis using both an experimental lab and field approach. 

BTMs are ideal for such a study as they are currently victim to an evolutionary trap that was 

caused by the introduction of the Western Mosquitofish (WMF), Gambusia affinis. BTMs 

have no evolutionary history with WMF, and as such, they exhibit a lack of antipredator 

behavior. As a result, BTM populations have been decimated (see Chapter 3 for additional 

discussion of the evolutionary trap that BTMs are in). Previous work has shown that BTMs are 

capable of being conditioned to alter their behavior in response to a novel predator (Farnsley, 

2014); given this, if conditioning followed by social learning can free a population from an 
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evolutionary trap, we would expect it to occur in a system such as the BTM. Below, I provide 

a description of my research goals and approach. 

 
 
Overview of Research Goals and Approach 

 

To understand if social learning of conditioned antipredator behavior can occur in 

BTM, there are several questions that will need to be answered: 

• Do BTMs socially learn? 
 

• How strong   is the conditioned behavior in individual BTMs who learned via social 

learning (i.e., what is the magnitude of the effect of social learning on behavior)? 

• Does the conditioned and/or socially learned predator recognition in BTMs lead to 

increased body condition (e.g., due to better foraging success in a competitive 

environment) and ultimately increased survival in the wild (i.e., in an environment 

with predators and inter- and intra-specific competition)? 

To address the above questions, I conducted a series of experiments in which I aimed to: 
 

1) Condition BTMs to exhibit antipredator behavior when presented with Western 

Mosquitofish. During this phase, individual BTMs were trained to recognize and adjust 

their behavior in response to a novel predator, the WFM, using chondroitin sulfate, an 

aversive chemical cue previously shown to elicit an altered behavioral response in the 

BTM. Such conditioning has previously been found to alter BTM behavior in response to 

presentation of WMF and improve short-term survival in the wild following release of 

BTMs (Farnsley, 2014). 

2) Determine whether naïve BTMs can learn anti-predator behavior by observing a 
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conditioned BTM. During this phase, naïve BTMs were placed with those BTMs 

conditioned in Phase I and the novel predator, WMF. This phase exposed naïve BTMs to 

both predators and experienced individuals, thereby providing an opportunity of social 

learning. I hypothesized that these naïve individuals might socially learn from conditioned 

individuals to alter their behavior in the presence of WMF. 

3) Assess the effect of conditioning and social learning on BTMs’ body condition and 

survival in a lab setting. After allowing naïve and conditioned BTMs to interact in the 

presence of WMF, I explored the effect of conditioning and social learning on BTM body 

condition and survival in a semi-natural setting in which BTMs and WMF interacted for a 

two-week period. I predicted that naïve individuals exposed to conditioned individuals 

would alter their behavior when exposed to WMF and that such social learning would 

improve the body condition and survival of BTMs. 

4) Assess the effect of conditioning and social learning on BTMs’ survival in the wild in a 

release- and-recapture study. While the previous phases allowed me to explore the 

results of conditioning and social learning of BTMs under lab conditions, this phase 

allowed me to determine how my different experimental groups fare in nature. I 

expected that conditioned BTMs and BTMs that had the opportunity to socially learn from 

conditioned fish would have improved survival in the wild relative to a control group of 

BTMs that did not have the opportunity to learn socially from conditioned fish. 

 
 

In the following chapter (Chapter 2), I review the literature on the role of learning in 

conservation. I then describe the experimental work outlined above (Chapter 3) and provide 
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a brief summary of the conservation implications of my research and avenues of future 

research. 
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CHAPTER II 
 

LEARNING AS A SOLUTION IN 
CONSERVATION 

 

 

What is Learning? 

 
Defining Learning 

 

Learning is defined as “an enduring change in the mechanisms of behavior involving 

specific stimuli that results from prior experience with the same or different stimuli and 

responses" (Domjan, 2015, p.14). In other words, learning occurs when individuals alter their 

behavior in response to either previously experienced or novel stimuli. By altering behavior in 

response to novel situations and stimuli, individuals can potentially acclimate quickly to a 

changing environment, therefore allowing for greater opportunities for survival, resource 

acquisition, and reproduction (Hughes et al., 1992; Snell-Rood, 2013; Liu et al., 2016). 

Because learning requires changing behavior, and because behavior is linked to evolutionary 

history, the capacity to learn is expected to be highly dependent on the behavioral plasticity 

of an organism (i.e., the change in behavior that an individual can exhibit in response to a 

change in one or more environmental conditions) (Hughes et al., 1992; Snell-Rood, 2013; Liu 

et al., 2016). Specifically, plasticity defines the boundaries of behaviors that are possible, and 

thus, determines how individuals can alter their behavior in response to novel environmental 

cues. As seen with phenotypic plasticity, having less behavioral plasticity means that a rapidly 

changing environment is more likely to create a situation that cannot be acclimated to, as 
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individuals who are not plastic will be unable to alter their behavior in response to novel 

environmental cues (Snell-Rood, 2013; Liu et al., 2016). On the other hand, greater 

phenotypic plasticity is expected to be related to higher potential for acclimation in a 

changing environment. 

 
 

Why is learning present in populations? 
 

Plasticity allows individuals to exhibit a range of behaviors, and as such, greater 

plasticity can allow individuals to acclimate to a diverse set of environments (Snell-Rood, 

2013; Liu et al., 2016). This flexibility can provide a way by which one may increase 

survivorship, resource acquisition, and mate acquisition even when the environment varies 

(Hughes et al., 1992; Tebbich et al., 2001; Snell-Rood, 2013; Muth et al., 2016). Environmental 

variation that occurs within an individual’s lifespan is expected to select for behavioral 

plasticity because such plasticity allows the individual to acclimate to its varying environment 

and have greater lifetime reproductive success (Tebbich et al., 2001; Snell-Rood, 2013; Muth 

et al., 2016). For example, in Muth et al. (2016), the Common Eastern Bumble Bee (Bombus 

impatiens) was found to learn many different characteristics of flowers to associate with a 

pollen reward. By learning to associate several different features of flowers to pollen 

rewards, the bees were able to remember newly discovered food sources and recognize them 

under varying conditions, which is hypothesized to increase their lifetime inclusive fitness and 

hence be selected for. 
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Individual vs. Social Learning 
 

There are two main methods by which individuals may learn: individual learning and 

social learning (Whalen et al., 2015). Individual learning is the use of personal experience in 

order to generate behaviors in response to new settings or environmental conditions 

(Whalen et al., 2015). This contrasts with social learning, which is learning through the 

experience of another individual in order to behave in a manner appropriate to the 

environment (Truskanov & Lotem, 2015; Whalen et al., 2015). While these two methods 

differ, it is important to note that they are not mutually exclusive (Cornell et al., 2012). A 

behavior that was learned by an individual within the population can be spread throughout 

the population via social learning, and a single individual often has the potential to learn 

through individual experience and by observing others. 

