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ABSTRACT 

 

 

 The reliability of microelectronics operating in harsh environments is a concern for space 

systems. Various stresses, such as exposure to ionizing radiation and extreme temperatures can 

result in performance degradation, transient anomalies, and hard failures. These issues have 

become evident in recent years with the increasing interest in the use of commercial-off-the-shelf 

(COTS) electronics in space systems. While COTS parts offer maximum performance, their use 

results in unavoidable increases in risk. This work presents a noninvasive technique for the 

measurement of cumulative and transient radiation effects in arbitrary circuits, termed ionizing 

radiation effects spectroscopy (IRES). IRES identifies radiation effects based on statistical time-

frequency analyses of native waveform behavior, thus having a minimal impact on operating 

performance. The resulting measures are used to identify parametric shifts as well as transient 

anomalies. IRES, which exploits the subtle characteristics inherent in the waveforms, shows 

promise for in-situ health monitoring and radiation mitigation. 
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CHAPTER I 

INTRODUCTION 

 

 

Complementary metal-oxide-semiconductor (CMOS) devices have been shrinking in size 

in accordance with Moore’s Law since 1965 [1, 2]. This reliable scaling of integrated circuit 

technologies has fundamentally changed society, enabling widespread use of smartphones, Global 

Positioning Systems (GPS), and Internet-of-Things (IoT) connected devices, for example. All of 

these services regularly use satellites as the information relaying routers. However, the reliability 

of the commercially available parts, and in particular the radiation-related reliability, for operation 

in space is not improving as fast as dimensional scaling and is often seen to worsen with scaling. 

Consequently, space systems often use a costly combination of radiation-hardened by design 

(RHBD) and commercial off the shelf (COTS) components to improve the radiation-related 

reliability. The inevitable regular use of COTS for obtaining the maximum performance 

capabilities offered by a technology raises the concern for feasibility of these devices which are 

meant for long term space missions. 

Satellites in space are vulnerable to radiation generated from Galactic Cosmic Rays (GSRs) 

and solar windstorms. The harsh space environment exerts various type of stresses dynamically 

(i.e., temperature and/or radiation) to such devices. These devices are protected by shielding 

materials which lets a minimal number of energized particles to penetrate and reduces the risk of 

damaging the devices. However, not all parts of the satellite are protected by shielding and it is not 

economically ideal to shield the entire satellite’s electronics. A CMOS device can sustain certain 
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amount of cumulative radiation (i.e. total ionizing dose or TID) before it alters from nominal 

operation or stops functioning permanently. Also, various transient phenomena associated with the 

interaction of single ionizing particles with the semiconductor material (i.e. single event effects or 

SEE) can negatively impact the operation of the systems. These types of radiation phenomena can 

be assessed using various dosimetry techniques, but these techniques are somewhat invasive to the 

circuit operations and require additional hardware. 

This work proposes a non-invasive technique, termed Ionizing Radiation Effects 

Spectroscopy (IRES), that allows for the in-situ identification of TID and Single Event Transient 

(SET) radiation effects without the need for internal node interrogation or modification of the 

circuits and systems. IRES is based on a technique called radio frequency distinct native attribute 

fingerprinting, shortly called RF-DNA fingerprinting, developed for wireless radio identification. 

RF-DNA relies on the statistical features of a device’s output signal for identification of authorized 

device from rogue devices within a network. Similarly, for system changes induced by TID or 

SEE, the IRES technique measures statistical features of data samples collected from an arbitrary 

circuit signal. Shifting statistical features of an arbitrary signal are used to indicate the presence of 

radiation-induced parametric shifts or transient phenomena. The calculated statistical measures are 

then used to train a Machine Learning (ML) algorithm for analysis of the system state. In this 

work, the TID levels and operational voltage states of Voltage-Controlled Oscillator (VCO) and 

Phase Locked Loop (PLL) circuits are used to demonstrate the use of the IRES technique.  IRES 

provides radiation damage illustrations that could be very useful when considering lifespan of a 

device in space orbit which could not be manually fixed or replaced. These illustrations give 

specific information about the damage on the circuit such as instability of the circuit or charge 
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deposited through the radiation effects. Work presented in this thesis is demonstrated in the paper 

[3] and [4]. 



4 

 

 

 

 

 

 

CHAPTER II 

BACKGROUND 

 

 

Space Environment 

 There are various space radiation phenomena, such as TID, Displacement Damage (DD), 

SEE, and Charging/discharging effects, for example, known to adversely affect the nominal 

circuit/satellite operations. These events are caused by the interaction of ionizing radiation with 

semiconductor material within the electronics systems. The ionizing radiation present in the space 

environment is due to Galactic Cosmic Rays (GCRs), solar events and charged particles, such as 

protons and electrons trapped within the Earth’s magnetosphere. 

Heavy ions, protons and electrons from solar particle events and GCRs are trapped within 

the magnetic field lines of the Earth creating the Van Allen belts [5], illustrated in Figure 1 [6]. 

The electronics in satellites are vulnerable when they are passing through these belts. The 

interactions of satellite devices or electronics with the charged particles can disturb the satellite 

operations by setting or resetting bits, creating transient signals that compete with legitimate 

signals within the systems, and by degrading device parameters. Sometimes these interactions can 

permanently damage the satellite and jeopardize the mission. For example, the HIPPARCOS 

satellite mission of the European Space Agency (ESA) was terminated due to radiation effects on 

satellite components resulting difficulties in satellite communication between the ground and the 

onboard computer [7]. 
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Figure 1 

Near Earth space environment illustration, after [6] 

 

 

 

Figure 2 

Motion of charged trapped particles in Earth’s magnetic field [8, 9] 

 

 

Once a charged particle gets trapped into Earth’s magnetic field, it moves into a spiral 

motion illustrated in Figure 2 [8, 9]. As the particle approaches the Earth’s polar region, its spiral 
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motion tightens due to the high magnetic field strength and subsequently reverses its direction. 

The trapped protons in Low Earth Orbit (LEO) are the cause of intense and penetrating radiation 

in the South Atlantic Anomaly (SAA) region [8]. In addition to the protons and electrons, there 

are heavy ions with very high-energy levels travelling from outer space to the solar system called 

GCR.  

Trapped protons can cause TID effects, DD effects and SEE, whereas trapped electrons 

can cause TID effects, DD effects, and charging/discharging effects on the spacecraft. GCRs 

contain high-energy charged particles with energy as high as 1011 GeV that are originated outside 

of the solar system and they can cause SEE. Solar particle event such as Coronal Mass Ejections 

(CME) can cause TID effects, DD effects, and SEE [9]. To demonstrate the feasibility of the IRES 

technique, only TID and SEE radiation effects on the circuits are analyzed in this work.  

 

Total Ionizing Dose 

 In MOS transistors, radiation induced charge is trapped in oxides. In MOS transistors, for 

example, trapped charge within the gate oxides causes shifts in the threshold voltages of MOS 

transistors [10]. Sometimes, the shifts are large enough to turn on the MOS transistors without 

applying any gate voltages. The mechanism of charge trapping in gate oxides of a Metal Oxide 

Silicon Field Effect Transistor (MOSFET) device is illustrated in Figure 3 [10]. The radiation 

accumulates in the gate oxides and eventually even without applying the gate voltage, the potential 

from the trapped radiation charges turns on the transistor. Thus, TID is a cumulative or long-term 

radiation effect. The charging of the oxides due to ionizing radiation can affect the devices’ overall 

response and also result in degradation in device performance over time.   
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Figure 3 

Schematic of n-channel MOSFET showing radiation induced charges in the gate oxide [10]:  

(A) Normal operation of the transistor: Gate voltage is applied and MOSFET device is turned on 

(B) Post-irradiation: Trapped charges in gate oxide turns on the device with VG = 0 V 

 

 

Single Event Effects 

Single Event Effects (SEE) are caused by ionized particles traversing semiconductor 

devices. After a strike near a p-n junction, electron-hole pairs are generated, and these charges are 

swept across the p-n junction generating a photocurrent spike. Charge deposition can vary based 

on the Linear Energy Transfer (LET) of the ionizing particle. The energy transferred to the 

semiconductor device is defined by LET. The charge deposited by an ionized particle during the 

event can result in a temporary disruption in the nominal circuit operation, an upset (i.e. a change 

in the state of a memory bit from 0 to 1 or 1 to 0), or permanent damage to the device. Upsets 

resulting from SEE can propagate through the entire circuit, causing errors visible at the circuit 

output nodes. The current generated due to the transient strike are typically represented by double 
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exponential curves shown in Figure 4 as it is relatively easy to use the double exponential current 

source in circuit simulations [11].  

 

Figure 4 

Single Event Transient current spike representation through a double exponential curve [11] 

 

 

As the dimensions of semiconductor devices is decreasing with the technology trends, SEE 

is becoming more effective in disruption of the circuit operation [12]. A SEE can be categorized 

as a Single Event Transient (SET), Single Event Upset (SEU), Single Event Latchup (SEL), Single 

Event Gate Rupture (SEGR), and Single Event Burn out, to name a few. This work focuses on 

effects generated by SETs, as the first response of a given semiconductor device is generally 

transient in nature.  

 

RF-DNA Fingerprinting 

The IRES technique is based on radio frequency-distinct native attribute (RF-DNA) 

fingerprinting developed for identification of wireless devices using statistics-based features 
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extracted from their transmissions. RF-DNA fingerprinting has successfully demonstrated unique 

identification of wireless transmitters of the same manufacturer and model (i.e., serial number 

discrimination), which represents the most difficult case [13-19]. RF-DNA fingerprinting 

technique is based on the idea of human biometrics in which an individual’s identity is established 

from attributes present within a given physical trait. For example, fingerprints and the retinal 

patterns are unique to each individual.  

Figure 5 shows the RF-DNA fingerprints of four distinct devices [15]. Each RF-DNA 

fingerprint consists of three different statistical measures : kurtosis, skewness, and variance. It can 

be seen that each device’s statistical measures are different from one another. Other statistical 

measures such as mean and standard deviation can be used to represent the RF-DNA fingerprint. 

There are three basic approaches for the extraction of RF-DNA fingerprints: 1) time-domain 

fingerprints extracted from instantaneous amplitude, phase, and frequency [17, 19-21]; 2) 

frequency-domain fingerprints extracted from the waveform power spectral density [13]; 3) joint 

time-frequency-based fingerprints [14, 18].  
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Figure 5 

Average RF-DNA fingerprints of four Cisco devices: Each column represents the RF-DNA 

fingerprint of one device [15] 

 

 

Chapter Conclusion 

 The most basic devices in microelectronic circuits, such as MOSFETs, are vulnerable to 

the radiation in the space environment. The stress placed on these devices by the effects of space 

radiation can alter circuits’ nominal operations and jeopardize the mission. As satellites pass 

through the Van Allen belts, for example, the heavy presence of ionizing particles must be taken 

into consideration while estimating the reliability of the designed circuit. TID can degrade the 

device over long periods of time before completely failing, whereas SEE can result in spurious 

transient anomalies. This ionizing radiation can be measured using different dosimetry techniques, 

but these techniques are invasive to the operations of the circuit. The next chapter presents ionizing 
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radiation effect spectroscopy (IRES), a technique that shows a promise in eliminating the need of 

probing circuit nodes to identify radiation effects degradation and anomalies. 
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CHAPTER III 

IONIZING RADIATION EFFECTS SPECTROSCOPY FOR MEASUREMENT OF  

 

CUMULATIVE AND TRANSIENT RADIATION EFFECTS 

 

 

Introduction  

Device performance parameters have been shown to worsen with technology scaling due 

to inherent variation present in devices [22]. While variability is undesirable due to the additional 

constraints imposed on operating performance, the unavoidable variation allows for the 

identification of distinct and inherent features at the transistor, circuit, or system levels. With an 

accumulation of TID, these fundamental features shift with respect to the amount of charge 

trapping within the oxides, resulting in modification of the statistical parameters observable in the 

output waveform. These feature shifts result in an ability to characterize performance degradation 

through the measurement of waveform statistics without the need for invasive device interrogation.  

