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ABSTRACT

We propose multiple models to investigate the transmission dynamics of cholera.

At first, we consider the intrinsic growth of cholera bacteria in cholera transmission and

find that the regular threshold dynamics take place if the intrinsic growth is logistic; there

are multiple endemic equilibria if the growth exhibits Allee effects, which may lead to

backward bifurcation and forward hysteresis. In addition, we introduce a multi-scale mod-

eling framework. At the population level, a Susceptible-Infected-Recovered (SIR) model

for the between-host transmission of cholera is employed. At the individual host level,

the evolution of the pathogen within the human body is incorporated. The between-host

and within-host dynamics are connected through an environmental equation that charac-

terizes the growth of the pathogen and its interaction with the hosts outside the human

body. We put a special emphasis on the within-host dynamics by making a distinction for

each individual host. We conduct both mathematical analysis and numerical simulation

for the model in order to explore various scenarios associated with cholera transmission

and to better understand the complex, multi-scale disease dynamics. Finally, we analyze

the impact of available medical resources on cholera transmission by taking a realistic

case: Yemen cholera outbreak during 2017-2018. By fitting our simulation results to the

epidemic data published by the World Health Organization (WHO), we find that differ-

ent levels of disease prevalence and severity are linked to different geographical regions in

this country and that cholera prevention and intervention efforts should be implemented

strategically with respect to these regions in Yemen.
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CHAPTER 1

INTRODUCTION

Cholera, an ancient infectious disease, is caused by several strains of the bacterium

Vibrio Cholerae. The typical symptom is large amounts of watery diarrhea that lasts a few

days. Vomiting and muscle cramps may also occur. It is spread mostly by unsafe water

and unsafe food which have been contaminated with bacteria. It also can be transmitted

from human-to-human contacts such as shaking hands or eating food prepared by infected

individuals [27, 40]. Currently, in its seventh pandemic, cholera continues devastating

populations in developing countries, particularly those places where sanitation facilities

and access to clean drinking water are limited. Large-scale cholera outbreaks in recent

years, such as those in Zimbabwe (2008-2009, with nearly 100,000 reported cases), Haiti

(2010-2012, with 545,000 reported cases), and Yemen (2016-2018, with suspected cases

exceeding 1 million), have received worldwide attention.

Mathematical modeling, analysis, and simulation have long provided useful in-

sight into epidemiology. In order to understand the fundamental mechanisms in cholera

transmission and to quantify effective prevention and intervention strategies, a large

number of mathematical models have been published for the dynamics of cholera trans-

mission [3, 9, 12, 19, 27, 40, 41, 44, 47, 52, 53, 56–58]. Many of these models included both

direct and indirect transmission pathways in order to better characterize the transmission

pattern of cholera infections.

One major limitation of current modeling studies in cholera transmission, however,

is that the intrinsic dynamics of the bacterium are poorly addressed, leading to incom-

plete, and often, inadequate, understanding of the bacterium evolution and its impact on

disease transmission and spread. For example, a standard assumption in the majority of
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cholera models, based on an early theory in cholera ecology [22], is that the Vibrios (i.e.,

Vibrio Cholerae) cannot sustain themselves in the absence of human contribution; e.g.,

shedding from infected individuals and inflow from contaminated sewage. The assump-

tion allows a simple, often linear, representation of the rate of change for the bacterial

density: a positive contribution from the infected human population, and a negative

contribution due to the natural death of the Vibrios. Such a representation consider-

ably simplifies the mathematical analysis. Unfortunately, there has been strong evidence

in recent ecological studies that the Vibrios can independently survive and multiply in

various aquatic environments, including freshwater, estuaries, and seawater [7,13,18,20].

These ecological findings demand new modeling efforts toward better understanding the

intrinsic dynamics of cholera diseases and the connection between their environmental

persistence and disease outbreaks.

Second, most mathematical modeling studies are concerned with the between-host

transmission and spread at the population level, and very little effort has been devoted

to the within-host dynamics of cholera, partly due to the complication of the biochemical

and genetic interactions that occur within the human body. As a consequence, some

important information in cholera dynamics is missing from such studies; for example,

how does the virulence of the pathogens (i.e., the vibrios) change inside the human

body, and how does the within-host evolution of the pathogens impact the population-

level disease transmission? In a recent study [60], the authors proposed a within-host

cholera model to describe the evolution of vibrios and their interaction with the cholera-

toxin phage (a virus that is important in the pathogenesis of Vibrio Cholerae) within

the human body. The connection between the within-host dynamics and the between-

host disease transmission, however, was not discussed. A multi-scale cholera model, that

considers the between-host and within-host interactions, was proposed in [59]. In that

work, the within-host dynamics take a simplistic form: a single equation characterizing

the increased toxicity of the vibrios within an “average” (or typical) infected individual.

Distinctions among different human hosts were not considered. We also mention that

there have been several mathematical models published for the immuno-epidemiological
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dynamics of other types of diseases; for example, a recent study on malaria can be found

in [10].

In order to shed light on those important aspects of cholera disease epidemiology,

we will first incorporate nonlinear dynamics terms into the bacterium evolution equa-

tion and focus on two types of intrinsic bacterial dynamics: quadratic growth and cubic

growth. The quadratic growth, more commonly referred to as the logistic growth [29], is

probably the most popular model to describe population changes, ranging from macro-

scopic to microscopic organisms. Essentially, this model introduces a threshold for the

total population, known as the carrying capacity, so that a population would exponen-

tially grow initially but then stabilize at the carrying capacity. The model could reflect

realistic constraints (such as lack of resources) on population growth. A significant depar-

ture from the logistic growth pattern, the cubic growth model is known to introduce Allee

effects. An Allee effect refers to a correlation between individual fitness and population

density [1,2]. Particularly, a strong Allee effect describes a population that exhibits posi-

tive growth at intermediate population density but declines when the population density

is either too low or too high. Allee effects have been well documented and extensively

studied for the growth dynamics among animal populations [1,14,33]; related mathemati-

cal modeling work includes, for example, [16,17,23,32,50]. There are relatively few studies

for Allee effects in populations of microorganisms such as bacteria and parasites. Kadam

and Velicer [31] reported laboratory measurements of the bacterium Myxococcus xanthus

and found that it sporulates less efficiently at lower population densities and produces

no spores at all below a minimum threshold density. Li et al. [35] demonstrated that

bacterial populations in high-density biofilms are better able to generate a coordinated

protective response against highly acidic conditions than are populations at low density,

thus promoting the survival of the microbial species. Ji et al. [30] observed that a mini-

mum population density is typically needed for some pathogenic microbes to initiate the

expression of virulence factors necessary for the establishment of successful infections. In

addition, Smith et al. [49] investigated Allee effects on the bacterial spread and survival

through the engineered bacterium Escherichia coli. In all these studies, it is observed
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that a minimal density, known as the Allee threshold, is required to initiate positive pop-

ulation development. Given the significance of cholera infections, the complications of

their related dynamics, and the experimental evidence of the nontrivial growth patterns

of the bacterium, it is worthwhile to mathematically explore the details of the intrinsic

bacterial dynamics and the impact on cholera disease transmission.

In addition, we will try to extend the work in [60], in an effort to fill the knowledge

gap in linking the between-host and within-host cholera dynamics while taking into ac-

count the heterogeneity among different individual hosts. In this modeling framework, we

distinguish two types of vibrios relevant to cholera infection: the environmental vibrios

and the human vibrios [59,60], based on their toxicity, or infectivity. The environmental

vibrios have relatively low infectivity, whereas the human vibrios (developed within the

human body) typically have infectivity much higher (up to 700-fold) than their environ-

mental counterparts [27, 42]. Typically, due to the contacts between the hosts and the

contaminated water or food, vibrios from the environment are ingested into the human

body. Through a series of biological, chemical, and genetic interactions during the pas-

sage of the bacteria through the human gastrointestinal tract, the environmental vibrios

are transferred to human vibrios with much higher infectivity/toxicity that could directly

lead to human cholera symptoms [13,21], among which profuse diarrhea and massive fluid

loss are most common.

A challenge in the design of effective prevention and intervention strategies for

cholera (perhaps also for many other infectious diseases) is the highly heterogeneous pat-

tern in the host response, individual symptoms, and transmission of the disease. These

are closely related to the distinct health conditions among different human individu-

als. For example, some people may not easily become infected with cholera due to the

strong immune system inside their bodies or the cholera vaccines they previously re-

ceived, whereas young children, old people, and those with poor health are much more

vulnerable to cholera and likely exhibit severe infections. A comprehensive description

of the within-host cholera dynamics that covers all details of the pathogen evolution and

transformation inside the human body, while including the individual distinctions across
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a large host population, would lead to highly complicated dynamical systems that are

challenging to analyze or compute. Alternatively, a popular approach in disease modeling

is to utilize the agent-based modeling and simulation technique, where multiple agents re-

side in networks and interact with each other according to a set of heuristic rules, with an

aim of creating or predicting the complex overall system behavior [6, 43]. Advantages of

the agent-based modeling include high flexibility and natural incorporation of heterogene-

ity [45, 48]. However, the nature of the agent-based framework makes it mathematically

intractable, and the only way to implement/analyze such a model is through numerical

simulation. The overall computational efforts can become prohibitively expensive when

the number of interacting agents is large.

Accordingly, we will propose a novel deterministic modeling framework to connect

the between-host and within-host dynamics of cholera while keeping the model mathemat-

ically and computationally manageable. On the population level, we utilize a Susceptible-

Infected-Recovered-Bacteria (SIR-B) model to describe the disease transmission and the

interaction between human hosts and environmental pathogens. On the individual host

level, we treat each individual as a separate compartment represented by an equation

that describes the evolution from environmental vibrios to human vibrios within the hu-

man body. Within each individual host, our modeling approach is coarse-grained as the

dynamics are described by a single equation characterizing the essential pathogen devel-

opment from a lower infectious state to a hyper-infectious state. However, since each

host is separately modeled, distinctions among different individuals can be naturally in-

corporated to reflect the heterogeneity of the within-host dynamics. Our primary goal is

to conduct a thorough mathematical analysis on the equilibria and their local and global

dynamics, then use the simulation results to verify the analytical predictions.

In normal situations, cholera is relatively easy to treat. Oral rehydration therapy

using clear water and a modest amount of salt and sugar has saved millions of lives and

has reduced overall case fatality rates below 1% [66, 68]. Antibiotics are used to treat

severe infections, while their effects in mass administration are unclear as they contribute

to increasing antimicrobial resistance [66]. In addition, cholera vaccines, especially the
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recently introduced two-dose oral vaccine that is less expensive and more convenient to

deliver than its predecessor [46, 64], have been effective in both the prevention and in-

tervention of disease outbreaks. For many developing countries, however, the availability

of medical resources significantly limits the implementation of these control measures.

Antibiotics, vaccines, and other medicine may be not available or in severe shortage com-

pared to the demands. There may not even be sufficient clean drinking water, salt, and

sugar for the basic rehydration practice [4, 15, 38, 39]. Due to the inadequate medical

resources, the infection may rapidly spread, leading to unusually high prevalence and

attack rates. The risk of transmitting cholera from the environment as well as among hu-

man hosts could be significantly increased. Meanwhile, as a result of insufficient medical

treatment and sanitation and as feedback of increased infection levels, human contribu-

tion (e.g., through shedding) to the environmental pathogen could also increase. These

factors worsen and elongate the cholera epidemics.

An important factor in the cholera epidemics and endemics in developing countries

is that the medical resources are insufficient to meet the needs of fighting the cholera out-

breaks. Indeed, one of the common characteristics among the recent, large-scale cholera

outbreaks, including those from Zimbabwe, Haiti, and Yemen, is the difficulty in provid-

ing an adequate medical response due to shortages in health professionals and medical

supplies [11, 28, 38, 40, 54]. Consequently, a massive surge of cases occurred in these

outbreaks, underscoring the importance of medical resources in shaping the cholera epi-

demics. Thus, we at last focus on investigating how the availability of medical resources

would impact the cholera transmission and shape the pattern of a cholera epidemic. To

that end, we formulate a system of differential equations to describe cholera transmission

dynamics, using a compartmental modeling approach. In addition to the typical com-

partments involved in cholera models (i.e., the susceptible hosts, the infected/infectious

hosts, the recovered hosts, and the pathogen), we introduce another compartment to rep-

resent the strength, or availability level, of the medical resources. Our model will then

describe the interaction among the hosts, the pathogen, and the medical resources, in-

corporating both direct and indirect transmission pathways. Particularly, several model
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parameters, including the direct and indirect transmission rates and the host shedding

rate will explicitly depend on medical resources. As an application of this model, we

study the Yemen cholera outbreak during the period of April 2017 to May 2018. Yemen

has experienced years of heavy conflicts and wars, severely disrupting society and the

public health infrastructure. In particular, 55% of the health facilities in Yemen are no

longer fully functional [69]. In October 2016, a small cholera epidemic started in Yemen

which, by March 2017, was apparently in decline. However, the outbreak resurged on

April 27, 2017, and remained on-going since then, leading to the largest documented

cholera epidemic of modern times. By the end of 2017, cumulative cases exceeded 1

million, and by May 2018, more than 1.1 million cases were reported [70]. We conduct

data fitting of our model by using the weekly epidemiological reports published by the

World Health Organization (WHO) [71]. We particularly emphasize the role of limited

medical resources in shaping the Yemen cholera outbreak, by examining the data fitting

results at both the national and governorate levels. Our findings contribute to a deeper

understanding of the transmission dynamics underlying the Yemen cholera outbreak and

provide useful guidelines for the design of future prevention and intervention strategies.

We organize the remainder of this dissertation as follows. In Chapter 2, we describe

and analyze the impact of the intrinsic growth of cholera bacteria on the dynamics of

cholera. In Chapter 3, we introduce a multi-scale modeling framework. In Chapter 4, we

take a practical case to investigate the impact of available medical resources on cholera

transmission. Finally, we briefly summarize our work in Chapter 5.
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CHAPTER 2

INTRINSIC GROWTH OF BACTERIA IN CHOLERA DYNAMICS

2.1 Logistic growth

We consider the following equations that describe the transmission dynamics of

cholera infection by incorporating both direct (i.e., human-to-human) and indirect (i.e.,

environment-to-human) transmission pathways, each represented by a bilinear incidence.

Our focus is on the intrinsic dynamics of the cholera bacteria in this process, represented

by the logistic growth model.

dS

dt
= µN − (αI + βB)S − µS,

dI

dt
= (αI + βB)S − µI − δI,

dR

dt
= δI − µR,

dB

dt
= rB

(
1− B

k

)
− τB + ξI.