 
 

Costs and Benefits of Individual and Social Learning 
 

To evaluate how and why each of these forms of learning takes place, it is important to 

understand the relative costs and benefits of individual and social learning, as I would only 

expect learning that results in a net gain in fitness to be selected for and maintained 

evolutionarily in a population. Individual learning is expected to be beneficial in the sense that 

it allows the individual to quickly acquire a behavior (Whalen et al., 2015). Additionally, the 

information acquired via individual learning is more likely to be accurate and relevant to the 

individual, as the individual itself has experience with the stimuli (Laland, 2004). However, 

while individual learning may be advantageous in the sense that it can allow an individual to 

quickly adjust their behavior, this method of learning can be associated with relatively high 
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risk. By experiencing a novel situation firsthand, an individual may be harmed by the novel 

stimulus, and this could increase the potential for mortality and ultimately reduce lifetime 

reproductive success. 

With social learning, individuals need not take the risk of being initially exposed to the 

stimulus itself in order to exhibit an appropriate response, and this decrease in risk is one 

potential benefit of social learning that might decrease mortality and increase overall fitness 

(Whalen et al., 2015). For example, both individual learning and social learning in Ward’s 

Damselfish (Pomacentrus wardi) led to similar survivorships, suggesting that social learning, 

while not direct, can still provide a means by which individuals can acquire valuable 

information that increases survival (Manassa & McCormick, 2013). While there are benefits to 

social learning, there is also the risk of unreliable information (Galef & Laland, 2005). If the 

behavior which is received from another individual is mismatched to the current environment 

or if copying errors occur, social learning can prove to be detrimental to the individual 

(Webster & Laland, 2008). This unreliability creates a trade-off with the risk involved with 

personal experience. 

Social learning can be affected by a range of factors, including group size (Lachlan et al., 

1998; Griffin et al., 2000; Tebbich et al., 2001). For example, in Lachlan et al. (1998), guppies 

(Poecilia reticulata) were more likely to learn from a group of shoaling individuals than from a 

single demonstrator. Social learning can also be affected by individual characteristics. For 

instance, in guppies, smaller individuals preferred small demonstrators in the context of social 

learning (Lachlan et al., 1998). In addition to reducing risks from novel encounters, social 

learning can allow a behavior to quickly spread throughout the population at a faster rate 
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than if each individual had to experience the novel situation (Chivers & Smith, 1995; Griffin et 

al., 2000; Galef & Laland, 2005), and this social spread of learned behavior among individuals 

can alter population dynamics. Individuals can also vary in their propensity to learn socially, 

and some researchers have suggested that some individuals are more likely to be 'shy' 

whereas others are more likely to be 'bold' in regard to their behavioral tactics. For instance, 

in Brown et al. (2013), juvenile Rainbow Trout (Oncorhynchus mykiss) who were identified as 

being either shy or bold were conditioned to respond to Pumpkinseed (Lepomis gibbosus) 

odor. Eight days after conditioning it was found that shy individuals still maintained the 

conditioned behavior while the bold individuals no longer exhibited the behavior, suggesting 

that shy and bold tactics influence the behavior exhibited in response to novel stimuli (Brown 

et al., 2013). 

As these learning methods carry with them associated costs and benefits, it may be 

beneficial for individuals to use both forms of learning in response to different situations. 

When the cost associated with learning through personal experience is greater than the cost 

associated with loss of accuracy of social learning, social learning is expected to be favored 

(Laland, 2004). However, many species use a combination of individual and social learning. 

For instance, Cornell et al. (2012) conditioned American Crows (Corvus brachyrhynchos) to 

associate certain masks with negative encounters and found that not only did the crows 

demonstrate individual learning by being successfully conditioned, but individuals who never 

previously encountered the masks also avoided them or presented antipredator tactics such 

as the mobbing of the masks. By having individuals in the group who were experienced and 

others inexperienced, the naïve individuals 
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learned that the masks were a negative stimulus and remembered in future encounters. This 

is consistent with social transference of the behavior (Cornell et al., 2012). 

While many of the studies discussed above have focused on social learning within a 

species, social learning among individuals of different species can also occur. In Manassa et 

al. (2013), individuals were found to learn from heterospecifics in addition to conspecifics. In 

this study, Ward’s Damselfish (Pomacentrus wardii) were introduced to a novel predator, 

Brown Dottyback (Pseudochromis fuscus). The Ward’s Damselfish were able to socially 

transmit recognition of the novel predator to both another species of Lemon Damselfish 

(Pomacentrus moluccensis) and also the distantly related Three-spot Cardinalfish (Apogon 

trimaculatus). This suggests that within complex ecosystems, such as those seen in coral 

reefs, interspecies transmission may act as a way to allow for rapid acquisition of an 

appropriate response to novel circumstances. (Manassa et al., 2013) 

 
 
Learning and Conservation 

  

 

How is learning used in conservation? 
 

Due to the rapid speed at which learning can take place to allow an individual or group 

to acclimate to new environments, learning can have implications in the field of conservation. 

One way conservation biologists may use learning is through training of naïve individuals 

(Griffin et al., 2000). For example, training can allow for individuals who have not been reared 

in a natural setting to survive upon release by improving success in resource acquisition 

and/or survival (Griffin et al., 2000). Rodriguez et al. (1995) demonstrated that a captive 
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raised Iberian Lynx (Lynx pardinus) could be trained to improve foraging, and human 

interaction was avoided in order to prepare the lynx for release. By training prerelease, the 

lynx was able to overcome a lack of acclimation to the natural environment (Rodriguez et al., 

1995). Conditioning, which occurs when a cue is paired with a novel stimulus to bring about a 

desired effect (Griffin et al., 2000), is also frequently used in a conservation context. For 

example, Berejikian et al. (1999) conditioned juvenile Chinook Salmon (Oncorhynchus 

tshawytscha) to recognize predators. By pairing an injured fish stimulus with the odor of a 

Cutthroat Trout (Oncorhynchus clarki), which is a predator of Chinook Salmon, the authors 

hoped to create a negative association with the predator. While earlier attempts at training 

had little success, there was a significant increase in survival post-release of conditioned 

individuals in this study relative to unconditioned individuals (Berejikian et al., 1999). Through 

conditioning, a released organism can be taught to avoid certain objects or organisms such as 

predators. In an earlier study, New Zealand Robins (Pertoica australis) were conditioned using 

model predators. After release, the birds showed more caution toward the predators than to 

a control object, showing that the birds could be conditioned to avoid the predators (McLean 

et al., 1999). It is important to note that conditioning may not be a grand solution that works 

for all organisms over a long time period. While Iberian Green Frog tadpoles (Pelophylax 

perezi) can be conditioned to recognize novel predators using chemical cues, they fail to 

respond after nine days of no interaction with the predators (Gonzalo et al., 2009). This 

suggests that conditioned responses can be easily lost in some cases. Additional research is 

needed to better understand the role of learning and conditioning in conservation, and in 

particular, it will be important to consider in future studies the effect of conditioning on the 
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long-term survival in natural settings. 

Why use learning in conservation? 
 

Given that there are costs and benefits to individuals of learning, it is important to 

consider the question of why learning should be used for conservation. As previously stated, 

learning allows individuals to quickly acclimate to a rapidly changing environment (Liu et al., 

2016). Learning therefore potentially allows individuals to succeed in the face of many of the 

conservation problems present in today’s global environment (McLean et al., 1999). One 

major cause of rapid environmental change is the introduction of an invasive species. By 

rapidly invading native populations, invasive species can reduce native populations by 

replacing niches, predating on native species, and through competition. If the native species 

are not able to quickly acclimate, populations may be reduced, or even go extinct, particularly 

since there will very often not be sufficient time or genetic variation for evolutionary 

adaptation to occur after the introduction of a novel invasive predator. Learning, however, 

may provide a path by which a species acclimates. 

