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ABSTRACT 

 

 

Unmanned aerial vehicles (UAVs), an emerging technology, show promise in ecological 

research. In this comparative study, I compare UAVs to a traditional sampling method, 

observations using spotting scopes. UAVs have yet to be used successfully for sampling 

freshwater turtles; however, they have been used with mixed success for monitoring mammals 

and birds. Herein, I propose that the conservation utility of UAVs be formally assessed in the 

field prior to them being used to make adaptive conservation and management decisions. I 

quantitatively and qualitatively evaluate the use of UAVs using a mixed methods approach in 

contrast to a proven field method as a means to elucidate our basic understanding of presence-

absence. Being able to successfully use UAVs for ecological surveying would provide an easy, 

efficient, and less invasive way to study basking turtles. 
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CHAPTER I 

 

INTRODUCTION 

 

 

Development and Use of UAVs 

The oldest form of aerial observation is most likely by balloon. In 1858, there were 

already aerial photos of Paris captured by Tournachon aboard a hot-air balloon (Colomina and 

Molina 2014). As time went on and camera technology advanced, more modes of aerial imagery 

were possible such as kites and rockets (Colomina and Molina 2014). In 1903, J. Neubroner 

proposed mounting cameras to the breasts of pigeons, the same year Orville Wright took flight. 

Soon after, the Bavarian Pigeon Corps began experiments with attaching cameras to their 

animals. A little over a decade later, the Army Signal Corps flew its first unmanned aircraft, the 

Kettering Bug flying bomb (Sullivan 2006). From this point on, most of the developments in 

unmanned aircraft technology have occurred through military efforts and eventually for 

recreational use. Initially created for military use, the first official unmanned aerial vehicles 

(UAVs) were in the form of missiles. Charles Kettering designed a gyroscope-controlled bomb 

for the Army Signal Corps, while Elmer and Lawrence Sperry designed them for the Navy. 

These missiles were meant to attack specific targets from a distance of up to 160km (~100 miles) 

away during World War I and World War II (Newcome 2004).  

After losing interest in missiles and torpedoes, the military revisited radio-controlled 

aircraft in the 1930s to use as target drones. In 1938, the Navy began using UAVs for anti-

aircraft gunnery practice and in 1944, the Army released Project Aphrodite, a B-17 with the 
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armor removed and replaced with nine tons of explosives intended for destroying German 

missile facilities (Newcome 2004). World War II resulted in two different concepts of pilotless 

aircraft: 1) autonomous missiles that could be fired at an enemy at high speeds from far away, 

and 2) assault drones which had to stay in sight and were intended for surveillance (Sullivan 

2006). Significant advances were made after World War II and into the 1980s. Specifically, 

drones were developed with features such as infrared-homing, anti-radar, and television and 

radar-guidance (Sullivan 2006). In the 1950s and 60s, unmanned aircraft were referred to as 

drones due to them being expendable, unlike piloted aircraft (Sullivan 2006). In 1951, the 

Firebee drone, a jet-powered and air-launched drone, were used as surveillance in hostile areas. 

Until the introduction of the Firebee, drones were typically used as weapons and sent to 

an area to explode. In contrast, the Firebee was manually controlled by someone on the ground in 

order to collect the intelligence from targeted areas (Sullivan 2006). Because of this different 

use, the Firebees were referred to as remotely piloted vehicles (RPVs) instead of drones, so that 

the pilots controlling them could still be pilots, not drone operators (Newcome 2004). Unmanned 

aerial vehicles (UAVs) are technically synonymous with RPVs. UAVs are defined as reusable 

aircraft without a pilot onboard, switching the terminology from RPVs to UAVs in the 1960s 

denotes a move from direct piloting to semi-autonomous control (Sullivan 2006). Since then, the 

United States FAA has begun using the term unmanned aircraft system (UAS) (FAA 2018). In 

addition, the FAA labeled a small UAS as a sUAS (FAA 2018). The development of high-

altitude long-endurance (HALE) UAVs began in the 1960s with the Global Hawk UAV in order 

to safely spy with high resolution (Newcome 2004). A recent advancement is the latest “smart” 

UAV, the Boeing X-45 unmanned combat air vehicle, one that can search territory, send 

information to the base, and receive command alterations (Sullivan 2006). 
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 While most advances in UAV technology are by the military, UAVs have recently been 

used for a multitude of applications. In addition to being military products, UAVs are often used 

commercially with applications such as measuring aggregate stockpile volumes and topographic 

mapping and inspection (Whitehead et al. 2014, Jozkow, Toth, and Grejner-Brzezinska 2016). 

Another non-military use is feature detection. Examples of this are precision agriculture and 

detecting individual trees in a canpoy (Whitehead et al. 2014, Nevalainen et al. 2017). Within the 

fields of ecology and environmental science, UAVs are used for animal and wildlife monitoring 

as well as assessing landscape and habitat dynamics (Whitehead et al. 2014, Watts, Ambrosia, 

and Hinkley 2012).  

 

Other Forms of Remote Sensing 

 While the main focus of this review is UAVs, there are other forms of remote sensing 

that preceded the UAV and are still widely used today. In the hierarchy of altitudes, satellites are 

at the top. Landsat was the first spacecraft deployed for terrestrial monitoring and is still the 

main platform today. The basis for Landsat came from the idea of using near-infrared 

wavelengths to photograph vegetation reflectance (Cohen and Goward 2004). During the 1950s, 

the United States trumped the Soviet Union by orbiting television cameras for gathering weather 

information (Cohen and Goward 2004). Proposed by William T. Pecora, the first Landsat 

satellite was launched into orbit in 1972 (Williams, Goward, and Arvldson 2006). Since then, 

one Landsat has been launched approximately every three years, through Landsat 5, when 

Landsat 6 was launched in 1993, it failed and Landsat 7 was not launched until 1999 (Cohen and 

Goward 2004).  
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While Landsat was the first program for spaceborne terrain imagery, there are now 

multiple programs using different sensors such as Terra, which has five satellites with a variety 

of sensors, and Aqua, which has six satellites (NASA 2017). In addition, popular platforms for 

ecology are IKONOS, OrbView3, and QuickBird (Loarie, Joppa, and Pimm 2007).  A benefit of 

using satellite data is that they can map large areas at the same time (Matese et al. 2015). This 

allows for viewing of a large area and, depending on the size of the study site, only having to 

purchase a few frames. Some drawbacks are that satellites can deliver coarse resolution, be 

obstructed by cloud cover, and have a long revisit time (Matese et al. 2015). Resolution is 

improving with some satellites giving <5m resolution, but that is still coarse for studying wildlife 

and other ecological factors (Matese et al. 2015). 

