
 

 

 

 

 

AUTOMATIC HIGHER ORDER MESH GENERATION AND MOVEMENT UTILIZING 

SPRING-FIELD AND VECTOR-ADDING 

 

 

 

 

 

By 

Tuo Liu 

 

 

 

C. Bruce Hilbert                               Kidambi Sreenivas 

Algorithms/Optimization                                           Associate Professor of 

Branch Technology                                                    Mechanical Engineering 

(Chair)                                                           (Committee Member) 

 

James C. Newman III                          Steve L. Karman Jr. 

Professor of Computational Engineering                  Staff Specialist 

(Committee Member)                                                Pointwise 

                                                                                   (Committee Member) 

 

 



ii 

 

 

 

 

 

 

 

AUTOMATIC HIGHER ORDER MESH GENERATION AND MOVEMENT UTILIZING 

SPRING-FIELD AND VECTOR-ADDING 

 

 

 

By 

 

Tuo Liu 

 

 

 

A Dissertation Submitted to the Faculty of the University of 

Tennessee at Chattanooga in Partial Fulfillment 

of the Requirements of the Degree of 

Doctor of Philosophy in Computational Engineering  

 

 

The University of Tennessee at Chattanooga 

Chattanooga, Tennessee 

 

December 2017 

 

 



iii 

 

 

 

 

 

 

 

 

Copyright © 2017 

By Tuo Liu  

All Rights Reserved 

 

 

 

 

 

 

 

  



iv 

 

 

 

 

 

 

ABSTRACT 

 

 

In this research, an automatic unstructured curved 2D mesh generation method is 

developed. It can handle complex geometries. Based on this 2D method, an extension to 3D 

geometries is developed. The methodology of this mesh generation is to provide near-body and 

off-body meshes by an advancing-layer method to avoid mesh quality problems in transition areas, 

while using spring models to complement the advancing-layers by smoothing the mesh, especially 

in medial axis regions. After generating the linear mesh, a higher-order finite-element ready, 

curved mesh is obtained by deforming the linear mesh through “pipes” using a simple Vector-

Adding approach. Different from most curved viscous mesh generation approaches, this method 

eschews a linear or nonlinear elasticity analogy while still providing positive-Jacobian mesh 

elements. In addition, the transformation from linear to curved meshes can be achieved by only 

deforming the necessary edges of the elements near domain boundaries while retaining the 

remaining non-curved edges to the benefit of numerical solvers. The CFD results of 30P30N airfoil 

on the curved mesh are given and are in good agreement with the experimental data. 

Further, a new method for moving boundary problems with viscous mesh layers is also 

presented. This method is an extension of the mesh generation approach above. It can be used not 

only for high-order mesh moving but also for high-order mesh generation. Also, based on the 

curved mesh deformation strategy, the method can handle high-order mesh movement or 

regeneration with minimal extra computational time compared with linear mesh movement. 

Several 2D boundary motion cases are tested including boundary translations, boundary rotations, 
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and boundary morphing. The CFD results on the curved mesh after rotation are given and are in 

good agreement with the experimental data. This technique is also tested through the optimization 

of an airfoil to achieve a maximized lift and drag ratio. The results demonstrate that this approach 

can handle large boundary movements while preserving a good mesh quality.  
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CHAPTER 1 

 

INTRODUCTION 

 

In recent decades, computational design and analysis have become fundamental parts of 

industry. Generally, to obtain the desired accuracy of a target problem, a mesh discretization of 

the domain that represents the real-world object or phenomenon is needed in some reasonable 

fidelity. Unfortunately, man-hours spent on mesh generation in obtaining a numerical-solution-

based analysis are too enormous. And the necessity for manual intervention rises as the complexity 

of the target object’s phenomenon or the geometry increases. This process calls for automatic mesh 

generation and automated mesh refinement and leads to a significant amount of research in both 

areas. 

There are various standards to measure mesh quality. A good mesh should first be capable 

of representing the target object or phenomenon to an acceptable fidelity. Furthermore, it is usually 

desirable for high quality meshes to have as few elements as possible while maintaining a 

satisfactory level of fidelity representing the target geometry. As such, for many decades aerospace 

researchers have put a lot of time and effort into research regarding anisotropic meshes, hybrid 

meshes and high-order (curved) meshes. Let us first take a brief look at these three types of meshes. 

In aerospace research, high Reynolds number flow simulations require anisotropic meshes 

to represent the domain in the boundary layer. A considerable volume of work has been published 

on the development of mesh algorithms for this purpose, such as the advancing front/layers 

approach[1-6], which generates the boundary layer mesh prior to the interior domain mesh as 
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shown in Fig. 1, or the bubble mesh approach[7], which generates the entire mesh isotropically 

then adjusts the mesh in the boundary layer to be anisotropic. However, compared with isotropic 

meshes generation, the generation of quality anisotropic meshes is far from mature. Many 

challenges remain. One such challenge relates to an overall and simultaneous mesh quality control 

in both the anisotropic boundary layer region and the off-body isotopic region. The quality in one 

region is often compromised while attempting to enforce quality elements in the other region. To 

overcome these obstacles, some researchers choose a mesh type that contains multiple elementary 

mesh elements: a hybrid mesh.   

 

Figure 1 Advancing-layer method[5] 

As a mixed-element mesh, a hybrid mesh has multiple advantages deriving from the 

contained elementary mesh type. First, it benefits the solver by using fewer mesh cells compared 

with pure triangular or tetrahedral mesh. Second, for some hybrid meshes, certain numerical 

schemes could be used to accelerate the simulation[8]. Third, hybrid meshes generally improve 

the accuracy of numerical simulations, especially with anisotropic viscous boundary layer meshes. 

A typical hybrid mesh approach is as shown in Fig. 2, which is introduced in Kallinderis’ work[9]. 

In this article, prismatic layers are created around objects and the remaining gaps are filled with 
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tetrahedra, which have the capability to fill a given volume of arbitrary shape. This mesh structure 

contains quadrilateral faces normal to the surface to provide good orthogonality and mesh 

clustering capabilities, whereas the triangulation in the lateral direction allows flexibility in surface 

modeling[10]. This approach is robust and flexible enough to handle quite a range of different 

cases. Nevertheless, many challenges remain in mesh quality control of prism layers for complex 

boundary geometries, as well as in tetrahedral areas which are constrained by the shape of gaps. 

Researchers have also developed other types of hybrid meshes, containing hexahedral and 

prismatic elements mixed with pyramids and tetrahedra[11, 12], or Cartesian meshes containing 

triangular/tetrahedral elements[13, 14]. However, since these hybrid mesh approaches generate the 

boundary layer mesh and off-body mesh separately, they all face the same challenge: mesh quality 

control at the interface of two different types of meshes.  

 

Figure 2 A typical hybrid mesh[9] 

Also, due to the increasing popularity of high-order finite element solvers, much attention 

has been directed towards to the generation of curved meshes. Previous research on this includes 

works from Shephard, Sherwin and Persson[15-17]. A typical curved mesh is as shown in Fig. 3. 
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A common idea of obtaining a curved mesh is to deform an existing linear mesh into a curved one 

with all positive-Jacobian mesh cells. For the transformation from linear to curved meshes, the 

main obstacle of automation is that the conversion from straight-side edges to curved edges not 

only concentrates on curved geometry boundaries, but also on the edges of the adjacent elements 

and elements in their adjacent regions. It is imperative to ensure that all elements are untangled 

and the Jacobian in each mesh element is positive after the conversion. Previous research on this 

includes works from Shephard and Sherwin[16, 18]. While regular linear smoothing techniques 

sometimes fail to deliver positive-Jacobian elements, some nonlinear methods can address this 

uncertainty, such as nonlinear elasticity analogy[17].  Nevertheless, computing a non-linear 

mechanics problem, involving large deformations on a high-order and highly stretched mesh is at 

least as complex as, solving Navier-Stokes equations on the same mesh[19]. 

 

Figure 3 A typical curved mesh[17] 

All in all, an automatic high-order mesh generation procedure with good mesh quality is 

still challenging. The difficulty of an automation even increases when dealing with viscous flow 

simulations, which generally requires anisotropic meshes near solid-body boundaries. The 

difficulty of automations also increases when the meshes are provided for high-order finite element 

solvers, which generally requires curved meshes. But the viscous mesh and the high-order mesh 
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generation are important that they cannot be ignored for their difficulty level. Hence, the automatic 

mesh generation for a high-order finite element solver[20] in viscous flow simulations is a 

challenging and meaningful research topic.  

The whole process of curved viscous mesh generation can be generally separated into three 

steps. The first step is straight-sided viscous mesh generation. The second step involves 

constructing a high-order boundary representation to accurately account for the curvatures of the 

geometry. The third step is the deformation of the linear mesh into a curved mesh to accommodate 

the high-order curved boundary mesh generated in the second step. The difficulty of automatic 

curved mesh generation normally lies in two parts: one is to automatically generate a linear viscous 

mesh; the other is to automatically transform this linear mesh to a curved mesh. Much work has 

been done in these two parts, while obstacles remain to be addressed.   

For the linear viscous mesh generation, the main obstacle of automation is to create a fine 

quality mesh while ensuring automation. If the boundary layer mesh and the domain interior mesh 

generation are handled differently, a boundary layer mesh of fine quality can be achieved by using 

an effective method, such as the advancing front methods[3, 5, 21], PostBL[22], or linear-elastic 

smoothing[23]. However, this type of approach separates the mesh generation into two parts, and 

it is difficult to control the mesh quality in the transition area. On the other hand, if the boundary 

layer mesh and domain interior mesh are handled by the same approach that is naturally suitable 

to domain interior mesh, like the bubble method[24, 25] or interacting particle system[26], the 

whole domain mesh generation could be more automatic, but anisotropy will not fully meet the 

stringent numerical requirements of boundary layer mesh, in which high-gradient and non-linear 

physics such as turbulence can be involved. In turn, if boundary layer mesh and domain interior 

mesh are handled by the same approach that is naturally suitable to the boundary layer mesh, such 
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as inflating one layer at a time[3, 5, 21], the anisotropy can be satisfactory. However, it will be 

challenging to control mesh quality in areas of front edge merging, and highly uneven elements 

can be generated as a result.  

In computational design and analysis, another major challenge is to handle moving 

boundaries and interfaces. Many applications, such as fluid structure interaction (FSI) problems, 

biological fluid mechanics and geometric designs via optimization procedures, must face this 

challenge. In all these cases, the spatial domain moves or deforms with time. There are several 

methods to handle this, for instance, to use radial basis interpolation functions[27]. The common 

method, however, is to discretize spatial domains through meshing. The following is a review of 

the methods in this category. 

The meshing methods used to handle moving boundaries can generally be divided into two 

classes: boundary-fitted (boundary-conforming) methods and non-boundary-fitted (non-

boundary-conforming) methods. The boundary-fitted method is to change the mesh shape to fit 

the changed geometries. This type of method could be divided into two sub-classes: mesh-

topology-changing and mesh-topology-unchanging. The mesh-topology-changing method is to 

change the mesh topology to fit the changed geometries.  For this type of method, the mesh can 

either be regenerated[28], which is generally inefficient, or restructured[29]. The mesh-topology-

unchanging method can generally be divided into two sub-classes, by the strategies of deforming 

the mesh: physical analogy and interpolation[30]. The physical analogy approach describes the 

mesh deformation by a physical process and then models this process to deform the mesh. One 

representative method in this sub-class is the spring method. The spring approach views the mesh 

as a network of springs. After each step of boundary motion, the mesh is deformed into a new 

shape through the balance of spring forces. The pioneer of this method is Batina[31]. A torsional 
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spring method was introduced by Farhat et. al[32, 33] to prevent cell collapse. Similarly, several 

elasticity-based approaches have been developed[34-36]. However, this kind of method can only 

handle small motion. Sometimes local remeshing is still necessary. Otherwise, the interpolation 

schemes distribute the domain nodal displacements based on the distance from boundaries. 

Representative methods in this sub-class are The Radial Basis Function (RBF) method proposed 

by Broomhead and Lowe[37], and the Inverse Distance Weighting (IDW) function method 

proposed by Witteven and Bijl[38], where the IDW function was defined by Shepard[39]. 

However, under this type of approach, mesh quality needs to be improved.  

In the non-boundary-fitted group, there are immersed boundary (IB) methods[40-42] and 

Cartesian Mesh methods[43-47]. Peskin[40] first proposed the terms of IB to simulate cardiac 

mechanics and associated blood flow. The IB methods that simulate viscous flows with immersed 

(or embedded) boundaries on meshes do not conform to the shape of these boundaries [48]. These 

methods are similar to the Cartesian mesh method in that they do not conform to the boundaries. 

Cartesian mesh methods were originally developed for simulating inviscid flows with complex 

embedded solid boundaries[43-45]. A typical Cartesian mesh is as shown in Fig. 4. 

Udaykumar[46] and Ye et al.[47] then extended the method to simulate unsteady viscous flows. 

The primary advantage of non-boundary-fitted methods lies in the great simplification of the mesh 

generation. On the other hand, the difficulty in these methods is the choice of accurate interpolation 

schemes.  
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Figure 4 A typical Cartesian mesh[45] 

Besides all the methods above, several mixed methods have been developed from various 

methods to inherit their complementary advantages, such as overset mesh methods[49, 50], a 

dynamic hybrid mesh method[51] and a multi-zone moving mesh algorithm[52]. The disadvantage 

is, with mixed-type methods, multiple spatial domains are generated separately, which cause 

challenging problems in the junction area.  

To overcome these barriers mentioned above, this research develops an automated mesh 

generation method for high-order numerical solvers used in viscous flow simulation. The method 

generates a linear mesh layer by layer with the advancing-front concept. Then based on this linear 

mesh, which has a special “pipe-like” structure, it is easy to generate the high-order curved mesh 

by deforming the linear mesh with a simple Vector-Adding method. To complement the 

advancing-front approach, a force model named Spring-Field which contains several types of 

springs is used to smooth the mesh. Hence the linear domain mesh generation is based on the 

advancing-front method and this Spring-Field smoothing method. For convenience in this 

research, this linear domain mesh generation method was named Advancing-Front-Spring-Field 
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method (AFSF). Spring-Field and Vector-Adding will be introduced in Chapter 2. This automatic 

mesh generation method has several advantages compared with former methods: it provides a 

better mesh quality in view of limitation on obtuse triangles. It is capable of handling anisotropic, 

complex-geometry cases with a smoother transition area from the viscous layer mesh to the interior 

mesh. It can generate all positive-Jacobian high-order meshes and the computational cost of the 

deformation from a linear mesh to a curved mesh is relatively negligible. It only curves required 

mesh edges and keeps remaining straight edges to benefit numerical solvers. It can generate hybrid 

mixed-element meshes with complex geometries and can be extended to 3D cases.  

To generate 2D meshes, three main procedure functions in sequence: the boundary mesh 

generation procedure, which sets the number of nodes and node spacing on the domain boundaries 

to produce edge meshes; the linear domain mesh generation procedure; and the curved mesh 

deformation procedure, which deforms the linear domain mesh to a curved mesh. These three 

procedures will be introduced in Section 3.1, 3.2 and 3.2. In Section 3.4, results will be presented 

to demonstrate the performance and capabilities of the high-order viscous mesh generation 

approach. Section 3.5 describes its potential of the approach to extend to 3D cases. 

This spring approach views the mesh as a network of springs and can, thus, be used for 

mesh movement. As a spring model, Spring-Field is readily extensible to mesh movement or 

morphing. One advantage of this mesh movement method is that, it can handle cases containing 

viscous anisotropic boundary mesh layers with large moving or morphing distances. In Chapter 4, 

the extension for 2D mesh movement and morphing will be introduced. Section 4.1 describes the 

procedure of the mesh movement method. Section 4.2 describes the spring force model used for 

the mesh movement purpose. Note that this spring force model can also be used for mesh 

generation. Section 4.3 describes several cases used to test this mesh movement method: mesh 
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generation cases with complex geometries and mesh moving cases with large deformations. In 

Section 4.4, several more tests will be also implemented to check the potential of this mesh 

movement method in the optimization application.  

The extension of the mesh generation method to 3D cases will be introduced in Chapter 5. 

Since for 3D cases, the linear domain mesh generation method has special requirements for input 

surface meshes, the surface mesh as an input must be qualified for the linear domain mesh 

generation procedure. Section 5.1 describes how to obtain these special surface meshes for linear 

volume mesh generation. Section 5.2 describes the linear 3D domain (volume) mesh generation 

procedure. Section 5.3 describes the curved 3D volume mesh generation procedure. In Section 5.4, 

mesh results are presented to demonstrate the performance and capabilities of this 3D high-order 

viscous mesh generation approach. In section 5.5, mesh results are presented to demonstrate the 

performance of the method in front-closing cases. The CFD results based on the meshes created 

by this method are presented in Section 5.6.   

Two papers are published based on the works in Chapter 3[53, 54]. One research note and 

one paper are published based on the works in Chapter 4[55, 56]. One paper is published based on 

the works in Chapter 5[57]. 
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CHAPTER 2 

 

SPRING-FIELD AND VECTOR-ADDING 
 

2.1 Spring-Field 

As introduced in Chapter 1, there are multiple methods to generate a linear mesh. If the 

linear mesh generation involves a viscous mesh layer, one common choice is the advancing-front 

method. This method generates domain mesh layer by layer from the boundary mesh. Its 

disadvantage is that it is hard to control the mesh quality around the medial-axis area where two 

mesh fronts are merging, which probably means a mesh smoothing procedure is needed once the 

advancing-front method has been employed to generate the mesh.  

One of the mesh smoothing methods is the spring approach, which views the mesh as a 

network of springs. Generally, the mesh starts with the original shape, which needs to be smooth; 

at this stage, the force of springs is off balance as designed. Then the whole mesh is deformed into 

a new shape through the balancing of spring forces. Among all the spring approaches, the linear-

spring method is probably the most popular one. It is robust and easy to implement. Its 

disadvantage is that when a mesh element has a negative area (in 3D it is a negative volume), the 

traditional linear-spring method cannot guarantee to smooth this element into a positive-area mesh 

element. Because of this inconvenient feature, each moving step must be a relatively small one to 

avoid negative mesh elements, which leads to a larger time cost. To overcome this obstacle, a new 

spring force model is provided, which still treats the mesh as a network of springs. Only in the 

latter model does the network have a direction. The spring network is constructed layer by layer 

based on the boundary mesh, simultaneously with the new mesh layer constructed by the 
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advancing-front method. When the mesh is smoothed, only the top several mesh layers are 

involved. That can decrease the total time cost by providing a stand-still “root” mesh layer, which 

also benefits the mesh quality.   