Farnsley (2014) conditioned Barrens Topminnows (BTMs), Fundulus julisia, to recognize 

the Western Mosquitofish (WMF), Gambusia affinis, as a predator. WMF are an invasive 

species known to feed on the young and harass adult of BTMs and have contributed to the 

decline of several fish and amphibian species (Galat & Robertson, 1992; Goodsell & Kats, 

1999; Pyke, 2008). Conditioning the BTMs to recognize the WMF as a predator may create an 

avenue by which the BTM populations could persist in the presence of the WMF. In Farnsley's 

(2014) study, BTMs were successfully conditioned and a later release-and-recapture study 

showed a significant difference in the survival of conditioned and naïve individuals, such that 
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conditioned individuals were more likely to survive and be recaptured than unconditioned 

individuals. As seen in Farnsley's (2014) study, conditioning for predator recognition can 

potentially provide an escape to the evolutionary trap caused by the introduction of a novel 

predator. However, it will be important in the future to explore the persistence of 

conditioned behavior across different time scales. 

 
 
Synthesis 
 

 
Can learning be used as a long-term conservation solution? 

 

Learning and conditioning have been shown to increase survival by improving foraging 

success and predator recognition. For example, training can allow managers to overcome one 

of the common problems of releasing captive-bred individuals, i.e., the problem that captive 

settings do not match the wild habitat, leading to inappropriate behaviors (Rodriguez et al., 

1995). Also, socially learning predator recognition has been shown to improve success in the 

wild. In Shier and Owings (2007), for instance, Black-tailed Prairie Dogs (Cynomys 

ludocivianus) were trained via social learning. Captive raised individuals were taught using an 

adult individual as a demonstrator for predator recognition. By training in this fashion, 

released individuals did as well as wild-raised individuals and better than those who were 

trained without a demonstrator (Shier & Owings, 2007). From these studies, it would be easy 

to assume that learning is a simple solution to problems found in conservation; however, 

there are several issues that potentially limit the effectiveness of learning in the context of 

conservation. 

First, it is not certain that all learning strategies work for all species. If a species does 
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not have the capability of learning in a particular manner, individuals of that species may not 

be able to gain benefits from training or conditioning. For example, it is not currently known 

if Hellbenders (Cryptobranchus alleganiensis), an imperiled species that tends to be solitary, 

exhibit horizontal transference of information (Crane & Mathis, 2011). This may limit the 

methods by which the individuals can acquire conditioned behavior. The ability to learn is 

dependent on factors such as what behavior is being learned, the cognitive ability of the 

species, and the type of environment the species inhabits (Liu et al., 2016). For instance, it 

was demonstrated recently that Poison Dart Frogs (Family Dendrobatidae), which live in a 

highly dynamic environment are capable of rule-based learning and of utilizing visual cues 

(Liu et al., 2016). These traits may not be general to the Order Anura, as Leopard Frogs (Rana 

pipiens) are potentially incapable of utilizing spatial orientation cues (Liu et al., 2016). 

Second, it is not guaranteed that behavior acquired through conditioning and learning 

will be enough to overcome problems associated with environmental change. For instance, if 

there is an increase in the density of an invasive predator, learning new behavioral strategies 

simply might not be able to overcome novel increases in competition or predation. 

Interactions from a novel predator not only affect the ecosystem in a top-down manner, but 

also a bottom- up manner (Grosholz et al., 2000; Kagata & Ohgushi, 2006). 

Third, many conservation methods utilizing learning, such as those discussed above, 

involve conditioning, which relies on individual learning. While individual learning provides 

benefit to the individual, that alone does not allow a behavior to persist in a population. In 

order to persist, the conditioned behavior needs be transmitted. Without transmission, 

conditioning behaviors may only be a temporary aid to the population, failing to help wild 
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individuals in current or future generations within the released population. 

 

What is missing? 
 

To move forward with understanding how learning can be best used in conservation, 

it will be key to enhance our understanding of the long-term success of conditioning on a 

population over a long time scale. For conditioning specifically, this means determining if the 

behavior is maintained in the population across generations. For instance, it is generally 

unclear if conditioning followed by social learning can allow learned adaptive behaviors to 

spread in a population. One problem contributing to this lack of knowledge is that, in nature, 

learning is difficult to study. For example, it can be difficult to determine the cause of death 

for individuals (Brown & Day, 2002). The uncontrolled environment can produce deaths due 

to reasons unaccounted for in the study system. 

In summary, additional research is needed to understand the overall effectiveness of 

conditioning and training as tools for conservation. Long term success of conditioning across 

generations has yet to be looked at and maintenance of learned behavior in a population is 

not greatly understood. While there is currently evidence for the importance of learning in 

conservation on relatively short time scales, it will be critical to explore the long- term benefits 

of learning in relation to long-term conservation issues. 



19  

 
 
 
 
 

CHAPTER III 
 

CONDITIONING AND SOCIAL LEARNING IN THE BARRENS TOPMINNOW, FUNDULUS JULISIA, 
IN THE PRESENCE OF A NOVEL PREDATOR, GAMBUSIA AFFINIS. 

 

 

Introduction 
 

Through many human interactions with the environment, ecosystems have been greatly 

impacted by activities that transform the ecosystem and contribute to the extinction of 

species. Causes such as habitat loss, extinction cascades, overexploitation, and introduction of 

species, known under the term the “evil quartet”, have contributed to the loss of biodiversity 

in the ecosystems in which they occur (Diamond, 1989; Brook et al., 2008). Through habitat 

loss and fragmentation, human activity such as deforestation has created a massive loss of 

species (Skole & Tucker, 1993). Another way humans have influenced ecosystems is through 

the introduction of invasive species. In some cases, such as the Zebra Mussel (Dreissena 

polymorpha), the introduction is incidental; it is believed to have been introduced across the 

world via infested ballast water (McMahon, 1996). Though it was not intentional, the Zebra 

Mussel has since caused millions of dollars in damage by clogging water pipes (Pimentel et al., 

2004). Additionally, Zebra Mussels utilize their high fecundity to crowd out native fauna 

(Pimentel et al., 2004). In other cases, the introduction is done with purpose. For example, 

Mosquitofish (Gambusia holbrooki and G. affinis.), were introduced to control mosquito 

populations. However, mosquitofish are now known to harm native species, such as the 

Barrens Topminnow (BTM), Fundulus julisia (Laha & Mattingly, 2007). The introduction of a 
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novel predator can have a ripple effect due to trophic cascading, which is when predator-prey 

effects that change with abundance of predators or prey ripple across multiple trophic levels 

(i.e., lower predator population sizes can lead to a growing prey population, leading to a 

shrinking producer population) (Pace et al., 1999). When a novel predator is introduced into a 

community, naïve prey populations can display inappropriate (i.e., sub-optimal with respect to 

fitness) antipredator behavior, leading to reduced population numbers, or in some cases, prey 

species can be outcompeted for resources. Through these mechanisms (i.e., predation and 

competition with introduced species), many native species can become endangered or extinct, 

lowering biodiversity (Brooke et al., 2008). 

