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ABSTRACT

Algebraic connectivity is the second-smallest eigenvalue of the Laplacian matrix and can

be used as a metric for the robustness and efficiency of a network. This connectivity concept

applies to teams of multiple unmanned aerial vehicles (UAVs) performing cooperative tasks, such

as arriving at a consensus. As a UAV team completes its mission, it often needs to control the

network connectivity. The algebraic connectivity can be controlled by altering edgeweights through

movement of individual UAVs in the team, or by adding and deleting edges. The addition and

deletion problem for algebraic connectivity, however, is NP-hard.

The contributions of this work are 1) a comparison of four heuristic methods for modifying

algebraic connectivity through the addition and deletion of edges, 2) a rule-based algorithm for

tracking a connectivity profile through edge weight modification and the addition and deletion of

edges, 3) a new, hybrid method for selecting the best edge to add or remove, 4) a distributed method

for estimating the eigenvectors of the Laplacian matrix and selecting the best edge to add or remove

for connectivity modification and tracking, and 5) an implementation of the distributed connectivity

tracking using a consensus controller and double-integrator dynamics.
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CHAPTER 1

INTRODUCTION

Cooperative robotic systems provide many advantages over monolithic robotic systems.

They are fault-tolerant since a mission can often continue even if a subset of the robots in the

system fail. They are more agile and flexible seeing that subsets of the team can be allocated for

different tasks or for parallelizing a single task. They are scalable, since increasing the capability

of the system involves adding more systems of the same type. They can be less expensive in terms

of cost of ownership by using simpler hardware to achieve the same goals that would otherwise

require a larger, more complicated system.

For all of their advantages, multiple robot systems face many challenges of coordination,

sensing, and communication. Path planners and controllers must account for the increased com-

plexity of deconflicting the motion of each robot to prevent collisions. They must also balance

competing requirements and constraints amongst the robots, such as fuel levels and performance

characteristics. In terms of sensing, different robotsmay have different sensors and their information

must be fused into meaningful data. The position of each robot can also impact the performance of

the sensor, so the path planner must account for that as well. These factors also impact communi-

cation since positioning a robot further away from others degrades its signal quality and response

time, causing delays in the sensor processing and control algorithms. Furthermore, with multiple

1



robot systems, communication networks must be established to distribute information effectively.

The quality and robustness of the network is the focus of this work.

As the number of robots in a cooperative system grows, the number of potential commu-

nication links grows quadratically and the number of possible configurations grows exponentially.

Communicating with members that are far away requires high transmitting power or multiple-hop

communications. Each of these bring with it additional downsides such as battery consumption,

complicated routing protocols, packet loss and recovery, and latency. Although direct, low-power,

low-latency connections between every UAV may be desirable, the reality is that a multi-agent

system requires a network to communicate effectively.

The quality of the communication network impacts the team’s ability to complete distributed

tasks. The particular configuration with a desired connectivity is of interest since it influences

the performance of certain algorithms, in terms of convergence rates, and it corresponds to the

robustness of the network. Consensus occurs more rapidly in highly connected networks [1] [2].

This can be critical in high-speed maneuvering, high-threat environments, or high-risk situations.

It is important to be able to measure the connectivity of the network in order to know if

requirements are beingmet and to provide feedback for controlmechanisms. Algebraic connectivity,

henceforth referred to interchangeably with connectivity, is the second-smallest eigenvalue of the

Laplacian matrix and is a commonly-used metric in networked systems. It was developed by

Fiedler [3] in his seminal paper published in 1973. Algebraic connectivity provides a metric for

the robustness of a network, such as an airborne network amongst UAVs.

Connectivity is directly applicable to multi-robot systems including formations of UAVs.

Algebraic connectivity has wide application in mobile robotics for wireless power management [4],
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connectivity maintenance [5], and distributed algorithms [6], as well as in transportation networks

[7], computing [8], and optimization [9]. It has been shown that the convergence rate of consensus

algorithms is tied directly to the algebraic connectivity [1].

Much work has been done around connectivity for multi-robot systems and multiple meth-

ods of increasing connectivity exist. These include optimization-based approaches [10], search

algorithms [11], [12], and heuristic approaches [10], [13], [14]. Methods have been developed to

optimize the operational capabilities of the formation [15] [16] [17] (connectivity maximization)

as well as maintain the integrity of the formation [18] [19] [20] (connectivity preservation or

maintenance). However, little work has been done on tracking a connectivity profile.

Since the connectivity impacts the performance of various tasks, it should be controlled

to ensure the connectivity level meets the requirement of the current operation. Throughout the

course of a mission, the UAV team may be required to complete different tasks that require various

levels of communication traffic. Therefore, the level of the connectivity should be dynamically

changed throughout the flight. This gives rise to the idea of a connectivity profile that is tracked by

a UAV team [21] [22].

A team’s connectivity can be modified throughout a flight in two ways: edge addi-

tion/deletion and edge-weight modification. New edges can be added to or deleted from a network

by moving members in and out of their neighbors’ wireless range or enabling and disabling com-

munication with neighbors. Furthermore, edge weights of a network can be modified by altering

the signal strength through a change in distance to a neighbor or by a change in the power used to

transmit with a neighbor.
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1.1 Outline

The remainder of this dissertation is organized as follows. Chapter 2 provides a background

and review of relevant literature surrounding algebraic graph theory, the addition and deletion

problem, and connectivity tracking. Chapter 3 provides a comparison of methods for adding and

deleting edges in order to maximize connectivity. It also develops a rule-based algorithm for

tracking connectivity. Chapter 4 develops a hybrid method for selecting edges to be added to or

deleted from a graph in order to best modify the connectivity of the graph. Chapter 5 discusses a

method for estimating eigenvalues in a graph and provides an extension of this method allowing the

estimation of the graph’s eigenvectors. Chapter 6 develops a controller for tracking a connectivity

profile. The remainder of the work covers the results and conclusions as well as suggestions for

future work.
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CHAPTER 2

BACKGROUND

2.1 Graph Theory Concepts

A graph is a mathematical structure consisting of a set of vertices, or nodes, and a set of

edges. Edges always connect two nodes. A node is incident to an edge if it is one of the two nodes

that edge connects. The degree of a node is the number of edges it is incident to. The two nodes

incident to an edge are said to be adjacent. An edge may be directed, in which case, the edge {i, j}

defines a connection from nodei to node j , but not from node j to nodei.

A path is a sequence of connected edges. The diameter of a graph is the length of its longest

path. A cycle is a closed path. A spanning tree is a connected, acyclic set of paths which reaches

every node in the graph.

An undirected graph may have an orientation, which is an assignment of a direction to each

edge. If a graph is directed such that no two vertices are connected in both directions then the graph

is oriented.

Two graphs are isomorphic if there is a correspondence between their vertex sets which

preserves adjacency [23]. A sub-graph is a graph on a subset of vertices and edges of an existing

graph. The complement of a graph, Ḡ, is the graph formed by removing all existing edges of G and

adding new edges between all non-adjacent vertices in G.
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There are many types of graphs. Some relevant ones are the complete graph (see Fig. 2.1),

in which every node is connected to every other node, the k-regular graph (see Fig. 2.2), in which

every node is connected to k other nodes, the star graph (see Fig. 2.3), in which a single node has

n− 1 neighbors and all other nodes have this node as a single common neighbor, and the line graph

(see Fig. 2.4), a planar graph (one that can be drawn such that no edges cross) where every node,

except two, has two neighbors and the graph has only a single spanning path.

Figure 2.1 A Complete Graph on Five Nodes.
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Figure 2.2 A 2-Regular Graph on Five Nodes.

Figure 2.3 A Star Graph on Five Nodes.
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Figure 2.4 A Line Graph on Five Nodes.

2.2 Graph Matrices

Graphs may be represented by a variety of matrices. The different matrix representations

of graphs have various uses. This work is primarily interested in the adjacency matrix, the degree

matrix, the Laplacian matrix, and the incidence matrix. For the purposes of this work, graphs

should be assumed to not include self-loops, i.e. edges from a node to itself.

The adjacency matrix is an n × n matrix where n is the number of nodes and each entry

Ai, j is non-zero if an edge exists between nodei and node j . The value of the adjacency matrix

is typically binary, zero or one, for an unweighted graph or any continuous value for a weighted

graph. The adjacency matrix for the graph shown in Fig. 2.3 is given here,
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A =



0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

 .
The degree matrix is an n × n diagonal matrix where each entry, Di,i , equals the degree of

nodei and each entry Di, j , when i , j, is zero. In other words, Di,i =
∑n

j=1 w(i, j)A(i, j) , where

j , i. For unweighted graphs, the degree of each node is equal to the number of edges connected

to it as the weight function always has a constant value of one. The degree matrix for the graph

shown in Fig. 2.3 is given here,

D =



4 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .
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The ordinary Laplacian matrix, hereafter referred to simply as the Laplacian matrix, can be

defined as L = D− A, where D is the degree matrix and A is the adjacency matrix for a graph. The

Laplacian matrix for the graph shown in Fig. 2.3 is given here,

L = D − A =



4 −1 −1 −1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

 .
The Laplacian matrix can also be formed using an incidence matrix. The incidence matrix

consists of a matrix of size n × m where m is the number of edges and n is the number of nodes in

the graph. Each column, ei, of the incidence matrix corresponds to an edge in the graph and can

be defined as follows,

ei, j =



−1 edge ei leaves node j

1 edge ei enters node j

0 edge ei is not connected to node j

. (2.1)

The above definition applies to an oriented graph, that is one in which a direction is assigned

to each edge. When working with Laplacian matrices, the orientation is not important since the

same Laplacian is obtained from any corresponding incidence matrix, regardless of orientation.
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Therefore, the signs associated with entering and leaving a node may be reversed. The incidence

matrix for the graph shown in Fig. 2.3 is shown here,

B =



−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

 .
When an incidence matrix, B, is defined in this way, the Laplacian matrix, L, is obtained

as L = BBT . Furthermore, the addition or deletion of any edge or set of edges may be obtained

by representing the set of edges to be added as an incidence matrix, S, and applying the following

formula: L′ = L + SST for addition, or L′ = L − SST for deletion, where L is the Laplacian

matrix and L′ is the Laplacian matrix resulting from the addition or deletion of edges defined by

the incidence matrix, S. Such representations are useful when working with edge sets.

Each of the previous matrices, adjacency, degree, and Laplacian, can be used to represent

a weighted or unweighted graph. When the graph is weighted, the adjacency matrix is defined as

follows,

Ai, j =


w(i, j) nodei is adjacent to node j

0 otherwise

(2.2)
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where w(i, j) is a function whose value is the weight of the edge connecting nodei with

node j .

The weighted degree matrix is defined as,

Di, j =


∑n

k=1,k,i w(i, k) i = j

0 otherwise

(2.3)

where w(i, j) is an edge-weight function, and n is the number of nodes in the graph.

The weighted Laplacian matrix is still defined as L = D − A, however, the weighted degree

and weighted adjacency matrices should be used. The incidence matrix can be weighted, however,

the property L = BBT , where L is the Laplacian matrix and B is the weighted incidence matrix,

would no longer recover the original, ordinary weighted Laplacian.

2.3 Connectivity

The concept of connectivity as it applies to graphs describes not only how densely connected

the graph is, but also the quality of the connectedness of the graph. At a basic level, a graph is

connected if, for every pair of nodes i, j, there exists a path from nodei to node j , otherwise, it is

disconnected. The idea of degrees of connectivity, however, is difficult to define without utilizing

further criteria. There are several ways of defining connectivity.