The concept of this force model is inspired by an interacting particle system[26, 58], spring 

force[32, 59, 60], and tissue-growth model[61]. This force model is denoted as Spring-Field, since 

it consists of numerous individual spring model units and covers the whole field. An individual 

spring model unit is demonstrated in Fig. 5b).  

 
a)                                                                         b) 

Figure 5 Spring model. a) Spring-Field; b) One single spring unit 

Fig. 5a) shows the Spring-Field diagram. If the mesh node D1 is on mesh layer n, its child 

node W is on mesh layer n+1, and node W’s child node V is on mesh layer n+2. Fig. 5b) shows 

one spring unit that is a part of the Spring-Field in Fig. 5a). 𝑆𝑝𝑟𝛼 and 𝑆𝑝𝑟𝑙 are conceptual angle 

and edge springs, respectively. They are used to show that one spring unit could contain several 

different types of spring; they are not the actual spring force models used in the research. Node K 

is a central child node, which is generated by parent node P. Parent node P is located one-layer 

closer to the boundary mesh than node K. Nodes A and B are the left and right adjacent child nodes 

to child node K.  
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What functions should one spring unit have? First, to benefit the advancing-front mesh 

generation method, the spring model should push the existing mesh layer back to create enough 

space for the new mesh layers in case two fronts collapse. Second, the force of the spring model 

should make the node distribution more even as the mesh layer is advancing. Last but not the least, 

the spring model should have the ability to deform the negative-area mesh/negative-volume mesh 

element into a positive one. Based on these principles, the following three types of springs could 

be provided. 

The first type is the edge spring model in the extruding direction of the domain mesh. The 

purpose of this spring type is to push the child nodes away from their parent nodes and the mesh 

boundaries towards their designed target positions. This type of edge spring links the parent and 

child nodes. In Fig. 6a) and b), there is one edge spring of this type, KS. It has a real length 𝐿𝑒𝑛𝑟𝑒𝑎𝑙 

and a given ideal length 𝐿𝑒𝑛𝑖𝑑𝑒𝑎𝑙 obtained based on the ideal position 𝑆𝑖𝑑𝑒𝑎𝑙. The extrusion edge 

spring force is a function of the difference between 𝐿𝑒𝑛𝑖𝑑𝑒𝑎𝑙 and 𝐿𝑒𝑛𝑟𝑒𝑎𝑙. If the child node S is 

too far from its ideal position, the edge spring could generate a push or drag force to drive the node 

to move closer to its ideal position. 

The second type is the edge spring model in the neighboring direction. The purpose of this 

spring type is to dissipate the difference between the mesh elements along the neighboring 

direction on the same mesh layer. This difference originates from the difference between boundary 

mesh elements and it gradually dissipates as the mesh layer advances. The spring force is a function 

of the difference between the neighboring mesh elements and is to help dissipate this difference. 

For a 2D case shown in Fig. 6a), the neighboring edge spring attaches to the edges, which connect 

the adjacent child nodes. In Fig. 6a), there is one edge spring model of this type, shown as A-K-B. 

The spring force could be a function of the difference between the length of 𝑁𝑒𝑖_𝑒𝑑𝑔𝑒𝐿  and 
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𝑁𝑒𝑖_𝑒𝑑𝑔𝑒𝑅. If  𝑁𝑒𝑖_𝑒𝑑𝑔𝑒𝑅 is longer, the neighboring edge spring force pushes the node K towards 

node B to shorten 𝑁𝑒𝑖_𝑒𝑑𝑔𝑒𝑅 and stretch 𝑁𝑒𝑖_𝑒𝑑𝑔𝑒𝐿 to decrease the difference between them. For 

a 3D case shown in Fig. 6b), the spring force could be a function of the areas of the two neighboring 

facets AJKD and JBCK. Again, this force should narrow the difference between the area of AJKD 

and JBCK.  

        
a)                                                               b) 

Figure 6 Diagram of spring models. a) 2D spring models; b) 3D spring models 

The third type is the angle spring model. The purpose of this spring type is to keep the 

extruding direction of node S close to the direction of an ideal extruding direction 𝐾𝑆𝑖𝑑𝑒𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   to 

benefit mesh quality. Furthermore, this spring model will help to avoid negative mesh elements. 

The spring force is based on the angle between the real extruding direction and the ideal extruding 

direction. Fig. 6a) and b) both include one angle spring. The angle spring is a function of angle 𝛼 

between 𝐾𝑆𝑖𝑑𝑒𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝐾𝑆⃗⃗⃗⃗  ⃗.  𝐾𝑆𝑖𝑑𝑒𝑎𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is defined based on the mesh elements around the node K. For 

example, in Fig. 6a), 𝐾𝑆𝑖𝑑𝑒𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   can be defined as the average norm direction of edge AK and KB, 

which is also the direction of the bisector of angle ∠𝐴𝐾𝐵. This angle spring force acts on both 

node K and S with opposite force directions, which creates a torsion force. The reason to distribute 
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this force to both nodes instead of only to child node S is that, by this design, the information of 

node S could transfer to node K. This means if the front mesh layer from another extruding 

direction meets node S and changes its position, the position of node K could be changed to 

improve the mesh quality in that area.  

If the required number of nodes in the interior domain is much less than the number of 

nodes on boundaries, a strategy to decrease the number of mesh nodes as the mesh layer advances 

is needed. In case the number of mesh nodes on each layer needs to shrink as the mesh layer 

advances, the rules of springs are provided as follows. 

1) Springs can be either active or inactive. 

2) Edge springs that link adjacent child nodes can break. 

3) If an edge spring breaks, the forces of the involved edge and angle springs will vanish. 

4) If an edge spring breaks, the two nodes of this edge must overlap each other.   

5) Overlapping nodes merge together as one node.  

If two front mesh layers meet, several front nodes could merge. The merged node will have 

force from both front layers. Therefore, the nodes from different front layers will have interaction 

effects caused by Spring-Field force models. By these interactions, the improvement of mesh 

quality in the medial-axis area has been achieved, which is usually challenging to accomplish with 

advancing front methods. Another advantage of this spring force model is that, as shown in Fig. 6, 

the spring models in 2D and in 3D are similar. Hence, after finding proper expressions of spring 

models for the 2D cases, the extension to the 3D expressions of spring models is not very difficult 

to achieve. 

One drawback of using force models to smooth meshes is that it does not always guarantee 

a perfect force balance, which indicates that nodes may keep on oscillating and a full convergence 
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will never be achieved. The Spring-Field model faces the same challenge. However, the mass of 

each node, as a parameter in the force model, is introduced to dampen oscillation and increases the 

probability of a force balance. In this manner, if the balance of one node is not achieved after the 

total travel distance of this node increasing to a certain value, the mass of the node (with the initial 

value set to be unity) increases by a given factor, and the total travel distance of this node is reset 

to zero.  By doing this even stubborn oscillations are numerically annihilated by the enormous 

mass of the oscillated node. In such circumstances, the relative moving distance can be an 

appropriate convergence condition instead of the sum of spring force. 

 

2.2 Vector-Adding 

 

2.2.1 What is Vector-Adding? 

A Vector-Adding method serves to deform the linear mesh to the curved mesh. In general, 

the previous methods used for the deformation purpose, such as the one in Reference 17[17], 

provide new positions of deformed high-order nodes first. Then parametric curves and mesh 

elements are built based on the positions of the nodes. A Jacobian-checking process is necessary 

to detect negative-Jacobian elements. If a negative-Jacobian element is detected, this element 

needs to be deformed again and possibly the elements around it need to be deformed too, which 

can be time consuming. The proposed Vector-Adding deformation method, however, goes in an 

opposite direction. First, it tries to provide parametric positive-Jacobian mesh elements. Then, 

based on the parametric expression of these elements, it gives the new positions to the high-order 

nodes.  
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In a 2D case, the process of the deformation with Vector-Adding method is that, if a linear 

mesh has the “pipe-like” structure as shown in Fig. 7, the Vector-Adding method deforms the mesh 

elements one after another through the “pipe-like” mesh structure with stop conditions. In 2D, this 

deformation strategy can be employed for quadrilaterals and triangles. For example, if the target 

high-order mesh is quadratic, as shown in Fig. 7b), parametric triangle ∆𝐿𝑀𝑁 is constructed based 

on curved edge eA on the domain boundary and characteristic vector  𝑀𝑁⃗⃗⃗⃗⃗⃗  ⃗ (the extruding non-

curved edge MN). The new position of node 𝑃2 is obtained based on the algebraic expression of 

the triangle. Next, since curved edge 𝑁𝑃2𝐿̂ is known, parametric triangle ∆𝐸𝑁𝐿 is built along with 

characteristic vector 𝐿𝐸⃗⃗⃗⃗  ⃗ to provide node 𝑃3. A recursive process is performed through the “pipe” 

until one of the stop conditions is satisfied. Note that the edges like MN and LE still maintain their 

non-curved shape. Benefiting from this building approach, the deformation procedure can be even 

easier and faster by simply adding the proper vector on node 𝑃1 to provide the position of node 𝑃2 

(then by adding another proper vector on node 𝑃2 to provide node 𝑃3), without providing any 

algebraic expression of mesh elements. This makes the high-order mesh deformation process very 

competitive in terms of time cost. The details of how to obtain and add the proper vector to provide 

the position of the high-order nodes will be introduced in 2D mesh generation (Chapter 3). 
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(a)                                                                                              (b) 

Figure 7 Diagram of curved mesh transformation 

In a 3D case, the process of the deformation with Vector-Adding method is similar to the 

2D case above. The mesh is deformed one element at a time through the pipe-like mesh structure 

as same as a 2D case. This similarity is shown in Fig. 8. For 2D, the new curved edge (dot dash) 

is obtained based on the two vectors V1,V2, and the existed curved edge (solid). For 3D, the new 

curved facet (dot dash) is obtained based on the four vectors V1, V2, V3,V4, and the existed curved 

facet (solid). The details of how to add the proper vectors to provide the new curved facets and to 

obtain the position of the high-order nodes will be introduced in 3D mesh generation (Chapter 5). 

                                    
a)                                                               b) 

Figure 8 Diagram of Vector-Adding model extension. a) 2D Vector-Adding; b) 3D Vector-

Adding 
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2.2.2 Stop conditions 

The earlier the deformation through the pipes stop, the larger number of straight edges 

remain in the mesh, which will not only decrease the total time cost of deformation but also benefit 

the numerical solver which uses the mesh. For this purpose, several stop conditions are provided. 

One is that two neighboring child nodes overlap each other. For example, in Fig. 7a), after curve 

CurveS is given, the deformation process at that “extruding pipe” stops because the edge that links 

nodes 𝐾𝑘𝑖𝑑 and  𝐼𝑘𝑖𝑑 is set to “break” status, and that leads to the two nodes overlapping each other. 

Another stop condition is, if two deformation processes from the opposite directions meet each 

other at the same mesh element, which means two “pipes” meet at the medial-axis area, both 

deformation processes will stop. For keeping the non-curved edges as much as possible to benefit 

the CFD solver, a Jacobian-checking process can be added as the third stop condition. If, without 

deformation, the target mesh element is already a positive-Jacobian element, the deformation 

process in that “pipe” will stop. However, a minimum number of deformed mesh layers is 

necessary to describe the domain close to the geometry in a satisfied precision. If a mesh element 

that belongs to the mesh layer whose index is smaller than the given minimum number of deformed 

layers, the deformation process will continue regardless of the Jacobian-checking stop conditions.  

One limitation of this deformation approach is that if two “pipes” from the opposite 

extruding directions meet each other at a negative-Jacobian mesh element, based on the second 

stop condition both deformation processes stop and a negative Jacobian in the mesh element would 

remain. Even if both deformations operate, these two processes will have adverse effects on each 

other and a positive Jacobian of that mesh element cannot be guaranteed. That means if the 

extruding “pipes” meet at a mesh element that has a long and narrow shape in the boundary layer 
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area, without extra adjusting procedures being added into the routine, the high probable positive-

Jacobian deduction cannot be used on that mesh element.  

2.2.3 Positive Jacobian  

The reason that the deformed mesh element has a high probability to be positive-Jacobian 

lies in the angle between computational coordinate isoclines.  This will be explained in 2D mesh 

generation (Chapter 3) and 3D mesh generation (Chapter 5) respectively. 
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CHAPTER 3 

 

2D MESH GENERATION 

 

If geometry repair and reconstruction are not considered, the lowest level of curved viscous 

mesh generation hierarchy is the boundary mesh generation. In this research, the 2D mesh 

generation could be divided into three procedures: the boundary mesh generation procedure, the 

linear domain mesh generation procedure and the curved domain mesh generation procedure. The 

boundary mesh generation procedure provides boundary meshes for the linear domain mesh 

generation procedure and the curved domain mesh generation procedure. The linear domain mesh 

generation procedure provides linear domain meshes for the curved domain mesh generation 

procedure. The curved domain mesh generation procedure provides the curved mesh for the finite 

element solver in the application cases where the viscous boundary layer mesh is needed.  

Section 3.1 introduces the 2D boundary mesh generation procedure and the meshes 

generated by this procedure. Section 3.2 introduces the 2D linear domain mesh generation 

procedure and the meshes generated by this procedure. Section 3.3 introduces the 2D curved high-

order domain mesh generation procedure, the meshes generated by this procedure, and the CFD 

results based on the high-order mesh. In Section 3.2, the original AFSF and the improved AFSF 

methods are used to generate the linear mesh. In Section 3.3, Vector-Adding method is used to 

deform the obtained linear domain meshes, which are introduced in Section 3.2, to the curved high-

order meshes.  The linear and curved mesh results are analyzed in these sections.  
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3.1 Boundary Mesh Generation Procedure  

 

3.1.1 Linear boundary mesh generation 

The mesh quality in this phase is essential because errors, such as overly dense or sparse 

spacing, will be propagated up the mesh generation hierarchy[62]. A good boundary mesh can be 

measured using two views: 

1) The curve segments with large curvature are described by sufficient nodes. 

2) The growth ratio, i.e., the length of a segment divided by the length of a topologically adjacent 

segment14 should deviate from unity broadly enough to keep representation efficiency, while 

being close enough to unity to avoid negative effects on numerical solvers. 

Based on this analysis, it is reasonable to treat the mesh node spacing 𝑙𝑝, which is used for 

distributing nodes on boundaries, as a function of curvature 𝜅 and given growth ratio 𝑔𝑔𝑖𝑣𝑒𝑛 : 

𝑙𝑝 = 𝑓(𝜅, 𝑔𝑔𝑖𝑣𝑒𝑛) 

By such a definition, the node spacing 𝑙𝑝 can reflect the two key features concerned (𝜅 and 

𝑔𝑔𝑖𝑣𝑒𝑛). In this research, to further extend the definition, the mesh node spacing 𝑙𝑝, as shown in 

Eq. (1), is defined as a function of 𝑔𝑔𝑖𝑣𝑒𝑛 , approximated curvature 𝜅𝑎𝑝𝑟𝑜 , maximum length 

limitation 𝛿, refinement angle 𝛼𝑟𝑒𝑓𝑖𝑛𝑒, and the first extruding length 𝑙𝑒𝑥𝑡𝑟𝑢 of 2D domain mesh 

generation. The advantage of this definition is that it allows 𝑙𝑝 to reflect  𝜅 and 𝑔𝑔𝑖𝑣𝑒𝑛, which are 

the two key features, while taking 2D domain mesh generation ( 𝑙𝑒𝑥𝑡𝑟𝑢 ) into consideration. 

Furthermore, with a global input parameter 𝛼𝑟𝑒𝑓𝑖𝑛𝑒, it could provide different levels of the total 

number of mesh nodes on boundaries.  

 𝑙𝑝 = 𝑓(𝜅𝑎𝑝𝑟𝑜 , 𝑔𝑔𝑖𝑣𝑒𝑛, 𝛼𝑟𝑒𝑓𝑖𝑛𝑒 , 𝛿, 𝑙𝑒𝑥𝑡𝑟𝑢) (1) 
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where the definition of approximated curvature 𝜅𝑎𝑝𝑟𝑜 is the same as the one in Ref. [62]: 

 

Figure 9 Approximated curvature 𝜅𝑎𝑝𝑟𝑜, refinement angle 𝛼𝑟𝑒𝑓𝑖𝑛𝑒 and local spacing length 

limitation 𝑙𝛼 

𝜅𝑎𝑝𝑟𝑜 =
1

𝑅
 (2) 

 As shown in Fig. 9, R is the radius of the circle passing point B and its geometry neighbor 

points A and C. Since curvature 𝜅𝑎𝑝𝑟𝑜 is used instead of the real curvature, the geometry points 

must be dense enough to allow 𝜅𝑎𝑝𝑟𝑜 to represent the real curvature with a satisfied precision.  

A local spacing length limitation 𝑙𝛼 is introduced and defined as a function of radius R and 

refinement angle 𝛼𝑟𝑒𝑓𝑖𝑛𝑒:  

𝑙𝛼 = 𝑓(𝛼𝑟𝑒𝑓𝑖𝑛𝑒, 𝑅)  (3) 

where 𝛼𝑟𝑒𝑓𝑖𝑛𝑒 is angle ∠𝐴𝐵𝐶 as a global input factor as shown in Fig. 9. Note that Eq. (3) is the 

basic definition of 𝑙𝛼. This local spacing length limitation 𝑙𝛼 could be further adjusted in some 

special sections of the boundary, as discussed in the following main procedure for the boundary 

mesh generation. Based on Eq. (3), if node spacing 𝑙𝑝 is a function of 𝑙𝛼, it is a function of 𝛼𝑟𝑒𝑓𝑖𝑛𝑒. 
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The strategy of using 𝛼𝑟𝑒𝑓𝑖𝑛𝑒 to control 𝑙𝑝 is similar to the approach described in Ref. [63].  The 

real expression of node spacing 𝑙𝑝 in practice is: 

𝑙𝑝 = 𝑓(𝑔𝑔𝑖𝑣𝑒𝑛, 𝑙𝛼, 𝛿, 𝑙𝑒𝑥𝑡𝑟𝑢)             (4) 

By substituting (2) into (3) and (3) into (4), the Eq. (1) is obtained. Given this node spacing 

function, the domain boundary mesh generator is provided. The main procedure of the linear 

boundary mesh generation is as follows: 

1) Calculate 𝑙𝛼 of each discretized geometry point, and pick the break points to be the points 

whose 𝑙𝛼 are smaller than their right and left neighbor points. Give 𝑙𝑝 at each break point. 

2) Take mesh quality in the medial-axis area into consideration in a refinement step (optional). 

Based on these break points, check 𝑙𝛼 in each geometry point. If 𝑙𝛼 is larger than length 

requirement 𝑙𝑟𝑒𝑞𝑢𝑖𝑟𝑒 that is calculated by 𝑔𝑔𝑖𝑣𝑒𝑛 and the distance between the break point 

and the target geometry point, specify 𝑙𝛼 of this geometry point as 𝑙𝑟𝑒𝑞𝑢𝑖𝑟𝑒. After checking 

all the geometry points, step 1 is repeated. At this stage, the boundaries have been separated 

into piecewise intervals by the break points. 

3) For each interval, generate an unstructured 1D mesh. This generation is based on two 𝑙𝑝 of 

the two nodes at both ends of each interval, 𝑙𝛼 of each geometry point in this interval and 

growth ratio 𝑔𝑔𝑖𝑣𝑒𝑛 . If 𝜅𝑎𝑝𝑟𝑜  on each geometry node is in a satisfied precision and the 

curvature 𝜅 between any two neighboring discretized geometry nodes can be approximated 

by linear interpolation and is sufficiently precise, each node spacing should be smaller than 

the minimum 𝑙𝛼 of geometry points on the interval matched to that same node spacing. 

4) Combine all piecewise intervals to build a boundary mesh.  

