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ABSTRACT

Cholera is an acute intestinal illness caused by infection with the Vibrio cholerae bac-

teria. The dynamics of the disease transmission are governed by human-human, environment-

human, and within-human sub-dynamics. A model is presented to incorporate all three of

these dynamical components. The model is divided into three subgroups where the dynam-

ics are analyzed according to their respective time scales. Specifically, the within host system

incorporates the interaction of virus and immune cell interaction with the vibrios. For each

subgroup, the existence and uniqueness of a DFE (Disease Free Equilibrium) is discussed in

light of the number R0, when applicable, as well as the existence and uniqueness of a positive

EE (Endemic Equilibrium). The conditions needed to achieve local and global stability in each

system are reviewed. Finally, the three smaller models are combined to discuss the existence

and uniqueness of a DFE and EE for the full system.
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CHAPTER 1

INTRODUCTION

The mathematical modeling of the disease cholera is significant both for its biological

relevance and its unique behavior. The symptoms of cholera can be mild to severe, and it can

often result in death if left untreated. This is why it is imperative to understand the behavior of

the disease and its behavior. Cholera is an intestinal illness that causes severe acute diarrhea,

and is caused by infection with the Vibrio cholerae bacteria. This bacteria is most often found

in water or food sources that have been contaminated by shedding of the bacteria by infected

persons. Infection with the disease results from the ingestion of the bacteria from these sources

[1]. Because the bacteria exists both in the environment and within infected hosts, there are

multiple pathways to consider when developing a mathematical model.

A recent model by Xueying Wang and Jin Wang [2] takes both within-host and between-

host interactions into account. They employ a fast-slow analysis to account for the different

time scales of the respective interactions. This paper furthers ideas presented in [2] by expand-

ing the within-host dynamical system from one to three compartments in order to gain some

new insight into the disease. In addition, we analyze the system first in three separate smaller

systems, each of which acts on a very different time scale. We then couple the three smaller

systems together into one final system. The first system we analyze represents the evolution of

the vibrios within the environment. This is a one dimensional system provinding a link between

the between-host and within-host dynamics, and happens at a very slow time scale. The second

system, which happens at a medium time scale, consists of three equations and is a standard SIR

model depicting the between-host dynamics of the disease. The third and final system happens

at a very fast time scale, and represents the within-host dynamics of the vibrios. This fast-scale

system consists of three equations. Thus, the final system is a seven-dimensional system. The

remainder of the paper is organized as follows. In Chapter 2, we discuss the model and its
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various components. In Chapter 3, we analyze the slow-scale system. In Chapter 4, we analyze

the intermediate-scale system. In Chapter 5, we analyze the fast-scale system. In Chapter 6,

we analyze the combined slow and intermediate-scale system. In Chapter 7, we analyze the

full system. Each chapter follows the same general framework of verifying the existence and

possibly uniqueness of a disease free equilibrium (DFE) solution, verifying the existence of

a positive Endemic Equilibrium (EE) solution, and analyzing the stability of each. We also

derive the basic reproduction number of the system using the next-generation technique where

applicable.
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CHAPTER 2

MODEL DESCRIPTION

As described in the introduction, our system is naturally subdivided into three smaller

systems by the very different time scales at which they occur. The basic framework of the

system, however, is a basic SIR model:

dS
dt

=µN �bHSI �bLSB�µS

dI
dt

=bHSI +bLSB� (g +µ)I

dR
dt

=gI �µR.

(2.1)

where S, I, and R represent the number of susceptible, infected, and recovered individuals,

respectively. B represents the concentration of the bacteria Vibrio cholerae in the contaminated

water supply. The system governing the within-host dynamics happens on a much faster time

scale, while the system governing the environmental evolution of the vibrios happens on a much

slower time scale.

The within-host dynamics for an average infected individual are described by

dZ
dt

=c1BV �d1MZ �z Z,

dV
dt

=c2BV �d2MV � tV,

dM
dt

=e1MZ + e2MV � pM.

(2.2)

where Z, V, and M represent the concentrations of human vibrios, viruses, and host immune

cells, respectively. System 2.2 will be referred to as the fast-scale system.

The dynamics of the environmental evolution of the vibrios is goverened by the equation

dB
dt

= x (Z)I �dB. (2.3)

3



where x (Z) is the host shedding rate that depends on the human vibrios. Equation 2.3 will be

referred to as the slow-scale system. Due to the three different time scales in our model, the

variable B will be treated as constant in the intermediate-scale and fast-scale system. Similarly,

the variables Z and I will be considered at their steady states in the slow-scale system. For a

full list of all parameter definitions, see the list of symbols on (p.vii).
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CHAPTER 3

SLOW-SCALE SYSTEM DYNAMICS

The environmental evolution of the vibrios is governed by the equation

dB
dt

= x (Z)I �dB. (3.1)

Due to the slow time scale, we consider Z and I at their steady-states, or effectively as constant.

By solving (dB)/(dt) = 0 for B, it is clear that the unique equilibrium solution is given by

B = x (Z)I
d . We can also easily check the stability of this solution by solving for B(t). By direct

calculation, we can see that

B(t) =
x (Z)I �x (Z)Ie�d t

d
+B(0)e�d t . (3.2)

Clearly, B(t)! x (Z)I
d as t ! • regardless of the value of B(0). This implies that the solution is

globally asymptotically stable. It is worth noting that the ultimate value of the equilibrium of

2.3 is dependent on the value of Z. This should not come as a surprise, as B is the concentration

of vibrios in the environment, and x (Z) is the host shedding rate into the environment.

5



CHAPTER 4

INTERMEDIATE-SCALE SYSTEM DYNAMICS

The between-host dynamics are governed by the equations

dS
dt

=µN �bHSI �bLSB�µS

dI
dt

=bHSI +bLSB� (g +µ)I

dR
dt

=gI �µR.

(4.1)

We consider B as a constant throughout this analysis due to the difference in time scale.

4.1 Disease Free Equilibrium

First, we need to determine the existence and uniquenes of the DFE. Note that in order

to achieve an equilibrium solution where I = 0, we must also assume that B = 0. This will

reduce the system to a simplified SIR system. With this assumption, we can easily see that the

DFE exists at (S, I,R) = (N,0,0) = X0. Furthermore, this solution is uniquely determined. Our

next step is to utilize the next-generation matrix technique developed by van den Driessche and

Watmough [3] to compute the basic reproduction number R0. To do this, we focus specifically

on the infection compartment, separating it as follows

dI
dt

= [S(bHI +bLB)]� [I(g +µ)] = F �V

where F has elements that introduce new infections to the system, while V has elements that

represent transitions from other population sets. The next generation matrix itself is given by

FV�1 where
F =DF (X0) = [bHN]

V =DV (X0) = [g +µ].

6



From here, it is easy to see that FV�1 = bHN
g+µ . Normally, the basic reproduction number is given

by the spectral radius of the next-generation matrix. Since our next-generation matrix is only

one element, we immediately get

R0 =
bHN
g +µ

. (4.2)

It has also been shown by van den Driessche and Watmough [3] that the DFE of such a

system is locally asymptotically stable when R0 < 1, and is unstable when R0 > 1. It remains to

show that the DFE is globally asymptotically stable. To do so, we will follow this result proven

by Castillo-Chavez et al [4].