A vertex cut is the removal of a set of one or more vertices which results in a graph that is

disconnected [24]. Vertex connectivity is defined as the number of vertices in the minimum vertex

cut [24]. A cut vertex is a vertex which, by itself, is a vertex cut [24].
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An edge cut, similar to a vertex cut, is a set of edges which, once removed, results in a

disconnected graph [24]. No loop can belong to an edge cut [24]. Edge connectivity defines

connectivity as the number of edges in the minimum edge cut [24]. A cut edge is an edge which,

by itself, is an edge cut [24]. A single edge of a connected graph is a cut edge if and only if it does

not belong to a cycle [24]. The vertex connectivity is bounded above by the edge connectivity [25].

The algebraic connectivity of a graph is the second-smallest eigenvalue of the Laplacian

matrix and was first proposed by Miroslav Fiedler [3]. When a graph is disconnected, i.e. there

exists at least one pair of nodes between which there is not a path, the algebraic connectivity is

zero. A non-zero connectivity indicates a path exists between every pair of nodes in the network.

A higher connectivity indicates a more robust graph [26] [27] [28] [29] as a larger number of edges

would need to be removed to result in the graph becoming disconnected. The algebraic connectivity

ranges between zero and n, the number of nodes in the graph, inclusively.

The algebraic connectivity is monotonically increasing. That is, adding an edge to graph

G to construct G′, results in λ2 ≤ λ′2. Additionally, λ′2 is bound by λ2 and λ3, the second- and

third-smallest eigenvalues of the original graph Laplacian, so that λ2 ≤ λ
′
2 ≤ λ3 [10]. From this it

is apparent that no edge will increase the connectivity when λ2 = λ3.

2.4 Addition/Deletion Problem

The addition/deletion problem answers the question of the best edge to add to or delete from

a graph to cause the largest increase or decrease in connectivity. In the case of adding an edge, this

can be stated as the following optimization problem [10]
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maximize λ2(L(Ebase ∪ E)),

subject to E ⊆ Ecand

(2.4)

where λ2 is the connectivity, L is the Laplacian matrix for the graph, Ebase is the set of

edges in the base graph and E is the set of edges selected from the set of candidate edges, Ecand .

The addition/deletion problem has been shown to be NP-hard by Mosk-Aoyama [30].

Therefore, several attempts have been made to develop heuristic methods of maximally increasing

the connectivity.

2.5 Spectral Graph Theory

The sub-field of graph theory which is interested in the spectra of matrix representations

of graphs is known as spectral graph theory. Primarily, the adjacency matrix and Laplacian matrix

are used. There are several relevant results from spectral graph theory.

Since the Laplacian matrix is real, symmetric, and positive-definite, its eigenvectors asso-

ciated with unique eigenvalues are orthogonal [25].

The eigenvector associated with the second-smallest eigenvalue of the Laplacian matrix is

known as the Fiedler vector [3]. This vector can be used to approximately bisect the graph by

separating the nodes with positive entries from those with negative entries [31] [32]. This provides

a heursitic for the min-cut problem, where nodes should be divided into two groups such that the

number of edges between them is minimized [31]. The Fiedler vector also acts as a super-gradient

for algebraic connectivity and plays a key role in the greedy perturbation heuristic [10].
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The multiplicity of the smallest eigenvalue of the Laplacian matrix, λ1 = 0, indicates the

number of disconnected components of the graph [3].

If the eigenvalues of a graph Laplacian G are given as λ1 through λn, the eigenvalues of the

complement of G, Ḡ, are given as λ1 = 0, λk = n − λ(n−(k−2)), where k is an index s.t. 2 ≤ k ≤ n,

and n is the number of nodes in the graph.

If two graphs, G and G′, are isomorphic, their Laplacian matrices are similar, i.e. they are

co-spectral and share the same eigenvalues [25].

The eigenvector associated with the largest eigenvalue of the adjacency matrix is known as

the Gould index [33] [34]. The value of a node’s entry in the Gould index indicates its importance.

2.6 Representing UAV Teams

Any multi-UAV formation can be represented as a graph where each UAV in the formation

is analogous to a node, or vertex, in the graph. The ability to communicate between pairs of robots

is analogous to edges in the graph. One way to represent such a graph is using the Laplacian matrix,

which is formed by subtracting the adjacency matrix from the degree matrix, L = D − A.

For weighted graphs, the weight value, w, is typically constrained to the range w ∈ [0, 1]. A

typical weighting profile for Laplacians which describemulti-UAV formations is a function which is

constant within a certain distance, to model a strong connection when the two communicating nodes

are near each other, then decays exponentially beyond that distance to model a rapid degradation in

signal strength due to path loss beyond the robust range [6].
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A generic function for edge weights that resembles a path loss model is

w(i, j) =



1 ‖pi − p j ‖ < Rrobust

0 ‖pi − p j ‖ > Rmax

2 − eα(‖pi−pj ‖−Rrobust ) otherwise,

(2.5)

where Rrobust represents the radius at which full signal strength is sustained and Rmax represents

the distance at which no usable signal is received. α is a user-defined parameter that was chosen

so that w is continuous at Rrobust and Rmax . ‖pi − p j ‖ is the Euclidean distance between pi and p j ,

corresponding to nodes i and j, respectively.

Given a weighting function, w, the weighted Laplacian can be defined as follows,

L =
∑

edgei, j∈E

w(i, j)Li, j, (2.6)

where Li, j is the Laplacian matrix entry formed with a single edge between nodes i and j.

Undirected graphs are symmetric, indicating that if a path exists from nodei to node j , then a

path also exists from node j to nodei. Directed graphsmay not be symmetric since a directional edge,

instead of a bi-directional edge, means that Ai, j , A j,i. The undirected graph Laplacian is used in

this work since it is assumed that eachUAV is equippedwith a homogeneous, bi-directional wireless

network adapter. The assumption that all edges are bi-directional, or undirected, is important since

it results in a real, symmetric, and positive semidefinite Laplacian matrix, which allows for use of

a wider range of techniques when working with the Laplacian matrices.
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CHAPTER 3

EDGE SELECTION AND CONNECTIVITY TRACKING

For an increasing number of UAV applications, varying levels of connectivity at different

points throughout the duration of a mission are needed to meet operational requirements. Thus, the

ability to track and obtain a desired connectivity profile over the course of a mission is critical. A

connectivity profile is defined here as a sequence of desired levels of algebraic connectivity. The

profile may have a time associated with it, so that the network’s connectivity at time t should be

equal to the desired connectivity, or it may be undefined, in which case the network should simply

progress to the next desired connectivity level upon reaching the current target connectivity. As an

initial step, the connectivity profiles used for this work do not impose a time requirement.

In this chapter four methods to adjust the connectivity of a networked system are presented:

greedy perturbation heuristic (Fiedler method) [10], tabu search [11], [35], semidefinite program-

ming (SDP) [10], and bisection [12]. A basic rule-based algorithm to track a desired connectivity

profile through the addition and deletion of a sequence of single connections between two UAVs is

developed. Furthermore, the effectiveness of methods for choosing the edge to be added or deleted

using this algorithm is evaluated through MATLAB simulations.
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3.1 Methods of Selecting an Edge

As discussed in Chapter 2, the addition/deletion problem is an NP-hard problem which

answers the question of the best edge to add to or delete from a graph to cause the largest increase

or decrease in connectivity. Four heuristic approaches are discussed here. Ghosh and Boyd [10]

produced a semidefinite programming problem to be solved by an SDP solver and also developed

the greedy perturbation heuristic which will be referred to as the Fiedler method. Wei and Sun [35]

created the weighted tabu search, based on the tabu search algorithm developed by Glover [11],

for solving the addition/deletion problem. They also implemented the Fiedler method/greedy

perturbation heuristic and semidefinite programming methods and applied the techniques to air

transportation networks. Kim [12] developed the bisection method of increasing connectivity

based on a modified version of the secular equation and a bisecting search algorithm.

3.1.1 Fiedler Method or Greedy Perturbation Heuristic

The Fiedler method was developed by Ghosh and Boyd [10]. It is a greedy, local heuristic

for solving the addition/deletion problem using the entries of the Fiedler vector.

If v is a unit eigenvector corresponding to λ2 then vvT is a supergradient of λ2 [10]. For any

symmetric matrix Y and graph Laplacian L the following holds,

λ2(L + Y ) ≤ λ2(L) + Tr(Y vvT ) (3.1)

[10].

When λ2 is isolated, the supergradient is the gradient and this method yields a first-order

approximation of the change in L [10]. When λ2 is not isolated, no single edge addition will
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increase λ2 [10]. This follows from the principle of interlacing [31] [36]. Since the resulting

connectivity, λ′2, obeys λ2 ≤ λ
′
2 ≤ λ3, if λ2 = λ3 then λ2 = λ

′
2 = λ3 and the connectivity does not

change.

The Fiedler method involves finding the maximum squared difference between all entries

in the Fiedler vector and selecting the pair of disconnected nodes whose corresponding entries

produce the maximum value. This algorithm is described as follows,

Algorithm 1: Fiedler Method / Greedy Perturbation Heuristic
Result: Node selection: node1, node2

1 Given: v2, the Fiedler vector
2 max = 0
3 for i ← 1 to n do
4 for j ← i + 1 to n do
5 if i , j and Li, j = L j,i = 0 then
6 if (v2(i) − v2( j))2 > max then
7 max = (v2(i) − v2( j))2

8 node1 = i
9 node2 = j
10 end
11 end
12 end
13 end

In Algorithm 1, v2 is the unit eigenvector corresponding to λ2, the Fiedler vector, v2(i) is

the ith element of the Fiedler vector, and L is the Laplacian matrix.

An advantage of this method is that if the graph is disconnected, the Fiedler method will

always choose an edge which connects two connected components [10].

Ghosh et. al. provided the following upper and lower bound on the resulting connectivity

after adding an edge.
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λ2(L + alaT
l ) ≤ λ2 +

(vi − v j)
2

1 + (2 − (vi − v j)
2)/(λn − λ2)

(3.2)

[10]

λ2(L + alaT
l ) ≥ λ2 +

(vi − v j)
2

6/(λ3 − λ2) + 3/2
(3.3)

[10]

Based on the bounds provided, the Fiedler method can be interpreted as maximizing both

the upper and lower bounds [10].

Another interpretation is to consider the heuristic method of using the Fiedler vector in

bisecting a graph such that the number of edges connecting vertices in the two separate halves

is minimized [10] [37]. In other words, it attempts to strengthen the connection of two groups

separated by a min-cut.

Nodes with positive entries in the Fiedler vector are grouped together. Similarly, nodes with

negative entries are grouped together. Nodes with zero entries may be assigned to either group in

approximately equal numbers [37] [38] [39]. Nodes whose entries in the Fiedler vector are most

positive or most negative can be seen to be most strongly associated with their group. In light of

this perspective, the Fiedler method can be thought to choose the edge which most strongly joins

the bisected graph [10].
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3.1.2 Bisection Method

The bisection method was developed by Kim [12] and was motivated by the goal of a

computationally efficient (as compared to a brute-force search) and exact method of determining

the best edge to add or remove to effect the largest change in algebraic connectivity. It requires

knowledge of nearly all, if not all, eigenvalues and eigenvectors of the original Laplacian matrix.

