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ABSTRACT 

 

 

The ubiquity of IoT devices has created an urgent need to augment existing network 

security mechanisms by leveraging discriminating, waveform characteristics to facilitate the 

detection of unauthorized devices. RF-DNA fingerprints are a waveform-based approach capable 

of distinguishing one device from others of the same manufacturer and model. This work 

investigates the extent to which the intentionally inserted changes can alter the RF-DNA 

fingerprints of the transmitted signal without negatively impacting the receiver’s ability to 

demodulate the received signal. The experiments presented herein investigate intentional changes 

caused by the external clock to the preamble of the 802.11a Wi-Fi waveform from which RF-DNA 

fingerprints are extracted.  Analysis is conducted using the Gabor Transform.  The results show 

the structure of the preamble remains intact when the clock signal is phase-modulated using sine 

waves oscillating frequencies up to 10 kHz with deviation of 1.5 degrees, or 2.5 kHz with deviation 

of 90 degrees. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Overview 

It has been twenty-three years since the first work on Radio Frequency (RF) fingerprinting 

was published in 1996 [1]. As an analogy, RF fingerprinting can be described as being akin to 

human biometrics in which everyone’s identity is established from different distinct and native 

attributes present within a given physical trait (e.g., a person’s fingerprints, retinal patterns). RF 

fingerprinting is defined as the process through which distinct and native received signal 

characteristics are collected from the device to make it detectable and noticeable from another one 

of the same manufacturers, and even more, the model [2]. The method of RF fingerprinting that 

will be explained in this work is known as RF-Distinctive Native Attributes (RF-DNA) 

fingerprinting. The work in [3, 4] has shown that these unique attributes in the wireless 

transmitter’s electromagnetic signals can be utilized as a way to differentiate it from others built 

using the same components and assembly process. 

 

1.2 Motivation 

Internet of Things (IoT) operating devices installed worldwide were counted as 23.14 

billion at the end 2018, and it is projected to increase to 26.66 billion devices by the end of 2019 

[5]. Wireless networks have been commonly protected using what is known as a “bit-level” 

mechanisms (e.g., encryption) within the Open Systems Interconnection (OSI) layer-2 (Datalink), 
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layer-3 (Network) or higher layers shown in Figure 1.1. These techniques are commonly targeted 

by attackers, and also show weakness for challenging the user if he or she is an authorized user 

[6]. 

 

 

Figure 1.1  OSI model [7] 

 

The authentication of any device can be implemented using one or more of the following 

techniques: (i) passwords, (ii) pre-shared secrets, and (iii) public-key cryptosystems. A device’s 

allowed access (i.e., Authorization) can be achieved by any kind of access control list (e.g., a 

database of users tied with their specific privileges). However, as the number of IoT devices grows, 

new security concerns have appeared. For instance, the factories, that utilize and depend on IoT 

devices to get higher efficiency in the production, will face a big loss if a single attack disrupts the 

factory operation [8]. This issues become more severe as the traditional security systems (e.g., 

Firewall) become more critical and vulnerable than before.[9]. 
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There are many intrinsic parameter fluctuations that account for time-dependent workload 

conditions and post-deployment degradation (e.g., due to device overuse, thermal fluctuations, and 

exposure to ionizing radiation). As these conditions can change the physical attributes of the 

examined hardware, it is important to determine if the RF-DNA fingerprints are affected by these 

conditions. The motivation behind this work is the published paper titled, “Assessment of the 

Impact of CFO on RF-DNA Fingerprint Classification Performance” [10]. This paper addressed 

the effects caused by the frequency differences that exist between the local oscillators of the 

transmitter and receiver upon the RF-DNA fingerprinting process. The work in [10], implies a 

mechanism for improving RF-DNA fingerprint-based radio discrimination through the insertion 

of a unique feature or features. For the case of [10], a unique CFO  value is inserted by the 

transmitter, which empirically led to improved discrimination of each radio from all others as the 

signal-to-noise ratio (SNR) degraded. The work in [10] also showed that a given waveform feature 

varies across the transmissions of the selected device, which impacts discrimination performance. 

This has led to the research question: Can the intentional manipulation of device components (e.g., 

the clock distribution system) result in the insertion or manipulation of RF-DNA fingerprint 

features? 

As there are similarities between fingerprints of electronic components and human beings 

fingerprints, some requirements can also be utilized for the fingerprinting of electronic devices, 

such as: (1) universality: which means that every electronic component should have the 

characteristics to be used for identification, (2) uniqueness: that no two devices should have the 

same fingerprints, (3) permanence: which means that the characteristics should be conserved 

despite aging or condition, (4) collectability: The ability to quantify these characteristics [11]. 
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1.3 Problem statement  

There is an urgent need to augment current bit-level network security mechanisms to 

leverage useful discriminating information, which can be used to identify possible rogue devices. 

This problem is investigated through (i) Manipulation of a Software Defined Radio’s (SDR) 

inherent features by inserting intentional changes (e.g., the clock distribution system) and 

unintentional changes (e.g., temperature impact), (ii) Determine the origins of RF-DNA fingerprint 

features, and (iii) Develop new stochastic based modelling techniques for capturing intrinsic 

parameter fluctuations. This model can be used to detect efficiency degradation. 

 

1.4 Objectives 

The objectives of this RF-DNA fingerprinting work are: (i) Exploit physical attributes 

(either inherent or statistical features) to study the impact of intentional manipulation, and (ii) 

Determine the point at which demodulation is negatively impacted by the waveform changes 

caused by intentional manipulation of the external clock (i.e., loss of bit-error-rate performance at 

a given noise level). 

 

1.5 Research contributions  

This work investigates the extent to which clock manipulation impacts the RF-DNA 

fingerprint statistics and defines a demodulation breakpoint where, beyond which, the transmitted 

data can no longer be recovered by the receiver. The main contributions of this research are: 

 It is concentrated in the Physical (PHY), thus working directly with the electromagnetic 

waves. At the receiver side, the collection is done for the signal before the demodulation 

step occurs, which guarantees that no changes have been made to the received signal.  
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 By using the GNU Radio Companion, a new capability has been tested of how the software 

can impact the transmitted and received signal of the SDR devices by doing different kinds 

of modulation and signal processing (e.g., sampling, and filtering) 

 The expected outcomes will affect the electronic industry in how manufacturers build their 

components to utilize these physical attributes. This will lead to an enhancement of 

wireless transmitter discrimination for improved network security. 

 Configure the SDR platform to facilitate the manipulation of specific RF components, such 

as the local oscillator. The goal is to manipulate a selected RF component's behavior or 

characteristic and then ascertain the impact that manipulation has on the discrimination of 

that particular wireless transmitter from a pool of transmitters (i.e., all the transmitters are 

sending Wi-Fi waveforms). The transmitters can be from different manufacturers, the same 

manufacturer with a different model, or the same manufacturer and model.  

 The collected waveforms have been presented in two-dimensions (2D) of time and 

frequency using the Discrete Gabor Transform (DGT). Fingerprints have been generated 

as features quantified in the form of statistical measures. 

 

1.6 Thesis outlines 

The next four chapters’ outlines are: 

 Chapter 2: Background: This chapter provides an overview of the literature on The IEEE 

802.11 standard, Modulation techniques, Software Defined Radio (SDR), GNU radio 

companion software, Orthogonal Frequency Division Multiplexing (OFDM) receiver, 

Gabor Transform (GT) based fingerprint generation, and the relevant work of RF 

fingerprinting and hardware changes effects. 
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 Chapter 3: Methodology: This chapter presents the GNU radio companion flowchart used 

to build the transmitter and the receiver, description of the experiment environment, the 

process of capturing the Wi-Fi signals, extracting the preambles, analyzing them using the 

GT, and generating the statistical fingerprints. 

 Chapter 4: Results and Discussions: This chapter shows the plots of the preamble of the 

transmitted waveform, received waveform for both non-modulated clock cases, and the 

phase-modulated clock. Also, it defines the demodulation breakpoints and showing the 

time domain plots, and GT of the preamble for different cases. Moreover, a comparison is 

made to highlight the differences between modulated and non-modulated clock.  