To battle the reduction of biodiversity of an ecosystem, reintroduction projects have 

shown promise by providing an environment in which an imperiled species can be raised and 

bred in a safe, predator-free environment and then released into the wild after reaching a size 

or stage in which predation is likely to be reduced (Rahbek, 1993; Chapter 2). These projects 

can bolster dwindling populations by preventing harm to individuals during more vulnerable 

life stages (Witzenberger & Hochkirch, 2011). However, reintroduction projects of threatened 

or endangered species can fail if there has been a previous introduction of a novel predator 

that the imperiled species has no evolutionary history with, in that the threatened or 

endangered species when released may be subject to an evolutionary trap in which they will 

not recognize the predator as a danger and will not exhibit an appropriate behavioral 

response (Snyder et al., 1996). One method utilized to combat evolutionary traps is the 

conditioning of predator recognition, in which a stimulus already associated with a predator 

response is paired with the presence of a novel predator (Griffin et al., 2000). Conditioning of 
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predator recognition can allow individuals to learn through experience and exhibit 

appropriate responses to different dangers found in the wild (Buchholz, 2007). For instance, 

captive raised New Zealand Robins (Petroica australis) have been successfully conditioned to 

recognize novel predators and, once released into the wild, were significantly more cautious 

around a predator model versus control individuals (McLean et al., 1999). Previous work has 

also suggested using conditioning for Rainbow Trout (Oncorhynchus mykiss) recognition in 

the release of Hellbender conservation programs, although the success of such conditioning 

in this species is currently unknown (Crane & Mathis, 2011). 

While conditioning can be a powerful tool in reintroduction efforts, it is important to 

explore two questions to determine fully the effectiveness of conditioning. Firstly, will the 

individuals experiencing conditioning effectively learn the behavior in question? And, 

secondly, is there a mechanism in which the learned behavior is spread and/or maintained 

within the wild population? While conditioning of predator recognition is a relatively accepted 

and utilized method for increasing a population’s chance at post-release survival, relatively 

few studies have examined the maintenance of conditioned behavior in natural populations 

(Griffin et al., 2000; Banks et al., 2002; Vilhunen, 2006; Chapter 2). In cases in which 

populations successfully maintain conditioned behaviors, the individuals within populations 

appear to be utilizing social learning (Griffin et al., 2000). Social learning (i.e., learning via 

observation of another’s actions; Chapter 2) has been shown to occur in some fish species, 

occurring not only in conspecifics, but also heterospecifics (Manassa et al., 2013). For example, 

it was found that Ward’s Damsel (Pomacentrus wardii) were able to spread information about 

a predator not only to the closely related Lemon Damsel (Pomacentrus moluccensis), but also 
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the distantly related Three-spot Cardinalfish (Apogon trimaculatus) (Manassa et al., 2013; 

Chapter 1). By having the capability to learn from other individuals in the community, an 

individual can rapidly adjust their behavior to novel encounters in the environment. When 

information is spread in such a manner, it also allows for the behavior to persist as it spreads 

through the population. For example, when looking at the difference between chemical cues 

and visual cues in predator recognition, social learning was likely a factor in the relatively fast 

spread of predator recognition in a population of 78,000 Fathead Minnow (Pimephales 

promelas) (Brown et al., 1997). Additionally, when used with training, social learning can 

enhance the responses demonstrated by individuals (Shier & Owings, 2007). When juvenile 

Black-tailed Prairie Dogs (Cynomys ludovicianus) were trained to recognize predators, those 

trained in the presence of an experienced adult were found to have greater survival one year 

after reintroduction than those trained without a demonstrator (Shier & Owings, 2007). This 

suggests that social learning is an important mechanism for establishing predator responses in 

populations where conditioning is used to increase survival following release into the wild (see 

also related discussion in Chapter 2). 

Despite some previous research on the role of conditioning and social learning in 

conservation (described above and in Chapter 2), it is still unclear how broadly conditioning 

can be used to increase individual survival and population persistence of threatened and/or 

endangered species. As such, additional research is needed to understand fully whether 

conditioning and subsequent social learning can be an effective conservation tool in a range 

of species. One species that is ideal for examining the effects of conditioning and the 

maintenance of learned behavior is the BTM. The BTM is listed as an endangered species by 
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the State of Tennessee and is being considered for federal protections under the Endangered 

Species Act (USFWS, 2011; Bettoli, 2015). BTMs are part of a larger group U.S. species in the 

United States that have become endangered due to the introduction of the Western 

Mosquitofish (WMF), Gambusia affinis (Laha & Mattingly, 2007; Westhoff et al., 2013). 

Because the BTM had no previous experience or evolutionary history with the WMF, the BTM 

has no evolutionarily adaptive antipredator response when they encounter the predator and, 

therefore, young are predated upon and adults are harassed by the WMF (Westhoff et al., 

2013; Farnsley, 2014). Recent preliminary work has suggested that behavioral conditioning 

can allow BTMs to recognize WMF as a predator and alter their behavior (Farnsley, 2014). By 

pairing chondroitin sulfate, a known fish alarm cue, with the presence of WMF, Farnsley 

(2014) found that BTMs can be classically conditioned, which involves pairing a conditioned 

stimulus to an unconditioned stimulus, to potentially recognize the WMF as a predator 

(Farnsley, 2014). Such conditioning is thought to be a possible way of increasing the survival 

of BTMs upon reintroduction, providing an answer to the first of my questions above. 

However, there remains a question of whether conditioning that elicits antipredator behavior 

can act as a long- term conservation solution. For example, Iberian Green Frog (Pelophylax 

perezi) tadpoles were found to be capable of losing a learned behavior days after exposure 

(Goldsworthy & Bettoli, 2006). However, through reinforcement (repeated exposure to the 

stimulus), the behavior was found to persist. 

To begin to answer the questions of whether conditioning can act as a long-term 

solution for BTMs and whether social learning will allow predator recognition to persist in the 

population, I explored both the effects on conditioning on 1) the behavior and survival of 
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conditioned individuals and 2) the behavior and survival of unconditioned, naive individuals 

who observed conditioned individuals (i.e., those individuals that had the potential to learn 

socially). Specifically, I used classical conditioning to attempt to condition BTMs to recognize 

and alter their behavior in response to a novel predator. These focal, conditioned fish were 

then placed with naïve BTMs in the presence of WMF to determine if the naïve individuals 

could socially learn from the conditioned individuals. Because previous work has shown that 

BTM can be conditioned to recognize a predator, and other fish species have been shown to 

be capable of social learning, both within and across species (discussed above and in Chapter 

2), I hypothesized that BTMs can be conditioned to exhibit antipredator behavior in the 

presence of WMF and that unconditioned BTMs can learn antipredator behavior through 

social learning. If the BTM proves to be capable of social learning, conditioning fish before 

reintroduction could have implications toward furthering the continual conservation of BTMs 

and other related species. 