One limitation of this approach is, though the optional refinement step can improve mesh 

quality in medial-axis area, which is shown in the result section, it cannot guarantee the similar 
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size of mesh cells when nodes meet at the medial-axis area. The reason is that this refinement 

approach is only based on the distance between nodes but it does not take the mesh advancing 

directions of nodes into consideration. In the future, this step could be further developed.    

 

3.1.2 Curved boundary mesh generation 

For curved viscous mesh generation, a curved geometry is required. Base on it, a curved 

boundary mesh is generated. Based on the curved boundary mesh, the interior linear domain mesh 

is deformed. In this research, the curved geometries are described by their piecewise algebraic 

expressions. These algebraic expressions are obtained by building piecewise 6-degree Hermit 

curves with equal first and second derivatives on each input discretized geometry node. The first 

and second derivatives on each discretized geometry node are determined by building a Lagrange 

polynomial with the target node as the center of interpolation. Based on these curved geometries, 

the curved boundary meshes are obtained. The method used to generate linear boundary meshes 

introduced in the above section, is employed here to provide the curved boundary meshes. The 

only difference between generating a linear boundary mesh and a curved boundary mesh with this 

method is that, for a curved mesh, the algebraic expressions of the geometry curves are used to 

obtain the positions of the mesh nodes. 

 

3.1.3 Mesh results 

To verify the boundary mesh generation methodology proposed above, two examples are 

provided: a bat shape boundary mesh and the 30P30N airfoil boundary mesh.  

 

https://en.wikipedia.org/wiki/Polynomial_interpolation
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3.1.3.1 Bat Shape Geometry 

The wingspan of the bat is 60. The initial extruding length is 0.0005, which is used to 

provide 𝑙𝑝 of the nodes at sharp corners in this boundary mesh generation procedure. Note that this 

initial extruding length is also used in the 2D mesh generation. The growth ratio 𝑔𝑔𝑖𝑣𝑒𝑛 in this 

boundary mesh generation section is 1.3. The representations of parametric curves on the boundary 

are quadratic polynomials as same as the ones in the domain. The total number of extruding layers 

is 51. 

 

Figure 10 Bat shape linear domain boundary mesh 

Fig. 10 shows the linear boundary mesh provided by the automated domain boundary mesh 

generation procedure. It illustrates that the boundary mesh generation method captures and 

describes the large curvature regions by inserting more nodes. Meanwhile, nodes are distributed 

efficiently and smoothly under the influence of the given growth ratio.  
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3.1.3.2 30P30N airfoil 

30P30N airfoil is a Three-Element airfoil designed by NASA. The first extruding length in 

this example is 0.000005. The growth ratio 𝑔𝑔𝑖𝑣𝑒𝑛 in this boundary mesh generation section is 1.3 

or 1.4 in different test cases. As shown in Fig. 11, the linear domain boundary mesh has a smooth 

node distribution with more nodes along the large-curvature boundary sections.  

 

Figure 11 Close view of the slat of 30P30N airfoil quadratic boundary mesh 

For curved boundary meshes, the piecewise quadratic and cubic polynomials are used to 

represent the piecewise curves. These results will be introduced in Section 3.3.2, which contains 

the curved domain mesh results. 

 

3.2 Linear Domain Mesh Generation Procedure 

Based on the obtained linear and curved boundary meshes, the linear and curved domain 



28 

 

meshes can be generated by AFSF method and Vector-Adding method. The mesh generator in this 

procedure produces unstructured linear domain meshes with the viscous mesh layer. The mesh 

elements in output meshes are naturally a hybrid type made of mixed quadrilaterals and triangles. 

This type of mesh requires vastly fewer elements than the pure triangular mesh to achieve the same 

degree of numerical resolution[64]. However, a pure triangular mesh can be provided by simply 

dividing all quadrilaterals into triangles.  

The linear domain mesh generation are presented here using the Advancing-Front-Spring-

Field method. Different from a classic advancing-front method, each inserted node and the nodes 

surrounding it have several interaction effects from a force model Spring-Field. Recall the Spring-

Field force model described in Chapter 2. This force model smooths the mesh to avoid mesh 

quality problem caused by the advancing-front concept in medial axis area or in the sharp corner 

area.  

In Section 3.2.1., the procedure of the linear domain mesh generation is introduced. In 

Section 3.2.2 and Section 3.2.3, the original AFSF method and the improved AFSF are introduced. 

 

3.2.1 Procedure of the linear domain mesh generation 
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Figure 12 Procedure of the linear domain mesh generation 

 

Figure 13 Front node merging sketch 

Fig. 12 shows the main procedure of the linear domain mesh generation. The force 
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equations are solved explicitly. At the step where the spring force balances, there is no need to 

move all mesh nodes. Normally for a better mesh quality, three moving mesh layers are enough. 

The strategy of finding front-merging nodes is shown in Fig. 13. Suppose from time 0 to 1, kid 

node 𝑂𝑠 moves from the position of its parent node K to its current position, which is obtained by 

adding the extruding vector on parent node K. 𝐴′, 𝐵′, 𝐶′, 𝐷′ are the child nodes the same as 𝑂𝑠. 

That means the edge BC moves from its initial position with time t=0 to 𝐵′𝐶′ with time t=1. The 

distance 𝐷𝑖𝑠𝑏𝑐 between node 𝑂𝑠  and the line that contains edge BC is a known function of t. Find 

the smallest  𝐷𝑖𝑠𝑏𝑐_𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡  at  𝑡𝑑   in 𝑡 ∈ [0,1]  and compare it with the other 

distances 𝐷𝑖𝑠𝑎𝑏_𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 ,  𝐷𝑖𝑠𝑐𝑑_𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡… to find the edge which has the smallest Dis. And if the 

smallest distance is smaller than a given global factor 𝐷𝑖𝑠𝑗𝑢𝑑𝑔𝑒 (for example,  𝐷𝑖𝑠𝑗𝑢𝑑𝑔𝑒 = 0.1𝐷𝐷′̅̅ ̅̅ ̅ 

), this edge is chosen to be the front-merging edge. Note that if at time 𝑡𝑑, the node 𝑂𝑠 is not “on 

top of” the edge, the edge cannot be chosen as the front-merging edge. For this reason, in Fig. 12, 

edge 𝐴′𝐵′ cannot be chosen as the target edge. After the front-merging edge is found, like 𝐵′𝐶′ in 

Fig. 13, either node 𝐵′ or 𝐶′, whichever is closer to node 𝑂𝑠 during time 𝑡 ∈ [0, 1], is selected to 

be the front-merging node to node 𝑂𝑠. Then the target node is linked to its front-merging node by 

a new edge with the status set to “break”, which leads the two nodes (𝑂𝑠 and 𝐵′) to overlap each 

other. This strategy is to stimulate a tissue growth circumstance: the tissue grows from the original 

surface layer by layer until it runs out of space. 

 

3.2.2 Original AFSF method and mesh results 

 

3.2.2.1 Spring models 

Recall three types of spring could be designed for the Spring-Field model. They are 
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extrusion edge spring, neighboring edge spring, and angle spring. The three spring force models 

in the original AFSF method are described as follows: 

 

Figure 14 The edge spring model linking the parent and child nodes 

The first is the edge spring model in the domain mesh extruding direction. This type of 

edge spring links the parent and child nodes. In Fig. 14, node P is node K’s parent node, node K is 

node 𝑂𝑠’s parent. There are two edge springs shown in Fig. 14, PK and 𝐾𝑂𝑠. Each of them has a 

given ideal length 𝑙𝑖𝑑𝑒𝑎𝑙 and a real length 𝑙𝑟𝑒𝑎𝑙. The force model is   

𝐹𝑒𝑥𝑡𝑟𝑢_𝑒𝑔 = 𝐾𝑒𝑥𝑡𝑟𝑢_𝑒𝑔 × 
𝑙𝑖𝑑𝑒𝑎𝑙 − 𝑙𝑟𝑒𝑎𝑙

𝑙𝑖𝑑𝑒𝑎𝑙 + 𝑙𝑟𝑒𝑎𝑙
 

where 𝐾𝑒𝑥𝑡𝑟𝑢_𝑒𝑔 is the extruding edge spring coefficient, which is set to be 1 in the numerical 

examples in the mesh result section. The ideal length 𝑙𝑖𝑑𝑒𝑎𝑙 is a given global value that grows 

exponentially as the mesh layer increases. For edge 𝐾𝑂𝑠, 𝑙𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝐾𝑂𝑠 = 𝑙𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝑃𝐾 × 𝐺𝑟𝑎𝑡𝑖𝑜 , 

where 𝐺𝑟𝑎𝑡𝑖𝑜 is a given mesh extruding growth factor (e.g. 1.1,1.2,1.3… etc.). The force direction 

of edge spring 𝐾𝑂𝑠 is identical to vector 𝐾𝑂𝑠
⃗⃗ ⃗⃗ ⃗⃗  ⃗ . The purpose of this spring type is to push the child 

nodes to the designed target positions, and away from their parent nodes and mesh boundaries.  
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Figure 15 The edge spring model linking adjacent child nodes 

The second is the edge spring model in the “neighbor” direction. This type of edge spring 

links the adjacent child nodes. In Fig. 15, there is only one edge spring model of this type, shown 

as A-K-B. The force model is    

𝐹𝑛𝑒𝑖_𝑒𝑔 = 𝐾𝑛𝑒𝑖_𝑒𝑔 × 
𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐴𝐾 − 𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝐵

𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐴𝐾 + 𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝐵
 

where 𝐾𝑛𝑒𝑖_𝑒𝑔  is the extruding edge spring coefficient, which is set to be 1 in the numerical 

examples in the mesh result section. The force direction of this spring model A-K-B is as same as 

vector 𝐾𝑁⃗⃗⃗⃗⃗⃗ , that is perpendicular to vector 𝑃𝐾⃗⃗ ⃗⃗  ⃗, where node P is node K’s parent node. The purpose 

of this spring type is to dissipate the difference between lengths of neighbor-direction edges 

inheriting from the difference of lengths of the edges in the boundary mesh.  

 

Figure 16 The angle spring model 
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The third is the angle spring model, as A-K-B-𝑂𝑠 shown in Fig. 16. The angle spring model 

contains four nodes A, K, B, 𝑂𝑠 and three edges AK, KB, 𝐾𝑂𝑠. Vector 𝐾𝑆⃗⃗⃗⃗  ⃗ is the bisector of angle 

∠𝐴𝐾𝐵 . Angle 𝛼  is angle ∠𝑆𝐾𝑂𝑠 . The angle spring force can be specified by two different 

functions of angle 𝛼. One is a simple linear force function (linear in terms of 𝛼𝑎𝑝𝑝𝑟𝑜). The force 

of angle spring is defined as   

𝐹𝐴−𝐾−𝐵−𝑂𝑠
= 𝐾𝑎𝑛𝑔 × 

𝛼𝑎𝑝𝑝𝑟𝑜

𝐹𝑎𝑐𝐴
× 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒 

where 𝐾𝑎𝑛𝑔 is the angle spring coefficient, which is set to be 1 in the mesh result section.  𝛼𝑎𝑝𝑝𝑟𝑜 =

180
𝑠𝑖𝑛𝛼

𝜋
.  𝑠𝑖𝑛𝛼 is used instead of 𝛼 to decrease computation cost. 𝐹𝑎𝑐𝐴  is a prescribed global 

coefficient used to control the stiffness of the angle spring and is set to be 20 in the mesh result 

section. As 𝐹𝑎𝑐𝐴 decreases, the angle spring becomes stiffer. The 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒 is: 

𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒 =  𝑚𝑖𝑛 (𝐹𝑎𝑐𝐵,
𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐴𝐾 + 𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝐵

𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝑂𝑠 + 𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝑂𝑠
) 

It is used to distinguish anisotropic mesh elements from isotropic ones. As a mesh element 

becomes wider (larger 
𝐴𝐾̅̅ ̅̅

𝐾𝑂𝑠̅̅ ̅̅ ̅̅
 𝑜𝑟 

𝐾𝐵̅̅ ̅̅

𝐾𝑂𝑠̅̅ ̅̅ ̅̅
 ), its 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒 becomes larger, so the matched angle spring 

becomes stiffer. 𝐹𝑎𝑐𝐵 is a prescribed global coefficient to control the range of 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒 and is 

set to be 50 in the mesh result section. It is used to avoid unnecessary large angle spring force 

caused by the highly anisotropic mesh element (
𝐴𝐾̅̅ ̅̅

𝐾𝑂𝑠̅̅ ̅̅ ̅̅
 𝑜𝑟 

𝐾𝐵̅̅ ̅̅

𝐾𝑂𝑠̅̅ ̅̅ ̅̅
 is large). The other angle spring 

force function is a nonlinear one defined as: 

𝐹𝐴−𝐾−𝐵−𝑂𝑠
= 𝐾𝑎𝑛𝑔 × {𝑡𝑎𝑛ℎ [𝐹𝑎𝑐𝐶(𝛼𝑎𝑝𝑝𝑟𝑜 − 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒) − 𝑡𝑎𝑛ℎ[𝐹𝑎𝑐𝐶(−𝛼𝑎𝑝𝑝𝑟𝑜 − 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒)]} 

where 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒 =  𝑚𝑖𝑛 (𝐹𝑎𝑐𝐷 ,
𝐹𝑎𝑐𝐸

𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐴𝐾+𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝐵

𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝑂𝑠+𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝑂𝑠

) and 𝐹𝑎𝑐𝐶 , 𝐹𝑎𝑐𝐷 , 𝐹𝑎𝑐𝐸 are given global 

coefficients used to control the stiffness of angle springs. As shown in Fig. 17, this force model 
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has a better control of 𝛼𝑎𝑝𝑝𝑟𝑜 due to the steep change, which could be adjusted by 𝐹𝑎𝑐𝐶. 

However, since the convergence speed is much slower than the first angle spring function, all the 

test cases in the mesh result section use the first linear function. 

 

Figure 17 The angle spring model- type2 

The angle spring contributes a force on node K as:  

𝐹_𝐾𝑎𝑛𝑔 = 𝐶𝑝𝑒𝑟𝑐𝑒𝑛𝑡 × 𝐹𝐴−𝐾−𝐵−𝑂𝑠
 

and a force on node 𝑂𝑠 as: 

𝐹_𝑂𝑠𝑎𝑛𝑔
= (1 − 𝐶𝑝𝑒𝑟𝑐𝑒𝑛𝑡) × 𝐹𝐴−𝐾−𝐵−𝑂𝑠

 

where 𝐶𝑝𝑒𝑟𝑐𝑒𝑛𝑡 is a given global coefficient. The force direction of the angle spring on node 𝑂𝑠 is 

the same as vector  𝑂𝑠𝑁⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the force direction of the angle spring on node K is the same as vector 

𝑁𝑂𝑠
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ . The purpose of this spring type is to keep the extruding direction of node 𝑂𝑠 close to the 

direction of the bisector 𝐾𝑆⃗⃗⃗⃗  ⃗ to benefit mesh quality.   
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Figure 18 A spring model diagram 

Note that if node K in Fig. 18 is on the front mesh layer, there will be no child node 𝑂𝑠 of 

node K because node K is the youngest generation. On the other hand, when the two front layers 

meet, node 𝑂𝑠 could be found from the opposite front layer, the edge spring in that position will 

be activated but the status is set to break (length=0) to force the node 𝑂𝑠  to overlap node K. 

Therefore, the nodes from different front layers will have interaction effects caused by Spring-

Field force models. By these interactions, the improvement of mesh quality in the medial-axis area 

has been made, which is a common challenge to advancing front methods. However, since in the 

original AFSF method, the node-edge structure only allows one node to have four nodes linked to 

it with edges, such as shown in Fig. 18, the node-overlapping strategy could lead to a robustness 

issue when multiple nodes overlap in one position. The improved AFSF method has solved this 

robustness issue, which will be introduced in Section 3.2.3.   

 

3.2.2.2 Mesh results 

To verify the original AFSF method, two examples are provided: a bat shape geometry and 

30P30N airfoil. The first is the bat shape geometry. The linear domain mesh is generated based on 

the previous obtained bat shape linear boundary mesh. Two cases are tested with inward and 

outward extruding directions, respectively. The wingspan of the bat is 60. The initial extruding 
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length in both cases is 0.0005. The growth ratio in the domain mesh extruding direction is 1.3. The 

total number of extruding layers is 51. 

 

Figure 19 The bat shape inward extruding mesh with mixed elements 

Fig. 19 shows the bat shape inward extruding mesh with mixed elements. It is a hybrid 

mesh. Most of the mesh elements are quadrilaterals, which could benefit the numerical solvers by 

decreasing computational cost. It also illustrates that the mesh quality is good in the medial-axis 

area. 
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    a)                                                                    b) 

           

   c)                                                                      d) 

Figure 20 Close view of the bat shape inward and outward extruding meshes. a) head part of the 

outward mesh with pure elements; b) tail part of the outward mesh with pure elements; 

c) wing part of the inward mesh with mixed elements; d) head part of the inward mesh 

with mixed elements 

Fig. 20 shows details of the linear domain viscous meshes as intermediate outputs. The 

meshes grow smoothly, and at medial-axis area, they are in satisfactory quality. In addition, there 

is no obvious transition areas between the boundary layer mesh and the domain interior mesh, 

which supports the good mesh qualit



38 

 

              

a)                                                                      b) 

Figure 21 A part of the bat shape of the inward extruding meshes. a) Without the refinement 

step; b) With the refinement step described in Section 3.1 

Fig. 21 shows the comparison between parts of the inward linear domain meshes with and 

without the refinement step described in Section 3.1. It illustrates that the mesh quality is improved 

due to a smoother change in cell sizes with the refinement step in the advancing front closing area. 

Note that the mesh in Fig. 21b) is an unfinished one. The whole mesh with the refinement step 

cannot be obtained by the same input coefficients of the unrefined one. A lack of robustness of the 

current code implemented based on the original AFSF method causes this situation and the input 

coefficients need to be changed to obtain a whole mesh in the refinement step. 

Second, three 30P30N airfoil cases are tested. The first extruding length in all cases is 

0.000005. The growth ratio 𝑔𝑔𝑖𝑣𝑒𝑛 of the input boundary mesh is 1.4, 1.3 and 1.4, respectively. 

Note the boundary meshes used here are obtained with the previous boundary mesh generation 

procedure. The growth ratio in the domain mesh extruding direction is 1.4, 1.3 and 1.3, 

respectively. The total number of extruding layers is 51. The following figures in this section are 

all from case 1.  

Fig. 22 shows details of the hybrid linear viscous mesh, and Fig. 23 shows the whole view. 
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These figures illustrate that the number of quadrilaterals is much larger than that of triangles, which 

could benefit the numerical solvers by decreasing computational cost.  

 

a)                                                                b) 

Figure 22 Close view of 30P30N airfoil linear mesh with mixed elements, a) the slat zone; b) the 

trailing edge of the main-element 

 

Figure 23 30P30N airfoil mesh with mixed elements 
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Table 1 shows an obtuse triangle distribution, defined in linear triangular meshes, which 

are provided by the linear viscous domain mesh generation procedure. O-tri indicates obtuse 

triangles. Since triangles with large obtuse angles in meshes have a negative effect on numerical 

solvers, Table 1 indicates that these meshes do not only look good but have a fine quality, which 

provides a strong support to this high-order viscous mesh generation methodology.  