 Chapter 5: Conclusion: This chapter concludes the findings and contributions of this work 

as well as proposes topics and challenges that can be addressed for follow-on research. 
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CHAPTER 2 

BACKGROUND 

 

 

2.1 Introduction 

This chapter provides details about the technology and the RF communication terms that 

will be used in this thesis document. First of all, the IEEE 802.11a standard will be discussed, and 

the structure of its preamble, which is the main signal of interest, will be shown. The modulation 

techniques of OFDM and Phase Modulation (PM) will be illustrated. Then, the SDR platform is 

described, including LimeSDR-mini. After that, the main software used in the experiments, GNU 

radio companion, is also covered. Next, the IEEE 802.11a Wi-Fi PHY layer is explained in detail. 

Also, RF-DNA fingerprinting is explained, including how it is formed and interpreted. The 

clocking system and how it is designed are shown for the LimeSDR-mini platform. Plus, the RF 

local oscillator is explained. Finally, relevant works are summarized, and their relevancy to this 

work explained. 

 

2.2 IEEE 802.11 standard 

In October 1997, the IEEE 802 Executive Committee approved two projects for higher rate 

PHY extensions to the IEEE 802.11 Wireless-Fidelity (Wi-Fi) communications standard. The first 

extension, IEEE 802.11a, defined the operational requirements (e.g., frequency, bandwidth, 

modulation) in the 5.0 GHz band and data rates ranging from 6 to 54 Mbps. The second extension, 

IEEE 802.11b, defined a set of PHY specifications operating in the 2.4 GHz Industrial, Scientific, 
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and Medical (ISM) frequency band capable of data rates from 1 to 11 Mbps. Both PHY were 

defined to operate in conjunction with the existing Medium Access Control (MAC) layer [12]. 

As the PHY layer defines the means of transmitting raw bits, it is not related to how the 

data is sent logically over a physical link connecting network nodes (i.e., it is not related to how 

the packets are transitioned among switches or routers). It is the interface between the MAC layer 

and the wireless or wired medium. There are three levels of functions within the PHY layer: (i) it 

provides a frame exchange between MAC layer and the physical layer, (ii) it uses signal carrier 

and spread spectrum modulation to transmit data frames over the transmission link, and (iii) to 

check if there is a traffic on the PHY link ,it provides a carrier sense indication back to the MAC 

layer [13]. 

 

2.3 Modulation techniques 

2.3.1 OFDM 

Orthogonal Frequency Division Multiplexing (OFDM) plays a major role in 

communication systems that require high data rates; especially, with the broad expansion of 

applications that either require real-time processing (e.g., voice over IP) or higher network 

throughput (e.g., video streaming). OFDM is a multi-carrier (i.e., uses sub-carriers) parallel 

transmission technique; it splits the data into sub-streams, which have a low data rate and are 

modulated separately. The sub-carriers have a small bandwidth compared with the coherence 

bandwidth of the channel; that is, under poor channel conditions, the transmissions can still reach 

their destination. This indicates that the symbol period of the sub-streams is long when compared 

to the delay spread of the radio channel. Also, due to the orthogonality of the set of carrier 

frequencies, a high spectral efficiency is obtained because the spectra of the sub-carriers overlap, 
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while mutual influence among the sub-carriers can be avoided by introducing a guard period 

known by cyclic prefix (CP) [14].  

IEEE 802.11a Wi-Fi is a pulsed signal, or it is often referred to as a ‘burst’ signal. The total 

allotted bandwidth (BW) for 802.11a Wi-Fi is 20 MHz, while the occupied bandwidth (OBW) is 

16.6 MHz. As shown in Figure 2.1, a single OFDM symbol contains 52 sub-carriers; 48 of them 

are data sub-carriers, and the remaining four are devoted to being pilot sub-carriers. The center, 

"null," zero sub-carrier is not used. All data sub-carriers use the same modulation format within a 

given burst. However, the modulation format can vary from burst to burst. The possible data 

subcarrier modulation techniques are Binary Phase Shift Keying (BPSK), Quadrature Phase Shift 

Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), and 64QAM. The pilot sub-

carriers are always modulated using BPSK with a known magnitude and phase. Symbols are 

carried in the OFDM subcarrier, along with its magnitude and phase information. This means that 

each subcarrier and OFDM symbol has a different magnitude and phase in every Wi-Fi pulse [15]. 

 

 

Figure 2.1  OFDM spectrum [15] 
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Figure 2.2 shows the block diagram of a point-to-point transmission system using OFDM. 

The channel coding and interleaving functions are important, as in every channel, there is 

attenuation or loss of the transmitted data symbols on one or several sub-carriers. Severely 

attenuated or lost symbols can lead to bit errors within the receiver’s demodulation process. An 

efficient coding scheme can correct for the wrong bits and thereby utilize the channel physical 

resources (i.e., the bandwidth) [14]. 

After that, symbol mapping (modulation) takes place. The OFDM modulation and 

demodulation of the data constellations on the orthogonal sub-carriers are done through the 

calculation of the Inverse Discrete Fourier Transform (IDFT) and Discrete Fourier Transform 

(DFT), respectively. At the input of the IDFT, N data constellation points {xi,k} are present, where 

N is the number of DFT points, ‘i’ is an index on the subcarrier, and; ‘k’ is an index on the OFDM 

symbol. These constellations can be taken according to any PSK or QAM signaling [14]. 

 

 

 

Figure 2.2  Simple point-to-point transmission using OFDM [14] 
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Next, the guard interval is added to avoid interference followed by Digital to Analog 

Converter (DAC) to be transmitted through the communications channel. The complex equivalent 

baseband signals generated by digital signal processing are in-phase and quadrature (I-Q)–

modulated and up-converted to be transmitted via an RF carrier. The reverse steps are performed 

by the receiver [14]. 

Synchronization is crucial to the efficient operation of an OFDM receiver. Time 

synchronization is required to identify the start of an OFDM symbol. Frequency synchronization 

is used to align the modulator’s and the demodulator’s local oscillator frequencies. If there is a 

situation of asynchronous, then the orthogonality of the sub-carriers is lost, which results in Inter 

Signal Interference (ISI) and Inter-Carrier Interference (ICI) [14]. 

 

2.3.2 Phase Modulation (PM) 

Analog modulation has three main types, which are Amplitude Modulation (AM), 

Frequency Modulation (FM), and Phase Modulation (PM). PM is achieved by changing the phase 

of the carrier linearly depending on the message signal amplitude. In PM, the total carrier’s phase 

is varied proportionally to the message signal m(t) with a phase deviation constant of kp radians 

per unite amplitude of m(t). The total instantaneous phase θi(t), the corresponding instantaneous 

frequency ωi(t), and the PM signal ΦPM (t) are given respectively by, 

 

𝜃𝑖(𝑡) =  𝜔𝑐  ∗  𝑡 +  𝑘𝑝 𝑚(𝑡),                                                               (2.1) 

𝜔𝑖(𝑡) =
𝑑𝜃𝑖
𝑑𝑡
 =  𝜔𝑐  +  𝑘𝑝 𝑚

′(𝑡),                                                              (2.2) 

and 

𝛷𝑃𝑀(𝑡) =  𝐴𝑐  𝑐𝑜𝑠 (𝜔𝑐  ∗  𝑡 +  𝑘𝑝 𝑚(𝑡)),                                                   (2.3) 
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where Ac is the carrier amplitude [16]. 

 

2.4 Software Defined Radio (SDR) 

2.4.1 Overview 

The IEEE has defined the SDR as a "Radio in which some or all of the physical layer 

functions are defined in software" [17]. The International Telecommunication Union (ITU) has 

another definition which is “A radio transmitter and/or receiver employing a technology that 

allows the RF operating parameters including, but not limited to, frequency range, modulation 

type, or output power to be set or altered by software, excluding changes to operating parameters 

which occur during the normal pre-installed and predetermined operation of a radio according to 

a system specification or standard" [18]. The main difference between the SDR and the traditional 

radios, is that the ability of the SDR to perform all signal processing in software by using 

technologies, such as Field Programmable Gate Array (FPGA), General-Purpose Processor (GPP) 

and Digital Signal Processing (DSP) chips to implement all the hardware radio elements [19]. 

