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ABSTRACT 
 

The Mechanistic-Empirical Pavement Design Guide (MEPDG) addresses climate effects 

on pavement design in a comprehensive way, which allows for investigating the effect of climate 

inputs on pavement performance. However, it requires detailed climate inputs, which might not 

be available for most of the state DOT. The Updated AASHTOWare climate database 

encompasses twelve stations in the state of Tennessee, which might not well represent all 

climatic regions in the state of Tennessee. This study compares and evaluates the performance of 

pavements in Tennessee using Modern-Era Retrospective Analysis for Research and 

Applications (MERRA) and the updated AASHTOWare databases as a source of MEPDG 

climate data inputs. 

A comparative analysis between these two climate data sources using eight LTPP sites in 

Tennessee was conducted. It was found that using MERRA as a climate data source for the state 

of Tennessee will offer better geographic coverage and therefore more precise distress 

predictions are expected. 
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CHAPTER I 

 

INTRODUCTION 

 

 

Climate and environmental factors have direct short and long term impacts on material 

characteristics and pavement performance. Material characteristics are affected by the 

environmental factors in several aspects, for example, asphalt modulus may vary from 100,000 

psi in hot weather to 2 or 3 million psi in cold weather. Frozen soil could increase resilient 

modulus values by 20 to 120 times the resilient modulus of unfrozen soil, and high moisture 

content is associated with lower resilient modulus for unbound materials. Pavement performance 

and deflections of both flexible and rigid pavements are similarly profoundly influenced by 

temperature and moisture. In climates with high-temperature fluctuations, very cold temperatures 

result in transverse cracks in asphalt pavements, while high temperature leads to an increase in 

the deflections and rutting (Byram et al.; Huang). Concrete blowup, deflections near joints and 

slab cracks, are effects of temperature changes in concrete pavements (Huang). These distresses 

are indicators of the impact of environmental factors on pavements, which necessitates their 

consideration on pavement design. Environmental factors also can affect pavement ride quality 

and serviceability (Applied Research Associates). 

Most state departments of transportation in the US use AASHTO-1993 pavement design 

guide for pavement design. This guide was developed by the American Association of State 

Highway and Transportation Officials (AASHTO) in 1960's. The latest version of this guide was 

last updated in 1993. The AASHTO-1993 guide is an empirical design method based on AASHO 
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road test that was conducted between 1958 to 1960 (Huang). This design approach does not 

sufficiently address climate factors; it uses drainage factors to account for moisture effect in the 

design process. The new pavement design method, Mechanistic-Empirical Pavement Design 

Guide (MEPDG), was introduced to provide a deeper understanding of pavement performance 

(Applied Research Associates). 

MEPDG is a mechanistic-empirical based pavement design method developed to replace 

the current AASHTO-1993 pavement design method to overcome many limitations in the 

AASHTO-1993 design guide such as, heavier traffic loadings, new rehabilitation methods, new 

axle types and configurations, different hot asphalt concrete mixes, and different climate 

conditions. MEPDG design philosophy provides to pavement engineers many advantages like: it 

offers variety of material and design options, reduces pavements early failures, increases 

pavement longevity, addresses new and rehabilitating design methods, provides hierarchal level 

of design inputs that allows more flexibility, evaluates base erosion under rigid pavements, and 

considers aging and seasonal effects when estimating pavement performance (Applied Research 

Associates). MEPDG introduced a hierarchical design method by introducing three levels of 

inputs for the required material and traffic inputs. The designer selects the appropriate design 

level according to the importance of the project and the available resources (AASHTO). These 

three design levels are defined as follows: 

• Level-1 inputs: these inputs are measured directly at the design site which provides the 

highest knowledge of the site conditions but requires a higher cost for data collection 

and testing. 



 

3 

• Level-2 inputs: these inputs are either obtained from regional values or generated from 

regression models. Level-2 inputs do not provide the most precise data for the site but 

costs less than level-1 inputs. 

• Level-3 inputs: these are the default inputs that were developed using national values. 

Level-3 inputs provide the least knowledge about the analyzed sites, but the cost 

associated with using level-3 inputs is less than cost of using level-1 or level-2 inputs 

(AASHTO). 

Looking at climate particularly, AASHTO-1993 is based on a test that was performed at 

one location in Illinois, representing only one geographic region, therefore, different climate 

conditions are not directly considered in AASHTO-1993 design guide, while MEPDG 

comprehensively addresses this issue by incorporating the Enhanced Integrated Climate Model 

(EICM) in the pavement design software. EICM is a one-dimensional coupled heat and moisture 

flow algorithm that simulates changes in the behavior and characteristics of pavement and 

subgrade materials in conjunction with climate conditions over several years of operation. EICM 

was developed in 1989; then it was modified and updated in 1997, 1999 and 2004. It contains 

three major components (Applied Research Associates) : 

• The Climatic-Materials-Structural Model (CMS Model); 

• The United States Army Cold Regions Research and Engineering Laboratory 

(CRREL).CRREL Frost Heave and Thaw Settlement Model (CRREL Model); 

• The Infiltration and Drainage model. 

The EICM model is considered a significant advancement in pavement design and 

analysis since it can predict the following parameters through the pavement profile: 
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• Temperature, Resilient Modulus adjustment factors. 

• Pore water pressure and water content. 

• Frost and thaw depths. 

• Frost heave and drainage performance. 

These predicted values are used to define material characteristics, structural response and 

pavement performance for both flexible and rigid pavement. 

According to mechanistic-empirical design guide of new and rehabilitated pavement 

structures, for EICM to be able to predict these values, EICM needs information that can be 

classified in five categories (Applied Research Associates): 

1. General information: 

• Base/Subgrade Construction completion month and year. 

• Pavement Construction completion month and year. 

• Existing Pavement Construction completion month and year (for rehabilitation only. 

• Traffic opening date. 

• Design type. 

2. Weather-related information: 

• Hourly air temperature which is used to calculate longwave radiation by heat balance 

equation in EICM. It is also used to define the freeze-thaw cycles. 

• Hourly precipitation which is used for calculating infiltration for rehabilitated 

pavement and aging process. Moreover, precipitation happens in months when the 

mean temperature of that month is less than freezing temperature is modeled by EICM 

as snow. 
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• Hourly wind speed is used for calculation of convection heat transfer coefficient at the 

pavement surface. 

• Hourly sunshine percentage (cloud cover) is used for calculating heat balance on 

pavement surface. 

• Hourly relative humidity has a significant impact on drying shrinkage in Continuously 

Reinforced Concrete Pavement (CRCP) and Jointed Plain Concrete Pavement (JPCP) 

and determining the initial crack width of CRCP. 

3. Groundwater table depth. 

4. Drainage and surface properties: 

• Surface Shortwave Absorptivity 

• Infiltration 

• Drainage Path Length 

• Pavement Cross Slope 

5. Pavement surface and materials: 

• Layer Thicknesses. 

• Thermal Conductivity, K and Heat Capacity Q for AC and PCC layers. 

• Surface Shortwave Absorptivity for Asphalt Materials. 

• Mass-Volume Parameters for unbound layers which include maximum dry density, 

optimum gravimetric moisture content, and specific gravity. 

• Dry Thermal Conductivity and Dry Heat Capacity for unbound layers. 

The most challenging information to obtain is weather-related information since it needs 

hourly data for long periods of time and there is a limited availability of weather stations. 

MEPDG design software (MEPDG AASHTOWare) requires latitude, longitude, and elevation of 
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the design site to create virtual weather station by interpolating the necessary data based on the 

distance and elevation difference. MEPDG AASHTOWare automatically selects the nearest six 

stations, or the user can select the desired number of stations to be used to interpolate climate 

data. However, maximizing the number of the sites is preferred since some data may be missing. 

After the user selects the stations, EICM model interpolates the values and creates virtual 

weather station (AASHTO; Applied Research Associates). 

The previous version of MEPDG AASHTOWare used to obtain climate data from ground 

weather stations located near the project site. MEPDG AASHTOWare had about 800 stations 

located all over the US. Most of these stations have about 60 to 66 months of data which is 

enough for calculation purposes, which requires 24 months of actual data to be performed 

(Applied Research Associates). 

The current MEPDG AASHTOWare version weather-related data was updated using 

North American Regional Reanalysis (NARR) database which raised the number of the available 

station to about 1200 in US and 300 in Canada. This update made climate data available for more 

extended periods. Nevertheless, the geographic distribution of these stations is a challenge facing 

state departments of transportation (Brink et al.). 

The problem with the available climate data in MEPDG AASHTOWare is the limited 

geographical distribution representation since the number of the weather stations in each state 

does not represent all climate regions ((Truax et al.), (Johanneck),(Yang et al.)). 

Other sources can be used to obtain weather-related data, for example, data from U.S. 