The bisection method [12] takes advantage of the property λ2 ≤ λ
′
2 ≤ λ3, where λ′2 is the

resulting connectivity after adding an edge, and the modified secular equation,

f (λ(G′)∗) = 1 + ρ
n∑

k=2

(vk(i) − vk( j))2

λk − λ(G′)∗
, (3.4)

where λ(G′)∗ is a hypothetical eigenvalue of G′ = G + eeT , e is an incidence vector for

an edge to be added, and vk(i) and vk( j) are the ith and jth elements, respectively, of the kth

eigenvector of G. λk is the kth eigenvalue of G. So long as λk < λk(G′)∗ < λk+1, (3.5) describes

the relationship between an arbitrary value between λk and λk+1 and the kth eigenvalue resulting

from adding a specific edge to G [12].

f (λ(G′)∗) =



> 0 λ(G′)∗ > λ(G′)

= 0 λ(G′)∗ = λ(G′)

< 0 λ(G′)∗ < λ(G′)

(3.5)

This secular equation allows one to choose an edge to add to a graph, then repeatedly guess

the resulting eigenvalue and evaluate the equation to determine if the guess was too high, too low,

or guessed correctly.
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As an example, consider the five-node graph and corresponding secular equation plot shown

in Fig. 3.1. The secular equation plot shows the result of adding an edge between nodes one and

two. Green ‘plus’ markers show the zeros at the x-axis location corresponding to the resulting

non-zero eigenvalues{1,2,4,5}. The asymptotes of the plot occur at the eigenvalues of the original

graph, {0, 0.6972, 1.3820, 3.6180, 4.3028}, and are indicated by red ‘circle’ markers. For any

value along the x-axis between any two asymptotes, the sign of the function indicates whether or

not the actual eigenvalue resulting from the addition of that edge is greater than, less than, or equal

to the corresponding x-value of that point. The eigenvalues resulting from the addition of the new

edge will be the zeros of f (λ(G′)∗).

Kim [12] used this information to develop the bisection algorithm, which begins with the

range λ2 to λ3 from the original graph and a set S of all candidate edges. Then, using (3.4), every

candidate edge can be classified as producing a λ′2 that is greater than, equal to, or less than the

midpoint, where λ′2 is the connectivity that would result from adding or removing the particular

edge. Edges which produce a greater λ′2 are kept and the search space is reduced by half to include

only the range where these edges reside. This process is repeated until a single edge remains, or

the search range falls below an exit criteria, |U − L | < ε .
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Algorithm 2: Bisection Method
Result: Node selection: node1, node2

1 Given: λ2 , and λ3 , the second and third smallest eigenvalues of the initial graph, S,
the set of candidate edges, and G, the initial graph

2 x ← 0;
3 L ← λ2, U ← λ3;
4 d ← U − L;
5 M ← (L +U)/2;
6 while size(Sx) > 1 and x < log2(d/ε) do
7 S+ ← {}, S− ← {};
8 for each candidate edge, ei, j do
9 if f (M) > 0 then
10 S+ ← S+ ∪ ei, j
11 else
12 S− ← S− ∪ ei, j
13 end
14 end
15 if size(S−) = 0 then
16 U ← M
17 Sx+1 ← S+

18 else
19 L ← M
20 Sx+1 ← S−

21 end
22 x ← x + 1
23 end
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Figure 3.1 Top: Graph with Five Nodes Corresponding to the Plot Shown Below. Bottom:
Modified Secular Equation When Connecting Nodes 1 and 2.
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3.1.3 Tabu Search

The tabu search was developed by Glover in 1989 [11]. This performs a depth-first search

with search trajectory tracking. It maintains a list, the tabu list, of recent moves to avoid redundant

searches. Additionally, it can include random jumps in the search space to attempt to break away

from local optimums. Wei and Sun [35] created a version of the weighted tabu search for the

maximization of algebraic connectivity when adding routes to air transportation networks. This

method was adapted for connectivity tracking in UAVs. Our method operated on the unweighted

Laplacian matrix to remain consistent between methods and since the UAVs are continuously

moving, affecting the weights at any given moment. The tabu search algorithm by Wei, Chen, and

Sun [7] is shown in Algorithm 3.

25



Algorithm 3: Tabu Search Method
Result: Node selection: node1, node2

1 Given: G, the original graph, P, the candidate edges, Φ, the number of iterations to
perform, and k, the number of edges to be added

2 Randomly pick k edges from P to construct s0
3 s = s0, λ

∗
2 = 0, s∗ = s0,T = {}

4 for iteration← 1 to Φ do
5 for p← 1 to k do
6 construct N(s,p) of the pth edge in s
7 end
8 while 1 do
9 Pick one edge p’ from each N(s,p) to construct s’
10 if λ2(s′) > λ∗2 then
11 s = s′

12 Update T
13 λ∗2 = λ2(s)
14 s∗ = s
15 end
16 if s′ < T then
17 s = s′

18 Update T
19 end
20 end
21 end
22 output λ∗2 and s∗

26



3.1.4 Semidefinite Programming Method

The semidefinite programming method [10] uses the fact that the space of n × n posi-

tive semidefinite matrices, which includes the Laplacian graphs, is a cone [40], allowing convex

optimization methods.

The addition and deletion problem is shown in (3.6) as a binary programming problem,

maximize λ2(L(Ebase ∪ E))

subject to |E | = k,

E ⊆ Ecand,

(3.6)

[10] where L is a starting graph Laplacian, Ebase is the initial set of edges in L, E is a selected set

of edges from Ecand , the set of candidate edges, and k is the number of edges selected from Ecand .

This problem, however, is not suitable for convex optimization solvers. A relaxation is

necessary to restructure the problem as a convex optimization problem. To that end, Ghosh and

Boyd [10], removed the requirement for a binary selection of edges in favor of a continuous selection

value. In this way, the selection vector could contain any value in the range [0, 1] instead of strictly

binary values of either zero or one.

Consider the selection variable x ∈ {0, 1}mc , where mc is the number of candidate edges.

Then,

L(x) = Lbase +

mc∑
l=1

xlalaT
l , (3.7)
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[10] where x is a selection vector, l is an index to the set of candidate edges, xl is the binary

selection value applied to a candidate edge, and al is the incidence vector for edge l gives L(x), the

new Laplacian after adding the selected edges.

Replacing the binary selection x ∈ {0, 1} with a linear weighted selection x ∈ [0, 1] results

in the following relaxation,

maximize λ2(L(x))

subject to 1T x = k,

0 ≤ x ≤ 1,

(3.8)

[10] where L(x) is the Laplacian resulting from adding k edges selected by x. 1T x = k indicates

that the sum of the selection vector x is k, which means k edges are selected. The problem shown in

3.8 is a convex optimization problem with linear constraints and a concave objective function [10].

With this relaxation comes the need to further address the selection of edges. In the binary

program, the selected edges were clearly identified with a one indicating the edge is selected and

a zero indicating it is not, but in the relaxed convex problem the solution is a vector of decimal

values for each candidate edge. There are multiple methods that could be used for selecting the

edges based on the non-binary selection vector. The simplest approach, and the one used for our

simulation, is to choose the edge with the maximum value in the solution vector.

To solve this problemCVX, a package for specifying and solving convex programs [41], [42],

was used with the default, free solver SDPT3.
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3.2 Simulation

AGraphical User Interface (GUI) and simulation environment was developed inMATLAB.

A screenshot from the GUI environment is shown in Fig. 3.2.

In the lower right corner of the graph window current connectivity value is shown. In the

lower left corner a drop-down menu is available to select which algorithm to use in the simulation.

Below that are play and step buttons to play the simulation or step through it onemovement at a time.

Below that is the button that presents a window where the user can enter a desired connectivity

value or profile, as a scalar or vector, respectively. Next are options to operate in weighted or

unweighted mode. Finally there is a delete button and an export button at the bottom.

On the right side of the screen there are histories of the connectivity after every movement

and after every click. On the bottom is a button to clear the graph window of all nodes and reset the

displays. Below that is a button which will show a plot with the history of the connectivity along

with the desired connectivity. On the left are the locations of the nodes. Finally, in the file menu,

the user can save or open .gph files which contain the graph data in an ascii-text format.

A rudimentary connectivity profile tracking algorithm was developed to move simulated

UAVs in a manner which allowed their overall connectivity to track a desired profile. The effec-

tiveness of this algorithm using each of the four connectivity modification methods (Fiedler, SDP,

tabu search, and bisection), as well as a brute-force search, was tested.

In order for these methods to be useful in connectivity tracking, several implementation

details needed to be addressed. Additionally, all methods were originally intended to address the

problem of maximally increasing the connectivity of a graph by adding an edge, however, for the

purpose of connectivity tracking, three more cases were desired. The ability to maximally decrease
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Figure 3.2 Connectivity Simulation Environment.
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the connectivity by deleting an edge, the ability to minimally increase the connectivity by adding

an edge, and the ability to minimally decrease the connectivity by deleting an edge. These four

cases formed the foundation upon which the connectivity profile tracking algorithm was developed,

as will be described later. In the following section, the necessary modifications for each algorithm

are described.

3.2.1 Modification and Implementation of Methods

3.2.1.1 Fiedler

The Fiedler method has been extended to cover the four cases. The first case, as described in

Chapter 2, is the edge to be added for a maximum increase in connectivity. The rationale behind this

method is that the Fiedler vector provides an approximate gradient for the connectivity [10]. Based

on this rationale, it is reasonable to expect a small squared difference between entries in the Fiedler

vector to correspond to a small increase in the connectivity. Similarly, a large or small squared

difference between entries corresponding to nodes with an edge to be deleted should correspond to

a large or small decrease, respectively, in connectivity. This has been found to be true in practice

and through simulations described below.

3.2.1.2 Bisection

In the bisection method, the secular equation used can be adapted for the deletion problem

by changing the value of ρ from one to negative one [12] and searching for the edge which

gives the largest negative value for f (λ(G′)∗) between λ1 and λ2 (instead of between λ2 and λ3).

Additionally, as with the Fiedler method, the bisection method has been further modified to produce

two additional cases, minimum increase and minimum decrease. To find the minimum increase
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and decrease, one only has to search for the smallest values of f (λ(G′)∗) and choose the set of

edges falling within the opposite extreme of the midpoint as compared to the maximum increase

and decrease.

3.2.1.3 Tabu Search

The tabu search required only changing the criteria for which the algorithm was searching.

For example, instead of searching for the edge which would result in the maximum increase, it

could search for the edge which would result in the minimum increase. The algorithm itself remains

unchanged otherwise.

3.2.1.4 Semidefinite Programming

The semidefinite programming method was adapted to provide a minimal increase by

selecting the minimum value in the results vector, rather than the largest, as was the case for the

maximum increase. To accommodate a decrease rather than an increase in connectivity, the SDP

was modified to include a subtraction of an edge rather than an edge addition. The maximum

decrease was found by selecting the minimum value in the result vector of the edge deletion SDP.

The maximum increase was found by selecting the maximum value in the result vector of the same

SDP.

3.2.2 Comparison of Each Method

As a precursor to our connectivity tracking simulation, a comparison of the methods for

solving the addition/deletion problem was conducted. Each method was tested on all combinations

of graphs up to size seven. Due to the rate of growth of the number of combinations for each single
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increase in size, evaluating all graphs of each size above size seven quickly became impractical.

Evaluating all graphs up to size seven allows a complete comparison for small UAV teams, which are

more common due to the reduced resource requirements. It also provides an opportunity to begin

identifying trends in the performance of each algorithm as the graph size grows. More importantly,

it demonstrates the effectiveness of each algorithm relative to each other. The fully-connected

and empty graphs were not considered since either no edges could be added or no edges could be

removed.