 Below satellites are planes and helicopters. Six years after taking flight, Orville Wright 

brought a video camera aboard his plane and shot a motion picture (Colomina and Molina 2014, 

Times-Dispatch 1903). Since then, both the military and civilian organizations have shot aerial 

photos from manned aircraft. The basis for manned versus unmanned aircraft are essentially the 

same. Both have similar shapes and mechanics with differences just being in the location of the 

pilot and the size of the aircraft. Compared to satellites, plane routes are planned more flexibly 

than satellites (Matese et al. 2015). While most satellites are in a set orbit and move 

independently, it takes more active manpower and organization to run a plane campaign (Matese 

et al. 2015). Planes and helicopters are both manned and can hold the same sensors, but 

helicopters are much more maneuverable and can cruise in any direction as well as perform 

vertical takeoffs, hover over the targeted area, and fly closer to the ground (Sugiura, Noguchi, 

and Ishii 2005). 
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 Next in the hierarchy after planes and helicopters are balloons. The use of a hot air 

balloon for aerial photography did not go away after its use in the late 1800s. Balloons continued 

to be used for decades after, but development slowed after the Hindenburg disaster in 1937 

(Tozer and Grace 2001). Balloons and blimps are low-flying, slow, long-endurance aircraft that 

are useful for long term monitoring of an area (Klemas 2015) The advantages of balloons and 

blimps are that they are steady, vibration free, and blimps do not require fuel, just helium. A 

main advantage to balloons is that, unlike aircraft, they can hover over a site for long periods of 

time (Klemas 2015). There are a variety of different types of balloons such as the simple tethered 

balloon developed by Shaw et al. (2012) and the Helikite (helium balloon plus kite) design 

developed at the University of Delaware (Klemas 2015). 

Finally, one of the lowest altitude platform for remote sensing is the UAV. Most UAVs 

used for ecological research are considered small, mini, micro, or nano UAVs (Anderson and 

Gaston 2013). While there are many types of UAVs, the main two categories are fixed wing or a 

rotor-based system. Fixed wing UAVs look similar to manned planes and are sometimes built as 

modified model airplanes. Launching typically depends on bungee propulsion and landing is a 

controlled glide onto the ground (Anderson and Gaston 2013). These types of UAVs need 

minimal experience to fly and have a relatively simple interface. In contrast, rotor-based UAVs 

are similar to helicopters and typically have four to eight propellers. Like helicopters, they can 

take off at any angle, maneuver easily, perform vertical takeoffs and landings, and fly close to 

the ground (Sugiura, Noguchi, and Ishii 2005). When comparing the two platforms, fixed-wing 

systems are larger and can travel faster and have a greater payload (Hardin and Jensen 2011). 

Rotor-based UAVs also experience less vibration than fixed-wing UAVs which increases 

photogrammetric applications (Wallace et al. 2011). 
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Ecological Uses for UAVs 

UAVs for Wildlife Studies 

 UAVs have been used on a multitude of species, mostly terrestrial mammals, birds, and 

aquatic species (Vermeulen et al. 2013, Vas et al. 2015, Hodgson, Kelly, and Peel 2013). In 

order for UAVs to be effective for wildlife monitoring, surveying, or studying behavior, sensors 

must have a spatial resolution fine enough to differentiate between individuals or groups. Species 

that are typically studied with manned aircraft, like large mammals and aquatic animals, have the 

easiest transition to being studied with unmanned aircraft in terms of the detection levels and 

possible factors that would influence detection (Linchant et al. 2015). So far, most studies have 

been conducted on known populations or utilize known methods in order to check the accuracy 

of the UAV. Among those that have been surveyed this way are elephants (Loxodonta africana) 

(Vermeulen et al. 2013), white-tailed deer (Odocoileus virginianus) and roe deer (Capreolus 

capreolus) (Israel 2011, Kissell and Nimmo 2011), arctic seals (Arctocephalus gazella) (Goebel 

et al. 2015), koalas (Phascolarctos cinereus) (Gonzalez et al. 2016), black bears (Ursus 

americanus) (Ditmer et al. 2015), ungulates (Cervus elaphus, Dama dama, and Sus scrofa) 

(Barasona et al. 2014), chimpanzees (Pan troglodytes) (van Andel et al. 2015), and rhinos 

(Ceratotherium simum) (Mulero-Pázmány et al. 2014). 

When studying terrestrial mammals, there are multiple types of research that can be 

conducted using UAVs. Mulero-Pazmany et al. (2013) used UAVs as an anti-poaching device. 

They were able to identify rhinos, people, and at lower flight height and specific hours of the 

day, they could even see fences. Mounted on the drone was a standard GoPro to take some of the 

images, but also a thermal video camera to help identify individuals. Like Mulero-Pazmany et al. 
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(2013), Israel (2011) used a thermal camera, but instead of trying to save species from poaching, 

he was rescuing roe deer fawns from lawnmowers. This study was different because instead of 

taking images to analyze at a later date, Israel was able to observe the video feed in real time, 

identify hotspots where fawns were present, and make an identification on the spot. He was then 

able to immediately send in a hunter to rescue the fawn. In addition to saving wildlife from 

human impact, UAVs have been used to conduct surveys. For example, van Andel et al. (2015) 

used UAVs to conduct aerial detection of chimpanzee nests. Using a logistic regression, they 

evaluated what factors influenced detectability of chimps in nests when using UAVs as a survey 

method. While they could only detect nests in areas with an open canopy, the method proved 

useful in difficult to access areas and species that are known to nest in canopy gaps.  

Similar studies on animal response to UAVs have been conducted, but the majority focus 

on birds. Birds are a frequently aerial-surveyed group due to species with colonial behavior that 

aggregate for long periods of time, which makes them easier to count (Linchant et al. 2015). 

UAVs have been used on a variety of bird such as wading birds (decoys) (Abd-Elrahman, 

Pearlstine, and Percival 2005), species of geese (Branta canadensis and Chen caerulescens) 

(Chabot and Bird 2012), flamingos (Phoenicopterus roseus), mallards (Anas platyrhynchos), and 

common greenshanks (Tringa nebularia) (Vas et al. 2015), multiple species of gulls (Larus 

canus and Chroicocephalus ridibundus) (Grenzdörffer 2013, Sardà-Palomera et al. 2012), 

hooded crows (Corcus cornix) (Weissensteiner, Poelstra, and Wolf 2015), penguins (Pygoscelis 

papua and Pygoscelis antarctica) (Goebel et al. 2015, Ratcliffe et al. 2015) and multiple seabird 

taxa (Fregata ariel, Thalasseus bergii, and Eudyptes schlegeli) (Hodgson et al. 2016). Like 

terrestrial mammals, UAV studies can be applied to multiple research questions regarding birds 

and the utility of UAVs in general. When Weissensteiner et al. (2015) studied UAVs as a tool for 
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learning about birds, they tested the method on crows. They assessed the nesting status of 24 

hooded crow nests around a city in Sweden and they determined how monitoring crow nests 

continuously with a UAV is strikingly more efficient than climbing up to the nests due to a lower 

disturbance and a much faster and easier survey. When studying seabirds, Hodgson et al. (2016) 

compared unmanned aerial counts to more traditional ground-based approaches. They found that 

UAV-derived estimates of colony size resulted in a smaller cumulative variance than the ground-

based approaches, also they found that UAV-derived counts are either significantly smaller or 

larger than the ground counts. Although they did not show UAVs to be very effective for this 

specific study, they determined that the more times the UAV sampling is duplicated, the more 

accurate the counts, up to +/- 5%. The lack of accuracy in surveying birds has also been 

investigated by developing pattern recognition algorithms (Abd-Elrahman, Pearlstine, and 

Percival 2005). Pattern recognition has been used in other aspects of ecology and is a popular 

topic in current research (Romero et al. 2018, Zaman, McKkee, and Jensen 2017). 