Climate Research Network; National Weather Service Cooperative Observer Program; 

Department of Energy Solar Infrared Radiation System station; and Modern-Era Retrospective 
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Analysis for Research and Applications (MERRA). MERRA is a new source for climate data. It 

was developed by the National Aeronautics and Space Administration (NASA) for its own needs 

and provides continuous hourly weather data starting in 1979 on a relatively fine-grained 

uniform grid. MERRA is based on a reanalysis model that combines computed model fields 

(e.g., atmospheric temperatures) with ground-, ocean-, atmospheric-, and satellite-based 

observations that are distributed irregularly in space and time. The result is a uniformly gridded 

dataset of meteorological data derived from a consistent modeling and analysis system over the 

entire data history. MERRA data is provided at an hourly temporal resolution and a 0.5 degrees 

latitude by 0.67 degrees longitude (approximately 31.1 mi by 37.3 mi at mid-latitudes) spatial 

resolution over the entire globe. MERRA database combines  both measured observations and 

modeled data (Schwartz et al. "Evaluation of Long-Term Pavement Performance (Lttp) Climatic 

Data for Use in Mechanistic-Empirical Pavement Design Guide (Mepdg) Calibration and Other 

Pavement Analysis"). 

MERRA can be considered as a valuable source for climate data inputs for MEPDG since 

it has an extensive database and excellent spatial coverage. The suitability of using MERRA data 

as climate data inputs for MEPDG in the State of Tennessee is evaluated in this study in 

comparison to the MEPDG AASHTOWare climate data. 

1.1 Problem Statement 

As stated in the introduction, climate and environmental considerations are very 

important in pavement design. Currently, the state of Tennessee uses AASHTO-93 pavement 

design guide, however Tennessee Department of Transportation (TDOT) is putting in place all 

the necessary parameters required for the MEPDG implementation. 
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Climate and environment are among input parameters required for the MEPDG. The 

MEPDG AASHTOWare database provides weather or climate stations that can be used for each 

state. In 2006, the state of Tennessee had only nine stations in AASHTOWare database, which 

covers only nine out of 95 counties in Tennessee as shown in Figure 1. Figure 1, clearly indicates 

that there are some parts of the state of Tennessee that lacks a climate/weather station, which 

may affect the pavement design in this region. 

 

 

Figure 1 Original MEPDG AASHTOWare Climate Station Locations in the State of Tennessee 

 

The availability of the climate data from these nine stations in 2006-MEPDG climate 

database varies from 5 years to 10 years for the period 1996 to 2006 as shown in Table 1. It can 

be noticed that these stations had a limited number of years of climate data which it is not 

expected to offer good representation for climate data. 
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Table 1 Original MEPDG AASHTOWare Climate Stations in the State of Tennessee 

Station Name Station Location First Year Last Year 

Bristol/Jhnsn Cty/Kngsprt Tri-Cities Regional Tn/Va Airport 1996 2006 

Chattanooga Lovell Field Airport 1996 2006 

Clarksville Outlaw Field Airport 2001 2006 

Crossville Memo-Whiton Field Airport 2000 2006 

Jackson Mckellar-Sipes Regional Airport 1998 2006 

Knoxville Mc Ghee Tyson Airport 1996 2006 

Memphis Memphis International Airport 1999 2006 

Nashville Nashville International Airport 1996 2006 

Oak Ridge| Oak Ridge 1998 2006 

 

As it was mentioned in the introduction, MEPDG climate database was updated in 2016 

using North American Regional Reanalysis (NARR) database. This update overcomes the data 

availability limitations reported in the earlier versions of MEPDG since it offers 37 years of data 

from 1979 to 2015. The number of the available stations in MEPDG was also raised to about 

1200 in US and 300 in Canada (Brink et al.). In this newly updated database, the number of the 

available stations in the state of Tennessee increased from nine to twelve stations which 

represent twelve counties introducing three new stations around Knoxville area as shown in 

Table 2. 
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Table 2 Updated MEPDG AASHTOWare Climate Stations in the State of Tennessee using 

NARR Database 

Station Name Station Location First Year Last Year 

Bristol/Jhnsn Cty/Kngsprt NARR 

Grid Point 

Tri-Cities Regional TN/VA 

Airport 1979 2015 

Chattanooga NARR Grid Point Lovell Field Airport 1979 2015 

Clarksville NARR Grid Point Outlaw Field Airport 1979 2015 

Crossville NARR Grid Point Memo-Whiton Field Airport 1979 2015 

Jackson NARR Grid Point Mckellar-Sipes Regional Airport 1979 2015 

Knoxville NARR Grid Point Mc Ghee Tyson Airport 1979 2015 

Knoxville NARR Grid Point Mc Ghee Tyson Airport 1979 2015 

Knoxville NARR Grid Point Mc Ghee Tyson Airport 1979 2015 

Knoxville NARR Grid Point Mc Ghee Tyson Airport 1979 2015 

Memphis NARR Grid Point Memphis International Airport 1979 2015 

Nashville NARR Grid Point Nashville International Airport 1979 2015 

Oak Ridge NARR Grid Point Oak Ridge 1979 2015 

 

However, this update is still faced with the limited geographical distribution of these 

twelve stations since the added three stations are all around the Knoxville area as shown in 

Figure 2. This climate data may not well represent the climate in the state of Tennessee. The 

existence of data gaps in the state and elevation differences affects the accuracy of interpolated 

data. 
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Figure 2 Updated MEPDG AASHTOWARE Climate Stations Locations in the State of Tennessee 

using NARR Database 

 

1.2 Objective 

The objective of this study is to evaluate and compare the performance of pavements in 

Tennessee using MERRA and the updated AASHTOWare databases as a source of climate data 

inputs for MEPDG. This analysis used eight Long-Term Pavement Performance (LTPP) sites in 

Tennessee.  
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

Many states across the US face difficulties with climate data inputs for MEPDG, which 

led to various types of research and studies conducted in different states with objectives that 

address climate issues in MEPDG. Some of these studies discuss the effect of using accurate 

climate data on MEPDG predictions, and others investigate different methods to improve the 

available climate database or using other sources of climate data as inputs. 

In 2010, Johanneck and Khazanovich studied the impacts of climate in MEPDG 

predictions by predicting the performance of 610 composite pavement sections with Asphalt 

Concrete (AC) over Portland Cement Concrete (PCC) nationwide using MEPDG AASHTOWare 

version 1.0. This study indicated that climate inputs have major influences on pavement 

performance, and the quality of MEPDG weather stations varies from one station to another 

since MEPDG allows low-quality data to be used. Another important finding from this analysis 

was that by observing PCC transverse cracking, it was noticed that there were many 

discrepancies. Therefore, checking and cleaning of low-quality climate data was recommended 

by authors (Johanneck and Khazanovich). 

In studying the effects of the climate inputs in the State of Louisiana, the state was split 

into two parts by a line at latitude 30.6º. The northern part has higher elevations, higher 

temperature fluctuations, and deeper water table while the southern part is a coastal area with 

lower temperature fluctuations and shallower water table. Twenty sites were selected for the 
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analysis, ten from each part of Louisiana to study the effect of climate inputs on MEPDG. The 

ten sites in each part were chosen with different pavement structures to negate the impact of the 

pavement structure. The climate inputs were developed by using VWS by interpolation from 

nearest two or three weather stations. The effects of the climate on rutting and fatigue cracking 

were studied by applying a T-test analysis with a null hypothesis that the average errors of the 

MEPDG for the two groups of projects are equal, and the alternative hypothesis H1 is that the 

average errors of the MEPDG for the two groups of projects are unequal. It was found that 

MEPDG overestimates rutting in the southern part of Louisiana while it underestimates fatigue 

cracking in the north of the State of Louisiana (Yang et al.). 

Li et al. assessed the accuracy of the virtual weather stations climate data generated by 

EICM by comparing this data to data collected by LTPP using Automated Weather Stations 

(AWS). The generated values of maximum monthly temperature, minimum monthly 

temperature, mean monthly temperature, mean annual temperature, monthly precipitation, annual 

precipitation and number of freeze and thaw cycles were compared to data obtained from 42 

Automated Weather Stations (AWS) data. Two cases were used to generate the climate data 

using EICM. In the first case, VWS data was generated by interpolation from the nearest six 

stations while in the second case VWS data was generated by interpolation from the nearest 

station only. It was found that the data generated by MEPDG is reasonably accurate, but the 

deviation between VWS and AWS does not follow a normal distribution pattern. Also, using 

many nearby stations for interpolating climate data leads to more accurate results. Another 

important finding that the elevation difference between the analyzed site and the nearby stations 

has considerable effects on the accuracy of interpolated VWS while the distance between project 

location and selected stations for interpolating climate data does not affect VWS significantly (Li 
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et al.). The impact of generated climate data on pavement performance was also investigated in 

this study. A site located in Fayetteville, Arkansas was selected for this purpose using Average 

Annual Daily Truck Traffic (AADTT) of 10000, 20-year design life and pavement structure 

which was designed using AASHTO-1993 for both flexible and rigid pavements. The impact 

was studied by changing the average temperature by (±3ºF) and monthly precipitation by 7.2 in. 