The common attributes (e.g., carrier frequency, signal bandwidth, modulation, network 

access, cryptography, FEC coding, source coding, …, etc.) are also applied in the SDR, but in 

software. The SDR is a multi-function and cost-effective general-purpose device because the same 

radio tuner and processors can be used to implement many waveforms at many frequencies and 

can be easily upgraded with new software, which can contain new libraries of waveforms and 

applications [20]. 

On the other hand, some SDR disadvantages include: (i) increased power consumption due 

to high signal processing, (ii) complexity associated with the effort that goes along with the 
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development of both firmware and software, and (iii) limited scope of SDRs on only the physical 

layer with no cooperation with the other layers [21]. 

 

2.4.2 LimeSDR-Mini 

The LimeSDR-Mini, shown in Figure 2.3, “provides a hardware platform for developing 

and prototyping high-performance and logic-intensive digital and RF designs using Intel’s MAX 

10 FPGA and Lime Microsystems transceiver”. The LimeSDR-mini transceiver has two RF inputs 

and operates over RF frequencies ranging from 10 MHz up to 3.5 GHz. The basis of this SDR is 

the LMS7002M transceiver chip, the Intel MAX 10 (10M16SAU169C8G 169-UBGA) FPGA 

chip, and USB 3.0 controller (FTDI FT601). The LimeSDR-Mini has an onboard 40 MHz Voltage 

Controlled Temperature Compensated Crystal Oscillator (VCTCXO) that serves as the reference 

clock for the transceiver and FPGA Phase-Locked Loops (PLLs) [22]. 

 

 

Figure 2.3  LimeSDR-Mini [23] 

 

2.5 GNU radio companion 

SDR platforms are programmed using the GNU Radio, which is a popular software 

environment equipped with a rich library of signal processing blocks (e.g., filters, decoders, 

modulators, and encoders) and other general-purpose blocks used in radio systems. It uses both 
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the Python and C++ programming languages. GNU Radio applications are primarily written using 

Python, while C++ is used to create complex signal processing blocks. The open-source mediation 

software, known as Simplified Wrapper and Interface Generator (SWIG), is the “glue code” that 

enables the calling of C++ functions within the Python programming language. Figure 2.4 

illustrates the organization of data flow in GNU Radio [20]. 

 

 

Figure 2.4  GNU radio block diagram [20] 

 

Additional software, known as GNU Radio Companion (GRC), is a Graphical User Interface 

(GUI) tool for creating signal flow graphs and generating flow-graph source code [24]. GRC 

facilitates the interaction with the SDR due to programming simplicity. In addition, it provides 

some flexibility through variable blocks to pass variable values and also import some Python 

functions [20]. 
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2.6 IEEE 802.11a Wi-Fi PHY layer 

2.6.1 IEEE 802.11a preamble 

In this work, RF-DNA fingerprints are generated from the IEEE 802.11a preamble, shown 

in Figure 2.5. The preamble comprises the first 16 μs of every 802.11a Wi-Fi transmission. Starting 

from the left side of Figure 2.5, it contains 10 Short Training Sequences (STS), t1 to t10, followed 

by a Guard interval (GI2), and two Long Training Sequences (LTS), T1 and T2. The duration of 

each STS, GI, and LTS are 0.8 μs, 1.6 μs, and 3.2 μs, respectively. The first 7 STS are dedicated 

to Automatic Gain Control (AGC), and diversity selection. The remaining 3 STS are used for 

coarse frequency offset estimation. The 2 LTS are used for channel and fine frequency offset 

estimation [25]. 

 

 

Figure 2.5  The structure of the IEEE 802.11a preamble [25] 

 

2.6.2 Frame detection 

It is based on the frame detection algorithm, which is the autocorrelation of the short 

training sequence (STS) calculated by, 

 

𝑎[𝑛] = ∑ 𝑠[𝑛 + 𝑘] 𝑠[𝑛 + 𝑘 + L]

𝑁𝑤−1

𝑘=0

.                                               (2.4) 
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Each IEEE 802.11a frame starts with 10 STSs that each consist of a pattern that spans L 

samples. The receiver utilizes this cyclic pattern (i.e., the STS pattern is the same in every 

preamble) and calculates the autocorrelation value ‘𝑎’ of the incoming sample stream ‘𝑠’ with the 

delayed sample stream of the complex conjugate of 𝑠, (i.e., 𝑠), by summing up the autocorrelation 

coefficients over an adjustable window ’𝑁𝑤’[26]. The autocorrelation is normalized with the 

average power ‘𝑝’ calculated as follows, 

 

𝑝[𝑛] = ∑ 𝑠[𝑛 + 𝑘] 𝑠[𝑛 + 𝑘]

𝑁𝑤 −1

𝑘=0

.                                             (2.5) 

 

The autocorrelation coefficient (i.e., the threshold) ‘𝑐’ is calculated as follows: 

 

𝑐[𝑛] =
𝑎[𝑛]

𝑝[𝑛]
.                                                                             (2.6) 

 

If the calculation of (2.6) results in a ‘plateau’ that exceeds a configurable threshold value 

‘𝑐’ for three consecutive STSs, then an 802.11a frame is detected by the receiver. Figure 2.6 shows 

a case when the ‘plateau’, from (2.6), satisfies the threshold, ‘𝑐'. However, if the plateau isn't 

detected, then the frame is dropped [26]. 
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Figure 2.6  Autocorrelation of samples exceeding the threshold ‘𝑐’ during frame reception [26] 

 

2.6.3 Frequency offset correction 

Frequency offset correction is needed to compensate for the frequency mismatch that exists 

between the local oscillators of the transmitter and receiver. The coarse estimation of the phase 

rotation per sample is implemented using the STSs, while the fine estimation is implemented using 

the LTSs. Pilot symbols are used for additional phase estimation of the phase rotation [27].  

Ideally, during the short sequence, a sample s[n] should correspond to the sample 𝑠 [n+16] 

due to its cyclic property, where 16 the number of samples comprising an STS when sampling at 

a rate of 20 MSPS [26]. The final value for the coarse frequency offset 𝛼𝑆𝑇 is then calculated by, 

 

𝛼𝑆𝑇 =
1

16
arg ( ∑ 𝑠[𝑛] 𝑠[𝑛 + 16)]),

𝑁𝑠ℎ −1

𝑛=0

                                                (2.7) 

 

where 𝑁𝑠ℎ is the length of the short training sequence. The frequency offset is then applied to each 

sample as, 
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𝑠[𝑛] ← 𝑠[𝑛]𝑒𝑖(𝑛𝛼𝑆𝑇) .                                                               (2.8) 

 

The fine CFO estimation 𝛼𝐿𝑇 is obtained utilizing the 2 LTSs. As they are 64 samples each 

at 20 MSPS, the frequency offset can be calculated by [27], 

 

𝛼𝐿𝑇 =
1

64
arg (∑ 𝑠[𝑛] 𝑠[𝑛 + 64)])

63

𝑛=0

 .                                                (2.9) 

 

Figure 2.7a shows sample constellation points without any correction. In this case, the 

probability of error is high because the constellation points are mixed, and the decision made by 

the receiver will most probably lead to the wrong estimation of the transmitted symbol. Figure 

2.7b shows the constellation with only coarse correction. It is better than the Figure 2.7a, but still, 

there is a low probability of error. Figure 7.9c shows the constellation with both coarse and fine 

correction, and figure 2.7d shows the constellation with coarse, fine, and pilot correction [28]. 
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(a) Without any correction 

 

(b) With only coarse correction 

 

 

(c) With both coarse and fine correction 

 

 

(d) With coarse, fine, and pilot correction 

Figure 2.7  Sample constellation points: (a) without any correction, (b) with only coarse 

correction, (c) with both coarse and fine correction, and (d) with coarse, fine, and 

pilot correction [28] 

 

2.6.4 Symbol alignment 

Symbol alignment is achieved by leveraging the two LTSs. The process of symbol 

alignment consists of the calculation of the start of a symbol, the extraction of the data symbols, 

and processing them with an algorithm that calculates the Fast Fourier Transform (FFT) [26]. 