(2.1.1)

The parameter N = S + I + R is the total population size of the host individuals with

a constant birth and death rate µ. The variables S, I, and R represent the susceptible,

infected and recovered individuals, respectively, whereas B represents the concentration

of the bacteria in the contaminated water. The prameters α and β denote the direct

and indirect transmission rates, respectively, δ is the recovery rate, r is the bacterial

intrinsic growth rate, k is the carrying capacity, τ is the bacteria remove rate, and ξ is

the rate of contribution from an infected individual to the bacteria population in the

environment (e.g., through shedding). We neglect the disease related mortality here. All

these parameters are assumed to be possitive.
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It can be easily verified that the domain of biological interest

Γ = {(S, I, R,B) ∈ R4
+ : S + I +R = N}

is positively invariant and attracting with respect to model (2.1.1).

Apparently, there is a unique disease free equilibrium (DFE) at X0 = (N, 0, 0, 0).

We proceed to determine the basic reproduction numberR0 for this model. The compart-

ments I and B are directly related to the disease. Using the notions provided in [55], the

non-negative matrix F that denotes the generation of new infections and the non-singular

matrix V that denotes the transfer among infectious compartments, are respectively given

by

F =

αN βN

ξ r

 and V =

µ+ δ

τ

 , (2.1.2)

which then lead to the next-generation matrix

FV −1 =

 αN
µ+δ

βN
τ

ξ
µ+δ

r
τ

 . (2.1.3)

It follows from (2.1.3) that the reproductive number can be represented by

R0 = ρ(FV −1) =
1

2

 αN

µ+ δ
+
r

τ
+

√(
αN

µ+ δ
− r

τ

)2

+
4ξβN

τ(µ+ δ)

 , (2.1.4)

where ρ denotes the spectral radius.

We comment here that the expression for the basic reproduction number is not

unique [8,55]. For example, in the above we derived R0 by treating the intrinsic bacterial

growth and host shedding as generation of new infections in B. If, instead, we treat these

as transfer of infections and put them in the matrix V , then we obtain another basic
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reprodution number

R̃0 =
αN

µ+ δ
+

ξβN

(µ+ δ)(τ − r)
, (2.1.5)

where we assume τ 6= r. Through simple algebraic manipulation, we can show that

R0 − 1 =
2
(
1− r

τ

)
(R̃0 − 1)√

( αN
µ+δ
− r

τ
)2 + 4ξβN

τ(µ+δ)
+ 2− αN

µ+δ
− r

τ

.

That is, R0 > (respectively,=, <)1 if and only if R̃0 > (=, <)1, namely, the two repro-

duction numbers are equivalent in characterizing disease risks.

2.1.1 Nontrivial equilibria

A nontrivial equilibrium X = (S, I, R,B) for system (2.1.1) satisfies

µN = (αI + βB)S + µS, (2.1.6)

(αI + βB)S = (µ+ δ)I, (2.1.7)

δI = µR, (2.1.8)

ξI =
r

k
B2 + (τ − r)B. (2.1.9)

Letting θ = µN
µ+δ

and canceling S from (2.1.6) and (2.1.7), we obtain

αI2 + (µ+ βB − αθ)I − βθB = 0. (2.1.10)

Since I is nonnegative, we have I = g(B), where

g(B) =

√
(µ− αθ + βB)2 + 4αβθB − (µ− αθ + βB)

2α
, B ≥ 0. (2.1.11)
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In addition, we get B = p(I) from (2.1.10), where

p(I) =
µI

β(θ − I)
− α

β
I, I ≥ 0. (2.1.12)

Hence B = p(g(B)), B ≥ 0, and then we have g′(B) = 1/p′(g(B)) = 1/p′(I). Further-

more, p(I) = B > 0 implies that

max
(

0, θ − µ

α

)
< I < θ. (2.1.13)

From (2.1.9), if we denote

I = q(B) =
r

ξk
B2 +

τ − r
ξ

B, (2.1.14)

then we have the equation

g(B) = q(B), B > 0. (2.1.15)

Let m = min(θ, µ
α

). Then 0 < θ − I < m from (2.1.13), and µ
α
θ ≥ m2. Hence we have

µθ − α(θ − I)2 > µθ − αm2 = α
(µ
α
θ −m2

)
≥ 0. (2.1.16)

Thus

g′(B) = 1/p′(I) =
β(θ − I)2

µθ − α(θ − I)2
> 0 (2.1.17)

and

g′′(B) =
−p′′(I)

p′(I)3
=
−2µθg′(B)3

β(θ − I)3
< 0. (2.1.18)

On the other hand, we have

q′′(B) =
2r

ξk
> 0. (2.1.19)
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Notice that g(0) ≥ q(0) and

g′(0)− q′(0) =

√(
αN
µ+δ
− r

τ

)2
+ 4ξβN

τ(µ+δ)
+
(

1− αN
µ+δ

)
+
(
1− r

τ

)
2
(

1− αN
µ+δ

)
r
τ

(R0 − 1) (2.1.20)

with √(
αN
µ+δ
− r

τ

)2
+ 4ξβN

τ(µ+δ)
+
(

1− αN
µ+δ

)
+
(
1− r

τ

)
2

> max

(
1− αN

µ+ δ
, 1− r

τ

)
.

Thus, we obtain the results below for equation (2.1.15):

(1) If g(0) > q(0), i.e., αN
µ+δ

> 1, then the solution is unique.

(2) If g(0) = q(0), i.e., αN
µ+δ
≤ 1. By comparing g′(0) with q′(0), we have

(i) If αN
µ+δ

= 1, then g′(0+) = +∞ > q′(0). The solution exists and is unique.

(ii) If αN
µ+δ

< 1, then

(a) if g′(0) > q′(0), i.e., R0 > 1, we have a unique solution.

(b) otherwise g′(0) ≤ q′(0), i.e., R0 ≤ 1, there is no solution.

Since R0 > max
(
αN
µ+δ

, r
τ

)
by (2.1.4), we see that αN

µ+δ
≥ 1 implies R0 > 1. Therefore, the

aforementioned cases yield the following result.

Theorem 1. The model (2.1.1) admits a unique equilibrium, the DFE, if R0 ≤ 1; it admits

two equilibria, the DFE and the endemic equilibrium (EE), if R0 > 1.

2.1.2 Stabilities

We will prove the following two theorems that characterize the main dynamical

properties of the system (2.1.1).

Theorem 2. If R0 ≤ 1, then the DFE of the system (2.1.1) is globally asymptotically stable

in Γ. If R0 > 1, the DFE is unstable.
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Proof. Let X = [I, B]T . One can verify that

X ′ ≤ (F − V )X, (2.1.21)

where the matrices F and V are given in equation (2.1.2). Take u =
[
ξ
τ
,R0 − αN

µ+δ

]
. It

then follows from the fact R0 = ρ(FV −1) = ρ(V −1F ) and direct calculation that u is a

left eigenvector associated with the eigenvalue R0 of matrix V −1F ; i.e., uV −1F = R0u.

Let us consider the Lyapunov function

L = uV −1X. (2.1.22)

Differentiating L along the solutions of the model (2.1.1) and noting the positive compo-

nents of u, we have

L′ = uV −1X ′ ≤ uV −1(F − V )X = (R0 − 1)uX. (2.1.23)

We distinguish two cases for discussion.

Case 1: R0 < 1. The equality L′ = 0 implies that uX = 0. This leads to

I = B = 0. Hence, when R0 < 1, the model (2.1.1) yield S = N and I = R = B = 0.

Therefore, the invariant set on which L′ = 0 contains only one point which is the DFE.

Case 2: R0 = 1. Then 1 > max
(
αN
µ+δ

, r
τ

)
, thus we have µ + δ − αN > 0, and

τ − r > 0. The equality L′ = 0 implies that

αξI(S −N) + (µ+ δ − αN)

(
(τ − r)(S −N)

N
− rB

k

)
B = 0. (2.1.24)

Hence, S = N and B = 0 must hold. It then follows that I = 0 and R = 0. Once again

we obtain L′ = 0 which contains only DFE.

Therefore, in either case, the largest invariant set on which L′ = 0 consists of the

singleton X0 = (N, 0, 0, 0). By LaSalle’s Invariant Principle [34], the DFE is globally

asymptotically stable in Γ if R0 ≤ 1.
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In contrast, if R0 > 1, then it follows from the continuity of vector fields that

L′ > 0 in a neighborhood of the DFE in Γ̊, where Γ̊ is the interior of Γ. Thus the DFE

is unstable by the Lyapunov stability theory.

Theorem 3. If R0 > 1, the endemic equilibrium (EE) of the model (2.1.1) is locally

asymptotically stable. Moreover, the EE is globally asymptotically stable in Γ̊ if N ≤ δ
2α

holds.

In order to prove the second part of the theorem, i.e., the global asymptotic

stability of the EE, we will utilize the geometric approach originally proposed by Li and

Muldowney [36], with the main result summarized below.

Theorem 4. Consider a dynamical system dX
dt

= f(X), where f : D 7→ Rn is a C1

function and D ⊂ Rn is a simply connected domain. Assume that there exists a compact

absorbing set K ⊂ D and the system has a unique equilibrium point X∗ in D. Let Q be

a matrix-valued function defined as

Q = PfP
−1 + PJ [2]P−1,

where P (X) is a
(
n
2

)
×
(
n
2

)
matrix-valued C1 function in D,Pf is the derivative of P

(entry-wise) along the direction of f , and J [2] is the second additive compound matrix of

the Jacobian J(X) = Df(X). Then X∗ is globally asymptotically stable in D if q̄2 < 0,

where

q̄2 = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0

m(Q(X(s,X0)))ds. (2.1.25)

Note that m(Q) is the Lozinskĭi measure of Q with respect to a matrix norm, i.e.,

m(Q) = lim
h→0+

|I + hQ| − 1

h
,

where I represents the identity matrix.

Now we are ready to prove Theorem 3.

Proof. Linearizing the model (2.1.1) at the endemic equilibrium X1 = (S1, I1, R1, B1), we

14



obtain the Jacobian matrix

J =



−(αI1 + βB1 + µ) −αS1 0 −βS1

αI1 + βB1 αS1 − (µ+ δ) 0 βS1

0 δ −µ 0

0 ξ 0 − r(2B1−k)
k

− τ


(2.1.26)

It is easy to verify that the characteristic polynomial of J is

det(λI− J) = (λ+ µ)(λ3 + xλ2 + yλ+ z), (2.1.27)

where

x =
µN

S1

+
βB1S1

I1
+
rB1

k
+
ξI1
B1

,

y =
µN

S1

(
rB1

k
+
ξI1
B1

)
+
βµNB1

I1
+ α(µ+ δ)I1 +

βrS1B1
2

kI1
,

z =
βrµNB1

2

kI1
+ α(µ+ δ)I1

(
rB1

k
+
ξI1
B1

)
+ βξ(µ+ δ)I1.

Obviously, we have x > 0, y > 0, and z > 0. In addition,

xy >

(
µN

S1

+
rB1

k
+
ξI1
B1

)(
βµNB1

I1
+ α(µ+ δ)I1 +

βrS1B1
2

kI1

)
,

>
µN

S1

· βrS1B1
2

kI1
+

(
rB1

k
+
ξI1
B1

)(
βµNB1

I1
+ α(µ+ δ)I1

)
>
βrµNB1

2

kI1
+ α(µ+ δ)I1

(
rB1

k
+
ξI1
B1

)
+
ξI1
B1

· βµNB1

I1
.

>
βrµNB1

2

kI1
+ α(µ+ δ)I1

(
rB1

k
+
ξI1
B1

)
+ βξ(µ+ δ)I1.

= z.

It follows from the Routh–Hurwitz criterion that the endemic equilibrium X1 is locally

asymptotically stable.

Next, we apply the geometric approach based on Theorem 4 to prove the global
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stability of endemic equilibrium X1. Denote d = r(2B−k)
k

+ τ . Then the Jacobian matrix

of the system (2.1.1), after dropping the equation for R, is

J1 =


−(αI + βB + µ) −αS −βS

αI + βB αS − (µ+ δ) βS

0 ξ −d

 ,

and the associated second additive compound matrix is

J
[2]
1 =


αS − (αI + βB + 2µ+ δ) βS βS

ξ −(αI + βB + µ+ d) −αS

0 αI + βB αS − µ− δ − d

 ,

Define P =diag
[
1, I

B
, I
B

]
and let f denote the vector field of system (2.1.1). Then

PfP
−1 = diag

[
0,
İ

I
− Ḃ

B
,
İ

I
− Ḃ

B

]

and

PJ
[2]
1 P−1 =


αS − (αI + βB + 2µ+ δ) βSB

I
βSB

I

I
B
ξ −(αI + βB + µ+ d) −αS

0 αI + βB αS − µ− δ − d

 .

The matrix Q := PfP
−1 + PJ

[2]
1 P−1 can be written in a block form as

Q =

 Q11 Q12

Q21 Q22

 ,
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where

Q11 = αS − (αI + βB + 2µ+ δ),

Q12 =

[
βS

B

I
, βS

B

I

]
,

Q21 =

[
I

B
ξ, 0

]T
,

Q22 =

 −(αI + βB + µ+ d) + İ
I
− Ḃ

B
−αS

αI + βB αS − µ− δ − d+ İ
I
− Ḃ

B

 .
We now define the vector norm for any (x1, x2, x3) ∈ R3 as

|(x1, x2, x3)| = max (|x1|, |x2|+ |x3|).

Let m denote the Lozinskĭı measure with respect to this norm. By direct calculation, we

find that

m(Q) = sup (g1, g2)

with g1 = m1(Q11) + |Q12|, g2 = |Q21| + m1(Q22). where |Q12| and |Q21| are the matrix

norms induced by the L1 norm, and m1 denotes the Lozinskĭı measure with respect to

L1 norm. Specifically,

g1 = αS − (αI + βB + 2µ+ δ) + βS
B

I
,

g2 =
İ

I
− µ− rB

k
+ sup (0, 2αS − δ).

Note that αS+βSB
I
−µ−δ = İ

I
. Based on the assumption N ≤ δ

2α
, we have 2αS−δ− rB

k
≤

0, and hence

g1 =
İ

I
− (αI + βB + µ) ≤ İ

I
− µ,

g2 ≤
İ

I
− µ.
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Hence m(Q) ≤ İ
I
− µ. In view of 0 ≤ I(t) ≤ N(t), if t is large enough, then

ln(I(t))− ln(I(0))

t
≤ µ

2

and

1

t

∫ t

0

m(Q)ds ≤ 1

t

∫ t

0

(
İ

I
− µ

)
ds =

ln(I(t))− ln(I(0))

t
− µ ≤ −µ

2
.