To test each method, every combination of initial graph was generated. Through brute force,

every possible edge addition or deletion, for each initial graph, was evaluated and the connectivity

computed. This gave the true maximum connectivity change for each initial graph. Then, each

method was applied to the same initial graph and the best edge to add or remove based on that

method was compared with the results of the brute-force search. If the method produced the

same level of connectivity, although not necessarily the same exact edge choice, as the brute-force

method, it was counted as successful. The number of successful trials for each graph size and

method are shown in Table 3.1 and Table 3.2.

Table 3.1 Number of Successful Edge Selections in Determining Maximum Increase in
Connectivity.

Method 3 4 5 6 7
SDP 6 50 732 22,056 1,284,126
Fiedler 6 55 788 23,599 1,301,448

Tabu Search 6 62 1,022 32,397 2,008,810
Bisection 6 62 1,022 32,766 2,097,150
Total 6 62 1,022 32,766 2,097,150
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Table 3.2 Number of Successful Edge Selections in Determining Maximum Decrease in
Connectivity.

Method 3 4 5 6 7
SDP 6 62 901 24,153 1,872,214
Fiedler 6 62 1,017 30,655 1,884,122

Tabu Search 6 62 1,022 32,452 1,995,938
Bisection 6 62 1,022 32,766 2,097,150
Total 6 62 1,022 32,766 2,097,150

3.2.3 Connectivity Profile Tracking

Using the four methods previously described, a rudimentary connectivity tracking algo-

rithm, shown in Algorithm 4, was developed. First, a decision on whether to add or remove an

edge or to simply expand or contract the graph is made. At one extreme, a weighted graph becomes

equivalent to an unweighted graph when the edge distances are small and all edge weights become

one. At the other extreme, expanding the graph until the weight edges approach zero will become

equivalent to a fully disconnected graph. By expanding and contracting the graph, any level of

connectivity can be achieved, however, this is not a very useful technique in practice. Therefore,

this algorithm makes a determination on whether the graph should expand or contract, or if an edge

should be added or removed.

Two issues which were discovered while creating this algorithm are firstly, without taking

into account existing edges, it is easy for a move which is made to connect a new edge to disconnect

one or more existing edges. This has the very real possibility of leaving the graph disconnected

with a connectivity of zero. In order to account for this, a recursive check of all existing edges was

incorporated to ensure that they were not broken during the move. If an edge was broken, the node
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Algorithm 4: Connectivity Tracking
1 Given: Connectivity profile P as an array
2 λ2 and λ3, the second and third smallest eigenvalues of the initial weighted graph
3 λ2,upper , the second smallest eigenvalue of the initial unweighted graph
4 λ2,lower , the connectivity obtained by a maximum decrease deletion
5 for i← 1 to size(P) do
6 λ2,desired = Pi
7 while λ2 , λ2,desired do
8 if λ2 < λ2,desired && λ2,desired ≤ λ2,upper then
9 Contract edge with largest sum of distances
10 else if λ2 > λ2,desired && λ2,desired > λ2,lower then
11 Expand edge with smallest sum of distances
12 else
13 if λ2 < λ2,desired then
14 if λ2,desired > λ2 + (λ3 − λ2)/2 then
15 Maximal increase based on current method
16 else
17 Minimal increase based on current method
18 else
19 if λ2,desired < λ2/2 then
20 Maximal decrease based on current method
21 else
22 Minimal decrease based on current method
23 Move selected nodes, checking for broken links, stagnation, and repeated moves
24 while Broken Link do
25 Move nodes to re-establish link
26 end
27 if Stagnation or Repeated Moves then
28 Add a random offset to the move
29 end
30 end
31
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connected to that edge which did not move, would be moved to re-establish the connection. It is

possible for this to create a daisy-chain effect of breaking connections and re-establishing them.

A second issue that occurred was when a series of moves would inadvertently connect new

edges, causing an immediate jump in connectivity beyond the target connectivity. On the next

move, the same nodes would move apart to reduce the connectivity. This led to cycling in some

cases which prevented the algorithm from completing the profile.

To account for both of these issues, a check for cycling was implemented. Whenever

the connectivity remained unchanged for an extended number of moves, or the same nodes were

repeatedly moved, a small random offset would be added to the movement of the nodes. This

provided enough variation to allow the algorithm to break out of cycles.

3.3 Experiment Design

In order to evaluate the effectiveness of the four methods in tracking a desired connectivity

profile with the proposed tracking algorithm, an experiment was designed in which a series of

connectivity profiles were simulated with each method at a range of graph sizes. Connectivity

profiles fell into the following five categories: increasing, decreasing, sine wave, square wave, and

random (See Fig. 3.3). These profiles were selected to provide a variety of connectivity transitions

which might occur.

Graph sizes of one to twenty-five nodes were tested. Twenty-five was chosen as a large

graph size that was still within practical limits of the simulation. Although conclusions regarding

the performance of the algorithms at larger and larger graph sizes cannot be made completely based

on smaller size simulations, it is reasonable to expect these trends to continue as the size grows.
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Figure 3.3 Top to Bottom: Random Profile, Sinusoidal Profile, Square Wave Profile, Increasing
Profile, Decreasing Profile.
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Nevertheless, these simulations and results do give a reliable indication of performance for the

graph sizes within their scope and UAV teams of size twenty-five and below can be used in a large

number of cooperative UAV scenarios.

Within each graph size, five randomly generated graphs were tested. The same five graphs

for a given size were used with each method. For each random graph of each size, the five profiles

were tested using the tracking algorithm with each of the four methods for selecting the best edge

to add or delete. The same test was also completed using a brute-force method as a basis for

comparison.

3.4 Results and Discussion

Figure 3.4 Average Number of Steps to Complete All Graphs and Profiles for Each Graph Size.
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The graph shown in Fig. 3.4 shows the average number of steps required to complete all

graphs of a given size, using a given method. From these results, it is immediately obvious that

the bisection method is under-performing the other methods in being able to track the profile as it

requires almost twice the number of steps to complete the profile. The reason for this comes from

the behavior of this implementation of the bisection method for the cases where there are repeated

eigenvalues.

At the beginning of the profile, the graph is typically disconnected, which means that the

first- and second-smallest eigenvalues are zero. If there are more disconnected components, there

may be even more eigenvalues which are zero. A known limitation of the bisection method, as

discussed by Kim in [12], is the case where the eigenvalues are repeated. In this case, there is not

a range within which the bisection can conduct its search. Although all edges will yield the same

resulting connectivity in this case, some edges are better than others in the long term.

Another interesting aspect of the results comes from the brute-force method. The brute-

force method does a complete search of all possible edge choices and returns an edge that yields the

largest or smallest increase or decrease in the connectivity value, as desired. However, the selected

edge is not guaranteed to be a good choice in terms of how quickly a connectivity level is attained

over time as multiple edges are added or removed. Additionally, the brute-force method suffers

from a similar situation as the bisection method does at the beginning in that it cannot differentiate

between edges if there are more than two disconnected components in the graph. It also cannot

make a good choice when there is a repeated λ2. In these cases, no edge choice will result in

an increase in connectivity. The brute-force method in this implementation returned the last edge

evaluated, which is the edge with the largest node index. This causes this method to select many
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non-optimal choices when starting from a connectivity of zero and to make non-optimal choices

throughout whenever a repeated eigenvalue occurs.

Since the initial graphs were formed by randomly placing the UAVs within a rectangular

area, many UAVs are not connected initially. To determine if starting with a connected graph

impacted the results, the average number of steps required to complete all profiles was adjusted by

the number of steps required to reach a non-zero connectivity for each run of the simulation and is

shown in Fig. 3.5. In this case, the brute-force method was close to the number of steps required for

other methods, however, the bisectionmethod still significantly under-performed the other methods.

A possible reason for this is the type of structure created by the bisection method during the zero

connectivity phase. While the brute-force constructs a graph that is nearly complete, the bisection

method creates a star arrangement.

Figure 3.5 Average Number of Steps to Complete All Graphs and Profiles for Each Graph Size,
Adjusted by Number of Steps Required to Reach Non-zero Connectivity.
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When looking at the change in connectivity achieved by starting with an empty, 25-node

graph and repeatedly adding the ideal edge according to each method, it becomes apparent that the

brute-force method is building in a way that takes many steps before achieving connectivity (see

Fig. 3.6).

Figure 3.6 Graphs Grown by Selecting the Recommended Edge Using Each method, Starting
with an Empty, 25-node Graph.

Interestingly, when starting with a 25-node line graph, the results are much closer to each

other (see Fig. 3.7). This suggests that the starting configuration can have a significant impact

on how connectivity should be adjusted. Additionally, how edges are chosen at each step can
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drastically change the resulting connectivity profile. Kim discussed the potential for a graph to

deviate from an optimal configuration by repeated edge additions [12]. This highlights the fact that

optimizing a single edge addition or deletion does not guarantee the optimality of a sequence of

edge additions or deletions.

Figure 3.7 Graphs Grown by Selecting the Recommended Edge Using Each Method, After
Starting with a 25-node Line-graph.

The semidefinite programming method and the Fiedler method gave similar results in terms

of the number of steps required to complete the profiles, with the Fiedler method tending to be
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slightly better. However, computationally, the Fiedler method executed much more quickly than

the semidefinite programming solver, as was suggested by Ghosh and Boyd [10].

The tabu search consistently performed well. For all profiles and graph sizes, it was either

on par or better than the other methods. The reason for this is that the tabu search covered a good

portion of the search space, but rather than choosing the first edge from the options in some sorted

order, its edge selection had a component of randomness to it. This turned out to give it a large

advantage over the other methods, effectively making it a near-brute-force search with random

selection.

Looking at the results profile by profile, it is clear that the steadily increasing and decreasing

profiles required fewer steps to complete. As an example, for size 25 graphs, on average, the random

profile required 3,491 steps, the square profile required 3,936, and the sine profile required 3,091

steps, while the increasing profile required 1,790 steps and the decreasing profile required 2,234

steps.

3.5 Summary

Four methods of tracking connectivity profiles were presented. The connectivity tracking

problem was identified as the addition and deletion of links among nodes and modification of

edge-weights via repositioning as a connectivity is incrementally changed. The tracking methods

were implemented and evaluated for a variety of graph sizes and connectivity profiles using each

method.

Strengths and weaknesses of this approach were demonstrated through the simulation study.

The effectiveness of the four methods in determining the best edge for addition or deletion was
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compared for all graphs up to seven nodes with the bisection method, followed by the tabu search,

performing the best in both cases. The impact of the initial configuration on the ability of the

formation to track a profile was also shown. It was found that different edges may result in the same

connectivity after addition or deletion but have differing impact on later addition or deletion steps.

In this respect, the SDP and Fiedler methods out-performed the other methods. Finally, simulation

suggested that a connectivity profile which is continually increasing or decreasing may reach its

targets more quickly than profiles with more variation (square wave, sine wave, or random profiles).

Some limitations of the simulation that were conducted include the use of a heuristic

algorithm and simple motion model rather than a formalized controller and dynamics model which

can track connectivity over time. Also, many of the methods can be implemented in a variety of

ways using a range of parameters. It is possible to achieve different performance using a different

implementation of the same method or using different parameters.
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CHAPTER 4

HYBRID METHOD OF SELECTING EDGES

In this chapter a new hybrid algorithm which uses a random forest classifier to blend the

greedy perturbation heuristic [10] and the bisection method [12] is developed. The hybrid method

chooses links to add or remove in order to adjust the connectivity of a networked system. The

effectiveness of methods for choosing the edge to be added or deleted using this algorithm is

evaluated using a brute-force comparison on graphs up to size seven, a sampling of Erdős-Rényi

random graphs up to size 25, and a connectivity tracking simulation [22].