Figure 2.8 shows the correlation of the input stream with the known LTS sequence. 
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Figure 2.8  The correlation of the sample input stream with the known LTS sequence [26] 

 

The indices of the highest three peaks 𝑁𝑝 are calculated by, 

 

𝑁𝑝 = arg𝑚𝑎𝑥3
𝑛 ∈ {0,…,𝑁𝑝𝑟}

   ∑𝑠[𝑛 + 𝑘] 𝐿𝑇[𝑘],

𝑣

k=0

                                              (2.9) 

 

where arg𝑚𝑎𝑥3 returns the top three indices maximizing the expression, 𝑁𝑝 is the number of 

samples in the preamble, 𝑣 is the number of samples in the repeating pattern of the LTS, and  𝐿𝑇 

is the LTS pattern [26]. The first data symbol starts at sample index, 

 

𝑁𝑝 = max(𝑁𝑝) + v  .                                                              (2.10) 

 

Finally, by knowing the start of the data symbols, the cyclic prefix can be removed, samples 

that correspond to individual data symbols are: 

 

𝑠 ← (𝑠{𝑁𝑝 + 𝐿},… , 𝑠{𝑁𝑝 + 𝐿 + 𝑣 − 1}⏟                      
𝑓𝑖𝑟𝑠𝑡 𝑠𝑦𝑚𝑏𝑜𝑙   

, 𝑠{𝑁𝑝 +  2𝐿 + 𝑣 − 1},…⏟               )

𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑦𝑚𝑏𝑜𝑙

      .                 (2.11) 



21 

 

2.6.5 Channel estimation 

Based on [29], the main functions of the two LTSs are for channel estimation and symbol 

alignment. One of the methods used for channel estimation is the Least Square Estimator (LSE), 

which will be explained in this section. Assume the symbol used for the spectrum of a transmitted 

signal is ‘X’ while the received signal is ‘Y.' ‘H’ symbol is used to show the channel frequency 

response. The relationship between 𝑋, 𝑌, and 𝐻 is given by [30], 

 

𝑌 = [

𝐻0
𝐻1
⋮

𝐻𝑁𝑠𝑐−1

] [

𝑋0   0   …     0
0    𝑋1   …     0
⋮      ⋮    ⋱      0

   0    0 … 𝑋𝑁𝑠𝑐−1

] + [

𝑁0
𝑁1
⋮

𝑁𝑁𝑠𝑐−1

],                                                 (2.12) 

 

where 𝑁 is the frequency response of the Additive White Gaussian Noise (AWGN). The goal of 

the Least Square (LS) estimator is to minimize the cost function 𝐽(𝐻̂) given by, 

 

𝐽(𝐻̂) = (𝑌 − 𝐻𝑋)𝐻(𝑌 − 𝐻𝑋),                                                        (2.13) 

 

where Ĥ is the channel frequency response estimation, and ( )H represents the conjugate transpose 

of the matrix. By assuming N = 0, LS algorithm solves equation (2.13) and estimates the channel 

frequency response by using, 

 

𝐻̂𝑙𝑠 = 𝑋
−1𝑌.                                                                      (2.14) 
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The use of both LTSs in (2.14) will be an advantage to eliminate 50% of both the noise 

variance and the estimation of square error. This LS approach to channel estimation is given by 

[30], 

 

𝐻̂𝑙𝑠 =
1

2
. 𝑋−1. (𝑌1 + 𝑌2),                                                        (2.15) 

 

where 𝑌1 and 𝑌2 are the Discrete Fourier Transforms of the first and second received LTSs, 

respectively [29]. 

 

2.7 RF-DNA Fingerprinting 

2.7.1 Overview 

During generation and transmission of an electromagnetic waveform unique behaviors and 

distinguishable characteristics are unintentionally and inherently imparted by the radio’s RF front-

end components, their interactions with one another as well as the operating environment. The RF-

DNA fingerprinting is a Specific Emitter Identification (SEI) approach in which the fingerprints 

are generated from a fixed, known sequence of symbols within the transmitted waveform. The 

IEEE 802.11a Wi-Fi preamble is one such example of a fixed, known sequence of waveform 

symbols from which RF-DNA fingerprints can be extracted [31]. 

 

2.7.2 Gabor transform 

As in [32], instead of using either time or frequency domain representations of the signal, 

this work uses RF-DNA fingerprints extracted from both of them through the generation of the 
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time-frequency (T-F) response. Based on the work [32], the T-F response is generated through the 

calculation of the Discrete Gabor Transform (DGT) given by, 

 

𝐺𝑚𝑘 = ∑ 𝑠(𝑛)𝑊∗(𝑛 − 𝑚𝑁∆)𝑒
−𝑗𝛾

𝑀𝑁∆

𝑛=1

,                                      (2.12) 

 

where 𝐺𝑚𝑘 is the Gabor coefficients, the periodic input signal is: 𝑠(𝑛) = 𝑠(𝑛 + 𝑙𝑀𝑁∆) , the 

periodic analysis window is: 𝑊(𝑛) = 𝑊(𝑛 + 𝑙𝑀𝑁∆), the total number of shifted samples is: 𝛾 =

2𝜋𝑘𝑛/𝐾𝐺, 𝑁∆, number of shifts is: 𝑚 = 1, 2,… ,𝑀, 𝑘 = 1, 2, … , 𝐾𝐺 − 1  for 𝐾𝐺 ≥ 𝑁∆ and 

𝑚𝑜𝑑( 𝑀𝑁∆, 𝐾𝐺) = 0, which is explained in detail in [33].  

The Generation of the RF-DNA fingerprints is based on the normalized values of the 

magnitude-squared GT coefficients |𝐺𝑚𝑘|
2 which are given by [32], 

 

|𝐺𝑚𝑘|2 =
|𝐺𝑚𝑘|

2 −𝑚𝑖𝑛{|𝐺𝑚𝑘|
2}

𝑚𝑎𝑥{|𝐺𝑚𝑘|2 −𝑚𝑖𝑛{|𝐺𝑚𝑘|2}}
 .                                                     (2.13) 

 

Figure 2.9 shows a representative normalized magnitude-squared T-F surface generated 

from the complex Gabor coefficients. The surface is divided up into 𝑁𝑅 two-dimensional sub-

regions, which are called “Patches," each sub-region contains a total of 𝑁𝑇 × 𝑁𝐹 values. The 

variables 𝑁𝑇 is the time dimension length, and 𝑁𝐹 is the frequency dimension length of the sub-

region. To meet the condition of “population samples sufficiency” [34], the value of 𝑁𝑇 and 𝑁𝐹 

are chosen to ensure that, at least, 𝑁𝑇𝐹 = 15 values comprise a sub-region. For each sub-region, 

the statistics of standard deviation, variance, skewness, and kurtosis, are calculated. These same 

statistics are also calculated over the entire T-F surface, constituting the  𝑁𝑅 + 1 sub-region [35]. 
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Figure 2.9  Gabor transform of normalized magnitude-squared coefficients (2D) [35] 

 

Every fingerprint is a vector (i.e., a one-dimensional array) of numbers. Figure 2.10 shows 

a sample GT plot (left) and a representative set of RF-DNA fingerprint features (right). The first 

three features are the variance, skewness and kurtosis for patch-1 (top left corner of the GT plot). 