Table 1 Triangle distribution in terms of obtuse angle value 

Mesh case 

name 

Total number of 

triangles 

O-tri with α ∈

[95°, 105°] 

O-tri with α ∈

[105°, 115°] 

O-tri with α ∈

[115°, 125°] 

O-tri with α ∈

[125°, 180°] 

30P30N in case 

1 

21661 1431 57 0 0 

30P30N in case 

2 

31734 1011 105 1 0 

30P30N in case 

3 

28425 745 66 0 0 

Bat shape 

outward 

45850 1121 124 3 0 

Bat shape 

inward 

31493 614 35 12 0 

Table 2 Time cost of the linear domain mesh generation 

 Bat inward Bat outward 

Quadratic 

30P30N(case1) 

Cubic 

30P30N(case1) 

Time cost 

(unit: second) 

11 13 6 6 
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Table 2 shows the time cost of four high-order mesh generation cases in this section. These 

four cases are performed using Intel®Core(TM) i7-3632QM 2.20GHz. The Jacobian-checking 

process is not counted for the time cost because different methods of Jacobian-checking lead to 

different time cost. Note that most time cost is in the force balancing process. Hence, this mesh 

generation method highly relies on force models and their input parameters, such as angle spring 

and edge spring coefficients. For example, if the non-linear angle spring model is used in the 

30P30N cases, the time cost could be tenfold.  

 

3.2.3 Improved AFSF method and mesh results 

To increase the robustness of the AFSF method and to serve the mesh movement and mesh 

morphing, two major adjustments are made to the original AFSF method, which cause an increase 

of robustness as expected. They are described in the following section 3.2.3.1. 

 

3.2.3.1 Two main adjustments 

One adjustment is changing the advancing-front framework from node-based to edge-

based. The advancing-front algorithm in AFSF method is a point based approach as shown in 20 

(a).  Suppose nodes A, K and B belong to mesh layer i, node P belongs to mesh layer i-1 and node 

𝑂𝑠 belongs to mesh layer i+1. Then node K is the next generation of node P and node 𝑂𝑠 is the 

next generation of node K. Based on this framework, the maps of points to points, points to edges, 

etc. are given. Different from this framework, in the improved AFSF method, an edge-based 

advancing-front framework is employed as shown in Fig. 24b). Edge m is the next generation of 

edge l and edge n is the next generation of edge m. Since node P' and node Q' overlapped each 
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other, there is no offspring of edge n. The advantage of this framework is that it can significantly 

simplify the maps and the implementation of codes. And the “family tree” of the edge procedurally 

matches the “Pipe” structure used for high-order mesh generation as shown in Figure 25. This 

match benefits the implementation of high-order mesh generation in programming.  

                              

a)                                                              b) 

Figure 24 Diagrams of the advancing-front method. a) diagram of the point based advancing-

front; b) diagram of the edge based advancing-front 

 

Figure 25 The pipe-like mesh structure 
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Figure 26 The robustness issue diagram 

     The other adjustment is adding one more node layer framework as a “super node” layer. In the 

previous AFSF method, the front-nodes-merging situation faces a robustness issue especially when 

the mesh extrudes inwards such as shown in Fig. 26. This robustness issue is described as follows. 

In Fig. 26, node A, B and C all have one child node and their child nodes should overlap each other. 

So do nodes D, E, F and G. The previous strategy in the original AFSF method to deal with 

overlapped nodes from opposite extruding directions is: an edge is generated between these two 

nodes and the edge state is set to break to force the two nodes to overlap. But in Fig. 26, there are 

multiple nodes overlapping from different extruding directions, thus the previous strategy cannot 

suit this case well.  To overcome this barrier and to improve the robustness of AFSF method, a 

new type of node named “super node”, is created. Accordingly, the original mesh node is called 

the basic node. The basic-super node system has the following rules: 

1) Each basic node has a super node attached to it. 

2) Each basic node shares the same coordinate value with its super node.  

3) One basic node can only map to one super node. One super node can map to multiple basic 

nodes. 

4) If several basic nodes overlap, only one super node is active in that group. This super node 

will absorb all basic nodes at this overlapped location and the other super nodes are 
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deactivated.  

5) Edges link to basic nodes. So do all the spring models.  

Generally, basic nodes are responsible for the interaction with other mesh elements such as 

edges, quad-like structures and springs. Super nodes are responsible for gathering, broadcasting, 

and changing mesh values such as node coordinates. The super node does not only act as the 

representative of a group of overlapped basic nodes, but also as a representative of one single basic 

node if that is all it contains. Take the cases in Fig. 26 as an example, now node A, B and C just 

need to be absorbed into one super node (such as node A’s super node). Then they will overlap 

each other, without producing any new nodes, which is a process that works the same for nodes 

D, E, F and G. The robustness obtains improvements not only by a better overlapped-nodes 

strategy but also by a clarifying code structure because the operations on mesh nodes now can be 

divided into two layers. Note that the 3D case is a different story. In 3D cases, the system of nodes 

and super nodes increases the difficulty level of implementation of the AFSF method, especially 

on the mesh topology changing.  

After the above adjustments, several mesh-moving cases have been tested. Some results 

show the AFSF method needs to be further adjusted to benefit mesh movement. These further 

adjustments are not described here but are described in Chapter 4, which introduces the 2D mesh 

movement and morphing by the improved AFSF method.  

After all these adjustments, several mesh generation cases have been tested. The results are 

shown in the following section 3.2.3.2. 
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3.2.3.2 Mesh Results 

In this section, all the triangular meshes are generated from mixed-element meshes by 

simply cutting the quads into triangles.  

Recall that by the original AFSF method, a bat shape inwards-extruding mesh cannot 

always be generated due to the lack of robustness, which is shown in the mesh results section in 

Section 3.2.2. By the improved AFSF method, now this mesh generation approach can not only 

handle the original bat shape mesh case with variable input factors such as first extruding length 

and the domain mesh growth ratio, but also can handle more complex geometries as shown in Fig. 

27 and Fig. 28.  

Six cases have been tested. First, three mixed-bat-airfoil cases are tested as shown in Fig. 

27. The wingspan of the bat is 60 units. The initial extruding length of the first mesh layer is  

1 × 10-4 units in all cases. The boundary mesh and the domain mesh growth ratios are the same. 

And the values for each case are 1.3, 1.4 and 1.5. The last three are SimCenter-logo cases, where 

the geometry is obtained from the reference[65]. The initial extruding length of the first mesh layer 

is  5 × 10-5 units in all cases. The boundary mesh and the domain mesh growth ratios are the same. 

And the values for each case are 1.3, 1.4 and 1.5. Fig. 28 shows the SimCenter logo case with a 

growth ratio of 1.3.   
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a) 

 

b) 
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c) 

Figure 27 Mixed-bat-airfoil mixed-elements meshes. a) with growth ratio 1.3; b) with growth 

ratio 1.4; c) with growth ratio 1.5 
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Table 3 shows the obtuse triangle distribution for variable triangular mesh cases. The 

triangular meshes are obtained by simply cutting quads of mixed-element meshes into triangles. 

In all six cases in Table 3, there is no angle bigger than 135 degrees. It indicates that the improved 

AFSF method preserves the high mesh quality. 

Table 3 Obtuse triangles distribution for multiple cases 

Mesh case 

name 

Total number 

of triangles 

O-tri with  α ∈

[95°, 105°] 

O-tri with  α ∈

(105°, 115°] 

O-tri with  α ∈

(115°, 125°] 

O-tri with  α ∈

(125°, 135°] 

Bat-airfoil-1.3 71731 13777 7953 1167 13 

Bat-airfoil-1.4 47618 9703 5514 774 26 

Bat-airfoil-1.5 35692 7792 3981 576 7 

Sim-logo-1.3 89058 17127 334 74 2 

Sim-logo-1.4 63013 13410 399 85 12 

Sim-logo-1.5 49378 10933 721 119 14 

 

Since the node distribution highly relies on the spring models, different spring model 

coefficients lead to different obtuse triangles distribution. Generally, the coefficients that lead to a 

larger angle spring force lead to a better-averaged mesh quality in terms of obtuse angles, but 

sometimes several triangles with a large obtuse angle (140 to 150 degrees) are generated in the 

front-edge-merging area. In consideration of an extension to 3D cases, it is valuable to provide a 
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solution depending on spring models only, though these large angles could be simply fixed by a 

Delaunay re-triangulation.   

 

3.3 Curved Mesh Deformation Procedure 

The curved domain mesh is generated by deforming the previous generated linear domain 

mesh with Vector-Adding method. Recall that the Vector-Adding method deforms the mesh 

elements one after another through the “pipe-like” mesh structure with stop conditions, as shown 

in Fig. 29. There are several stop conditions of the deformation process provided to benefit the 

numerical solver as described in Chapter 2. An unstop condition is also provided to keep a 

minimum number of deformed mesh layers to describe the domain close to the geometry in a 

proper precision.  

             

a)                                                                                 b) 

Figure 29 Diagram of curved mesh transformation. a) The pipe-like mesh structure; b) The zig-

zag trace of the high-order nodes 
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3.3.1 Positive Jacobian 

Fig. 30 shows how to build a parametric quadratic triangle ∆𝐴𝐶𝐴′ with a high probability 

of positive-Jacobian quality with Vector-Adding method. First, based on nodes A, B, and C, which 

are given by the previous described boundary mesh generation method, a quadratic curve 

𝐴𝐵𝐶̂ (  𝑥 = 𝑓(𝜉), 𝑦 = 𝑔(𝜉) ) is built. Supposing 𝑉𝑒𝑐1 = {
𝑋𝑣

𝑦𝑣
}, which is given by the previous 

described AFSF linear mesh generation method, the algebraic expression of parametric quadratic 

triangle ∆𝐴𝐶𝐴′ is given as: {
𝑥 = 𝑓(𝜉) + 𝑋𝑣𝜂

𝑦 = 𝑔(𝜉) + 𝑦𝑣𝜂
}, within a certain range of (𝜉, 𝜂). By specifying this 

expression, it is easy to find the position of node 𝐵′. Note that in general the position of node 𝐵′ 

could be obtained by simply adding the vector  
1

2
𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗   on node 𝐵 without building any parametric 

curve or mesh element. The position of the node 𝐵′ obtained in this way is the same as calculating 

the position of the node 𝐵′ through the expression of the parametric triangle ∆𝐴𝐶𝐴′. Since the final 

output mesh provided to the finite element solver includes only the nodes’ positions without any 

algebraic expression information, in practice, there is no need to find the parametric expression of 

the triangle  ∆𝐴𝐶𝐴′.  

 

Figure 30 Vector-Adding sketch 
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For the quadrilateral mesh element, the Vector-Adding method follows the same routine. 

For example, in Fig. 30, to find the position of node D in quadrilateral 𝐴𝐶𝐸𝐴′ based on boundary 

curve 𝐴𝐵𝐶̂, two non-curved edges 𝐴𝐴′ and CE and the position of node B are needed. The position 

of node D = the position of node B +  
1

2
𝐴𝐴′⃗⃗ ⃗⃗ ⃗⃗   +  

1

2
𝐶𝐸⃗⃗⃗⃗  ⃗.  

In the following, an explanation is provided on the property of producing the high 

probability of positive-Jacobian in triangles. Based on the algebraic expression of ∆𝐴𝐶𝐴′, the 𝜉 

isolines are linear and parallel to Vec1. If an 𝜂 isoline 𝑂𝑃𝑄̂ is drawn to pass the node P and a 

tangent line PT is drawn on node P based on the 𝜂 isoline, the direction of vector 𝑃𝑇⃗⃗⃗⃗  ⃗  is {

𝜕𝑥𝑝

𝜕𝜉

𝜕𝑦𝑝

𝜕𝜉

}. If 

the direction of 𝜉 isoline is associated with increasing 𝜉, the direction of the 𝜉 isoline that passes 

node P is {

𝜕𝑥𝑝

𝜕𝜂

𝜕𝑦𝑝

𝜕𝜂

}. If angle 𝛾 is the angle between the tangent line of the 𝜂 isoline and the 𝜉 isoline 

that pass node P, the Jacobian on node P can be expressed as |

𝜕𝑥𝑝

𝜕𝜉

𝜕𝑥𝑝

𝜕𝜂

𝜕𝑦𝑝

𝜕𝜉

𝜕𝑦𝑝

𝜕𝜂

|=‖

𝜕𝑥𝑝

𝜕𝜉

𝜕𝑦𝑝

𝜕𝜉

‖

2

‖

𝜕𝑥𝑝

𝜕𝜂

𝜕𝑦𝑝

𝜕𝜂

‖

2

𝑠𝑖𝑛𝛾. 

Hence, if in ∆𝐴𝐶𝐴′ each point has  𝛾 ∈ (0, 𝜋), ∆𝐴𝐶𝐴′ is a positive-Jacobian triangle. That implies 

if the angle between any tangent line on curve 𝐴𝐵𝐶̂  and Vec1 is larger than 0 and smaller than 𝜋, 

triangle ∆𝐴𝐶𝐴′  is positive-Jacobian. Recall that in the AFSF linear domain mesh generation 

method, node 𝐴′ is designed to extrude away from curve 𝐴𝐵𝐶̂ almost perpendicularly, and the 

same property applies to node E. Therefore, an assumption is introduced: the angle between the 

tangent line of curve 𝐴𝐵𝐶̂ on node A and Vec1 (or between the tangent line of curve 𝐴′𝐵′𝐶̂ on 

node C and edge CE) is bigger than 
𝜋

4
 and smaller than 

3𝜋

4
 . If this is true and the statement that the 
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angle of any two of tangent lines on curve 𝐴𝐵𝐶̂( or on  𝐴′𝐵′𝐶̂) is smaller than 
𝜋

4
  is also true, the 

angle between any tangent line on curve 𝐴𝐵𝐶̂  and Vec1(or between any tangent line on curve 

𝐴′𝐵′𝐶̂ and edge CE) is between 0 and 𝜋. Hence, ∆𝐴𝐶𝐴′ (or ∆𝐸𝐴′𝐶) is a positive-Jacobian triangle.  

 

Figure 31 The picked edge in G2 

The following deduction is to approach the statement that the angle of any two tangent 

lines on curve 𝐴𝐵𝐶̂ is smaller than 
𝜋

4
 by reduction to absurdity. The target hypothesis is that, on 

curved edge 𝐴𝐵𝐶̂  there is an angle of two tangent lines equal to or larger than  
𝜋

4
. All 𝐴𝐵𝐶̂s 

satisfying this hypothesis belong to group G1. In G1, all 𝐴𝐵𝐶̂s that have the maximum smallest 

curvature of the whole curve 𝐴𝐵𝐶̂ are grouped to G2. In G2, the edge which has the smallest length 

of 𝐴𝐶̅̅ ̅̅  is picked and that type of edge should be like curve 𝐴𝐵𝐶̂ shown in Fig. 31. Recall that in 

Section 3.1, 𝜅𝑎𝑝𝑟𝑜 is an approximated curvature. Hence, another assumption is introduced: 𝜅𝑎𝑝𝑟𝑜 

on each geometry node is sufficiently precise and the curvature 𝜅 on any position of the curve 

between two neighboring discretized nodes can be approximated by linear interpolation and is also 

sufficiently precise. If this second assumption is true, each linear edge should be smaller than the 

minimum 𝑙𝛼 = 𝑓(𝛼𝑟𝑒𝑓𝑖𝑛𝑒,
1

𝜅𝑎𝑝𝑟𝑜
) on the same edge. In Fig. 31, the geometry OABC is an eighth of 
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a circle with a radius R=
1

𝜅𝑎𝑝𝑟𝑜
. Vector vec1 and vec2 are the parts of the tangent line of curve 𝐴𝐵𝐶̂ 

at node A and C respectively. The angle between them is 45°.  Since the edge 𝐴𝐶𝐷̂ is a quadratic 

curve and node C is the middle point of this curve, ∠𝐴𝐶𝐷 =
3𝜋

4
= 135°.  Then if the given 

𝛼𝑟𝑒𝑓𝑖𝑛𝑒 > 135° = ∠𝐴𝐶𝐷, 𝑙𝛼_𝑛𝑜𝑑𝑒𝐶 < 𝐶𝐷̅̅ ̅̅ = 𝐴𝐶̅̅ ̅̅ . That means edge AC should not exist because in 

Section 3.1 it is not allowed to generate any node spacing on an interval longer than the minimum 

𝑙𝛼 on the same interval. Hence, the target hypothesis is invalid which means on curved edge 𝐴𝐵𝐶̂ 

there is no angle of two tangent lines equal to or larger than  
𝜋

4
. With the first assumption, this 

statement leads to a positive-Jacobian ∆𝐴𝐶𝐴′.  

For quadrilaterals, the reason of the highly probable positive-Jacobian is the same. The 

angle 𝛾 between the 𝜉 isoline and the 𝜂 isoline should be in the range of 0 to 𝜋, which is the same 

reason in the triangle case. For the quadrilateral, it is even safer to claim that any angle 𝛾 between 

𝜉 and 𝜂 isolines in the mesh element is in that range. And this two-Vector-Adding strategy can 

also be used for the triangles. For example, in Fig. 30 with the two-Vector-Adding strategy, ∆𝐴𝐶𝐴′ 

and ∆𝐶𝐸𝐴′ share the same algebraic expression with quadrilateral 𝐴𝐶𝐸𝐴′. Still, in consideration 

of linear computational coordinate transformation, the order of nodes in each mesh element in the 

output mesh for the solver need to be picked carefully to maintain the positive-Jacobian quality. 

Compared with the zig-zag trace of the middle nodes P1, P2, P3… and Q1, Q2, Q3… as shown 

in Fig. 29b), generated by one-Vector-Adding strategy, this two-Vector-Adding strategy provides 

a straighter trace. 

Even though this Vector-Adding method cannot mathematically guarantee all positive-

Jacobian elements without the assumptions, it shows a promising potential to reach this all 

positive-Jacobian goal by satisfying the two assumptions, with the support of the boundary mesh 
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generator and the linear domain mesh generator.  

Note in general, a finite element CFD solver only takes the coordinates of the high-order 

nodes as input instead of the algebraic expressions of the high-order mesh elements. If the solver 

wants to maintain the positive-Jacobian quality, two requirements for the solver should be 

satisfied. The first is that the number of mesh nodes used for the CFD solver to rebuild each 

parametric element should be equal to or larger than the number of coefficients of high-order 

expression of the same mesh element. The second is that by a simple linear coordinate 

transformation, the computational coordinate (𝜉𝑚𝑒𝑠ℎ, 𝜂𝑚𝑒𝑠ℎ) used in the mesh generation process 

can be transferred to the coordinate (𝜉𝑠𝑜𝑙𝑣𝑒𝑟, 𝜂𝑠𝑜𝑙𝑣𝑒𝑟) used in the solver for each matched node in 

each mesh element. If both requirements are satisfied, regardless of the method of CFD finite 

element solver used to rebuild a parametric mesh element, the algebraic expression should be the 

same as the one in the curved mesh generation part and hence the positive-Jacobian quality is 

maintained.  

 

3.3.2 Mesh results 

This section shows two examples with a bat shape geometry and 30P30N airfoil geometry. 