 
 

Methods 
 

 

Acquisition of study organism 
 

A total of 115 Juvenile BTMs were obtained from Conservation Fisheries, Inc from 

Knoxville, TN. They were an average of 3.60 cm long, ranging from 2.70 cm to 4.70 cm, and 

0.33 g, ranging from 0.14 g to 0.71 g. While not in use, fish were housed in 75.7 L aquaria 

within the University of Tennessee at Chattanooga and fed a mixture of brine shrimp and 

blood worms ad libitum. WMF were obtained from a freshwater spring near Hickory Creek 

in Vervilla, Warren County TN (35.5875 N, -85.8575 W). This research was performed 
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associated with the approved IACUC protocol # 15-07. 

 

Phase I: Conditioning of the Barrens Topminnow to a novel predator, the Western 

Mosquitofish 

To condition the BTM, I utilized classical conditioning, in which BTM were exposed to 

one of three treatments: 1) chondroitin and three WMF (conditioning treatment), 2) distilled 

water and three WMF (control in which BTM would have experience with WMF but no 

conditioning), and 3) distilled water (control in which BTM would have no experience with 

WMF and no conditioning). Chondroitin was prepared by mixing 0.07 mg into 5 mL of distilled 

water. Chondroitin was used at this concentration as it was previously determined in another 

study to be effective when conditioning predator recognition in the BTM (Farnsley, 2014).  

Each trial began by placing two random BTMs into a 37.85 L aquarium (i.e., the 

experimental tank) that was covered by a sheet from all sides except for above. Additionally, a 

porous and transparent plastic divider was placed halfway across the tank to create two 

compartments; visual and chemical, but not physical, interaction was possible between fishes 

in the two compartments of the tank. The two BTM individuals were placed in one 

compartment of each tank. Fish were allowed to acclimate to the tank for one hour. After 

acclimation, treatment conditions (described below) were introduced to the tank. In the 

conditioning treatment (treatment 1) 5 mL of chondroitin was added via syringe and 3 WMF 

were added for five minutes to the side opposite the BTM individuals immediately after 

chondroitin was introduced. In the experience treatment (treatment 2), 5 mL of distilled water 

was added via syringe and 3 WMF were added for five minutes to the side opposite the BTM 
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individuals immediately after water was introduced. In the no conditioning or experience 

treatment (treatment 3), 5 mL of distilled water was added via syringe to the tank. After a given 

trial, the BTMs were temporarily placed in a holding tank and the experimental tanks were 

thoroughly cleaned using water, soap, and rubbing alcohol. After cleaning and again setting up 

the experimental tanks, as described above, the BTMs were returned to their original 

experimental tank and allowed to acclimate overnight. The day following treatment, BTMs in 

each tank were filmed for five minutes before and after the introduction of 3 new WMF to the 

side opposite the BTM individuals. This allowed me to record time active (i.e., time spent in 

motion) and quantify the change in the proportion of time spent active before and after 

presentation with WMF only, which allowed me to determine whether my conditioning was 

effective (i.e., whether is caused BTMs to alter their behavioral reaction to WMF). 

There were twelve replicates for each treatment, divided into six blocks (i.e., two 

replicates per block) that took place from December 12, 2015-January 6, 2016. After all 

replicates and trials for a given block were complete, the BTM individuals from that block 

were placed in 75.7 L aquarium to await Phase II of the study, and fish from different 

treatments were housed in separate aquaria. 

To determine if there were differences in the change in the proportion of time spent 

active (i.e., in motion) among treatments (i.e., to determine whether conditioning was 

effective), Univariate Analysis of Variance (ANOVA) were run using IBM SPSS Statistics 24. 

Specifically, I focused on the change in the proportion of time spent active before and after 

presentation of WMF because I hypothesized that conditioned fish would have learned to 

perceive WMF as a threat and alter their motion relative to fish in the other two treatments. 
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That is, if conditioning was effective, I expected conditioned fish to alter activity relative to 

experienced or unconditioned control fish, and specifically, based on previous research 

(Farnsely, 2014), I expected conditioned fish to increase their activity when presented with 

only WMF relative to the experienced or unconditioned fish. In the ANOVA, the change in the 

proportion of time spent active was treated as my response variable, treatment was a fixed 

factor, and block was a random factor. I also examined whether there was significant 

interaction between treatment and block. Normality was evaluated using a Shapiro-Wilk test, 

and the distribution of the change in the proportion of time spent active was not significantly 

different from normal (p = 0.63). 

 

Phase II: Evaluating the effectiveness of conditioning and social learning on Barrens 

Topminnow body condition and survival in the lab 

To explore differences in the effect of predation recognition conditioning on BTM 

body condition and on social learning of predator recognition among treatments, a total of 

36 naïve BTMs (i.e., those not used in Phase I of the study) were placed in 113.5 L aquaria 

along with a total of 36 BTMs that had been used in Phase I of the study. Tanks contained 

cover (i.e., artificial, plastic plants) that was spread out evenly within the tank. This phase was 

divided into six blocks. In blocks 1 through 5, two replicates of each treatment per block were 

performed. The sixth block contained four replicates of the chondroitin and WMF treatment, 

two replicates of the water and WMF treatment, and no replicates of the water only 

treatment. Specifically, in each replicate, a single naïve BTM was placed into a tank and 

assigned to one of three treatments: they were placed in a tank with 1) one BTM exposed to 
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water only during Phase I, 2) one BTM exposed to water and WMF during Phase I, or 3) one 

BTM exposed to chondroitin and WMF during Phase I. Additionally, two WMF were added to 

each tank. I chose to use two WMF in this portion of the study to avoid re-using WMF that 

had previously been exposed to BTMs in Phase I. Each day one bloodworm per individual was 

added to the tanks. Each BTM was weighed, measured (i.e., total length was recorded), and 

marked using elastomer paint before entry into the tank, which allowed me to track 

individual BTMs throughout the course of Phase II. After being marked, BTMs were 

immediately placed in the tank and used in the experiment. After a two-week period, all 

BTMs were removed and weighed and measured before being placed in 37.85 L aquaria; fish 

from each block were placed in separate aquaria based upon treatment after this portion of 

the study. 

 Body condition was calculated using Fulton’s body condition factor, where K is a 

standardized measure of body condition, W is weight in grams, and L is length in centimeters, 

as seen in the following: 

𝐾 = 100 ∗ (
𝑊

𝐿3
) 

 

 This measure of body condition is a well-established method of quantifying body 

condition in fishes, as it accounts for the scaling relationship between weight and length that is 

typically observed in fishes (Booth & Hixon, 1999; Sutton et al., 2000; Robinson et al., 2008). In 

my study, I quantified body condition (K) before and after the two-week treatment period of 

Phase II for all BTM. 

To evaluate whether there was an effect of treatment on body condition, Univariate 

Eq. 1 
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ANOVAs were run in IBM SPSS Statistics 24. Change in body condition across the two-week 

period was my response variable, treatment was a fixed factor, and block was a random 

factor. I additionally considered the interaction between block and treatment. Normality was 

evaluated using a Shapiro-Wilk test, and the distribution of the change in body condition was 

not significantly different from normal for either BTM used in Phase I and II (p = 0.82) or naïve 

BTM used in Phase II (p = 0.29). Additionally, two chi-square analyses were run to determine 

if there were differences in death among treatment for BTM used in Phase I and II and the 

naïve BTM used in Phase II. Given that conditioning is thought to alter activity and improve 

survival in this species (Farnsley, 2014), I hypothesized that fish that were conditioned would 

have better body condition and be more likely to survive than fish in my other two 

treatments. Additionally, if social learning occurred, such that naive BTM individuals learn to 

adjust their behavior in the presence of WMF by observing conditioned fish, then I would also 

expect naive fish that were paired with conditioned fish to have higher survival and body 

condition than fish in my other two treatments. 