The next three features are the same statistics for patch-2 (𝑁𝑇 values to the right and adjacent to 

patch-1).The last three features are the statistics for patch-3 (𝑁𝑇 values to the right and adjacent to 

patch-2). These fingerprint features can be used to assess the statistical time-frequency behavior 

of the transmission. In this work, the statistical features obtained from these fingerprint vectors are 

used to assess the impact of a phase-modulated reference clock on the resulting radio transmission. 
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Figure 2.10  Three sample patches of GT (left) and their corresponding sampler-DNA 

fingerprint elements (right) 

 

2.8 Clocking system 

The LimeSDR-mini board is shown in Figure 2.11. It shows the main components of the 

LimeSDR-mini hardware. LimeSDR-Mini board clock distribution block diagram is presented in 

Figure 2.12. It has an onboard 40 MHz VCTCXO that is the reference clock for the LMS and 

FPGA PLLs. The VCTCXO frequency can be tuned by adjusting the DAC (IC9). Buffered 

VCTCXO clock is connected to RF transceiver, FPGA, as well as to connector J9 

(REF_CLK_OUT), which can be fed to external hardware for synchronization. The VCTCXO can 

be disconnected from the clock buffer input by removing resistor (R59) and soldering resistor 

(R62). Both R59, and R62 are shown in Figure 2.13. This facilitates the connection of an external 

reference clock via connector J8 (REF_CLK_IN) [22]. The use of an external reference clock 

enables the supplying of a phase-modulated clocking signal to the LimeSDR-Mini’s PLL that 

generates the carrier signal used in bandpass transmissions. 
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Figure 2.11  LimeSDR-Mini board [22] 

 

 
 

Figure 2.12  Block diagram of the LimeSDR-Mini board clock distribution system [22] 
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Figure 2.13  R59, and R62 in the clocking path of the LimeSDR-Mini schematic diagram [36] 

 

2.9 RF Local Oscillators (LO) 

In this section, the local oscillator (LO) is described, as it is relevant to the presence of carrier 

frequency offset within the RF-DNA fingerprinting process. The main function of the LO is to 

generate a signal that oscillates at the required frequency value, which is used in up- and down-

conversion by a transceiver. It takes place by producing the sum and difference frequencies of the 

frequency of the local oscillator and frequency of the input signal of interest. Local oscillators are 

used in communications circuits such as radios, modems, and frequency division multiplexing 

systems [37]. 

In mobile devices, LO's are typically implemented using PLLs. Figure 2.14 shows the basic 

block diagram of a PLL. 

 

 

Figure 2.14  A basic PLL block diagram [38] 
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An ideal PLL would generate a sinusoidal oscillation at a carrier frequency f0. Instead, in 

practice, the PLL generates a signal of the form, 

 

y(t) = cos (2π (f0 +Δ(t)) t + n(t)),     (2.16) 

 

where Δ(t) is the frequency offset and n(t) is the phase noise [38]. 

The amount of tolerated CFO depends on the oscillator precision tolerance. In the range of 

5GHz ISM band (including the IEEE802.11a Wi-Fi band), the tolerance is less than 20 parts per 

million (ppm). If the TX oscillator operates at 20 ppm above and the RX oscillator operates at 20 

ppm below, then the error is 40 ppm. The result is a CFO value of up to 216 kHz [39]. 

 

2.10 Relevant work 

2.10.1 Identification based on built-in magnetometer 

The work in [40] shows how hardware can affect the characteristics of a device. It illustrates what 

can happen to the fingerprint of the mobile phone magnetometer if the soundboard of the computer 

is exposed to an external magnetic field generated by a solenoid. The fingerprint is quantified in 

both the time and frequency domain using statistical numbers, which are grouped into two feature 

sets, that will be discussed in detail. With the help of the magnetometer readings collected through 

an Android application called “Androsensor,” the required data is processed. Figure 2.15 gives a 

pictorial representation of the experiment setup used to collect the response through a mobile 

device using the “Androsensor,” application. 



29 

 

 

 

Figure 2.15  Experiment used to stimulate the magnetometer of a mobile phone [40] 

 

A repeated sequence of signals (similar to the clock signals in this thesis work), is shown 

in Figure 2.16. The waveforms of two mobile phones (Blue and Red), generated in response to the 

waveform shown in Figure 2.16, are shown overlaid with one another in Figure 2.17. 

 

 

Figure 2.16  The waveform used to stimulate the magnetometer of the mobile phone [40] 
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Figure 2.17  Different responses of the built-in magnetometer for two smartphones (blue and 

red) to the stimuli [40] 

 

A set of nine mobile phones were subjected to this solenoid magnetic field, and for every 

case, the resulting form was registered. For fingerprinting quantification purpose, the responses 

were converted into statistical numbers, known as features. Two sets were used; the first feature 

set contains: Shannon entropy, Log energy entropy, Standard deviation, Variance, Skewness, and 

Kurtosis. The second feature set is listed in table 2.1. 
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Table 2.1  Time and frequency domain features used for features set2 [40] 

Time Features Frequency Features 

Mean Spectral Spread 

Standard Deviation Spectral Centroid 

Average Deviation Spectral Skewness 

Skewness Spectral Kurtosis 

Kurtosis Entropy 

RMS Flatness 

Max Roll Off 

Min Roughness 

Non-negative count Irregularity 

Zero Crossing Rate 

(ZCR) 

Spectral RMS 

Low Energy Rate 

 

The first feature set has been used to generate the F-score (F-1), which is a test of accuracy, 

of the 3 different sound cards (SC1, SC2, and SC3). Two classifiers have been used, Support 

Vector Machine (SVM) and K-Nearest Neighbors (KNN) for this experiment. The results are 

shown in Table 2.2. From the results, there is a small difference between SC1 and SC2, but the 

best result was recorded for SC3. Regarding classifiers, SVM showed better F-scores compared to 

that of KNN. So, the use of different sound cards (i.e., external hardware) impacted the 

identification accuracy [40]. 
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Table 2.2  F-score (F1) obtained with different sound cards; features set1, SVM and KNN 

classifiers [40] 

SVM F-score (F1) 

SC1 

SC2 

SC3 

0.741 

0.685 

0.877 

  

KNN (K=5) F-score (F1) 

SC1 

SC2 

SC3 

0.617 

0.633 

0.808 

  

KNN (K=10) F-score (F1) 

SC1 

SC2 

SC3 

0.613 

0.663 

0.901 

  

KNN (K=15) F-score (F1) 

SC1 

SC2 

SC3 

0.614 

0.656 

0.813 

 

The second fingerprinting feature set was used for the same devices, but using the Bagged 

Decision Tree classifier. Table 2.3 shows the results of F-score for the same three devices, but with 

the Bagged Decision Tree classifier. The second feature set results in better classification 

performances (88% on average), for all three devices, when compared to the results using the first 

set of features. This indicates the more fingerprinting features used, the better classification results 

will be expected [40]. 

 

Table 2.3  Results in terms of F-score (F1) on the three considered audio boards: features set2, 

bagged decision tree classifier [40] 

Bagged Decision Tree classifier F-score F1 

SC1 0.891 

SC2 0.868 

SC3 0.907 
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2.10.2 Assessment of the impact of CFO 

One of the hardware components that can affect the transmission characteristics is the local 

oscillator. This component exists in both transmitter and receiver, but they do not generate the 

exact same frequency without some form of synchronization. When a mismatch between the two 

LOs occurs, the result is the presence of an offset value within the received waveform. This offset 

is referred to as carrier frequency offset (CFO) [10]. The receiver conducts CFO estimation 

through the use of STS nine and ten for a course estimate followed by the two LTS to achieve a 

fine estimate of the CFO value. 

The authors in [10] used 1,000 Wi-Fi preambles collected from each of four 802.11a Wi-

Fi radios via the same receiver. Figure 2.18(a) shows the Probability Mass Function (PMF) charts 

of the first case, where the receiver operated with the existing offset without making any alteration 

or correction. But in the second case, Figure 2.18(b) shows the PMF resulting from an intentional 

change (which is similar to what is done in this thesis work) by adding a known offset value at the 

transmitter. The result of this intentional insertion of unique CFO has shown a positive impact by 

displaying non-overlapping PMF’s of the four devices, which led to better discrimination of each 

device from the others. For the case of collected CFO, the PMFs of device 1 and device 3 overlap, 

which resulted in these two devices being confused for one another by the discrimination system. 

In this thesis work, motivated by the work in [10], investigates the impact of intentional 

feature insertion using two cases, (i) the LimeSDR has operated using the non-modulated clock 

(i.e., no change has affected the transmitted signal) and the collected signal at receiver side is 

processed to generate the fingerprints, and (ii) feature insertion is facilitated by inserting an 

intentional change through an external clock (i.e., the external clock is changed via phase 

modulation using a known frequency or deviation value). The impact of this intentional feature 
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insertion is studied and analyzed to see how this change affects the RF-DNA fingerprint. The RF-

DNA fingerprint elements of the two cases are compared. Intentional feature insertion, via phase 

modulation of the external clock signal, is assessed using different frequencies and deviation 

values to determine the value at which this change negatively affects the receiver’s ability to 

demodulate the received signal. 