 

IRES developed for TID 

Similar to RF-DNA fingerprinting, IRES exploits sufficiently distinct and native attributes 

present within the waveform and it serves as the discriminatory information utilized by the 

technique. Here, the IRES technique is described for identification of TID levels and operational 

circuit voltage levels. In the proceeding sections, the IRES technique is developed for 

identification of SETs through statistical measurements of signal metrics (e.g., cycle-to-mean jitter 

and instantaneous frequency). Figure 6 shows the process of the development of a feature sequence 
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(F) from the output signal of the circuit. An arbitrary time sequence is divided into N blocks, each 

consisting of M time steps. Various statistical measures are then computed within each of the N 

blocks and concatenated to form a feature sequence [15]. In the case of TID, the N signal blocks 

generally do not overlap, but as discussed in the proceeding sections, overlapping signal blocks 

may be employed to enhance the identification of spurious, short-lived anomalies. 

 

 

Figure 6 

Waveform segmentation for the development of a feature sequence (F) used in an IRES image. 

An arbitrary time sequence is divided into N blocks, each consisting of M time steps. Various 

statistical measures are then computed within each of the N blocks and concatenated to form a 

feature sequence [15] 
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Time-Frequency Spectrographic Analysis 

Prior to describing IRES for identification of SET, time-frequency analysis is discussed for 

general use in spectroscopy applications. Spectroscopy has been employed in reliability 

applications for the extraction of the time-dependence associated with specific physical 

degradation phenomena. Characterization of the bias temperature instability has been performed 

using a similar spectroscopy method [23]. In general, time-dependent spectroscopy involves the 

measurement of timing information associated with a defect or anomalous behavior, and the 

development of a statistical profile of such data. This work employs time-frequency spectral 

analysis and develops a methodology for quantifying the statistical parameters associated with 

SET behavior. This section delivers an overview of time-frequency spectrographic analysis, time-

frequency Fourier analysis, and overviews the various tradeoffs associated with time and 

frequency domains. Then, IRES is presented as a method to augment time-frequency analysis to 

isolate erroneous transient behavior embedded within dynamic waveforms. 

In this work, -a phase-locked loop (PLL) circuit (see Chapter V) was used to demonstrate 

the feasibility of this technique. The Short-Time Fast-Fourier Transform (ST-DFT) [24] for 

viewing the frequency and phase content of a signal versus time is added with IRES to allow for 

isolating the spurious events within a signal. The Discrete Fourier Transform (DFT) [24] using 

(3.1) can decompose the discrete sampled signal (vout(t)) into its component frequencies.  

𝑉(𝑓𝑛) =  ∑ 𝑣𝑛
𝑃−1
𝑛=0 𝑒−

𝑗2𝜋𝑛

𝑃                (3.1) 

where vn=v[n] is the P-point sampled sequence of signal vout(t) for n = 0, 1, …, N-1. The Power 

Spectral Density (PSD) of the signal can be determined using (3.2)  

𝑆𝑣(𝑓𝑛) =  
1

𝑃
|𝑉(𝑓𝑛)|2           (3.2) 
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where, Sv is the PSD. Power for each frequency content (in units of dB/Hz) from total signal power 

is deconstructed by PSD [25]. Work in [4] shows that 2D joint time-frequency analysis allows for 

the extraction of short time-frame spectral content where DFT analysis is conducted in sample-

limited window w[n,m] according to (3.3).  

𝑉(𝑚, 𝑓𝑛) =  ∑ 𝑣𝑛𝑤[𝑛 − 𝑚]𝑃−1
𝑛=0 𝑒−

𝑗2𝜋𝑛

𝑃 =  𝑉(𝑓𝑛) ∗ 𝑤[𝑛]          (3.3) 

Example spectrograms of the PLL’s output waveforms and the cycle-to-mean phase jitter 

versus time with a window size of 15 samples and window shift of 1 sample using the ST-DFT 

with a Hamming window function [24] are shown in Figures 7 and 8 [4], respectively. The 

spectrograms in Figures 7 and 8 show the PSD of the frequency content contained within a sample 

window.  

 

 

Figure 7 

Spectrogram of the PSD of the PLL’s output waveforms at ~150 MHz frequency versus time 

with window size of 15 samples and window shift of 1 sample [4] 
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Figure 8 

Spectrogram of PSD of the cycle-to-mean phase jitter versus time using ST-DFT with a 

Hamming window function with window size of 15 samples and window shift of 1 sample [4] 

 

 

The spectrogram shown in Figure 8 was computed from cycle-to-mean phase jitter 

waveforms using the equation in 3.4 

𝜙𝑘(𝑣𝑛) =  
2𝜋 |𝑇𝑘−𝐸(𝑇𝑘)|

𝐸(𝑇𝑘)
                    (3.4) 

where the signal vn is sampled at each rising clock edge k, Tk corresponds to the instantaneous 

period at the kth edge, and E(Tk) is the expected period or population mean [26]. Work in [4] 

includes more spectrograms to show the tradeoff in time and frequency using varying window 

sizes and overlapping windows. It illustrates that a low number of data samples (i.e., 15 data 

samples from total of approximately 110 data samples) generated from the PLL’s output waveform 

and cycle-to-mean phase jitter within each window results in significant noise while improving 

the ability to detect an anomaly. Figure 9 shows corresponding waveforms that were used to 

generate the spectrograms in Figures 7 and 8. The top waveform in Figure 9 shows the PLL’s 
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output waveform, while the bottom waveform shows cycle-to-mean phase jitter extracted from the 

PLL’s output waveform. IRES augments time-frequency analysis presented in this section to 

leverage the computational savings of windowed spectral analysis while employing statistical 

analysis for isolating erroneous transient behavior embedded within dynamic waveforms. 

 

 

Figure 9 

Example waveforms used to generate spectrograms in Figure 7 (Top waveform) and Figure 8 

(Bottom waveform). Top waveform represents PLL’s output waveform after a SE strike. Bottom 

waveform represents extracted cycle-to-mean jitter from the output waveform 

 

 

IRES developed for SETs 

The IRES technique, from the previous section, is adopted here to identify SET anomalies. 

Statistical functions are computed within each window to assess the SET behavior and quantify 

the severity of the SETs. Figure 10 illustrates the window sampling method used for calculation 

of statistical measures computed for each window for identification of SET. As mentioned earlier 

in the Chapter II, Section “RF-DNA Fingerprinting”, the statistical measures such as mean, 
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standard deviation, variance, kurtosis, and skewness are calculated for each window. More detail 

about both IRES methods will be presented in subsequent Chapters IV and V. 

 

 

Figure 10 

Illustration of the window sampling method used for the calculation of statistical measures for 

identification of SET [4] 

 

 

Chapter Conclusion 

 A non-invasive technique, named IRES, was developed from the concept of RF-DNA 

fingerprinting. It uses the statistical analysis of any arbitrary signal of a circuit to analyze the circuit 

behavior in the presence of ionizing radiation. The IRES technique augmented with statistical 

analysis and time-domain spectroscopy analysis demonstrates practicality of it in the radiation 

effects domain. The IRES technique allows for a non-invasive method for determining the level 
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of ionizing dose as well as the operational voltage level of the circuit. In other words, IRES allows 

for in-situ determination of the circuit’s operational health. Also, the IRES technique allows for 

identification of SETs through statistical analysis. The IRES technique gives insight into the 

mechanism of a single event strike through various statistical features. Detailed analysis of TID 

and SETs using IRES technique presented in this chapter is demonstrated in subsequent Chapters 

IV and V. 
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CHAPTER IV 

TOTAL-IONIZING DOSE ANALYSIS WITH IRES 

 

 

Introduction 

This section presents the response of the RF circuits, designed and fabricated in 130-nm 

CMOS technology, to Total-Ionizing Dose (TID). This chapter primarily focuses on the analysis 

of two fundamental circuits: VCO and PLL circuits. In such circuits, degradation in operating 

frequency, supply current, and phase noise due to increases in leakage current, shifts in threshold 

voltages, and degraded transconductance results from exposure to TID [27-29]. The VCO circuit 

is an essential part of the PLL circuit. The PLL circuit is a closed loop system that helps maintain 

the frequency under lock. A block diagram of a PLL circuit is shown in Figure 11 [26]. The PLL 

circuit used in this work is a Charge Pump Phase-Locked Loop (CPPLL).  The CPPLL sub-circuit 

consists of a  Phase-Frequency Detector (PFD), Charge Pump (CP), Low-Pass Filter (LPF), VCO, 

and a frequency divider (β) [30]. The PLL used in this work was designed such that the output of 

open-loop VCO and closed-loop PLL can be measured separately on different output ports.  
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Figure 11 

General block diagram of a phase-locked loop circuit consisting of phase-frequency detector 

(PFD), charge pump (CP), low-pass filter (LPF), voltage controlled oscillator (VCO) , and 

frequency divider (β) [26] 

 

 

Factors such as changes in noise and loop stability may cause an eventual failure in the 

PLL [31]. A real-time measurement of the cause of the change in noise or loop stability can be 

difficult or impossible until a failure is observed. Minor increasing frequency shifts were measured 

with increase in TID dose levels, while significant changes in the noise performance were noted 

[3]. These significant changes in the noise performance will be described with illustration of the 

IRES images in the next section. Of particular note is the ability to capture the shifts in noise 

performance without interrogating the internal nodes of the circuit. The need for tracking the 

parametric shifts due to the risk of sudden failure has been emphasized in a recent work on 32-nm 

VCO [31]. Figure 12 shows a VCO’s phase noise (measured in dBc/Hz) versus TID (measured in 

krad(SiO2)) plotted at three different temperatures [31]. It shows that the failure points of VCO 

operation are dependent upon temperature and TID radiation level. It is also observed that the 

phase noise is unique at each failure. 
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The IRES technique captures various statistical measures from measurements of the 

waveforms of circuits to assess the stability. Instantaneous frequency is calculated from in-situ 

measurements of time-domain output waveforms of the VCO and PLL. Mean, standard deviation, 

and variance are the statistical measures used to create the IRES images of the circuit behavior. 

These statistical measures allow for the evaluation of the effect of TID while capturing multiple 

key performance metrics at the same time. ML classification is used to identify the operational 

state of the circuit (e.g., TID level and circuit bias voltage) using the spectral information from the 

IRES images. The IRES method is demonstrated using VCOs and PLLs designed and fabricated 

in a 130-nm CMOS process stressed in TID radiation effects. 

 

 

Figure 12 

Measured phase noise at 1-MHz offset as function of TID of a 32-nm VCO at a constant 

frequency of 20.4 GHz [31] 
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 This chapter shows work for development of IRES images generated from circuits exposed 

to TID radiation. The IRES technique uses subtle and significant differences in the behavior of the 

circuit waveforms to identify TID exposure. A predictive ML-based model was generated using 

the data obtained from the generation of the IRES images. The training sets for the ML models 

were obtained from measured waveforms from the devices with known bias conditions and TID 

radiation levels. Two dimensional statistical measures (e.g., mean and standard deviation) obtained 

using IRES were used to create a ML model and prediction accuracy of between 97.5% and  

100% was achieved with 400 training samples model checked against 100 testing samples. More 

details about the prediction accuracy of the ML models will be presented later in this chapter. 

 

Experiment details for VCOs and PLLs designed in 130 nm CMOS process 

In this chapter, the utility of IRES for the identification of device degradation using two 

VCOs and two PLLs designed and fabricated in a 130-nm CMOS process are presented. The VCOs 

(VCO A and VCO B) are designed to operate in open- or closed-loop configuration. Both VCOs 

had similar but unique operating performance within a frequency range of 10-350 MHz, a gain of 

approximately 500 MHz/V, and a linear operating range of 10-225 MHz [32].  