Consider the graph shown in Fig. 4.1. According to the Fiedler method, the edge to add

which will have the largest increase in connectivity would be between node2 and node3, node2

and node4, node6 and node3, or node6 and node4, since all of these edges correspond to a squared

difference of 0.7887. However, all of these edges result in an algebraic connectivity of 0.5188

when added to the graph while the edge between node7 and node1 results in a higher algebraic

connectivity of 0.5505.

Despite a relatively low accuracy, this method was the most efficient as only the Fiedler

vector needs to be computed. The efficiency can also be improved by not computing the Fiedler

vector to a high degree of accuracy, since only the values relative to other pairs of nodes are

important [10]. Finally, by noting that the maximum squared difference will occur between the

largest and smallest nodes in the vector, one only has to iterate through the vector one time to
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Figure 4.1 A Graph with Seven Nodes On Which the Fiedler Method Fails.

find the maximum and minimum values, resulting in an O(n) operation. The overall complexity is

therefore O(
4
3

n3 + n) if all eigenvectors are computed.

The bisection method, as discussed in Chapter 3, is an algorithm developed by Kim [12]

for choosing an edge based on the modified form of the secular equation derived from a rank-one

modification. To determine a maximal increase in connectivity by adding an edge, the algorithm

performs the following: It first specifies a range with the lower boundary being lower = λ2 and the

upper boundary being upper = λ3. Then, the midpoint is defined as m =
λ2 + λ3

2
. The algorithm

repeatedly sorts all possible edges as giving rise to a connectivity that will be below or above the

midpoint. If at least one edge is above the midpoint, the edges below it are discarded and the range

is updated to be from m to the upper boundary. If no edges are above the midpoint, the lower range
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of the lower boundary to m is used. The process is then repeated until a single edge remains or a

maximum number of iterations have occurred.

The bisection method is exact and will yield the best edge choice but it is less efficient

than the Fiedler method, having a complexity of O(4n3/3 + 4mn log2(d/ε)) [12] where n is the

number of nodes, m is the number of candidate edges, d is the distance between the upper and lower

search boundary, and epsilon is a user chosen parameter. Like the Fiedler method, this method

requires computation of eigenvectors and eigenvalues of the graph. In addition, a calculation must

be performed each time an edge is evaluated, with every edge being calculated at least once, and

the best edges being calculated multiple times.

Chapter 3 introduced the concept of connectivity tracking [22]. Connectivity tracking

is based on two tenets. First, the desired level of connectivity for a multi-robot team is situation

dependent. Second, the desired level of connectivity will change over time. These two fundamental

ideas provide motivation for a connectivity tracking algorithm which can control a team to maintain

levels of connectivity appropriate for their current position within a desired profile.

4.1 Random Forest

A tool which is relied upon heavily in this chapter is the random forest. The random forest

is built on the decision tree classifier, where classifications are performed based on a series of

questions, or discriminating decisions [43]. The classification process begins at the top, root node

of the decision tree. At each node the branch corresponding to the current decision is followed to

the descendent node. Upon reaching the final node, or leaf-node, the final classification is made.
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An extension of the decision tree is the random forest. A random forest consists of an

ensemble of decision trees that vote on the classification [44]. Random forests can result in

significant improvements over single trees while avoiding over-fitting [44]. There are various

methods for growing the ensemble of decision trees. Bootstrap-aggregating (also known as bagging)

decision trees is one method [44] and is the method used in this work.

The random forest, and decision trees in general, have several advantages. First, they are

easier to interpret than other types of classifiers, although a dense random forest may also be

difficult to interpret. They are also efficient, requiring only a number of operations proportional to

the depth of the tree. Finally, they are able to work with non-linear problem sets.

4.2 Hybrid Algorithm

The bisection method is highly accurate, but suffers from an unfavorable rate of growth.

The Fiedler method, on the other hand, is much more efficient, but also much less accurate. These

two facts have motivated the development of a hybrid algorithm for selecting the best edge to add

to or delete from a graph to reach a desired change in connectivity.

4.2.1 Algorithm

The proposed algorithm is shown in Algorithm 5. This algorithm first performs a prediction,

using a bootstrap-aggregated random forest, to predict if the Fiedler method of selecting an edge

will give an optimal result.

If the Fiedler method is predicted to be successful, the algorithm checks if the choice is

ambiguous. An ambiguous choice, with respect to the Fiedler method, occurs whenever more than

one edge results in a maximum squared difference between its corresponding node’s entries in the
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Fiedler vector. If there is an ambiguous choice, the bisection method is performed on only the

reduced set of candidate edges which have the same maximum squared difference. If the choice is

not ambiguous, the result of the Fiedler method is returned.

If the Fiedler method is predicted to be unsuccessful, then the result of the Bisection method

is returned.

Algorithm 5: Hybrid Algorithm for Selecting an Edge
Result: Node selection: node1, node2

1 Given: G, the graph laplacian
2 mdl, a pre-trained bootstrap-aggregated random forest model
3 Using mdl, predict if the fiedler method will be successful
4 if Fiedler is Predicted to be Successful then
5 if Choice is ambiguous then
6 Return Bisection on Reduced Set of Candidate Edges
7 else
8 Return Fiedler
9 end
10 else
11 Return Bisection
12 end

4.2.2 Decision Tree Design

A key component of the hybrid algorithm is the random forest classifier which is used to

predict if the Fiedler method will be successful. The random forest was chosen for several reasons.

First, the way that it makes its prediction is able to be interpreted. The decision trees consist of a

series of discriminating choices based on the values in the feature vector which can be traced to

determine how a prediction was made. Second, the additional computational overhead is very low

since it only requires following a fixed number of branches. Third, the classification performance
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is generally quite good. This section will discuss the development of the random forest classifier.

4.2.2.1 Feature Selection

Twenty-six features to be used with the model were explored. It is important to use features

that are based on the original Laplacian matrix and its eigenvectors and eigenvalues, since these are

required for both the Fiedler and bisection methods. The additional cost of computing the feature

vector isminimal when using such features. The features that are used are described in the list below.

1. The maximum squared difference between any two entries in the Fiedler vector.

2. The difference between the maximum and minimum value in the Fiedler vector.

3. The sum of all values in the Fiedler vector.

4. The minimum value in the Fiedler vector.

5. The maximum squared difference between any two entries in the eigenvector associated with

the third-smallest eigenvalue (i.e. the third eigenvector).

6. The difference between the maximum and minimum value in the third eigenvector.

7. The sum of all values in the third eigenvector.

8. The minimum value in the third eigenvector.

9. The maximum squared difference between any two entries in the eigenvector associated with

the largest eigenvalue (i.e. the nth eigenvector).
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10. The difference between the maximum and minimum value in the nth eigenvector.

11. The sum of all values in the nth eigenvector.

12. The minimum value in the nth eigenvector.

13. The spectral gap (i.e. λn − λ2).

14. A boolean flag that is set if any eigenvalue is repeated.

15. The algebraic connectivity, λ2.

16. A boolean flag that is set if any entry in the Fiedler vector is zero.

17. Average of the Fiedler vector.

18. Variance of the Fiedler vector.

19. The sum of the degrees of the nodes selected by the Fiedler method.

20. The maximum degree of any node.

21. The minimum degree of any node.

22. The average degree of the graph.

23. The number of negative values in the Fiedler vector.

24. The number of positive values in the Fiedler vector.

25. The multiplicity of the maximum squared difference in the Fiedler vector (i.e. The number

of edges which have the same, maximum squared difference).
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26. The difference between the sum of all positive values in the Fiedler vector and the absolute

value of the sum of all negative values in the Fiedler vector.

Features 1-4 were chosen due to the importance of the Fiedler vector to the Fiedler method

as well as the vectors’ association with algebraic connectivity. There is a relationship between the

Fiedler vector and the nth eigenvector (associated with the largest eigenvalue). In particular, the

nth eigenvector is the Fiedler vector of the graph’s complement [45]. Due to this relationship, the

same set of features (5-8) was used for the nth eigenvector. Similarly, some characteristics of a

graph have been associated with properties of the third eigenvector [46]. For this reason, the same

set of features (9-12) based on the third eigenvector were also included.

Feature 13, the spectral gap between the largest and second-smallest eigenvalues was chosen

based on intuition and the relationship between λn and λ2.

Feature 14, a boolean value indicating if an eigenvalue is repeated, was chosen in part due

to the properties of repeated eigenvalues for graph Laplacians. In particular, when the smallest

eigenvalues λ1 through λk are zero, there are k disconnected components in the graph. Additionally,

when λ2 has a multiplicity of r , at least r edges must be added to increase λ2 [10].

Feature 15, the algebraic connectivity, was chosen since the algebraic connectivity is asso-

ciated with the Fiedler vector.

Features 17 and 18, themean and variance of the Fiedler vector were chosen since the Fiedler

method is based on the entries in the Fiedler vector and these properties describe the entries.

Features 19, 20, 21, and 22 correspond to the sum of the degrees chosen by the Fiedler

method, the maximum and minimum degree of any node in the graph, and the average degree of

52



the graph. These features were chosen due to the relationships between the degrees of the nodes,

maximum and minimum cuts, and algebraic connectivty [47].

Features 23, 24, and 25 are the number of negative entries in the Fiedler vector, the number

of positive entries in the Fiedler vector, and the number of edges with a maximal squared difference

between entries in the Fiedler vector. These features were chosen due to the Fiedler method’s

reliance on the Fiedler vector entries.

Feature 26, the difference between the absolute value of the sum of positive entries and the

absolute value of the sum of negative entries in the Fiedler vector was chosen based on the Fiedler

method’s reliance on the Fiedler vector entries and the ability of the signs of the entries to partition

the graph.

4.2.2.2 Hyper-parameters

The bootstrap-aggregated decision trees were constructed and executed using theMATLAB

TreeBagger function. This function accepts as inputs the number of decision trees to use in the

random forest, the feature vectors, and the class labels. Additional parameters allow for sampling

with replacement and specifying a minimum leaf size. For this research, the default values of

sampling with replacement turned on and a minimum leaf size of one were used.

The number of decision trees to use was set to 25. The generalization error of random

forests converges to a limiting value as the number of trees is increased [44], therefore increasingly

large values for the number of trees used in the random forest tend to give little to no improvement

in classification. Twenty-five was chosen as a reasonably large number.

53



4.3 Analysis

To study the effectiveness of this approach, random forests were trained for each graph size

to be tested. The training data was generated as a set of Erdős-Rényi graphs with edge probability

of 0.5 so that every graph of size n was equally probable. The training data size was the smaller

of 50,000 or 20% of the total number of graphs of a given size. The hybrid method was tested

on all graphs up to size seven and compared with previous results for the Fiedler method and the

Bisection method. Additionally, a random sampling of 1,000 graphs of each size from 8 to 25

nodes (UAVs) were tested.

A simulation was also conducted to track five connectivity profiles using five graphs with

25 nodes. The profiles used were a random profile, a sinusoid, a square wave, a linearly increasing

profile, and a linearly decreasing profile. The graphs and profiles used were the same as those used

in Chapter 3. The method of tracking connectivity was also discussed in that chapter.

The tracking method involved evaluating the target algebraic connectivity relative to the

current algebraic connectivity level. If the target connectivity was much greater or smaller than

the current connectivity, then an edge was added or deleted to reach the target connectivity. For

both addition and deletion, the ability to make a maximum or a minimum increase or decrease

was developed. This allows, for example, edges to be added to maximize the connectivity until the

target connectivity is passed then remove edges that result in a minimum change in connectivity

until the target connectivity is reached.