Lemma 4.1.1. Consider a system of the form

dX1
dt = F(X1,X2),

dX2
dt = G(X1,X2), G(X1,0) = 0

where X1 2 Rm denotes (its components) the number of uninfected individuals and X2 2 Rn

denotes (its components) the number of infected individuals including latent, infectious, etc;

X0 = (X⇤
1 ,0) denotes the DFE of the system. Also assume the conditions (H1) and (H2) below:

(H1) For dX1/dt = F(X1,0), X⇤ is globally asymptotically stable;

(H2) G(X1,X2) = AX2 � Ĝ(X1,X2), Ĝ(X1,X2)� 0 for (X1,X2) 2 W,

where the Jacobian A = ( ∂G
∂X2

)(X⇤
1 ,0) is an M-matrix (off-diagonal elements of A are non-

negative) and W is the region where the model makes biological sense. Then the DFE X0 =

(X⇤
1 ,0) is globally asymptotically stable when R0 < 1.

With this lemma, we may proceed to the following result.

Theorem 4.1.2. When B= 0, the DFE X0 = (N,0,0) is globally asymptotically stable if R0 < 1.

Proof. Let X1 = (S,R)T , X2 = I and X⇤
1 = (N,0)T , and let B = 0. Then the uninfected

subsystem is given by

d
dt

2

64
S

R

3

75= F =

2

64
µN �bHSI �µS

gI �µR

3

75

7



and the infected subsystem by

dI
dt

= G = bHSI � (g +µ)I.

Note that when I = 0, the uninfected subsystem reduces to

d
dt

2

64
S

R

3

75=

2

64
µ(N �S)

�µR

3

75 (4.3)

and the solution is given by

R(t) =R(0)e�µt

S(t) =N � (N �S(0))e�bt .

We can see that as t ! •, R(t)! 0 and S(t)! N independently of R(0) and S(0). Hence, X⇤
1

is globally asymptotically stable for

dX1

dt
= F(X1,0).

This satisfies condition (H1) in the above lemma. Next, we have

G =
∂G
∂X2

(N,0,0)� Ĝ

=[bHN � (g +µ)]I � [bHNI �bHSI].

As the matrix A = ∂G
∂X2

(N,0,0) is a single element, it is an M-matrix. Furthermore, since S  N,

we know that Ĝ � 0. Thus, condition (H2) of the lemma is satisfied, and therefore the DFE

X0 = (N,0,0) is globally asymptotically stable when R0 < 1.

4.2 Endemic Equilibrium

In order to discuss the dynamics of the full intermediate system, we will first remove

the assumption that B = 0. Recall that, in this case, a DFE cannot exist. Hence, there is no

basic reproduction number to consider. With this in mind, we will proceed to determine the

8



existence and uniqueness of an endemic equilibrium (EE) solution to the system. That is, an

equilibrium solution in which the infected compartment I is nonzero.

Theorem 4.2.1. A unique positive EE solutions exists of the form

X⇤ = (S⇤, I⇤,R⇤)

where

S⇤ =
µN

bHI⇤+bLB+µ

I⇤ =
µbHN � (g +µ)(bLB+µ)+

p
[(g +µ)(bLB+µ)�µbHN]2 +4(g +µ)bH µbLBN

2(g +µ)bH

R⇤ =
g
µ

I⇤.

Proof. Due to the linear relationship between R and I, it is only necessary to consider

the two dimensional system with dS
dt and dI

dt . Setting both equal to zero and combining the two

equations yields the quadratic equation for I

(g +µ)bHI2 +[(g +µ)(bLB+µ)�µbHN]I �µbLBN = 0

or

aI2 +bI + c = 0

where
a =(g +µ)bH

b =(g +µ)(bLB+µ)�µbHN

c =�µbLBN.

The two roots of the polynomial are given by the quadratic formula to be

I1 =
�b+

p
b2 �4ac

2a

I2 =
�b�

p
b2 �4ac

2a
.

9



Note that I1 is guaranteed to be positive and real since the term �4ac > 0 and 2a > 0.

I2 is real and negative for the same reason. Thus, I1 represents the value of I at the endemic

equilibrium solution. We can easily substitute this value into the first equation of (2.1) where

dS
dt = 0 to obtain the value of S at the EE. The resulting solution is given by (S, I) = (S⇤, I⇤)

where

S⇤ =
µN

bHI⇤+bLB+µ

I⇤ =
µbHN � (g +µ)(bLB+µ)+

p
[(g +µ)(bLB+µ)�µbHN]2 +4(g +µ)bH µbLBN

2(g +µ)bH
(4.4)

Furthermore, this solution is uniquely determined, as it is the only solution where I⇤ > 0.

4.3 Local and Global Stability of EE

Consider the system

dS
dt

=µN �bHSI �bLSB�µS

dI
dt

=bHSI +bLSB� (g +µ)I.
(4.5)

In order to achieve local asymptotic stability, it is necessary and sufficient that all eigenvalues

of the Jacobian matrix have negative real parts when evaluated at the EE. The Jacobian matrix

2

64
�bHI �bLB�µ �bHS

bHI +bLB bHS� (g +µ)

3

75

when evaluated at (S, I) = (S⇤, I⇤) leads to the characteristic polynomial al 2 +bl + c where

a =1

b =bHI⇤+bLB+2µ + g �bHS⇤

c =(g +µ)(bHI⇤+bLB+µ)�bHS⇤µ

The Routh-Hurwitz stability criterion [5] guarantees that all roots of the above polynomial have

negative real part provided that a > 0, b > 0, and c > 0. Clearly, we have that a > 0. Also,

10



consider (4.5) at the EE:

dI
dt

= bHS⇤I⇤+bLS⇤B� (g +µ)I⇤ = 0

Note that g +µ > bHS⇤, which immediately gives b > 0 and c > 0. Therefore, Re(l1,l2)< 0,

and thus the EE is locally asymptotically stable.

Consider again the system described in (4.5) along with the function g(S, I) = 1
I . We

can now observe the modified system

P1g =
dS
dt

g =
µN
I

�bHS�bL
SB
I
� µS

I

P2g =
dI
dt

g = bHS+bL
SB
I
� (g +µ)

(4.6)

Then ∂
∂SP1g+ ∂

∂ I P2g < 0. We have now satisfied Dulac’s Criterion for the system, which guar-

antees global stability given the existence of a locally stable solution. [6]

11



CHAPTER 5

FAST-SCALE SYSTEM DYNAMICS

The within-host dynamics for an average infected individual are described by

dZ
dt

=c1BV �d1MZ �z Z

dV
dt

=c2BV �d2MV � tV

dM
dt

=e1MZ + e2MV � pM.

(5.1)

5.1 Trivial Equilibrium

The obvious trivial equilibrium solution to this system is given by (Z,V,M) = (0,0,0).

To analyze the local stability of this system, we will once again consider the Jacobian matrix

J(Z,V,M) =

2

66664

�d1M�z c1B �d1Z

0 c2B�d2M� t �d2V

e1M e2M e1Z + e2V � p

3

77775

which, when evaluated at (Z,V,M) = (0,0,0) becomes

J(0,0,0) = J0 =

2

66664

�z c1B 0

0 c2B� t 0

0 0 �p

3

77775
.

To find the eigenvalues, note that

|J0 �l I|=

����������

�z �l c1B 0

0 c2B� t �l 0

0 0 �p�l

����������

.
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The condition needed for local stability is that all eigenvalues have negative real parts. As this

is an upper triangular matrix, the eigenvalues are the diagonal entries. Thus, all eigenvalues

will have negative real parts if

c2B� t < 0. (5.2)

5.2 Trivial Equilibrium Boundary Case

We have now determined the behavior of the trivial equilibrium when c2B� t < 0.

To complete our analysis, we will now consider this solution specifically when c2B� t = 0.