Thus, we have

q̄2 := lim sup
t→∞

1

t

∫ t

0

m(Q)ds ≤ −µ
2
< 0,

which implies that X1 is globally aysmptotically stable.

Hence, Theorems 1-3 describe the essential dynamics of the model (2.1.1) with

logistic growth for the bacteria. In particular, the condition R0 = 1 is a sharp threshold

for stability, and a forward transcritical bifurcation takes places at R0 = 1.

2.2 Growth with Allee effects

Now we proceed to examine the second type of bacterial intrinsic dynamics:

growth with Allee effects, and their impact on disease transmission. To that end, we

modify the model (2.1.1) by replacing the logistic growth term with a cubic growth term.

Other parts of the model remain unchanged. As a result, we obtain the following system

dS

dt
= µN − (αI + βB)S − µS,

dI

dt
= (αI + βB)S − µI − δI,

dR

dt
= δI − µR,

dB

dt
= rB(B − b)

(
1− B

k

)
+ ξI,

(2.2.1)

where the positive constant b (b < k) is referred to as Allee threshold. All other pa-

rameters have the same meanings as those in model (2.1.1). Note that a linear bacterial

removal, represented by −brB, is already incorporated into the cubic growth term. The
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unique DFE X0 = (N, 0, 0, 0) and the invariant domain Γ remains the same.

The next-generation matrices associated with model (2.2.1) are given by

F =

αN βN

ξ 0

 and V =

µ+ δ

br

 . (2.2.2)

Hence

FV −1 =

 αN
µ+δ

βN
br

ξ
µ+δ

0

 . (2.2.3)

It follows that the basic reproductive number for model (2.2.1) is

R0 = ρ(FV −1) =
1

2

 αN

µ+ δ
+

√(
αN

µ+ δ

)2

+
4ξβN

br(µ+ δ)

 . (2.2.4)

2.2.1 Endemic equilibria analysis

A nontrivial equilibrium (S, I, R, B) must satisfy the equations

µN = (αI + βB)S + µS, (2.2.5)

(αI + βB)S = (µ+ δ)I, (2.2.6)

δI = µR, (2.2.7)

ξI =
r

k
B(B − b)(B − k). (2.2.8)

Since I > 0 and b < k, it suffices to consider B ∈ (0, b)
⋃

(k,∞) based on equation (2.2.8).

(i), B ∈ (k, ∞). Denote θ = αN
µ+δ

and cancel S from (2.2.5) and (2.2.6) to obtain

α2I2 + α(µ− µθ + βB)I − µβθB = 0. (2.2.9)
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Since I is nonnegative, we have I = g(B), where

g(B) =

√
(µ− µθ + βB)2 + 4µβθB − (µ− µθ + βB)

2α
, B > 0. (2.2.10)

Meanwhile, we have B = p(I) from (2.2.9), where

p(I) =
αI(αI − µ(θ − 1))

β(µθ − αI)
, I > 0. (2.2.11)

Hence B = p(g(B)), B > 0. Then we have g′(B) = 1/p′(g(B)) = 1/p′(I). In addition,

p(I) = B > 0 implies that

max
(

0,
µ

α
(θ − 1)

)
< I <

µ

α
θ. (2.2.12)

Next, we have I = q(B) from (2.2.8), where

q(B) =
r

ξk
B(B − b)(B − k). (2.2.13)

Thus, any endemic equilibria is determined by the solution of the equation

g(B) = q(B), B > 0. (2.2.14)

Let m = µmin(θ, 1). Then 0 < µθ − αI < m from (2.2.12), and µ2θ ≥ m2. Hence we

have

µ2θ − (µθ − αI)2 > µ2θ −m2 ≥ 0. (2.2.15)

Thus

g′(B) = 1/p′(I) =
β(µθ − αg(B))2

α(µ2θ − (µθ − αg(B))2)
> 0 (2.2.16)

and

g′′(B) =
−p′′(I)

p′(I)3
=
−2µ2α2θg′(B)3

β(µθ − αg(B))3
< 0. (2.2.17)
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On the other hand,

q′′(B) =
2r

ξk
(3B − b− k) > 0 for B > k. (2.2.18)

Therefore, from the monotonicity and concavity of the curves I = g(B), B > k, and

I = q(B), B > k, we see that (2.2.14) has a unique solution for B ∈ (k, ∞) since

g(k) > q(k).

(ii) B ∈ (0, b). Set T (B) = q(B) − g(B). Then any positive root of T (B)

corresponds to an endemic equilibrium. We claim that T (B) has a unique root in (0, b)

if R0 < 1, either 0 or 1 root in (0, b) if R0 = 1, and T (B) has 0, 1, or 2 roots in (0, b) if

R0 > 1.

(a) If R0 < 1, then θ < R0 < 1 by (2.2.4). Hence T (0) = 0, T (b) = −g(b) < 0,

and

T ′(B) =
r

ξk
(3B2 − 2(b+ k)B + bk)− β(µθ − αg(B))2

α(µ2θ − (µθ − αg(B))2)
,

T ′′(B) =
2r

ξk
(3B − b− k) +

2µ2α2θg′(B)3

β(µθ − αg(B))3
,

T ′′′(B) =
6r

ξk
− 6µ2α3θg′(B)4(µ2θ + (µθ − αg(B))2)

β(µθ − αg(B))4(µ2θ − (µθ − αg(B))2)
.

Then we have

T ′(0) =
br

ξ
− βθ

α(1− θ)
=
br(1−R0)

2ξ(1− θ)

(√
θ2 +

4ξβN

br(µ+ δ)
+ 2− θ

)
> 0,

T ′(b) =
br

ξk
(b− k)− g′(b) < 0.

Hence T (B) has at least one root in (0, b) as shown in Figure 2.1 and we will prove such

a root is unique. One can verify that

T (4)(B) = −g(4)(B)

=
24α4µ2θg′(B)5[(µ2θ + (µθ − αg(B))2)2 + µ2θ(µθ − αg(B))2]

β(µθ − αg(B))5(µ2θ − (µθ − αg(B))2)2

> 0,
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which shows that T ′′(B) is convex. Hence T ′′(B) has at most two zeros. Meanwhile,

since T ′(0) > 0 and T (b) < 0, We will show that T ′(B) indeed has only one zero in (0, b)

through the discussion of the following three cases.

0 B

T (B)

b

T (b)

Figure 2.1

An illustration showing the function T (B) has at least one root in (0, b)

First, suppose that there is no solution in (0, b) for T ′′(B) = 0. Then T ′(B) is

strickly monotone in (0, b), T ′(B) has at least one zero in (0, b), and T ′(B) has at most

one zero in (0, b).

Second, if there exists a unique zero y ∈ (0, b) for T ′′(B) = 0, then T ′(B) is

strickly monotone in both (0, y) and (y, b). Thus, T ′(B) has at most two zeros, one in

(0, y) and the otherr in (y, b). However, since T ′(0) > 0 and T ′(b) < 0, we conclude that

there cannot be two zeros in (0, b) for T ′(B) = 0.

Third, assume that T ′′(B) has two zeros, say 0 < y1 < y2 < b, which leads to

T ′′(B) > 0 in (0, y1), T
′′(B) < 0 in (y1, y2) and T ′′(B) > 0 in (y2, b). Hence, T ′(B)

is increasing strickly in (0, y1), decreasing strickly in (y1, y2) and increasing strickly in

(y2, b). Thus, T ′(B) = 0 can only have one root in (y1, y2).

Consequently, T ′(B) has a unique zero in (0, b), hence T (B) has no more than

two roots in (0, b) since T (0) = 0. On the other hand, it is straightforward to observe

that T (B) cannot have two roots in (0, b) under the conditions we have derived above.

Thererfore, we conclude that T ′(B) has a unique root in (0, b) when R0 < 1.

(b) If R0 = 1, then θ < 1, and we have T (0) = 0, T (b) < 0 and T ′(0) = 0, T ′(b) <

0. Notice that T (4)(B) > 0. We have the following observations.
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0 B

T (B)

y b

T (b)

Figure 2.2

An illustration showing the function T (B) is decreasing in (0, b)

• If T ′′(0) ≤ 0, there exists y > 0 such that T ′′(y) = 0, and T ′′(B) < 0 in (0, y), T ′′(B) >

0 in (y, ∞).

(i) If y < b, then T ′(B) is strickly decreasing in (0, y) and strickly increasing in

(y, b). Hence T (B) is decreasing from T (0) to T (b), as illustrated in Figure

2.2.

(ii) If y ≥ b, then T ′(B) is strickly decreasing in (0, b), and we obtain that T ′(B) <

T ′(0) = 0 in (0, b). Hence T (B) < 0 in (0, b).

Therefore, T (B) has no zero in (0, b) when T ′′(0) ≤ 0.

• If T ′′(0) > 0, we prove below that T (B) has a unique zero in (0, b).

(i) If T ′′(B) has no zero in (0, b), then T ′′(B) > 0 in (0, b), and then T ′(B) is

increasing in (0, b). But this is impossible since T ′(b) < T ′(0).

(ii) If T ′′(B) has one zero y ∈ (0, b), then T (B) must be convex in (0, y) and

concave in (y, b). Since T (y) > T (0) = 0, T (B) has exactly one zero in (y, b).

See Figure 2.3.

(iii) If T ′′(B) has two zero in (0, b), then this coincides with the third case discussed

before when R0 < 1, hence T (B) must have a unique zero in (0, b).

(c) If R0 > 1, then T (B) = q(B) − g(B) generally can have 0, 1, or 2 zeros in

(0, b). It is, however, extremely complicated to algebraically characterize these situations.
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Figure 2.3

An illustration showing the function T (B) has exactly one root in (y, b)

Instead, we have chosen to graphically illustrate these scenarios in Figure 2.4 which

provides a much more intuitive means to observe the three different cases.

In Figure 2.4, we fix all the model parameters except the intrinsic growth rate

r, which is allowed to vary. Specifically, N = 2500, 000, µ = 1/43.5 per year, δ = 1/30

per day, ξ = 500 cells/ml per person per day, α = 1.48× 10−8, β = 1.7× 10−8, b = 1000

cells/ml, and k = 2000 cells/ml. Obviously, the function q(B) increases with r. On the

other hand, the function g(B) does not depend on r and thus remains unchanged when

r varies. The results show that when the value of r is low, the curve of q(B) is below

that of q(B) and there is no intersection between the two (see Figure 2.4-a). When r is

increased to some point, however, the two curves become tangent to each other and there

is a unique intersection between the two (see Figure 2.4-b). When r is further increased,

there are two intersections between the two curves (see Figure 2.4-c). We summarize the

results on the roots of T (B) as follows:

(1) If R0 < 1, then T (B) has a unique root in (0, b).

(2) If R0 = 1, then T (B) has either 0 or 1 root in (0, b).

(3) If R0 > 1, then T (B) can have 0, 1, or 2 roots in (0, b).

To conclude our analysis in this section so far, we state the following theorem.

Theorem 5. When R0 < 1, the model (2.2.1) has one endemic equilibrium associated

with B ∈ (k,∞), and has another endemic equilibrium associated with B ∈ (0, b). When
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(c) Two intersections when r = 4

Figure 2.4

The intersections of I = q(B) and I = g(B) in (0, b) when R0 > 1

R0 = 1, the model (2.2.1) has one endemic equilibrium with B ∈ (k,∞), and has either

one or no endemic equilibrium associated with B ∈ (0, b). When R0 > 1, the model

(2.2.1) has one endemic equilibrium with B ∈ (k,∞), and can have zero, one, or two

endemic equilibria associated with B ∈ (0, b).

In terms of the range of B, Theorem 5 essentially states that when B ∈ (k,∞),

the model (2.2.1) has a unique endemic equilibrium which always exists; when B ∈ (b, k),

the model (2.2.1) has no endemic equilibrium; and when B ∈ (0, b), the model (2.2.1)

has a unique endemic equilibrium if R0 < 1, has either one or no endemic equilibrium if

R0 = 1, and can have zero, one or two endemic equilibria if R0 > 1.

Additionally, we briefly discuss the scenario when there is a linear bacterial removal
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term, independent of the Allee effects, included in the last equation of the model (2.2.1).

The equation is now modified as follows:

Ḃ(t) = rB(B − b)
(

1− B

k

)
− τB + ξI, (2.2.19)

where τ > 0 denotes the bacterial removal rate. The basic reproductive number of the

model now becomes

R0 =
1

2

 αN

µ+ δ
+

√(
αN

µ+ δ

)2

+
4ξβN

(br + τ)(µ+ δ)

 . (2.2.20)

Meanwhile, equation (2.2.13) becomes

I = q(B) =
r

ξk
B

(
B2 − (b+ k)B +

k

r
(br + τ)

)
. (2.2.21)

Let us consider the discriminant

∆ = (b+ k)2 − 4
k

r
(br + τ) = (b− k)2 − 4kτ

r
.

If ∆ ≥ 0, then there exist 0 < b1 ≤ k1 such that

q(B) =
r

ξk
B(B − b1)(B − k1), B > 0, (2.2.22)

where b1 + k1 = b+ k and b1k1 = k
r
(br+ τ). Note that there is no change to the equation

I = g(B) in (2.2.10). Hence, when ∆ ≥ 0, it is easy to observe that Theorem 5 holds for

the modified model, but with b and k replaced by b1 and k1, respectively. Basically, it

means that when the bacterial removal rate τ is sufficiently small, the dynamical behavior

of the system remains the same as that with τ = 0.