 

 

Figure 2.18  PMF of CFO values for each of the 4 Wi-Fi devices [10] 
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CHAPTER 3 

METHODOLOGY 

 

 

3.1 Introduction 

This chapter describes the approaches used to study and monitor the effects resulting from 

the applied Phase modulated clock on RF-DNA fingerprints. First of all, the experiment setup 

section shows the hardware changes applied to the system board clocking system, how the PM 

clock is generated, the signal collection mechanism, and the conducted experiment environment. 

Then, the design used for the OFDM receiver is illustrated. It describes in detail the signal detection 

algorithm and how to calculate the parameters used for Wi-Fi preambles detection. Next, the GNU 

radio companion flow chart will be described for both the Wi-Fi transmitter and receiver. The 

received signals then undergo time synchronization and channel estimation. Afterward, the 

methods to represent the preamble in GT, and to generate the RF-DNA fingerprints are presented.  

 

3.2 Experiment setup 

3.2.1 External clock for LimeSDR-Mini 

Figure 3.1 shows the LimeSDR-Mini board bottom connectors and main components. 

When the resistor 'R62' is fitted as shown by the orange rectangle, it means the external clock is 

enabled (i.e., the internal clock is disabled) [41]. The distribution system of this LimeSDR clock 

was shown previously in Figure 2.11. 
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Figure 3.1  LimeSDR-Mini board bottom connectors and main components [22] 

 

3.2.2 Phase-modulated clock 

In this experiment, the transmitter's internal clock signal is replaced with an external clock 

signal that has been intentionally manipulated using phase modulation. The external clock was 

generated using a Tektronix AFG3252 signal generator. The external clock signal is a 50-duty 

cycle square wave of 40MHz, with a high voltage of 2.5 V and a low voltage of 100 mV, as shown 

in Figure 3.2. 

 

 

Figure 3.2  The phase-modulated clock using Tektronix AFG3252 signal generator 
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In the first case, 100 transmissions were collected using a second LimeSDR-Mini and no 

PM present (i.e., using a non-modulated clock) within the external clock signal. The received 

transmissions were collected for further processing. In the second case, an additional 100 

transmissions were collected, however this time, PM of the external clock signal is conducted, 

using a sine-wave with a 90-degree deviation, as shown in Figure 3.3. The signal generator is 

capable of modulating the sine wave with frequency values between 0 and 50 kHz. The phase-

modulated signal can be approximated by,  

 

S = sign {sin (2πfct) + Φ},     (3.1) 

 

where S is the final phase modulated clock signal, ‘sign’ stands for the signum function (note that: 

sign(x) equals -1 if x< -1, equals 0 if x= 0, and 1 if x> 0), fc is the carrier frequency, t is the time, 

and Φ is the phase given by, 

 

Φ = sin (2π fPM t + d),      (3.2) 

 

where fPM is the phase-modulated clock frequency, and d is the deviation. The modulated signal 

has d = π/2 to ensure a 90-degree deviation between the carrier signal and the modulation signal. 
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Figure 3.3  Block diagram of a transmitted signal using an external clock 

 

3.2.3 Signal collection 

All of the collected signals are stored as binary files using GNU radio companion. These 

binary files were then processed in MATLAB 2016. In addition to the non-modulated clock 

collected signal set, 802.11a transmissions were collected using PM frequencies fPM of values {5, 

10, 20, 30, 40, and 50} kHz. A total of 100 802.11a baseband Wi-Fi transmissions were collected 

per phase-modulated clock frequency. Following collection, individual transmissions were 

detected, and the preamble extracted for subsequent analysis. 

 

3.2.4 Experiment environment 

These experiments were conducted in the Communication laboratory, Electrical Engineering 

department at the University of Tennessee at Chattanooga. It is similar to every working 

environment where there is interference from the campus Wi-Fi and other neighboring signals in 

the ISM band. This band is congested because it is unlicensed, and many devices are equipped 

with 802.11 a/b/g transceivers. To avoid interference issues, these experiments were conducted in 



39 

 

the amateur radio frequency range 3.3-3.5 GHz allowed by the U.S. Department of Commerce 

[42]. 

 

3.3 OFDM receiver 

3.3.1 Signal detection algorithms 

As mentioned in the Signal detection algorithm [43], the first 3 signals were designed and 

compared based on the short training sequence shown in (2.4). It was designed based on the 

correlator structure, as shown in Figure 3.4. 

 

 
 

Figure 3.4  The block diagram of the signal detection algorithm [43] 

 

The input sample was correlated with its delayed sample. According to the periodic 

characteristic, the delay amount was 16. After that, the correlated samples were averaged in the 

moving average block over a period of time L to suppress white noise. Using (2.4) and substitute 

L= 16, and Nwin= 48 as authors of  [26] found that empirically, the window size of 48 works well.  

So (2.4) becomes: 

𝑎[𝑛] = ∑𝑠[𝑛 + 𝑘] 𝑠[𝑛 + 𝑘 + 16]

47

𝑘=0

                                              (3.3) 
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3.3.2 Accumulation of the correlation values 

In general, the performance of the signal detection algorithms in severe channel conditions 

is poor. To obtain reliable signal detection, the correlation outputs of signal detection algorithms 

were accumulated over several short training symbols. Therefore, values in (3.3) were summed up 

symbol-by-symbol. The decision was made after the accumulation. For practical implementation, 

STSs t1 to t7 are utilized for AGC utilization while STSs t8 to t10 for signal detection. Therefore, 

the valid accumulation length is about 3*0.8 =  2.4 μs, knowing that the sampling rate is 20 MHz 

[43]. 

 

3.3.3 Determination of the detection threshold 

The determination of the detection threshold is the key parameter for correct signal 

detection. Due to the variation of the radio channel environment, the threshold should be set 

adaptively according to channel conditions. For the signal detection algorithm, the average energy 

of the received signal calculated at the lower branch was used to determine the detection threshold. 

According to Figure 3.4 and (3.3), the normalized correlation output at the receiver, R, was 

expressed as follows: 

 

R = PU/ PL       (3.4) 

 

where PU was upper branch output and PL was the lower branch output received [43]. 
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3.4 GNU radio companion 

3.4.1 Flow chart 

The experiments were designed to implement and observe the effects of a phase-modulated 

clock on RF-DNA fingerprints by using two LimeSDR-Mini devices for transmission and 

reception. The device parameters and operation were defined through a flow graph built within 

GNU Radio Companion that was designed to emulate OFDM transmissions [44]. This flowgraph 

was constructed based on the fundamental principles provided by [45]. Within GNU Radio 

Companion, the sampling rate was set to 20MHz, transmission frequency was set to 3.4 GHz, and 

the Wi-Fi message was sent periodically once every second. This transmission frequency was 

selected to avoid interference from other commercial Wi-Fi bands and to get the best Signal to 

Noise Ratio (SNR) possible. 

 

3.4.2 Wi-Fi transmitter 

Figure 3.5 shows the flowchart of the Wi-Fi transmitter. The blocks and their functions are: 

(i) Message Strobe block: responsible for defining the text message that will be sent and the time 

period between messages, (ii) The OFDM Mapper: receives the MCS as input and is responsible 

for multiple operations, such as the generation of the data field, in which it is including the tail and 

pad bits. Besides, it is also responsible for the scrambling and interleaving of the bits, (iii) Packet 

Header Generator: generates the header of the frame, including the signal and service fields. The 

header is BPSK modulated by the top Chunks to Symbols block, and the remaining frame is 

modulated by the bottom Chunks to Symbols block, according to the chosen modulation. Then, 

the header is finally joined to the remaining of the frame, (iv) OFDM Carrier Allocator: responsible 

for the aggregation of the pilot sub-carriers. (v) FFT block: responsible for the inverse FFT, i.e., 
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for the transition from frequency to the time domain. (vi) OFDM Cyclic Prefixer block: aggregates 

the guard intervals to each symbol of the frame. (vii) Lime Suite Sink block: defines the parameters 

on the LimeSDR-Mini board, such as the sampling rate and the transmission frequency [46]. 