Setting B = t
c2

, the original system reduces to the following system:

dZ
dt

=
c1t
c2

V �d1MZ �z Z

dV
dt

=�d2MV

dM
dt

=e1MZ + e2MV � pM.

(5.3)

To analyze the local stability of this edge case, we first need to decouple the variables. Evalu-

ating the Jacobian matrix at the equilibrium yields the upper triangular matrix

J(0,0,0) =

2

66664

�z c1t
c2

0

0 0 0

0 0 �p

3

77775

from which we can see that the eigenvalues are l1 =�z ,l2 = 0,l3 =�p. The corresponding

eigenvector matrix is given by

P�1 =

2

66664

1 c1t
c2z 0

0 1 0

0 0 1

3

77775

13



the inverse of which, the decoupling matrix, is given by

P =

2

66664

1 � c1t
c2z 0

0 1 0

0 0 1

3

77775
.

Our original system 5.3 can be decomposed into it’s linear and nonlinear components

in the following way:

2

66664

dZ
dt

dV
dt

dM
dt

3

77775
= A

2

66664

Z

V

M

3

77775
+F

where

A =

2

66664

�z c1t
c2

0

0 0 0

0 0 �p

3

77775
. F =

2

66664

�d1MZ

�d2MV

e1MZ + e2MV

3

77775

The decoupled matrix Y is given by P(Z,V,M)T , so that

Y =

2

66664

Z � c1t
c2z V

V

M

3

77775
=

2

66664

y1

x

y2

3

77775
.

The new system with the decoupled change of variables is given by dY
dt = JY +PF . Then

dY
dt

=

2

66664

�z y1

0

�py2

3

77775
+

2

66664

�d1y1y2

�d2y2x

y2(e1y1 +[ c1e1t
c2z + e2]x)

3

77775
.
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Simplifying the above expression gives

dY
dt

=

2

66664

�y1(z +d1y2)

�d2y2x

y2(e1y1 +[ c1e1t
c2z + e2]x� p)

3

77775
.

We can separate the above system into two parts

dx
dt

=Cx+F(x,y)
dy
dt

= Py+G(x,y)

where
C =0 F(x,y) =�d2y2x

P =

2

64
�z 0

0 �p

3

75 , G(x,y) =

2

64
�d1y1y2

y2(e1y1 +[ c1e1t
c2z + e2]x)

3

75 .

We now use a series expansion to redefine y:

y = h(x) =

2

64
h1(x)

h2(x)

3

75=

2

64
a1x2 + ...

a2x2 + ...

3

75 . (5.4)

Then y = h(x) defines a local center manifold for the system [7]. By differentiation with the

chain rule we know that Dh(x)[Cx+F(x,h(x))] = Ph(x)+G(x,h(x)), where

Dh(x)[Cx+F(x,h(x))] =

2

64
2a1x+ ...

2a2x+ ...

3

75 [�d2x(a2x2 + ...)]

Ph(x)+G(x,h(x)) =

2

64
�(a1x2 + ...)(z +d1(a2x2 + ...))

(a2x2 + ...)[e1(a1x2 + ...)+ [ c1e1t
c2z + e2]x� p]

3

75 .

(5.5)

When equating the second rows of the two equations, we get

�d2x(2a2x+ ...)(a2x2 + ...) = (a2x2 + ...)[e1(a1x2 + ...)+


c1e1t
c2z

+ e2

�
x� p].
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The above equation is only satisfied when h2(x) = 0. This can be seen by noting the

constant �p on the right, as there is no possibility of a constant term on the left. If h2(x) = 0,

we must also have h1(x) = 0 by (5.5). Thus, we have h(x) = 0, and

dx
dt

= F(x,(h(x)) = 0. (5.6)

According to the local center manifold theorem [7], the flow on the center manifold is given by

5.6. Thus, the equilibrium solution is stable in the sense of Lyapunov, but not asymptotically

stable.

5.3 Nontrivial Equilibrium (NTE)

Next, we seek the existence of a nontrivial positive equilibrium solution. Note that

M =
c2B� t

d2
=) dV

dt
= 0

Z =
c1BV

d1M+z
=) dZ

dt
= 0

p = e1Z + e2V =) dM
dt

= 0.

(5.7)

Combining these three equations yields the following values for the nontrivial equilibrium:

Z⇤ =
c1Bp

c1e1B+ e2(d1
c2B�t

d2
+z )

V ⇤ =
p(d1

c2B�t
d2

+z )
c1e1B+ e2(d1

c2B�t
d2

+z )

M⇤ =
c2B� t

d2
.

(5.8)

Letting c2B�t
d2

= a yields the simplified equations

Z⇤ =
c1Bp

c1e1B+ e2(d1a +z )

V ⇤ =
p(d1a +z )

c1e1B+ e2(d1a +z )

M⇤ =a.

(5.9)
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Note that this equilibrium is positive and unique when c2B�t > 0, which is true iff a > 0. We

will once again evaluate the jacobian matrix at the NTE in order to analyze its local stability.

Theorem 5.3.1. The nontrivial equilibrium solution 5.9 of the system 2.2 is locally asymptoti-

cally stable iff d1 > d2.

Proof.

|J⇤ �l I|=

��������������������

�d1a �z �l c1B �d1c1Bp
c1e1B+e2(d1a+z )

0 �l �d2 p(d1a+z )
c1e1B+e2(d1a+z )

e1a e2a �l

��������������������

Evaluating this determinant yields the characteristic polynomial al 3 +bl 2 + cl +d where

a =�1

b =� (d1a +z )

c =� pa[c1d1e1B+d2e2(d1a +z )]
c1e1B+ e2(d1a +z )

d =�d2 pa(d1a +z )

(5.10)

Clearly, we have that a > 0 =) a,b,c,d < 0. The Routh-Hurwitz stability criterion [5]

guarantees local stability when bc > ad in (5.9). This condition is met as long as d1 > d2. To

see this, assume d1 > d2. Then

bc =pa(d1a +z ) [c1d1e1B+d2e2(d1a +z )]
c1e1B+ e2(d1a +z )

>pa(d1a +z ) [c1d2e1B+d2e2(d1a +z )]
c1e1B+ e2(d1a +z )

=d2 pa(d1a +z ) [c1e1B+ e2(d1a +z )]
c1e1B+ e2(d1a +z )

=d2 pa(d1a +z )

=ad.

Thus, the NTE is unique iff c2B� t > 0, and locally asymptotically stable iff d1 > d2.
17



5.4 Nontrivial Equilibrium Boundary Case

The behavior of the system is unclear when B = t
c2

. Setting B = t
c2

yields the following

family of nontrivial equilibrium solutions to (5.1):

(Z⇤,V ⇤,M⇤) = (Z0,
c2z
c1t

Z0,0) (5.11)

for some initial Z0. We may shift our solution to the origin with the following change of

variables
Z̃ =Z0 �Z

Ṽ =
c2z
c1t

Z0 �V

M̃ =M.