On the other hand, when τ is sufficiently large, we have ∆ < 0. In this case, with

some tedious algebra, it can be shown that the dynamical behavior of the modified system

remains the same when R0 ≥ 1, but there are changes of the dynamics in the region
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(c) τ = 500

Figure 2.5

The intersections of I = q(B) and I = g(B) in (0, b) when R0 < 1

0 < R0 < 1. Essentially, now there could be 0, 1, and 2 nontrivial equilibria, represented

by the intersections of the two curves I = q(B) and I = g(B), whenR0 < 1, as illustrated

in Figure 2.5. An implication is that, at least in part of the region 0 < R0 < 1, it is

free of the endemic state and so the disease can be eradicated. This is in contrast to the

original model (2.2.1) where there are always two endemic equilibria when 0 < R0 < 1,

one with B ∈ (k,∞) and the other with B ∈ (0, b) (see Theorem 5). We will provide

more numerical results and discuss this difference in next section.
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2.2.2 Simulation results and bifurcation diagrams

Due to the complications of the nontrivial equilibria for this model, the sta-

bility analysis becomes algebraically intractable. Thus, we have chosen to numerically

investigate the stabilities under various scenarios, based on which we are able to sketch

the bifurcation diagrams to characterize the main dynamics of model (2.2.1). As shown

in the previous section, there is always a unique endemic equilibrium associated with

B ∈ (k,∞), which we refer to as the upper-branch endemic state. In contrast, the num-

ber of endemic equilibria associated with B ∈ (0, b), which we refer to as the lower-branch

endemic state, is determined by the value of R0 as well as other factors.

In Figure 2.6, we plot the time series B vs. t when T ′′(0) ≤ 0 for typical scenarios

associated with R0 < 1 (left figure) and R0 > 1 (right figure), respectively. In each

case, we keep b = 1000 and k = 2000, and we pick an initial value of B in each of the

three different ranges for B : 0 < B < b, b < B < k, and B > k. We observe that

when R0 < 1, the orbit starting from 0 < B(0) < b (specifically, B(0) = 500 here)

approaches the DFE at B = 0 over time, whereas the other two orbits starting in the

regions b < B(0) < k (specifically, B(0) = 1100) and B > k (specifically, B(0) = 3000)

both approach the upper-branch endemic equilibrium, showing a bi-stability pattern.

When R0 > 1 the DFE becomes unstable, and we see that all the three orbits starting

with B(0) > 0 (specifically, B(0)=500, 1500, and 3000 here) approach the upper-branch

endemic equilibrium over time, and only the solution starting with B(0) = 0 remains at

the DFE with B = 0.

Meanwhile, in Figure 2.7, we plot the time series B vs. t when T ′′(0) > 0 for

typical scenarios associated with different values of R0. The case with R0 < 1 is similar

to that in Figure 2.6 and thus not shown here. For R0 > 1, however, our analysis

in the previous section predicts the presence of more complex dynamics. Numerically,

we find that there exists a critical value of the basic reproductive number, R∗0 ≈ 2.8,

which distinguishes two different types of solution behaviors, as illustrated in Figure 2.7.

When 1 < R0 < R∗0, the two orbits starting from 0 < B(0) < b (B(0) = 100 and
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Typical solution orbits of B versus time when T ′′(0) ≤ 0
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Typical solution orbits of B versus time when T ′′(0) > 0
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300, respectively) apprach the positive, lower-branch endemic equilibrium, and the other

two orbits starting in the regions b < B(0) < k (B(0)=1000 and 2200, respectively)

approach the upper-branch endemic equilibrium, again showing a bi-stability pattern.

When R0 > R∗0, all the four orbits starting with B(0) > 0 (specifically, B(0)=100, 300,

1000, and 2500 here), including the two very close to the DFE at B = 0, approach the

upper-branch endemic equilibrium, which is the only stable equilibrium in this scenario.
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A backward bifurcation occurs at R0 = 1 when T ′′(0) ≤ 0
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Figure 2.9

A forward hysteresis occurs when T ′′(0) > 0
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Bifurcation diagrams for T ′′(0) > 0 with varied intrinsic growth rate r

We are now ready to sketch the bifurcation diagrams in Figures 2.8 and 2.9. First,

we see that as the value of R0 increases, the solution on the upper-branch equilibrium

also increases, which can be reasonably expected. What is more interesting, however, is

the solution behavior on the lower-branch equilibrium. Figure 2.8 shows that the lower-

branch endemic equilibrium only exists (and is unique) for R0 < 1. At R0 = 1, the

lower-branch endemic equilibrium intersects the disease-free equilibrium B = 0, and a

backward transcritical bifurcation [25] takes palce. Solid lines represent stable equilibria

and dashed lines represent unstable equilibria. Here b = 1000 and k = 2000. Figure

2.9, on the other hand, shows that there can be zero, one, or two lower-branch endemic

equilibria when R0 ≥ 1, referred to as the forward hysteresis [26]. Specifically, there

exists a point R∗0 > 1 such that a turning point bifurcation occurs at R0 = R∗0 and

B = B∗. When 1 ≤ R0 < R∗0, there are two lower-brach endemic equilibria; when

R0 = R∗0, there is only one such equilibrium; and when R0 > R∗0, there is no such

equilibrium. Biologically, these findings indicate that the disease would persist regardless

of the value of R0 based on model (2.2.1). In particular, when R0 is sufficiently high,

all solutions would converge to the upper-branch endemic state, implying a high level

of disease risk and potentially large outbreaks of the infection, in the absence of strong
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Figure 2.11

Typical bifurcation diagrams for the modified model

bacterial removal (represented by −τB). Additionally, we sketch the forward hysteresis

bifurcation diagrams with varied intrinsic growth rate r in Figure 2.10. Results show

that as r increases, the regions of the hysteresis are enlarged, whereas the values of the

upper-branch endemic equilibrium are reduced.

Finally, we present some results for the modified model; i.e., when the last equation

of the model (2.2.1) is replaced by equation (2.2.19). As mentioned before, when the

bacterial removal rate τ is small, there is no essential change of the dynamics, thus not

discussed here. When τ is large, three typical scenarios are presented in Figure 2.11.

For the original model (2.2.1), as can be seen from either Figure 2.8 or 2.9, part of the

nontrivial equilibrium solution (on both the upper and lower branches) extends to the
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negative quadrant where R0 < 0 (not shown in the figure). For the modified model,

howevere, the presence of a large and positive τ essentially pushes the solution part

originally in the negative quadrant, to the positive quadrant with R0 > 0 (compare to

Figures 2.8 and 2.9). As shown in Figure 2.11 (a), when τ = 300, a backward bifurcation

takes place at R0 = 1, and the upper and lower branches of the endemic euqilibria come

together and annihilate each other at the turning point (R∗0, B∗). Connsequently, there

could be 0, 1, or 2 endemic equilibria in the region 0 < R0 < 1. As τ is increased,

the equilibrium solution is further pushed to the right. Figure 2.11 (c) shows that when

τ = 800, a forward hysteresis occurs for R0 > 1, together with a backward bifurcation for

0 < R0 < 1. The two turning points (for the forward hysteresis and backward bifurcation)

both appear in the positive quadrant with R0 > 0. As τ continues increasing, (e.g., when

τ = 1500), the endemic equilibrium solution is completely pushed to the domain R0 > 1,

and a forward bifurcation takes place at R0 = 1 (see Figure 2.11 (b)) so that the system

would exhibit regular threshold dynamics. An important observation is that when the

bacterial removal rate τ is large, the disease can be controlled by reducing R0 to a level

lower than R∗0, where there is no endemic state. This result is distinct from the oringinal

model (2.2.1) where τ = 0. In particular, if the value of τ is extremely high (e.g.,

τ = 1500) such that a forward bifurcation appears, reducing R0 below unity would be

sufficient to eradicate the disease.

2.3 Discussion

A particular challenge in the study of cholera infection is to understand the

dynamics of bacteria under various ecological conditions and host settings, which often

plays a critical role in shaping the epidemic and endemic patterns. Our focus is to math-

ematically investigate the intrinsic dynamics of bacterial pathogens and their effects on

the transmission and spread of cholera infection. We have employed an SIR-B compart-

mental model based on differential equations in this study and have carefully investigated

two types of nontrivial, nonlinear bacterial dynamics: the logistic growth and the Allee
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effects.

The model with logistic growth of bacteria, though more complex than previously

studied linear growth models, still exhibits regular threshold dynamics. Specifically,

we have shown that when R0 < 1, the DFE is globally asymptotically stable and the

disease would die out; when R0 > 1, there exists a unique endemic equilibrium which is

globally asymptotically stable under appropriate conditions, indicating the persistence of

the infection. Hence, the condition R0 = 1 serves as a sharp threshold for distinguishing

disease extinction and persistence. In contrast, the cubic growth model with Allee effects

exhibits very rich and complex dynamics. In particular, we find that there are multiple

positive endemic states for the model (2.2.1), and the disease can persist in any regime

with positive R0, particularly for 0 < R0 < 1. These observations imply that in the

presence of Allee effects among pathogen population, but without strong bacterial removal

(that is, independent of Allee effects), there could be some challenges in the control of

cholera disease. This could possibly (and partially) explain the persistence of cholera, in

several countries/regions in Africa and South Asia. On the other hand, strategic disease

prevention and intervention are certainly necessary, as these control efforts can possibly

push the infection trajectory from the attraction region of the upper-branch equilibrium

to the basins of attraction corresponding to the lower-branch equilibrium and/or the

DFE, thus reducing the risk of the disease.

Meanwhile, we have also considered the modified Allee growth model where there

is a strong bacterial removal (−τB) that is independent of Allee effects. We find that

when the value of τ is very high; i.e., when the bacterial removal is dominant, the disease

can be effectively eradicated by reducing R0 below unity. Thus, an observation is that

water sanitation could play a key role in the control of cholera infection, by strengthening

the bacterial removal (i.e., increasing the value of τ) so that the disease could be contained

and controlled in the region 0 < R0 < 1 or at least part of it.

In the model (2.2.1), where Allee effects are dominant, due to the interaction

between the intrinsic dynamics of pathogens and the external contribution from the in-

fected hosts (e.g., through shedding), the positive equilibria of the bacterial density occur
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at two regions: B > k (the upper-branch equilibrium), and 0 < B < b (the lower-branch

equilibrium) where the microbial population would have declined in the absence of host

contribution. The existence and stability of the upper-branch equilibrium imply a poten-

tial high risk of infection from bacteria if there is no additional strong bacterial removal.

Particularly, our results show that in part of the domain where R0 > 1, solution orbits

starting with low levels of infection would approach the upper-branch equilibrium over

time, including a potentially catastrophic occurrence of disease epidemics. Several sudden

and extremely severe cholera outbreaks over the last decade (such as those in Zimbabwe,

2008, and in Haiti, 2010) could be possibly linked with this analytical observation. The

appearance of the lower-branch equilibria is due to the contribution of fresh bacteria to

the aquatic environment by the infected hosts, and this continuous refueling of bacteria

overcomes the negative growth of the bacteria within their intrinsic dynamical regime. As

a result, endemic states could occur that lead to potential disease outbreaks even when

the bacteria population density is low if Allee-independent bacterial removal is absent or

is weak.
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CHAPTER 3

MULTI-SCALE CHOLERA MODEL

3.1 Model formulation

The between-host dynamics are described by the following SIR model:

dS

dt
=µN − βHSI − βLSB − µS,

dI

dt
=βHSI + βLSB − (γ + µ)I,

dR

dt
=γI − µR,

(3.1.1)

where B is the concentration of the bacteria Vibrio cholerae in the contaminated water.

We assume that the natural birth and death rates for human hosts are the same and

denoted by µ . Meanwhile, we denote the human-to-human and environment-to-human

transmission rates by βH and βL , respectively. In addition, γ denotes the recovery rate

from the infection. The total population, N = S + I + R, remains a constant in this

model, and thus, we may drop the equation for R in the analysis of the model.

To emphasize the distinctions among human individuals in the within-host dy-

namics, we formulate an equation for each individual host:

dZi
dt

= ciB − ξiZi , i = 1, 2, · · · , N. (3.1.2)

Here Zi represents the concentration of human vibrios within the body of the ith in-

dividual, i = 1, 2, · · · , N . The environmental vibrios that are ingested into the human

body are transferred, at a rate ci , to human vibrios which typically have much higher

infectivity/toxicity and could directly lead to human cholera symptoms. Meanwhile, the
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human vibrios are removed from the human body at a rate ξi due to natural death of

the bacteria, shedding of the bacteria to the environment, etc. We assume

ci ≥ 0, ξi > 0, i = 1, 2, · · · , N. (3.1.3)

The values of ci and ξi will highlight the distinctions among different human individuals.

For example, for individuals who are especially vulnerable to cholera (such as young

children, old people, or those with poor health), the rate ci will be relatively high. In

contrast, for individuals who are immune to cholera (due to vaccination, recovery from

cholera, etc.) or otherwise are healthy and have a strong immune system, the rate ci will

be close or equal to 0.

Meanwhile, we assume that for each individual i, a portion pi of the removed

human vibrios are shed out of the human body and transfer back to the environmen-

tal virbrios. The following equation thus describes the dynamics of the vibrios in the

environment:

dB

dt
= αB

(
1− B

κ

)
+

N∑
i=1

piξiZi − δB, (3.1.4)

where the intrinsic growth of the bacteria is modeled by a logistic model with the growth

rate α and carrying capacity κ. The shedding from each human individual contributes to

the growth of the bacterial concentration in the environment. In addition, δ denotes the

natural death rate of the bacteria. In addition, we make the following two assumptions:

(A1) At any time t, if I(t) > 0, then there exists at least one i such that Zi(t) > 0.

(A2) δ −
N∑
i=1

pici > 0.

The condition (A1) sets a positive relationship between the disease prevalence

and the within-host dynamics. The condition (A2) implies that in the absence of the

intrinsic bacterial growth (α = 0), the environmental vibrios would die away eventually.
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3.2 Separation of scales

A simplified model analysis can be conducted by separating the time scales, since

the within-host dynamics are on a fast scale and typically range from several hours to a

few days, whereas the between-host dynamics and environmental bacterial evolution are

on a slow scale and normally take place in months and years. Thus, we may treat the

slow variable B as a constant in the fast-scale (within-host) model (3.1.4) to obtain

Zi(t) =
ciB

ξi
+

(
Zi(0)− ciB

ξi

)
e−ξit . (3.2.1)

Note that ξi > 0. Equation (3.2.1) shows that for each fixed B > 0, Zi would exponen-

tially converge to its equilibrium (i.e., steady state) ciB/ξi , i = 1, 2, · · · , N . Hence, we

may approximate each fast variable Zi at its steady state in the slow-scale environmental

bacterial equation (3.1.4). As a result, we obtain

dB

dt
=

(
N∑
i=1

pici + α− δ

)
B − α

κ
B2. (3.2.2)

Equation (3.2.2) is a Bernoulli equation and can be analytically solved to obtain:

B(t) =

(
−d2
d1

+

(
1

B(0)
+
d2
d1

)
e−d1t

)−1
if d1 6= 0, (3.2.3)

and

B(t) =

(
1

B(0)
− d2t

)−1
if d1 = 0, (3.2.4)

where

d1 = α− δ +
N∑
i=1

pici , d2 = −α
κ
. (3.2.5)

It is easy to observe that

(i) if d1 ≤ 0, then B(t)→ 0 as t→∞ ;

(ii) if d1 > 0, then B(t)→ −d1/d2 as t→∞ .
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Next, we will discuss the fully coupled system that consists of equations (3.1.1), (3.1.2)

and (3.1.4).