 

 
 

Figure 3.5  Wi-Fi transmitter GNU radio companion flowchart 

 

3.4.3 Wi-Fi receiver 

Figure 3.6 shows the flowchart of the Wi-Fi receiver. The blocks and their functions are: 

(i) Lime Suite Source block: defines the parameters on the LimeSDR-mini board, such as the 

sampling rate and the transmission frequency, (ii) File Sink block: used to collect the received 

signal and save it as a binary file, (iii) WiFi Sync short: uses autocorrelation to decide if packet is 

accepted or dropped based on specific threshold value (here 560 mV is used), (iv) Wi-Fi Sync 

long: responsible for symbol alignment to achieve the timing synchronization. (v) FFT block: 

responsible for the forward FFT, i.e., for the transition from time to frequency domain [6]. 
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Figure 3.6  Wi-Fi receiver GNU radio companion flowchart 

 

3.5 RF-DNA fingerprinting 

3.5.1 Gabor transform 

The RF-DNA fingerprints are generated using the concept in background section 2.7.1, 

explained in [32]. The procedure utilizes the GT to jointly represent the momentary temporal-

spectrum (T-F) variations that occur within a waveform. The DGT was calculated using (2.12), a 

Gaussian examined window 𝑊(𝑛), and the variables defined in Section 2.6 [6]. The response of 

normalized magnitude from the temporal-spectrum plane is calculated using (2.13) and 

subsequently divided into 𝑁𝑅 patches. Each patch has a total of 𝑁𝑇 × 𝑁𝐹  Gabor coefficients and 

is reshaped into an 𝑁𝑇𝐹  length vector. The variance (σ2), standard deviation (σ) kurtosis (k), and 

skewness (γ) are used as quantification statistics, which are calculated from this vector and used 

to quantify the RF-DNA fingerprint corresponding to the signal under study 𝑋̂(𝑀). The parameters 
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values that will be used in RF-DNA fingerprints are 𝑀 = 186, 𝐾𝐺 = 186, 𝑁∆ = 1, 𝑁𝑇𝐹 = 120, 

𝑁𝑇 = 12, and 𝑁𝐹 = 10. 

 

3.5.2 Fingerprint elements 

From background section 2.7.1, features in this work are generated by calculating three 

statistics: variance (𝜎2), skewness (𝛾), and kurtosis (k). The standard deviation is not used here 

because the variance gives enough information about how the data are spread among any specific 

population samples. So the calculated statistics, for each of the selected T-F sub-regions, are 

arranged as follows: 

 

fRi = {σ2
Ri , γRi , kRi }1×3 ,    (3.5) 

where i = 1, 2, . . ., 120. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

 

4.1 Introduction 

This chapter shows the results and provides discussion and analysis for the effects of PM 

clock on RF-DNA fingerprints in IEEE 802.11a. Firstly, the time domain and the GT of the 

transmitted signal were plotted to show how the preamble is constructed before getting into 

hardware to be transmitted into the channel. Next, the non-modulated external clock is applied to 

the circuit, and the received preamble is extracted and shown in the I-Q plot and transformed into 

the T-F domain (GT). After that, the results of PM external clock are shown in (i) I-Q format, (ii) 

GT, and (iii) fingerprint elements statistics. Then, comparison and analysis are shown between the 

non-modulated and PM external clock effects. The demodulation breakpoint is defined for the 

Phase modulated clock frequency, the degree of deviation, and the CFO. Finally, an analysis of 

the impact of a PM clock on the fingerprint is presented. 

 

4.2 The transmitted signal 

Figure 4.1 shows the transmitted signal, which is a simple text message, using a GNU radio 

companion before it has been propagated through the LimeSDR device. The first 16 μs show the 

Wi-Fi preamble, followed by the payload data. The real portion is shown in blue while the 

imaginary portion is shown in red. 
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Figure 4.1  Wi-Fi transmitted signal mapping with the packet header 

 

The Gabor Transform of the transmitted signal is shown in Figure 4.2. The frequency axis 

shows the spectrum of the Wi-Fi signal. The blue area in the middle indicates low SNR values, 

while the red side lobes indicate high SNR. The Time axis presents the STSs (0 to 8μs), GI (8 to 

9.6 μs), and the LTSs (9.6 to 16 μs). Because this signal was not affected yet by the channel 

conditions, all of the preamble structure elements are clear and distinguishable. 
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Figure 4.2  Gabor transform of the transmitted signal 

 

4.3 Non-modulated external clock 

The external clock has been applied with a 40 MHz sampling rate without modulation. 

Figure 4.3 shows the received preamble. The preamble plot indicates that the signal is received 

without changes affecting the main structure of the preamble. The peak value of the STSs 

amplitudes is almost the same. The same observation applies to the LTSs. 

 

 
 

Figure 4.3  Collected signal preamble for non-modulated external clock 
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Figure 4.4 shows the Gabor transform of the same preamble (shown previously in Figure 

4.3). It is similar to the GT of the transmitted signal, Figure 4.2, with some differences in the center 

values of frequency offset, where here it shows higher SNR values relatively. 

 

 
 

Figure 4.4  Gabor transform of the collected signal preamble for non-modulated external clock 

 

The fingerprint elements are shown in Figure 4.5. They are generated by dividing the GT 

chart into 120 equal patches, and the required statistics are calculated for every patch. Figure 4.5a 

shows the variance (σ2), Figure 4.5b shows the skewness (γ), and Figure 4.5c shows kurtosis (k), 

for every patch. Figure 4.5d shows the three statistics in one graph. These statistics will be 

compared later against the fingerprint statistics generated from the PM external clock impact. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.5 Fingerprint statistics: (a) variance, (b) skewness, (c) kurtosis, and (d) all (variance, 

skewness, and kurtosis) of the collected signal preamble for the non-modulated clock 

 

4.4 PM external clock 

4.4.1 Extracted preambles in I-Q format 

Figure 4.6 shows the preambles for PM frequencies: 10, 20, 30, and 40 kHz inserted into 

the function generator external clock with clocking rate 40 MHz, collected at the receiver side. 

The first two frequency values of (a) 10 kHz, and (b) 20 kHz did not change the preamble envelope. 

Starting from 30 kHz, the sinusoid pattern of the clock appears. When the PM frequency increases, 

the more effects appear within the preamble as shown for (c) 30 kHz, and (d) 40 kHz.   



50 

 

 
 

(a) 10 KHz 

 
 

(b) 20 KHz 

 

 

 
 

(c) 30 KHz 

 

 

 
 

(d) 40 KHz 

 

Figure 4.6  Preambles for PM frequencies: 10, 20, 30, and 40 kHz inserted into the function 

generator external clock with clocking rate 40 MHz, collected at the receiver side 

 

4.4.2 Gabor transform of the extracted preambles 

Figure 4.7 shows the Gabor transform of PM frequencies 10, 20, 30, and 40 kHz, with 90o 

deviation, inserted into the function generator external clock with clocking rate 40 MHz, collected 

at the receiver side. After the 30 kHz, the STSs side lobes disappear, and sinewave variation 

appears with time at the center of the frequency offset.  
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(a) 10 KHz 

 
 

(b) 20 KHz 

 

 

 
 

(c) 30 KHz 

 

 

 
 

(d) 40 KHz 

 

Figure 4.7  Gabor transform of PM frequencies 10, 20, 30, and 40 kHz, with 90o deviation, 

inserted into the function generator external clock with clocking rate 40 MHz, 

collected at the receiver side 

 

4.5 Non-modulated vs. PM clock 

Figure 4.8 shows the DGT plots of no modulation clocking (left) and 50 kHz PM (right). 

These graphs depict the signal over time, using SNR versus frequency offset. The 0 MHz point in 

the vertical axis corresponds to the carrier frequency of fc = 3.4 GHz.  As the phase-modulated 

clock frequency (fPM) increases, the transmission experiences a frequency offset shift over time. 
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This offset shifts in a sinusoidal pattern due to the use of a sinusoidal PM signal and the max 

frequency offset achieved in each sample increases as the modulation frequency increases. A 

relatively small modulation frequency (e.g., 5 kHz), the frequency offset achieves an absolute, 

maximum of approximately 1 MHz. At larger PM frequencies (e.g., 50 kHz), the frequency offset 

achieves an absolute, maximum of approximately 7 MHz. It is important to note that the structure 

of the STS and LTS, within the DGT (Figure 4.8 Right), is distorted as the PM frequency reaches 

values of 30 kHz and higher.  