(5.12)

This gives the equivalent equilibrium solution (Z̃,Ṽ ,M̃) = (0,0,0). We now have an analogous

system with an equilibrium solution at the origin and can attempt to utilize the local center

manifold theorem [7] once again to determine the stability of the solution. Evaluating the

Jacobian matrix of the translated system at the origin yields

J(0,0,0) =

2

66664

�z a �d1Z0

0 0 bZ0

0 0 cZ0 � p

3

77775

where a = c1t
c2
,b = �d2c2z

c1t ,c = e1 +
c2e2z
c1t , from which we can see that the eigenvalues are

l1 =�z ,l2 = 0,l3 = cZ0� p. We can decouple the system with the further change of variables

Y =

2

66664

y1

y2

x

3

77775
=

2

66664

Z̃ � a
z Ṽ +a2M̃

M̃

Ṽ +a1M

3

77775
(5.13)
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where a1 =
bZ0

p�cZ0
, and a2 =

Z0(ab�d1z )
z (z�p+cZ0)

. This change of variables gives rise to the decoupled

system

dY
dt

=

2

66664

dy1
dt

dx
dt

dy2
dt

3

77775
=

2

66664

y2[(e1 �d1)y1 +b1y2 +b2x]�z y1

y2[a1e2y1 +b3y2 +b4x]

y2[e1y1 +b5y2 +b6x+ cZ0 � p]

3

77775
(5.14)

where

b1 =(a2 �
a1a
z

)(e1 �d1)�a1(a2e2 �
ad2

z
) b2 =

a
t
(d1 +d2 + e1)+a2e2

b3 =a1e2[a2 �
a1a
z

�a1(a1e1 +d2)] b4 =a1e1 +
a1e2a

t
�d2

b5 =e1a2 � e2a1 �
e1a1a

t
, b6 =e2 +

e1a
t

.

Let
y1 =h1(x) = a1x2 +b1x3 + ...

y2 =h2(x) = a2x2 +b2x3 + ...

and consider the equation

Dh(x)[Cx+F(x,h(x))] = Ph(x)+G(x,h(x)).

Then we have

2

64
Dh1(x)

Dh2(x)

3

75 [h2(x)(a1e2h1(x)+b3h2(x)+b4x)] =

2

64
h2(x)[(e1 �d1)h1(x)+b1h2(x)+b2x]�z h1(x)

h2(x)[e1h1(x)+b5h2(x)+b6x+ cZ0 � p]

3

75

(5.15)

where h1(x) and h2(x) are of the form (a1x2+b1x3+ ...) and (a2x2+b2x3+ ...), respectively. By

simply comparing the second row of each side of the equation, it can be seen that the smallest

degree of x on the left is 4, while the smallest degree of x on the right is 2. This implies that

h2(x) must be zero. Then the first row of each side of the equations implies h1(x) = 0. By the

local center manifold theorem [7], the flow of the center manifold defined by [h1(x),h2(x)]T is

given by
dx
dt

= F(x,h(x)) = 0. (5.16)
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Thus, all NTEs of the form (5.12) are stable in the sense of Lyapunov when B = t
c2

, but not

asymptotically stable.

5.5 Global Stability of Nontrivial Equilibrium Using the Geometric Approach

In order to analyze the global stability of the unique NTE, we will follow the approach

of Li and Muldowney outlined in [8]. The following result is the main result of [8]

Theorem 5.5.1. Let the map x 7! D from an open subset D ⇢ Rn to Rn be such that each

solution x(t) to the differential equation

x0 = f (x) (5.17)

is uniquely determined by its initial value x(0)= x0, and denote this solution by x(t,x0). Assume

that

(D1) D is simply connected;

(D2) there is a compact absorbing set K ⇢ D;

(D3) x̄ is the only equilibrium of 5.17.

Define

q̄2 = limsup
t!•

sup
x02K

1
t

Z t

0
µ(B(x(s,x0)))ds,

where

B = A f A�1 +A
∂ f [2]

∂x
A�1

and x 7! A is a
�n

2
�
⇥
�n

2
�

matrix-valued function. Then the unique equilibrium x̄ is globally

stable in D if q̄2 < 0.

Utilizing Theorem 5.5.1, we will now follow the approach outlined in [8] to show the

conditions under which global stability of the system may be achieved.
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Theorem 5.5.2. Define

k1 =
c1BV

Z
+d1M+ t � c2B�V max

⇢
d2V
Z

,d1

�

k2 =p� [e1Z + e2V + c1B+
MZ
V

(e1 + e2)].

If k = min{k1,k2}> 0, then the NTE (5.8) is globally stable.

Proof. Consider the Jacobian matrix of the system evaluated at the nontrivial equilib-

rium

J =

2

66664

�d1M�z c1B �d1Z

0 c2B�d2M� t �d2V

e1M e2M e1Z + e2V � p

3

77775
.

The second additive compound matrix of J is given by

J[2] =

2

66664

c2B�M(d1 +d2)�z � t �d2V d1Z

e2M �d1M+ e1Z + e2V �z � p c1B

�e1M 0 �d2M+ e1Z + e2V + c2B� t � p

3

77775
.

Define P = diag[1, Z
V ,

Z
V ]. Then

PFP�1 =diag


0, Z0

Z � V 0

V , Z0

Z � V 0

V

�

PJ[2]P�1 =

2

66664

J[2]11
�d2V 2

Z d1V
e2MZ

V J[2]22 J[2]23

� e1MZ
V J[2]32 J[2]33

3

77775

(5.18)

The matrix Q = PFP�1+PJ[2]P�1 can be written in block form in the following way:

Q =

2

64
Q11 Q12

Q21 Q22

3

75
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where

Q11 =c2B�M(d1 +d2)�z � t

Q12 =


�d2V 2

Z d1V
�

Q21 =

2

64
e2MZ

V

� e1MZ
V

3

75

Q22 =

2

64
�d1M+ e1Z + e2V �z � p+ Z0

Z � V 0

V c1B

0 �d2M+ e1Z + e2V + c2B� t � p+ Z0

Z � V 0

V

3

75

Let m denote the Lozinskii measure with respect to the norm |(x1,x2,x3)|=max{|x1|, |x2|, |x3|}.

Then m(Q) = sup{g1,g2} with

g1 =m1(Q11)+ |Q12|

g2 =|Q21|+m1(Q22)

where |Q12| and |Q21| are the matrix norms induced by the L1 norm and m1 denotes the Lozin-

skii measure with respect to the L1 norm. We have

m1(Q11) =c2B�M(d1 +d2)�z � t

|Q12|=V max
⇢

d2V
Z

,d1

�

|Q21|=
MZ
V

(e1 + e2)

Also,

m1(Q22) =max(a11 + |a21|, |a12|+a22)

=e1Z + e2V � p+
Z0

Z
+max{�d1M�z � V 0

V
,c1B+ c2B�d2M� t � V 0

V
}

=e1Z + e2V � p+
Z0

Z
+max{�d1M�z � V 0

V
,c1B}

=e1Z + e2V � p+
Z0

Z
+ c1B

22



Combining the above expressions yields

g1 =c2B+V max
⇢

d2V
Z

,d1

�
�M(d1 +d2)�z � t

g2 =
Z0

Z
+ e1Z + e2V + c1B+

MZ
V

(e1 + e2)� p.

Let k = min{k1,k2} where

k1 =
c1BV

Z
+d1M+ t � c2B�V max

⇢
d2V
Z

,d1

�

k2 =p� [e1Z + e2V + c1B+
MZ
V

(e1 + e2)].

Then we have m(t) = sup{g1,g2}  Z0

Z � k. For sufficiently large t, since Z(t) is bounded, we

have
ln(Z(t))� ln(Z(0))

t
 k

2

Therefore,

1
t

Z t

0
m(s)ds  1

t

Z t

0

✓
Z0(s)
Z(s)

� k
◆

ds =
ln(Z(t))� ln(Z(0))

t
� k �k

2

for sufficiently large t. This now implies q̄2 � k
2 < 0. According to theorem 5.5.1, it must be

that the EE (5.8) is globally stable.
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CHAPTER 6

SLOW AND INTERMEDIATE COUPLED SYSTEM

We now consider the system consisting of (1.1) and (2.1) together:

dS
dt

=µN �bHSI �bLSB�µS

dI
dt

=bHSI +bLSB� (g +µ)I

dR
dt

=gI �µR.

dB
dt

=x (Z)I �dB.