3.3 Basic reproduction number

It is obvious that there is a unique trivial equilibrium, or disease-free equilibrium

(DFE), at

S = N, I = B = Z1 = · · · = ZN = 0. (3.3.1)

We can still use the next-generation matrix technique to compute the basic reproduction

number, R0, for this model. We re-write the equations directly related to the infection

as follows: 

Z ′1
...

Z ′N

B′

I ′


=



0

...

0

αB
(
1− B

κ

)
βHSI + βLSB


−



ξ1Z1 − c1B
...

ξNZN − cNB

δB −
∑N

i=1 piξiZi

(µ+ γ)I


,

where the first part on the right-hand side represents the generation of new infection,

and the second part represents the transfer among the disease compartments. The next-

generation matrices are given by

F =



0 · · · 0 0 0

...
. . .

...
...

...

0 · · · 0 0 0

0 · · · 0 α 0

0 · · · 0 βLN βHN


=:

 O O

O E
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and

V =



ξ1 · · · 0 −c1 0

...
. . .

...
...

...

0 · · · ξN −cN 0

−p1ξ1 · · · −pNξN δ 0

0 · · · 0 0 µ+ γ


=:

 A B

C D

 .

The dimensions of these (non-zero) matrix blocks A, B, C, D, and E are N ×N , N × 2,

2×N , 2× 2, and 2× 2, respectively.

The basic reproduction number is then determined by the spectral radius of the

matrix FV −1. The inverse of V can be calculated by using the flowing result:

Theorem 6. [5] Consider any square matrix in the form of V =

 A B

C D

 where

A, B, C and D are matrix blocks, with A and D being square. Then the matrix V is

invertible if and only if A and D − CA−1B are invertible, and

V −1 =

A−1 + A−1B
(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1
−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1
 . (3.3.2)

Note, however, that E is the only non-zero block in our matrix F . Hence, it is

clear that

R0 = ρ
(
FV −1

)
= ρ
(
E
(
D − CA−1B

)−1)
,

where

E(D − CA−1B)−1 =

 α 0

βLN βHN

 ·
 1

δ−
∑N

i=1 pici
0

0 1
µ+γ

 =

 α

δ−
∑N

i=1 pici
0

βLN

δ−
∑N

i=1 pici

βHN
µ+γ

 .
Note that each component in the matrix above is positive based on the assumption (A2).

Therefore, we obtain

R0 = max
(
R1 , R2

)
, (3.3.3)
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where

R1 =
α

δ −
∑N

i=1 pici
and R2 =

βHN

µ+ γ
.

Theorem 7. If R0 ≤ 1, the DFE is globally asymptotically stable.

Proof. Let y = (Z1, Z2, ..., B, I)T . One can verify that

dy

dt
≤ (F − V )y.

If R1 6= R2, take

u = (0, ..., 0, x1, x2),

where

x1 = (R2 −R1)
2 + (R0 −R1)

(
βLN

µ+ γ
− (R2 −R1)

)
,

x2 = (R0 −R1)(R2 −R1).

It then follows from the fact R0 = ρ(FV −1) = ρ(V −1F ) and direct calculation that u is

a left eigenvector associated with the eigenvalue R0 of the matrix V −1F ; i.e., uV −1F =

R0u. Let us consider a Lyapunov function L = uV −1y and differentiate L along the

solutions of (3.1.1), (3.1.2) and (3.1.4), we have

L′ = uV −1y′ ≤ uV −1(F − V )y = (R0 − 1)uy. (3.3.4)

Case 1: R0 < 1. The equality L′ = 0 implies that uy = 0. This leads to

x1B + x2I = 0, which gives us B = 0, I ≥ 0 by noting that x1 > 0, x2 ≥ 0. If I > 0, then

equations of (3.1.1) yield I = µ
βH

(R2 − 1) < µ
βH

(R0 − 1) < 0. The contradiction shows

that I = 0, hence y = 0. Therefore, the invariant set on which L′ = 0 contains only one

point which is the DFE.

Case 2: R0 = 1. The equality L′ = 0 implies that y′ = (F − V )y, which gives

us B = 0 and S = N . Thus, y = 0 again holds.

Therefore, in either case, the largest invariant set on which L′ = 0 consists of the
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singleton E0 = (N, 0, ..., 0). By LaSalle’s Invariant Principle [34], the DFE is globally

asymptotically stable if R0 ≤ 1.

If R1 = R2, it is easily to obtain the same results by fixing u = (0, ..., 0, 1, 0).

3.4 Equilibria analysis

We denote a nontrivial equilibrium by

X∗ =
(
B∗, S∗, I∗, Z∗1 , Z

∗
2 , · · · , Z∗N

)
,

where, for convenience of algebraic manipulation, we put B∗ as the first component.

Hence, we have

µN − βHS∗I∗ − βLS∗B∗ − µS∗ = 0 ,

βHS
∗I∗ + βLS

∗B∗ − (γ + µ)I∗ = 0 ,

αB∗
(

1− B∗

κ

)
+

N∑
i=1

piξiZ
∗
i − δB∗ = 0 ,

ciB
∗ − ξiZ∗i = 0 .

(3.4.1)

From the last two equations in (3.4.1) we obtain

((
N∑
i=1

pici + α− δ

)
− α

κ
B∗

)
B∗ = 0 . (3.4.2)

The solution of equation (3.4.2) is given by B∗ = 0, or

B∗ =
κ

α

(
N∑
i=1

pici + α− δ

)
= κ

(
1− 1

R1

)
,

where R1 is defined in (3.3.3). It is clear to see that B∗ > 0 if and only if R1 > 1. Also,

note that the condition R1 > 1 is equivalent to d1 > 0, and that κ
(
1− 1

R1

)
= −d1

d2
, where

d1 and d2 are defined in (3.2.5). Hence, the result here is consistent with our findings

based on the separation of scales.
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When R1 ≤ 1, the only non-negative solution for B∗ is B∗ = 0. Consequently,

Z∗i = 0 for 1 ≤ i ≤ N . Meanwhile, the first two equations in (3.4.1) yield

µN − βHS∗I∗ − µS∗ = 0 ,

βHS
∗I∗ − (γ + µ)I∗ = 0 .

In addition to the trivial solution (I∗, S∗) = (0, N), there is a unique nontrivial solution

given as

(I∗, S∗) =
( µ

βH

(
R2 − 1

)
,
γ + µ

βH

)
, (3.4.3)

where R2 is defined in (3.3.3). Obviously I∗ > 0 if and only if R2 > 1. In this case we

obtain a nontrivial boundary equilibrium.

When R1 > 1, then B∗ > 0. The last equation in (3.4.1) yields

Z∗i =
ciB

∗

ξi
, i = 1, 2, · · · , N.

Meanwhile, the second equation of (3.4.1) yields

S∗ =
(γ + µ)I∗

βHI∗ + βLB∗
> 0

provided that I∗ > 0. Adding the first two equations in (3.4.1), we obtain

µN = µS∗ + (µ+ γ)I∗,

which yields

S∗ = N −
(

1 +
γ

µ

)
I∗.

Substituting this into the second equation of (3.4.1), we obtain

βH

(
1 +

γ

µ

)
(I∗)2 +

(
(γ + µ)

(
1 +

βL
µ
B∗
)
− βHN

)
I∗ − βLB∗N = 0. (3.4.4)
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Clearly, when B∗ > 0, there is only one positive root, I∗, for equation (3.4.4). In this

case we have a unique endemic equilibrium.

Summarizing the results above, we have the following theorem.

Theorem 8. The system has a non-trivial, non-negative equilibrium if and only if R0 > 1.

Specifically,

1) If R1 ≤ 1 and R2 > 1, then there is a unique boundary equilibrium X∗1 represented

by I∗ = µ
βH

(
R2 − 1

)
, S∗ = γ+µ

βH
, and B∗ = Z∗1 = · · · = Z∗N = 0.

2) If R1 > 1, then there is a unique endemic equilibrium X∗2 represented by B∗ =

κ
(
1− 1

R1

)
, Z∗i = ciB

∗

ξi
(1 ≤ i ≤ N), I∗ > 0, and S∗ = (γ+µ)I∗

βHI∗+βLB∗
.

Note that the boundary equilibrium X∗1 means that the between-host dynamics

are totally decoupled from the environment and the within-host dynamics; that is, the

environmental pathogen concentration and the within-host pathogen load have no impact

on the disease prevalence. This is unreasonable for a water-borne disease such as cholera.

Indeed, our assumption (A1) excludes the boundary equilibrium X∗1 . Hence, we only

need to focus on the endemic equilibrium X∗2 .

The Jacobian at the endemic equilibrium is then given by

J(X∗2 ) =



α− δ − 2α
κ
B∗ 0 0 p1ξ1 p2ξ2 · · · pNξN

−βLS∗ θ∗ −βHS∗ 0 0 · · · 0

βLS
∗ βHI

∗ + βLB
∗ βHS

∗ − (γ + µ) 0 0 · · · 0

c1 0 0 −ξ1 0 · · · 0

c2 0 0 0 −ξ2 · · · 0

...
...

...
...

...
. . .

...

cN 0 0 0 0 · · · −ξN



,

where θ∗ = −(βHI
∗ + βLB

∗ + µ). After some algebraic manipulation, the characteristic

polynomial associated with J(X∗2 ) can be found as

det
(
λI− J(X∗2 )

)
= Γ1(λ)Γ2(λ), (3.4.5)
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where

Γ1(λ) = det

λ+ βHI
∗ + βLB

∗ + µ βHS
∗

−
(
βHI

∗ + βLB
∗) λ− βHS∗ + γ + µ


= λ2 +

(
βHI

∗ + βLB
∗ − βHS∗ + γ + 2µ

)
λ

+ (βHI
∗ + βLB

∗ + µ)(γ + µ)− µβHS∗

and

Γ2(λ) =

(
λ+ δ − α +

2α

κ
B∗
)
H(λ) +

N∑
i=1

piξici
H(λ)

λ+ ξi
(3.4.6)

with

H(λ) = (λ+ ξ1)(λ+ ξ2) · · · (λ+ ξN).

One can easily see that βHS
∗ < γ + µ, and thus each coefficient of Γ1(λ) is positive.

Consequently, the two roots of Γ1(λ) both have negative real parts. Meanwhile, note

that when R1 > 1, we have

δ − α +
2α

κ
B∗ = 2

N∑
i=1

pici + α− δ >
N∑
i=1

pici > 0 .

Thus, each coefficient in the polynomial Γ2(λ) is positive.

Theorem 9. When R1 > 1, the endemic equilibrium X∗2 is locally asymptotically stable.

Proof. We only need to show that each root of Γ2(λ) has a negative real part. Let ρ > 0

(to be determined), and let

γρ = {z|z = ρeiθ,
π

2
≤ θ ≤ 3π

2
}
⋃
{z|z = yi,−ρ ≤ y ≤ ρ}, where i2 = −1,

be a simple closed contour. Denote F (λ) = (λ+A)H(λ), where A = δ− α+ 2α
κ
B∗, then

Γ2(λ) = F (λ)+H(λ)
N∑
k=1

pkckξk
λ+ ξk

. Obviously, Γ2(λ) and F (λ) are both analytic inside and

on γ. We will show that

|Γ2(λ)− F (λ)| < |F (λ)| on γρ. (3.4.7)
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By Rouché’s Theorem, Γ2(λ) and F (λ) have the same number of zeros, counting muli-

plicities, inside γρ, which is in the left half complex plane.

(i) If λ = yi,−ρ ≤ y ≤ ρ, then

|Γ2(yi)− F (yi)| =

∣∣∣∣∣H(yi)
N∑
k=1

pkckξk
yi+ ξk

∣∣∣∣∣ ≤ |H(yi)|
N∑
k=1

∣∣∣∣∣ pkckξk√
y2 + ξ2k

∣∣∣∣∣
≤ |H(yi)|

N∑
k=1

pkck < |H(yi)|A

≤ |H(yi)||A+ yi| = |F (yi)|.

(ii) If λ = ρeiθ, π
2
≤ θ ≤ 3π

2
, ρ > 0, then

|Γ2(ρe
iθ)− F (ρeiθ)| =

∣∣∣∣∣H(ρeiθ)
N∑
k=1

pkckξk
ρeiθ + ξk

∣∣∣∣∣ ≤ |H(ρeiθ)|
N∑
k=1

pkckξk
|ρeiθ + ξk|

.

Notice that lim
ρ→∞

N∑
k=1

pkckξk
|ρeiθ + ξk|

= 0 and lim
ρ→∞
|ρeiθ+A| = +∞. Hence we can choose some

ρ > max{A, ξ1, ..., ξN} such that
N∑
k=1

pkckξk
|ρeiθ + ξk|

< |ρeiθ +A|. Thus, (3.4.7) holds for some

ρ. Since all N + 1 zeros of F (λ) are inside γρ, we obtain that all N + 1 zeros of Γ2(λ) are

inside γρ, i.e., the real part of every zero of Γ2(λ) is negative. Therefore, X∗2 is locally

stable.

In contrast, the global asymptotic stability of an endemic equilibrium is usually

difficult to establish, when the dimension of the system is high. The proof of such global

stability, if available, normally comes with additional conditions on the model. In our

case, we have the following result.

Theorem 10. When R1 > 1, the endemic equilibrium X∗2 is globally asymptotically stable

if 2 + B
B∗
≤ I

I∗
+ S∗

S
+ SI∗B

S∗IB∗
.

Proof. We consider a Lyapunov function

L = a1D1 + a2D2 + a3D3 +
N∑
i=1

AiEi,
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where

D1 =

(
S − S∗ − S∗ ln

( S
S∗

))
, D2 =

(
I − I∗ − I∗ ln

( I
I∗

))
,

D3 =

(
B −B∗ −B∗ ln

( B
B∗

))
, Ei =

(
Zi − Z∗i − Z∗i ln

(Zi
Z∗i

))
, i = 1, 2, ..., N,

and aj > 0 (j = 1, 2, 3, 4), Ai > 0 (i = 1, 2, ..., N) are constants to be determined.