In this section, all the final curved meshes are deformed from the linear domain meshes generated 

by the original AFSF method. These linear meshes have been shown in Section 3.2.1.  The curved 

meshes generated based on the linear meshes, which are generated by the improved AFSF method, 

will be introduced in Chapter 5. 
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Figure 32 The bat shape inward extruding curved mesh with pure elements 

 

Figure 33 The bat shape outward extruding curved mesh with pure elements 

First, let us look at the bat shape example. Two cases are tested with inward and outward 

extruding directions, respectively. The representations of parametric curves on the boundaries and 
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in the domain are both quadratic polynomials. Good-looking curved domain meshes are obtained 

as shown in Fig. 32 and Fig. 33. In Fig. 32, after deformation, the percentage of curved edges is 

40%, as shown in red dotted lines. In Fig. 33, after deformation, the percentage of curved edges is 

31%, as shown in red dotted lines. In Fig. 32 and Fig. 33, all mesh elements are positive-Jacobian, 

which indicates that the deformation approach works well. 

Second, let us look at the 30P30N example. Three cases are tested with both piecewise 

quadratic and cubic polynomials to represent the mesh boundaries. These three cases use different 

linear domain meshes which are generated in Section 3.2.1. All the figures in this section are from 

case 1. All triangular meshes in the three cases show all positive-Jacobian triangles. Note that the 

final cubic viscous mesh in case 3 is tested with the finite element CFD solver and the results are 

shown in Section 3.3.3.  

                       

a)                                                                                              b) 

Figure 34 Close view of the cubic curved mesh and the linear mesh, a) leading edge of the slat; 

b) trailing edge of the slat 
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Figure 35 Distant view of cubic deformation of 30P30N airfoil 

Fig. 34 presents a comparison of the linear mesh before deformation and the cubic curved 

mesh after deformation. The red dotted lines are cubic curved edges while the blue solid lines are 

non-curved edges. It illustrates that both the Vector-Adding method and the stop conditions of 

deformation work well. Fig. 35 presents the entire cubic deformation of the linear mesh. In Figs. 

30 and 31, all the blue solid edges, which do not have matched red dotted edges, are the remaining 

non-curved edges in the final high-order viscous mesh. In this cubic case, the percentage of 

deformed edges to total edges is 36%. It illustrates that the 64% remaining non-curved edges in 

the final curved mesh could benefit the numerical solvers.   

The time cost of Vector-Adding deformation without the Jacobian-checking part for all the 

five cases are all less than 1 second, which is negligible compared with the time cost of the matched 

linear domain mesh generation by the original AFSF method.  
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3.3.3 CFD Results 

 The following CFD Result is obtained based on the curved high-order mesh in case 3 from 

the above curved meshes results section.  

 
a)              

 
b) 

Figure 36 The 𝐶𝑝 and 𝐶𝑓 distributions of the 30P30N airfoil. a) 𝐶𝑝  distribution; b) 𝐶𝑓 distribution 
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The final cubic triangular mesh in case 3 is used. The total numbers of mesh nodes and 

triangular elements are 128746 and 28425, respectively. The mesh is tested using a high-order 

discontinuous Galerkin finite element solver that solves the Reynolds Averaged Navier-Stokes 

equations coupled with the modified one-equation Spalart-Allmaras turbulence model. Details 

about the discretization method can be referred to in Ref. [20]. In the test case, the freestream Mach 

number is 0.2, the angle of attack is 16.2 degrees and Reynold number is 9 million. Fig. 36 shows 

comparisons of the surface pressure and skin friction distributions using a fourth-order DG 

discretization with experimental data. Between the CFD result and the experimental data, the 

average absolute difference of 𝐶𝑝  is 0.13, and the maximum absolute difference of 𝐶𝑝 is 1.09. The 

average absolute difference of 𝐶𝑓 is 0.0008, and the maximum absolute difference of 𝐶𝑓 is 0.0014. 

It is depicted that the present numerical solutions agree well with the experimental data. Fig. 37 

shows the Mach number contours around the multi-element airfoil. It is observed that the slat wake 

that persists all the way over the flap is well captured using the current mesh, and in addition, the 

solution in the flap wake region is also quite smooth. Streamlines around the multi-element airfoil 

configuration are displayed in Fig. 38, with the close-up views on the slat and the flap as well as 

the flap cove on the main element. As seen in these figures, the streamlines show high curvatures 

near the gap between the slat and the main element. Recirculation zones near the slat lower surface 

and the flap cove are also clearly shown.  
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Figure 37 Mach number contours around the 30P30N airfoil 

The numerical results indicate that the mesh generated by the Spring-Field force model and 

Vector-Adding deformation method is promising for a higher-order scheme to achieve well-

resolved flow fields for arbitrarily complex geometries.  
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a) 

 

b) 

Figure 38 Streamlines around the 30P30N airfoil. a) The slat zone; b) The flap zone 
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CHAPTER 4 

 

 2D MESH MOVEMENT 
 

As a spring model, the “Spring-Field” used in the AFSF method is readily extensible to 

mesh movement or morphing. In this Chapter, the improved AFSF method used in the application 

of mesh movement and mesh morphing is introduced. In Chapter 3, the two main adjustments for 

the improved AFSF method are introduced. This Chapter will focus on more adjustments. These 

further adjustments are made for the mesh movement and mesh morphing cases. The main 

adjustments focus on the spring models. After introducing these adjustments, several cases are 

tested: mesh movement cases and mesh morphing cases with large deformations. Finally, the mesh 

results are tested as a part of airfoil shape optimization with a finite element high-order solver.  

 

4.1 Further Adjustments in the Improved AFSF Method 

Except for the two main adjustments described in Section 3.2.3, further adjustments are 

made for mesh movement purpose.  

First, the way to adjust the mass of the nodes in spring models changes. To solve the 

oscillation issue which a typical force model generally faces, the mass of the node is added into 

the spring force model. To approach the force balance, the mass of an oscillating node increases. 

If force balance is not achieved, ultimately the enormous mass will annihilate the oscillation 

numerically. This model performs well in mesh generation because the force balance position of a 



64 

 

node will always be in the range of the oscillation. So, by decreasing the oscillation amplitude, the 

node can attain its balancing position. But for mesh movement cases, especially the cases with 

large boundary motion, the balancing position is not always in that oscillation range. In this case, 

should the original strategy be taken, the node could finally end in a position far away from the 

force balancing position. To solve this problem, we invoke the following strategy: When the spring 

force drags the node to its ideal position, the mass will first be constant. Then the mass starts to 

increase after a certain number of iterations n, if there is an oscillation. This strategy will work if 

we assume the node is close to its ideal position after the first certain numbers of iterations n.  

Second, an adjustment is made to the relationship between the angle spring model and the 

edge spring models. In a big motion case, the angle spring may disturb the node movement if the 

node is too far from the target position where it should end. However, in the improved AFSF 

method, the angle spring force is blocked until the node moves close to its target position, which 

is judged by the ratio of the ideal length of the extrusion edge (linked to this node) to its real length. 

We also separate the extrusion edge springs from the neighboring edge springs and angle springs. 

Though the two groups share the same time step, now they have their own characteristic movement 

distance and maximum movement distance limitation, by which the spring models decrease 

decoupling and the cooperation becomes more manageable.   

Third, an adjustment is made to the extrusion edge spring model to accelerate the 

convergence process, and to accommodate the compressed mesh cases. The extruding spring force, 

which is the main force to drag the node to its target location in large boundary motion cases, is 

adjusted as shown in the force equation Eq. 1  

Fextru_eg = Caniso × Kextru_eg × 
lideal-lreal

lideal
                                                                     (1) 
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Where 𝑙𝑖𝑑𝑒𝑎𝑙  is used instead of 𝑙𝑖𝑑𝑒𝑎𝑙 + 𝑙𝑟𝑒𝑎𝑙 , which is used in the original AFSF method, to 

amplify the force value difference generated by different 𝑙𝑟𝑒𝑎𝑙. An anisotropic coefficient 𝐶𝑎𝑛𝑖𝑠𝑜 is 

introduced into the equation. In one edge spring, 𝐶𝑎𝑛𝑖𝑠𝑜 is different for the two nodes attached to 

this spring to provide a proportional compression of edges. In the mesh results section, for the 

node in lower mesh layer, 𝐶𝑎𝑛𝑖𝑠𝑜 =
1

𝐺𝑟𝑎𝑡𝑖𝑜
. For the node in upper mesh layer, 𝐶𝑎𝑛𝑖𝑠𝑜 = 1.  

Fourth, the neighboring edge spring model changes. adjustment to the neighboring edge 

spring is that the neighboring edge spring strengthens if the aspect ratio of the attached mesh 

element is smaller than a certain given global factor. Take Fig. 39a) as an example, if  

𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐴𝐾+𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝐵

𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝑃 +𝑙𝑟𝑒𝑎𝑙 𝑜𝑓 𝐾𝑃 
 is smaller than a given constant global factor, the neighboring edge spring 

force updates to 

Fnei_eg = Fonei_eg ×
lreal of AK+lreal of KB

lreal of KP +lreal of KP 
× FacA                       (2) 

where 𝐹𝑎𝑐𝐴  is a given constant global coefficient and 𝐹𝑜𝑒𝑑𝑔𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  is the original force of 

neighboring edge spring obtained by the original force formula. The aim of this adjustment is to 

obtain a smoother interior mesh in the mesh movement cases with large motions under the larger 

neighboring edge spring force.  

Last, the change is made to the angle spring model. The angle spring force function is 

changed to 

 𝐹𝑎𝑛𝑔 = 𝐾𝑎𝑛𝑔 ×  𝑓(𝐴𝑛𝑔𝑙𝑒𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑)                                                                                  (3) 

where 𝑓(𝐴𝑛𝑔𝑙𝑒𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑) is a polynomial function of  𝐴𝑛𝑔𝑙𝑒𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 , with the same sign as 

αappro in Section 3.1. 𝐴𝑛𝑔𝑙𝑒𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 is the sum of absolute value of αappro and 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒. Take 
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Fig. 39b) as example. 𝐹𝑎𝑐𝑠ℎ𝑎𝑝𝑒  is defined as Facshape =  min (FacB,
lreal of AK+lreal of KB

lreal of KOs+lreal of KOs
)  as 

same as the one in the original AFSF method. The change is also made to the direction of force in 

the angle spring model. For the previous angle spring, if the mesh element aspect ratio is extremely 

large, the angle spring force attached to that mesh element will be extremely large too. And the 

force on node 𝑂𝑠 has a perpendicular direction OsN⃗⃗ ⃗⃗ ⃗⃗  ⃗ to the extrusion edge 𝐾𝑂𝑠 as shown in Fig. 

39b).  By the influence of this force direction and other factors, especially the constant mass in the 

first several iterations, the large force possibly leads node 𝑂𝑠 to do a zig-zag motion as shown in 

Fig. 40. And that motion leads to an unwanted lengthy edge 𝐾𝑂𝑠. One way to avoid this is to 

decrease the local max moving distance limitation of angle spring, but that will cause a slower 

convergence. Another way is to provide a better edge-angle spring models system, which could be 

an area of future research. The current solution for this problem is, for the angle spring such as A-

K-B-𝑂𝑠, the force direction on node 𝑂𝑠 changes to OsOs'⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   , where 𝑂𝑠′ is on the bisector and KOs
̅̅ ̅̅ ̅ =

KOs'̅̅ ̅̅ ̅̅  . And the force direction on node K changes to either KA⃗⃗⃗⃗  ⃗ or KB⃗⃗⃗⃗  ⃗,  which depends on the sign 

of angle 𝛼. This strategy shrinks the average extra relative length of extrusion edges to less than 

5% in the viscous mesh layer. Note that, if the absolute value of angle 𝛼 is bigger than 90∘, which 

indicates the mesh element attached to it has a bad quality or even a negative-area, the force 

direction will still be obtained by the previous edge-norm strategy to avoid node 𝑂𝑠 ending below 

the line A-K-B in an improper force-balancing position. 
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a)                                                                         b) 

Figure 39 The spring model diagram. a) the neighboring edge spring; b) the angle spring 

 

Figure 40 The zig-zag motion diagram 

An extra benefit of adjusting the AFSF method for mesh movement is that the method can 

still cover mesh generations. That indicates that by this method, the mesh could be generated first, 

then under the same mesh topology, the mesh could be moved.  

 

4.2 Mesh Results 

For high-order mesh generation, the curved geometries and their piecewise functions are 

required. They are obtained based on the method described in Section 3.1. This special-structure 

linear mesh is obtained by the improved AFSF method mentioned in Section 3.2. The high-order 
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meshes are obtained by Vector-Adding method described in Section 3.3. Note the interpolation 

points for curved domain meshes are not moved by spring force or another approach. They are 

regenerated layer-by-layer based on boundary interpolation points through the pipe-like linear 

mesh structure. Since this process is managed by the Vector-Adding method, which costs much 

less time compared with the linear mesh movement cost, the main computational costs for this 

high-order mesh movement approach would be the linear mesh movement costs. That time cost 

strongly relies on the spring force model and the damping strategy. Adjusting spring models and 

damping strategy for time efficiency are not discussed in this research. In this section, all the 

triangular meshes are generated from mixed-element meshes by simply cutting the quads into 

triangles. All the meshes, either original or after movement, have positive Jacobian mesh cells with 

cubic curves (P3), which is enforced by a harsh Jacobian-checking process with 900 checking 

points in each triangle. 

Recall that, in Section 3.2, the robustness of the linear mesh generation is improved by the 

improved AFSF method, which enables some linear mesh with complex geometries be generated. 

Now let us look at how the improved AFSF method performs with Vector-Adding method on mesh 

movement and mesh morphing. Benefited from the improved AFSF method, there is no need for 

intermediate moving steps for a relatively large movement distance. All the mesh movement and 

morphing cases are moved in one step in this section, and only the final shapes or destinations of 

the boundaries are needed.  

The first group of test cases is motions combined with boundary translations and rotations, 

as shown in Fig. 41. The test geometry is NACA 30P30N airfoil, with an initial extruding length 

5 × 10−5 and a domain mesh growth ratio 1.3. The initial airfoil is located around the origin. The 

first test case is shown in Fig. 41. (a) and (c), where the boundaries rotate 90 degrees with a rotation 
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center at (0,0), then move with a vector of <-10,10>. The second test case is shown in Fig. 41. (b) 

and (d), where the boundaries rotate negative 90 degrees with a rotation center at (0,0), then move 

with a vector of <10, -10>.  

       

a)                                                                              b) 

        

c)                                                                                 d) 

Figure 41 30P30N translation and rotation cases. a) Case 1 whole view in linear mixed-elements 

mesh; b) Case 2 whole view in linear mixed-elements mesh; c) Case 1 close view in 

linear mixed-elements mesh; d) Case2 close view in linear mixed-elements mesh 
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The second group of test cases is boundary morphing. The test geometry is NACA0012 

with the same initial extruding length and growth ratio as 30P30N cases. The mesh boundary 

morphs with the Hicks-Henne bump functions[66]. This airfoil first changes to a larger size. Then 

it moves to the left with a five-time-body-length distance as it becomes larger, as shown in Fig. 

42. The Fig. 42c) shows that, with such a relatively large mesh morphing, the boundary layer mesh 

still keeps the perpendicular feature to the airfoil boundary, which attributes to the angle springs.  

 

a) 

  

b)  
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c)  

Figure 42 NACA0012 moving and changing shape cases. a) NACA0012 positions in linear 

mixed-elements meshes; b) Three size changing phases of NACA0012 in curved 

triangular meshes. From left to right, original, phase 1 and phase 2; c) A close view of 

two convex and concave areas of NACA0012 after morphing 

The mesh quality differences between original meshes and meshes after movements are 

shown in Table 4, in terms of obtuse triangles distribution. For all cases, there is no triangle with 

an angle bigger than 150 degrees. 

Table 4 Obtuse triangles distribution for mesh movement cases 

Grid case name 

Total number 

of triangles 

O-tri with 

α ∈

[95°, 105°] 

O-tri with 

α ∈

[105°, 115°] 

O-tri with 

α ∈

[115°, 125°] 

O-tri with 

α ∈

[125°, 135°] 

O-tri with 

α ∈

[135°, 150°] 

30P30N original 19139 4556 2488 352 0 0 

30P30N case1 19139 3939 2681 1277 6 0 

30P30N case2 19139 4570 3244 1649 59 0 
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NACA0012 

original 

6459 1400 686 140 0 0 

NACA0012 

phase1 

6459 1509 885 625 160 33 

NACA0012 

phase2 

6459 1561 1004 655 237 24 

 

These figures and the table indicate that the mesh movement method has promising 

performance. It is worth noting that, the mesh nodes can either move together or move layer by 

layer (not restricted to one layer at a time). For some more complex cases, such as a combined 

motion of 180-degree rotation and a large translation, the latter strategy is more effective than the 

former one in avoiding mesh movement failing. Whatever the case is, the latter strategy can always 

add several iterations of moving all nodes together to smooth the whole mesh after the layer-by-

layer movement. 

 

4.3 CFD Results 

A cubic 30P30N triangular curved mesh is used as shown in Fig.43e). It is obtained by 

three steps. First, rotate the original airfoil boundary mesh with 180 degrees; Second, generate the 

domain mesh (now the airfoil is upside down); Third, rotate the boundary mesh with 180 degrees 

and move the domain mesh, while keeping the nodes on the far-field boundary standing still. This 

triangular mesh is obtained from the mixed-element mesh as shown in Fig.43a)-d). From Fig.43 

(d) we can tell that after the 180-degree rotation, the mesh around the flap zone keeps almost the 
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same shape as the mesh before the rotation. That attributes to the improved AFSF method, 

especially the spring models in the improved Spring-Field. The total numbers of mesh nodes (not 

including high-order nodes) and triangular elements are 16330 and 30937, respectively.  

 
a)                                                             

 
b)                                                          
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c)                                                          

 

d)                                                          



75 

 

 

e) 

Figure 43 The 30P30N airfoil curved mesh with 180-degree rotation: a) the mixed-element linear 

mesh in the whole view; b) the mixed-element linear mesh in a close view; c) the 

mixed-element linear mesh in a closer view; d) the flap zone in the mixed-element 

linear mesh;  e) triangular curved mesh in a closer view 

The grid is tested by using a high-order stabilized finite element method to solve for the 

Reynolds Averaged Navier-Stokes equations coupled with the Spalart-Allmaras turbulence 

model. Greater details concerning the methodology may be found in Ref. [65]. Fig. 44 shows a 

comparison of the Cp distribution using a fourth-order spatial discretization with experimental 

data. It is shown that the present numerical solution is in good agreement with the experimental 

data, which implies a good mesh quality under such large rotating degrees.  
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Figure 44 The Cp distribution of the 30P30N airfoil 

 

4.4 Optimization 

In this section, gradient-based optimizations of the NACA0012 airfoil are conducted. High 

order fully unstructured meshes are used for the viscous computations of turbulent flows. A 

stabilized finite element formulation (Streamline Upwind Petrov Galerkin, or SUPG) is used to 

discretize the compressible Navier-Stokes equations[67] with linear elements, and the Spalart-

Allmaras turbulent model is employed. The sensitivity derivatives are calculated using the central 

finite-difference method. For optimizations with many design variables, adjoint-based sensitivity 

analysis can be feasible for both steady[68] and unsteady[69] problems.  