(6.1)

6.1 Disease Free Equilibrium Analysis

It can be observed that the DFE of this system exists at (S, I,R,B) = (N,0,0,0) We

will now proceed with the next generation matrix analysis to compute the basic reproduction

number R0. Consider the components of the system that are directly related to the infection

2

64
dI
dT

dB
dT

3

75=

2

64
S(bHI +bLB)

0

3

75�

2

64
(g +µ)I

dB�x (Z)I

3

75= F �V , (6.2)

where compartment F represents new infections and V represents transitions from other pop-

ulation sets. The next generation matrix is FV�1 where

F = DF (X0) =

2

64
bHN bLN

0 0

3

75 , V = DV (X0) =

2

64
g +µ 0

�x (Z) d

3

75 (6.3)
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where X0 is the DFE of the system. We have

V�1 =
�1

g +µ

2

64
�1 0

�x (Z)
d � g+µ

d

3

75 .

Hence, the next generation matrix is given by

FV�1 =
1

g +µ

2

64
N(bLx (Z)

d +bH) N (g+µ)bL
d

0 0

3

75 .

The spectral radius r(FV�1) = max1i2|li|, where li is the ith eigenvalue, can be found to be

R0 =
N

g +µ


bH +

bLx (Z)
d

�
. (6.4)

Once again, by van den Driessche and Watmough [3], we obtain local asymptotic stability of

the DFE when R0 < 1 and instability when R0 > 1.

We now move on to determining the global stability of the DFE. We will follow the

same approach used in the analysis of the intermediate-scale system. Using Lemma 4.1, we

may establish the following theorem.

Theorem 6.1.1. When R0 = N
g+µ

h
bH + bLx (Z)

d

i
< 1, the DFE X0 = (N,0,0,0) is globally

asymptotically stable.

Proof. Assume R0 < 1 Let X1 = (S,R)T , X2 = (I,B)T , and X⇤
1 = (N,0)T . Then the

uninfected subsystem is given by

d
dt

2

64
S

R

3

75= F =

2

64
µ(N �S)�S(bHI +bLB)

gI �µR

3

75 (6.5)

and the infected subsystem by

d
dt

2

64
I

B

3

75= G =

2

64
S(bHI +bLB)� I(g +µ)

x (Z)I �dB

3

75 . (6.6)
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Note that when X2 = 0, the uninfected subsystem reduces to

d
dt

2

64
S

R

3

75=

2

64
µ(N �S)

�µR

3

75 (6.7)

and the solution is given by

R(t) = R(0)e�µt , S(t) = N � (N �S(0))e�bt .

We can see that as t ! •, R(t) ! 0 and S(t) ! N independently of R(0) and S(0).

Thus, X⇤
1 is globally asymptotically stable for

dX1

dt
= F(X1,0)

This satisfies condition (H1) of Lemma 4.1. Next, we have

G =
∂G
∂X2

(N,0,0,0)� Ĝ

=

2

64
bHN � (g +µ) bLN

x (Z) �d

3

75

2

64
I

B

3

75�

2

64
(N �S)(bHI +bLB)

0

3

75
(6.8)

Note that the matrix A = ∂G
∂X2

(N,0,0,0) has non-negative off-diagonal entries. Also, Ĝ � 0

since N � S. This satisfies condition (H2) of Lemma 4.1. Thus, by Lemma 4.1, the DFE is

globally asymptotically stable when R0 < 1.

6.2 Endemic Equilibrium Analysis

By setting each of the four equations in (4.1) to zero, we are able to explicitly solve for

the unique endemic equilibrium solution:
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S⇤ =(g +µ)
✓

bH +
bLx (Z)

d

◆�1

I⇤ =
µ(N �S⇤)

g +µ

R⇤ =
g(N �S⇤)

g +µ

B⇤ =
µx (Z)(N �S⇤)

d (g +µ)

(6.9)

Note that we need R0 > 1 in order for I⇤ > 0.

First, we will analyze the local stability of the system. The jacobian matrix evaluated at

the EE is given by

2

66666664

�bHI⇤ �bLB⇤ �µ �S⇤bH 0 �S⇤bL

bHI⇤ bHS� g �µ 0 bLS⇤

0 g �µ 0

0 x (Z) 0 �d

3

77777775

Then the characteristic polynomial is given by

Det(l I � J⇤) = (l +µ)
⇥
(l +µ)(l �S⇤bH + g +µ)(l +d )+(bHI⇤+bLB⇤)(l + g +µ)(l +d )

�(l +µ)S⇤bLx (Z)
⇤

(6.10)

The EE is locally asymptotically stable iff all roots have a negative real part. This is clear for

l =�µ . As for the remaining three roots, we can observe the expression in brackets above to

be a0l 3 +a1l 2 +a2l +a3, where

a0 =1

a1 =bHI⇤+bLB⇤+d +2µ + g �bS⇤

a2 =µ2 +(bHI⇤+bLB⇤)d +(bHI⇤+bLB⇤)(µ + g)+2d µ +dg +µg �dbHS⇤ �bLS⇤x (Z)�bHS⇤µ

a3 =d µ2 +d µ(bHI⇤+bLB⇤)+dg((bHI⇤+bLB⇤)+dgµ �dbHS⇤µ �bLS⇤x (Z)µ
(6.11)
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In order for the roots of the above polynomial to have negative real parts, the Routh-

Hurwitz stability criterion [5] requires that a0 > 0, a1 > 0, a2 > 0, a3 > 0, and a1a2 > a0a3.

We will need to make use of the following lemma.

Lemma 6.2.1. When R0 > 1, S* satisfies the following:

µ + g �S⇤bH > 0 and d (g +µ) = bLx (Z)S⇤+dbHS⇤.

Proof. Let R0 > 0. Then

bH

bH+
bLx (Z)

d
< 1 =) (µ + g) bH

bH+
bLx (Z)

d
< µ + g

=) S⇤bH < µ + g

=) µ + g �S⇤bH > 0

Next, we note that

S⇤
g+µ (

bLx (Z)
d +bH) = 1 =) S⇤(bLx (Z)+bHd ) = d (g +µ)

=) d (g +µ) = bLx (Z)S⇤+dbHS⇤
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Theorem 6.2.2. The polynomial a0l 3 +a1l 2 +a2l +a3, with a0, a1, a2, and a3 as defined in

(4.10), satisfies the inequalities a0 > 0, a1 > 0, a2 > 0, a3 > 0, and a1a2 > a0a3.