 
 

Phase III: Evaluating the effectiveness of social learning on activity-level of naive fish 
 

To evaluate whether social learning of predator recognition potentially occurred in 

the BTM and caused naive BTM to alter their activity, each naïve individual from Phase II was 

individually placed into a 37.85 L aquarium which was covered by a sheet from all directions 

except for above. Additionally, a porous, transparent divider was placed halfway across the 

tank to separate the halves of the tank, as in Phase I of the study. BTM were then allowed to 

acclimate for one hour. After acclimation, time active (i.e., time spent moving) was recorded 
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for five minutes before and after the introduction of three WMF to the compartment of the 

tank opposite the BTM. I then quantified the change in the proportion of time individuals 

were active before and after WMF were introduced to the tank, which allowed me to 

determine if the naïve BTM from my Phase II potentially learned from the conditioned BTM 

from Phase I to alter their behavior in response to WMF. 

To evaluate differences in the change in proportion of time active among treatments 

(i.e., the treatment that individuals were exposed to in Phase II), Univariate ANOVAs were run 

in IBM SPSS Statistics 24. The change in the proportion of time active was my response 

variable, treatment was a fixed factor and block was a random factor. I additionally tested for 

an interaction between treatment and block. Normality was evaluated using a Shapiro-Wilk 

test, and the distribution of the change in proportion of time active was significantly different 

from normal (p = 0.013). Because the data differed significantly from a normal distribution, I 

also ran a non-parametric Kruskal-Wallis test, which allowed me to evaluate the effect of 

treatment and block on the change in the proportion of time spent active; however, Kruskal- 

Wallis tests are generally less powerful than ANOVA and do not allow one to assess 

interactions between predictor variables. Given this, and because the results of the Kruskal-

Wallis test were quantitatively the same as those of the ANOVA, I present only the results of 

the parametric ANOVA below. If social learning occurred, I would expect naive individuals 

who were placed with conditioned individuals to have a change in activity that is different 

from naive individuals who were placed with fish that were not conditioned during Phase I of 

the study. 
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Phase IV: The effect of learned predator recognition on survival in the wild in the Barrens 

Topminnow 

As mentioned above, all BTM individuals were tagged using elastomer paint prior to 

use in Phase II of the study. All markings had been in place at least 2 weeks before this phase 

and were checked before release. Specifically, prior to Phase II, I tagged fish from the 

different treatments differently in order to track the survival of fish from my different 

treatments following release into the wild. BTM were marked with the colors blue, red, or 

yellow to show whether the fish was used in Phase I, was a naïve individual from Phase II, or 

was a nonexperimental BTM, respectively. Additionally, the marking was placed either on the 

left behind the gills, the right behind the gills, or toward the tail on the right to show whether 

the individual experienced the chondroitin and WMF treatment, the water only treatment, or 

the water and WMF treatment, respectively. To determine if learned predator recognition 

affected survival of the BTM in the wild, I released BTM from my experiment into a spring 

near Hickory Creek in Warren County, TN (35.5875 N, -85.8575 W) on July 3, 2016. The 

release site was dammed off with concrete, helping to limit migration in and out of the 

sample site. The release site was composed of four interconnected pools. Specifically, I 

released 49 individual BTM, 41 of which were included in my earlier study, 5 of which were 

non-experimental (i.e, completely naïve), and 3 which were unknown due to loss of marking, 

into the spring. Included in the release were 23 BTM used in both Phase I and Phase II (from 

the treatments: water only = 6, water and WMF = 7, and chondroitin and WMF = 10) and 18 

BTM from Phase II which had been naïve prior to Phase II (from the treatments: water only = 

7, water and WMF= 4, and chondroitin and WMF = 7). All fish were released into the middle 
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pool of the spring habitat in shallow water (< 0.5 m) near the shoreline. I then sampled two 

days later, and I resampled another three times on July 5, August 6, and September 1, 2016. 

During my re-sampling, I went over each of the pools and connecting portions with a 3.05 x 

1.83 m delta mesh 3.175 mm seine, passing over the entirety of each pool at least once and 

making two passes over the shallow connecting areas. Each sampling session lasted 

approximately 3-4 hours. During seining sessions, recaptured BTM were kept in a bucket of 

water until the end of session as to prevent re-sampling the same individual repeatedly on a 

given sampling day. However, after all sampling was completed on a given day, all recaptured 

BTM were re-released into the spring, and as such, I cannot rule out the possibility that a 

single individual might have been captured on more than one sampling day. For each 

recaptured fish, I recorded which treatment the individual had experienced and whether the 

individual was used in Phase I and Phase II or was a naïve individual used only in Phase II. 

To examine if 1) treatment in Phase I had an effect on recapture and 2) if social learning 

opportunity in Phase II had an effect on recapture, I performed two chi-square analyses in 

which I compared recapture rates across treatments among BTM used in Phase I and II and 

among BTM used only in Phase II. If conditioning was effective in Phase I and improved 

survival following release into the wild, I would expect more conditioned fish to be 

recaptured relative to the fish in the other two treatments. If social learning occurred during 

Phase II and improved survival, I would expect to recapture more naive fish that were paired 

with a conditioned fish relative to naive fish that were paired with fish that were either 

unconditioned or exposed only to WMF during Phase I. 
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Results 
 

 

Phase I: Can the Barrens Topminnow be conditioned using a chemical alarm cue? 
 

Treatment had no effect on the change in proportion of time spent active (F2,10= 1.140, 

P=0.358). Specifically, BTM individuals that were exposed to water, water and WMF, and 

chondroitin and WMF did not differ significantly in activity (Fig. 1). These results suggest that 

conditioning did not significantly alter activity associated with the presentation of WMF in this 

study. However, there was a significant effect of block on the change in the proportion of time 

spent active (F5,10= 7.751, P=0.003), suggesting that on average there were differences among 

blocks in how individuals altered their activity in response to WMF. There was no significant 

interaction between block and treatment (F10,18= 0.507, P=0.863), though, suggesting that 

there were no differences among treatments in the way that block affected the change in the 

proportion of time spent active. 
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Fig. 1 Change in the proportion of time active before and after presentation of Western 

Mosquitofish (WMF) (Gambusia affinis) among the treatments in which Barrens Topminnows 

(Fundulus julisia) were exposed to water only, water and WMF, and chondroitin and WMF 

 
Phase II: Does conditioning treatment affect change in body condition in the Barrens 

Topminnow? 