The number of steps to complete the profile for the same graph and same profile was

determined and compared with the previous results using the Fiedler method and the bisection

method.
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4.4 Results and Discussion

The number of successful edge selections for each direction and type (minimum or maxi-

mum), for all graphs of size four through seven is shown in Table 4.1. From these results it is clear

that the hybrid method yields a great improvement over the Fiedler method alone in choosing an

edge that maximizes or minimizes the connectivity change.

Table 4.1 Number of Successful Edge Selections in Determining Maximum and Minimum
Increase and Decrease in Connectivity for All Graphs Size 4 Through 7.

Size Dir. Type Hybrid Bisection Fiedler Total
4 - Min. 62 62 62 62
5 - Min. 1,018 1,022 946 1,022
6 - Min. 32,716 32,766 25,437 32,766
7 - Min. 2,096,803 2,097,150 1,471,795 2,097,150
4 - Max. 62 62 62 62
5 - Max. 1,022 1,022 1,016 1,022
6 - Max. 32,707 32,766 30,680 32,766
7 - Max. 2,096,671 2,097,150 1,883,974 2,097,150
4 + Min. 62 62 58 62
5 + Min. 1,022 1,022 930 1,022
6 + Min. 32,745 32,766 27,885 32,766
7 + Min. 2,097,134 2,097,150 1,825,276 2,097,150
4 + Max. 62 62 50 62
5 + Max. 1,022 1,022 788 1,022
6 + Max. 32,766 32,766 23,651 32,766
7 + Max. 2,096,717 2,097,150 1,300,302 2,097,150

Themethods were also compared using 1,000 Erdős-Rényi graphs with equal probability for

each size 8 through 25. The results of these tests are shown in Table 4.3 for increasing connectivity

and Table 4.2 for decreasing connectivity. From these results, it is clear that the hybrid algorithm

again improves on the Fiedler method.
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Table 4.2 Number of Successful Edge Selections in Determining Maximum and Minimum
Decrease in Connectivity for 1,000 Random Graphs of Each Size 8 Through 25.

Size Dir. Type Hybrid Bisection Fiedler Total
8 - Min. 997 1,000 691 1,000
9 - Min. 981 1,000 737 1,000
10 - Min. 931 1,000 743 1,000
11 - Min. 937 1,000 784 1,000
12 - Min. 945 1,000 790 1,000
13 - Min. 963 1,000 816 1,000
14 - Min. 966 1,000 842 1,000
15 - Min. 976 1,000 851 1,000
16 - Min. 969 1,000 851 1,000
17 - Min. 975 1,000 878 1,000
18 - Min. 983 1,000 880 1,000
19 - Min. 981 1,000 889 1,000
20 - Min. 984 1,000 919 1,000
21 - Min. 982 1,000 922 1,000
22 - Min. 990 1,000 940 1,000
23 - Min. 992 1,000 955 1,000
24 - Min. 996 1,000 958 1,000
25 - Min. 997 1,000 975 1,000
8 - Max. 1,000 1,000 841 1,000
9 - Max. 991 1,000 838 1,000
10 - Max. 923 1,000 819 1,000
11 - Max. 897 1,000 789 1,000
12 - Max. 878 1,000 785 1,000
13 - Max. 868 1,000 770 1,000
14 - Max. 849 1,000 756 1,000
15 - Max. 826 1,000 732 1,000
16 - Max. 826 1,000 707 1,000
17 - Max. 821 1,000 725 1,000
18 - Max. 810 1,000 686 1,000
19 - Max. 824 1,000 691 1,000
20 - Max. 820 1,000 712 1,000
21 - Max. 817 1,000 689 1,000
22 - Max. 795 1,000 667 1,000
23 - Max. 821 1,000 668 1,000
24 - Max. 792 1,000 656 1,000
25 - Max. 801 1,000 644 1,000
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Table 4.3 Number of Successful Edge Selections in Determining Maximum and Minimum
Increase in Connectivity for 1,000 Random Graphs of Each Size 8 Through 25.

Size Dir. Type Hybrid Bisection Fiedler Total
8 + Min. 999 1,000 876 1,000
9 + Min. 985 1,000 892 1,000
10 + Min. 962 1,000 894 1,000
11 + Min. 962 1,000 886 1,000
12 + Min. 970 1,000 900 1,000
13 + Min. 974 1,000 878 1,000
14 + Min. 979 1,000 883 1,000
15 + Min. 982 1,000 882 1,000
16 + Min. 993 1,000 917 1,000
17 + Min. 992 1,000 913 1,000
18 + Min. 996 1,000 916 1,000
19 + Min. 997 1,000 938 1,000
20 + Min. 999 1,000 948 1,000
21 + Min. 997 1,000 960 1,000
22 + Min. 996 1,000 965 1,000
23 + Min. 997 1,000 983 1,000
24 + Min. 999 1,000 983 1,000
25 + Min. 1,000 1,000 989 1,000
8 + Max. 999 1,000 574 1,000
9 + Max. 971 1,000 541 1,000
10 + Max. 911 1,000 528 1,000
11 + Max. 924 1,000 527 1,000
12 + Max. 870 1,000 486 1,000
13 + Max. 905 1,000 520 1,000
14 + Max. 882 1,000 512 1,000
15 + Max. 895 1,000 499 1,000
16 + Max. 894 1,000 534 1,000
17 + Max. 892 1,000 522 1,000
18 + Max. 901 1,000 505 1,000
19 + Max. 900 1,000 489 1,000
20 + Max. 865 1,000 525 1,000
21 + Max. 902 1,000 512 1,000
22 + Max. 859 1,000 477 1,000
23 + Max. 849 1,000 490 1,000
24 + Max. 874 1,000 486 1,000
25 + Max. 880 1,000 505 1,000
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It is important to understand the cases in which an edge selection is successful or unsuc-

cessful. Successful edge selections indicate either a correct prediction was made or a false negative

occurred. In the case of a false negative, the classifier will predict that the Fiedler method does

not work when it in fact does. In this case, it will fall back to the bisection method, which always

works, resulting in a successful edge, so the overall results for the algorithm will improve when a

false negative occurs. When the algorithm is unsuccessful in selecting the best edge, the classifier

has given a false positive, predicting that the Fiedler method would work when it actually would

not.

In a test of 1,000 edge selections each on random, size eight graphs for maximum increase,

maximum decrease, minimum increase, and minimum decrease, the hybrid method correctly

predicted that the Fiedler method would work 3,000 times. The hybrid method also correctly

predicted that the Fiedler method would fail 546 times. It incorrectly predicted that the Fiedler

method would work only 5 times, and incorrectly predicted that it would fail 449 times. In this case,

it made correct predictions 88.65% of the time and in the instances in which it made an incorrect

prediction, 98.9% of those were false negatives. A false negative is preferred over a false positive

since the method falls back to the bisection method in those cases, which always works.

Table 4.4 shows the average number of steps required in simulation to complete the five

profiles (random, sine wave, square wave, increasing, and decreasing) for five random graphs of

size 25. Size 25 was chosen since it had the largest difference between methods [22] and, in general,

the larger the graphs become, the more pronounced the difference between methods. From this

data it is apparent that the hybrid method gives performance between that of the Fiedler method

and the Bisection method.
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Table 4.4 Average Number of Steps to Complete All Five Profiles for All Five Size 25 Graphs.

Hybrid Bisection Fiedler SDP Tabu Bruteforce
4983.64 6391.6 1820.68 1935.84 1748.12 2647.56

The growth in connectivity from an empty graph as well as a line graph was evaluated.

In the first case, edges were repeatedly added to an initially empty graph with 25 nodes. The

connectivity after each new edge addition is plotted in Fig. 4.2. The same process was repeated

with the initial graph being a line graph and is shown in Fig. 4.3. From these two plots, it is

apparent that the hybrid method again strikes a balance between the Fiedler method and bisection

method.
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Figure 4.2 Algebraic Connectivity of An Initially Empty Graph as Edges are Added.
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Figure 4.3 Algebraic Connectivity of An Initial Line Graph as Edges are Added.
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4.5 Summary

In this chapter a new, hybrid method was developed which improves the accuracy of the

efficient Fiedler method by predicting cases in which the Fiedler method does not work, and instead

employing the more computationally expensive, but accurate, bisection method. This hybrid

method relies on the development of an accurate classifier, in this case a random forest, to predict

the success or failure of the Fiedler method. A set of features has been developed which can be

used for such a classifier and this classifier has been incorporated into a method for selecting an

edge. This method has been demonstrated in a connectivity tracking simulation and compared with

the standalone methods by evaluating all graphs from size 4 to 7, and samples of graphs from size

8 to 25. It has also been shown how a size 25 graph can be grown starting from an empty graph or

a line graph to a complete graph, using the hybrid method as well as other standalone methods.

The hybrid method could be improved by reducing the number and complexity of the

features used and by reducing the size of the random forest. Several experiments were conducted

using smaller feature sets based on the correlation between the features and the success indicator,

however, these reduced feature sets under-performed the current, larger set of features. One likely

reason for this is that some combination of the features ismore important than the individual features

themselves. Further experimentation, possibly with new, untested features, could potentially yield

a smaller and/or more effective feature set.

Additionally, different types of classifiers could be explored to possibly improve the pre-

diction performance or efficiency. Furthermore, a study into the modification of connectivity over

multiple additions or deletions is needed.
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CHAPTER 5

A DISTRIBUTED METHOD FOR CONNECTIVITY ESTIMATION AND CONTROL

The connectivity of a multiple robot team can be computed from the graph Laplacian

when the entire network topology is known. It is desirable, however, for each node to know the

connectivity of the network without explicitly communicating all of the connections. This allows

each robot to make decisions that affect the connectivity of the team while limiting communication

that spans the entirety of the network.

Franceschelli, et al. [48] developed a decentralized method of estimating the spectrum of

the graph Laplacian at each node using only messages exchanged between neighboring nodes. This

system is described here.

Consider a system given by


Ûx(t)

Ûz(t)

 = A


x(t)

z(t)

 , A =


0 I + L

−I − L 0

 (5.1)

where x and z are state variables, I is the identity matrix, and L is the graph Laplacian of a

network.
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For a row i this gives

Ûxi(t) = zi(t) +
∑
j∈Ni

zi(t) − z j(t)

Ûzi(t) = xi(t) +
∑
j∈Ni

xi(t) − x j(t)

(5.2)

[48] where Ûxi and Ûzi describe the change in a given row i for the state variables x and z, xi

and zi are the ith entries in the x and z state vectors and correspond to nodei, and Ni is the set of

indices for the neighboring nodes which are connected to nodei.

Thus, each node in the graph can compute its entries xi(t) and zi(t) by exchanging its state

with its neighbors.

The solution [48] of this system is given as

xi(t) =
n∑

j=1
[v j(i)(cos((1 + λ j)t)vT

j x(0)+

sin((1 + λ j)t)vT
j z(0))]

zi(t) =
n∑

j=1
[v j(i)(−sin((1 + λ j)t)vT

j x(0)+

cos((1 + λ j)t)vT
j z(0))]

(5.3)

where xi and zi are entries in the state vectors x and z, v j(i) is the ith entry in the jth

eigenvector, λ j is the jth eigenvalue, and n is the number of nodes. The initial state should be

chosen uniformly at random with |x0 | = 1 and |z0 | = 1.
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By numerically solving the differential equation at each time step t and recording a history

for the duration of the time window, sufficient data can be gathered for spectral analysis. As seen

in Equation 5.3, the frequencies present in the state trajectory correspond to the eigenvalues of the

Laplacian plus one. Therefore, an analysis of the frequency spectrum of the state history will reveal

the eigenvalues for the network, including the algebraic connectivity.