It was found that AC rutting was the most sensitive to changes in climate data while International 

Roughness Index (IRI) was the least sensitive to changes in climate data (Li et al.). 

Johanneck in 2011 modeled the thermal behavior of concrete and composite pavements 

using EICM and validated EICM predictions of thermal gradients through the slabs using 

temperature data from Minnesota Department of Transportation (MnRoad). It was concluded that 

“evaluation of the material thermal inputs should be a part of a process of local calibration and 

adaptation of the MEPDG”(Johanneck). 

Breakah et al. examined the effects of using accurate climatic conditions on MEPDG 

considering the State of Iowa as a case study. For the study purposes, the available climate data 

in the software were compared to the climate data developed from historical data from different 

counties in Iowa State. MEPDG climate database contains 15 stations while data from 24 

counties was obtained from Iowa Environmental Mesonet to represent Iowa State's climate. The 

predicted distresses indicted that MEPDG climate data predicted lower IRI and lowered thermal 

cracking compared to locally developed climate data. Higher rutting was predicted by MEPDG 

climate data but only on the northern part of the state. Almost 10% deviation was noticed for 

high temperature distresses, and almost 17% deviation was observed in low temperature 

distresses. These differences between MEPDG and local developed climate data predictions 

specify the importance of accurate climate data from MEPDG application (Breakah et al.). 
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Saha et al. evaluated the effects of the Canadian climate condition on MEPDG 

predictions for flexible pavement performance. To achieve the objective, the authors studied the 

following: frost depth and freezing index computed by MEPDG and the sensitivity of the 

MEPDG-predicted performance indicators for flexible pavements to the climate in Canada. Data 

from 222 climatic stations collected by Transportation Association of Canada for MEPDG 

implementation was used in this study. It was concluded that discrepancies were detected when 

frost depth and freezing index computed using the MEPDG were compared to other Canadian 

databases. Also, it was found that alligator and transverse cracking models in the MEPDG were 

not sensitive to climate changes across Canada while higher longitudinal cracking is expected in 

the permafrost zone. Small variations in IRI and rutting values were noticed (Saha et al.). 

The State of Michigan is comprised of 24 weather stations that are available in MEPDG, 

which do not cover all geographic regions. This is considered as a challenge because the sites in 

the climate database have limited available data, and the data is not updated. Yang et al. studied 

the applicability of using the Automated Surface Observation System and the Automated 

Weather Observation System (ASOS/AWOS) to increase the number of stations in Michigan and 

to update the data of the existing stations. Procedures for quality check, quantity check, missing 

data filling and inaccurate data correction was developed and applied in this study, so Michigan 

increased the number of the available weather stations to 39 with an average length of data of 

15.2 years instead of 7.5 years (Yang et al.). 

The State of Mississippi faced challenges similar to Michigan State with only 12 stations 

in Mississippi available in MEPDG climate database which represent ten counties across the 

state. Mississippi faced these challenges by developing historic climate database using hourly 

data from 23 ASOS and AWOS, and the daily data from over 100 Cooperative Observer 
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Program (COOP) that contains 40 years of climate that represent 82 counties in Mississippi. This 

historic data was used to develop 40 years of future climate inputs for nine climate zones that 

represent different climate conditions in Mississippi. Sensitivity analysis was performed to 

investigate the climate inputs effects on pavement performance on both flexible and rigid 

pavements in Mississippi State. Rutting and ride quality were selected for this study to determine 

the sensitivity of flexible pavements while faulting and ride quality were selected for rigid 

pavements. It was found that using MEPDG default climate inputs overestimate the future 

distresses (Truax et al.). 

The State of Iowa had 15 stations included in the MEPDG climate database that 

comprised about 10-years of data. These 10-years of available data are repeated to simulate the 

climate in the design life of the pavement. An additional challenge was to know the sufficient 

data length that enables the designer to model the climate for whole pavement design life. 

Heitzman examined MEPDG assumption that 15-20 years of climate data is enough to represent 

the climate in Iowa State. It was found that the climate data in Iowa has high fluctuations in a 

period of 10-years, so historical data will not model the climate accurately, virtual climate 

database is required to project future climates and predict future pavement performance 

accurately (Heitzman). 

Byram et al. investigated MEPDG flexible pavement performance predictions sensitivity 

to climate using Spearman's rank correlation test and hierarchical regression analysis. This 

analysis was conducted at two levels: Regional Level considering 12-sites from Arkansas and 

National Level considering 18-sites across the US. In both levels, the same method was followed 

by changing the climate inputs while all other inputs remain constant for all sites. Many 

important findings were specified by this analysis which includes defining temperature as the 
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most significant factor for the EICM, and it has the strongest correlation with pavement 

distresses and less fatigue cracking and rutting are expected in cold weather. Also, it was also 

noticed that moisture has less impact on flexible pavement performance than temperature. 

Another major output of this study was that IRI doesn`t highly influence by climate alone 

(Byram et al.). 

Another study examined alternative sources of climate data that can be used as climate 

inputs for MEPDG like “Evaluation of LTPP Climatic Data for Use in Mechanistic-Empirical 

Pavement Design Guide Calibration and Other Pavement Analysis” and Alternative Source of 

Climate Data for Mechanistic-Empirical Pavement Performance Prediction by Schwartz and his 

group. (Schwartz et al. "Alternative Source of Climate Data for Mechanistic–Empirical 

Pavement Performance Prediction") This research evaluated MERRA climate as alternative 

sources of climate data for MEPDG application. The study compared MEPDG predictions for 20 

locations distributed across the contiguous United States using climate data from different 

sources like Ground-based climate data which is built in (MEPDG), United States Climate 

Reference Network (USCRN) and NASA's MERRA. USCRN data were eliminated from the 

MEPDG performance comparison because it does not include wind speed and cloud cover data 

which are essential for the MEPDG models, so the predicted performance of flexible and rigid 

pavements was compared using MEPDG data and MERRA data. From the results of this study, 

it was observed that MERRA climate data estimates higher distresses than predicted by MEPDG 

weather data. For rigid pavement, there was no clear trend for deviations between MERRA and 

MEPDG weather forecasts. However, it was found that using MERRA as a source of climate 

data for MEPDG can predict acceptable results for engineering design for both flexible pavement 

and rigid pavements. The study addressed several benefits of using MERRA as a source of 
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climate data including better spatial coverage; better frequency, continuity, consistency, and 

quality; focus on physically real quantities; rich and versatile data set, and data enhancement 

with time (Schwartz et al. "Alternative Source of Climate Data for Mechanistic–Empirical 

Pavement Performance Prediction"). 

LTPP team conducted a study with several objectives such as: study current and 

emerging requirements in climate data collection for transportation applications such as 

MEPDG, develop a methodology for integrating temporal changes in position and measurement 

characteristics of Operating Weather Station (OWS) into the calculation of climate indices, and 

apply this new methodology to update the climate statistics in the LTPP database. But these 

objectives were ignored when the research team discovered MERRA and the focus was shifted to 

evaluate whether MERRA is a feasible alternative to conventional ground-based climate data 

sources. Statistical and sensitivity tests were performed on MERRA data to compare it to the best 

existing ground climate data in assessing its suitability for MEPDG purposes. This study 

performed quality checks on the available 851 weather station for MEPDG; only 21 sites met the 

required quality criteria while MERRA data satisfied all quality requirements. 12 sites 

nationwide were selected for a comparative study between MEPDG weather database and 

MERRA. The following conclusions were major findings by LTPP research team (Schwartz et 

al. "Evaluation of Long-Term Pavement Performance (Lttp) Climatic Data for Use in 

Mechanistic-Empirical Pavement Design Guide (Mepdg) Calibration and Other Pavement 

Analysis").  

• Both flexible and rigid pavements were affected by the average annual temperature and 

average annual temperature range values. 

• The performance of both flexible and rigid pavements is not sensitive to Precipitation. 
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• Asphalt rutting, total rutting, and longitudinal cracking were the flexible pavement 

distresses that were most affected by climate.  

• The variances between MEPDG predicted distresses using AWS versus MERRA versus 

virtual weather station (VWS) versus OWS weather data sources don’t follow a certain 

trend which was interpreted as an acceptable level of agreement between MERRA and 

VWS/OWS  

Based on these conclusions LTPP recommended MERRA as a source for climate data for 

many applications like MEPDG and bridge management. Additionally, MERRA’s close spacing 

of its modeled stations eliminates the need for improved weather data interpolation and VWS. 