In addition to terrestrial mammals and birds, aquatic species are commonly studied with 

UAVs. A few of the species that have been used to test UAVs are Kemp’s ridley sea turtles 

(Lepidochelys kempii) (Bevan et al. 2015), dugongs (Dugong dugon) (Hodgson, Kelly, and Peel 

2013), sharks (Selachimorpha) (Bryson and Williams 2015), chum salmon (Oncorhynchus keta) 

(Kudo et al. 2012), manatees and alligators (Trichechus manatus latirostris and Alligator 

mississippiensis) (Jones, Pearlstine, and Percival 2006), as well as freshwater turtles (Emys 

orbicularis and Mauremys rivulata) (Biserkov and Ludanov 2017). Bevin et al. (2015) were able 

to identify both adult and hatchling Kemp’s ridley sea turtles within 50 meters of the shore. In a 

separate study, Jones et al. (2006) were able to easily identify manatee adults and calves as well 

as moderately sized alligators. In a more prominent study, Hodgson et al. (2013) found that 
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dugongs could be detected and that UAVs actually remedied the issue of waves or rough waters 

affecting sighting rates like they do for boat or land surveys. Work has also been done to 

estimate the usefulness of UAVs with marine species. Studies have estimated the distribution of 

hidden objects to later be applied to manatees (Martin et al. 2012a) as well as a study using 

whale-like targets to estimate the UAVs ability to survey different whale species (Koski et al. 

2009). Biserkov and Lukanov’s 2017 study, the only one currently available on freshwater 

turtles, laid a basic groundwork for surveying pond areas with a UAV. They flew a few ~15-

minute passes over their study sites and in total were able to identify 9 turtles. They did not 

analyze the data or draw statistical conclusions, but they did open the door for more research to 

be conducted on the topic.  

While UAVs have been tested for usefulness for studying multiple species, studies are 

also used as a means to validate the UAVs utility and are used in studies to answer questions 

about the effect of the UAVs themselves. One of the most prominent issues when surveying 

wildlife is disturbance. Many researchers have studied UAV disturbance to wildlife to get the 

most accurate images or video possible with the least disturbance to the animal. Vas et al. (2015) 

approached three different species of birds, two wild and one captive, with UAVs and the results 

were consistent across species. While varying the speed and angle of the UAV, in 80% of the 

cases they could fly within four meters of the birds without visibly modifying behavior. While 

aerial surveys with UAVs have been shown to be a low disturbance method for some species, 

much is still unknown about the unseen effects of UAVs on wildlife (Vas et al. 2015). Ditmer et 

al. (2015) concluded that black bears (Ursus americanus), while not exhibiting a visible 

response, experience elevated heart rates in the presence of UAVs.  Bears responded with 

increased heart rates in all of the flights they conducted. While most bears did not typically 
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respond behaviorally, in one case, the physiological response was so great that it triggered a 

behavioral response causing a female bear to move into a neighboring female’s home range, 

where it had never before been observed.  Mulero-Pazmany et al. (2017) conducted an expansive 

review of literature and found that multiple factors come into play when an animal is in the 

presence of a UAV. First, the flight pattern matters. Target-oriented flights produce more 

reactions than other patterns and result in higher disturbance due to the fight or flight response 

seen in some species to a perceived predator (or shadow) coming toward them. Second, power 

source matters. Flight times vary according to the type of battery, what functions are being used 

(such as taking photos and videos or using GPS), and how strong the wind is. Fuel engines are 

louder than electric engines, which also contribute to disturbance. Finally, the animal’s life-

history stage and level of aggression influence their response. Breeding animals are less likely to 

flee, but can also react aggressively and territorial toward the UAV. In addition to factors of the 

UAV itself, Mulero-Pazmany et al. (2017) also found that species type matters. Birds are the 

most sensitive to UAVs, while aquatic animals, specifically marine mammals, are the least 

affected. While there is not much data on physiological disturbance yet, conducting an aerial 

study with the aforementioned factors in mind could at least minimize behavioral disturbance. 

 

UAVs for Landscape Studies 

 The initial purpose of remote sensing was to have an aerial view of the Earth’s terrain 

from a distance without disturbance. In addition to satellites and manned aircraft, UAVs can be 

extremely useful in the study of different terrains. Forestry is one field that has had great success 

using UAVs. Studies have been conducted on canopy gap patterns (Getzin, Nuske, and Wiegand 

2014, Getzin, Wiegand, and Schöning 2012), the measuring of tree and canopy height (Lisein, 
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Pierrot-Deseilligny, et al. 2013, Zarco-Tejada et al. 2014), tropical forest recovery (Zahawi et al. 

2015), and forest categorization (Dunford et al. 2009). In 2012, Getzin et al. showed how they 

could use aerial images from a UAV to identify canopy gaps and assess floristic biodiversity of 

the forest understory. By using very high resolution images (7 cm/pixel) and spatially implicit 

information on gap shapes, they could show dependency between disturbance patterns and plant 

diversity. Zarco-Tejada et al. (2014) investigated on a finer scale by using UAV color infrared 

imagery for canopy height quantification. Generation of three-dimensional scenes to quantify 

single-tree heights was accomplished with a fully automatic method. Lisein et al. (2013a) also 

studied canopy height but instead of creating three-dimensional models, they used LiDAR-DTM 

in combination with UAV imagery. As previously mentioned, UAVs have also been used in 

forest categorization. Dunford et al. (2009) used UAVs to identify standing dead wood and to 

determine the best approach for classifying riparian vegetation. When mapping species, they 

tested both single image and mosaic approaches. Within the single image approach, the object-

oriented method was more accurate than pixel based and the opposite was true when using a 

mosaic scale. In terms of dead wood identification, the object-based approach had a higher 

accuracy when using a pixel-based scale.  

The study of rangeland ecology has used UAVs for many studies including those on how 

to make UAVs applicable to missions from agencies like the Bureau of Land Management 

(BLM), to assess vegetation cover in sagebrush ecosystems (Breckenridge et al. 2011), to design 

a UAV that can image rangelands at low altitudes (Hardin and Jackson 2005), assessing the 

current and future applications of UAVs for rangelands (Rango et al. 2006), using UAVs for 

rangeland monitoring (Laliberte et al. 2010), and assessing the bare ground measurements of 

rangelands (Breckenridge and Dakins 2011, Hodgson, Kelly, and Peel 2013). UAVs have also 
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been used for wetland delineation (Zweig et al. 2015) and various other types of vegetation 

monitoring (Sugiura, Noguchi, and Ishii 2005, Flynn and Chapra 2014). 