 Both VCOs and PLLs were irradiated with an Aracor X-ray source at a dose rate of 

approximately 31.5 krad(SiO2)/min at Vanderbilt University, Nashville, TN, USA. The VCOs 

were biased in the OFF state with the VCO control voltage (VinVCO) at 0 V and with a voltage 

supply (VDD) of 1.2 V. Both devices were irradiated up to 300 krad(SiO2). VinVCO was swept in 

steps of 50-100 mV at each radiation dose level (e.g., 10, 20, 40, 100, 200, and 300 krad(SiO2)). 

Output waveforms were captured at each step of the VinVCO. The waveforms were captured with a 

Tektronix DPO7104 Digital Phosphor Oscilloscope at a sample rate of 5 GS/s for each biased 
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condition and dose level. The experiments were performed at room temperature of approximately 

25 ̊C and measurements were made in-situ.  

Figure 13 and 14 show the output frequency versus input control voltage VinVCO of VCO 

A and VCO B, respectively, at TID levels of 0, 40, and 300 krad(SiO2) [3]. Negligible changes 

were observed in the gain of the VCOs after the irradiation. An increase in the frequency of 

approximately 30 MHz was observed for TID level of 300 krad(SiO2) throughout the linear 

operating region. This increase in the frequency indicates an increase in the drive current due to 

the changes in threshold voltage. Figure 15 and 16 show the output frequency versus input control 

voltage VinVCO of PLL A and PLL B, respectively, at TID levels of 0, 40, and 300 krad(SiO2) [3]. 

The VCO linear region was tracked to approximately 225 MHz for the input frequency using the 

PLLs. An increase of 30 MHz in the frequency was observed for a TID level of 300 krad(SiO2) 

over the entire linear operating region. Phase-locking characteristics of the PLL were not degraded 

due to the TID irradiation. 

 

 

Figure 13 

Measured frequency tuning curves showing output frequency versus input control voltage VinVCO 

of VCO A designed in a 130-nm CMOS technology at TID levels of 0, 40, and 300 krad(SiO2) [3] 
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Figure 14 

Measured frequency tuning curves showing output frequency versus input control voltage VinVCO 

of VCO B designed in a 130-nm CMOS technology at TID levels of 0, 40, and 300 krad(SiO2) [3] 

 

 

   

Figure 15 

Measured frequency tuning curves showing output frequency versus input control voltage VinVCO 

of PLL A designed in a 130-nm CMOS technology at TID levels of 0, 40, and 300 krad(SiO2) [3] 
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Figure 16 

Measured frequency tuning curves showing output frequency versus input control voltage VinVCO 

of PLL B designed in a 130-nm CMOS technology at TID levels of 0, 40, and 300 krad(SiO2) [3] 

 

 

 Example output waveforms of the VCO are shown in the Figure 17 [3]. The top waveform 

and the bottom waveform represent the pre-irradiation (at, 0 krad(SiO2)) and post-irradiation (at 

300 krad(SiO2))  measurements of VCO A, respectively, with y-axis representing amplitude and 

x-axis representing time. The nominal frequency of approximately 110 MHz was generated using 

bias voltage (VinVCO) of 0.6 V.  

Figure 18 illustrates the probability density functions of the instantaneous frequency for 

pre-irradiation at 0 krad(SiO2) (Blue/Dashed plot) and Post irradiation at 300 krad(SiO2) 

(Red/Solid plot) [3]. The plots in Figure 18 show that there is a slight increase in the mean 

frequency as the TID does level increases and it is indicated by the right shift in the distribution. 

The variance, post-irradiation, decreases which is indicated by the sharper peak of the distribution 

and it indicates a decrease in instability (reduced noise) of the circuit. It is quite clear that methods 
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of analysis using statistical measures can be exploited to further the analysis of behavior of the 

circuits that are exposed to ionizing radiation. The Gaussian distribution of the frequency was 

generated from the data obtained at 0.6 V VinVCO voltages for 0 and 300 krad(SiO2). It should not 

be assumed that the distribution for other VinVCO voltages will exhibit a similar Gaussian 

distribution. However, the techniques presented here are applicable to any arbitrary distribution. 

 

 

Figure 17 

Example waveforms used for generation of IRES: Pre-irradiation 0 krad(SiO2) (Top plot) and 

Post irradiation at 300 krad(SiO2) (Bottom plot) [3] 
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Figure 18 

Probability density functions of the VCO’s instantaneous frequency: Pre-irradiation at 0 

krad(SiO2) (Blue/Dashed plot) and Post irradiation at 300 krad(SiO2) (Red/Solid plot) [3] 

 

 

IRES Image Formation 

 As mentioned earlier, VCO and PLL output waveforms were obtained for 50 and 100 mV 

increments of VinVCO within the range of 0.1-1.2 V VDD. A total of 500 waveforms were captured 

with a Tektronix DPO7104 Digital Phosphor Oscilloscope for each biased condition and radiation 

dose level. The sampling rate of the oscilloscope was 5 GS/s. A Minimum of 1000 time steps were 

captured for each waveform. The instantaneous frequency was calculated for each cycle in the 

waveform and concatenated to create a frequency vector F. The frequency vector was then 

segmented into 50 blocks and up to five statistical measures (mean, standard deviation, variance, 

kurtosis, and skewness) were computed for each block. This process of generating a characteristic 

feature and calculating statistical measures is illustrated in Figure 6. Finally, the block features 

(i.e., mean, standard deviation, variance, skewness, and kurtosis) were normalized with respect to 

all statistical measures and all waveforms within an IRES image such that the maximum value of 
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any measure within an image was 1. These normalized values were used to plot the IRES image 

using a MATLAB function. The resulting discretized time sequence of statistical measures forms 

the IRES image and provides a visual indicator of microscopic (micro) transient variation of a 

feature on the y-axis of the IRES image as well as any macroscopic (macro) shifts in performance 

on the x-axis of the IRES image.  

The entire IRES image formation process is illustrated in the Figure 19. An IRES image of 

mean instantaneous frequency of VCO output waveform is shown in Figure 19. A waveform 

captured for 0.6 V VinVCO at 0 krad(SiO2) was used to generate the IRES image as shown in  Figure 

19 (A). Figure 19 (B) shows the captured time-domain waveform and Figure 19 (C) shows the 

zoomed in version of the time-domain waveform. Figure 19 (D) shows the instantaneous frequency 

vector extracted from the time-domain waveform. This vector was then segmented into 50 blocks 

and mean of each block was calculated to generate the IRES image shown in Figure 19 (E).  

 

 

Figure 19 

IRES image formation process for TID  
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 IRES images of the frequency for VCO A at frequency values of 62.6, 119.8, and 193.8 

MHz corresponding to VinVCO values of 0.5, 0.6, and 0.7 V, respectively, are shown in Figure 20 

[3]. The mean and standard deviation statistical measures of the instantaneous frequency are shown 

in the IRES image. Macro changes due to changes in the value of VinVCO are represented by the x-

axis. The width of the vertical bars is arbitrary and used to enhance the ability to visualize the 

variability. As the value of VinVCO increases, the mean of the frequency increases. It is indicated 

by a change from a dark tone to a light tone. Micro variations in the measurements are indicated 

along the y-axis for each block.  

 

 

Figure 20 

IRES images representing the mean and standard deviation measures of instantaneous frequency 

of VCO A at frequency values of 62.6, 119.8, and 193.8 MHz for VinVCO values of 0.5, 0.6, and 

0.7 V, respectively [3] 
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There are six IRES images within Figure 20 [3]. Each IRES image consists of 50 blocks. 

A solid color IRES image would indicate that all 50 measurements were identical, and no noise 

was measured. However, these IRES images have slight changes in their color, which indicates 

the presence of noise within a signal. However, each IRES image has similar average color 

indicating that the standard deviation measure is similar. 

 

 

Figure 21 

IRES images containing the mean, standard deviation, and variance measures of instantaneous 

frequency of VCO A at fixed bias of 0.6 V with respect to 0, 40, and 300 krad(SiO2) [3] 

 

 

 IRES images of VCO A instantaneous frequency with mean, standard deviation, and 

variance measures at a fixed bias 0.6 V at 0, 40, and 300 krad(SiO2) TID levels are shown in Figure 

21 [3]. Comparing the three blocks of mean statistical measures indicate that the frequency is 

increasing as the TID level increases. It is indicated by the subtle change in tone from dark to light 
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of the mean measure block. Standard deviation and variance measure blocks change tone from 

light to dark indicating the increase in the stability of the circuit output. The change in stability is 

not significant when going from 0 to 40 krad(SiO2), but at 300 krad(SiO2) the change in stability 

is significant and it indicates a non-linear change in stability. 

 

 

Figure 22 

IRES images of VCO A at a fixed frequency of ~302 MHz at 0 krad(SiO2)  (left) and 300 

krad(SiO2) (right). VCO A was retuned to maintain the constant frequency [3] 

 

 

 Figure 22 shows the IRES images of VCO A at a fixed value of approximately at 302 MHz 

[3]. Increase in TID results in increased in frequency as indicated in Figure 22. Therefore, to 

compensate for the increased frequency, the PLL decreases the bias voltage to maintain a fixed 

frequency output. Lower bias currents and different noise characteristics are the results of a 

decrease in bias voltage. As indicated by the same average color tone in the mean frequency blocks, 
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the operating frequency is fixed in Figure 22. However, the increased horizontal striping on the y-

axis of the IRES image indicates the significant changes in transient variation. Such variation could 

be an indicator of changes in loop stability parameters, which can impact lock time, noise, natural 

frequency, and frequency pull-in characteristics. Standard deviation of the instantaneous frequency 

decreases with an increase in TID level to 300 krad(SiO2). Figure 23 shows the IRES images of 

PLL A at a fixed value of approximately at 178 MHz [3]. Similar to the results in Figure 20, the 

stability of the circuit output is increased indicated by the change from a light tone to a dark tone 

of the standard deviation. 

 

 

Figure 23 

IRES images of PLL A at a fixed frequency of ~178 MHz at 0 krad(SiO2)  (left) and 300 

krad(SiO2) (right). PLL A was re-tuned to maintain the constant frequency [3] 
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 Phase noise exhibits a nonmonotonic response with respect to TID due to the competing 

effects of the bias current, operating frequency, signal power, and transistor bias points, all of 

which vary with TID as shown in Figure 12 and discussed in [31]. As indicated by smaller standard 

deviations of instantaneous frequency shown in Figures 22 and 23, the observed improvement in 

stability with increased TID indicates that the increase in bias current, and thus, signal power 

dominates the observed improvement in noise. Additional increases in TID may result in eventual 

degradation of noise characteristics and loop stability, according to [29]. 

 

Classification of TID levels using ML 

 Figures 22 and 23 represent the IRES images generated from the mean and standard 

deviation statistical measures of instantaneous frequency. They show promise in identification of 

TID levels by using the difference between statistical measures generated from pre-rad and post-

rad conditions. Operational states of the circuit, such as TID levels and tuning voltage, were 

identified using mean and standard deviation statistical measures from the IRES image data. 

MATLAB was used to classify the TID levels and VCO tuning voltage levels with a 2-D Linear 

Discriminant (LD) model [33].  

 A total of 500 waveforms were measured for each bias condition and dose level for VCO 

A, VCO B, PLL A, and PLL B on the same chip. Each waveform consisted of 1000 time-steps. As 

the circuits were on the same chip, the measurement setup for all four circuits was identical and 

included the same measurement noise characteristics as described in the IRES image Formation 

section. For each block, mean and standard deviation statistical measures of the instantaneous 

frequency vectors were computed. The dimensionality of the LD model can be increased by adding 

more statistical measures.  
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Figure 24 

Scatter plot of standard deviation versus mean of the instantaneous frequency feature for VCO A 

at VinVCO values between 0.4 and 1.2 V at 0 krad(SiO2) [3] 

 

 

 The scatter plot of the standard deviation versus the mean of the instantaneous frequency 

feature for VinVCO values between 0.4 to 1.2 V at 0 krad(SiO2) is shown in Figure 24 [3]. The data 

samples are clustered based on the input bias voltage as shown in Figure 24. Due to changes in 

stability, the clusters of data samples have different spreads in the x- and y- dimensions. As seen 

in Figure 24, below the value of 0.4 V and above the value of 0.8 V the standard deviation increases 

indicating the increased noise and non-optimal operation of the circuit outside of the linear 

operating range.  