More extensive research on MERRA applications was recommended by the research team in 

different areas like comparing MEPDG pavement performance predictions using ground truth, 

OWS, and MERRA climate data, evaluation of the correctness of MEPDG surface shortwave 

radiation (SSR) calculations and establishing an appropriate ground truth for climate data. 
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Chapter III 

 

METHODOLOGY 

 

 

The objective of this study is to evaluate and compare the performance of pavements in 

the state of Tennessee using MERRA and the updated MEPDG AASHTOWare climate 

databases as source of climate data inputs for MEPDG. In this study, two scenarios are 

developed. In the first scenario, climate inputs are defined from MEPDG climate inputs by 

interpolating the climate inputs from the nearest six stations available in MEPDG 

AASHTOWare climate database, while in the second scenario, the climate data is defined from 

MERRA database. Same traffic and materials inputs are used for both scenarios for a 20 year 

design period.  

Eight LTTP sites in the state of Tennessee are used in this study to compare the pavement 

performance using MERRA and the updated MEPDG AASHTOWare climate databases as 

source of climate data inputs for MEPDG. The eight LTPP site are located across the four TDOT 

regions and represent different traffic and climate conditions since some of these sites represent 

interstates while the others represent state routes as shown in Figure 3. The MERRA climate 

input station used for each site of these eight LTPP sites was obtained from LTPP infopave 

database. 
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Figure 3 Analyzed Sites Locations 

 

This analysis was limited to eight sites with complete traffic information from the LTPP 

database as shown in Table 3. 

Table 3 Sites Basic Information 

# SHRP_ID 

Total 

lanes 

County Name Route No 

Mile 

Post 

Functional 

Class 

AADTT TTC 

1 1028 4 Hawkins 11 8.83 2 720 2 

2 1029 4 Marion 28 0.59 2 736 6 

3 2008 4 Gibson 43 5.27 2 1058 4 

4 3075 2 De Kalb 56 19.08 2 660 13 

5 3101 2 Cannon 96 1.92 2 146 12 

6 3108 4 Anderson I-75 123.04 1 7918 1 

7 6015 4 Mc Minn I-75 59.4 1 6720 1 

8 9025 2 Cannon 96 3.48 2 136 12 
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In Table 3, SHRP_ID represents site identification number assigned by LTPP program. 

AADTT is the initial two-way average annual daily truck traffic. Truck Traffic Classification 

(TTC) defines a group of roadways with similar normalized axle-load spectra and normalized 

truck volume distribution. MEPDG has 17- TTC group that were determined by analyzing the 

traffic data collected on over 180 LTPP test sections (AASHTO). 

The analysis was performed on the eight sites using MEPDG AASHTOWare to 

determine predicted distresses caused by same traffic load using the two climate data sources. 

The analysis (1) predicted pavement distresses by each climate data source caused by the given 

traffic loading; (2) optimized the AC layer thickness taking into account the given climatic 

conditions and (3) using statistical analysis to evaluate the difference between the predicted 

distresses using the two climate databases.   

 

1.3 Distresses 

The MEPDG predicted distresses include International Roughness Index (IRI), 

permanent deformation, AC bottom-up cracking, AC thermal cracking, and AC top-down fatigue 

cracking. The MEPDG AASHTOWare version 2.3 was used to estimate these distresses for the 

eight sites using climate data input for both scenarios. 

IRI quantifies the smoothness of pavement. IRI is vital in pavement design since rough 

pavement leads to higher vehicle operation cost and user discomfort. MEPDG uses empirical 

equations to estimate IRI as a function of permanent deformation, as well as AC bottom-up 

cracking, AC thermal cracking, and AC top-down fatigue cracking. 
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Permanent deformation (total rutting) is defined by MEPDG as the maximum vertical 

difference in elevation between the transverse profile of the HMA surface and a wire-line across 

the lane width as shown in Figure 4 (AASHTO). 

 

Figure 4 Permanent Deformation taken from (Huang) 

 

AC bottom-up cracking (Alligator Cracking) is a series of interconnected cracks that start 

at the bottom of the HMA layers as shown in Figure 5 (AASHTO). These cracks starts at the 

bottom of the asphalt or base layers. Alligator cracking is measured in square feet of surface 

area. Measuring alligator cracking might be complicated if cracks with different severities took 

place in one area since each severity level must be measured separately (ASTM-D6433-07). 
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. 

Figure 5 AC Bottom-Up Cracking taken from (ASTM-D6433-07) 

 

AC thermal cracking (Transverse Cracking) is a non-load related distress form of 

cracking that is predominantly perpendicular to the pavement centerline and caused by low 

temperatures or thermal cycling as shown in Figure 6 (AASHTO). These cracks are measured in 

linear feet (ASTM-D6433-07). 

 

 

Figure 6 AC Thermal Cracking taken from (Huang) 
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AC top-down fatigue cracking (Longitudinal Cracking) is another form of load-related 

cracks which take place mainly parallel to the pavement centerline as shown in Figure 7 

(AASHTO). These cracks are measured in linear feet (ASTM-D6433-07). 

 

 

Figure 7 AC Top-Down Fatigue Cracking taken from (ASTM-D6433-07) 

 

MEPDG introduced a new concept of optimizing AC layer thickness to ensure that the 

estimated distresses will be within the allowable limits. The optimized AC layer thickness was 

also calculated for the two scenarios using MEPDG AASHTOWare version 2.3 optimization 

tool. 

 

1.4 Statistical Analysis 

To investigate the significance of the difference, if any, in the predicated distresses 

between the two climate data sources, a paired T-statistical test with a confidence level of 95% 

was performed for the distresses that follow normal distribution with the following hypotheses:  
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Null hypothesis: 

There is no difference between distresses predicted using Updated MEPDG and MERRA climate 

data inputs. 

Alternative hypothesis: 

There is a difference between distresses predicted using updated MEPDG and MERRA climate 

data inputs. 

For the distresses that do not follow normal distribution, a nonparametric Wilcoxon sum-

rank test was used to investigate the significance of the difference between the two sources of the 

climate data. The confidence level used for this test was 95% and the same hypotheses used for 

the T-test used for Wilcoxon sum-rank test. 

The design criteria used for this study to evaluate these distresses was recommended by 

the AASHTO manual of practice criteria and shown in Table 4 (AASHTO).  

Table 4 Pavement Performance Criteria 

Distress 

Limit 

Interstates Primary Roads 

Terminal IRI 160 200 

Bottom Up Cracking 10% lane area 20% lane area 

Top-Down Cracking (ft./mile) 2000 2000 

Transverse Cracking (ft./mile) 500 700 

Permanent Deformation (in) 0.4 0.5 
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The analysis looked at the predicted distresses against the design criteria and also 

compared the distresses predicted using the two climate data sources. Current pavement 

condition was not readily available, therefore; a comparison to the actual condition or validation 

of results was not performed. 
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CHAPTER IV 

 

ANALYSIS AND RESULTS 

 

 

MEPDG design method is iterative, and it produces results in terms of distresses and 

smoothness values and not layer thickness. The MEPDG design approach has three major steps: 

Evaluation, Analysis, and Strategy Selection as shown in Figure 8. 

 

Figure 8 MEPDG Three Steps Design Process taken from (Applied Research Associates) 
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In the evaluation step, the material, climate, traffic inputs and design criteria are 

determined. MEPDG AASHTOWare requires various traffic, materials, and climate inputs to 

forecast the pavement performance during its design life at a specific reliability level 

(AASHTO). 

In the analysis step, the designer selects a trial pavement cross section to perform the first 

analysis run. This trial cross section can be generated using AASHTO-1993 design guide or any 

other design method adopted by the agency. Based on this trial pavement design, MEPDG 

pavement response model calculates Load Related Cracking, Non-Load Related Cracking, 

Rutting, Faulting, Distortion, and IRI. These distresses are then evaluated against the selected 

design criteria. If the predicted distresses are within the allowable limits defined by the design 

criteria, the trial design strategy is considered to be viable strategy, and will be assessed in the 

last design step, otherwise a new trial design strategy is selected and evaluated (AASHTO; 

Applied Research Associates). 

The Last step is the strategy selection. In this step, the Life Cycle Cost Analysis, and 

Engineering and Constructability Analysis are applied to the select best strategy from the 

evaluated design strategies (AASHTO; Applied Research Associates). 

As mentioned above in this section, MEPDG requires material properties for each layer 

of the pavement. Soil classification and gradation, coefficient of lateral earth pressure, dry 

density, moisture content, Atterberg limits and resilient modulus are required for unbound layer 

while dynamic modulus, tensile strength, creep compliance, Poisson's ratio, surface shortwave 

absorptivity, thermal conductivity, heat capacity, coefficient of thermal contraction, effective 

asphalt content by volume, air voids, aggregate specific gravity and gradation, voids filled with 

asphalt and unit weight are needed for asphalt layers. These properties can be defined as level-1 
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using site-specific data or level-2 using regional data or level-3 using national data. Level-3 was 

used in this study since level-1 or level-2 material inputs were not available (AASHTO; Applied 

Research Associates). 