Treatment did not affect the change in body condition for either conditioned or naïve 

individuals (conditioned individuals: F2,9.58= 0.105, P=0.902, Fig. 2; naïve individuals: F2,10.15= 

0.002, P=0.998, Fig. 3). There was no significant effect of block or the interaction between 

block and treatment on body condition (conditioned individuals (block): F5,8.61= 0.378, 
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P=0.852; naïve individuals (block): F5,8.74= 1.613, P=0.253; conditioned individuals (block- 

treatment): F9,18= 0.894, P=0.550; naïve individuals (block-treatment): F9,15= 0.774, P=0.643). 

The average weight of the BTMs changed during my treatments from 0.35 g to 0.33 g for 

Phase I individuals and 0.31 g to 0.30 g for naïve individuals. The average lengths of the BTMs 

Phase I individuals changed from 3.65 cm to 3.60 cm for Phase I individuals and 3.55 cm to 

3.47 cm for naïve individuals. Dead individuals were not included in the post-treatment 

means but were included in the pre-treatment means. A total of five BTM died during the 

course of Phase II. Specifically, one water only fish from Phase I, one water only naïve fish 

from Phase II, two water and WMF naïve fish from Phase II, and one chondroitin and WMF 

naïve individual from Phase II. There were no significant differences among treatments in the 

number of conditioned individuals (χ2
2 = 2.674, P = 0.263) or naïve individuals (χ2

2 = 0.611, P = 

0.737) that died during Phase II of the study. 
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Fig. 2 Change in body condition (K) in the Barrens Topminnows (Fundulus julisia)  used in 

both Phase I and Phase II among the treatments in which the BTMs were exposed to water 

only, water and Western Mosquitofish (WMF) (Gambusia affinis), and chondroitin and WMF 
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Fig. 3 Change in body condition (K) in naïve Barrens Topminnows (Fundulus julisia) from 

Phase II among the treatments in which BTMs were paired with individuals exposed to water 

only, water and Western Mosquitofish (WMF) (Gambusia affinis), and chondroitin and WMF 

 
 

Phase III: Can the Barrens Topminnow socially learn conditioned predator recognition? 
 

When I focused on the behavior of naive BTMs that spent two weeks with BTMs from 

Phase I and WMF, there were no significant differences in the change in proportion of time 

active among treatments after these previously naive individuals were placed with WMF 

(F2,3.11= 0.342, P=0.734). This suggests that the naive fish that were paired with conditioned 

and unconditioned individuals did not differ in their response to 
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WMF. I also found no significant effect of block on change in the proportion of time spent 

active (F3,2.27= 1.938, P=0.339), and there was no significant interaction between block and 

treatment (F3,11= 0.657, P=0.595). 

 
 
Fig. 4 Change in the proportion of time active in naive phase II Barrens Topminnows (Fundulus 

julisia)  before and during exposure to Western Mosquitofish (WMF) (Gambusia affinis)h 

among the treatments of water, water and WMF, and chondroitin and WMF 

 
 
Phase IV: The effect of learned predator recognition on survival in the wild 

 

Three fish were captured during my initial sampling, two were captured during my 

second sampling, and one captured during my third sampling. No individuals were captured 
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on my final day of sampling. There was no effect of treatment on the recapture rate of either 

BTM used in both Phase I and Phase II (χ2
2 = 0.97, P = 0.953) (Fig. 5) or BTMs used as naïve 

individuals in Phase I (χ2
2 = 3.536, P = 0.171) (Fig. 6). These results suggest that fish from all 

treatments were equally likely to be recaptured following release into the wild. 

 
 
Fig. 5 The number of individual conditioned Barrens Topminnows (Fundulus julisia) used in 

both Phase I and Phase II that were recaptured among treatments across the four 

resampling dates 
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Fig. 6 The number of individual Barrens Topminnows (Fundulus julisia) which acted as 

naïve individuals in Phase II that were recaptured among treatments across the four 

resampling dates 

 
 

Discussion 
 

Overall, I found no significant differences among my control groups and the 

experimental group in conditioning and social learning of predator recognition, and as such, I 

have no evidence at this time that conditioning and social learning are effective under the 

conditions of my study. Specifically, these findings indicate that conditioning and subsequent 

social learning likely did not take place in the BTMs in this study. In the following sections, I 
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discuss how my results compare to similar works and discuss some alternative explanations of 

my findings. 

 
 

Phase I: Can the Barrens Topminnow be conditioned to recognize a novel predator? 
 

There were no significant effects of conditioning on BTM behavior, and thus no evidence 

that BTM learned predator recognition though conditioning in our study. While this may 

indicate that my focal fish failed to acquire the predator recognition, previous work has shown 

that the BTM can learn to alter their behavior through conditioning and potentially acquire 

predator recognition via the same method utilized for this study (Farnsley, 2014). Given this 

previous work, and other work suggesting that a range of animals can learn effectively (Chivers 

& Smith, 1995; Griffin et al., 2000; Bool et al., 2011), it is possible that the individuals used in 

my study differed in either learning capability or their reaction to the alarm cue from those 

previously used in Farnsely's (2014) study, and may be less apt to learn and exhibit 

conditioned behavior. Other work has found evidence of variation in the ability to learn within 

a given species. For example, in a study looking at spatial learning, Three-Spined Sticklebacks 

(Gasterosteus aculeatus) exhibited population differences in their learning capability; 

however, it is believed that this is due to the different local environments as different 

landmarks were utilized within a maze in that study (Girvan & Braithwaite, 1998). Additionally, 

antipredator behavioral responses may differ among species and individuals. For instance, 

while previous work has shown the capability of BTM to be conditioned and increase activity in 

the presence of predators, the closely related species Northern Studfish (Fundulus catenatus) 

was found to decrease activity in response to such conditioning (Farnsley, 2014). Thus, it is 
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possible that the lack of conditioning observed in the present study is due to individual 

variation in antipredator behavior. 

It is also possible that the present study differed in some unintended way from that of 

Farnsley (2014). For example, while every attempt was made to replicate the conditions of 

Farnsley (2014), there might have been differences in the water chemistry or the chondroitin 

used in the present study. For instance, it is possible that the chondroitin sulfate used in my 

experiment was ineffective due to the chemical cue’s aging or incompatibility with my specific 

population of BTM; however, I think that the difference in results in my study relative to 

those of Farnsley (2014) is less likely due to population differences as my population was 

received from the same captive breeding program as those used in Farnsley (2014). 

Additionally, due to my method of measuring change in behavior, exhibiting high activity 

before presentation of the predator can potentially hide positive changes in activity, as I did 

not measure intensity of movement; it is therefore possible that my measurement approach 

was too coarse to detect effects of conditioning.  

Despite not finding evidence of predator recognition in my conditioned fish, previous 

studies have shown that a variety of fish species can be conditioned. For example, the Arctic 

Charr (Salvelinus alpinus) can be conditioned using the odor of Arctic Charr-fed Pikeperch 

(Sander lucioperca). By pairing the odor of Pikeperch with Pikeperch presence, naïve 

individuals were conditioned to avoid Pikeperch through a single exposure event, showing 

some species of fish to be readily able to acquire predator recognition through conditioning 

(Vilhunen, 2006). Fathead Minnow (Pimephales promelas) have also shown to learn predator 

recognition through conditioning by pairing Brook Charr (Salvelinus fontinalis) odors, used to 
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simulate predator presence, and chemical alarm cues to allow the Fathead Minnow to 

recognize the Brook Charr as a predator (Ferrari et al., 2005). It will be interesting in the 

future to look at how alarm cue reactions differ among populations and how shy/bold 

dispositions affect learning in the Barrens Topminnow and other topminnows. 