 A two-fold cross-validation method was used to identify a LD model that results in the best 

prediction accuracy using MATLAB’s classification learner application [34]. In two-fold cross-

validation, the training data is divided into two partitions. The first partition is used by the machine 

learning algorithm to develop the LD model, while the second partition is held out to validate how 



36 

 

well the developed model predicts the correct class using a set of `unseen’ data. The process is 

repeated, but with the second partition used for LD model development and the first for validation 

of model performance. The results of each fold are averaged to create the final LD model. A ‘blind’ 

test data set is used to find the prediction accuracy of the LD model. Initially, the LD model was 

developed using 400 training samples drawn from the 500 total available samples. The remaining 

100 were set aside to serve as a ‘blind’ test set of the final LD model and provide the  predication 

accuracy presented in Tables I and II. The number of samples comprising the training set was 

varied from 30 up to 400 measured samples. Varying of the number of training samples was done 

to find the minimum number of training set size from which a LD model can be created and used 

to predict the classification values. The ‘blind’ test set samples were projected onto the line 

generated  from the trained LD model to calculate the prediction accuracy of the classification. 

MATLAB’s “predictFcn” function was used to obtain predicted classification values. These 

predicted classification values were checked against the actual values of the training set samples 

and were used to determine the percent classification accuracy of the LD models. The prediction 

accuracy of the LD model for the prediction of the TID level and bias voltage for VCO A with 

respect to the size of the training set is shown in Table I. It also includes the size of the testing data 

set. 
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Table 1 

Classification of TID levels for VCO A [3] 

 

 

 As seen from Table I, the classification accuracy of 100% for prediction of TID level and 

tuning voltage for training set sizes of 50 samples and higher using the LD classification model 

was achieved [3]. Data were included for VinVCO values between 0.5 and 0.8 V and TID levels 

between 0 and 300 krad(SiO2). For the training set size of 40 samples, the classification accuracy 

was 96.47%. For a training set size of 30 samples, the classification accuracy was 94.95%. The 

drop in the prediction accuracy was because of the proximity of the radiation data near the pre-

irradiation data for a VinVCO value of 0.5 V. It can be seen in the Figure 25, where a scatter plot of 

the standard deviation versus the mean indicate the cluster behavior [3].  
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Figure 25 

Scatter plot of the standard deviation versus mean of the instantaneous frequency feature for 

VCO A at VinVCO values between 0.5 and 0.8 V at 0 and 300 krad(SiO2). The data clusters are 

labeled with a unique VinVCO and TID pair [3] 

 

 

The IRES images provide information about the circuit timing and can identify the 

occurrence of anomalous events. For example, in Figure 25 the 0.8 V / 300 krad(SiO2) cluster 

appears to consist of a single anomalous event represented by one circle indicator away from its 

cluster. This anomalous event can be seen from Figure 26 as lightly toned horizontal bar in the 

lower right standard deviation feature block. 
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Figure 26 

Corresponding IRES images (40 samples) of standard deviation and mean of the instantaneous 

frequency for VCO A at various VinVCO and TID pairs for the scatter plots shown in Figure 25 [3] 
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Figure 27 

Scatter plot of the standard deviation versus mean of the instantaneous frequency feature for  

PLL A at VinVCO values between 0.5 and 0.8 V ar 0 and 300 krad(SiO2). The data clusters are 

labeled with a unique VinVCO and TID pair [3] 

 

 

 Figures 27 and 28 show the scatter plot and corresponding IRES images of the standard 

deviation versus mean statistical measures of the instantaneous frequency of PLL A, respectively 

[3]. Each statistical measure block represents one IRES image within Figure 28. The data samples 

of VinVCO values between 0.5 and 0.8 V at 0 and 300 krad(SiO2) are shown in both figures. The 

PLL loses the lock on the reference frequency at VinVCO values greater than 0.8 V. This instability 

occurs at a VinVCO boundary value of 0.8 V and it can be seen as a nominal increase in the standard 

deviation values of the samples as well as increased spread in the measurements. The last two 

columns of the IRES images, in Figure 28, represents the loss of lock of the PLL A.  
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Figure 28 

Corresponding IRES images (40 samples) of standard deviation and mean of the instantaneous 

frequency for PLL A at various VinVCO and TID pairs for the scatter plots shown in Figure 27 [3] 

 

 

 VCO B and PLL B were analyzed similar to the VCO A and VCO B analysis. Figure 29 

shows the scatter plots of the mean and standard deviation statistical measures for the 

instantaneous frequency of VCO B [3]. The general behavior of VCO B with respect to the changes 

in the bias voltage and the ionizing dose is similar to that of VCO A and PLL B. But, as seen from 

the Figure 29, the VCO B exhibits increased noise and instability. VCO B being fabricated on the 

same chip exhibited unique noise characteristics due to manufacturing process variability. 

Increased variability in tone within the IRES images and wider spreads in the measurements result 

in misclassification.  
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Figure 29 

Scatter plot of the standard deviation versus mean of the instantaneous frequency feature for  

VCO B at VinVCO values between 0.5 and 0.8 V at 0 and 300 krad(SiO2). The data clusters  

are labeled with a unique VinVCO and TID pair [3] 

 

 

Table 2 

Classification of the TID levels for both VCOs and PLLs [3] 

 

 

 

 The prediction accuracy of the classification for each device with a fixed training set size 

of 400 measured samples and a testing set size of 100 measured samples is shown in Table II [3]. 

The decrease in prediction accuracy of TID levels and values of VinVCO to 97.5% for VCO B is 
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due to the proximity of the data samples because of the noisy characteristics of the circuit. The 

prediction accuracy of TID levels and values of VinVCO for VCO A, PLL A, and PLL B was 100%.  

 

Chapter Conclusion 

This chapter presents a non-invasive technique, termed Ionizing Radiation Effects 

Spectroscopy, for measurement of TID radiation effects in electronics. In this chapter, IRES is 

used to analyze the effects of TID and bias voltage on the operation of RF circuits such as a VCO 

and PLL. TID radiation is a cumulative effect and the effects on the circuit operation can be seen 

after a long-term radiation exposure. The circuits can fail to operate after seeing certain level of 

TID radiation [31] which can put the satellite system at risk if preventive measures are not taken 

before the circuit passes a certain level of TID radiation.  

This technique allows for monitoring of similar situations in which a circuit is at risk of 

failure. The ability to identify the dose levels as well as bias voltage with higher level of certainty 

is of particular note. A two-dimensional ML model using statistical features calculated from the 

non-invasive output waveforms measurements of the RF circuits helps identify the circuit’s 

operational health.  

ML classification is used to perform an in-situ prediction of the TID level and circuit bias 

voltage with a single measurement. The TID response of VCO and PLL circuits designed and 

fabricated in a 130-nm CMOS technology is presented. In response to the TID radiation up to 300 

krad(SiO2), the RF circuits (VCO and PLL) show a shift of 30 MHz in frequency. It is important 

to note that the behavior observed in the circuits used for this experiment is limited to the specific 

technology and circuit design. Other circuit designs and device fabrication parameters may exhibit 

different response to the similar TID radiation exposure described in this work. The IRES 
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technique for the TID radiation enhances typical measurements by capturing global parametric 

shifts as well as transient variations. Transient variation analysis using IRES will be explored in 

more depth in next chapter.   

IRES provides visualization of statistical measures such as mean and standard deviation of 

the instantaneous frequency. The IRES features were then used to classify the operational state of 

the circuit with an LD ML model. For the training set sizes of 50 and greater, a prediction accuracy 

of between 97.5% and 100% was achieved. The prediction accuracy was decreased to 96.47% and 

94.95% with lower values of training set samples of 40 and 30, respectively. IRES for TID 

radiation shows promise in radiation dosimetry applications as well as in-situ monitoring of device 

and circuit operational health when internal nodes are difficult or impossible to monitor.  
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CHAPTER V 

SINGLE EVENT TRANSIENT ANALYSIS WITH IRES 

 

 

Introduction 

 The work presented in the previous chapter demonstrated that IRES can be used to 

determine the steady-state operational conditions (i.e., the bias voltage and TID exposure level) 

using machine learning [3]. This chapter presents utilization of the IRES technique for 

characterization of transient phenomena in devices and integrated circuits. The presented method 

uses IRES for characterization of SEE with a non-invasive methodology that allows for 

identification of SET vulnerable circuit nodes. These circuit nodes are identified based on 

statistical measures of SET features identified in IRES images.  

 Data presented in Figures 25 and 26 indicate that the IRES methodology can be useful in 

identifying transient anomalies. This can be seen by the outlier representing the single anomalous 

event represented by one circle away from its cluster (0.8 V, 300 krad(SiO2) and a lightly toned 

horizontal bar in the lower right standard deviation feature block in Figures 25 and 26, respectively. 

Standard measurement approaches for identification of transient events include measurement of 

magnitude of voltage and the length of the event [35, 36]. Sometimes, it is very difficult to 

interrogate the internal node of the circuit without disturbing the operations of the circuit. The 

IRES technique does not require the interrogation of the internal nodes of the circuit as the 

technique solely requires the output waveform of the circuit. The ability to quantify the strike 

location of the SE is of particular note. Subsequent sections of this chapter will provide IRES 
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images of different strike locations with unique spectral information of each strike location. As 

mentioned in the previous chapter, the IRES technique for TID radiation used instantaneous 

frequency of the signal as the signal metrics. Similarly, this chapter will use cycle-to-mean jitter 

and instantaneous frequency as the signal metrics.  

 TID radiation effects were easily identifiable with minimum of two-dimensional statistical 

measures (i.e. mean and standard deviation). This chapter involves multi-dimensional statistical 

measurements with more than one signal metrics (i.e. mean, standard deviation, variance, 

skewness, and kurtosis of the cycle-to-mean jitter and mean of the instantaneous frequency). This 

allows for understand the underlying radiation effect mechanism of the SET on a circuit, as IRES 

uses a mechanism of processing sampled data using statistical features which allows for 

identification of spurious events even in the noisy waveforms.  

 This chapter presents analysis of SETs through IRES technique for both experimental data 

and simulation data obtained for a PLL circuits. The experimental data was obtained two-photon 

absorption laser experiments on PLL circuits designed and fabricated in a 130 nm CMOS 

technology. The simulation data was obtained from a PLL behavioral model designed with 

Verilog-A.  

 

Experimental Analysis with IRES 

To obtain experimental data, Two-Photon Absorption (TPA) laser excitation experiments 

[26, 37-40] on a PLL circuit designed and fabricated in a 130 nm CMOS technology [26, 32] were 

used for characterization of SETs using IRES.  

Single transient perturbations were injected into the PLL circuit using laser-induced carrier 

generation based on TPA using high peak power femtosecond pulses at sub-bandgap optical 
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wavelengths [37-40]. The Device Under Test (DUT) was mounted on a motorized xyz translation 

platform with 0.1 μm resolution. Optical pulses are focused through the wafer onto the front 

surface of the DUT with a 100× microscopic objective, resulting in a near-Gaussian beam profile 

with a typical diameter of approximately 1.6 μm at focus [39]. Because the carrier deposition varies 

as the square of irradiance (I2) [37-39], this corresponds to a Gaussian carrier density distribution 

with an approximate diameter of 1.1 μm (full-width-at-half-maximum). These experiments were 

performed at room temperature.  