In the traffic side, MEPDG AASHTOWare requires initial two-way Average Annual 

Daily Truck Traffic (AADTT), truck percent in the design direction, truck percent in the design 

lane, operational speed, Normalized Axle Load Spectra (NALS), Normalized Vehicle Class 

Distribution (VCD), Monthly Distribution Factors (MAF), Hourly Distribution Factors (HDF), 

axle load configuration, dual tire pressure, tire pressure, and lateral wander of axle load. These 

traffic inputs are hierarchal (Level 1, 2 and 3). MEPDG recommends using level-3 values for 

axle load configuration dual tire pressure, tire pressure, and lateral wander of axle load, however, 

it recommends using level-2 or level-1 traffic inputs for NALS, VCD, MAF, and HDF if they are 

available. (AASHTO; Applied Research Associates) 

In this study, AADTT values were obtained from LTPP Infopave database for the eight 

sites that were analyzed. The analysis used level-3 values for NALS, VCD, and MAF since these 

inputs are not available for the state of Tennessee. A linear traffic growth factor of 1.34% was 

used for this analysis. This growth factor was calculated by averaging the available traffic 

growth factors for all counties in the state of Tennessee. This growth factor was used for all 

vehicle classes since no growth factor data is available for each vehicle class. The percent trucks 

in design direction and percent trucks in design lane were assumed to be 50% and 95% 

respectively. 

As stated in introduction section, MEPDG EICM uses hourly temperature, precipitation, 

wind speed, relative humidity, and cloud cover to forecast the temperature and moisture content 

throughout the pavement structure. This data is available in MEPDG AASHTOWare database. It 
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requires the user to enter the longitude, latitude, and elevation of the site then select nearby 

stations to interpolate the climate properties for the selected sites using virtual weather station 

concept (AASHTO). MEPDG climate database was updated using North American Regional 

Reanalysis (NARR) database. This updated database has a 37-years of weather data for years 

1979 to 2015 (Brink et al.). This climate database update resolved the previous data availability 

issues since most of the stations had only 5 to 10 years of climate data (Brink et al.). However, 

MEPDG AASHTOWare climate database still faces the challenge of limited geographic 

coverage which results into using stations with high elevation difference which affects the 

accuracy of the interpolated climate data. In this study, the predicted distresses using MEPDG 

virtual weather stations climate inputs was compared to the predicted distresses using MERRA 

climate inputs to evaluate and compare the performance of pavements in Tennessee. Pavement 

layers, AADTT, growth rate, design life, climate stations and other design inputs used for the 

analyzed sites in this study are highlighted in section 4.1. 

1.5 Design Inputs for the LTTP Sites 

This analysis was performed on eight LTPP sites with complete traffic information from 

the LTPP database as shown in Table 5. These eight LTTP sites are located across the four 

TDOT regions in the state of Tennessee and represent different traffic and climate conditions 

since some of these sites represent interstates and others represent state routes. 
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Table 5 Basic Information for the Analyzed Sites 

# SHRP_ID 

Total 

lanes 

County Name Route No Functional Class AADTT TTC 

1 1028 4 Hawkins 11 2 720 2 

2 1029 4 Marion 28 2 736 6 

3 2008 4 Gibson 43 2 1058 4 

4 3075 2 De Kalb 56 2 660 13 

5 3101 2 Cannon 96 2 146 12 

6 3108 4 Anderson I-75 1 7918 1 

7 6015 4 Mc Minn I-75 1 6720 1 

8 9025 2 Cannon 96 2 136 12 

 

To create a virtual weather station for site 1028 which is located on route No. 11 in 

Hawkins County, the following nearby stations were selected: Bristol/ Jhnsn CTY/ KNGSPRT, 

Knoxville, Oak Ridge, London (KY), Asheville (NC), and Jackson (KY). Three stations London 

(KY), Asheville (NC), and Jackson (KY) are located outside of Tennessee, in North Carolina and 

Kentucky which are 71.9 Mi., 73.2 Mi., and 84.3 Mi. away from the site, respectively as, shown 

in Table 6. Site 1028 elevation is 1136 ft. above sea level. The MERRA virtual station elevation 

is 1416 ft. which is 280 ft. higher than the site but it is located only 14 miles from the site while 

the selected MEPDG stations had high elevation differences from the analyzed site. These 

differences ranged between -667 ft. to 981 ft. as shown in Table 6. These high differences in 

elevation are expected to affect the interpolated climate inputs as it was found in earlier studies 

(Li et al.). 
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Table 6 Site 1028 Design Inputs 

Site # 1028 

Route 11 

Latitude, Longitude -83.12206, 36.38314 

Elevation 1136 ft 

Two-way AADTT 720 

TTC 2 

AC Layer Thickness 1 in 

Base Layer A-1-b 

Subgrade Layer A-7-6 

Nearby MEPDG climate stations 

(Distance from site in Miles) 

Bristol  (49.5), Knoxville (61.9), Oak Ridge (66.6), London (KY) 

(71.9), Asheville (NC) (73.2), Jackson (KY) (84.3) 

MERRA Station (Distance from 

site in Miles)  

Site 1028 (14.4 mi) 

Nearby MEPDG climate stations 

elevation difference (ft.) 

Bristol / Jhnsn CTY/ KNGSPRT (-667), Knoxville (-174), Oak 

Ridge (-223), London (KY) (45), Asheville (NC) (981), Jackson 

(KY) (194) 

MERRA Station elevation 1416 ft 
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Site 1029 is located on route 28 in Marion County, the selected nearby stations to model 

the climate in this site were as follows: Chattanooga, Rome (GA), Crossville, Huntsville (AL), 

Cartersville (GA), and Nashville. 

Similarly, it was noticed that some of the nearby stations are located far from the site, and 

some of them are outside the state of Tennessee, like Rome, Georgia and Huntsville, Alabama 

stations. The MERRA virtual station used for this site was located 17 miles from the site with 

about 300 ft. elevation difference as shown in Table 7. 

Some of the nearby MEPDG stations have similar elevations like Huntsville (AL) with 

only one-foot elevation difference, but other stations had a high elevation difference like 

Crossville with 1237 ft. elevation difference as shown in Table 7. 

Site 2008 is located on route 43 in Gibson County. This site has six nearby MEPDG 

climate stations are as follows Jackson, Blytheville (AR), Paducah (KY), Memphis, Clarksville, 

and West Memphis (AR). Although MEPDG stations used to interpolate the climate inputs for 

this site has moderate elevation differences compared to the previous sites, the noticed elevation 

difference was between -236 ft. and 72 ft. However, the MERRA station which located only 10.7 

miles from the site with 12 ft. elevation difference is anticipated to model the climate in this 

station in a better way than the virtual weather station generated from these nearby stations since 

these MEPDG climate stations as shown in Table 8. 

It was also noticed that three of the nearby weather stations are located outside of the 

state of Tennessee like Blytheville and West Memphis which are located in Arkansas and 

Paducah which is located in Kentucky. 
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Table 7 Site 1029 Design Inputs 

Site # 1029 

Route 28 

Latitude, Longitude -85.62516, 35.05654 

Elevation 621 ft 

Two-way AADTT 736 

TTC 6 

AC Layer Thickness 3.9 in 

Asphalt Base 12.9 in 

Unbound (granular) Subbase A-1-b 

Subgrade Layer A-2-6 

Nearby MEPDG stations 

(Distance from site in Miles) 

Chattanooga (24.1), Rome (GA) (55.6), Crossville (68.6), 

Huntsville (AL) (71.7), Cartersville (GA) (78.1), Nashville (94.6)  

MERRA Station (Distance 

from site in Miles)  

Site 1029 (17 mi) 

Nearby MEPDG stations 

elevation difference (ft.) 

Chattanooga (50), Rome (GA) (71), Crossville (1237), Huntsville 

(AL) (1), Cartersville (133), Nashville (-21)  

MERRA Station elevation 944 ft 
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Table 8 Site 2008 Design Inputs 

Site # 2008 

Route 43 

Latitude, Longitude -88.74789, 35.8587 

Elevation 488 ft 

Two-way AADTT 1058 

TTC 4 

AC Layer Thickness 14.4 in 

Base Layer Cement Treated Base 

Subgrade Layer A-7-6 

Nearby MEPDG climate stations 

(Distance from site in Miles) 

Jackson (20.9), Blytheville (AR) (60.8), Paducah (KY) (82.7), 

Memphis (88.7), Clarksville (91), West Memphis (AR) (97.3) 

MERRA Station (Distance from 

site in Mile)  

Site 2008 (10.8 mi) 

Nearby MEPDG climate stations 

elevation difference (ft.) 

Jackson (-58), Blytheville (AR) (-236), Paducah (KY) (-84), 

Memphis (-183), Clarksville (72), West Memphis (AR) (-227) 

MERRA Station elevation 476 ft. 
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Site 3075 is located on route 56 in Mc Minn County. The six nearby stations were as 

follows: Crossville, Nashville, Bowling Green (KY), Chattanooga, Oak Ridge, and Knoxville. 