Proof. Using Lemma 4.1, we can easily show the following inequalities:

a1 = bHI⇤+bLB⇤+d +2µ + g �bHS⇤

= bHI⇤+bLB⇤+d +µ +(µ + g �bHS⇤)

> 0.

a2 = µ2 +(bHI⇤+bLB⇤)d +(bHI⇤+bLB⇤)(µ + g)+2d µ +dg +µg

ds�dbHS⇤ �bLS⇤x (Z)�bHS⇤µ

= (bHI⇤+bLB⇤)(µ + g +d )+d µ +µ(µ + g �bHS⇤)+d (g +µ)�bLS⇤x (Z)�dbHS⇤

> 0.

a3 = d µ2 +d µ(bHI⇤+bLB⇤)+dg((bHI⇤+bLB⇤)+dgµ �dbHS⇤µ �bLS⇤x (Z)µ

= µ[d (g +µ)�bLS⇤x (Z)�dbHS⇤]+d (g +µ)(bHI⇤+bLB⇤)

= d (g +µ)(bHI⇤+bLB⇤)

> 0.

a1a1 �a0a3 > da2 �a0a3

= d µ2 +d (bHI⇤+bLB⇤)(µ + g +d )+µgd +d µ(µ + g �bHS⇤+d 2µ

�d (g +µ)(bHI⇤+bLB⇤)

> d (µ + g +d )(bHI⇤+bLB⇤)�d (g +µ)(bHI⇤+bLB⇤)

> 0

We now move on to determine the criteria for global stability of the EE. In order to do

this, we will employ the geometric approach as before [8].
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Theorem 6.2.3. If 2bHS⇤ � g  0, then the unique EE (6.9) is globally stable.

Proof. First, we let P = diag[1, I
B ,

I
B ]. Then

P�1 = diag


1,
B
I
,
B
I

�

PF = diag


0,
✓

I
B

◆0
,

✓
I
B

◆0�

PFP�1 = diag


0,
I0

I
� B0

B
,
I0

I
� B0

B

�
(6.12)

The Jacobian matrix of the system is given by

J =

2

66664

�bHI �bLB�µ �bHS bLS

bHI +bLB bHS� g �µ bLS

0 x (Z) �d

3

77775
.

The second additive compound matrix is then given by

J[2] =

2

66664

bH(S� I)�bLB� (g +2µ) bLS bLS

x (Z) �(bHI +bLB+µ +d ) �bHS

0 bHI +bLB bHS� (g +µ +d )

3

77775

and then

PJ[2]P�1 =

2

66664

bH(S� I)�bLB� (g +2µ) bL
SB
I bL

SB
I

x (Z) I
B �(bHI +bLB+µ +d ) �bHS

0 bHI +bLB bHS� (g +µ +d )

3

77775
.

Thus, we can find the matrix Q = PFP�1+PJ[2]P�1. We can write Q in block form as follows:

Q =

2

64
Q11 Q12

Q21 Q22

3

75
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where
Q11 = bH(S� I)�bLB� (g +2µ)

Q12 =


bL

SB
I bL

SB
I

�

Q21 =

2

64
x (Z) I

B

0

3

75

Q22 =

2

64
�(bHI +bLB+µ +d ) �bHS

bHI +bLB bHS� (g +µ +d )

3

75

We define m as in (3.5). Then m(Q) = sup{g1,g2} with

g1 =m1(Q11)+ |Q12|

g2 =|Q21|+m1(Q22)

By direct calculation, we see that

g1 =bH(S� I)� (bLB+ g +2µ)+ bLSB
I

g2 =
x (Z)I

B
� (µ +d )+ I0

I
� B0

B
+ sup{0,2bHS� g}

(6.13)

Equivalently,

g1 =
I0

I
�bHI �bLB�µ

g2 =
I0

I
+ sup{0,2bHS� g}�µ

(6.14)

From this, we wee that if 2bHS�g  0, then m(t) = sup{g1,g2} I0
I �µ . Now, for sufficiently

large t, since 0  I(t) N, we have

ln(I(t))� ln(I(0))
t

 µ
2

Therefore,

1
t

Z t

0
m(s)ds  1

t

Z t

0

✓
I0(s)
I(s)

�µ
◆

ds =
ln(I(t))� ln(I(0))

t
�µ �µ

2
.
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for sufficiently large t. This now implies q̄2 �µ
2 < 0. According to theorem 5.5.1, it must be

that the EE (6.9) is globally stable.

32



CHAPTER 7

FULL SYSTEM ANALYSIS

Now that we have analyzed each of the three separate components of the full system,

we will move on to the full system, with all three subsystems coupled together.

dS
dt

=µN �bHSI �bLSB�µS

dI
dt

=bHSI +bLSB� (g +µ)I

dR
dt

=gI �µR.

dB
dt

=x (Z)I �dB

dZ
dt

=c1BV �d1MZ �z Z,

dV
dt

=c2BV �d2MV � tV,

dM
dt

=e1MZ + e2MV � pM.

(7.1)

Note that in this system, some terms that were previously considered as constant are no longer

considered constant.

7.1 DFE and Basic Reproduction Number

As in the intermediate scale system, we will first calculate the DFE and basic reproduc-

tion number of the system. Before we begin, we assume x (0) > 0 and x 0(Z) � 0. It is clear

to see that one possible DFE exists at (S, I,R,B,Z,V,M)T = (N,0,0,0,0,0,0)T = X0. With

the additional condition that each of the seven variables must be nonnegative, it follows that

this DFE is unique. The basic reproduction number of the system can be calculated using the

next-generation matrix technique as before. We consider the infection related components of
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the system only, separating them into matrices F and V .

2

66666664

dI
dt

dB
dt

dZ
dt

dV
dt

3

77777775

=

2

66666664

S(bHI +bLB)

0

0

0

3

77777775

�

2

66666664

(g +µ)I

dB�x (Z)I

(d1M+z )Z � c1BV

(d2M+ t)V � c2BV

3

77777775

= F �V . (7.2)

The next generation matrix is given by FV�1 where

F =DF (X0) =

2

66666664

bHN bLN 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775

V =DV (X0) =

2

66666664

g +µ 0 0 0

�x (0) d 0 0

0 0 z 0

0 0 0 t

3

77777775

(7.3)

Then

FV�1 =

2

66666664

bHN
g+µ + bLNx (0)

d (g+µ)
bLN

d 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775

.

The basic reproduction number R0 is the spectral radius of the next generation matrix. Thus,

we have R0 =
bHN
g+µ + bLNx (0)

d (g+µ) . We know by van den Driessche and Watmough [3] that the DFE

is stable whenever R0 < 1, and unstable when R0 > 1.
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7.2 Endemic Equilibria

We now seek all possible equilibrium solutions (S⇤, I⇤,R⇤,B⇤,Z⇤,V ⇤,M⇤) in which the

infected population persists. As such, we assume I⇤ 6= 0. It follows immediately that R⇤ 6= 0

and S⇤ 6= 0. We now have multiple cases to consider.

Case 1: Suppose R0 > 1, dX
dt = 0, B⇤ 6= 0 and V ⇤ = 0. Then dZ

dt = 0 implies Z⇤ = 0

and dM
dt = 0 implies M⇤ = 0. The remaining four variables are uniquely determined by the

remaining equations. Therefore, Case 1 yields the solution

S⇤ =
dN

d (R0 �1)+1

I⇤ =
d µ(R0 �1)

dbH +bLx (0)

R⇤ =
dg(R0 �1)

dbH +bLx (0)

B⇤ =
µx (0)(R0 �1)
dbH +bLx (0)

Z⇤ =0

V ⇤ =0

M⇤ =0

(7.4)

Note that S⇤, I⇤, R⇤, and B⇤ are all positive since R0 > 1. This solution can also be reached

by changing the initial assumption V ⇤ = 0 to Z⇤ = 0. This first case reduces to a system that

reflects inactivity within the hosts, while environmental bacteria and the infected population

persist.

Case 2: Suppose R0 > 1, dX
dt = 0, B⇤ 6= 0, Z 6= 0 and M⇤ = 0. It follows that each

remaining variable must be nonzero. dV
dt = 0 tells us that B⇤ = t

c2
. Knowing this value for

B⇤, we may use the first two equations to solve for S⇤ and I⇤. In doing so, the solution for I⇤

presents itself in the form of a quadratic equation:

I⇤0 =
�b±

p
b2 �4ac

2a
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where
a =c2bh(g +µ)

b =(g +µ)(bLt + c2µ)� c2µbHN

c =�µtbLN.