 

UAVs’ Place in the “Ecological Toolbox” 

Ecologists have a variety of tools available to aid in answering research questions. 

Depending on the project, the tools could be electronic, like GPS units, radiotransmitters, and 

satellites, or manual tools like binoculars, compasses, and measuring tapes. As a means to collect 

data, UAVs have been used in a multitude of ecological studies, but are still a relatively new 

tool. In order to expand upon their capabilities and increase their usefulness, more comparative 

research needs to be done to determine accuracy and efficiency. There is a gap between data 

collected from the ground and manned aircraft or satellites, and UAVs have the potential to fill 

that gap (Chabot and Bird 2015). Aerial imagery provides researchers the advantage of viewing 

animals in open habitats at a higher resolution than could be achieved with satellites (Jones, 

Pearlstine, and Percival 2006).  

As UAVs have been mostly used for species detection or surveys thus far, they are a 

good option to include when using multiple survey methods. The biggest advances in ecological 

methods are likely to result from studies that pool and synthesize information from multiple 

survey types (Elphick 2008). Many researchers that have compared multiple methods do not find 

that UAVs lack in accuracy at all or at an amount that would prove them to be ineffective when 

combined with other methods. UAVs are an important addition to the hierarchy of remote 

sensing. They add a micro prospective that is currently lacking from the macro dominated field 

of aerial imagery.  
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Regulations/Legality 

In the United States, the Federal Aviation Administration (FAA) oversees all aircraft 

operations, manned and unmanned. The main concern about UAVs is safety, so the FAA has 

regulations and guidance on airspace restrictions, pilot requirements, equipment, and 

performance requirements (Watts, Ambrosia, and Hinkley 2012). While each state has different 

policies about UAVs, the FAA Small Unmanned Aircraft Rule (Part 107) applies nationwide 

(FAA 2016). There are many parts to the rule: operational limitations, remote pilot in command 

certification and responsibilities, aircraft requirements, and model aircraft. Operational 

limitations, the largest section, has 24 different restrictions such as unmanned aircraft must 

weigh less than 25kg (55 lbs.), visual line-of-sight only, daylight-only operation, maximum of  

121.92 meters (400 feet) above ground level, no careless or reckless operations, no flight over 

non-participants or moving vehicles without waivers, and minimum weather visibility of three 

miles from the control station.  

In Tennessee, there are regulations in Tennessee Code § 39-13-902, lawful capture of 

images. Of the 21 situations where it is lawful to capture an image with a UAV, the first section 

is what applies to most ecological research, it states that images may be taken “For purposes of 

professional or scholarly research and development by a person acting on behalf of an institution 

of higher education.” This includes a person who is “(a) a professor, employee, or student of the 

institution; or (b) is under contract with or otherwise acting under the direction on or behalf of 

the institution.” Similar regulations are also stated in Tennessee Code § 1720-01-02-.03 which 

also goes into detail about No-Trespass notices. A No-Trespass Notice is a written directive 

requiring a non-affiliated person to leave; this also applies to University property. A law 

enforcement officer employed by a university may issue a No-Trespass Notice to a non-affiliated 
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person: who is not authorized to use University property, who has engaged in a use of University 

property that is prohibited, and who poses an unreasonable threat. In addition to rules on who can 

take images and where they can be taken, there are sections on the unlawful capture of images, 

anything not designated as lawful in Tennessee Code § 39-13-902, possession or distribution and 

use of unlawfully captured images, use of unlawfully captured images as evidence, violations, 

and injunctions. The aforementioned rules and regulations, along with others, apply only to the 

state of Tennessee. Other states have their own code about how UAVs may be used, which may 

be similar or different to those in Tennessee. Of Chattanooga’s surrounding states (Georgia and 

Alabama), Tennessee laws are the easiest to find and the most accessible. Tennessee also has the 

most explicit language allowing researchers at Universities to use UAVs. Researchers should 

check with their local state Code to determine the legality of their use of UAVs.  
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CHAPTER II 

 

ASSESSING THE EFFICACY OF USING DRONES TO STUDY THE  

 

BASKING ECOLOGY OF RIVER TURTLES 

 

 

Introduction 

 

Turtle Conservation Status 

According to the International Union for Conservation of Nature and Natural Resources 

(IUCN), there are 87 different species of turtle around the world that are listed as endangered or 

critically endangered (iucnredlist.org). The IUCN also has a Turtle and Tortoise Freshwater 

Turtle Specialist group that puts together a list of the world’s 25+ most endangered tortoises and 

freshwater turtles. On that list, five of the top 50 endangered turtle species are from the United 

States (Turtle Conservancy Coalition 2018). The Southeastern United States is an important 

region for turtle conservation. One reason for this is that it is within close proximity of one of the 

world’s designated biodiversity hotspots and specifically for turtles, it is within the Southeast 

USA Turtle Priority Area. In the Southeast alone, there are 42 different species and 62 total taxa 

of turtles which is ~80% of all turtle species and 75% of all turtle taxa in the U.S. (Mittermeier et 

al. 2015). The decline of turtle species worldwide in concert with the amount of turtle diversity 

specifically in the Southeastern U.S. makes East Tennessee an important area for furthering 

research efforts for turtle biology and conservation.  
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Basking Ecology 

Aquatic freshwater turtles are often seen basking in the sun on various objects, or at the 

surface of the water, in ponds or rivers. Being that they are ectotherms, these turtles primarily 

bask in order to elevate their body temperature (Ben-Ezra, Bulte, and Blouin-Demers 2008, 

Wilbur 1975). Some of the benefits of an elevated body temperature are improved locomotor 

performance and an increase in metabolic rate, resulting in more efficient digestion (Hammond, 

Spotila, and Standors 1988, Kepenis and McManus 1974). Turtles typically bask during the 

warmer months of the year with high rates of basking events in late spring and through the 

summer, with a decrease in events when the winter begins (Grayson and Dorcas 2004). This 

common basking behavior allows researchers to easily survey freshwater turtles because it 

results in them staying out in the open and out of the water for extended periods of time.  

 

Common Methods 

There are numerous methods that scientists can use to survey for turtles (Vogt 1980). 

Some commonly used methods are nets, hand capture, spotting scopes, and basking traps (Vogt 

1980). A few problems with traditional field methods is their effectiveness in terms of achieving 

accurate population estimates, sex ratios, the overall diversity of species, and high detection 

probability. Of those methods, spotting scopes and basking traps are the most commonly used to 

measure species diversity and richness.  

Spotting scopes are small, portable telescopes that provide a hands-off approach to 

surveying species from afar (Pearson and Kazilek 2007).  A benefit of this method is that turtles 

can be observed without being alerted of, or startled by, the observer’s presence. This method of 

surveying, while effective, is very time consuming and has environmental constraints such as 
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inclement weather, flooding, and natural barriers in the landscape. As with most survey methods, 

spotting scopes also have a learning curve. Individuals need to be identified and possibly sexed 

immediately while looking through the scope (Weber and Layzer 2011). There is no opportunity 

to look back at images or actually handle the animal unless a camera is attached or photos are 

taken through the lens.    