 

 

Figure 4.8  The DGT plots of no modulation (left) and 50 KHz of phase modulation with 90o 

deviation (right) inserted into the function generator external clock with clocking 

rate 40 MHz, collected at the receiver side 

 

In the DGT graphs, the short training sequences appear as the side loop pulses located above 

and below the center frequency transmission between 0 and 8 μs. Guard Interval appears between 

8 and 9.6 μs. The long training sequences appear as the repeated square pattern of high and low 

SNR above and below the center frequency transmission between 9.6 and 16 μs.  
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4.6 External clock demodulation breakpoint 

The breakpoint is defined here as the point that the demodulator cannot reconstruct the 

received data after it. The effects caused by the external clock are related to two variables, which 

are Phase modulated clock frequency (fPM) and the deviation (d), shown previously in (3.1) and 

(3.2). The tested breakpoints are (i) fPM = 10 KHz, d = 1.5o, and (ii) fPM = 2.5 KHz, d = 90o. The 

first tested breakpoint is shown in Figure 4.9. It shows the preamble (Left) and the GT (Right) of 

breakpoint at fPM = 10 KHz, d = 1.5o. 

 

  

Figure 4.9  Preamble (left) and the GT (right) of fPM = 10 KHz, d = 1.5o inserted into the 

function generator external clock with clocking rate 40 MHz, collected at the 

receiver side 

 

Figure 4.10 shows the preamble (Left) and the GT (Right) of the second tested breakpoint 

at fPM = 2.5 KHz, d = 90o. It has been noticed that the preamble envelope has shown small variation 

with the sinusoidal function. The GT has its STSs and LTSs shown in the plot without major 

effects. 
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Figure 4.10  Preamble (left) and the GT (right) of fPM = 2.5 KHz, d = 90o inserted into the 

function generator external clock with clocking rate 40 MHz, collected at the 

receiver side 

 

4.7 CFO demodulation breakpoint 

The transmitter was adjusted to transmit at different frequency values than the receiver’s 

frequency. The maximum demodulation frequency offset between the transmitter and receiver is 

155 kHz. Beyond this offset value, the receiver cannot reconstruct the transmitted data. Figure 

4.11 shows the Preamble (Left) and the GT (Right) of carrier offset of 155 kHz using a non-

modulated external clock. 

 

   
 

Figure 4.11  Preamble (left) and the GT (right) of carrier offset of 155 kHz using a non-

modulated external clock., collected at the receiver side. 
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4.8 Breakpoint discussion 

From the breakpoint sections 4.6 and 4.7, these values were experimentally found because 

one of the variables were kept small, which was the deviation in first case (d = 1.5o), Figure 4.10, 

while changing the frequency, but in the previous experiment where the deviation was 90o and the 

fPM = 10 KHz, Figure 4.7, the receiver cannot demodulate the as it has already passed beyond the 

breakpoint. The same applied to the second test shown in Figure 4.10, fPM = 2.5 KHz, d = 90o, here 

the deviation is a high value, so the phase-modulated clock frequency cannot go beyond the 2.5 

kHz before the demodulation is lost. For the CFO case, Figure 4.11, the external clock is not 

modulated, but the offset value itself has some limitations before the receiver cannot demodulate 

the signal.  

 

4.9 Analysis of the impact of a PM clock on the fingerprint 

In this section, a comparison is made between the non-modulated clock and the phase-

modulated clock with frequency 10 kHz and 90o deviation. The target of this comparison is to 

show the impact of the PM clock. Figure 4.12 shows a comparison of variance values. 
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(a) 

 

(b) 

Figure 4.12  The variance of (a) non-modulated clock, and (b) PM external frequency of 10 

kHz, with 90o deviation, collected at the receiver side 

 

Figure 4.13 shows a comparison of skewness values between the non-modulated clock and 

the PM clock with frequency 10 kHz and 90o deviation. As shown, there is a slight increase in max 

values of some phase-modulated clock patches compared to the non-modulated clock patches. 

 

 

(a) 

 

(b) 

Figure 4.13  The skewness of (a) non-modulated clock, and (b) PM external clock frequency of 

10 kHz with 90o deviation, collected at the receiver side. 
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Figure 4.14 shows a comparison of kurtosis values between the non-modulated clock and 

the phase-modulated clock with frequency 10 kHz and 90o deviation. Their values of kurtosis have 

increased for the patches of the phase-modulated clock compared to the non-modulated clock 

patches.  

 

 

(a) 

 

(b) 

Figure 4.14  Kurtosis of (a) non-modulated clock, and (b) PM external clock frequency of 10 

kHz with 90o deviation, collected at the receiver side 

 

Table 4.1 shows the average values of the statistics. Average values of the variance are 

almost the same, while the average of skewness has a small increase for the PM clock. The average 

value for the kurtosis has resulted in 0.9 increase, in which the PM clock effect is clear.  



58 

 

Table 4.1 Average values of fingerprint elements for (a) non-modulated clock, and (b) PM 

modulated clock with frequency 10 kHz 

 (a) Non-modulated clock (b) PM modulated clock with frequency 10 kHz 

Average Variance  0.0275 0.0235 

Average Skewness 1.0106 1.0907 

Average Kurtosis 3.8568 4.7652 

 

Table 4.2 shows the variance values of the statistics. The variance of variance is very small 

and rounded to ‘0’ for both cases, but there is a small increase in the skewness variance. The 

noticeable change has appeared in the increased value of Kurtosis variance. 

 

Table 4.2  Variance values of fingerprint elements for (a) Non-modulated clock, and (b) PM 

modulated clock with frequency 10 kHz 

 (a) Non-modulated clock (b) PM modulated clock with frequency 10 kHz 

“Variance” variance 0.0000 0.0000 

Skewness variance 0.7278 1.3314 

Kurtosis variance 14.9332 31.8521 

 

From these comparisons, it has been noticed that the external PM clock does not have a big 

impact on the variance nor skewness, but the greatest impact is on the kurtosis. From statistical 

point of view, the higher value of the kurtosis means that distribution of the data has tails exceeding 

the normal distribution (i.e., it has heavy tails, or outliers) [47].  
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CHAPTER 5 

CONCLUSION 

 

 

This work investigated the effects of intentional (clock signal phase manipulation) on RF-

DNA fingerprinting features extracted from 802.11a Wi-Fi preambles. Intentional manipulation 

was implemented by phase modulating the clock signal used to generate the carrier signal. PM 

frequencies of 30 kHz or more have led to losses of the short and long training sequences within a 

preamble. This will negatively impact the RF-DNA fingerprint features and subsequent device 

identification performance. The demodulation breakpoints show to what extent the receiver can 

adapt to the changes occurred at the transmitter side and also illustrated that increasing more than 

one value at a time (i.e., the phase-modulated clock frequency and deviation together) can lead to 

reach the breakpoint earlier as many changes occur, and the receiver cannot compensate for these 

changes to reconstruct the received message. The effect of PM clock has been empirically tested 

among the fingerprint elements and found that (i) it has minor effect on variance, and skewness, 

and (ii) the greatest impact is on the kurtosis, which has increased from 14.9332 to 31.9332. 

 

5.1 Future work 

Preliminary analysis of the sinusoidal envelope of the preambles and the following DGT 

plots at 50 kHz modulation show a half-cycle period of approximately 10 μs and, therefore, a full-

cycle period of 20 μs. This matches the period of a 50 kHz wave, indicating that the effect of the 

modulation is direct and possibly predictable. This leaves open further research opportunities in 
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both predicting the modulation effect at varying frequencies and creating a system that can reverse 

the effects of the PM to provide the original, unmodulated signal within the receiver. 

The effect of temperature is one of the work opportunities that has been started in the 

communication laboratory, but the temperature chamber was not there to conduct experiments to 

study its effects on the RF-DNA fingerprints.  
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