As an example, consider the graph shown in Fig. 5.1 and the corresponding time-domain

plot of the state vector at node1, x1(t), is shown in Fig. 5.2.

Figure 5.1 A Graph with Five Nodes.
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Figure 5.2 Time-domain data for the Graph Shown in Fig. 5.1.
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Figure 5.3 Amplitude Spectrum for the Graph Shown in Fig. 5.1 at Node 1.
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The eigenvalues of the graph are λk = {0, 1.5858, 3, 4.4142, 5}. As seen in the amplitude

spectrum shown in Fig. 5.3, the corresponding frequencies are at 1 + λk .

A team’s connectivity can be modified throughout a flight by either adding or removing

edges, or by increasing or decreasing the edge-weights. When a UAV in the team moves within

the wireless range of their neighbor a new edge will be added. Conversely, when a UAV moves

outside of the wireless range of a connected neighbor, the edge is removed. The same effect can

also be achieved, without requiring physical movement, by enabling and disabling communication

with neighbors. Furthermore, edge weights can be modified by altering the signal strength either

by moving and changing the distance to a neighbor or by adjusting the power used to transmit to a

neighbor.

As mentioned in Chapter 2, modifying the connectivity through the addition and deletion

of edges has been shown to be NP-hard [30]. Four heuristic methods were described in 3.1, one of

which was the greedy perturbation heuristic [10]. This method relies on knowledge of the Fiedler

vector, the eigenvector associated with the algebraic connectivity.

In this chapter an extension to the decentralized Laplacian spectrum estimation in [48] is

developed which allows estimation of the entries of the Fiedler vector at each node in the graph.

Furthermore, the decentralized Fiedler vector estimation was used to implement a distributed

version of the greedy perturbation heuristic [10], or Fiedler method, of selecting an edge to be

added or deleted from a graph. This new distributed method is then used as the basis of an

algorithm which allows a team of UAVs to track a connectivity profile. The effectiveness of this

decentralized algorithm is compared against the centralized Fiedler method [10] and evaluated
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using a brute-force comparison on graphs up to size seven, a sampling of Erdős-Rényi random

graphs up to size 15, and a connectivity tracking simulation [22].

5.1 Distributed Fiedler Vector Estimation

Based on the work in [48], an extension is now provided which allows recovery of the

eigenvectors of the graph Laplacian.

Observing Equation 5.3 reveals that the state trajectory of x is a pair of sinusoids with

amplitudes v j(i)(vT
j x(0)) and v j(i)(vT

j z(0)). By choosing the same initial vector for both x0 and z0

the amplitudes of both sinusoids become equal and proportional to v j(i). The amplitude of every

node is scaled by the same value, vT
j x(0), which means that the amplitude detected by any node is

proportionate to its entry in the Fiedler vector by the same amount as any other node, allowing for a

comparison between entry values. By evaluating the amplitude peaks, the magnitude of the Fiedler

vector entries can be recovered. As can be seen in Fig. 5.4, the peaks associated with λ2 are at

[0.1266; 0.1273; 0.0531; 0.0520; 0.0071]. The normalized vector then becomes [0.6511; 0.6547;

0.2731; 0.2674; 0.0366] which is a reasonable estimate for the magnitudes of the true eigenvector

entries, [-0.6515; 0.6552; 0.2733; -0.2675; 0].

All that remains is to determine the sign of each entry. This is accomplished by inspecting

the imaginary portion of the spectrum obtained by the Fourier transform. Since all sinusoids in the

system have the same amplitude and sign before scaling by their respective entries in the Fiedler

vector, entries with opposite signs in the Fiedler vector will have a phase angle 180◦ apart. The

choice of sign given is arbitrary so long as entries with opposite signs in their imaginary components

maintain opposite signs in their estimated Fiedler vector entries.
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Figure 5.4 Amplitude Spectrum of All 5 Nodes for the Graph Shown in Fig. 5.1.
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In the case of a repeated eigenvalue, the Fiedler vector estimation is still valid. However,

the result will be a linear combination of two or more eigenvectors associated with the algebraic

connectivity, which is still an eigenvector associated with λ2. The resulting vector will be

ṽ2 =

1+k∑
j=2

vT
j x(0)v j, (5.4)

where k is the multiplicity of λ2.

5.2 Algorithm

The decentralized Fiedler vector estimation was developed into an algorithm which could

determine, in a distributed manner, an edge to add or remove from the graph for a maximal or

minimal effect in terms of the connectivity. The algorithm is based on the Fiedler method [10] of

selecting an edge and the distributed Fiedler vector estimation.

Initially, each node is given a unique identification number from 1 to n. It is assumed that

the graph is connected and a means of communication between nodes exists. Each node should

know the total number of nodes in the team and parameters for the system, the time step increment,

∆t, and duration, T . The parameters chosen have an impact on the ability to effectively process

the signal that is produced. A primary consideration is to sample, or record, state values at a rate

greater than or equal to the Nyquist rate. Since the largest possible value of λn is the number of

nodes, n, it is recommended to sample or compute the states of each node with a frequency of 2n

or greater.

The first step in the algorithm is to run the local interaction rule according to the decentralized

Laplacian eigenvalue estimation method [48]. This begins by initializing each node’s value of xi(0)
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and zi(0), its entries in the x and z state vectors. This will be a random value between negative one

and one, inclusive. Next, the nodes begin performing the interaction rule. This requires each node

to exchange its state with its neighbor, compute Ûx and Ûz according to Equation 5.2, then numerically

integrate the result to obtain x and z. The numerical implementation used for this research was a

fourth-order Runge-Kutta method.

The interaction rule is executed for a pre-defined number of steps. As it is executed, the

value of xi(t) at each step are recorded. See the example in Fig. 5.2. It is not necessary to store both

x and z state histories as both signals contain the desired information. Once the interaction rule

has completed, the Discrete Fourier Transform (DFT) for the state history is computed. Using the

resulting amplitude spectrum (see Fig. 5.3), each node then executes a peak-finding algorithm. In

its most basic form, this involves finding all points f (k)where f (k) > f (k−1) and f (k) > f (k+1).

The location of these peaks indicates an eigenvalue for the graph shifted by one. The amplitude at

the peak should be stored as the magnitude of the entry in the corresponding eigenvector. The sign

of the entry is determined as the sign of the imaginary portion of the frequency-domain data at that

point.

Once each node has determined its entry in the Fiedler vector, it will take an action based on

the type of desired connectivity change. Determining a decrease in connectivity is more accurate

since every possible edge can be evaluated. This is because every existing edge connects two nodes

who know their entry in the Fiedler vector. In these cases, the nodes exchange their entries with

their neighbors and compute the squared difference. If a minimum decrease is desired, the nodes

keep only the information corresponding to the edge with the smallest squared difference. If a

maximum decrease is desired, then the edge with the maximum squared difference is used.
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Determining an increase in connectivity is more challenging since it involves evaluating

edges where the two nodes cannot share their Fiedler vector information. Sharing information with

existing neighbors does not help the node find a new potential edge. The solution used in this work is

to exchange information with two-hop neighbors. This allows each node to determine the best new

edge between itself and a node which shares a neighbor. In a similar manner to the decrease method,

each node determines the two-hop edge information which has a maximum squared difference or a

minimum squared difference, depending on the desired change in connectivity.

Once each node has made a local determination of the best edge to add or remove, based on

the Fiedler method, a system-wide minimum or maximum reduction operation is completed. Each

node is considered as a node in a logical binary tree structure formed based on the node indices. The

root node is node1. Each node has up to two children. If the parent is nodei then the children are

node2i and node2i+1. The orphan nodes of the tree immediately send their optimal edge information

to their parent node. Each parent gathers up to two edge choices from its children, determines the

best choice among the children’s choices and the parent’s information, and then sends that to its

parent. This process repeats until it reaches node1, which makes the final determination. Once the

decision is made, a command to move is sent to the two nodes involved.

5.3 Simulation

To study the effectiveness of this approach, the decentralizedmethod and the Fiedler method

were tested on 100 Erdős-Rényi random graphs of size 4 to 10 with edge probability of 0.5 so that

every graph of size n was equally probable. The resulting connectivity was compared to the optimal

connectivity that could be obtained based on a brute-force search.
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A simulation was also conducted to track a linearly increasing and a linearly decreasing

connectivity profile using a random graph with 10 nodes. The graph and profile used was selected

from those used in Chapter 3. The method of tracking connectivity was also discussed in that

chapter.

The number of steps to complete the profile for the same graph and same profile was

determined and compared with the previous result using the Fiedler method.

5.4 Results and Discussion

The results of the edge selection tests are shown in Table 5.1 for increasing and decreasing

connectivity. In many cases, the decentralized system performs well. In determining the edge to

delete from the graph it is able to evaluate all possible choices distributively. For this reason, the

performance of the decrease functionality almost matches the centralized Fiedler method. The edge

addition functionality however is limited due to the nature of the problem. The optimal edge to

maximally increase connectivity is often one which connects distant portions of the graph. Since

the distributed method is limited to evaluating the two-hop neighbors, it does not consider edges

with large reach. This is a primary reason that the edge addition performance lags behind the

centralized method, which uses global information. However, in real systems, creating edges based

on large movements may not be practical.

The system was also used to run two profiles on size 10 graphs. One linearly increasing

and one linearly decreasing. An example of a profile track based on the centralized Fiedler method

is shown in Fig. 5.5. Table 5.2 shows the number of steps required for each method to complete
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Table 5.1 Number of Successful Edge Selections in Determining Maximum and Minimum
Increase and Decrease in Connectivity for a Sampling of Graphs Size 4 Through 10.

Size Dir. Type Fiedler Method Decentralized Total
4 - Max. 64 59 64
5 - Max. 100 92 100
6 - Max. 94 85 100
7 - Max. 91 79 100
8 - Max. 87 81 100
9 - Max. 90 76 100
10 - Max. 78 73 100
4 - Min. 64 50 64
5 - Min. 91 54 100
6 - Min. 78 49 100
7 - Min. 77 43 100
8 - Min. 78 54 100
9 - Min. 76 54 100
10 - Min. 76 59 100
4 + Max. 53 54 64
5 + Max. 74 74 100
6 + Max. 73 47 100
7 + Max. 73 40 100
8 + Max. 52 41 100
9 + Max. 51 27 100
10 + Max. 55 27 100
4 + Min. 62 57 64
5 + Min. 95 66 100
6 + Min. 85 59 100
7 + Min. 89 65 100
8 + Min. 90 59 100
9 + Min. 90 63 100
10 + Min. 89 71 100

Table 5.2 Number of Steps Required to Complete Profile.

Size Profile Fiedler Method Decentralized
10 Increasing 492 554
10 Decreasing 937 1175
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Figure 5.5 Linearly Increasing Profile and Tracking History for the Centralized Fiedler Method.

the profile. Although the distributed method did not perform as well as the centralized Fiedler

approach, it was not far off.

One aspect to consider is the amount of communication necessary to implement this system.