Basking traps, in contrast, are devices that use known basking behavior to attract turtles 

to an artificial basking structure and into a trap. Most traps include a basking platform outfitted 

with some type of buoyant material (such as styrofoam) and a basket underneath to catch the 

turtles as they try to enter or leave the platform (Gamble 2006). Basking traps are useful for 

determining species diversity because if a species of basking turtle is in the area, it will likely be 

accounted for using the traps. The downfall is that factors such as the size of the individual and 

the possibility of turtles being negatively or positively conditioned to the trap can lead to skewed 

sex ratios or abundance estimates (Dodd 2016, Thomas, Vogrin, and Altig 1999). 

 

Unmanned Aerial Vehicles 

A new survey method among scientists is using unmanned aerial vehicles, commonly 

referred to as UAVs. The earliest aerial images were captured using balloons and kits in the 

1800s (Rango et al. 2006). From there, UAVs were developed alongside piloted aircrafts in the 

early 1900s (Rango et al. 2006). Initially developed for military use, the first UAVs were large, 

fixed winged devices used as guided weapons in World War II and while these types of vehicles 

are still used, they were precursors to the small, lightweight devices seen today (Hardin and 

Jensen 2011, Lisein, Linchant, et al. 2013). While this technology is useful for a myriad of 

things, there are still limitations that need to be addressed.  
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UAVs have platform, sensor, operating, and environmental constraints (Anderson and 

Gaston 2013). While commercial grade UAVs are robust enough to avoid this problem, most 

lower level, amateur UAVs have a restricted payload capacity, which in turn restricts use to only 

simple sensors. The lightness of the vehicles also affects the ability to pilot and operate and 

environmentally, there is danger in high winds and canopy cover situations (Anderson and 

Gaston 2013).  

In environmental research, UAVs can be used for many fields. Work has been done using 

them for assessing overall vegetation cover (Breckenridge et al. 2011), surveying for specific 

habitat (Chabot, Carignan, and Bird 2014), and even remote sensing of submerged aquatic 

vegetation (Flynn and Chapra 2014). When it comes to animals, UAVs have been mostly used 

for studying bears (Ditmer et al. 2015), ungulates (Barasona et al. 2014, Kissell and Nimmo 

2011) and birds (Groom et al. 2011). Recently, the use of UAVs has expanded and has been used 

in a multitude of studies ranging from measuring killer whales (Durban et al. 2015) to locating 

chimpanzee nests (van Andel et al. 2015). In terms of smaller species, while UAVs may not be 

able to detect small insect species as well, they have been used in concert with field surveys to 

evaluate microhabitats for butterfly larvae (Habel et al. 2016). It has been shown in these and 

many other studies that UAVs are more precise and exhibit less variance in results than ground 

techniques (Hodgson et al. 2016). In terms of reptiles, having only used this technology for 

marine turtles and crocodilians (Bevan et al. 2015, Martin et al. 2012b) and never for freshwater 

turtles, further research needs to be done to determine utility. If the data can be used to 

accurately identify basking turtles, UAVs could be more effective than spotting scopes. In 

addition, knowing the costs and benefits of both methods of sampling will determine if the 

UAVs are a viable and realistic option for turtle research.  
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Objectives 

 The main objectives of this project are to determine if UAVs are effective for wildlife 

conservation and if they are suited for surveying freshwater turtles. More specifically are the 

questions of how UAVs compare to spotting scopes in terms of making base level identifications 

and determining presence-absence and species diversity as well as if they are effective in pond 

and riverine habitats in the area. 

 

Hypotheses 

Are unmanned aerial vehicles suited for surveying freshwater turtles? 

1. Do UAVs have greater than or comparable success when compared to spotting scopes? 

a. Can UAVs be used as a conservation tool to determine presence-absence and 

species diversity? 

1. Are UAVs useful in a pond environment? 

2. Are UAVs useful in a riverine environment? 

Methods 

Study Organisms 

There are a total of nine aquatic turtle species in the Chattanooga, TN area (Manis 2008). 

Of these nine species, Apalone spinifera (spiny softshell turtle) and Kinosternon subrubrum 

(Eastern mud turtle) are not typically found in ponds and Chelydra serpentina (common 

snapping turtle) and Sternotherus odoratus (common musk turtle) are not typical basking turtles 

(Ernst and Lovich 2009). The remaining basking turtles that are likely to be seen on UAV 

footage are turtles in the Emydidae family such as Chrysemys picta (painted turtle), Trachemys 

scripta (common slider), Pseudemys concinna (river cooter), and both Graptemys ouachatensis 
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(Ouachita map turtle) and G. geographica (common map turtle). Emydid turtles can be 

distinguished by their large plastron, wide bridge between their carapace and plastron, and their 

adapted limbs with toe webbing for swimming (Ernst and Lovich 2009).  

 

Study Areas 

 Before moving forward with the project, a beta phase was conducted to determine if the 

UAV could recognize turtles and be reliable enough to use in the full study.  The study area for 

the beta phase was an area of land at Greenway Farms in Hixson, TN (35.124966, -85.217999) 

(North Chickamauga Creek Conservancy 2015). The property is a 72.84-hectare city park 

managed by the City of Chattanooga along the North Chickamauga Creek (Figure 1). There are 

multiple trails and paths as well as a dog park and facilities for various outdoor activities. Upon 

entering the park, there is a large grassy field with no canopy cover and plenty of space to test 

the UAV. The field is about four hectares and includes a few small patches of trees, a small 

building, and an area of gardening plots. The majority of the field is open and used for 

recreation.   

 The study area for the pond phase was at the Reflection Riding Arboretum and Nature 

Center in Chattanooga, TN (35.007932, -85.366150) (Reflection Riding Arboretum and Nature 

Center 2018). The property is a 128-hectare nature center that runs along Lookout Creek and 

includes a visitor center, outdoor activity facilities, animal enrichment areas, greenhouses, 

stables, and many trails around the park (Figure 2). The natural area includes two ~0.4 hectare 

ponds that are roughly 70 meters apart and the lower pond is ~80 meters from Lookout Creek. 

Lookout Creek begins on the south side of the Tennessee River, just west of downtown 

Chattanooga. The creek runs for ~4 kilometers before it passes the Nature Center.  
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 The study area for the river phase was along the Tennessee River Gorge (Figure 3) 

(Tennessee River Gorge Trust 2018). All three sites were located off of Mullens Cove 

Road/River Canyon Road. The most Westward site, labeled LT5-M1 (35.050119, -85.476992), 

was on a small cove-like area with multiple snags as possible basking structures. The middle site, 

LT5-M1 (35.061946, -85.417230), was about 10 kilometers (6.21 miles) East of LT5-M1. It was 

an open beach-like areas directly on the river with snags that could be seen along the banks. The 

farthest East site, LT5-M3 (35.071181, -85.392177), was about 2.5 kilometers (1.6 miles) from 

LT5-M2 and was the same type of environment. 