It is easy to verify that L ≥ 0 for all S, I, B, Zi, (i = 1, 2, ..., N) > 0, and L = 0 if

and only if (S, I, B, Z1, ...ZN) = X∗2 . Differentiating L along X∗2 , we obtain

L′ = a1D
′
1 + a1D

′
2 + a3D

′
3 +

N∑
i=1

AiE
′
i

= a1

(
1− S∗

S

)
S ′ + a2

(
1− I∗

I

)
I ′ + a3

(
1− B∗

B

)
B′ +

N∑
i=1

Ai

(
1− Z∗i

Zi

)
Z ′i

= a1βHS
∗I∗
(

1− S∗

S
+

I

I∗
− SI

S∗I∗
+
βL
βH

(
B∗ +B

I∗
− SB

S∗I∗
− S∗B∗

SI∗

))
+ a2βHS

∗I∗
(

1− I

I∗
− S

S∗
+

SI

S∗I∗
+
βL
βH

(
B∗

I∗
− SB

S∗I
+

SB

S∗I∗
− IB∗

I∗2

))
− a3

α

κ
(B −B∗)2 + a3

N∑
i=1

piξiZ
∗
i

(
1− B

B∗
+
Zi

Z∗i
− ZiB

∗

Z∗i B

)

+
N∑
i=1

AiξiZ
∗
i

(
1− Zi

Z∗i
+

B

B∗
− Z∗i B

ZiB∗

)
− a1µ

(S − S∗)2

S

≤ a1βHS
∗I∗
(

1− S∗

S
+

I

I∗
− SI

S∗I∗
+
βL
βH

(
B∗ +B

I∗
− SB

S∗I∗
− S∗B∗

SI∗

))
+ a2βHS

∗I∗
(

1− I

I∗
− S

S∗
+

SI

S∗I∗
+
βL
βH

(
B∗

I∗
− SB

S∗I
+

SB

S∗I∗
− IB∗

I∗2

))
+ a3

N∑
i=1

piξiZ
∗
i

(
1− B

B∗
+
Zi

Z∗i
− ZiB

∗

Z∗i B

)
+

N∑
i=1

AiξiZ
∗
i

(
1− Zi

Z∗i
+

B

B∗
− Z∗i B

ZiB∗

)
.

Take a1 = a2 = a3 = 1, and Ai = pi(i = 1, 2, ..., N). Then

L′ ≤ βHS
∗I∗
(

2− S∗

S
− S

S∗

)
+

N∑
i=1

piξiZ
∗
i

(
2− ZiB

∗

Z∗i B
− Z∗i B

ZiB∗

)
+ βLS

∗B∗
(

2 +
B

B∗
− I

I∗
− S∗

S
− SI∗B

S∗IB∗

)
.
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By our assumption, the last term is non-positive. Moreover, L′ = 0 iff S = S∗, I =

I∗, B = B∗. Thus, the largest invariant set for which L′ = 0 contains only X∗2 . Therefore,

by LaSalle’s Invariant Principle [34], X∗2 is globally asymptotically stable.

3.5 Numerical simulation

In this section, we conduct numerical simulation to our proposed multi-scale

cholera model, both to verify our analytical results and to explore scenarios that are not

covered in our analysis. To make distinction among hosts, we label all the individuals by

integers from 1 to N . Thus, each individual is assigned a unique numeric ID that belongs

to the set {1, 2, ..., N}. Our mathematical analysis is concerned with this scenario and

Theorems 9 and 10 predict the global stabilities of the DFE and the endemic equilibrium,

respectively.

In our numerical tests, we use the base values of the model parameters provided

in Table ??. Meanwhile, we set the initial conditions as follows:

I(0) = J, R(0) = 0, S(0) = N − I(0)−R(0),

B(0) = 104cells/ml, Zi(0) = 0,

for 1 ≤ i ≤ N , and some integer J ≥ 1. For those individuals who are initially infected,

ci 6= 0 fori ≤ i ≤ J . Here, for simplicity, we assume that the individuals labeled with

i ≤ i ≤ J are initially infected. Thus, we set ci > 0 for i ≤ i ≤ J , and ci = 0 for

J + 1 ≤ i ≤ N .

Figure 3.1 shows that each curve starts with a different initial condition, and all

these curves converge to the DFE at (B, I) = (0, 0), illustrating that the DFE is globally

asymptotically stable when R0 < 1. In contrast, Figure 3.2 shows each curve starts with

a different initial condition, and all these orbits approach the endemic equilibrium at

(S, I) = (410, 59), illustrating that the endemic equilibrium is globally asymptotically

stable when R1 > 1. In these two cases, we simply set ci = 2 for i = 1, 2, ..., J. The
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Table 3.1

Model parameters and values (p=person, d=day)

Parameter Definition Value References
N Total number of human individuals 10000p Assumed
µ Natural human birth/death rate (15878d)−1 [40]
βH Direct transmission rate 1.57× 10−5d−1 [40]
βL Indirect transmission rate 1.1× 10−8p−1d−1 [40]
γ Recovery rate 0.2d−1 [27]
ci Transfer rate Varied
ξi Removal rate of human vibrios 10d−1 Assumed
α Bacterial growth rate 0.1d−1 Assumed
κ Bacterial carrying capacity 106cells·ml−1 [58]
pi Shedding rate 10% Assumed
δ Death rate of environmental vibrios (30d)−1 [27]
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Figure 3.1

A typical phase portrait for I versus B when R0 < 1
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Figure 3.2

A typical phase portrait for I versus S when R1 > 1

Figure 3.3

Zi versus time for i = 1, 5, 10
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results are consistent with the analytical predictions. Additionally, to examine the specific

dynamical behavior of the human vibrios within different hosts, we set ci = 0.04i for

1 ≤ i ≤ J , and ci = 0 for i > J , with J = 10. Other parameter values remain the same.

We then plot the time evolution of Zi(t) for a few typical (initially infected) individuals

in Figure 3.3. We see that each curve starts from 0 and increases quickly during the first

few hours, showing the fast increase of the pathogen load within the human body upon

infection, then approaches a steady state. Among these curves, Z10(t) and Z1(t) attain

the highest and lowest levels, due to that c10 and c1 have the largest and smallest values,

respectively. Moreover, each curve approaches a positive steady state over time, another

evidence of the stability of the endemic equilibrium.

3.6 Discussion

In this chapter, we have focused our attention on the case where each model

parameter is a constant independent of time. For this model, we are able to conduct a

detailed mathematical analysis. We have shown the existence and uniqueness of the DFE

and the endemic equilibrium and established their stabilities using threshold conditions

based on the basic reproduction number. In particular, Rouché’s Theorem helps us to

prove the local stability of the endemic equilibrium, and the use of a Lyapunov function

allows us to establish its global stability under some additional constraint. Our numerical

simulation results are consistent with these analytical findings. The disease transmission

at the population (or macroscopic) level impacts the pathogen load at the individual (or

microscopic) level, whereas the variation of the pathogen concentrations inside the human

body shapes the classifications of hosts (susceptible, infected, and recovered) and their

interactions outside the human body. This study could be a starting point for establishing

a comprehensive, adaptive modeling framework for cholera with a strong and consistent

connection between the within-host and between-host dynamics.
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CHAPTER 4

CHOLERA MODEL INCORPORATING MEDICAL RESOURCES

4.1 Model formulation and analysis

We use the following differential equations to describe the impact of available

medical resources on cholera transmission:

dS

dt
=µN − β1(M)SI − β2(M)S

B

B +K
− µS,

dI

dt
= β1(M)SI + β2(M)S

B

B +K
− (γ + µ)I,

dR

dt
= γI − µR,

dB

dt
= ξ(M)I − δB,

dM

dt
= − Γ + ηI + λ(M).

(4.1.1)

Here S, I, and R are the the numbers of susceptible, infected, and recovered individuals,

respectively, and B is the concentration of the pathogenic vibrios in the environment.

Meanwhile, M denotes the strength (or, availability) of related medical resources and

facilities, normalized to 0 ≤M ≤ 1; these could include, in a broad (and abstract) sense,

medicines, health centers, sanitation systems, etc. The parameter µ is the natural birth

and death rate for the human hosts, K is the half saturation concentration of the vibrios,

γ is the rate of recovery from cholera infection, and δ is the removal rate of vibrios from

the environment. We neglect the disease induced death rate in our model, since the

mortality rate for cholera is generally lower than 1% [66]; in particular, the overall case

fatality rate for the Yemen cholera outbreak from April 2017 to May 2018 is 0.21% [70].

The parameter Γ represents the outflux rate of the medical resources due to
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socioeconomic factors such as conflicts, wars, and economic collapse. Meanwhile, the

availability of medical resources is stimulated by the disease prevalence at a rate η (for

example, through international assistance from WHO, CDC, UNICEF, etc.). We addi-

tionally assume that its self growth is described by a function λ(M), which is introduced

to ensure that a positive number of medical facilities and infrastructures are available

at any time, as a minimal requirement of public health. The parameters β1 and β2 are

the direct (or, human-to-human) and indirect (or, environment-to-human) transmission

rates, respectively, and ξ is the rate of human contribution (e.g., through shedding) to

the environmental vibrios. We assume that β1 , β2 and ξ all explicitly depend on M

and increase while M decays, reflecting the impact of the collapsing public infrastructure

on cholera transmission and spread. Specifically, we make the following assumptions on

these three parameters:

(H1) β1(M), β2(M), ξ(M) ∈ C1[0, 1] and are all positive;

(H2) β′1(M) ≤ 0, β′2(M) ≤ 0, ξ′(M) ≤ 0.

We also assume that the function λ(M) satisfies:

(H3) λ(M) ∈ C1[0, 1] and λ′(M) < 0;

(H4) λ(0) > Γ > ηN + λ(1).

The condition (H3) states that when the available medical resource (M) increases, its

self-growth rate would decrease. The condition (H4) is introduced to ensure that M

remains in the range [0, 1].

4.1.1 Basic reproduction number

We continue to use the basic reproduction number in the analysis of our model

(4.1.1). Let us first determine R0 by the standard next generation matrix technique.

Note that λ(M) is invertible since λ′(M) < 0. The model (4.1.1) has a unique disease-
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free equilibrium (DFE) at

E0 = (S0, I0, R0, B0,M0) =
(
N, 0, 0, 0, λ−1(Γ)

)
. (4.1.2)

The infection components in this model are I and B. We find that the new infection

matrix F and the transition matrix V are given by

F =

β1(M0)N β2(M0)N/K

0 0

 and V =

 γ + µ 0

−ξ(M0) δ

 . (4.1.3)

It follows that the next generation matrix is given by

FV −1 =

β1(M0)N
γ+µ

+ β2(M0)ξ(M0)N
δK(γ+µ)

β2(M0)N
δK

0 0

 . (4.1.4)

The basic reproduction number of model (4.1.1) is then defined as the spectral radius of

the matrix FV −1, and we find that

R0 = ρ(FV −1) =
β1(M0)N

γ + µ
+
β2(M0)ξ(M0)N

δK(γ + µ)
=: R01 +R02 , (4.1.5)

which provides a quantification of the disease risk during a cholera outbreak. The first

term R01 comes from the direct transmission route, and the second term R02 represents

the contribution from the indirect transmission route.

4.1.2 Equilibria analysis

We now analyze the equilibria of the model (4.1.1) which will provide essential

information regarding the transmission dynamics of the disease. Let (S, I, R,B,M) be
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an equilibrium of model (4.1.1), which satisfies the following equations:

µN − β1(M)SI − β2(M)S
B

B +K
− µS = 0,

β1(M)SI + β2(M)S
B

B +K
− (γ + µ)I = 0,

γI − µR = 0,

ξ(M)I − δB = 0,

− Γ + ηI + λ(M) = 0.

(4.1.6)

Solving (4.1.6) yields

S =
(γ + µ)I

β1(M)I + β2(M)B/(B +K)
,

M =λ−1(Γ− ηI),

R =
γ

µ
I,

B =
ξ(M)

δ
I.

(4.1.7)

Note that Γ− ηI > 0 based on the condition (H4). It follows from S + I + R = N that

the third equation of (4.1.7) implies

S = N − aI =: φ(I) with a = 1 + γ/µ. (4.1.8)

Meanwhile, in view of the first equation of (4.1.7), we obtain

S =
γ + µ

h(I)
=: ψ(I), (4.1.9)

where

h(I) = β1(χ(I)) +
β2(χ(I)) ξ(χ(I))

ξ(χ(I)) I + δK
with χ(I) = λ−1(Γ− ηI). (4.1.10)

55



Consider curves S = φ(I) and S = ψ(I). In particular, any intersection of these two

curves in R2
+ determines a non-DFE equilibrium. Note that

h′(I) =β′1(χ(I))χ′(I) +
β′2(χ(I))χ′(I) ξ(χ(I))

ξ(χ(I)) I + δK

+ β2(χ(I))
δKξ′(χ(I))χ′(I)− ξ2(χ(I))

(ξ(χ(I)) I + δK)2
.

(4.1.11)

Using assumption (H2) and the fact χ′(I) = −η/λ′(χ(I)) > 0, we see that h′(I) ≤ 0.

This implies that ψ(I) is an increasing function. In contrast, φ(I) is strictly decreasing.

Additionally, one can easily verify that ψ(0) = N/R0, φ(0) = N , ψ(N/a) > 0 and

φ(N/a) = 0. Hence, we conclude:

(1) If R0 > 1, these two curves have a unique intersection lying in the interior of R2
+,

due to ψ(0) < φ(0) and ψ(N/a) > φ(N/a). Furthermore, at this intersection point,

equation (4.1.7) yields M,R,B > 0 (since I > 0).

(2) If R0 ≤ 1, the two curves have no intersection in the interior of R2
+ as ψ(0) ≥ φ(0).

Therefore, by equation (4.1.7), we find that the model (4.1.1) admits a unique equilibrium,

the DFE, if R0 ≤ 1; and it admits two equilibria, the DFE and an endemic equilibrium

(EE), if R0 > 1.

In what follows, we perform a study on the global stability of the DFE. By a

simple comparison principle, we find that 0 ≤ B ≤ Bmax and M0 ≤ M ≤ 1, where

Bmax = ξ(0)N/δ. Thus, it leads to a biological feasible domain

Ω = {(S, I, R,B,M) ∈ R5
+ : S + I +R = N, 0 ≤ B ≤ Bmax, M0 ≤M ≤ 1}.

Theorem 11. The following statements hold for the model (4.1.1).

(1) If R0 ≤ 1, the DFE of the model (4.1.1) is globally asymptotically stable in Ω.