The baseline case is a computation of the flow over the NACA0012 airfoil at a free-stream 

Mach number of 0.4, an angle of attack of 2°, and a Reynolds number of 5 million. The grid used 

for this computation consists of approximately 4,000 points. The spacing at the wall is 5e-5 of the 
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chord length. The airfoil is parameterized with the Hicks-Henne bump functions[66].  Two sample 

optimization cases are tested below.  

Case 1 attempts to obtain a specified pressure distribution with 8 control points 

 
2

*1

2
I p p d


  

 

Here p is the current pressure distribution, and p* is the pressure distribution corresponding 

to the target geometry. After 15 design cycles, the cost function is reduced from 1.5e-02 to 4.3e-

12. It is found that the target pressure distribution is obtained along with the recovery of the 

objective geometry.  

Case 2 aims to decrease the drag-lift ratio (or equivalently increase the lift-drag ratio), and 

the cost function is given by 

D

L

C
I

C


 

Here CD is the drag coefficient and CL represents the lift coefficient. The number of design 

variables is 16. After 15 design cycles, the drag has been reduced from 0.005 to 0.004, and the lift 

has been increased from 0.224 to 0.409. Fig. 45. shows the pressure distributions before and after 

the optimization.  
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Figure 45 Initial and final pressure distributions 

Fig. 46. shows the computational mesh obtained by linear elasticity as a comparison to the 

current approach. It is obvious that there is a mesh quality issue in viscous layers. In contrast, the 

mesh movement with current approach produces quality viscous computational mesh, as seen in 

Fig. 47.  

 

Figure 46 Modified NACA0012 airfoil mesh with linear elasticity 

 

Figure 47 Modified NACA0012 airfoil mesh with AFSF method 
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However, for mesh movement with the current approach, a small perturbation 

(1 × 10−10 𝑙𝑒𝑣𝑒𝑙) of the bump function on geometry boundaries leads to a relatively large average 

displacement difference (1 × 10−5 𝑙𝑒𝑣𝑒𝑙) for the whole mesh, which leads to a relatively large 

difference of the target function. Hence, the sensitivity derivatives are inaccurate and fail the high-

order cases. In the future work, the spring model could be improved to decrease the displacement 

difference, or this mesh moving approach could combine with other methods to satisfy the 

sensitivity derivatives.   
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CHAPTER 5 

 

3D MESH GENERATION 

 

The key to extending the presented 2D curved mesh generation method to 3D geometries 

lies in the extension of the Spring-Field force model for linear domain mesh generation and the 

Vector-Adding method for curved domain mesh generation. 

               

a)                                                          b) 

Figure 48 Diagram of spring model extension. a) 2D spring models; b) 3D spring models 

The Spring-Field force model is constructed by many individual spring units. And each of 

them could contain several types of spring as shown in Fig. 48. In the 2D cases, this spring unit 

contains three types of springs: the extrusion edge spring, the neighboring edge spring, and the 

angle spring. Such a spring system could suit the 3D cases as well, only some adjustments may be 

needed. While the extrusion edge spring and the angle spring are almost the same in 3D as in 2D, 

the neighboring edge spring is slightly distinct from its 2D version: in 2D, it is a function of the 
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lengths of the two neighboring edges; in 3D, it could be a function of the areas of the two 

neighboring facets, as shown in Fig. 48b). Besides these three types of springs, a new type of 

spring named tension spring is introduced in 3D cases. In this process, the advancing front 

approach in 3D is very similar to its 2D version, except that the facets are involved in advancing 

in 3D. The force balance process has no difference.  

                                  

a)                                                                    b) 

Figure 49 Diagram of Vector-Adding model extension. a) 2D Vector-Adding; b) 3D Vector-

Adding 

    As discussed in Chapter 3, the Vector-Adding method relies on the linear mesh with the 

pipe-like structure. If the 3D linear volume mesh is obtained by the AFSF method, the linear mesh 

should contain the pipe-like structure as shown in Fig. 49.  The 3D curved mesh generation process 

can then follow a similar procedure as the one in 2D but requiring three (prism) or four (hexahedra) 

vectors in the generation of a new curved mesh element, instead of one or two vectors in the 2D 

Vector-Adding method. When the shape of the piecewise facet and the angles between the facet 

and the vectors are well adjusted, the Jacobian positivity can be achieved.  

To obtain the linear and curved domain mesh with the AFSF method, the input linear and 

curved boundary meshes are needed.  The way to obtain these boundary meshes is introduced in 
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Section 5.1. In Section 5.2, the AFSF method used for linear domain mesh generation in 3D cases 

is introduced and the mesh results are presented. In Section 5.3, the Vector-Adding method used 

for curved domain mesh generation in 3D cases is introduced and the mesh results are presented.  

 

5.1 Boundary Surface Mesh Generation 

For most 3D domain mesh generation procedures, a prerequisite to the discretization of a 

3D computational domain is the discretization of the boundary surface representation. In this 

paper, the boundary surface meshes are obtained by two methods. One of them involves the 

following steps:  

1) Generate the 2D hybrid domain meshes by the previously described 2D AFSF method. For 

example, the 2D airfoil mesh shown in Fig. 50a). 

2) Extrude the generated 2D mesh with a vector V=<0,0,s>, where s is a variable to define the 

extrusion length. The distribution of mesh nodes on the vector V is not even. This 

distribution depends on the 2D domain growth ratio and the first extrusion length through 

the direction of the vector V. Normally this extrusion length has the same value as the first 

extrusion length in the 2D domain meshes. Take Fig. 50 as an example, the mesh shown in 

Fig. 50b) is the closed boundary mesh after this extrusion step. The value of the first 

extrusion length in the direction of vector V in Fig. 50b) is same as the value of the first 

extrusion length in Fig. 50a). 
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a) 

 

b)  

Figure 50 Boundary surface mixed-elements mesh generation diagram. a) An airfoil 2D plane-

surface mesh; b) A closed boundary surface mesh 

After the steps described above, a closed boundary surface mesh is generated. This method 

is used for all airfoil-test cases.  

Another method to provide the boundary meshes for the 3D mesh generation uses the 

commercial software package Pointwise. Pointwise is used for generating linear boundary surface 

mesh for the remaining test cases, which are only designed for testing the linear mesh generation.  

The reason for providing curved boundary surface meshes using the first method is that it 

is the easiest way to generate a valid curved boundary surface mesh with positive Jacobian mesh 
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elements. However, the 2D AFSF mesh generation method mentioned in Section 3.1 has not been 

extended to 3D surface mesh generation yet, which means it can only handle 2D domain mesh 

generation in a plane. Since such a limitation exists, this extrusion method may be the simplest 

way to provide the qualified 3D curved boundary surface meshes for testing the 3D volume mesh 

generation approach. It can provide curved surface meshes while maintaining the positive Jacobian 

mesh elements on all surface facets of the mesh. This is important for 3D curved mesh generation 

using the 3D Vector-Adding method, which will be described in Section 5.3. 

 

5.2 Linear Domain Mesh Generation   

The linear domain mesh generation procedure for 3D meshes is similar to the procedure 

for 2D meshes. The mesh is generated layer by layer using the advancing front method, and a 

spring model named Spring-Field is used to smooth the mesh. This linear mesh generation method 

is named Advancing-Front-Spring-Field method with the abbreviation AFSF. The main procedure 

of the linear mesh generation will be discussed in Section 5.2.1, and the Spring-Field model will 

be discussed in Section 5.2.2. Same as the 2D AFSF method, this 3D AFSF method provides a 

hybrid mesh as the raw output of this linear mesh generator. Different than the raw output mesh 

of the 2D AFSF method, the 3D output mesh could contain several non-standard types of mesh 

elements. For example, the 2D raw output mesh is a hybrid mesh which only contains triangles 

and quadrilaterals. If the numerical solver can handle this type of hybrid mesh, there is no need to 

change the mesh topology. But in the 3D raw output mesh of the AFSF method, there could be 

several non-standard types of mesh elements such as a mesh element containing 7 points with a 

quadrilateral as the bottom facet and a triangle as the top facet. There are few, if any, solvers that 

can handle this type of mesh element. Hence, the mesh topology must be changed to serve the 
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general numerical solvers. There are two ways of changing the mesh topology. One is converting 

all mesh elements into tetrahedra. Another is converting all mesh elements into the standard types 

of mesh elements, namely hexahedral, prism, pyramid and tetrahedral. These final meshes could 

be obtained by cutting or assembling the raw non-standard mesh elements. However, in this 

research only the operation of cutting is used. The strategy of obtaining a pure tetrahedral mesh is 

described in Section 5.2.3 and Section 5.2.5. The strategy of obtaining a hybrid mixed-elements 

mesh is described in Section 5.2.5.  

 

Figure 51 2D front node closing sketch 

In 2D advancing-front methods, the front-closing only needs to control the front-node-

closing. If the front nodes overlap, the front edges will automatically match. Take the example in 

Fig. 51. If node A finds the matched node P, node B finds the matched node Q and the two matched 

couples overlap, edge AB and edge PQ will automatically overlap. If node A and B find the same 

node P to merge with for the front-node-closing, edge AB will disappear and edge PQ may find 

another edge to overlap. Hence there is no need to find a special strategy of changing the topology 

of the mesh to let the front edges match. But 3D situations are completely different. Take the 

example in Fig. 52. If node A finds the matched node P, node B finds the matched node Q, node 
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D finds the matched node R, and the three matched node couples overlap, the related edges do not 

automatically match, let alone the related facets such as triangle PQR and quad ABCD. Hence, a 

special strategy of matching the front edges is needed. Note, if the front-edges match, the front 

facets will automatically match. This special strategy is introduced in Section 5.2.4. Unfortunately, 

the strategy has some limitations. For example, it only works for the pure triangular front surface, 

and the facets which overlap each other must have similar sizes. This strategy cannot handle the 

3D front-closing case as shown in Fig. 52, which contains quads and triangles.  

 

Figure 52 3D front node closing sketch 
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5.2.1 Procedure of the linear viscous domain mesh generation 

 

Figure 53 Procedure of the linear domain mesh generation 

 

Figure 54 Mesh cells generation diagram 
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Fig. 53 shows the main procedure of the linear viscous domain grid generation. In step 2, 

for the previous 2D approach, each parent node could have multiple child nodes. Currently, the 

3D approach only allows the parent node to have one child node, which simplifies several other 

steps in the procedure. In the future, the strategy of multiple child nodes could be added in an effort 

to better represent the domain around a corner. The generation of mesh cells through “Pipes” is 

shown in Fig. 54. As new mesh cells are created layer by layer, the lengths of pipes increase. In 

step 3, there are three basic spring types: the extrusion edge spring, the neighboring edge spring 

and the angle spring. The concept of these spring types is inherited from the 2D approach. These 

spring types will be discussed in Section 5.2.2 together with a new spring type named the tension 

spring type, which is shown in step 5 in Fig. 53. In step 4, the force equations are solved explicitly. 

There is no need to involve all springs during force balance. Normally the springs related to the 

top three advanced mesh layers are enough for a better mesh quality. Step 7 contains the merging 

operations of mesh nodes. There are two types of front-node merging. One is the merging of the 

nodes, which are connected to each other by an edge. They are neighboring nodes which generally 

extrude almost in the same direction. Another is the merging of the mesh nodes which are not 

linked by an edge. Generally, they extrude from different boundaries.  

There are several conditions for judging if the front neighboring nodes should merge. For 

efficiently representing the domain, the length ratio of a neighboring edge to its attached extrusion 

edge should be above a certain threshold. If this ratio is smaller than a specified global factor, the 

neighboring edge breaks and the two neighboring nodes attached to this edge are merged. The 

other triggering condition applies if a mesh cell is twisted to become a negative-volume mesh 

element. The conditions of determining if the front nodes without a linked edge should merge will 

be introduced in Section 5.2.4. Since the mesh cells are generated through the pipes layer-by-layer, 



89 

 

this front-closing strategy stimulates tissue growth, i.e. the tissue grows from the original surface 

layer by layer until it runs out of space. The method of finding front-merging nodes not linked by 

an edge is also described in Section 5.2.4. In step 9, since the neighboring nodes can merge with 

each other, several non-standard mesh cell types could be generated. The strategy of how to adjust 

topology by cutting these mesh cells to suit numerical solvers will be discussed in Section 5.2.3 

and Section 5.2.5.  

 

5.2.2 Spring-Field force model 

In the 3D mesh generation approach, all three basic spring types are inherited from 2D 

approach: the extrusion edge spring, the neighboring edge spring and the angle spring.  

 

Figure 55 The extrusion edge spring diagram 

The extrusion edge spring is mapped to the edge that links parent and child mesh nodes 

from different layers. It applies forces on two nodes. The purpose of this spring type is to push the 

child node to the designed ideal position, and away from their parent nodes and mesh boundaries, 
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as shown in Fig. 55. Node P is the parent node of node A. Edge PA maps to one extrusion edge 

spring with the force model on node A as: 

𝐹𝑒𝑥𝑡𝑟𝑢_𝑒𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐾𝑒𝑥𝑡𝑟𝑢_𝑒𝑔 × 𝐶𝑎𝑛𝑖𝑠𝑜 × (

‖𝑃𝐴̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 − ‖𝑃𝐴̅̅ ̅̅ ‖𝑟𝑒𝑎𝑙

‖𝑃𝐴̅̅ ̅̅ ‖𝑟𝑒𝑎𝑙

) × 𝑃𝐴⃗⃗⃗⃗  ⃗ 

where 𝐾𝑒𝑥𝑡𝑟𝑢_𝑒𝑔  is the extrusion edge spring coefficient, which is set to be 2 in the 

numerical examples in the mesh results section. ‖𝑃𝐴̅̅ ̅̅ ‖𝑟𝑒𝑎𝑙is the length of edge PA. The definition 

of ideal length ‖𝑃𝐴̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 is the same as the one in the 2D method. It is a given global factor which 

grows exponentially as the mesh layer increases. The expression of the spring force model on node 

P is similar with a opposite force direction 𝐴𝑃⃗⃗⃗⃗  ⃗  and different 𝐶𝑎𝑛𝑖𝑠𝑜 . 𝐶𝑎𝑛𝑖𝑠𝑜 is a anisotropic 

coefficient with the definition as same as the one in the 2D method to provide a proportional 

compression of edges[55]. For node P in the lower mesh layer, Caniso =
1

𝐺𝑟𝑎𝑡𝑖𝑜
, where growth ratio 

is a given global mesh extrusion growth factor (e.g. 1.1,1.2,1.3, etc.). For node A in the upper mesh 

layer, 𝐶𝑎𝑛𝑖𝑠𝑜 = 1.  

 

Figure 56 The neighboring edge spring diagram 

The neighboring edge spring is mapped to the edge that links neighbor nodes on the same 

layer. It applies a force on two nodes. The purpose of this spring type is to dissipate the difference 

between the sizes of neighbor mesh cells which are inherited from the difference between the sizes 
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of their ancestor mesh cells on the mesh boundaries. This difference between neighbor mesh cells 

for 2D is the difference between the lengths of neighboring edges, and for 3D is the difference 

between the areas of neighbor facets, as shown in Fig. 56. Node Q is the neighboring node of node 

P. Edge QP maps to one neighboring edge spring which tries to push edge QP towards facet 

𝑁𝑒𝑖_𝑓𝑎𝑐𝑒𝑡𝐿, since the area of 𝑁𝑒𝑖_𝑓𝑎𝑐𝑒𝑡𝐿 is larger than that of 𝑁𝑒𝑖_𝑓𝑎𝑐𝑒𝑡𝑅. Neighboring edge 

QP maps to one neighboring edge spring with the force model on node P and Q as: 

𝐹𝑛𝑒𝑖_𝑒𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐾𝑛𝑒𝑖_𝑒𝑔 × 𝐶𝑎𝑛𝑖𝑠𝑜 × (

ℎ1

ℎ1 + ℎ2

‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 ×
𝑅1𝑀1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖𝑅1𝑀1‖
+

ℎ2

ℎ1 + ℎ2

‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 ×
𝑅2𝑀2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖𝑅2𝑀2‖
)  

where 𝐾𝑛𝑒𝑖_𝑒𝑔  is the edge spring coefficient, which is set to be 0.25 in the numerical 

examples in the mesh results section. 𝑅1𝑀1
̅̅ ̅̅ ̅̅ ̅ and 𝑅2𝑀2

̅̅ ̅̅ ̅̅ ̅ are maltitudes of the quadrilaterals at each 

side of edge QP. 𝑅1𝑀1
̅̅ ̅̅ ̅̅ ̅ or 𝑅2𝑀2

̅̅ ̅̅ ̅̅ ̅ is an altitude if the corresponding mesh cell is a triangle, where 

M1 or M2 should be the corresponding vertex. ‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 is the ideal length of the edge QE. Its 

role in the formula is a base unit of distance. By this definition, 𝐹𝑜𝑟𝑐𝑒𝑒𝑑𝑔𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is equal to 

some percentage of ‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙. 𝐶𝑜𝑒𝐴𝑛𝑖𝑠𝑜 is a coefficient used to distinguish anisotropic mesh cells 

to isotropic ones. The definition of 𝐶𝑎𝑛𝑖𝑠𝑜  is 𝐶𝑎𝑛𝑖𝑠𝑜 = min (1,
2‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙

ℎ1+ℎ2
). If the mesh cell 

𝑁𝑒𝑖 _𝑓𝑎𝑐𝑒𝑡𝐿 is in the boundary layer and is anisotropic in terms of the direction 𝑅1𝑀1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,  𝐶𝑎𝑛𝑖𝑠𝑜 is 

small. That will cause 𝐹𝑛𝑒𝑖_𝑒𝑔 to be small, which means 𝐹𝑛𝑒𝑖_𝑒𝑔 will cause less perturbation of the 

node P and Q. In practice, there is no need to calculate each value of factor in the neighboring edge 

spring model, such as ℎ1, ℎ1 + ℎ2, etc., during each iteration in the force balancing process. Some 

of them could use the initial value without updating in each iteration, or could be calculated using 

dot product or cross product without the need for the square root function. 
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Figure 57 The angle spring diagram 

The angle spring model is like the one in the 2D method. It applies forces on two nodes. 

The purpose of this spring type is to keep the extruding direction of the target node close to the 

weighted average normal of the facets around this target node’s parent node, so that mesh quality 

can be better. In Fig. 57, node A is the target node and P is its parent node. Vector 𝑃𝐴𝑖𝑑𝑒𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ defines 

the ideal extruding direction, which is calculated based on the normals of the facets around node 

P. The force of the angle spring is a function of the deviation angle 𝛼. Angle 𝛼 is defined as the 

angle between the real extruding direction 𝑃𝐴⃗⃗⃗⃗  ⃗ and the ideal extruding direction 𝑃𝐴𝑖𝑑𝑒𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ of node A. 

The force model of the angle spring is defined as:   

𝐹𝑎𝑛𝑔 = 𝐾𝑎𝑛𝑔 × 𝐶𝑝𝑒𝑟𝑐𝑒𝑛𝑡  × 𝑓(𝛼𝑎𝑝𝑝𝑟𝑜) × ‖𝑃𝐴̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 

where 𝐾𝑎𝑛𝑔 is the angle spring coefficient, which is set to be 1 in the mesh results section. 