 

Data Collection 

Beta Phase 

 To test the hypothesis that UAVs are comparable to spotting scopes, a beta test was 

initially conducted to ensure the visibility of basking turtles using a UAV. Using what museum 

specimens were available and similar to the species present in the pond and river sites (C. 

serpentina, T. scripta, C. picta, A. spinifera, P. concinna,, and G. geographica) from the 

University of Tennessee at Chattanooga, individuals were placed on different colored sheets of 

paper (e.g., blue, green, and black) to emulate the background environment that may be observed 

in UAV footage. UAV photos were taken using a DJI Mavic Pro to assess whether the turtles 

were likely to be distinct enough from their basking environment to be detected on the images. 

Once detectability was ensured, the project moved on to the pond and river phases. 
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Pond Phase 

Two small ponds were used that were approximately 61m apart at the Reflection Riding 

Arboretum and Nature Center with a total of ~600 meters of banks. Both sampling methods were 

deployed at each pond. In addition, four 78.74x55.88x55.88cm Sure-Ketch Turtle Traps 

(Memphis Net and Twine, stock number: SURKTH) basking traps were placed along the banks 

of the upper pond and five traps on the banks of the lower pond. The purpose of the basking traps 

was to assess what species were present in the ponds and use that information when determining 

the usefulness of the other methods. The ponds were sampled with a spotting scope and a UAV 

for a total of 24 times over the sampling period. Due to technical difficulties such as the memory 

card not saving files and photos being extremely blurry, only seven of the drone passes were 

complete for the study and therefore only the corresponding spotting scope data was tested 

against it. Basking traps were checked every weekday of the sampling period to ensure the 

wellbeing of any organism caught and traps were closed during the weekends. Each time the 

traps were checked, the measurements and sex of each turtle were documented before release. To 

assess spotting scopes, a Leica Televid 62 Straight View Spotting Scope with a Leica Televid 

62/77 20-60x Zoom Spotting Scope Eyepiece was used to count basking and swimming 

individuals. Due to irregular shaped ponds and vegetation around the banks, the spotting scope 

surveys were conducted from multiple vantage points and the vantage point where the most 

turtles observed was used in data analysis. Spotting scope surveys were taken at each site that 

had a basking trap for a total of four sites in the upper pond and five in the lower pond.. Each 

sampling day consisted of counting and recording the number of individuals and identifying 

species.  Finally, using a DJI Mavic Pro, a route was programmed on the Pix4D app and the UAV 

was deployed on that route for each pass over the ponds. During each pass, the UAV took 
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images over the entirety of both ponds. After collecting the data, the images were manually 

analyzed to tally individuals. The lack of basking structures in the pond resulted in the majority 

of the turtles completely submerged except for their heads. While they could be seen and counted 

on the UAV images, positive identifications were not possible. Identifications were only able to 

be inferred by the data collected with the spotting scope and basking traps.  

 

River Phase 

 In this phase, sampling was performed using the same spotting scope and UAV as the 

pond phase, except in the Tennessee River. Due to preexisting diversity data for the Tennessee 

River Gorge, basking traps were not necessary to identify potential species present in the river 

phase. Three sites were chosen along the banks of the Tennessee River Gorge off of Mullens 

Cove/River Canyon Road. Spotting scope surveys, two hours each, and UAV surveys, roughly 

five minutes each, were performed at each location but unlike in the pond phase, the UAV was 

set to take video footage instead of transect images due to the increased canopy cover. Each 

video was reviewed and individuals were manually counted. Making positive species 

identifications using the UAV was not consistently possible, partly due to the fact that as the 

UAV approached, turtles tended to flee from their basking structures. Since the UAV could only 

come within a certain distance (typically, between four and 10 meters) of the individuals before 

they fled, the video quality was not high enough to distinguish the diagnostic characters for 

specific species. To conduct statistical tests, count data from the first 10 minutes of all of the 

spotting scope surveys was compared to the total number of individuals counted with the UAV. 
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Data Organization and Statistical Analysis 

  

All data was compiled into Microsoft Excel for each phase of the project. For the 

comparison of the UAV with the spotting scope, a test for normality was conducted on both the 

pond and river data sets using a Kolmogorov-Smirnov test with a Lilliefors Significance 

Correction (Mendes and Pala 2003). For both phases, a chi-square analysis was used to compare 

the data from the two methods. The chi-square analysis was chosen due to the data being 

classified as non-normal. The expected values for the ponds were assumed to be the same due to 

the semi-closed environment. Expected values for the river sites were calculated using the 

observed data and were relative to each site and each method. Chi-square was used because the 

data are nonparametric and the sample sizes were unequal among groups. The issue of normality 

is not assumed in a chi-square analysis, the assumptions of the test are as follows: (1) the data are 

frequencies, (2) the categories are mutually exclusive, (3) the subject contributes to only one cell 

in the chi-square, (4) the study groups are independent, (5) there are two variables measured as 

categories, and (6) at value of least 80% of the cells exceed a frequency of five, all of which 

were met by the data (McHugh 2013). Analyses were run using IBM SPSS 24 statistical 

program, a standard chi-square procedure was used in both phases to compare overall data for 

each method. In addition to the chi-square analysis, a Morisita’s index was calculated using 

Ecological Methodology Volume 2 software, version 7.2 (Krebs 1999), to determine a metric of 

similarity by counts across methods, as well as sites, for each data set. Morisita’s index was 

chosen due to its use as a similarity index specifically for counts of individuals (Dodd 2016). 
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Results 

Beta Phase 

 Of the six species used, all were identifiable from three and five meters. Identifications 

were easiest when the specimens were placed on lighter color papers (green and blue) due to 

higher contrast. Comparatively, when specimens were placed on darker colors (black), there was 

lower contrast, which led to more challenging identifications. Images taken from 10 and 30 

meter elevations were not reliably identifiable (Figures 7-9).   

 

Pond Phase 

A total of 141 turtles were observed over the seven sampling events using both methods 

(Figure 10). The spotting scope surveys detected the presence of 63 individuals and the UAV 

surveys detected 78. Each sampling day was different in terms of weather, cloud cover, and wind 

intensity, the individual results are shown in Table 1. When tested for normality, the test 

statistics for the pond surveys were 0.841 for spotting scopes and 0.006 for UAVs. All of the 

data except for the UAV pond data had a p-value less than the predetermined alpha value of 0.05 

but the UAV pond data had a p-value greater than 0.05 which would classify it as normal. Due to 

the Q-Q plot generated in SPSS, the data was determined to likely be non-normal, so with all of 

the data being non-normal, a chi-square test was appropriate. With all assumptions of the test 

being met, the chi-square statistic for the ponds were 1.596 with a p-value of 0.207. The 

Morisita-Horn Coefficient was calculated for both ponds and methods resulting in the two ponds 

being 94% similar and the two methods being 90% similar (Tables 6 and 7). 
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River Phase 

A total of 559 turtles were seen over 27 spotting scope surveys and 26 UAV surveys 