These stations are also far from the site, but most of them are within the state of Tennessee 

except Bowling Green, Kentucky which is outside of the state of Tennessee. The selected 

MERRA station is 15.5 miles away from the site as shown in Table 9. 

These MEPDG stations had high elevation differences having two stations are lower than 

the analyzed site with more 400 ft. and one site is higher than the analyzed site with more than 

800 ft. as shown in Table 9. 

Site 3101 is located on route 96 in Cannon County. The six nearby stations were as 

follows: Nashville, Crossville, Green Bowling (KY), Chattanooga, Clarksville, and Huntsville 

(AL). Similar to the other analyzed sites, these stations are located quite distant from the 

analyzed site which will affect the accuracy of the interpolated data. Some of MEPDG nearby 

climate stations are located outside of Tennessee. On the other hand, the MERRA station is 

located only 7.9 miles away from the analyzed site as shown in Table 10.  

Five of the selected MEPDG stations are lower than the analyzed site. The elevation 

difference between these stations and the analyzed range between 99 ft. to 245 ft. The last station 

was higher than the analyzed section by more than 1000 ft. These elevation differences are 

expected to reduce the accuracy of the predicted climate inputs for this site.  

Site 3108 is located on I-75 in Anderson County. This site is located within less than one 

mile from Oak Ridge MEPDG climate station, so it was used to represent the climate on this site. 

The MERRA station used for this site was located 13.1 miles away as shown in Table 11. For 
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this site, both MEPDG and MERRA are expected to model the climate accurately since both are 

located close to the site so no need to use virtual weather station. 

Site 6015 is located on I-75 in Mc Minn County. The six nearby stations were as follows: 

Knoxville, Oak Ridge, Crossville, Knoxville, Knoxville and Chattanooga. All of the nearby 

stations are located in the state of Tennessee. The selected MERRA station is located 9.7 miles 

away from the analyzed site. 

Elevation differences were noticed between these MEPDG stations and the selected site. 

One of these stations had similar elevation while the other five stations had elevation differences 

ranged between -99 ft. to 845 ft. from the analyzed site. 

These elevation differences are anticipated to affect the accuracy of the interpolated data 

as shown in Table 12. 
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Table 9 Site 3075 Design Inputs 

Site # 3075 

Route 56 

Latitude, Longitude -85.73592, 36.07004 

Elevation 1020 ft. 

Two-way AADTT 660 

TTC 13 

AC Layer Thickness 5 in 

Base Layer Crushed Stone 

Subgrade Layer A-1-a 

Nearby MEPDG climate 

stations (Distance from site in 

Miles) 

Crossville (37.3), Nashville (53.3), Bowling Green (KY) (73.9), 

Chattanooga (77.7), Oak Ridge (84), Knoxville (99.4) 

MERRA Station (Distance from 

site in Miles)  

Site 3075 (15.5 mi) 

Nearby MEPDG climate 

stations elevation difference (ft.) 

Crossville (838), Nashville (-420), Bowling Green (KY) (-495), 

Chattanooga (-349), Oak Ridge (-107), Knoxville (-3) 

MERRA Station elevation 669 ft. 
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Table 10 Site 3101 Design Inputs 

Site # 3101 

Route 96 

Latitude, Longitude -86.12225, 35.94223 

Elevation 770 ft 

Two-way AADTT 146 

TTC 12 

AC Layer Thickness 5 in 

Asphalt Treated Base Thickness 3.3 in 

Subbase Layer Crushed Stone 

Subgrade Layer A-7-6 

Nearby MEPDG climate stations 

(Distance from site in Miles) 

Nashville (33.9) Crossville (58), Green Bowling (KY) (73.8), 

Chattanooga (81.4), Clarksville (85.9), Huntsville (AL) (97.1) 

MERRA Station (Distance from 

site in Miles)  

Site 3101 (7.9 mi) 

Nearby MEPDG climate stations 

elevation difference (ft.) 

Nashville (-170) Crossville (1088), Green Bowling (KY) (-245), 

Chattanooga (-99), Clarksville (-210), Huntsville (AL) (-148) 

MERRA Station elevation 669 ft. 
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Table 11 Site 3108 Design Inputs 

Site # 3108 

Route I-75 

Latitude, Longitude -84.08899, 36.17553 

Elevation 947 ft 

Two-way AADTT 7918 

TTC 1 

AC Layer Thickness 8.2 in 

Asphalt Treated Base Thickness 6.7 in 

Subbase Layer Crushed Stone 

Subgrade Layer A-7-5 

Nearby MEPDG climate stations 

(Distance from site in Miles) 

Oak Ridge (0) 

MERRA Station (Distance from site 

in Miles)  

Site 3108 (13.1 mi) 

Nearby MEPDG climate stations 

elevation difference (ft.) 

Oak Ridge (-34) 

MERRA Station elevation 1039 ft. 
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Table 12 Site 6015 Design Inputs 

Site # 6015 

Route I-75 

Latitude, Longitude -84.52912, 35.58542 

Elevation 1012 ft 

Two-way AADTT 6720 

TTC 1 

AC Layer Thickness 4 in 

Asphalt Treated Base Thickness 7 in 

Base Layer A-1-b 

Subgrade Layer A-4 

Nearby MEPDG climate stations 

(Distance from site in Mile) 

Knoxville (30.1), Oak Ridge (34.5), Crossville (40.1), 

Knoxville (45.3), Knoxville (46.8) and Chattanooga (53.7) 

MERRA Station (Distance from 

site in Mile)  

Site 6015 (9.7 mi) 

Nearby MEPDG climate stations 

elevation difference (ft.) 

Knoxville (5), Oak Ridge (-99), Crossville (846), Knoxville 

(520), Knoxville (195) and Chattanooga (-341)  

MERRA Station elevation 948 ft. 
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Site 9025 is located on route 96 in Cannon County. The six nearby stations were as 

follows: Nashville, Crossville, Green Bowling (KY), Chattanooga, Clarksville, and Huntsville 

(AL). 

Similar to the other analyzed sites, these stations are located distant from the analyzed 

site, had high elevation differences and some of MEPDG nearby climate stations are located 

outside of Tennessee. 

Green Bowling (KY) and Huntsville (AL) stations are located in Kentucky and Alabama 

respectively. Five of these nearby MEPDG climate stations are lower than the analyzed site with 

elevation difference ranged between 64 ft. to 214 ft. while Crossville station is higher than 

analyzed site by 1123 ft. as shown in Table 13. On the other hand, the MERRA station is located 

only 7.9 miles away from the analyzed site with the same elevation as shown in Table 13. This 

site is very close to site 3101, so they have very similar design inputs.  
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Table 13 Site 9025 Design Inputs 

Site # 9025 

Route 96 

Latitude, Longitude -86.09654, 35.95184 

Elevation 735 ft 

Two-way AADTT 136 

TTC 12 

AC Layer Thickness 5.9 in 

AC Treated Base Thickness 3 in 

Subbase Layer A-1-b 

Subgrade Layer Rock 

Nearby MEPDG climate stations 

(Distance from site in Mile) 

Nashville (35) Crossville (56.5), Green Bowling (KY) (73.5), 

Chattanooga (81), Clarksville (86.7), Huntsville (AL) (98.3) 

MERRA Station (Distance from 

site in Mile)  

Site 9025 (6.3 mi) 

Nearby MEPDG climate stations 

elevation difference (ft.) 

Nashville (-135), Crossville (1123), Green Bowling (KY) (-210), 

Chattanooga (-64), Clarksville (-175), Huntsville (AL) (-113) 

MERRA Station elevation 735 ft. 
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Using these mentioned design inputs and a design life of 20 years, two scenarios were 

developed for each site for comparison purposes. In the first scenario, MEPDG climate inputs 

were used while in the second scenario MERRA climate inputs were used. All other inputs 

parameters like traffic and material inputs were the same for both scenarios. The predicted IRI, 

permanent deformation, AC bottom-up cracking, AC thermal cracking, AC top-down fatigue 

cracking values, and optimized AC layer thickness were compared for the two scenarios. 

The deviation between the predicted distresses between the two scenarios was calculated 

using equation (1). To investigate the significance of this difference between these scenarios a 

paired T-statistical test with confidence level of 95% was performed. 

Deviation (%) = 
(𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑀𝐸𝑅𝑅𝐴−𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑀𝐸𝑃𝐷𝐺)∗100

𝐷𝑖𝑠𝑡𝑟𝑒𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑀𝐸𝑃𝐷𝐺
          equation (1) 

 

1.6 RESULTS 

As mentioned in section 2.1, the objective of this study is to evaluate and compare the 

performance of pavements in Tennessee using MERRA and the updated AASHTOWare 

databases as a source of climate data inputs for MEPDG in the state of Tennessee. To achieve 

this, a comparative analysis was conducted between MERRA and MEPDG climate data input to 

evaluate the predicted distresses on eight LTPP sites in Tennessee. IRI, bottom-up cracking, top-

down cracking, transverse cracking, total rutting depth and AC top-down fatigue cracking were 

compared between the two climate data sources. 