Because there was a chance that my conditioning was effective in Phase I but my 

measurement approach was too coarse to capture effects of conditioning on behavior, I 

analyzed the effects of conditioning on 1) body condition in the presence of WMF and 2) the 

effects of being paired with conditioned fish on the body condition and behavior of naive fish 

(discussed below and in Methods above). 

 
 

Phase II: Is Barrens Topminnow body condition affected by the presence of 

Western Mosquitofish? 

I found no significant differences in body condition among treatments for both my 

conditioned and naïve individuals during the portion of my study in which I exposed the BTM 

to WMF for two weeks. In general, body condition actually increased in the BTMs during the 

2 weeks in Phase II; this increase in body condition was minor, but the lack of a decrease in 

body condition on average might suggest that there was minimal food competition in Phase 

II of my study. These results were contrary to my predictions but are consistent with some 

previous work. According to Laha and Mattingly (2007), WMF have an impact upon the BTM 

through harassment and physical harm and by consuming small juveniles. Specifically, Laha 

and Mattingly (2007) allowed for adult BTM and adult WMF to live together over 60 days 

and observed no significant negative impacts upon the BTM, suggesting that adult BTM are 
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able to survive with adult WMF. This may suggest that it is the adult WMF’s interaction with 

juvenile individuals which allows the WMF to have a strong negative impact on BTM 

populations (Laha & Mattingly, 2007). Understanding how an invasive species is negatively 

impacting a species of interest can provide an apt platform for finding solutions to 

conservation problems, and my results and those of Laha and Mattingly (2007) suggest that 

the WMF primarily negatively impacts the BTM through predation and harassment, rather 

than through competition for food that reduces body condition. 

 
 

Phase III: Can the Barrens Topminnow socially learn to recognize the Western Mosquitofish as 

a predator? 

I found no significant effects of treatment on predator recognition among my control 

and experimental groups, suggesting that social learning did not take place or was simply not 

possible due to lack of initial conditioning and learning in my study. This finding that no social 

learning occurred is likely related to my earlier finding that behavior did not differ among 

treatments during Phase I. Specifically, given that I found no evidence that BTM were 

conditioned to alter their behavior in the presence of WMF, the naive BTM likely had no 

potential to learn socially from conspecifics. There is also the possibility that the BTM does 

not socially learn predator recognition at the juvenile stage. However, further work would be 

needed to make any conclusions about social learning in this species. Additionally, by placing 

my observer individuals in long contact with the desired predators, the BTM may have 

become habituated to the presence of the WMF. For example, Brachetta et al. (2016) showed 

that repeated exposure to a predator odor caused loss of defensive behaviors in the Talas 
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Tuco-tuco (Ctenomys talarum), a subterranean rodent, due to habituation to the presence of 

the odor.  

Overall, and despite a lack of evidence for conditioning or social learning in the 

present study, I do think that it is likely that the BTM has the potential to learn through 

experience and socially given work in other systems. For example, Mathis et al. (1996) 

demonstrated that naïve Fathead Minnow exhibit fright responses in the presence of the 

Northern Pike (Esox lucius) when paired with experienced conspecifics and will retain the 

predator recognition. Additionally, Brook Stickleback (Culaea inconstans) can also learn and 

retain predator recognition from experienced Fathead Minnows (Mathis et al., 1996). In 

another study, Suboski et al. (1990) found that Zebra Danio (Brachydanio rerio) can transmit 

conditioned predator recognition to naïve observers. One way that my experiment differs 

from the examples given was the method by which the observers were allowed to observe. In 

my experiment, observers were allowed prolonged contact with the predator during Phase II, 

perhaps giving time for habituation of the predator presence; while there were five BTM 

deaths and two WMF deaths, I never informally observed any significant harassment being 

done to the fish that might have affected body condition and survival.  It is also important to 

note that while I had only one demonstrator for each observer, other work demonstrated 

that guppies, which are of the Order Cyprinodontiformes like the BTM, socially learn more 

effectively while shoaling as a group (Lachlan et al., 1998). Additionally, the fact that I 

observed one individual BTM during Phase III and two BTMs during Phase I might have 

created differences in behavior between the two phases. For example, there might have been 

interactive effects in Phase I such that the behavior of one individual BTM affected the 
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behavior of the other BTM in Phase I. Such interactive effects might have created variation in 

behavior that either prevented conditioning or made it impossible to detect the effect of 

conditioning behaviorally. In the future, it will be key to examine the ability of BTM to learn 

socially across different scenarios that vary in predator exposure and under conditions in 

which they have the potential to learn socially from conspecifics that exhibit anti-predator 

behavior. 

 
 
Phase IV: The effect of learned predator recognition on survival in the wild in the Barrens 

Topminnow 

There was no significant effect of treatment on recapture rate of either conditioned 

BTM or BTM given the opportunity to learn socially during Phase II. This likely indicates that 

there was no effect of treatment on survival in the wild in my study. Due to the finding that 

conditioning and social learning did not appear to take place in my study, it is difficult to 

determine if learned predator recognition can act as a conservation tool in the BTM. It is also 

important to note that with the low sample size of my recapture study, my statistical power 

was very low, making it difficult to detect effects of treatment on recapture rate if such 

effects existed. In general, my findings differ from those of Farnsley (2014) and Berejikian et 

al., (1999). In both Farnsley (2014), which focused on the BTM and Berejikian et al., (1999), 

which focused on the Chinook Salmon (Oncorynchus tshawytscha), conditioning using a 

predator odor increased post release survival. This difference is likely related to my findings 

that the BTM showed no differences among treatments in activity in relation to conditioning 

or social learning. 
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Conclusions: 

Predator recognition is an important tool for survival as it allows individuals to assess 

risk and exhibit an appropriate behavioral response. However, when exposed to a novel 

predator, a species may find itself within an evolutionary trap, presenting behaviors that are 

inappropriate to the actual risk. This misappropriated behavior can cause a decline in the 

population and may lead to extinction as the species is predated and harassed through time. 

To help battle against the loss of populations and species, captive breeding and 

reintroduction programs have begun to incorporate behavioral approaches into their 

methods, including training, conditioning, and social learning. However, there is still some 

question as to the full effectiveness of these methods. In the case of the BTM, my results 

indicate that there was no effect of treatment on conditioning or social learning, suggesting 

that conditioning might be ineffective under some conditions. These results have implications 

in the conservation of the BTM, as there remains uncertainty to the persistence of 

conditioned predator recognition upon release in this species. As with any conservation 

project, the ultimate goal is to have a stable population that can persist without further input 

from conservation managers. Without knowing if learned predator recognition will persist in 

the population, and without knowing under what precise settings conditioning is likely to be 

effective, conditioning may prove to only be a temporary aid that is only effective under 

certain conditions. While such results may appear bleak, it is important to note that this study 

only looked at one method of maintaining behavior in a population. There is much still to be 

understood in the subject of learning and behavior and there is still much to be learned about 

utilizing behavioral and conservation sciences together. 
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