Although many messages must be transmitted to distriubtively compute the state and trajectory of

the system, the messages are almost exclusively between immediate neighbors. Franceschelli et.

al. [48] provided an upper bound on the communication rounds necessary to collect a sufficient

amount of data as 4∆maxTmin fs based on using the fourth-order Runge-Kutta method in conjunction

with this system. ∆max is the maximum degree of any node in the system, Tmin is the largest period

of the sinusoid with the smallest frequency, and fs is the sampling frequency.
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Several limitations exist with this approach. First, when the initial state vector is orthogonal

to any eigenvector, it will attenuate the signal associated with that eigenvector’s eigenvalue. When

randomly selecting the initial state vector it is possible to select an orthogonal or near-orthogonal

vector which makes it difficult to accurately extract information from the signal spectrum. Further-

more, a zero entry in an eigenvector will also attenuate the associated signal. This is a large factor

in the performance of the distributed method compared to the centralized method.

The first attenuation problem could be solved by executing the system twice. In the first

execution, a random state vector would be used. Then, the result could be evaluated to determine

if an orthogonal vector was used, in which case a new random vector would be generated and the

system would execute again.

If the results instead suggested that some entries contained zeroes, a simple voting protocol

could determine the most likely position for λ2, which could be shared via a broadcast to all nodes.

The nodes could then accurately determine their Fiedler entry values without the need to execute

the system again.

Running the system a second time can also be used to greatly increase the accuracy. When

an eigenvector of the graph is used as x0, the peaks associated with the other eigenvectors are

attenuated and the peak associated with the eigenvector used as x0 is amplified. If an approximate

Fiedler vector and λ2 is determined on an initial run, it can be used in the second execution to amplify

the peak associated with λ2. The approximate location of the peak would be known, allowing the

nodes to locate it more precisely and more easily determine if the signal was attenuated due to a

zero entry.

77



Another limitation is the use on large graphs. Very large graphs will require higher

frequencies and longer time windows to accurately analyze the system.

Finally, the system must remain connected to function. Disconnecting a node would result

in obtaining the spectrum of a graph with n − 1 nodes, rather than the true spectrum for the graph

with a disconnected node.
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CHAPTER 6

A CONNECTIVITY TRACKING CONTROLLER

In the previous chapters, a rule-based connectivity tracking method was used with a basic

motion model. In those experiments, each agent was able to move in any direction with a constant

velocity. The model disregarded the necessity of turning, accelerating, and decelerating. Although

a simple model, it is not without merit. Many UAV applications involve multi-rotor vehicles which

are capable of moving in any direction. They are also very responsive, and can make sharp changes

in direction. Even so, a higher fidelity dynamics model is desired. With it, comes the need for a true

controller. In this chapter, a consensus based controller [49] [50] which can be used to drive agents

to relative positions, optionally around a target, is adapted for the use of connectivity tracking. A

simulation was built in Mathworks Simulink and controlled from MATLAB vis a Robot Operating

System (ROS) interface to demonstrate its effectiveness.

6.1 Consensus Controller

Consider a team of UAVs or other agents in a multi-agent network. Each agent can

communicate directly with its neighbors, and indirectly with all other agents, so long as the graph

remains connected. Assume that the UAV team remains at a constant altitude. Then, the states of

the ith UAV, where i ∈ [1, n] are as follows,
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pi =



xi

yi

vi

θi

 .
(6.1)

The equations of motion, then, are as follows.

Ûp =


Ûx

Ûy

 =

vicosθi

visinθi

, (6.2)

Üp =


cosθi −visinθi

sinθi −vicosθi



Ûvi

Ûθi

 . (6.3)

Let

Mi =


cosθi −visinθi

sinθi −vicosθi

, (6.4)

and,

ui =


Ûvi

Ûθi

 . (6.5)

Then, ui is an input to the system and Mi is amatrixwhich relates the input to the acceleration

of the x and y position.

The control objective is to drive each agent to a desired position, relative to the center of

the formation, and can be expressed as
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pi(t) − pavg(t) → Pi

Ûpi − Ûpavg → 0
, (6.6)

where pi is the position vector representing the location of the ith UAV, pavg is the average

position of all UAVs in the team, Pi is the desired position for the ith UAV, Ûpi is the velocity of the

ith UAV, and Ûpavg is the average velocity of the team.

In other words, the relative distances between pairs of agents should converge to a desired

relative displacement and the velocities of each agent should converge to the same value.

The control law to move the ith UAV to achieve the desired separation with the jth UAV is

given in Equation 6.7 [51].

Miui = Mju j − α1(p̂i − p̂ j) − α2( Ûpi − Ûp j) (6.7)

The ideal control input would satisfy Equation 6.7 for all i, j ∈ [1, n], however, there is no

such u which can satisfy all of these equalities as the system is overdetermined [49]. The best

solution is to average all ui which satisfy the equations separately. Therefore, the control input ui

for each UAV is given as

ui =
M−i 1∑
j∈Ni

ai j

∑
j∈Ni

ai j[ Üp j − α1(p̂i − p̂ j) − α2( Ûpi − Ûp j)] (6.8)

[51].
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This is a consensus-based control method which is decentralized since each control input ui

requires only information from the neighbors of the ith UAV. Proof of convergence for this method

is given in [49].

An example of this control method executed on a team of four UAVs is shown in Fig. 6.1

Figure 6.1 Control of Four UAVs Driven to Equal Spacing Around a Center Point.
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6.2 Connectivity Tracker

The previously described controller was adapted for connectivity tracking using the rule-

based connectivity tracking algorithm shown in Algorithm 4 in Chapter 3. The UAV dynamics and

consensus controller were simulated using Simulink (see Appendix). The desired positions, current

connectivity (λ2), and current states were communicated with the MATLAB-based connectivity

tracker via a ROS interface. This interface allows a physical UAV team to take the place of the

simulation during later testing.

The connectivity tracker sent desired relative positions to the controller in the Simulink

simulation via a ROS message. The controller then continually computes control inputs for each

UAV based on the current states of the UAVs as well as the desired positions. The connectivity

tracker monitors the states of the UAVs as well as the connectivity of the team by subscribing to

ROS topics running within the Simulink simulation. Since the controller is a consensus controller,

it drives each UAV to the same heading and velocity. Once the connectivity tracker detects that the

mean squared error between each UAVs heading and velocity and the average heading and velocity

of the entire team drops below a threshold, it can consider that the move has been completed and

re-evaluate the status of the team. The connectivity tracker will continually give inputs in the

form of desired positions based on either contracting and expanding edges or adding and removing

edges as discussed in Chapter 3. Once the team has reached the current target connectivity, a new

target connectivity is set within the connectivity tracker and the rule-based connectivity tracking

algorithm again proceeds to give inputs for edge modification, addition, or deletion until the profile

is completed.
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6.3 Simulation

As a proof of concept, the connectivity tracking simulation was conducted twice, once

with the Hybrid Algorithm discussed in Chapter 4 and once with the Distributed Fiedler Method

discussed in Chapter 5. The output of these simulations is shown below. The profile used for both

simulations was λ2(k) = [1, 2, 3, 4, 3, 2, 3, 4], where k is an index to the desired profile array.

Figure 6.2 Connectivity History of a Five UAV Team Using the Consensus Controller and the
Hybrid Method.
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Figure 6.3 Connectivity History of a Five UAV Team Using the Consensus Controller and
Distributed Fiedler Estimation Method.
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Figure 6.4 Trajectory of a Five UAV Team.

Figure 6.5 Trajectory of a Five UAV team, Zoomed-in.
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6.4 Results and Discussion

The consensus controller performedwell in the demonstrations using both the hybridmethod

and the distributed Fiedler estimation method. The consensus controller was successfully used to

continually place the UAVs at desired positions relative to each other, based on inputs from the

connectivity tracker. This allowed the system to create the desired graph structure and resulting

connectivity at each step during the course of the profile.

The controller could be improved by removing the requirement for all UAVs to be moving

and reaching a common velocity. While a common velocity may be desirable in fixed wing UAVs,

multi-rotor UAVs often hover in place. The connectivity tracker or the controller should also

account for the potential to inadvertently break or create links during moves. This would help

prevent some of the drastic spikes seen in the connectivity history. Next, the controller should

incorporate more constraints and objectives. Finally, the controller could be made to minimize

distance traveled when moving a UAV to a new position.

6.5 Summary

In this chapter a consensus controller with double-integrator dynamics was implemented to

simulate and control a team of UAVs. The rule-based connectivity tracking algorithm was used to

direct the UAV team in following a desired connectivity profile. The controller and UAV dynamics

were simulated in MATLAB and simulink. The connectivity tracking algorithm was executed with

both the hybrid method and the distributed Fiedler method of selecting edges to add and remove

from the graph.
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Demonstrations showed that the consensus controller, combined with the connectivity

tracker, allowed the UAV team to effectively complete the desired connectivity profile using both

algorithms.
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CHAPTER 7

CONCLUSION

This work presented a comparison of four methods for modifying connectivity via edge

addition or deletion. A rule-based connectivity tracker was developed and a simulation was

conducted using a variety of graph sizes, starting configurations, and profiles. A hybrid algorithm

was developed based on two leading methods, the greedy perturbation heuristic [10] (Fiedler

Method), and the bisection method [12]. A distributed method of estimating the eigenvectors of the

graph Laplacian was developed and incorporated into a distributed greedy perturbation heuristic

(FiedlerMethod) for selecting edges for addition and deletion. Finally, a consensus-based controller

was adapted and simulated with a two-dimensional dynamics model. A connectivity tracker was

created to command the consensus controller using either the distributed Fiedler Method or the

centralized Hybrid Method.

7.1 Recommendations for Future Work

Connectivity is non-differentiable and attempts to modify the graph result in many discon-

tinuities as edges are added and removed, either intentionally or unintentionally. The selection of

edges is NP-hard [30] and while methods exist to select edges for moderately sized graphs, the

problem is compounded when multiple edges need to be added or removed, and no good methods

currently exist.
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Future work should focus on smoothly transitioning between desired connectivities. Current

research into combinatorial-type games may be beneficial in developing a more advanced tracking

planner. Additionally, the use of selectively connecting and disconnecting to nodes, rather than

relying on a disc model, will be beneficial in giving more control over the network.

In terms of distributive control, a cluster-based approach, such as that used in [52] may

present new opportunities for decentralization. Furthermore, a framework for working with con-

nectivity from the perspective of the end user as well as the application developer is needed so that

connectivity can be clearly defined as a mission requirement and end users can have an understand-

ing of the performance associated with a given connectivity. Variations of the Laplacian matrix,

such as the normalized Laplacian, may be beneficial in establishing a common framework to be

used among any multi-agent network. This framework should be portable in the sense that it allows

an end user to apply the same understanding of connectivity to any multi-agent system, regardless

of properties such as the network size or particular hardware used.

Finally, practical aspects such as the estimation of link quality, complications of loss of

link or loss of a UAV, time delays and dropped packets in communication, among others should be

examined and developed into a robust implementation.
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APPENDIX A

UAV DYNAMICS AND CONSENSUS CONTROL SIMULATION
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Figure A.1 Simulink model incorporating UAV dynamics, a consensus controller, and a Robot
Operating System interface
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Figure A.2 A subset of Fig. A.1 showing the computation of the M control input parameter

Figure A.3 A subset of Fig. A.1 showing the ROS interface which inputs desired UAV positions
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Figure A.4 A subset of Fig. A.1 showing the ROS interface which publishes the state of the
UAVs

Figure A.5 A subset of Fig. A.1 showing the ROS interface which publishes the current
algebraic connectivity of the system
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Figure A.6 A subset of Fig. A.1 showing the ROS interface which receives the desired
connectivity input
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