Note that the solution with the positive root is guaranteed to be positive, since a > 0 and c < 0.

Now that we have obtained this value for I⇤, the rest of the solution variables may be determined

to be as follows:
S⇤ =

c2µN
c2(bHI⇤0 +µ)+bLt

I⇤ =I⇤0

R⇤ =
g
µ

I⇤0

B⇤ =
t
c2

Z⇤ =x�1
✓

dt
I⇤0 c2

◆

V ⇤ =
c2z
c1t

x�1
✓

dt
I⇤0 c2

◆

M⇤ =0

(7.5)

This equilibrium represents a state in which the host immune cells are depleted, but the virus

and vibrios persist within the human body.

Finally, we will establish the existence of an entirely positive EE solution. If we assume

that each variable must be nonzero, we may solve the system 7.1 to obtain the system
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S⇤ =
d (g +µ)

dbH +bLx (Z⇤)

I⇤ =
µN

g +µ
� µd

dbH +bLx (Z⇤)

R⇤ =
gN

g +µ
� gd

dbH +bLx (Z⇤)

B⇤ =
µNx (Z⇤)

d (g +µ)
� µx (Z⇤)

dbH +bLx (Z⇤)

Z⇤ =
c1 pB⇤

c1e1B⇤+ c1e2M⇤+ e2z

V ⇤ =
p� e1Z⇤

e1

M⇤ =
c2B⇤ � t

d2
.

(7.6)

Note that the existence of a solution depends on Z⇤. In particular, we may expand Z⇤ in the

following way:

Z⇤ =
c1 pB⇤

c1e1B⇤+ c1e2

h
c2B⇤�t

d2

i
+ e2z

=
c1 pB⇤

B⇤
h
c1e1 +

c1c2e2
d2

i
� c1e2t

d2
+ e2z

=) c1B⇤


e1 +
c2e2

d2

�
Z⇤ = c1 pB⇤+ e2


c1t
d2

�z
�

Z⇤

=)


N
d (g +µ)

� 1
dbH +bLx (Z⇤)

�
[(d2e1 + c2e2)Z⇤ � pd2] =

e2d2

µ


t
d2

� z
c1

�
Z⇤

x (Z⇤)
.

Let
f1(Z⇤) =


N

d (g +µ)
� 1

dbH +bLx (Z⇤)

�
[(d2e1 + c2e2)Z⇤ � pd2]

f2(Z⇤) =
e2d2

µ


t
d2

� z
c1

�
Z⇤

x (Z⇤)
.

If the two above equations have exactly one intersection point Z⇤
0, then this point will determine

a unique solution for the system.

Theorem 7.2.1. Suppose c1t < d2z , x 00(Z⇤)< 0 and R0 > 1. Then there exists a unique point

Z⇤
0 2
⇣

0, pd2
d2e1+c2e2

⌘
such that f1(Z⇤

0) = f2(Z⇤
0). Furthermore, if

Z⇤
0 > x�1

 
�b+

p
b2 �4ac

2a

!
.
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where
a =

c2µbLN
d (g +µ)

b =
c2µbHN

g +µ
� tbL � c2µ

c =� tdbH ,

then Z⇤
0 generates a unique positive EE solution to 7.1.

Proof. First, note that R0 > 1 implies


N

d (g +µ)
� 1

dbH +bLx (Z⇤)

�
> 0.

Then we have f1(0)< 0 and f2(0) = 0. If we let

a =
e2d2

µ


t
d2

� z
c1

�

the assumption c1t < d2z gives a < 0. Then

f 02(Z
⇤) = a x (Z⇤)�Z⇤x 0(Z⇤)

[x (Z⇤)]2
< 0.

Since f1(Z⇤) is continuous on the interval
⇣

0, pd2
d2e1+c2e2

⌘
with a negative left endpoint and a

right endpoint equal to zero, the two functions f1(Z⇤) and f2(Z⇤) are guaranteed to have at

least one intersection point Z⇤
0 on the interval. We now proceed to show the uniqueness of this

intersection. To do this, we will demonstrate that f1(Z⇤) is concave up for all points on the

interval
⇣

0, pd2
d2e1+c2e2

⌘
. The first and second derivative of f1(Z⇤) are given by

f 01(Z
⇤) =h2(Z⇤)[(d2e1 + c2e2)Z⇤ � pd2]+


N

d (g +µ)
� 1

dbH +bLx (Z⇤)

�
(d2e1 + c2e2)

f 001 (Z
⇤) =h1(Z⇤)[(d2e1 + c2e2)Z⇤ � pd2]+2h2(Z⇤)(d2e1 + c2e2).

where

h1(Z⇤) =
bLx 00(Z⇤)(dbh +bLx (Z⇤))�2(bLx 0(Z⇤))2

(dbH +bLx (Z⇤))3

h2(Z⇤) =
bLx 0(Z⇤)

(dbH +bLx (Z⇤))2
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With our assumption x 00(Z⇤) < 0, it is clear that h1(Z⇤) < 0. Thus, since h2(Z⇤) > 0, we have

f 001 (Z
⇤) > 0 for all Z⇤ 2

⇣
0, pd2

d2e1+c2e2

⌘
. Since f2(Z⇤) is a linear decreasing function passing

through the origin, and f1(Z⇤) is negative and concave up for all Z⇤ 2
⇣

0, pd2
d2e1+c2e2

⌘
, there

exists a unique point Z⇤
0 2
⇣

0, pd2
d2e1+c2e2

⌘
such that f1(Z⇤

0) = f2(Z⇤
0).

Given the existence of such a point Z⇤
0, we must also consider how to achieve X⇤ > 0.

It is clear that S⇤ > 0 from 7.6 since x (Z⇤)� 0. From 7.6, it is clear that B⇤ > 0 if and only if

N � d (g +µ)
dbH +bLx (Z⇤)

> 0.

Since R0 =
N(dbH+bLx (0))

d (g+µ) > 1, we have

N � d (g+µ)
dbH+bLx (Z⇤) > N � N(dbH+bLx (0))

d (g+µ)
d (g+µ)

dbH+bLx (Z⇤)

> N � N(dbH+bLx (Z⇤))
d (g+µ)

d (g+µ)
dbH+bLx (Z⇤)

= N �N

= 0.

(7.7)

Thus, B⇤ > 0. By the same argument, we have that I⇤ > 0 and R⇤ > 0. Moving on, we want to

determine if it is possible for M⇤ > 0. First, it will be helpful to solve M⇤ = 0 for x (Z⇤) where

M⇤ is defined in 7.6. After substituting for B⇤ from 7.6, we get a quadratic equation in x (Z⇤)

of the form

M⇤ = ax 2(Z⇤)+bx (Z⇤)+ c (7.8)

where
a =

c2µbLN
d (g +µ)

b =
c2µbHN

g +µ
� tbL � c2µ

c =� tdbH .