‖𝑃𝐴̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙  is the ideal length of extrusion edge PA as the distance measure. 𝑓(𝛼𝑎𝑝𝑝𝑟𝑜) is a 

polynomial function of  𝛼𝑎𝑝𝑝𝑟𝑜 defined as 𝑓(𝛼𝑎𝑝𝑝𝑟𝑜) = 8𝛼𝑎𝑝𝑝𝑟𝑜
3 + 0.2𝛼𝑎𝑝𝑝𝑟𝑜 , where 𝛼𝑎𝑝𝑝𝑟𝑜 =

𝑠𝑖𝑛𝛼 . 𝑆𝑖𝑛𝛼  is calculated through the cross product of vectors 𝑃𝐴𝑖𝑑𝑒𝑎𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and  𝑃𝐴⃗⃗⃗⃗  ⃗  instead of 

calculating 𝛼 to decrease the computation cost. For the angle spring force on node A, the direction 
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is the same as vector 𝐴𝐷⃗⃗ ⃗⃗  ⃗. 𝐴𝐷⃗⃗ ⃗⃗  ⃗ is in the plane AP𝐴𝑖𝑑𝑒𝑎𝑙 and is perpendicular to 𝑃𝐴⃗⃗⃗⃗  ⃗. For the force on 

node P, the direction is the same as vector 𝐷𝐴⃗⃗ ⃗⃗  ⃗. 𝐶𝑝𝑒𝑟𝑐𝑒𝑛𝑡 is the percentage of the force distributed 

to the two nodes (in Fig. 57 nodes A and P). The sum of 𝐶𝑝𝑒𝑟𝑐𝑒𝑛𝑡s of the two nodes is 1. In the 

mesh results section, 𝐶𝑝𝑒𝑟𝑐𝑒𝑛𝑡 is 0.5 for the both nodes.  

 

Figure 58 The shape change diagram 

In addition to these three-basic type of springs, there is a new spring type introduced for 

3D linear mesh generation. This spring is mapped to each neighboring edge and has force on two 

nodes. The purpose of this spring type is twofold. One is to control the angles in neighbor facets 

(defined as facets enclosed by neighboring edges) and the other is to simulate surface tension to 

smooth the mesh. In Fig. 57, the angle spring linked to node P can only control the angle between 

the extrusion edge and the neighbor facets around node P. The neighboring edge spring mapped 

to QP pushes QP to move in parallel to its original position. So, it cannot control the angle between 

the neighboring edges either. If there is a small perturbation that causes a rotation of the 

neighboring edge QP on the plane of neighbor facets, there is no force to deliberately rotate the 

edge back. In practice, under the three-basic type of spring forces, this small perturbation seems 

to be amplified as mesh layers advance, and a large consequent perturbation could lead to large 
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obtuse angles in neighboring facets. Hence an extra spring type is needed to control the angles 

between neighboring edges. In addition, by building and mapping such springs to each neighboring 

edge, all the neighbor facets on the same mesh layer mimic a stretched elastic membrane. These 

new springs will act like surface tension, which make the mesh smoother. As shown in Fig. 58, 

this spring type helps the mesh layer change its shape from the shape of the object to a sphere 

faster. Hence, we name this spring type as a tension spring type. As shown in Fig. 57, one tension 

spring maps to neighboring edge QP with the force model on node P as: 

𝐹𝑡𝑒𝑛𝑠𝑖𝑜𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐾𝑡𝑒𝑛𝑠𝑖𝑜𝑛 × 𝐶𝑎𝑛𝑖𝑠𝑜 × (

‖𝑄𝑃̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 − ‖𝑄𝑃̅̅ ̅̅ ‖𝑟𝑒𝑎𝑙

𝑙𝑐ℎ𝑎𝑟𝑎𝑐
) × ‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 ×

𝑄𝑃

‖𝑄𝑃̅̅ ̅̅ ‖𝑟𝑒𝑎𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 

where 𝐾𝑡𝑒𝑛𝑠𝑖𝑜𝑛is the tension spring coefficient, which is set to be 0.25 in the numerical 

examples in the mesh results section. ‖𝑄𝑃̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 must be given after first force balancing step (Step 

4 in Fig. 53), which means tension springs are not created at the same time with the other three 

spring types. ‖𝑄𝑃̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 is set to be 0.9‖𝑄𝑃̅̅ ̅̅ ‖𝑟𝑒𝑎𝑙 in the mesh results section. The role of ‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙 

is the distance measure. By this definition, 𝐹𝑜𝑟𝑐𝑒𝑡𝑒𝑛𝑠𝑖𝑜𝑛_𝑠𝑝𝑟𝑖𝑛𝑔 is equal to some percentage of 

‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙. 𝑙𝑐ℎ𝑎𝑟𝑎𝑐 is a characteristic length. It is defined as the maximum length of neighboring 

edges linked to node P. 𝐶𝑎𝑛𝑖𝑠𝑜  is a coefficient used to distinguish anisotropic mesh cells to 

isotropic ones. The definition of 𝐶𝑎𝑛𝑖𝑠𝑜 is 𝐶𝑎𝑛𝑖𝑠𝑜 =
‖𝑄𝐸̅̅ ̅̅ ‖𝑖𝑑𝑒𝑎𝑙

𝑙𝑐ℎ𝑎𝑟𝑎𝑐
 . The expression of the force model 

on node Q is the same as on node P except that the force direction for node Q is 𝑃𝑄⃗⃗⃗⃗  ⃗.  
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5.2.3 Topology adjustment method 1 

 

Figure 59 The nodes-merging diagram 

As the mesh layer advances, several mesh cells change their element type to increase the 

efficiency of node distribution. This leads to the creation of several non-typical mesh elements. As 

shown in Fig. 59, the aspect ratio of edge BA to edge BQ is smaller than the given global factor 

𝐶𝑜𝑒𝑠ℎ𝑟𝑖𝑛𝑘 (this factor is 0.65 in the mesh results section). Hence nodes B and A merge with each 

other and the green hexahedral changes its shape to a non-typical mesh element, which has a 

quadrilateral on bottom but a triangle on top. Generally, this type of mesh cell will not be 

recognized by numerical solvers. The mesh topology around the node A/B needs to be changed to 

erase several mesh cells and re-generated some mesh cells of standard mesh element types.  

Another situation which requires a mesh topology adjustment is where the advancing-front facets 

merge. In 2D cases, if the two nodes of a neighboring edge merge with two nodes of another 

neighboring edge from the opposed extruding direction, these two neighboring edges 

automatically merge. This is more difficult in 3D, because when the advancing fronts collide, the 

facets may not align even though there are no hanging nodes. The mesh topology adjustment 

method used for this is discussed in Section 5.2.4. 
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In this section, we only focus on the topology adjustment to provide a pure tetrahedral 

mesh. The pre-condition of this adjustment is that the input boundary surface mesh in Step 1 as 

shown in Fig. 53 must be a triangular mesh. If the input surface mesh is a mixed mesh contains 

triangles and quadrilaterals, the pipes based on surface quadrilaterals must be divided into two 

pipes based on triangles. This operation currently has not been added into the linear mesh 

generation approach. The method of the topology adjustment, or topology re-generation, has the 

following steps: 

1) For all pipes, boundary surface facets are their bottom facets. Set all boundary surface facets 

as their top triangular facets. Pick mesh layer 1 (the boundary input mesh layer) as the 

starting mesh layer X. 

2) Between mesh layer X and X+1, pick one extrusion edge L, which links parent node P and 

its child node A. Create n tetrahedra around edge L based on the n top triangular facets of n 

pipes around node P. Update the n top tetrahedral facets of the matched n pipes.  

3) Pick another extrusion edge and repeat the same operations until all extrusion edges 

between mesh layer 1 and 2 are chosen. If there is a merging node group which contains 

several extrusion edges, do operations in Step 2 on these extrusion edges simultaneously.  

4) Repeat step 2 and 3 on the extrusion edges over mesh layer X+1, X+2, X+3… until all 

extrusion edges of the whole mesh are chosen.   

As shown in Fig. 60, based on extrusion edge PA, six green tetrahedra (solid line) are 

generated. Then based on extrusion edge QB, six orange tetrahedra (dash line) are generated, 

among which there are two tetrahedra based on the new generated green triangular facets. As 

shown in Fig. 61, if the merging nodes group A & B contains two extrusion edges PA and QB, ten 
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tetrahedra will be generated simultaneously. Note that the order of picking extrusion edges can 

affect the final tetrahedral mesh quality significantly. The current strategy is to start with the 

extrusion edge which has the smallest deviation angle from its ideal extruding direction. The 

extrusion edges around anisotropic mesh elements are also picked first. If there is a tetrahedron 

with a larger dihedral angle, switch the newest chosen extrusion edge with the related extrusion 

edge which constructs this tetrahedron.     

 

Figure 60 The Tet topology generation diagram 

 

Figure 61 The special Tet topology generation diagram 
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5.2.4 3D front closing 

3D front closing is a challenging research topic. Not only do the front nodes have to find 

matched nodes to overlap, but the front edges also need to find matched edges to overlap. For 

merging the 3D front nodes, two methods are used.  

The first one is similar to the method used in the 2D front closing. If an extrusion edge has 

an intersection point with a front facet, the front node which is the top node of this extrusion edge 

will find a vertex of the front facet to overlap. The following paragraph describes how to find the 

right front facet for each extrusion edge, if there is any, which is the key to this front closing 

method.   

The facets around the top front node of an extrusion edge are defined as the attached front 

facets of this extrusion edge. For each extrusion edge, first find several front facets which are close 

to this extrusion edge and are not its attached front facets with the help of k-d tree. The k-d tree 

library used here was created by Matthew Kennel[70]. Define the group of these picked front facets 

as group A. As simulating the tissue growth, the initial length of this extrusion edge is 0, which 

means its top front node overlaps with its bottom node. Then extrude the top front node by a 

distance l defined as 𝑙 = 𝐼𝑑𝑒𝑎𝑙_𝐿𝑒𝑛𝑒𝑥𝑡𝑟𝑢_𝑒𝑑𝑔𝑒/𝑛, where 𝐼𝑑𝑒𝑎𝑙_𝐿𝑒𝑛𝑒𝑥𝑡𝑟𝑢_𝑒𝑑𝑔𝑒 is the ideal length of 

this extrusion edge and n is a given total number of growth steps. Note as the extrusion edge 

increases its length, the positions of all the front facets also change. Then detect if there is any 

intersection point between this extrusion edge and the facets in group A at this growth step. If there 

is one facet has an intersection point, based on the position of this intersection point to pick one 

vertex of this facet as the front-merging node to the top front node of this extrusion edge. Repeat 

this growth step for n times.  
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The second method is that after the mesh topology changing, the two facets which attach 

to the same new front-merging edge either overlap each other or construct an angle 𝛼. If the angle 

𝛼 is smaller than a global given factor, for example, 
𝜋

2
, the edge is qualified for checking the front-

node merging and the nodes around this new front-merging edge will be checked. Take Fig. 62 as 

an example, edge BC has four attached facets from two opposite extruding directions. Two 

attached facets overlap as shown in the brown color. The other two are triangle ABC and triangle 

PCB. If the angle 𝛼 between ∆𝐴𝐵𝐶 and ∆𝑃𝐶𝐵 is smaller than 
𝜋

2
 (or another given global value), 

the operation of finding the couple of the front nodes to merge is activated. Rotate node P by angle 

𝛼 with the rotation axis BC to obtain a node 𝑃′ on the plane ABC. Note that node 𝑃′  may be located 

outside ∆𝐴𝐵𝐶.  Then check the distance between node 𝑃′ and all the nodes in node group AA which 

is defined as the group of node A and its neighboring nodes.  Find node 𝑛𝑜𝑑𝑒𝑡𝑎𝑟𝑔𝑒𝑡 in node group 

AA which has the minimum distance with node 𝑃′. Node 𝑛𝑜𝑑𝑒𝑡𝑎𝑟𝑔𝑒𝑡 is the front-merging node for 

node 𝑃′. Then overlap nodes 𝑃′ and 𝑛𝑜𝑑𝑒𝑡𝑎𝑟𝑔𝑒𝑡. This strategy only works if the triangle ABC and 

the triangle PCB are similar in size. If one of them is distinctively larger, the mesh quality could 

be inferior even with the help of the Spring-Field force model. After merging nodes A and P, edge 

PB and CP may become the qualified edges for checking the front node merging. This process is 

repeated until no front edge qualified the checking conditions. The reason to add this method into 

the 3D front-closing process is that it decreases the number of “sharp corners” in the mesh, which 

decreases the difficulty of 3D front-closing for the first 3D front-closing method. Still, the 

robustness could be undermined due to a high level of difficulty. 
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Figure 62 The 3D front-closing diagram 

While the front nodes are merging, the front edges should also merge. Unfortunately, 

sometimes the front edges cannot merge unless the mesh topology changes. Take the case in Fig. 

63 as an example, after node Q merges with node G, node R merges with node H, edge BR or edge 

GI must be swapped to merge with the other one. After the qualified edges are swapped, the edges 

like edge BC should be checked again to find the front nodes qualified for merging. Repeat these 

steps until no new front nodes qualified for merging could be found. 

 

a)                                                                            b) 
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Figure 63 The edge swapping diagram.  a) before front-node merging; b) after front-node 

merging. 

Only two cross-edge situations are taken into consideration for swapping edges. The first 

one is shown in Fig. 63. The second one is shown in Fig. 64.  

 

Figure 64 The edge swapping diagram 2 

 

5.2.5 Topology adjustment method 2 

The method of cutting the obtained non-standard mesh elements into standard mesh 

elements in Section 5.2.3 can only output a pure tetrahedral mesh. If a mixed-element output mesh 

is needed, another topology adjustment method should be developed.  

After the front-node merging and the front-edge merging, the topology of the front facets, 

which are triangles, is fixed and will not change in the future. The type of non-standard mesh 

element is shown in Fig. 65a). It is a mesh cell with a triangle as the bottom facet and an edge as 

the top. This type of mesh element is generated due to the merging of node BB and node CC. The 

reason of the merging could be a relatively small edge ratio described in Section 5.2.3. The 

merging could also be caused by the situation where node BB and CC share the same front-merging 
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node X which extrudes from another direction; in such case, node BB merges with node X. Then 

node CC merges with node X which leads to node BB merging with node CC.  

There are two ways to cut this non-standard mesh cell into standard mesh elements. One is 

as shown in Fig. 65b). The mesh cell is cut into one tetrahedral and one triangle. The other is 

shown in Fig. 65c). The mesh cell is cut into two tetrahedral. If this non-standard mesh cell does 

not have neighboring mesh cells, the job is done. The challenging part of this mesh topology 

adjustment is that, the mesh cell has neighboring mesh cells. If new cutting-edge BAA or the new 

edge ABB is created by the cutting operation, the neighboring mesh cell which share the side quad 

with this non-standard mesh cell must be cut to match the new edge BAA or ABB. Besides the non-

standard mesh cells, another situation in which the mesh topology must be adjusted is that the 

mesh cells relate with the swapped-edge. Recall the cases in Fig. 63 and Fig. 64. After the edge 

swapping, the generated prisms in the front mesh layer are extremely twisted with respect to the 

original mesh topology. These mesh cells must be fixed. In the following paragraph, the method 

to cut these mesh elements to match each other will be discussed. 

 

a)                                      b)                                    c) 

Figure 65 The non-standard mesh element type diagram 
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If there is a non-standard front mesh cell 𝑃𝑄𝐶 − 𝑃′𝐶′ as shown in Fig. 66, all the front 

mesh cells around node 𝐶′ could be cut by the cutting edges which link to node 𝐶′ as shown in red 

and blue dash lines (for convenience, this operation will be referred to as “round-cutting”). All the 

obtained standard mesh cells (tetrahedra and pyramids) around node 𝐶′ have the matched edges 

and facets. Repeat this “round-cutting” operation on all the non-standard mesh elements and the 

mesh cells involved with the swapped-edge, the final mixed-elements mesh could be obtained. 

Note if the round-cutting operation first acts on node 𝐶′ then acts on node 𝐵′, the cutting edge on 

the facet 𝐵𝐶𝐶′𝐵 will be 𝐶𝐵′ instead of B𝐶′. The final mixed-elements mesh is obtained based on 

these cutting edges. There is no need to do this round-cutting on each front node. But if doing this 

round-cutting on each front node and repeat this on each front mesh layer for each extrusion step, 

the final obtained mesh will be a pure tetrahedral mesh. 

 

Figure 66 The round-cutting diagram 

To improve the mesh quality, a ranked node list for round-cutting is provided. In some 

cases, the ranking of the node list will significantly affect the final mesh quality in terms of the 

poorly shaped tetrahedra. Since this strategy is still under development, the details are not 

discussed in this dissertation. 
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5.3 Curved Domain Mesh Generation  

 

Figure 67 Positive Jacobian diagram 

The curved domain mesh generation process for 3D meshes is like the one for 2D meshes. 

In 3D cases, the mesh is deformed one element at a time through the pipe-like mesh structure (such 

as the ones in Fig. 54) as same as 2D cases.  The mesh is deformed by the Vector-Adding method. 

By this method, the deformed curved mesh has a high probability to be an all-positive-Jacobian-

element mesh which can be attributed to the same mechanism demonstrated in the 2D Vector-

Adding method. The key is still the range of the angle between the isolines. As shown in Fig. 67, 

suppose the parametric expression of the base curved facet PQR is given as 𝑆𝑢𝑟⃗⃗⃗⃗⃗⃗  ⃗
(𝜉1,𝜉2)  and this 

curved facet is a positive-Jacobian mesh element, where 𝜉1 and 𝜉2 are computational coordinates. 

PA is an extrusion edge with 𝑃𝐴⃗⃗⃗⃗  ⃗ = 𝑉⃗ (𝑥𝑃𝐴, 𝑦𝑃𝐴, 𝑧𝑃𝐴) , which is constant. The parametric 

tetrahedron PQRA is created as:  𝑆𝑢𝑟⃗⃗⃗⃗⃗⃗  ⃗
(𝜉1,𝜉2) + (1 − 𝜉1)𝜉3𝑉⃗ . Based on this expression, the Jacobian 

of a random node M in Tet PQRA is  
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 𝐽𝑎𝑐𝑜𝑏𝑀 =
|
|

𝜕𝑥𝑀

𝜕𝜉1

𝜕𝑥𝑀

𝜕𝜉2

𝜕𝑥𝑀

𝜕𝜉3

𝜕𝑦𝑀

𝜕𝜉1

𝜕𝑦𝑀

𝜕𝜉2

𝜕𝑦𝑀

𝜕𝜉3

𝜕𝑧𝑀

𝜕𝜉1

𝜕𝑧𝑀

𝜕𝜉2

𝜕𝑧𝑀

𝜕𝜉3

|
|
= (

𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗
(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉1
− 𝜉3𝑀

𝑉⃗ ) ∙ [
𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗

(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉2
× (1 −

𝜉1𝑀
)𝑉⃗ ] = (1 − 𝜉1𝑀

)𝑉⃗ ∙ [(
𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗

(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉1
− 𝜉3𝑀

𝑉⃗ ) ×
𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗

(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉2
] = (1 − 𝜉1𝑀

)𝑉⃗ ∙

[
𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗

(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉1
×

𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗
(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉2
].  