(2) If R0 > 1, the DFE of the model (4.1.1) is unstable and there exists a unique

endemic equilibrium. Moreover, the disease is uniformly persistent in the interior

of Ω, denoted by Ω̊; namely, lim inf
t→∞

(I(t), B(t)) > (c, c) for some c > 0.
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Proof. Let x = (I, B)T . One can verify that

dx

dt
≤ (F − V )x,

where the matrices F and V are given in equation (4.1.3). Take

u = (β1(M0)N, β2(M0)N/K).

It then follows from the fact R0 = ρ(FV −1) = ρ(V −1F ) that u is a left eigenvector

associated with the eigenvalue R0 of the matrix V −1F ; i.e., uV −1F = R0u. Let us

consider the Lyapunov function

L = uV −1x.

Differentiating L along the solutions of (4.1.1), we have

L′ = uV −1x′ ≤ uV −1(F − V )x = u(R0 − 1)x. (4.1.12)

Case 1: R0 < 1. The equality L′ = 0 implies that ux = 0. This leads to

I = B = 0 by noting the positive components of u. Hence, when R0 < 1, equations of

(4.1.6) yield S = S0, M = M0 and I = R = B = 0. Therefore, the invariant set on which

L′ = 0 contains only one point which is the DFE.

Case 2: R0 = 1. The equality L′ = 0 implies that β1(M)SI = β1(M0)NI,

β2(M)SB/(B + K) = β2(M0)NB/K and ξ(M)I = ξ(M0)I. Thus, either I = B = 0, or

B = 0, S = N and β1(M) = β1(M0) and ξ(M) = ξ(M0) hold. The former can proceed

as above. Suppose the latter holds, then dB
dt

= ξ(M)I ≡ 0 which implies I = 0. Once

again this would yield the same conclusion as before.

Therefore, in either case, the largest invariant set on which L′ = 0 consists of the

singleton E0 = (N, 0, 0, 0,M0). By LaSalle’s Invariant Principle [34], the DFE is globally

asymptotically stable in Ω if R0 ≤ 1.

In contrast, if R0 > 1, then it follows from the continuity of vector fields that
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L′ > 0 in a neighborhood of the DFE in Ω̊. Thus the DFE is unstable by the Lyapunov

stability theory. The last part can be proved by the persistent theory [51] that is similar

to the proof of Theorem 2.5 in Gao and Ruan [24].

In addition, we have carried out an analysis on the global asymptotic stability

of the endemic equilibrium. We remark that, in general, this would be a nontrivial task

for an epidemic system of dimension higher than two. Our model (4.1.1) is essentially

four-dimensional, after we remove the equation for R. We have managed to conduct

the endemic stability analysis using the geometric approach based on the third additive

compound matrix [37]. We briefly describe this method in the following.

The third additive compound matrix for a 4× 4 matrix A = (aij) is defined as

A[3] =



a11 + a22 + a33 a34 −a24 a14

a43 a11 + a22 + a44 a23 −a13

−a42 a32 a11 + a33 + a44 a12

a41 −a31 a21 a22 + a33 + a44


.

Now consider a dynamical system

dX

dt
= F (X), (4.1.13)

where F : D 7→ Rn is a C1 function and where D ⊂ Rn is a simply connected open set.

Let X(t,X0) denote the solution of (4.1.13) with the initial condition X(0) = X0. We

make two assumptions.

(a1) There exists a compact absorbing set K ⊂ D;

(a2) The system (4.1.13) has a unique equilibrium point X∗ in D.

The linearized system of equation (4.1.13) is

Y ′ = J(X(t,X0))Y, (4.1.14)
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and the associated third compound system is

Z ′ = J [3](X(t,X0))Z , (4.1.15)

where J [3] is the third compound matrix of the Jacobian J for equation (4.1.13).

Theorem 12. Assume that (a1), (a2) hold and there are a Lyapunov function V (X,Z), a

function κ(t), and positive constants c, k, and C such that

(i) c|Z| ≤ V (X,Z) ≤ C|Z|, c ≤ κ(t) ≤ C;

(ii) V ′ ≤ (κ′(t)− k)V ,

where the total derivative V ′ is taken along the direction of (4.1.15). Then the interior

equilibrium X∗ of system (4.1.13) is globally asymptotically stable.

Proof. If κ(t) is a constant, this is the case covered by Corollary 3.2 in [37]. For a general

differentiable function κ(t), the conclusion follows from a similar proof, since the modified

Lyapunov function Ṽ = V (X,Z)/κ(t) satisfies all the conditions to establish Corollary

3.2 in [37].

We now prove the main result in this section; i.e., the global stability of the

endemic equilibrium, using the geometric approach described above. To simplify our

notations, we will adopt the abbreviations

β1 = β1(M), β2 = β2(M), ξ = ξ(M), λ = λ(M).

Furthermore, we will assume that each of these four functions is subject to saturation

effects, a common assumption for disease-related rates, mathematically characterized by

a non-positive second derivative.

Theorem 13. If R0 > 1 and the following inequalities hold for all M ∈ [0, 1]

β′′1 , β
′′
2 , ξ
′′, λ′′ ≤ 0 and β1 ≤

µ

N
, (4.1.16)
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then the unique endemic equilibrium of the system (4.1.1) is globally asymptotically stable

in Ω̊.

Proof. It is clear that the equation for R can be decoupled from the system (4.1.1). As

a result, we obtain a four-dimensional system associated with S, I, B, and M , for which

the Jacobian matrix is given by

J =



−β1I − β2B
B+K

− µ −β1S −β2SK
(B+K)2

−β′1SI −
β′2SB

B+K

β1I + β2B
B+k

β1S − (γ + µ) β2SK
(B+K)2

β′1SI +
β′2SB

B+K

0 ξ −δ ξ′I

0 η 0 λ′


.

The third additive compound matrix of J is

J [3] =



a1 ξ′I −β′1SI −
β′2SB

B+K
−β′1SI −

β′2SB

B+K

0 a2
β2SK

(B+K)2
β2SK

(B+K)2

−η ξ a3 −β1S

0 0 β1I + β2B
B+K

a4


,

where

a1 = β1S − β1I −
β2B

B +K
− γ − 2µ− δ,

a2 = β1S − β1I + λ′ − β2B

B +K
− γ − 2µ,

a3 = λ′ − β1I −
β2B

B +K
− µ− δ,

a4 = λ′ + β1S − γ − µ− δ.
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The associated linear compound system is

X ′ = a1X + ξ′IY − (β′1SI +
β′2SB

B +K
)Z −

(
β′1SI +

β′2SB

B +K

)
W,

Y ′ = a2Y +
β2SK

(B +K)2
Z +

β2SK

(B +K)2
W,

Z ′ = −ηX + ξY + a3Z − β1SW,

W ′ =

(
β1I +

β2B

B +K

)
Z + a4W.

(4.1.17)

We need to show the uniform global stability of the linear compound system (4.1.17). To

this end, we choose an associated Lyapunov function

V (t,X, Y, Z,W ) = max (V1, V2, V3),

where

V1 = M |X|, V2 = B|Y |, V3 =


I|Z +W |, ZW ≥ 0,

max (I|Z|, I|W |), ZW < 0.

It is easy to see that the following estimate holds

I|Z +W | ≤ V3 ≤ V, (Z, W ) ∈ R2. (4.1.18)

Based on the uniform persistence of the system, we see that there exist positive constants

c1 and c2 such that

c1(|X|+ |Y |+ |Z|+ |W |) ≤ V ≤ c2(|X|+ |Y |+ |X|+ |W |). (4.1.19)

Meanwhile, note that β1, β2 > 0 for M ∈ [0, 1], we can choose a small positive constant

k such that

β1I +
β2B

B +K
, γ, µ ≥ k. (4.1.20)
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Other than that, we have the following inequalities by (4.1.16):

β1S ≤ µ, − ξ′M ≤ ξ, − β′2M ≤ β2 ,

λ′ ≤ λ− λ(0)

M
≤ λ− Γ

M
≤ M ′

M
.

(4.1.21)

Now, we can estimate the total derivative of V along the trajectory of the compound

system (4.1.17) by inequalities (4.1.20) and (4.1.21). We need to discuss the following

cases.

Case 1: V = V1. Then B|Y | ≤M |X|, I|Z +W | ≤M |X|. We have

D+V = M ′|X|+MD+|X|

≤M ′|X|+M

(
a1|X| − ξ′I|Y | −

(
β′1SI +

β′2SB

B +K

)
|Z +W |

)
≤
(
M ′

M
+ a1 −

ξ′MI

B
− β′2MSB

(B +K)I
− β′1MS

)
V

≤
(
M ′

M
+ 2β1S +

β2SB

(B +K)I
− γ − 2µ+

ξI

B
− δ −

(
β1I +

β2B

B +K

))
V

≤
(
M ′

M
+
I ′

I
+
B′

B
− k
)
V. (4.1.22)

Case 2: V = V2. Then I|Z +W | ≤ B|Y |, and

D+V = B′|Y |+BD+|Y |

≤ B′|Y |+B

(
a2|Y |+

β2SK

(B +K)2
|Z +W |

)
≤
(
B′

B
+ β1S +

β2SBK

(B +K)2I
− γ − 2µ+ λ′ −

(
β1I +

β2B

B +K

)
−
)
V

≤
(
B′

B
+
I ′

I
+
M ′

M
− k
)
V. (4.1.23)
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Case 3-a: V = I|Z +W |. Then M |X|, B|Y | ≤ I|Z +W |, and

D+V = I ′|Z +W |+ ID+|Z +W |

≤ I ′|Z +W |+ I(η|X|+ ξ|Y |+ (λ′ − µ− δ)|Z +W | − γ|W |)

≤
(
I ′

I
+
ξI

B
− δ +

ηI

M
+ λ′ − µ

)
V

≤
(
I ′

I
+
B′

B
+
λ− Γ + ηI

M
− µ

)
V

≤
(
I ′

I
+
B′

B
+
M ′

M
− k
)
V. (4.1.24)

Case 3-b: V = I|Z|. Then |W | ≤ |Z|,M |X|, B|Y | ≤ I|Z|, and

D+V = I ′|Z|+ ID+|Z|

≤ I ′|Z|+ I

(
η|X|+ ξ|Y |+

(
λ′ − β1I −

β2B

B +K
− µ− δ

)
|Z|+ β1S|W |

)
≤
(
I ′

I
+
ξI

B
− δ +

ηI

M
+ λ′ −

(
β1I +

β2B

B +K

)
+ β1S − µ

)
V

≤
(
I ′

I
+
B′

B
+
M ′

M
− k
)
V. (4.1.25)

Case 3-c: V = I|W |. Then

D+V = I ′|W |+ ID+|W |

= I ′|W |+ I

(
−
(
β1I +

β2B

B +K

)
|Z|+ (λ′ + β1S − γ − µ− δ)|W |

)
≤
(
I ′

I
+ λ′ − δ − γ + β1S − µ

)
V

≤
(
I ′

I
+
M ′

M
+
ξI

B
− δ − γ

)
V

≤
(
I ′

I
+
M ′

M
+
B′

B
− k
)
V. (4.1.26)

Now, let κ(t) = ln(IBM). Then it follows from (4.1.22) to (4.1.26) that the following

inequality holds

D+|V | ≤ (κ(t)′ − k)V. (4.1.27)
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In view of the uniform persistence, we can actually choose c1 and c2 from (4.1.19) such

that

c1 ≤ κ(t) ≤ c2, (4.1.28)

for sufficiently large t. Therefore, we conclude from (4.1.19), (4.1.27), (4.1.28) and The-

orem 12 that the endemic equilibrium of the system (4.1.1) is globally asymptotically

stable.

Essentially, the stability results in Theorems 11 and 13 establish R0 = 1 as a

forward transcritical bifurcation point, or, a sharp threshold for disease dynamics, and

indicate that reducing R0 to values at or below unity will be sufficient to eradicate the

disease. In other words, the cholera model (4.1.1) exhibits regular threshold dynamics.

4.2 Numerical results

In order to verify our mathematical modeling framework, we apply our model to

study the recent cholera outbreak in Yemen, where heavy conflicts and wars have led

to a collapsed public health system and severe shortage of medical resources. Using our

model, we aim to gain insight into the transmission pattern of this large-scale cholera

outbreak under the impact of limited medical resources.

We utilize the outbreak data in the Yemen Situation Reports published weekly by

WHO [71]. These data sets contain the weekly reported new cases and cumulative cases

for each governorate as well as the entire country. We implement our model and conduct

numerical simulation for an epidemic period slightly over one year, starting from April

2017 (when the cholera epidemic resurged in Yemen and went on to become the worst

cholera outbreak in modern history) and ending in May 2018 (when the cholera epidemic

significantly slowed down already and only a small number of new cases were reported

since then).

We first describe how the values of the model parameters are determined in our

numerical simulation. The entire population in Yemen is about N = 27.5 million as of
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2016 [72]. The average life expectancy in Yemen is about 64 years [67], and so we may

estimate the natural human death rate µ by µ ≈ (64 year)−1 ≈ 0.0003 week−1. Vibrio

cholerae can typically survive in the aquatic environment for about 30 days [42], thus

we calculate the natural death (or, removal) rate of the bacteria by δ ≈ (30 day)−1 ≈

0.233 week−1. An individual with a moderate cholera infection could recover in about 5

days [27], and so we estimate the recovery rate by γ ≈ (5 day)−1 ≈ 1.4 week−1. Based on

the recent WHO survey on Yemen’s health system [69], only 45% of the medical facilities

in Yemen remain fully functional after two years of wars. Then we may roughly estimate

the decay rate of the medical resources by Γ ≈ 0.5 ∗ 0.55 year−1 ≈ 0.00529 week−1.

Additionally, the half saturation rate of Vibrio cholerae is commonly accepted as K ≈

106 cells ·ml−1 [27].

On the other hand, the direct transmission rate β1(M), the indirect transmis-

sion rate β2(M), the average individual shedding rate ξ(M), and the self-growth rate of

medical resources λ(M) all depend on M (where 0 ≤ M ≤ 1) and are more difficult

to calibrate. For simplicity, we consider the following representations of these rates, as

decreasing functions of M :

β1(M) = c1 − d1M, β2(M) = c2 − d2M,

ξ(M) = c3 − d3M, λ(M) = c4 − d4M.