 

  

Figure 30 

Example of an output frequency and phase transient following a laser perturbation on the CP 

sub-circuit of the PLL fabricated in a 130 nm CMOS technology. The PLL was operating at  

200 MHz. Following the laser strike with incident energy of 5.4 nJ, the output frequency  

was reduced to approximately 50 MHz, thus increasing the output phase displacement to 

approximately 15 radians. The recovery time of the PLL was over 200 ns and it is indicated by 

red arrow in the middle plot of output frequency (fout) versus time [26] 
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A Tektronix-TDS5104 oscilloscope was used to characterize output transients following 

laser strikes within the PLL. The output waveforms were sampled at 625 MS/s. The oscilloscope 

was set to trigger on the rising edge of the pulsed laser sync pulse, and the FastFrame feature was 

utilized to capture multiple transients (10 transient perturbation) per injection location [26]. Figure 

30 shows an example transient where the output voltage magnitude Vout, frequency fout, and phase 

𝜙𝑜𝑢𝑡 versus time plots of a PLL output following a laser perturbation in the CP sub-circuit is 

provided. The PLL was operating at 200 MHz. Following the laser strike with incident energy of 

5.4 nJ, the output frequency was reduced to approximately 50 MHz, thus increasing the output 

phase displacement to approximately 15 radians. The drop in the frequency can be seen in the 

middle plot of the Figure 30. The recovery time of the PLL was over 200 ns [26]. Initial lock time 

of the PLL is similar to the recovery time. Detailed IRES methodology and generation of the IRES 

spectrograms for SETs is presented in [4].  

Figure 31 shows a 2D spatial map of the region of the CP sub-circuit in the PLL. The 

highlighted regions are sensitive regions in the CP sub-circuit. Each pixel in the x-y plane 

represents the average phase displacement of 10 transient perturbations [26]. The image provides 

important information about the most sensitive locations on the circuit at the output of the CP 

circuit.  
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Figure 31 

An image of the output phase displacement versus x-y location fused to the layout image of the 

CP sub-circuit. The experiment was performed using laser TPA at a step size of 0.2 μm [26] 

 

 

Figure 10 illustrates the window sampling process where statistical measures are computed 

for each window. The statistical measures include the mean, standard deviation, variance, 

skewness, and kurtosis of the cycle-to-mean jitter feature. The mean of the instantaneous frequency 

is also calculated for each window. Once the statistical measures are computed within each 

window and normalized such that the maximum value of any measure is 1, they are concatenated 
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to form a column vector. These column vectors are arranged as a time-sequence, forming an IRES 

image of the SET characteristic behavior.  

Experimental data was contained in the time-domain waveforms where each waveform 

consisted of minimum of 500 timesteps. Cycle-to-mean phase jitter was extracted for each clock 

cycle in the waveform and used to create a vector. A window of the first 15 cycle data (i.e., cycle-

to-mean jitter computed from cycles 1 to 15) was used to calculate the statistical measures for the 

first window. The sampling window was then shifted to the right by one cycle and the process of 

calculating the statistical measures was repeated such that the second window consisted of cycles 

2 to 16, and the third window consisted of cycles 3 to 17, and so until the window traversed the 

entire length of clock cycles.  

An IRES image for a SET is shown in Figure 32. The SET was originated at the output 

node of the CP sub-circuit. The SET in the Figure 32 was arranged in a manner such that the start 

of the SET is on the left side of the IRES image. The labels on the y-axis represent the statistical 

measurements used to characterize the SET strike. The height of each statistical measure was 

arbitrary and was increased to increase the visibility of the SET characteristics in x-axis. Figure 32 

shows a SET generated while the PLL was running approximately at 150 MHz. The incident 

energy of the laser was approximately 5.4 nJ. This IRES image was generated from the SET data 

originated from a SE strike on a NMOS transistor at the output node of the CP of the PLL and this 

node can be seen in the Figure 31 indicated by a red circle around the strike region. The efficiency 

of IRES technique to isolate the strike location only using the spectral information generated from 

the output waveforms is of particular note.  
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Figure 32 

IRES image generated from experimental data obtained for SET originated from a strike on a 

NMOS transistor at the output node of the CP of the PLL . SET was observed when the PLL  

was running approximately at 150 MHz. A total of 15 samples were used for one window  

and statistical measures were calculated. The shift value of the window was 1. Skewness  

and kurtosis of the cycle-to-mean jitter show the onset of the SET indicated by red color  

column on the top left corner of the image. Radiation and circuit response mechanisms  

are characterized by the statistical measures of the cycle-to-mean jitter 

 

 

As seen from the Figure 32, skewness and kurtosis of the cycle-to-mean jitter represent 

abrupt changes in the transient behavior. The start of the SET can be seen as a sudden change in 

the sample value with red color. Other statistical measures such as variance, standard deviation, 

and mean of the cycle-to-mean jitter are measures of the charge deposition and collection processes 

as well as the PLL loop response. The time between the peak skewness and the peak mean 

represents the initial charge collection, whereas the magnitude of the variance represents the 

severity of the event (i.e., total energy transferred). As seen from the IRES image, mean, standard 

deviation and variance return to value of 0 following the maximum mean value. It indicates that 
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the circuit has begun to recover following the SE strike. The mean of the instantaneous frequency 

(i.e., bottom statistical measure on the IRES image) indicates the overall loop characteristic 

response as it shifts, indicated by the color change from orange to red.  It also shows the gradual 

recovery of the loop after the SE strike. In addition to showing the magnitude and the length of the 

time of the SE strike which standard measurement techniques can provide, SET quantifies other 

features such as charge deposition and collection, severity of the event.  

Figure 33 shows the IRES image generated from experimental data obtained for SET 

originated from a strike on a PMOS transistor at the output node of the CP of the PLL. SET was 

observed when the PLL was running approximately at 150 MHz. Here, skewness of the cycle-to-

mean jitter shows the onset of the SE illustrated by blue color column at the top left of the Figure 

33. Comparing the spectral characteristics of Figure 32 with Figure 33 will provide visual 

information for identifying location of the SE strike. Both images are fundamentally different, but 

the cause of generating the SET is similar which is caused by the laser experiment with similar 

incident energy.  
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Figure 33 

IRES image generated from experimental data obtained for SET originated from a strike on a 

PMOS transistor at the output node of the CP of the PLL . SET was observed when the PLL  

was running approximately at 150 MHz. Total of 15 samples were used for one window  

and statistical measures were calculated. The shift value of the window was 1 

 

 

 

Figure 34 

Time-domain waveforms used to generate IRES images in Figures 32 (top plot in this figure) and 

33 (bottom plot in this figure) 
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Figure 34 shows time-domain waveforms of the SET strike at the output of NMOS 

transistor (top plot) and PMOS transistor (bottom plot). Comparing these plots with the IRES 

spectrograms in Figures 32 and 33 provides knowledge about the ability of the IRES to identify 

the features obtained using standard techniques (e.g., identify the change in frequency and 

amplitude) as well as highlight very important features (e.g., charge deposition and severity of the 

event) that the standard process misses. 

 

Simulation Analysis with IRES 

Simulation data for the SETs was obtained using a behavioral model of the PLL designed 

with Verilog-A. The Verilog-A PLL behavior model was designed to match the circuit dynamics 

of the experimental device. The PLL was designed to have a center frequency of 200 MHz to 

match with the experimental PLL designed in 130-nm CMOS technology. The Cadence Spectre 

simulator was used to perform the SET simulations. The behavioral PLL model shows a lock time 

of 200 ns.  
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Figure 35 

Simulated SE strikes at the output of the CP after various levels of charge deposited from a 

current source representing the NMOS transistor strike. Recovery times between 200 and  

300 ns was observed. The drop in voltage was between 0.15 and 0.4 V [4] 

 

 

 Figure 35 shows the simulated SE strikes at the output of the CP using VCO control node 

versus time [4]. It shows that the voltage drop and loop recovery time increases as the deposited 

charge value increases. The NMOS simulated SE strikes are captured at 260 MHz. This node is 

internal to the PLL circuit and it may not be accessible experimentally. As the VCO is linear, the 

PLL’s output frequency is proportional to VinVCO. SET response of the PLL circuit is dominated 

by the loop parameters, is largely independent of ion strike time constant, and is proportional to 

charge deposited as shown in [26]. To simulate the ion strike, a double exponential model from a 

current source was used.  

 For the simulation analysis, the output waveforms were sampled at 10 GS/s to generate 

IRES images using the method described in the previous section of this chapter. IRES images for 
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SETs for various charge deposition levels were generated. Figures 36, 37, and 38 shows IRES 

images for SETs of 249.2 fC, 373.8 fC, and 498.3 fC of charge deposited at the output of the CP, 

respectively. Comparing these three IRES images, mean, standard deviation, and variance of the 

cycle-to-mean jitter are elongated in the x-axis direction for increased deposited charge. When the 

mean frequency of the instantaneous frequency is compared for all three IRES images, it shows 

that the loop recovery time also increases as the deposited charge increases. The color of the mean 

instantaneous frequency immediately following the SE strike is light orange in Figure 36 and green 

in Figures 37 and 38. The changes in color indicate that the reduction in frequency was higher for 

the SE strike with 373.8fC and 498.3 fC of deposited charge when compared to 249.2 fC of 

deposited charge.  

 

 

Figure 36 

IRES image of SET simulated in PLL at 260 MHz for 249.2 fC charge deposited at the output of 

the CP 
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Figure 37 

IRES image of SET simulated in PLL at 260 MHz for 373.8 fC charge deposited at the output of 

the CP 

 

 

 

Figure 38 

IRES image of SET simulated in PLL at 260 MHz for 498.3 fC charge deposited at the output of 

the CP 
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 Simulation-generated IRES spectrograms show similar characteristics to the 

experimentally generated IRES images. Minor changes in the behavior of the circuit (e.g., charge 

collection) can be observed with IRES. IRES shows the characteristics of the SET that are 

indicators of the charge deposited. The ability of the IRES technique to identify the SETs in a 

noisy measurement is of particular interest. The statistical analysis performed on the cycle-to-mean 

phase jitter allows for suppression of noisy features. A detailed insight into radiation effect 

mechanism from a SET can be observed through IRES.  

 

Chapter Conclusion 

 This chapter presents the utilization of the IRES technique for the non-invasive 

characterization of SETs in complex arbitrary circuits. The IRES technique uses multi-dimensional 

statistical feature analysis for identification of transient events in noisy measurements. In this 

work, IRES was used to image the cycle-to-mean jitter of the output waveform. Both experimental 

and simulation data show that IRES is able to characterize SE strikes within a PLL circuit. For 

experiment results, a PLL designed and fabricated in 130 nm CMOS technology was used and 

SETs were generated from TPA experiments. For simulation analysis, a behavioral model of PLL 

using Verilog-A was designed to match the performance of the PLL fabricated for experimental 

analysis. A window approach was used to characterize the SETs as opposed to the block approach 

used for characterization of TID. In addition to the standard measurement approach results, IRES 

allows for capturing of charge deposited during the SE strike.  
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CHAPTER VI 

DISCUSSION AND CONCLUSION 

 

 

Devices used in the microelectronic circuits are vulnerable within the space radiation 

environment; for example, integrated transistors tend to change their operating characteristics such 

as threshold voltage based on the amount and duration of radiation exposure.  This work analyzes 

two different space radiation effects that are prominent within the space environment: 1) Total-

Ionizing Dose and 2) Single Event Transients. TID is a cumulative radiation effect, while SET is 

a transient effect. Based on the severity of the effect, the operating device can be temporarily or 

permanently damaged.  

An approach to identify TID radiation effects in the presence of noise in RF circuits with 

very high accuracy is achieved through the proposed IRES technique. The IRES technique is also 

utilized for identification of spurious transient events in PLL circuit. IRES is based on RF-DNA 

fingerprinting, a technique for identification of different devices based on statistical features 

extracted from their transmitted waveforms. 

The IRES technique for TID uses only two statistical features (mean and standard deviation 

of the instantaneous frequency) to identify the operational health of the circuit. LD models were 

used to classify the TID radiation level as well input bias voltage of the VCO and PLL. 