The calculated IRI values indicate that MERRA estimates slightly higher IRI than 

MEPDG, about 1% higher as shown in Table 14. The deviations between MEPDG and MERRA 

is expected to be small because IRI is not very sensitive to climate inputs. Although using 
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updated MEPDG database in this study, these results are similar to previous research outcomes 

that showed that IRI is the least sensitive distress to climate changes (Byram et al.; Li et al.). 

 

Table 14 IRI Distress Predictions 

Site # 

Allowable 

Limit 

Predicted distress using 

Updated MEPDG Climate 

Database (in/mile) 

Predicted distress using 

MERRA Climate Database 

(in/mile) 

Deviation 

1028 200 114.99 116.3 1.14% 

1029 200 107.64 108.96 1.23% 

2008 200 125.15 125.42 0.22% 

3075 200 136.1 137.26 0.85% 

3101 200 120.15 120.61 0.38% 

3108 160 114.35 115.59 1.08% 

6015 160 140.45 142.9 1.74% 

9025 200 106.17 106.71 0.51% 

 

Total rut depth values were predicted for the analyzed sites, and the deviation between 

the predicted values using MERRA and MEPDG climate data sources was calculated for the 

eight LTPP stations as shown in Table 15. The predicted distresses using MERRA climate 

database were also higher than the predicted distresses by MEPDG, although both were below 

the limiting rut depth of 0.5 in. Most of the analyzed sites had a deviation in the range of 8% to 

18% between the estimated distresses from the two climate sources. These differences are 

expected since rutting was reported as the most sensitive distress to climate changes in a 
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previous study compared pavement performance using MERRA and old MEPDG climate 

database (Schwartz et al. "Alternative Source of Climate Data for Mechanistic–Empirical 

Pavement Performance Prediction"). 

These differences are in part due to interpolating climate from far stations with elevation 

differences that affect the accuracy of the interpolated climate data. 

 

Table 15 Total Rutting Distress Predictions 

Site # 

Allowable 

Limit 

Predicted distress using 

Updated MEPDG Climate 

Database (in) 

Predicted distress using 

MERRA Climate Database 

(in) 

Deviation 

1028 0.50 0.16 0.19 18.75% 

1029 0.50 0.21 0.23 9.52% 

2008 0.50 0.18 0.18 0.00% 

3075 0.50 0.34 0.37 8.82% 

3101 0.50 0.22 0.24 9.09% 

3108 0.40 0.26 0.29 11.54% 

6015 0.40 0.31 0.36 16.13% 

9025 0.50 0.08 0.09 12.50% 

 

The predicted AC bottom-up fatigue cracking distress followed almost a trend similar to 

IRI output as shown in Table 16. 
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MERRA climate inputs estimated higher distresses of about 1% for most of the sites. 

Only one site had a deviation of 49%. This high deviation for this site was not expected since AC 

bottom-up fatigue is not sensitive to climate inputs as reported in previous study in Canada using 

locally collected climate data (Saha et al.). 

Site 3075 is located on route 56 in Mc Minn County with AADTT of 660. For this 

particular site, the climate inputs were interpolated from MEPDG stations with high elevation 

differences such as Crossville station which is 838 ft. higher site-3075 and Bowling Green (KY) 

station which is 495 ft. lower than site-3075. Two of MEPDG stations are lower than the 

analyzed site with more 400 ft. while one site is higher than the analyzed site with more than 800 

ft. Therefore interpolating climate data from stations with high elevation differences are probably 

the reason for this high deviation. 
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Table 16 AC Bottom-Up Fatigue Cracking Distress Predictions 

Site # 

Allowable 

Limit 

Predicted distress using 

Updated MEPDG Climate 

Database (% lane area) 

Predicted distress using 

MERRA Climate Database (% 

lane area) 

Deviation 

1028 20 2.05 2.06 0.49% 

1029 20 2.04 2.06 0.98% 

2008 20 2.04 2.04 0.00% 

3075 20 11.67 17.45 49.53% 

3101 20 2.02 2.06 1.98% 

3108 10 2.11 2.14 1.42% 

6015 10 2.12 2.14 0.94% 

9025 20 2.00 2.02 1.00% 

  

When comparing the predicted AC thermal cracking using MERRA versus using 

MEPDG climate database, there was no clear trend noticed as shown in Table 17. For some of 

the sites both MEPDG and MERRA estimated similar distresses while on other sites there were 

some differences. On sites 1028 and 3075, MEPDG estimated higher distresses than MERRA 

which is not expected since previous findings showed that MERRA estimates higher distresses 

(Schwartz et al. "Evaluation of Long-Term Pavement Performance (Lttp) Climatic Data for Use 

in Mechanistic-Empirical Pavement Design Guide (Mepdg) Calibration and Other Pavement 

Analysis"). 

These unanticipated results are due to elevation differences between these two sites and 

the available nearby weather stations in MEPDG climate database which affect the accuracy of 
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interpolated virtual weather station as it was reported in previous research (Li et al.). Site-1028 

elevation is 1136 ft. above sea level. The MERRA station used for this site elevation is 1416 ft. 

which is 280 ft. higher than the site but it is located only 14 miles from the site while the selected 

MEPDG stations had high elevation differences from the analyzed site. These differences ranged 

between -667 ft. to 981 ft. as shown in Table-6. 

Furthermore, it can be noticed that site 3075 AC thermal cracking prediction was also 

unexpected prediction as its AC bottom-up fatigue cracking prediction. 

 

Table 17 AC Thermal Cracking Distress Predictions  

Site 

# 

Allowable 

Limit 

Predicted distress using 

Updated MEPDG Climate 

Database (ft/mile) 

Predicted distress using 

MERRA Climate Database 

(ft/mile) 

Deviation 

1028 700 26.76 26.38 -1.42% 

1029 700 26.2 27.17 3.70% 

2008 700 26.55 30.44 14.65% 

3075 700 27.17 26.25 -3.39% 

3101 700 27.17 30.68 12.92% 

3108 500 26.59 27.17 2.18% 

6015 500 27.17 27.17 0.00% 

9025 700 27.17 27.17 0.00% 

 

The predicted AC top-down fatigue cracking showed high deviations and did not follow 

any trend as shown in Table 18. These unrealistic predictions are due to some issues with the top 
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down fatigue cracking prediction model in the current version of MEPDG AASHTOWare as 

reported in previous study that compared pavement performance using MERRA and old 

MEPDG climate database (Schwartz et al. "Alternative Source of Climate Data for Mechanistic–

Empirical Pavement Performance Prediction"). 

 

Table 18 AC Top-Down Fatigue Cracking Distress Predictions 

Site # Allowable Limit 

Predicted distress using 

Updated MEPDG 

Climate Database 

(ft/mile) 

Predicted distress 

using MERRA 

Climate Database 

(ft/mile) 

Deviation 

1028 2000 263.61 266.08 0.94% 

1029 2000 291.46 538.58 84.79% 

2008 2000 264.96 265.36 0.15% 

3075 2000 2900.95 2949.67 1.68% 

3101 2000 1462.9 2081.16 42.26% 

3108 2000 279.1 291.7 4.51% 

6015 2000 277.5 344.04 23.98% 

9025 2000 547.96 969.42 76.91% 

 

The optimized AC layer thickness was calculated using both climate data sources. The 

optimized AC thickness values were similar for most of the sections as shown in Table 19. 

On four out of eight sites, MERRA estimated higher AC layer thickness; this may be 

attributed to the fact that MERRA has access to more comprehensive climate data which allows 
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better climate modeling for pavement performance. Additionally, the low quality of some 

MEPDG climate stations which was reported in previous studies might be also a reason for these 

unexpected results (Johanneck). Furthermore, using these distant stations with different 

elevations also affect the accuracy of interpolated VWS (Li et al.). 

Table 19 AC Layer Optimized Thickness 

Site # MEPDG (inch) MERRA (inch) 

1028 1 1 

1029 1 1 

2008 7 7 

3075 8 8.5 

3101 4 5 

3108 5 6 

6015 4 5.5 

9025 5 5  

 

From this comparison, it can be noticed that although the updated MEPDG 

AASHTOWare climate database solved the data availability concerns with previous versions but 

using MERRA as climate inputs source is anticipated to provide better climate predictions since 

MEPDG AASHTOWare still interpolates the climate data from stations that have high elevation 

differences. These high elevation differences tend to affect the accuracy of the interpolated data. 

Furthermore, MERRA database has high-quality climate data and a better geographic coverage. 