(Figures 11-13). Comparatively, 498 turtles were counted using the spotting scope and 61 were 

counted using the UAV (Table 2). After calculating normality for the river surveys, the spotting 

scope and UAV values both had a p-value of less than 0.0001, resulting in a failure to reject the 

null hypothesis and classification as normally distributed. While the p-value suggests that the 

data is normal, the Q-Q plots clearly display the data as not normal and it was subsequently 

treated as such. With all assumptions of the test being met, the chi-square statistic for the river 

was 1.309 with a p-value of 0.253, therefore there was no significant difference between the data 

for the spotting scope and the UAV. The Morisita-Horn Coefficient was calculated for both sites 

and methods resulting in the sites being between 66% and 100% similar and the methods were 

72% similar (Tables 4 and 5) 

 

Comparison across Various Specifications for Common UAVs and Scopes 

The visual results from both methods had varying degrees of quality which effected the 

reliability of the method for identification of individual turtles. Because of this, further research 

into other popular models of UAVs and spotting scopes was conducted. In this analysis, certain 

specifications were selected for each method. For UAVs, the fields included pixels per column 

(4K being 4000 pixels) and frames per second, megapixels, fly time, payload, and price. For 

spotting scopes, the fields included the objective lens size, magnification, field of view, and 

price. 
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Discussion 

 

 The results suggest that the use of UAVs in both a pond and river setting was not 

significantly different than the use of spotting scopes; this results in the null hypothesis being 

rejected in both landscape scenarios. This is supported further by the results of the Morisita-Horn 

index, suggesting that the sites and methods in both scenarios were 72% similar and higher.  

 With the main objective of this project being to determine if UAVs are effective for 

wildlife conservation and if they are suited for surveying freshwater turtles, the project was 

successful. Through this research, it was determined that in multiple aquatic environments, 

UAVs are equally effective as spotting scopes for surveying freshwater turtles and that in 

general, the method is effective for wildlife conservation. The more specific questions of making 

identifications was shown to be difficult with the quality of UAV available. This can be 

improved in future studies by using UAVs with better quality cameras, a range of costs and 

resolutions are available. Due to the lack of reliable identifications it was difficult to consistently 

determine species diversity. The spotting scope was able to be used for species identification but 

compared to the UAV used, the spotting scope was more expensive and higher quality. The 

proposed hypothesis that UAVs have greater than or equal success as spotting scopes was not 

rejected for either phases of the project. UAVs were shown to be useful in both pond and riverine 

environments at determining occupancy data of freshwater turtles. 

 Due to the novelty of this project and the differences in environments and effort for each 

method, a qualitative assessment can be as significant as a quantitative assessment. During the 

beta phase, museum specimens were muted in color and pattern as well as varying in size. This 

was useful to determine a baseline effectiveness of the UAV; turtles in the ponds were mostly in 

the water so the contrast was similar to the museum specimens on blue and black paper. 
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Alternatively, turtles in the river had better contrast from their basking structures and had slightly 

more detail. In the pond phase, there were very few basking structures. Though the ponds were 

treated as one site due to them being statistically similar, one of the ponds had no basking 

structures whatsoever. The site was selected based on it being a small, relatively closed, and safe 

environment to test the method as well as the observer’s skill using it. Canopy-cover was not an 

issue which allowed for a preprogrammed overhead transect for each sampling event. This 

resulted in images of turtles that were swimming or basking at the surface and few that were 

basking on structures. The pond’s lack of basking structures eliminated the issue of individuals 

fleeing from basking structures, as they were all at least partially submerged in the water. While 

in the water, turtles showed no sign of being startled or concerned with the presence of the UAV. 

The spotting scope surveys gave similar results because only turtles whose heads were out of the 

water while they were swimming were counted; barely any were caught basking.  

 In the river setting, the environment was very open. The canopy-cover near the snags that 

were surveyed prevented a preprogrammed flight and a true overhead view of the area. Instead, 

the video recordings were attempted to get as good of a view of the snags and basking 

individuals as possible. In this scenario, the possibility that the same turtles seen with the 

spotting scope are seen with the UAV are much lower than in the ponds. Both methods only 

surveyed individuals that were on basking structures and they were able to flee when startled by 

the UAV approaching.  

 Since both methods were used for different amounts of time, an effort bias was 

introduced. There was much less of a bias for the pond scenario, this was addressed by 

suggesting that the flights that were roughly five minutes each, paired with about five minutes to 

count turtles in the images post flight. This is a similar amount of effort as sitting with the 
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spotting scope and recording individuals for 10 minutes. For the river, the effort bias was much 

larger. In the initial stages of the project, it was decided that it would be useful to compare the 

methods in their most standard use. A common method for spotting scope surveys was used and 

consists of sitting and documenting turtles for two hours, but this varies greatly from the flights 

with the UAV that were only about five minutes for capturing data (Lindeman 2014, 2000, 

Lindeman 1999a, Lindeman 1999b, Coleman and Gutberlet 2008, Dodd 2016). To account for 

this difference, number of turtles seen per minute was calculated for each method and applied to 

a 10-minute interval. This length of time was chosen because it is a reasonable amount of time 

for both methods to complete a rapid  assessment of an area (Dodd 2016). Extrapolating the data 

in this way resulted in the UAV counting significantly more turtles than spotting scopes and a 

rejection of the null hypothesis. Unfortunately, this proved to not be the best way to reduce bias 

in the data and it was determined that it would be more accurate to use the count data from the 

first 10 minutes of the spotting scope surveys; that way the raw data was able to be directly 

compared without alteration. This is the method that lead to the null hypothesis not being 

rejected.  

 The feasibility of using UAVs to study basking turtles may depend solely on what 

equipment is available. In this project, the DJI Mavic Pro was able to determine occupancy but 

not reliably deliver species identifications or gender. The DJI Mavic Pro used in this study had a 

12-megapixel camera, so a UAV with a higher resolution camera may be more well suited to 

determine identifications and sex of individuals. Unfortunately, the higher resolution cameras are 

costlier, and lower cost UAVs without an attached camera still have a payload limitation and can 

only operate with a certain amount of weight added, hindering the types of cameras able to be 

attached. If the budget for a project is similar to this one, a UAV like the Mavic can still be 
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useful in turtle research. For a basking turtle survey where the observer is interested solely in 

occupancy, it is possible to collect that data with midrange UAV, like the one used here (Table 

8). If the observer is more interested in species richness or diversity, those results may not be 

feasible unless UAV with a resolution at least higher than 12 megapixels is available. 

Alternatively, it could be used to scan the banks of the river for optimal study sites for a spotting 

scope or basking trap survey. In the same way, it could be used to check the security and 

presence of traps that are currently in use. 

 

Directions for the Future 

Considering that there is currently no literature on using UAVs for sampling freshwater 

basking turtles, more methodology studies need to be conducted to develop standard practices. 

Most ecological literature is focused on finding the best way to use the UAV for specific tasks so 

there is not yet a widely accepted sampling protocol. Future research should focus on 

standardizing methods and retesting previous projects that were successful. It would also be 

useful to continue investigating and create a developed protocol for using UAVs specifically in 

turtle research. 