Classification accuracy of 100 % was observed for VCO A, PLL A, PLL B, while classification 

accuracy of 97.5% was achieved for VCO B for training data set size of 400 samples and testing 

data set size of 100 samples.  
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The IRES technique for SET uses multi-dimensional statistical analysis for identification 

of transient events in the presence of noise. Statistical measures such as mean, standard deviation, 

variance, kurtosis, and skewness were calculated using the cycle-to-mean phase jitter extracted 

from the PLL’s output waveform. The IRES technique for SETs allows for easy identification of 

strike location through the spectral information generated from the cycle-to-mean jitter of the 

output waveform of the PLL circuit. IRES images generated from laser strikes on different 

locations (i.e., NMOS transistor and PMOS transistor at the output node of the CP circuit) were 

visually identifiable through the spectral characteristics. A Verilog-A behavioral PLL model 

designed to match the circuit dynamics of the experimental device was used to generate simulation 

results. Both experimental and simulation results showed similarity in the spectral characteristics 

of the IRES images.  

This work presents that the IRES technique can be applied for both cumulative as well as 

transient radiation effects. In addition to standard measurement technique approach, IRES gives 

ability to capture global parametric shifts in the arbitrary complex circuits, charge dynamics of the 

radiation effects on the devices, and identification of spurious transients in the presence of noise. 

The IRES technique can be utilized in the applications that are not specifically related with 

radiation effects. The versatility of the statistical analysis approach used in the IRES technique 

makes it very effective in finding behavioral changes of a system in the data driven world. 
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MATLAB SCRIPTS 

 

 

The MATLAB scripts below were used to generate the IRES images for TID and SET. Scripts 

A and B are the knob setting and IRES generation for TID, respectively. Scripts C and D are the 

knob setting and IRES generation code for SET, respectively. Idea of this code was imported from 

the code for RF-DNA fingerprinting received from Dr. Donald Reising. Knob setting files are used 

to setup the simulation based on input waveform.  

 

1. Knob settings for generation of the IRES from TID 

clear all; 

close all; 

%% Load data after this line 

%% Captured Waveforms 

%% Enter samplerate of the data collection 

samplerate = 5E9; 

%% Required Inputs from user 

FeatureUsed = 'f'; % type f, c2c, c2m, rt freq_c2c 

RecordLength = 1000; 

NumFrames = 400; 

CalVar = 0; 

CalSkew = 0; 

CalStd = 1; 

CalMean = 1; 

CalKur = 0; 

NumStats = CalVar+CalSkew+CalStd+CalMean+CalKur; 

NumFeature = 1; 

Normalize = 1;       % Enter 0 for normalizing the data for the signal itself 

                    % Or Enter Normalize = 1 for normalizing the data 

                    % across all signals at the input 

distribution = 1; 

EntireSigStat = 0;   % enter number of divisions needed in "NumSubdivision" 

if EntireSigStat == 0 

    NumSubdivisions = 40;  % Number of subdivision per signal 

elseif EntireSigStat == 1 

    NumSubdivisions = 1;  % Do not Change this number 

end 

%% Enter the Signal name for IRES prints 

% For frequency curve 

% CDPLL in 

NameSignals = 

{in_05_0,in_05_300,in_06_0,in_06_300,in_07_0,in_07_300,in_08_0,in_08_300}; 

%% Enter the name of the function 

 Statistics_Generation_V3(FeatureUsed, CalVar, CalSkew, CalMean, CalKur,... 

     CalStd, EntireSigStat,NumSubdivisions,NameSignals, samplerate, Normalize, 

NumStats, NumFrames, RecordLength, distribution) 
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clearvars distribution CalKur RecordLength NumFrames CalMean CalSkew CalStd CalVar 

NameSignals NumFeature NumSubdivisions samplerate EntireSigStat FeatureUsed Normalize 

NumStats; 

 

2. Code for generation of the IRES for TID 
 
%% Statistics Calculation and IRES Generation 

%% Function 

function Statistics_Generation_V3(FeatureUsed, CalVar, CalSkew, CalMean, 

CalKur,... 

    CalStd, EntireSigStat,NumSubdivisions,NameSignals,samplerate, Normalize, 

NumStats, NumFrames, RecordLength, distribution) 

% Calculate the period of the signal and save data into cells 

[~, NumSignals] = size(NameSignals); %Get the number of the signals to be 

processed 

if strcmp(FeatureUsed, 'rt') 

    for p=1:NumSignals 

        data = cell2mat(NameSignals(:,p)); 

        FirstDataPoint = 0; 

        LastDataPoint = FirstDataPoint+RecordLength; 

        Inst_rise_added = 

risetime(data(FirstDataPoint+1:LastDataPoint),samplerate,'StateLevels',[0.0 

0.2]); 

        FirstDataPoint = LastDataPoint; 

        LastDataPoint = RecordLength+LastDataPoint; 

        for j = 2: NumFrames 

            data_new = data(FirstDataPoint+1:LastDataPoint); 

            Inst_rise = risetime(data_new,samplerate,'StateLevels',[0.0 

0.2]); 

            Inst_rise_added = [Inst_rise_added; Inst_rise]; 

            FirstDataPoint = LastDataPoint; 

            LastDataPoint = RecordLength+LastDataPoint; 

        end 

        Inst_rise_Total{p} = Inst_rise_added; 

        clear data; 

    end 

else 

    for p=1:NumSignals 

        data = cell2mat(NameSignals(:,p)); 

        FirstDataPoint = 0; 

        LastDataPoint = FirstDataPoint+RecordLength; 

        Inst_Period_added = 

pulseperiod(data(FirstDataPoint+1:LastDataPoint),samplerate,'StateLevels',[0.

0 0.2]); 

        number_of_pulses_in_each_frame(:,1) = length(Inst_Period_added); 

        FirstDataPoint = LastDataPoint; 

        LastDataPoint = RecordLength+LastDataPoint; 

        for j = 2: NumFrames 

            data_new = data(FirstDataPoint+1:LastDataPoint); 

            Inst_Period = pulseperiod(data_new,samplerate,'StateLevels',[0.0 

0.2]); 

            number_of_pulses_in_each_frame(:,j) = length(Inst_Period); 

            Inst_Period_added = [Inst_Period_added; Inst_Period]; 

            FirstDataPoint = LastDataPoint; 

            LastDataPoint = RecordLength+LastDataPoint; 
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        end 

        freq = 1 ./ Inst_Period_added; 

        freq = mean(freq); 

        freq_mean(p,:)= freq; 

        Inst_Period_Total{p} = Inst_Period_added; 

        PulseNumbers_each_frame{p}=  number_of_pulses_in_each_frame; 

        clear data FirstDataPoint LastDataPoint Inst_Period data_new freq j; 

    end 

end 

% Calculate features such as cycle to cycle jitter, cycle to mean jitter 

% frequency from the instantaneous period of the pulse 

for q=1:NumSignals 

     

    if strcmp(FeatureUsed, 'rt') 

        data = cell2mat(Inst_rise_Total(:,q)); 

        rt{q}= data; 

        transformed_signal{q} = rt{q}; 

        clearvars n rt data ; 

    end 

    % Calculate cycle to cycle jitter 

    if strcmp(FeatureUsed, 'c2c') 

        data = cell2mat(Inst_Period_Total(:,q)); 

        for n = 1:length(data)-1 

            cc(n,:) = data(n+1,1)-data(n,1); 

        end 

        c2c{q}= cc; 

        transformed_signal{q} = c2c{q}; 

         

        clearvars n cc data; 

    end 

    % Calculate cycle to mean jitter 

    if strcmp(FeatureUsed, 'c2m') 

        data = cell2mat(Inst_Period_Total(:,q)); 

        data_mean = mean(data); 

        for n = 1:length(data)-1 

            cm(n,:) = data(n,1)-data_mean; 

        end 

        c2m{q}= cm; 

        transformed_signal{q} = c2m{q}; 

        clearvars n data cm c2m data_mean; 

    end 

    % Calculate instantaneous frequency 

    if strcmp(FeatureUsed, 'f') 

        data = cell2mat(Inst_Period_Total(:,q)); 

        Freq = 1 ./ data; 

        Inst_Freq{q} = Freq; 

        transformed_signal{q} = Inst_Freq{q}; 

        clear data Freq Inst_Freq; 

    end 

 end 

clearvars p q; 

%% Divide the signal into sub regions and calculate the statistics 

if EntireSigStat == 0 

    for p = 1:NumSignals 

        data = cell2mat(transformed_signal(:,p)); 

        cntr = 1; 
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        initChunk = 0; 

        ChunkSize = floor(length(data)/NumSubdivisions); 

        endChunk = ChunkSize; 

        for k = 1:NumSubdivisions 

            RegionVar(k,p) = var(data(initChunk+1:endChunk)); 

            RegionSkew(k,p) = skewness(data(initChunk+1:endChunk)); 

            RegionKur(k,p) = kurtosis(data(initChunk+1:endChunk)); 

            RegionStd(k,p) = std(data(initChunk+1:endChunk)); 

            RegionMean(k,p) = mean(data(initChunk+1:endChunk)); 

            initChunk = endChunk; 

            endChunk = ChunkSize + endChunk; 

            cntr = cntr+1; 

        end 

    end 

end 

clearvars p data cntr initChunk ChunkSize endChunk k; 

%% Calculate statistic over entire signal 

if EntireSigStat == 1 

    for p = 1:NumSignals 

        data = cell2mat(transformed_signal(:,p)); 

        RegionVar(:,p) = var(data); 

        RegionSkew(:,p) = skewness(data); 

        RegionKur(:,p) = kurtosis(data); 

        RegionMean(:,p) = mean(data); 

        RegionStd(:,p) = std(data); 

    end 

end 

clearvars p data transformed_signal; 

%% Normalize the data with respect to highest value in the data 

if Normalize == 0 

    RegionVar = RegionVar ./(max(RegionVar)); 

    RegionSkew = RegionSkew ./(max(RegionSkew)); 

    RegionKur = RegionKur ./(max(RegionKur)); 

    RegionStd = RegionStd ./(max(RegionStd)); 

    RegionMean = RegionMean ./(max(RegionMean)); 

elseif Normalize == 1 

    RegionVar = RegionVar ./max(max(RegionVar)); 

    RegionSkew = abs(RegionSkew ./max(max(abs(RegionSkew)))); 

    RegionKur = RegionKur ./max(max(RegionKur)); 

    RegionStd = RegionStd ./max(max(RegionStd)); 

    RegionMean = RegionMean ./max(max(RegionMean)); 

end 

clearvars Normalize; 

%% Assign statistics to the IPrnt variable 

% Skewness, Kurtosis, Mean, Standard deviation, Variance 

%(CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 0) && 

%(CalSKew == 0); 

for s = 1:NumSignals 

    if (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 0) && 

(CalSkew == 1) 

        IPrnt(:,:,s) = RegionSkew(:,s); 

        StatLabel = {'Skew'}; 

    elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 1) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = RegionKur(:,s); 

        StatLabel = {'Kur'}; 
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    elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 1) 

&& (CalSkew == 1) 

        IPrnt = [RegionKur(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Kur','Skew'}; 

    elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 0) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = RegionMean(:,s); 

        StatLabel = {'Mean'}; 

    elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 0) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = [RegionMean(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Mean','Skew'}; 

    elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 1) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionMean(:,s);zeros(1,1);RegionKur(:,s)]; 

        StatLabel = {'Mean','Kur'}; 

    elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 1) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) =  

[RegionMean(:,s);zeros(1,1);RegionKur(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Mean','Kur','Skew'}; 

    elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 0) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = RegionStd(:,s); 

        StatLabel = {'Std'}; 

    elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 0) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = [RegionStd(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Std','Skew'}; 

    elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 1) 

&& (CalSkew == 0) 

        IPrnt = [RegionStd(:,s);zeros(1,1);RegionKur(:,s)]; 

        StatLabel = {'Std','Kur'}; 

    elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 1) 

&& (CalSkew == 1) 