This better geographic coverage eliminates the need to use virtual weather station so no further 

need to use climate stations with high elevation differences. 
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1.7 Statistical Analysis  

To examine the research Null hypothesis that there is no difference between distresses 

predicted using MEPDG and MERRA climate inputs, paired T-test and Wilcoxon sum-rank test 

were used. The paired T-test and Wilcoxon sum-rank test were performed on permanent 

deformation, AC bottom-up cracking, AC thermal cracking, IRI, and AC top-down fatigue 

cracking distresses. The statistical analysis was performed at a confidence level of 95% with a 

null hypothesis that there is no difference between distresses predicted using MEPDG and 

MERRA climate inputs. The alternative hypothesis was there is a difference between distresses 

predicted using MEPDG and MERRA climate inputs. 

According to Quantile-Quantile (Q-Q) plot shown in Figure-9, permanent deformation 

followed normal distribution. Therefore, T-paired was used to examine the research null 

hypothesis. 

 

Figure 9 Q-Q Plot for Permanent Deformation 
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The paired T-test for permanent deformation produced a p-value of 0.003 (<0.05) as 

shown in Table 20. This result specifies that the null hypothesis is rejected since p-values is less 

than the significance level. The rejection of the null hypothesis indicates that the differences 

between MERRA and MEPDG predictions for permanent deformation are statistically 

significant. 

These differences are expected since permanent deformation is very sensitive to climate 

inputs as reported in previous studies (Schwartz et al. "Alternative Source of Climate Data for 

Mechanistic–Empirical Pavement Performance Prediction"). 

 

Table 20 Paired T-test Results for Permanent Deformation 

Observations 8 

P(T<=t) two-tail 0.003 

 

According to AC bottom-up cracking Q-Q plot, populations underlying those samples 

cannot assumed to be normally distributed, therefore, nonparametric Wilcoxon rank sum test is 

used to conduct the hypothesis test. The Wilcoxon test results show that AC bottom-up cracking 

p-value was 0.315 (>0.05) which means failure to reject the null hypothesis since p-value is 

greater than significance level. This result shows the differences in predictions between the two 

sources are statistically insignificant as shown in Table 21.  

This result is expected since AC bottom-up fatigue is not sensitive to climate inputs as 

found in earlier studies (Saha et al.). 
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Table 21 Wilcoxon Rank Sum Test for AC Bottom-Up Cracking 

Observations 8 

P-value 0.315 

 

The AC thermal cracking Q-Q plots were similar to AC bottom-up cracking Q-Q plots, 

therefore Wilcoxon rank sum test was used. Wilcoxon rank sum test resulted a p-value of 0.287 

(>0.05). This value indicates that there is no significant difference between the two predicted 

distresses from the two sources since this p-value fails to reject the null hypothesis as shown in 

Table 22. 

This result indicate that thermal cracking distress in the state of Tennessee is not very 

sensitive to climate inputs. This finding is similar to results found in a previous study in Canada 

(Saha et al.). 

 

Table 22 Wilcoxon Rank Sum Test for AC Thermal Cracking 

Observations 8 

P-value 0.287 

  

According to Quantile-Quantile (Q-Q) plot shown in Figure-10, IRI distresses assumed to 

follow normal distribution and a paired T-test was performed to investigate the hypothesis of the 

research. 
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Figure 10 IRI Q-Q Plot 

The paired T-test results showed a P-value of 0.003 (<0.05) which means rejection of the 

null hypothesis, therefore these two sources are expected to predict significantly different IRI 

distresses as shown in Table 23. 

These results are different from some of the previous findings that stated that IRI is the 

least sensitive distress to climate inputs, therefore, these different predictions may be attributed 

to MEPDG climate database low geographical distribution, meaning using distant stations with 

differences in elevation, and the current MEPDG issues in estimating fatigue distress since IRI is 

calculated as function of area of fatigue cracking (AASHTO; Johanneck; Li et al.; Schwartz et al. 

"Alternative Source of Climate Data for Mechanistic–Empirical Pavement Performance 

Prediction"). 

 

Table 23 Paired T-test Results for IRI 

Observations 8 

P(T<=t) two-tail 0.003 
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The AC top-down fatigue cracking Q-Q plot shows that these distresses do not follow 

normal distribution. Therefore, Wilcoxon rank sum test was performed. The Wilcoxon rank sum 

test resulted a p-value of 0.442 (>0.05) as shown in Table 24 which means fail to reject the null 

hypothesis, so these two sources are expected to predict insignificantly different distresses but 

these results cannot prove that MEPDG and MERRA climate inputs estimate similar AC top-

down fatigue cracking since the current version of MEPDG AASHTOWare has some issues 

estimating AC top-down fatigue cracking (Schwartz et al. "Alternative Source of Climate Data 

for Mechanistic–Empirical Pavement Performance Prediction"). 

Moreover, the high variance values and the difference between the mean values for 

MEPDG and MERRA also proves that the current version of MEPDG AASHTOWare has some 

unrealistic estimation for AC top-down fatigue cracking as mentioned earlier in section 4.2 and 

reported by previous studies (Schwartz et al. "Alternative Source of Climate Data for 

Mechanistic–Empirical Pavement Performance Prediction")  

 

Table 24 Wilcoxon Rank Sum Test for AC Top-Down Fatigue Cracking 

Observations 8 

P-value 0.442 
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CHAPTER V 

 

CONCLUSIONS 

 

 

The updated MEPDG climate database overcomes the limited climate data availability 

issue that existed in the previous versions since it offers 37 years of climate data for the period 

from 1979 to 2015 (Brink et al.), however, it is still challenged with the limited geographic 

coverage nationwide and particularly in the state of Tennessee. Due to this limited geographic 

coverage, distant stations with high elevation differences are selected to model the climate data 

in the analyzed sites which reduces the accuracy of climate data. These high elevation 

differences generated unexpected results as it was noticed for sites 1028 and 3075. 

A comparative study was conducted to evaluate the performance of pavement in the state 

of Tennessee using MERRA and updated MEPDG climate database as sources of climate data 

inputs for MEPDG in the state of Tennessee. From this comparative analysis, it was found that 

MERRA climate inputs estimate higher distresses than MEPDG climate input which is consistent 

with other findings in the available literature although this study compared MERRA to the 

updated MEPDG climate database while the other study compared MERRA to the old MEPDG 

climate database (Schwartz et al. "Evaluation of Long-Term Pavement Performance (Lttp) 

Climatic Data for Use in Mechanistic-Empirical Pavement Design Guide (Mepdg) Calibration 

and Other Pavement Analysis"). 

It was also noticed that although the observed deviations in predicted IRI distress were 

about 1%, the statistical analysis showed that MERRA and updated MEPDG climate database 
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are expected to provide different IRI predictions. These results indicate that IRI is sensitive to 

climate inputs. This finding about IRI is in contrast to previous findings in earlier studies that 

assessed the accuracy of the virtual weather stations climate data using Automated Weather 

Stations data. This study showed that IRI is not sensitive to climate inputs (Li et al.). Therefore 

investigation for more sites is recommended in this area to examine if the climate in the state of 

Tennessee affects the IRI predictions or there are different reasons for these results. 

The observed deviation between the predicted rutting distresses between the two 

scenarios was higher than 10% for most of the analyzed sites. This high deviation shows that 

rutting is very sensitive which was proved by the statistical analysis results. These findings in 

line with previous findings it was reported in earlier study evaluated pavement performance 

using MERRA and previous MEPDG AASHTOWare climate database (Schwartz et al. 

"Alternative Source of Climate Data for Mechanistic–Empirical Pavement Performance 

Prediction"). Asphalt is temperature susceptible material, elastic in cold temperature and viscous 

in hot temperature, which makes it very sensitive to failure related to temperature change like 

rutting. Moreover, it shows that although the length of available data for MERRA and updated 

MEPDG climate database is similar but using distant stations affects the accuracy of climate 

prediction due to elevation differences. 

The noticed high deviation in AC top-down fatigue cracking agrees with the suggestion 

that the current MEPDG version has some issues in predicting AC top-down fatigue cracking 

which is currently being studied for improvement as also noticed in previous studies (Schwartz et 

al. "Alternative Source of Climate Data for Mechanistic–Empirical Pavement Performance 

Prediction"). 
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These findings show that using MERRA as a climate data source for the state of 

Tennessee will offer a better geographic coverage and therefore more robust climate predictions 

are expected since it eliminates the need to interpolate the climate data from other stations. 

Furthermore, previous studies showed that MERRA has better data reliability and quality than 

the other available climate resources and NASA is targeting to achieve 10 meters horizontal 

resolution (Schwartz et al. "Alternative Source of Climate Data for Mechanistic–Empirical 

Pavement Performance Prediction"). Therefore, the state of Tennessee can use MERRA as a 

source of climate inputs to enhance the climate database in Tennessee and provide better 

geographic coverage. A further study that will validate the results using measured distresses and 

more test sites representing different geographical terrain is recommended. 
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