Using the base values from [40] for the cholera transmission rates and individual shed-

ding rate, we set the lower bounds of these parameters as β1(1) = c1 − d1 = 1.099 ×

10−4 week−1 person−1, β2(1) = c2 − d2 = 0.0077 week−1, and ξ(1) = c3 − d3 =

70 cells · ml−1 week−1 person−1. By using these conditions as well as the assumption

(H4), we are left with five independent parameters ci (1 ≤ i ≤ 4) and η, whose values

will then be determined through data fitting.

We conduct data fitting to a number of time series that include the weekly reported

cases at the country level and the individual governorate level, based on the standard

least squires method. We also note that the country of Yemen can be divided into three
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major regions (the Northwest, the Southwest, and the East) which differ from each other

in climatic and geographical conditions [65,73]. The three regions can be roughly defined

as follows:

• East: Longitude + Latitude > 60◦;

• Northwest: Longitude + Latitude < 60◦ & Latitude > 14.5◦;

• Southwest: Longitude + Latitude < 60◦ & Latitude < 14.5◦.

In our numerical simulation, we have chosen one or more governorates from each of the

three regions.

0 10 20 30 40 50 60

Time in weeks

0

2

4

6

8

10

12

Cu
m

ula
tiv

e 
Ch

ole
ra

 C
as

es

×105 Yemen

Figure 4.1

Curve fitting for Yemen from April 2017 to May 2018

We present the parameter values and their confidence intervals in the tables

below (Tables 4.2-4.6) for the cholera data fitting of Yemen and its four governorates: Al

Hudaydah in the Northwest, Taizz in the Southwest, and Al Jawf and Sa’ada in the East.

The 95% confidence intervals listed in these tables imply that the corresponding p-values

are greater than 0.05. They also indicate that the standard deviations are large. This

may be caused by the fact that our sample size is relatively small, as our data fitting is

based on the weekly reported cases from WHO for about 39 weeks in the period from
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April 2017 to May 2018 (there are a number of weeks in this period that WHO did not

report the data).

Table 4.1

The NMSE for the cholera data fitting of Yemen and its four governorates

Yemen Al Hudaydah Taizz Al Jawf Sa’ada
NMSE 0.00615 0.01014 0.00590 0.03430 0.16661
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Figure 4.2

Long-term behavior of the infection in Yemen

Figure 4.1 shows the number of cumulative infections from the WHO reports

and from our numerical simulation, for the entire country of Yemen. The parameters ci

(1 ≤ i ≤ 4) and η are determined from the data fitting; their values and 95% confidence

intervals are shown in Table 4.2. The basic reproduction number is estimated as R0 =

1.344. From Figure 4.1, we observe reasonably good fitting results based on our numerical

simulation (red curve) to the reported data (blue circles). To quantify the goodness of

fit, we have calculated the Normalized Mean Square Error (NMSE), which provides an

estimate of the overall deviation between the predicted and measured values. The NMSE
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in this case is computed by

1

n

n∑
i=1

(yi − xi)2

x̄ȳ
,

where

x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi,

and xi (1 ≤ i ≤ n) are the WHO reported data, yi (1 ≤ i ≤ n) are the fitted data, and n

is the number of data points used. In general, a lower value of NMSE indicates a better

fitting result. The values of the NMSE for the cholera data fitting of Yemen (as well as

four of its governorates) are presented in Table 4.1.

Table 4.2

Parameter values and confidence intervals for Yemen

Parameter Value 95% Confidence Interval
c1 0.000154 [0, 0.000526]
c2 0.007759 [0, 0.05321]
c3 1129.26 [0, 21482.8]
c4 0.005518 [0, 0.797561]
η 0.00000012 [0, 0.00427212]

In Figure 4.1, we see that the the increase of the cumulative cholera cases was very

fast during the first 20 weeks or so (starting from April 27, 2017), but gradually slowed

down afterwards (ending in May 2018). Based on the data fitting result, we are able to

evaluate the basic reproduction number from equation (4.1.5). We find that R0 = 1.344,

consistent with our prediction of a cholera epidemic when R0 > 1. Moreover, Figure

4.2 is a numerical simulation for the number of cholera infections in Yemen, based on

parameter values from data fitting, over a large time frame. It shows the long-term

behavior of the infection (or, prevalence) curve which approaches a positive endemic

state (i.e., the endemic equilibrium) over time, an evidence for the global stability of the

endemic equilibrium when R0 > 1, as predicted by Theorem 13.

In order to conduct a deeper investigation into the transmission dynamics of this

cholera outbreak, we have also carried out numerical simulation and data fitting for a
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Figure 4.3

Curve fittings for Al Hudaydah and Taizz

number of individual governorates in Yemen. Figures 4.3 and 4.4 show some typical re-

sults, where one governorate is chosen from each of the Northwest and Southwest regions,

and two chosen from the East region. The parameter values for ci (1 ≤ i ≤ 4) and η

are again determined through data fitting in each scenario; see Tables 4.3 - 4.6 for their

values and confidence intervals. We also calculate the values of M0,R01,R02, and R0,

which are provided in Table 4.7. We observe that Al Hudaydah in the Northwest has

the highest cumulative infection cases among the four governorates, followed by Taizz in

the Southwest, and the lowest are Al Jawf and Sa’ada in the East. Correspondingly, the

value of the basic reproduction number R0 (evaluated based on the data fitting result for

each governorate) is the highest for Al Hudaydah, and the lowest for Al Jawf and Sa’ada,

indicating the different levels of disease risk in these places. More specifically, the num-

bers of cumulative cases in Al Jawf and Sa’ada are about one order lower than those in Al

Hudaydah and Taizz. For each of the two governorates in the East, the reported number

of cumulative cases remains pretty flat during the first 10 weeks or so, indicating that

the onset of the major cholera outbreak in the East region lags behind, and is possibly

caused by, that in the Northwest and Southwest regions. Meanwhile, when t ≥ 30 weeks,

the reported cumulative cases in Al Jawf and Sa’ada essentially level off, a strong indica-

tion that the cholera epidemic has been contained in these places after about 30 weeks.

As a result, the reported cumulative cases in each of these two governorates in the East
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(especially Sa’ada) show an approximate ‘S’ shape. These factors contribute to the fact

that our least squares data fitting results for the eastern governorates (especially Sa’ada)

are not as good as those for the northwestern and southwestern governorates. Indeed,

Table 4.1 shows the values of the NMSE for each case, which quantifies the goodness of

fitting, and we clearly observe that the NMSE value for Sa’ada is the highest, followed

by that for Al Jawf, and those for Al Hudaydah and Taizz are the lowest.

Table 4.3

Parameter values and confidence intervals for Al Hudaydah

Parameter Value 95% Confidence Interval
c1 0.000177 [0, 0.000513]
c2 0.00905 [0, 0.06278]
c3 716.95 [0, 23892.8]
c4 0.007175 [0, 1.030079]
η 0.00000018 [0, 0.00540949]

Table 4.4

Parameter values and confidence intervals for Taizz

Parameter Value 95% Confidence Interval
c1 0.000194 [0, 0.000714]
c2 0.00619 [0, 0.04580]
c3 2942.27 [0, 33807.6]
c4 0.013275 [0, 0.754684]
η 0.00000029 [0, 0.00290991]

Based on the parameters estimated in each scenario, we have calculated the

two parts R01 and R02 in equation (4.1.5), which represent the contribution from the

direct and indirect transmission routes, respectively, to the overall disease risk. We

observe that the ratio of R01/R02 is high for the two governorates in the Northwest

and Southwest, showing that the direct transmission route plays the dominant role in
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Curve fittings for Al Jawf and Sa’ada

shaping the transmission pattern in these places. Particularly, for Al Hudaydah in the

Northwest, the value of R01 is almost 8 times of that of R02 . On the other hand, for Al

Jawf and Sa’ada in the East, the values of R01 and R02 are much closer, indicating that

the indirect transmission route plays a more significant role there. A possible explanation

for this difference is that in the country of Yemen, the population density in the Northwest

and Southwest is much higher than that in the East [65, 72], thus the direct, human-to-

human, transmission route may contribute more to the cholera epidemic in the Northwest

and Southwest, but less in the East.
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Figure 4.5

Comparison with two hypothetical scenarios: M = 0 and M = 1
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In addition, we have examined the variation of M in our simulation. We find that

the value of M is generally decreasing throughout the course of the epidemic, indicating

the continuing decline of the available medical resources and deterioration of the public

health system due to the conflicts and wars, despite the stimulation from the on-going

cholera outbreak. Particularly, we have calculated the value of M0 , the level of medical

resources at the disease-free equilibrium, for these four governorates under consideration

(see the caption under each figure). We see that the values of M0 in Al Hudaydah and

Taizz are much higher than those in Al Jawf and Sa’ada, implying that a much higher

level of medical resources is required to attain the disease-free state in the Northwest and

Southwest regions, than that required in the East region. This is possibly caused by the

larger populations (that demand more medical supplies/facilities) and the higher degrees

of outbreak severity (characterized by the high levels of prevalence and accumulated

cases) in the Northwest and Southwest.

Table 4.5

Parameter values and confidence intervals for Al Jawf

Parameter Value 95% Confidence Interval
c1 0.000114 [0, 0.001277]
c2 0.00772 [0, 0.11596]
c3 905.93 [0, 87475.7]
c4 0.006558 [0, 1.811938]
η 0.00033287 [0, 0.04647364]

To further demonstrate the impact of the available medical resources, which

interact with the disease transmission dynamics and vary with time, on the Yemen cholera

outbreak, we consider two extreme cases with fixed M : M = 0 (no resources available

throughout the epidemic) andM = 1 (100% resources available throughout the epidemic).

In each of these two scenarios, the disease transmission rates β1(M) and β2(M), and the

rate of human contribution to the bacterial growth, ξ(M), are all reduced to constants;

i.e., independent of M . When M = 0, the host transmission and pathogen growth rates
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Table 4.6

Parameter values and confidence intervals for Sa’ada

Parameter Value 95% Confidence Interval
c1 0.000085 [0, 0.003875]
c2 0.00709 [0, 0.25926]
c3 1903.02 [0, 339665.7]
c4 0.005915 [0, 4.052557]
η 0.00040432 [0, 0.10256739]

Table 4.7

The values of M0,R01,R02, and R0 in four governorates

Al Hudaydah Taizz Al Jawf Sa’ada
M0 0.262 0.600 0.032 0.014
R01 1.136 0.914 0.814 0.606
R02 0.146 0.218 0.208 0.406
R0 1.282 1.132 1.022 1.012

are fixed at their maximum values, so that higher disease prevalence and severity are

expected. When M = 1, these transmission and growth rates remain at their minimum

values for the entire course, which would lead to a less severe epidemic. Figure 4.5 plots

the numbers of infected human hosts in Yemen for M = 0 and M = 1, and compare those

to the scenario emphasized in our model where M is a variable with respect to the time.

An implication of these results is that without considering the impact of the dynamic,

time-dependent medical resources, we might either over-estimate or under-estimate the

disease risk.

4.3 Discussion

Our model includes both the human-to-human (direct) and environment-to-human

(indirect) transmission pathways. In particular, we have incorporated the strength of the

medical resources as a key component in the model, on which the transmission rates
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explicitly depend. Our model thus represents the interaction among the human hosts

(susceptible, infectious, and recovered), the environmental pathogen, and the available

medical resources, which shapes the transmission pattern of a cholera epidemic. Moreover,

we have carefully analyzed the dynamical properties of our model. Particularly, using the

geometric approach based on the third compound matrix, we are able to establish the

global asymptotic stability of the endemic equilibrium for our model (which essentially

constitutes a four-dimensional system). Our analytical results show that under this model

setting, cholera transmission follows regular threshold dynamics that are characterized

by the basic reproduction number R0 ; i.e., the disease will be eradicated when R0 ≤ 1

and will be persistent when R0 > 1.

In addition, our model was applied to the simulation of the recent cholera outbreak

in Yemen, as a means to demonstrate the application of our model and to verify our

analytical predictions. We fit the model parameters using the realistic data published by

WHO for both the whole country level and individual governorate level, with a few typical

governorates from the three major regions of Yemen (the Northwest, the Southwest, and

the East). The findings from our numerical simulation and data fitting show significant

differences of transmission structures among the three regions; these are reflected by the

degrees of outbreak severity, disease risk quantifications, relative roles played by the direct

and indirect transmission routes, and demand levels of medical resources. The results

help us to better understand the complex, and heterogeneous, disease dynamics involved

in this extremely severe and long-lasting cholera epidemic.

The Yemen cholera outbreak provides a realistic case study for this model, as the

high prevalence and severity of this cholera epidemic are widely believed to stem from

the collapsed health system and limited medical resources in this country. We obtain

reasonably good results in fitting our model to the reported cholera data. Moreover, we

find that different degrees of epidemic severity are linked to different geographical regions,

which in term leads to different levels of demands for necessary medical resources in order

to reach a disease-free state. These findings indicate that cholera prevention/intervention

efforts should be implemented strategically with respect to different locations.
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CHAPTER 5

CONCLUSION

Our first work in Chapter 2 emphasizes the importance of incorporating the

intrinsic bacteria dynamics into mathematical modeling of cholera and the necessity of

addressing different types of growth dynamics for different bacteria. In the meantime,

our mathematical modeling results could offer useful guidelines to biologists/ecologists

with interest in cholera epidemiology and public health professionals in the design of

experiments, in the collection of data, and in the efforts of controlling cholera outbreaks.

Then, we have presented a new deterministic modeling framework to link the

between-host and within-host dynamics of cholera. The major innovation of our work

is the representation of each individual host in a separate manner which allows natu-

ral incorporation of host heterogeneities into the within-host dynamics, yet keeping the

model mathematically and computationally tractable. Although this model allows the

incorporation of heterogeneities from different host individuals, the characterization of

the within-host dynamics for each individual is still simple, represented by a single equa-

tion for each. Our future work will seek to improve it by incorporating the interactions

among the vibrios, cholera toxin phages, and the immune response, so as to gain a deeper

understanding of the complex processes of pathogen evolution inside the human body.

In the end, we have formulated a mathematical model to investigate cholera

transmission under the impact of limited medical resources. Our work puts an emphasis

on the availability of medical resources and its contribution to the overall transmission

pattern of cholera. It is well known that the transmission and spread of cholera involve

complicated biological, environmental, and socio-economic processes, and the underlying

mechanism for a cholera outbreak may vary from place to place. Particularly for Yemen,
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stronger control measures should be planned, and more attention should be paid to the

reduction of the direct disease transmission, for the Northwest and Southwest regions

than that for the East region. Above all, the improvement of public health infrastructure

and recovery of medical facilities and supplies are of fundamental importance in fighting

future cholera outbreaks.
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