        IPrnt = 

[RegionStd(:,s);zeros(1,1);RegionKur(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Std','Kur','Skew'}; 

    elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 0) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionStd(:,s);zeros(1,1);RegionMean(:,s)]; 

        StatLabel = {'Std','Mean'}; 

    elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 0) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = [RegionStd(:,s);zeros(1,1); 

RegionMean(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Std','Mean','Skew'}; 

    elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 1) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionStd(:,s);zeros(1,1); 

RegionMean(:,s);zeros(1,1);RegionKur(:,s)]; 

        StatLabel = {'Std','Mean','Kur'}; 

    elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 1) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = [RegionStd(:,s);zeros(1,1); 

RegionMean(:,s);zeros(1,1);RegionKur(:,s);zeros(1,1);RegionSkew(:,s)]; 
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        StatLabel = {'Std','Mean','Kur','Skew'}; 

    elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 0) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = RegionVar(:,s); 

        StatLabel = {'Var'}; 

    elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 0) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = [RegionVar(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Var','Skew'}; 

    elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 1) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionVar(:,s);zeros(1,1);RegionKur(:,s)]; 

        StatLabel = {'Var','Kur'}; 

    elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 1) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = 

[RegionVar(:,s);zeros(1,1);RegionKur(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Var','Kur','Skew'}; 

    elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 0) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionVar(:,s);zeros(1,1);RegionMean(:,s)]; 

        StatLabel = {'Var','Mean'}; 

    elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 0) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = 

[RegionVar(:,s);zeros(1,1);RegionMean(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Var','Mean','Skew'}; 

    elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 1) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionVar(:,s); 

RegionMean(:,s);zeros(1,1);RegionKur(:,s)]; 

        StatLabel = {'Var','Mean','Kur'}; 

    elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 1) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = 

[RegionVar(:,s);zeros(1,1);RegionMean(:,s);zeros(1,1);RegionKur(:,s);zeros(1,

1);RegionSkew(:,s)]; 

        StatLabel = {'Var','Mean','Kur','Skew'}; 

    elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 0) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionVar(:,s);zeros(1,1);RegionStd(:,s)]; 

        StatLabel = {'Var','Std'}; 

    elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 0) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = 

[RegionVar(:,s);zeros(1,1);RegionStd(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Var','Std','Skew'}; 

    elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 1) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = 

[RegionVar(:,s);zeros(1,1);RegionStd(:,s);zeros(1,1);RegionKur(:,s)]; 

        StatLabel = {'Var','Std','Kur'}; 

    elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 1) 

&& (CalSkew == 1) 
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        IPrnt(:,:,s) = 

[RegionVar(:,s);zeros(1,1);RegionStd(:,s);zeros(1,1);RegionKur(:,s);zeros(1,1

);RegionSkew(:,s)]; 

        StatLabel = {'Var','Std','Kur','Skew'}; 

    elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 0) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionVar(:,s);zeros(1,1);RegionStd(:,s);zeros(1,1); 

RegionMean(:,s)]; 

        StatLabel = {'Var','Std','Mean'}; 

    elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 0) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = [RegionVar(:,s);zeros(1,1);RegionStd(:,s);zeros(1,1); 

RegionMean(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Var','Std','Mean','Skew'}; 

    elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 1) 

&& (CalSkew == 0) 

        IPrnt(:,:,s) = [RegionVar(:,s);zeros(1,1);RegionStd(:,s);zeros(1,1); 

RegionMean(:,s);zeros(1,1);RegionKur(:,s)]; 

        StatLabel = {'Var','Std','Mean','Kur'}; 

    elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 1) 

&& (CalSkew == 1) 

        IPrnt(:,:,s) = [RegionVar(:,s);zeros(1,1);RegionStd(:,s);zeros(1,1); 

RegionMean(:,s);zeros(1,1);RegionKur(:,s);zeros(1,1);RegionSkew(:,s)]; 

        StatLabel = {'Var','Std','Mean','Kur','Skew'}; 

    end 

end 

clearvars s; 

%% IRES PRINT DEVELOPMENT 

IPrnt1 = repmat(IPrnt,1,NumSubdivisions); % repeat the vertical column 

"NumSubdivisions" time 

[rows, ~, ~] = size(IPrnt1); % Get number of rows 

for s1 =1:NumSignals 

    zerocolumn = zeros(rows,1); % Creates 1 vertical column of zeros 

    IPrnt2(:,:,s1) = [zerocolumn IPrnt1(:,:,s1) zerocolumn]; % 

    [~,columns,~] = size(IPrnt2); 

    zerorow = zeros(1,columns); 

    IPrnt3(:,:,s1) = [zerorow;IPrnt2(:,:,s1);zerorow]; 

end 

clear rows columns zerorow zerocolumn s1 IPrnt1 IPrnt2; 

%% Concatenate all IRES prints horizontally and save into one variable 

[~,~,pages] = size(IPrnt3); 

if pages == 1 

    IRES = IPrnt3(:,:,1); 

    SigLabel = {'S1'}; 

elseif pages == 2 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2)]; 

    SigLabel = {'S1','S2'}; 

elseif pages == 3 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3)]; 

    SigLabel = {'S1','S2','S3'}; 

elseif pages == 4 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3) IPrnt3(:,:,4)]; 

    SigLabel = {'S1','S2','S3','S4'}; 

elseif pages == 5 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3) IPrnt3(:,:,4) 

IPrnt3(:,:,5)]; 
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    SigLabel = {'S1','S2','S3','S4','S5'}; 

elseif pages == 6 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3) IPrnt3(:,:,4) 

IPrnt3(:,:,5) IPrnt3(:,:,6)]; 

    SigLabel = {'S1','S2','S3','S4','S5','S6'}; 

elseif pages == 7 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3) IPrnt3(:,:,4) 

IPrnt3(:,:,5) IPrnt3(:,:,6) IPrnt3(:,:,7)]; 

    %SigLabel = {'S1','S2','S3','S4','S5','S6','S7'}; 

    SigLabel = {'0','10','20','40','100','200','300'}; 

elseif pages == 8 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3) IPrnt3(:,:,4) 

IPrnt3(:,:,5) IPrnt3(:,:,6) IPrnt3(:,:,7) IPrnt3(:,:,8)]; 

    SigLabel = {'S1','S2','S3','S4','S5','S6','S7','S8'}; 

elseif pages == 9 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3) IPrnt3(:,:,4) 

IPrnt3(:,:,5) IPrnt3(:,:,6) IPrnt3(:,:,7) IPrnt3(:,:,8) IPrnt3(:,:,9)]; 

    SigLabel = {'S1','S2','S3','S4','S5','S6','S7','S8','S9'}; 

elseif pages == 10 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3) IPrnt3(:,:,4) 

IPrnt3(:,:,5) IPrnt3(:,:,6) IPrnt3(:,:,7) IPrnt3(:,:,8) IPrnt3(:,:,9) 

IPrnt3(:,:,10)]; 

    SigLabel = {'S1','S2','S3','S4','S5','S6','S7','S8','S9','S10'}; 

elseif pages == 11 

    IRES = [IPrnt3(:,:,1) IPrnt3(:,:,2) IPrnt3(:,:,3) IPrnt3(:,:,4) 

IPrnt3(:,:,5) IPrnt3(:,:,6) IPrnt3(:,:,7) IPrnt3(:,:,8) IPrnt3(:,:,9) 

IPrnt3(:,:,10) IPrnt3(:,:,11)]; 

    SigLabel = {'S1','S2','S3','S4','S5','S6','S7','S8','S9','S10','S11'}; 

elseif pages ==12 

    Attention = ' This code only prints 11 signals at a time. Please consider 

changing the code!!!'; 

    show(Attention); 

elseif pages > 12 

    error('Too many signals!!! :( Cannot process!'); 

end 

clearvars pages; 

figure1 = figure('Name','IRES Print'); 

colormap(gray); 

axes1 = axes('Parent',figure1); 

hold(axes1,'on'); 

contourf(IRES,100,'LineStyle','none'); 

% ylabel(['Statistics','(' num2str(NumSubdivisions) ' Samples per 

Statistic)']); 

% xlabel('Signals'); 

% title(['IRES Prints of ' num2str(NumSignals) ' signals']); 

box(axes1,'on'); 

axis(axes1,'tight'); 

% Create tick locations for labels on x-axix based on number of the input 

% signals 

[rows, columns] = size(IRES); 

spacing1 = columns/NumSignals; 

first_tick1 = spacing1/2; 

last_tick1 = first_tick1; 

for t = 1:NumSignals-1 

    next_tick1 = last_tick1+(spacing1*t); 

    first_tick1 = [first_tick1 next_tick1]; 
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end 

% Create tick locations for labels on y-axis based on number of the plotted 

statistics 

spacing2 = floor(rows/NumStats); 

first_tick2 = spacing2/2; 

last_tick2 = first_tick2; 

for t = 1:NumStats-1 

    next_tick2 = last_tick2+(spacing2*t); 

    first_tick2 = [first_tick2 next_tick2]; 

end 

clearvars spacing1 spacing2 next_tick1 next_tick2 last_tick1 last_tick2; 

% Set font size and add Labels 

set(axes1,'BoxStyle','full','FontSize',26,'Layer','top','XTick',... 

    first_tick1 ,'XTickLabel',... 

    SigLabel,'YTick',first_tick2,... 

    'YTickLabel',StatLabel); 

colorbar('peer',axes1); %Adds the colorbar on the side of the plot 

 

3. Knob settings for generation of the IRESS from SET 

clc; 

clear all; 

close all; 

%% Load data here 

load scan_4_data.mat; 

load single_event_transient_data.mat; 

%   pll_out = scan_4_data{1,3043}; 

%   pll_out = pll_out(1:500); 

 pll_out = pll_out_40(129500:134000); 

% pll_out = awgn(pll_out,20); 

% if simulation data then remove state level from the V5 function 

%Check sample rate 

% add +1 -1 to state level calculations for experimental data 

% remove +0.05 -0.05 for simulation data  

NameSignals = {pll_out}; 

[~,NumSignals] = size(NameSignals); 

samplerate = {10E9}; 

%samplerate = {625E6}; 

RecordLength = {length(NameSignals{1,1})}; 

NumFrames = {1}; 

for sig = 1:NumSignals 

    [~,mid_level(sig)]= midcross(NameSignals{sig}); 

    Low_state(sig) = mid_level(sig)-0.1; 

    High_state(sig) = mid_level(sig)+0.1; 

    StateLevels(sig) = {[Low_state(sig) High_state(sig)]}; 

end  

tf = 

isequal(length(NameSignals),length(samplerate),length(RecordLength),length(Nu

mFrames),length(StateLevels)); 

if tf == 0 

    error('Check all input parameters'); 

end 

FeatureUsed = 'c2m';  

CalVar =1; 
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CalSkew =1; 

CalStd = 1; 

CalMean = 1; 

CalKur = 1; 

NumStats = CalVar+CalSkew+CalStd+CalMean+CalKur; 

WindowLength = 15; 

Shift = 1; 

Normalize = 0; % 0 for Normalized to itself, 1 for Normalized to all  

clear sig tf High_state Low_state mid_level; 

%% V5 will only take one signal at a time 

IRES_Generation_for_SET_V5(FeatureUsed, CalVar, CalSkew, CalMean, CalKur,... 

    CalStd, WindowLength, NameSignals, samplerate, NumStats, NumFrames,... 

    RecordLength, StateLevels, Shift, NumSignals, Normalize) 

 

4. Code for generation of the IRES from SET 

%% Only one signal accepted in this script 

function IRES_Generation_for_SET_V5(FeatureUsed, CalVar, CalSkew, CalMean, 

CalKur,... 

    CalStd, WindowLength , NameSignals, samplerate, NumStats, NumFrames,... 