Suppose there is a node F on curved facet PQR with computational coordinate (𝜉1𝐹
, 𝜉2𝐹

) = 

(𝜉1𝑀
, 𝜉2𝑀

). We have [
𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗

(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉1
×

𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗
(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉2
]=[

𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗
(𝜉1𝐹,𝜉2𝐹)

𝜕𝜉1
×

𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗
(𝜉1𝐹,𝜉2𝐹)

𝜕𝜉2
]. As shown in Fig. 

67, 𝑉𝜉1
⃗⃗ ⃗⃗  ⃗ is on the tangent line of 𝜉2 isoline through node F and 𝑉𝜉2

⃗⃗ ⃗⃗  ⃗ is on the tangent line of  𝜉1 

isoline through node F. Hence 𝑉𝜉1
⃗⃗ ⃗⃗  ⃗ =

𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗
(𝜉1𝐹,𝜉2𝐹)

𝜕𝜉1
 and 𝑉𝜉2

⃗⃗ ⃗⃗  ⃗ =
𝜕𝑆𝑢𝑟⃗⃗ ⃗⃗ ⃗⃗  ⃗

(𝜉1𝑀,𝜉2𝑀)

𝜕𝜉2
. Then 𝐽𝑎𝑐𝑜𝑏𝑀 =

(1 − 𝜉1𝑀
)𝑉⃗ ∙ [𝑉𝜉1

⃗⃗ ⃗⃗  ⃗ × 𝑉𝜉2
⃗⃗ ⃗⃗  ⃗]. So, if the direction of 𝑉𝜉1

⃗⃗ ⃗⃗  ⃗ × 𝑉𝜉2
⃗⃗ ⃗⃗  ⃗ points towards the upper mesh layer, 

𝐽𝑎𝑐𝑜𝑏𝑀 should be positive because vector 𝑃𝐴⃗⃗⃗⃗  ⃗ is close to its ideal extruding direction which is 

obtained based on the normal of linear triangle PQR and the normal of its neighbor facets. Recall 

the assumption that the input boundary mesh is smooth and contains all positive-Jacobian facets. 

If curved facet PQR is one of boundary surface facets, 𝑉𝜉1
⃗⃗ ⃗⃗  ⃗ × 𝑉𝜉2

⃗⃗ ⃗⃗  ⃗ should satisfy this condition so 

Tet PQRA should be a positive-Jacobian mesh cell. Hence the new curved triangular facet AQR is 

positive-Jacobian and the cross product of the tangent vectors of the isolines on facet AQR should 

point to the next layer, which benefits the positive-Jacobian tetrahedra generation through the pipe.   

In practice, similar to the previous 2D approach, there is no need to calculate the parametric 

expressions of tetrahedra first to provide high-order nodes. High-order nodes can be obtained by 



106 

 

Vector-Adding. Take Fig. 60 for example, high-order node M2 is obtained based on high-order 

node M1, which is the midpoint of edge PQ, adding vector 0.5𝑃𝐴⃗⃗⃗⃗  ⃗. High-order node M3 is obtained 

based on high-order node M2 adding vector 0.5𝑄𝐵⃗⃗ ⃗⃗  ⃗. If two child nodes A and B merge with each 

other as shown in Fig. 61, the operation is slightly different. The position of high-order node Mc 

is obtained by averaging position Mc1 and Mc2 (not shown in Fig. 61). Position Mc1 equals to the 

position of high-order node Mp1 adding 0.5𝑃𝐴⃗⃗⃗⃗  ⃗. Position Mc2 equals to the position of high-order 

node Mp2 adding vector 0.5𝑄𝐵⃗⃗ ⃗⃗  ⃗ . Note in this situation the parametric expression of the new 

tetrahedra around edge RA is different and the previous parametric expression is not suitable 

anymore. The Vector-Adding strategy for mesh cells which are not tetrahedra is similar to the one 

for tetrahedra. The only difference is the vector becomes a weighted vector combined by multiple 

extrusion vectors mapped to related extrusion edges, the same as the Vector-Adding strategy used 

for quadrilateral in the 2D approach. (See Section 3.3)       

 

5.4 Mesh Results 

To verify the 3D high-order viscous mesh generation approach proposed above, several 

examples are provided. 5.4.1 describes the input boundary surface meshes. 5.4.2 provides several 

results of linear and curved 3D mesh generation. The Jacobians of the pure parabolic tetrahedral 

meshes in the NACA0012 cases are checked using a subroutine in the numerical solver, which 

will be described in Section 5.6 CFD results. The checked result shows that all the checked mesh 

elements have positive-Jacobians.  
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5.4.1 3D NACA0012 airfoil boundary surface mesh 

Based on the linear and curved 2D NACA0012 mesh generated by the previous 2D mesh 

generation method, the 3D boundary surface meshes are obtained as the input meshes for 3D mesh 

generation. The first extrusion lengths in the 2D and 3D mesh generations are 1 × 10−3  or 

 1 × 10−4 . The growth ratios in the 2D boundary mesh generation, in the 2D domain mesh 

generation, and in extending this 2D airfoil to obtain the 3D boundary surface mesh are same, 

which are 1.3 or 1.4 in different cases. Fig. 68a) and b) show a close view of the 2D airfoil mesh 

with 𝐺𝑟𝑜𝑤𝑡ℎ𝑟𝑎𝑡𝑖𝑜 = 1.4. Fig. 68c) and d) show the final 3D surface meshes obtained by extruding 

35 more layers along the Z axis, which is perpendicular to the “2D” airfoil.  

                    
a)                                                                      b) 

                     
c)                                                                      d) 

Figure 68 Details of NACA0012 2D domain mesh. a) the head zone; b) the tail zone; c) 3D 

boundary surface mesh with wall distance 0.0001; d) 3D boundary surface mesh with 

wall distance 0.001 
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5.4.2 3D NACA0012 Mesh results 

The 3D initial extrusion lengths of test cases are 1.3, 1.4 and 1.5. The total number of mesh 

layers is 45. Fig. 69 shows the shapes of different mesh layers. During the extrusion process, the 

total number of nodes decreases and the mesh deforms from anisotropic to isotropic, which implies 

that the neighboring edge springs and the tension springs are functioning as desired.    

a) 

b) 

Figure 69 The deformation of the mesh layer. a) with the first extrusion length 0.0001; b) with 

the first extrusion length 0.001. From left to right, the mesh layer index is 10, 20, 30 

and 45 
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a) 

  

b) 
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c) 

                                    

d) 

Figure 70 3D volume mesh with growth ratio 1.4.  a) The whole view of the mesh cut through 

plane Z=0; b) the close view of the mesh cut through plane Z=0; c) The “pipes” 

extrude from boundary surface mesh.  d) The 3D domain mesh with 20 mesh layers 

Fig. 70 shows several mesh details. Fig. 70a) is a whole view of the mesh structure and 

Fig. 70b) is a closer view. The mesh in a) and b) are generated from a pure triangular boundary 
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mesh with a first extrusion length 0.0001. The mesh structure is like pipes extruding from the 

boundary surface, as shown in Fig. 70c). Fig. 70c) shows the contour of the index of mesh layers, 

where the boundary mesh is a mixed-elements one.  It illustrates how the pipes grow and how the 

mesh elements adjust their shapes and extruding direction by the forces of the springs.   

 

a) 

 

b)                                                              
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c) 

Figure 71 Close view of the three views of the NACA0012 mesh with growth ratio 1.4. a) Z=0 

slice; b) Y=0 slice; c) X=0.5 slice 

 

a) 
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b) 

Figure 72 Close view of the head and the tail zone of NACA0012 of the 10th mesh layer. a) the 

head zone; b) the tail zone 

Fig. 71 shows a close view of three views of the mesh. These slices look similar to the 2D 

meshes generated by the previous 2D method. By force of springs, the extruding directions of 

nodes adjust layer by layer to fill in the empty corner space. As shown in Fig. 71, the neighboring 

edges collapse (break) for an efficient distribution of nodes, which benefits the solver.  Fig. 72 

shows the head and tail zone of the mesh with a first extrusion length 0.0001 in the 10th mesh layer. 

It illustrates that as the mesh layers increase, the node distribution is smoother but still can keep 

the anisotropic zones, which matches the mechanism behind Spring-Field model. Table 5 shows 

the neighbor triangle distribution based on the max angle in each triangle. The neighbor triangle 

is defined as the triangles created layer by layer which are the child triangles of the input boundary 

surface triangles. Note all data shown in Table 5, 6 and 7 come from the pure tetrahedral test cases 

and the total number of mesh layers is 45. The first value after the case index in Table 5, 6 and 7 

is the first extrusion length of the input boundary surface mesh. The second value after the case 

index in Table 5, 6 and 7 is the first extrusion length of the 3D volume mesh. 
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Table 5 Triangle distribution in terms of max angle alpha 

Grid case 

name 

Total number 

of triangles 

max α

∈ [60°, 90°] 

max α

∈ (90°, 125°] 

max α

∈ (125°, 140°] 

max α

∈ (140°, 180°] 

Case 1: 1e-

3,1e-3 

144632 89743 54886 3 0 

Case 2: 1e-

4,1e-4 

237632 124395 113191 46 0 

Case 3: 1e-

4,1e-5 

340382 164218 176122 42 0 

 

Table 6 Extrusion edge distribution in terms of deviation angle alpha 

Grid case 

name 

Total number of 

extrusion edges 
α ∈ [0°, 10°] α ∈ (10°, 20°] α ∈ (20, 30°] α ∈ (30°, 180°] 

Case 1: 1e-

3,1e-3 

75858 41844 43441 125 0 

Case 2: 1e-

4,1e-4 

124697 71930 72572 136 0 

Case 3: 1e-

4,1e-5 

176030 122605 79660 142 0 

 

Table 6 shows the extrusion edge distribution based on the deviation angle defined as the 

angle between the ideal extruding direction of one extrusion edge and its real extruding direction. 

Table 7 shows the tetrahedra distribution based on the max dihedral angle. The pure tetrahedra 
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mesh is obtained based on the mesh topology adjustment method 1 described in Section 5.2.3. 

There is no angle larger than 160 degrees in Table 7. Since the ideal extruding direction of each 

extrusion edge is a weighted average normal of its surround facets, Table 5 and 6 reflect the good 

mesh quality of the mixed-elements mesh because these features of the pure tetrahedral meshes in 

Table 5 and 6 are the same as the ones of the matched mixed-elements meshes. However, based 

on Table 7, the strategy to obtain tetrahedra could be further developed to generate tetrahedra with 

better quality, such as using the method mentioned in [71]. 

Table 7 Tetrahedra distribution in terms of max dihedral angle alpha 

Grid case 

name 

Total number 

of tetrahedra 

max α

∈ [60°, 90°] 

max α

∈ (90°, 130°] 

max α

∈ (130°, 150°] 

max α

∈ (150°, 160°] 

Case 1: 1e-

3,1e-3 

421455 31511 389020 921 3 

Case 2: 1e-

4,1e-4 

693644 37586 654989 1062 7 

Case 3: 1e-

4,1e-5 

1001808 35314 963622 2866 6 
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Figure 73 The curved quadratic mesh pipe structure 

The curved quadratic mesh pipe structure is shown in Fig. 73. The curved mesh is generated 

by deforming the linear mesh layer by layer along this pipe structure. Since the mesh shape is 

similar to the linear one, the curved 3D mesh results are not emphasized in this mesh results 

section.  

 

5.5 Mesh Results with Front Closing 

With the 3D front-closing part added into the 3D mesh generation, now the method can 

handle some 3D mesh cases with multiple objects. Fig. 74 shows the meshes in the two-cubes case 

and Fig. 75 shows the 30P30N airfoil case. For the 30P30N airfoil case, the growth ratio is 1.3. 

The ideal distance of the first extrusion from boundaries is 0.000045. The total number of extruded 

mesh layers is 40. These figures illustrate that this mesh generation method can provide mixed-

elements and pure tetrahedral meshes for the solver. In Fig. 75, the boundary layer mesh shows a 

strong perpendicular and anisotropic character, which benefits the numerical solver. In the 30P30N 

airfoil case, the max dihedral angle in the pure tetrahedral mesh is 165 degrees. In terms of 
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tetrahedral mesh quality, although it is acceptable for the solver, the method has plenty of room 

for improvement. 

 
a) 

 
b) 

Figure 74 Two-cubes case. a) The tetrahedral mesh with small total number of boundary   

triangles; b) The mixed-element mesh with larger total number of boundary triangles 
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a) 

 

b) 
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c) 

Figure 75 30P30N airfoil case. a) a close view 1 of the mixed-elements mesh; b) a close view 2 

of the mixed-elements mesh; c) a close view of the pure tetrahedral mesh 

Table 8 shows the total number of different types of mesh cells in the mixed-elements 

30P30N airfoil case and the pure tetrahedral case. The total number of mesh cells for the mixed-

elements mesh is around 250000 and the total number of mesh cells for the pure tetrahedral mesh 

is around 660000. The mixed-element mesh will benefit the numerical solver by providing fewer 

mesh cells while covering the same space. It also illustrates that the mesh topology adjustment 

method described in Section 5.2.3 works. But this mesh topology adjustment method and the 

method used for 3D front closing are not yet robust. A change of the input coefficients such as 

growth ratio may lead to a failure of the mesh generation in the front-closing area. Hence in the 

future a better method of 3D front closing could be provided along with a more robust method to 
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transfer the non-standard type of mesh cells to standard types. For the current 3D front-closing and 

mesh topology adjustment methods used in this section, there are too many special situations to be 

taken into consideration. Hence the improvement of robustness is very difficult if following the 

current method of 3D front closing and the method of mesh topology adjustment.  

Table 8 The number of mesh cells in different type 

Grid case 

Number of 

tetrahedra 

Number of 

pyramid 

Number of 

prism 

Number of tetrahedra in the 

pure tetrahedral mesh 

30P30N airfoil 45875 6911 199603 658506 

 

5.6 CFD Results 

 

Figure 76 The 3D NACA0012 airfoil boundary surface mesh used for the solver 
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Figure 77 Pressure distribution and streamlines around the airfoil 

The mesh generation technique described in this paper is examined by a finite element 

solver. The flow solver is based on a stabilized finite element method (Streamline Upwind Petrov 

Galerkin, or SUPG), which solves for steady and unsteady flow problems using the compressible 

Navier-Stokes equations and the Spalart-Allmaras turbulence model [67]. Fig. 76 shows the 

triangular mesh as the input boundary mesh for generating the pure tetrahedral mesh used in the 

simulation. The first extrusion length of the 2D airfoil and the first extrusion length of 3D boundary 

surface are both 0.001. The growth ratios are 1.3. The total number of nodes is 86791 for P1 and 

681804 for P2. The total number of tetrahedra is 502083. The total number of mesh layers is 40 in 

the 3D extruding direction. Fig. 77 shows the pressure distribution of the flow field and the flow 

streamlines near the NACA0012 airfoil. The calculation is done with linear elements, and the flow 

condition is at a free stream Mach number 0.15, an angle of attack of zero degree, and a Reynolds 

number of six million based on the airfoil chord. It is shown that a three-dimensional flow pattern 
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is established, with strong tip vortices near the leading edge of the airfoil. Though the Jacobians 

are positive, the P2 solution did not converge. The reason is that at the side of the leading-edge 

zone of the airfoil, the unsteady flow character is too strong to obtain a steady solution. If the 

solver is set to unsteady, the P2 case converges. Since it is a higher-order simulation, the total 

number of the mesh elements could be less than the number of the mesh elements in the linear 

simulation. The boundary mesh is shown in Fig. 78. Based on that boundary mesh, the 3D domain 

mesh is generated with a growth ratio of 1.5. The Cp distribution is shown in Fig. 79. The points 

for calculating the Cp distribution are picked along the red dash line as shown in Fig. 78a). The 

Mach number is set to 0.15. The angle of attack is 0 degree. Reynolds number is set to 6 million. 

The Wall distance is set to 1e-5. Fig. 79 shows that the present numerical solutions agree well with 

the experimental data. It illustrates this 3D mesh generation method is promising for a higher-order 

scheme. 

 

a) 
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b) 

Figure 78 The boundary mesh used in the high-order unsteady simulation. a) Top view of the 

NACA0012 boundary mesh; b) a whole view of the NACA0012 boundary mesh 

 

Figure 79 The Cp distribution of the 3D NACA0012 airfoil 
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CHAPTER 6 

 

CONCLUSION 
 

6.1 SUMMARY 

In this dissertation, A mesh generation approach that allows for automatic generation of 

unstructured high-order meshes with the option to produce mixed types of elements (triangles and 

quadrilaterals) is presented. For the 2D cases, three main procedures, consisting of the boundary 

grid generation, the linear viscous grid generation, and the curved deformation, are performed in 

sequence. A new force model referred to as Spring-Field is presented and employed in the viscous 

domain-mesh generation process. This proposed mesh generation approach is capable of handling 

complex domain boundaries while maintaining good mesh quality in the transition areas between 

the boundary layer viscous mesh and the domain interior mesh. In addition, a deformation control 

process is supplemented to provide an automatic switch from non-curved to curved grids, 

depending on necessity. It is also noted that the cost of generating a mesh with an order higher 

than quadratic is at the same level as lower-order cases. Numerical analysis shows that the use of 

a cubic mesh in conjunction with a high-order discontinuous Galerkin scheme demonstrates 

promising results for complex geometry configurations in resolving the flow field as well as 

revealing turbulent boundary layer features. This mesh generation method has been extended to 

3D cases. The results show that the layered “pipe-like” mesh structure, the force model Spring-

Field and the Vector-Adding method is extendable to 3D and can produce good mesh quality.  
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This mesh generation method can also be used for the mesh movement purposes. With the 

adjustments of the method, the approach can not only handle linear mixed-element mesh 

generation with complex geometry but also has the capability to manage mesh movement or mesh 

morphing. Furthermore, with help from the Vector-Adding method for these pipe-like structure 

linear meshes, now both high-order viscous mesh generations and movements can be handled by 

the method. The test cases of large mesh motion and morphing show promising results.  

6.2 Recommendations for Future Work 

In the future research, a more efficient design of the spring model could be provided to 

further improve the mesh quality in the 2D mesh movement cases. 3D mesh movement method 

could be developed based on the 3D mesh generation method and the 2D mesh movement strategy.   

This mesh generation method has been tested for the optimization of an airfoil in the 

framework of a high order turbulent flow solver. However, due to the high sensitivity of the whole 

domain mesh to boundary perturbations, the sensitivity derivatives cannot be calculated precisely 

enough for optimization in high-order cases. Future work could be also concentrated on this 

obstacle.  

For the 3D cases, the improvement of robustness of this mesh generation tool is needed. 

Several parts need to be improved. First, a more robust front-closing strategy could be developed 

to handle not only the front-nodes merging but also the change of the mesh topology to merge 

front-edges. Second, a more robust strategy to obtain a standard mixed-elements mesh from the 

nonstandard mixed-elements mesh could be developed. Finally, Spring-Field could be further 
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developed to handle the mixed-elements boundary surface mesh (triangles and quadrilaterals) as 

the input to provide 3D volume mesh.  
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