(7.9)

So, in order for M⇤ > 0, we need the equation 7.8 to be greater than zero. First, we will attempt

to find a positive zero for the equation, as x (Z⇤) must be positive. The possible zeros are given

by
�b±

p
b2 �4ac

2a
.
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A positive zero of 7.8 is given by
�b+

p
b2 �4ac

2a
(7.10)

since a > 0 and c < 0. Now that we have found a value of x (Z⇤) that gives M⇤ = 0, we can

determine the values of x (Z⇤) that M⇤ positive. Specifically, note that M⇤ as a function of

x (Z⇤) is concave up. So M⇤ is increasing at the zero 7.10, and hence M⇤ > 0 whenever

x (Z⇤)>
�b+

p
b2 �4ac

2a

or

Z⇤ > x�1

 
�b+

p
b2 �4ac

2a

!
.

We must also look to 7.6 to see that V ⇤ > 0 requires Z⇤ < p
e1

. Hence, M⇤ cannot be positive

unless

x�1

 
�b+

p
b2 �4ac

2a

!
<

p
e1

holds. Since pd2
d2e1+c2e2

< p
e1

our solution point Z⇤
0 determines a unique positive EE solution to

the system 7.1 only if

Z⇤
0 > x�1

 
�b+

p
b2 �4ac

2a

!
.

7.3 Local Bifurcation Analysis

A first step towards understanding the stability of the EE of the full system is to analyze

its behavior near the bifurcation point R0 = 1. The following result was established in [9].

Lemma 7.3.1. Consider a general system of ODEs with a real parameter b :

dx
dt = f (x,b ); f : IRn ⇥ IR ! IRn, and f 2C2(IRn ⇥ IR). (7.11)

Assume x = X0 is an equilibrium of system 7.11 for all b . Also assume

(A1) A = Dx f (X0,b ⇤) =
⇣

∂ fi
∂x j

(X0,b ⇤)
⌘

is the linearization matrix of system 7.11 at the

equilibrium x = X0 with b evaluated at b ⇤. Zero is a simple eigenvalue of A and all
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other eigenvalues of A have negative real parts.

(A2) Matrix A has a right eigenvector w and a left eigenvector v corresponding to the

zero eigenvalue.

Let fk be the kth component of f and,

a =
4

Â
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(X0,b ⇤).

b =
3

Â
k,i=1

vkwi
∂ 2 fk

∂xi∂b
(X0,b ⇤).

The local dynamics of the system 7.11 around x = X0 are totally determined by a and b.

(i) a > 0, b > 0. When b � b ⇤ < 0 with |b � b ⇤| ⌧ 1, x = X0 is locally asymptotically

stable, and there exists a positive unstable equilibrium; when 0 < b �b ⇤ ⌧ 1, x = X0 is

unstable and there exists a negative and locally asymptotically stable equilibrium;

(ii) a< 0, b< 0. When b �b ⇤ < 0 with |b �b ⇤|⌧ 1, x=X0 is unstable; when 0< b �b ⇤ ⌧

1, x=X0 is locally asymptotically stable, and there exists a positive unstable equilibrium;

(iii) a > 0, b < 0. When b �b ⇤ < 0 with |b �b ⇤|⌧ 1, x = X0 is unstable, and there exists

a locally asymptotically stable negative equilibrium; when 0 < b � b ⇤ ⌧ 1, x = X0 is

stable, and a positive unstable equilibrium appears;

(iv) a < 0, b > 0. When b �b ⇤ changes from negative to positive, x = X0 changes its stability

from stable to unstable. Correspondingly a negative unstable equilibrium becomes posi-

tive and locally asymptotically stable.
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With the use of this result, we will demonstrate that a local forward bifurcation occurs

at this point.

Theorem 7.3.2. When R0 � 1 changes from negative to positive, the DFE X0 changes its sta-

bility from stable to unstable. Furthermore, the EE becomes locally asymptotically stable.

Proof. First, we will verify condition (A1) of 7.3.1. Setting R0 = 1 and solving for the

parameter bH gives

b ⇤
H =

g +µ
N

� bLx (0)
d

.

The jacobian matrix A = J(X0,b ⇤
H) is given by

A =

2

666666666666666664

�µ �b ⇤
HN 0 �bLN 0 0 0

0 b ⇤
HN � g �µ 0 bLN 0 0 0

0 g �µ 0 0 0 0

0 x (0) 0 �d 0 0 0

0 0 0 0 �z 0 0

0 0 0 0 0 �t 0

0 0 0 0 0 0 �p

3

777777777777777775

.

From columns 1, 5, 6 and 7 it can be seen that four eigenvalues of A are �µ , �z , �t and �p.

The remaining three eigenvalues can be determined from the smaller matrix

B =

2

66664

b ⇤
HN � g �µ 0 bLN

g �µ 0

x (0) 0 �d

3

77775
.

After some simplification, we have

det(B�l I) = l (�µ �l )(d +
bLx (0)

d
+l ).

Thus, the remaining three eigenvalues are given by �µ , �(d + bLx (0)
d ), and 0. The conditions

of (A1) are then satisfied.
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Consider again the Jacobian matrix A. Denote w = (w1,w2,w3,w4,w5,w6,w7)T , a right

eigenvector such that 2

666666666666666664

�µw1 �b ⇤
HNw2 �bLNw4

(b ⇤
HN � g �µ)w2 +bLNw4

gw2 �µw3

x (0)w2 �dw4

�z w5

�tw6

�pw7

3

777777777777777775

= 0.

Setting w4 = 1 and solving the system gives

w =

✓
�d (g +µ)

µx (0)
,

d
x (0)

,
gd

µx (0)
,1,0,0,0

◆T
.

Similarly, denote v = (v1,v2,v3,v4,v5,v6,v7), a left eigenvector such that

2

666666666666666664

�µv1

�b ⇤
HNv1 +(b ⇤

H � g �µ)v2 + gv3 +x (0)v4

�µv3

�bLNv1 +bLNv2 �dv4

�z v5

�tv6

�pv7

3

777777777777777775

= 0.

Solving the system along with the addtional condition

v4

✓
d 2 +bLNx (0)

bLNx (0)

◆
= 1

gives

v =
✓

0,
dx (0)

d 2 +bLNx (0)
,0,

bLNx (0)
d 2 +bLNx (0)

,0,0,0
◆
.
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Now we have v ·w = 1, A ·w = 0 and v ·A = 0. From (A2) in 7.3.1, it follows that

a =
�2d 3(g +µ)2

µNx (0)[d 2 +bLNx (0)]
< 0

b =
d 2N

d 2 +bLNx (0)
> 0.

Thus, based on 7.3.1, we have verified the conditions under which the result of the theorem

holds.
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CHAPTER 8

CONCLUSION

In this paper, a simple SIR model framework is extended to include both environmental

and within-host dynamics. Specifically, the within-host dynamical system proposed in [2] is

expanded to include the influence of human virus and immune cell interaction with the infec-

tious vibrios. When analyzed in isolation, the slow-scale and intermediate scale systems act

predictably. The one-dimensional slow-scale system has a single globally stable equilibrium

solution. The three dimensional intermediate-scale system has a unique, globally stable DFE

when R0 < 1 and B = 0. When B 6= 0, however, there is a unique globally stable positive EE

solution. It is then determined that the dynamics of the fast-scale system are dependent on the

value of c2B� t . The dynamics of the smaller of the two combined systems depends mostly

on R0, as expected. We are able to provide sufficient conditions for the existence of a unique

positive EE for the fully combined system. Then using a result from [9] we are able to conduct

a localized bifurcation analysis of the full system.

Moving forward, there are several unanswered questions that are available for future

research. A more complete stability analysis of the equilibrium of the full system is of particular

interest. Additionally, numerical simulation using real world data could shed more light onto

the likelihood of various assumptions. Overall, this research provided a groundwork for the

development of a cholera model that has great potential to shed new light onto the behavior of

the disease.
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