    RecordLength, StateLevels, Shift, NumSignals, Normalize, data_color) 

data = cell2mat(NameSignals); 

samplerate_data = cell2mat(samplerate); 

RecordLength_data = cell2mat(RecordLength); 

NumFrames_data = cell2mat(NumFrames); 

StateLevels_data = cell2mat(StateLevels); 

FirstDataPoint = 0; 

LastDataPoint = FirstDataPoint+RecordLength_data; 

Inst_Period_added{:,1} = 

pulseperiod(data(FirstDataPoint+1:LastDataPoint),samplerate_data,'StateLevels

',StateLevels_data); 

transformed_signal_freq{:,1} = 1 ./Inst_Period_added{:,1}; 

number_of_pulses_in_each_frame(:,1) = length(Inst_Period_added); 

FirstDataPoint = LastDataPoint; 

LastDataPoint = RecordLength_data+LastDataPoint; 

for j = 2: NumFrames_data 

    data_new = data(FirstDataPoint+1:LastDataPoint); 

    Inst_Period = 

pulseperiod(data_new,samplerate_data,'StateLevels',StateLevels_data); 

    number_of_pulses_in_each_frame(:,j) = length(Inst_Period); 

    Inst_Period_added{:,j} = Inst_Period; 

    transformed_signal_freq{:,j} = 1 ./Inst_Period_added{:,j}; 

    FirstDataPoint = LastDataPoint; 

    LastDataPoint = RecordLength_data+LastDataPoint; 

end 

All_frames= Inst_Period_added; 

clear data j; 

for y=1:NumFrames{1,1} 

    if strcmp(FeatureUsed, 'rt') 

        data = cell2mat(Inst_rise_Total(:,q)); 

        rt{q}= data; 

        transformed_signal{q} = rt{q}; 

        clearvars n rt data ; 

    end 



76 

 

    % Calculate cycle to cycle jitter 

    if strcmp(FeatureUsed, 'c2c') 

        data = cell2mat(Inst_Period_Total(:,q)); 

        for n = 1:length(data)-1 

            cc(n,:) = data(n+1,1)-data(n,1); 

        end 

        c2c{q}= cc; 

        transformed_signal{q} = c2c{q}; 

         

        clearvars n cc data; 

    end 

    % Calculate cycle to mean jitter 

    if strcmp(FeatureUsed, 'c2m') 

        data = cell2mat(All_frames(1,y)); 

        data_mean = mean(data); 

        for n = 1:length(data) 

            cm(n,:) = data(n,1)-data_mean; 

        end 

c2m{1}= cm; 

        transformed_signal{1,y} = c2m{1}; 

        clearvars n data cm c2m data_mean; 

    end 

    % Calculate instantaneous frequency 

    if strcmp(FeatureUsed, 'f') 

        data = cell2mat(Inst_Period_Total(:,q)); 

        Freq = 1 ./ data; 

        Inst_Freq{q} = Freq; 

        transformed_signal{q} = Inst_Freq{q}; 

        clear data Freq Inst_Freq; 

    end 

end 

clear p j q y data; 

  

for y=1:NumFrames{1,1} 

    data = cell2mat(transformed_signal(1,y)); 

    data_length = length(data); 

    initChunk = 0; 

    endChunk = WindowLength; 

    end_k = ceil((data_length-WindowLength)/Shift); 

    for k = 1:end_k 

        RegionVar(:,k,y) = var(data(initChunk+1:endChunk)); 

        RegionSkew(:,k,y) = skewness(data(initChunk+1:endChunk)); 

        RegionKur(:,k,y) = kurtosis(data(initChunk+1:endChunk)); 

        RegionStd(:,k,y) = std(data(initChunk+1:endChunk)); 

        RegionMean(:,k,y) = mean(data(initChunk+1:endChunk)); 

        initChunk = Shift + initChunk; 

        endChunk = Shift + endChunk; 

    end 

    clear data_length; 

end 

  

clear k p y end_k data_length transformed_signal samplerate initChunk 

endChunk; 

clear NameSignals number_of_pulses_in_each_frame; 

  

for y=1:NumFrames{1,1} 
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    data = cell2mat(transformed_signal_freq(1,y)); 

    data_length = length(data); 

    initChunk = 0; 

    endChunk = WindowLength; 

    end_k = ceil((data_length-WindowLength)/Shift); 

    for k = 1:end_k 

        RegionMean_Freq(:,k,y) = mean(data(initChunk+1:endChunk)); 

        initChunk = Shift + initChunk; 

        endChunk = Shift + endChunk; 

    end 

    clear data_length; 

end 

[M_Kur,I_Kur] = max(RegionKur); 

[M_Skew,I_Skew] = max(RegionSkew); 

RegionKur(:,:,y) = circshift(RegionKur(:,:,y),-I_Kur(:,:,y)+1); 

RegionSkew(:,:,y) = circshift(RegionSkew(:,:,y),-I_Kur(:,:,y)+1); 

RegionVar(:,:,y) = circshift(RegionVar(:,:,y),-I_Kur(:,:,y)+1); 

RegionStd(:,:,y) = circshift(RegionStd(:,:,y),-I_Kur(:,:,y)+1); 

RegionMean(:,:,y) = circshift(RegionMean(:,:,y),-I_Kur(:,:,y)+1); 

RegionMean_Freq(:,:,y) = circshift(RegionMean_Freq(:,:,y),-I_Kur(:,:,y)+1); 

clear k end_k p y data; 

RegionKur = RegionKur(1:end-I_Kur+1); 

RegionSkew = RegionSkew(1:end-I_Kur+1); 

RegionVar = RegionVar(1:end-I_Kur+1); 

RegionStd = RegionStd(1:end-I_Kur+1); 

RegionMean = RegionMean(1:end-I_Kur+1); 

RegionMean_Freq = RegionMean_Freq(1:end-I_Kur+1); 

if Normalize == 1 

    RegionVar = repmat(RegionVar ./max(max(RegionVar)),3,1); 

    RegionSkew = repmat((RegionSkew ./max(max((RegionSkew)))),3,1); 

    RegionKur = repmat(RegionKur ./max(max(RegionKur)),3,1); 

    RegionStd = repmat(RegionStd ./max(max(RegionStd)),3,1); 

    RegionMean = repmat(RegionMean ./max(max(RegionMean)),3,1); 

    RegionMean_Freq = repmat(RegionMean_Freq 

./max(max(RegionMean_Freq)),3,1); 

elseif Normalize == 0 

    RegionVar = repmat(RegionVar ./(max(RegionVar)),3,1); 

    RegionSkew = repmat((RegionSkew ./(max((RegionSkew)))),3,1); 

    RegionKur = repmat(RegionKur ./(max(RegionKur)),3,1); 

    RegionStd = repmat(RegionStd ./(max(RegionStd)),3,1); 

    RegionMean = repmat(RegionMean ./(max(RegionMean)),3,1); 

    RegionMean_Freq = repmat(RegionMean_Freq ./(max(RegionMean_Freq)),3,1); 

end 

if strcmp(FeatureUsed, 'f') 

    for s = 1:NumFrames{1,1} 

        if (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 0) 

&& (CalSkew == 1) 

            IPrnt(:,:,s) = RegionSkew(:,:,s); 

            StatLabel = {'Skew'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = RegionKur(:,:,s); 

            StatLabel = {'Kur'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt = [RegionKur(:,:,s);RegionSkew(:,:,s)]; 
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            StatLabel = {'Kur','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = RegionMean(:,:,s); 

            StatLabel = {'Mean'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = [RegionMean(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Mean','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionMean(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Mean','Kur'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) =  

[RegionMean(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Mean','Kur','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = RegionStd(:,:,s); 

            StatLabel = {'Std'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = [RegionStd(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Std','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionStd(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Std','Kur'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionStd(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Std','Kur','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = [(RegionStd(:,:,s));(RegionMean(:,:,s))]; 

            StatLabel = {'Std','Mean'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionStd(:,:,s);RegionMean(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Std','Mean','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = 

[RegionStd(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Std','Mean','Kur'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionStd(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Std','Mean','Kur','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 0) 
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            IPrnt(:,:,s) = RegionVar(:,:,s); 

            StatLabel = {'Var'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = [RegionVar(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionVar(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Var','Kur'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Kur','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionVar(:,:,s);RegionMean(:,:,s)]; 

            StatLabel = {'Var','Mean'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionMean(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Mean','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionVar(:,:,s); 

RegionMean(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Var','Mean','Kur'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Mean','Kur','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionVar(:,:,s);RegionStd(:,:,s)]; 

            StatLabel = {'Var','Std'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Std','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Var','Std','Kur'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Std','Kur','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 0) 
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            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionMean(:,:,s)]; 

            StatLabel = {'Var','Std','Mean'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionMean(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Std','Mean','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Var','Std','Mean','Kur'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s);RegionS

kew(:,:,s)]; 

            StatLabel = {'Var','Std','Mean','Kur','Skew'}; 

        end 

    end 

else 

    for s = 1:NumFrames{1,1} 

        if (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 0) 

&& (CalSkew == 1) 

            IPrnt(:,:,s) = RegionSkew(:,:,s); 

            StatLabel = {'Skew'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = RegionKur(:,:,s); 

            StatLabel = {'Kur'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt = [RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Kur','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = RegionMean(:,:,s); 

            StatLabel = {'Mean'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = [RegionMean(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Mean','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionMean(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Mean','Kur'}; 

        elseif (CalVar == 0) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) =  

[RegionMean(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Mean','Kur','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = RegionStd(:,:,s); 

            StatLabel = {'Std'}; 
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        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = [RegionStd(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Std','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionStd(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Std','Kur'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionStd(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Std','Kur','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = [(RegionStd(:,:,s));(RegionMean(:,:,s))]; 

            StatLabel = {'Std','Mean'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionStd(:,:,s);RegionMean(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Std','Mean','Skew'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = 

[RegionStd(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Std','Mean','Kur'}; 

        elseif (CalVar == 0) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionStd(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Std','Mean','Kur','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = RegionVar(:,:,s); 

            StatLabel = {'Var'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = [RegionVar(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionVar(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Var','Kur'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Kur','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionVar(:,:,s);RegionMean(:,:,s)]; 

            StatLabel = {'Var','Mean'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 1) 
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            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionMean(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Mean','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionVar(:,:,s); 

RegionMean(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Var','Mean','Kur'}; 

        elseif (CalVar == 1) && (CalStd == 0) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Mean','Kur','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = [RegionVar(:,:,s);RegionStd(:,:,s)]; 

            StatLabel = {'Var','Std'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Std','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Var','Std','Kur'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 0) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Std','Kur','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 0) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionMean(:,:,s)]; 

            StatLabel = {'Var','Std','Mean'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

0) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionMean(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Var','Std','Mean','Skew'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 0) 

            IPrnt(:,:,s) = 

[RegionVar(:,:,s);RegionStd(:,:,s);RegionMean(:,:,s);RegionKur(:,:,s)]; 

            StatLabel = {'Var','Std','Mean','Kur'}; 

        elseif (CalVar == 1) && (CalStd == 1) && (CalMean == 1) && (CalKur == 

1) && (CalSkew == 1) 

            IPrnt(:,:,s) = 

[RegionMean_Freq(:,:,s);RegionMean(:,:,s);RegionStd(:,:,s);RegionVar(:,:,s);R

egionKur(:,:,s);RegionSkew(:,:,s)]; 

            StatLabel = {'Mean Freq','Mean','Std','Var','Kur','Skew'}; 

        end 

    end 

end 
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clear s CalKur CalMean CalSkew CalStd CalVar; 

for p = 1:NumFrames{1,1} 

    f{p} = figure('visible','on','units','normalized'); 

    colormap(jet); 

    axes1{p} = axes('Parent',f{p}); 

    contourf(IPrnt(:,:,p),100,'LineStyle','none'); 

    box(axes1{p},'on'); 

    axis(axes1{p},'tight'); 

    set(axes1{p},'XTick',[],'XTickLabel',[],'YTick',[2 5 8 11 14 

17],'YTickLabel',{'Mean 

Frequency','Mean','Std','Var','Kur','Skew'},'FontSize',24); 

  

end 

  

end 
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