While this project was able to compare two different methods, it seems that UAVs are 

truly a rapid assessment tool when surveying basking turtles. That being said, future studies 

could take this project and replace full spotting scope surveys with other rapid assessment 

techniques. This could include spotting scope boat surveys, binocular surveys, and transects 

using visual counts and hand capture.  If the UAV budget for a project can only afford a UAV 

like the Mavic, it could still be useful in turtle research.  
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Future research should focus on using better quality UAVs and cameras or comparing 

ecological research across different UAV types. In addition to that, computer assisted image 

analysis and pattern recognition software could be used to assist in the photointerpretation of 

images and video taken from the UAV. This could improve speed and accuracy of counts and 

well as species recognition. With higher resolution images and a way to automatically analyze 

the data, UAVs could be streamlined and more accurate for freshwater turtle surveys.  

Unmanned aerial vehicles are a promising tool for wildlife research, as shown by 

multiple studies. This project extended the uses further by using UAVs for basking turtle surveys 

with the same effectiveness as a widely accepted method. For future research, using different 

quality UAVs and applying the method to a variety of questions about basking turtles will further 

identify the utility as well as the pitfalls when using them as an ecological tool. With additional 

study, UAVs can become a key to advancing ecological research and allow researchers to see the 

environment in a different way.  
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Table 1 Count Data for Both Methods from the Pond Phase at Reflection Riding 

Arboretum and Nature Center 

 

Method Upper Pond Lower Pond Total 

Spotting Scope 25 38 63 

UAV 11 67 78 

 

 

Table 2 Count Data from the River Phase at the Tennessee River Gorge 

 

 

Table 3 Species Data from the Spotting Scope Surveys in the River Phase 

Species LT5-M1 LT5-M2 LT5-M3 

T. scripta 194 166 12 

T. scripta elegans 17 18 1 

P. concinna 9 14 1 

G. geographica 1 27 15 

G. ouachitensis 0 7 1 

S. odoratus 16 0 0 

 

 

 

  

Method Site 1 Site 2 Site 3 

Spotting Scope 11 39 7 

UAV 39 19 3 
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Table 4 Morisita-Horn Coefficient of Similarity of the Three River Sites on a Scale of 0 

(Not Similar) and 1 (Identical) 

 

 LT5-M1 LT5-M2 LT5-M3 

Site 1 1.01 0.74 0.66 

Site 2 0.74 1.02 1.04 

Site 3 0.66 1.04 1.09 

 

 

Table 5 Morisita-Horn Coefficient of Similarity of the Two Methods when Used on the  

River on a Scale of 0 (Not Similar) and 1 (Identical) 
 
 Spotting Scope UAV 

Spotting Scope 1.02 0.72 

UAV 0.72 1.02 

 

 

Table 6 Morisita-Horn Coefficient of Similarity of the Two Ponds on a Scale of 0 (Not  

Similar) and 1 (Identical) 

 

 Upper Pond Lower Pond 

Upper Pond 1.01 0.94 

Lower Pond 0.94 1.02 

 

 

Table 7 Morisita-Horn Coefficient of Similarity of the Two Methods when Used on the  

Ponds on a Scale of 0 (Not Similar) and 1 (Identical) 

 

 Upper Pond Lower Pond 

Upper Pond 1.01 0.90 

Lower Pond 0.90 1.03 
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Table 8  A Selection of Common UAVs on the Market and Their Specific Details and 

Price  

 

Model K/fps Megapixels 

Maximum 

Fly Time 

Flight 

Range Price Source 

3DR SOLO 

(w/ GoPro 

HERO) 

1080p/60fps 10  25 min 0.8km $830 

($1,119.99 

w/ camera) 

(3DR 2015, 

GoPro 2018) 

DJI Mavic 

Pro 

4K/30fps 12  27 min 13km $999 (DJI 2018c) 

DJI 

Phantom 4 

Pro 

4K/60fps 20  30 min 7km $1,499 (DJI 2018b) 

DJI Inspire 

2 (w/  

Zenmuse 

X4S 

camera) 

5.3K/20fps 20.8  25-27 min 7km $2,999 

($4,100 w/ 

camera) 

(DJI 2018a) 

Microdrone 

MD4-1000 

Camera not 

included 

Camera not 

included 

45 min 0.5km 

(20km 

w/ way 

points) 

$28,500 (microdrones 

2018) 

 

 

  



 

 
 

45 

Table 9 A Selection of Common Spotting Scopes on the Market and Their Specific  

Details and Price  

 

Model 

Objective 

Lens Magnification 

Field of 

View Price Source 

Leica Televid 

62/77 (w/ 20-60x 

zoom eyepiece, 

not included) 

62mm 16-48x 40m @ 

1,000m 

$2,099.00 

(+$299.99 

eyepiece) 

Product 

Packaging 

Vortex Optics 

Diamondback 

Spotting scopes 

60mm 20-60x 38.42-

17.46m 

@1,000m 

$499.00 (Vortex 

2018) 

Leupold SX-1 

Ventana 2 15-

45x60mm 

60mm 15-45x 40.16m @ 

1,000m 

$317.94 (Leupold 

2018) 

Cannon 18x50 IS 

Image Stabilized 

Binoculars 

50mm 18x 64.51 @ 

1,000m 

$999.00 (Canon 

2018) 

Bushnell 20x50 

Powerview 

Binocular 

50mm 20x 64.51m @ 

1,000m 

$99.99 (Bushnell 

2018) 

 



 

 
 

46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

 

FIGURES 

 

  



 

 
 

47 

 
 

Figure 1           A map of the site for the Beta Phase, Greenway Farms (generated using ArcGIS) 
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Figure 2           A map of the site for the Pond Phase, Reflection Riding Arboretum, and  

                         Nature Center (generated using ArcGIS) 
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Figure 3           A map of the sites for the River Phase, the Tennessee River Gorge (generated 

                        using ArcGIS) 
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Figure 4           An image of LT5-M1 at the Tennessee River Gorge 
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Figure 5           An image of LT5-M2 at the Tennessee River Gorge 
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Figure 6           An image of LT5-M3 at the Tennessee River Gorge 
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Figure 7           UAV images at 3, 5, 10, and 30 meter elevations of a C. picta museum specimen  

                         on green paper 
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Figure 8           UAV images at 3, 5, 10, and 30 meter elevations of a T. scripta museum  

                         specimen on blue paper 
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Figure 9           UAV images at 3, 5, 10, and 30 meter elevations of a K. subrubrum museum  

                         specimen on black paper 
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Figure 10          UAV footage from the Pond Phase at Reflection Riding Arboretum and Nature  

                         Center 
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Figure 11          A still frame from the UAV footage at LT5-M1 in the Tennessee River Gorge 
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Figure 12          A still frame from the UAV footage at LT5-M2 in the Tennessee River Gorge 
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Figure 13          A still frame from the UAV footage at LT5-M3 in the Tennessee River Gorge 
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