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ABSTRACT

PV systems have intermittency and partial shading challenges which endanger the stabil-

ity and reliability of electric grids. Due to their scalable and modular structure, modular multi-

level converters (MMC) are suitable for grid integration of PV and battery energy storage system

(BESS). This thesis proposes a novel half-bridge submodule MMC (HBMMC) solution to connect

distributed PV systems using distributed maximum power point tracking across the MMC submod-

ules (SM) hence, addressing the partial shading challenge. To address PV power fluctuation due

to intermittency, a novel solution to interconnect PV-BESS to the power grid through full-bridge

submodule MMC (FBMMC) is proposed. In this solution, PV modules are distributed across the

FBMMC SMs and a fully controllable large BESS is connected to the FBMMCDC-link to support

the grid ancillary services. Full control over BESS is achieved by the full control over the MMC

DC-link voltage as a result of the proposed MMC solution.
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CHAPTER 1

INTRODUCTION

1.1 Background

To meet the tremendous increase in energy demand and to reduce the dependence on fossil

fuels for electricity generation due to its harmful environmental impacts, the global trend is to

adopt a sustainable energy portfolio and increase the penetration of distributed energy resources

(DER). In 2016, the electricity generated from renewable energy resources represents 15.6% of the

total electricity generation in the United States [1]. In particular, solar photovoltaic (PV) energy

experienced significant growth over the past decade, where 47% of the newly installed renewable

power capacity globally in 2016 is coming from Solar PV energy [2]. Despite the great economic

and environmental outcomes of this high increase in solar PV penetration, the adoption of PV

energy has some prominent challenges, such as intermittency, uncertainty, performance losses due

to partial shading which necessitate advanced power electronics solutions to capture maximum

solar energy at any time. Moreover, their power output fluctuations may cause substantial voltage

flicker, frequency issues, and power quality issues. All these concerns will eventually endanger

the stability and reliability of the grid [3]. Among several solutions proposed in the literature to

address intermittency challenges of PV systems, integrating battery energy storage system (BESS)

with PV systems turns out to be the most effective approach [3]. BESS are coupled to PV systems

to avoid the transient that could happen when PV systems have a fluctuated power output since it
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can be used to level the PV output during cloud transients. There are numerous power electronic

solutions to integrate both solar PV systems and BESS. However, most of these configurations lead

to performance loss and require multiple power electronics level to integrate these systems.

PV and BESS control systems need to be coordinated very well hence a fully integrated

power electronics solution to control both PV and BESS together is needed. One of these solutions

is to utilize Modular multilevel converters (MMC). MMC is one of the recently-proposed configu-

rations for grid connection of utility-scale PV systems [4–9]. Compared to other power electronic

solutions for PV systems—including central and multi-string inverters—MMC has lower energy

losses, and eliminates the need for a step-up transformer, thus reducing costs and improving the

overall system efficiency [10]. These features have motivated researchers to develop new MMC

configurations for DER integration and design efficient control systems and switching techniques.

1.2 Problem Statement

This thesis will address twomajor challenges of solar PV energy conversion systems, partial

shading and intermittency. These problems are discussed as follows.

i. Partial shading: one of the popular PV system integration topologies which has been practiced

so far for utility-scale PV power systems is the centralized topology. In this topology, PV

modules are connected in series and parallel to form an array of strings. The power from

the array is fed to a single-string inverter controlled by an MPPT algorithm to capture the

maximum solar energy available [11]. However, this topology leads to power losses due to

the centralized MPPT topology, mismatch losses between solar PV modules and reliability

issues due to lack of modularity. There are several proposed MMC-based Module-level power
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electronics (MLPE) solutions as in [4–6] where each submodule (SM) is connected to one PV

module. However, these solutions are very complicated for implementation, some of them

lack circulating current control which is one of the main objectives in MMC control design,

and others suffer from SM voltage balancing perspective. Therefore, there is a need for a new

MMC topology and control design to address these issues.

ii. Intermittency: the fluctuated power output of PV plants poses huge challenges to power grid

stability and reliability. These power oscillations especially in utility-scale PV plants can lead

to power quality degradation and cause power system transients that require significant vari-

ations in the gas turbines output to keep the load and generation the balance [12]. This could

also lead to frequency regulation issues and voltage fluctuations challenges that may require

more operation on transformers load tap changers [13,14]. BESS integration to the PV system

is one of the promising solutions to address this challenge. PV and BESS controls need to be

coordinated efficiently, thus a fully integrated power electronics solution to control both PV

and BESS together is needed. However, the research on the applications of PV-BESS integra-

tion based on MMC is very limited due to their design/control complexities and cost. Such

integration necessities the need for new MMC topology, switching techniques, and control

blocks to achieve this integration since these systems require a variable DC-link voltage.

1.3 Objectives

The major contributions of this thesis are two-folds:

i. The first contribution of this thesis is to tackle the partial shading challenges and its effects

on the PV systems power output. This thesis proposes a novel integrated power electronics
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system which utilizes half-bridge MMC (HBMMC) to connect distributed PV systems using

distributed maximum power point tracking (DMPPT) across theMMC SMs, given the benefits

of DMPPT in solving the partial shading performance issues. An average SM capacitor voltage

control algorithm is proposed in this thesis to ensure all the captured solar energy is transferred

to the AC grid. The proposed solution is scalable from residential systems up to utility-scale

systems, by adjusting power and voltage ratings of MMC components or by increasing the

number of SMs on each arm. The model predictive control (MPC) strategy proposed in [15] is

implemented to get the best switching sequences of SMs to control ac-side current, capacitor

voltage, and circulating current simultaneously.

ii. The second key contribution of the thesis is addressing PV systems intermittent nature. Where

a novel full-bridge MMC (FBMMC) based solution is proposed to interconnect PV-BESS to

the power grid. The proposed FBMMC topology utilizes the fact that full-bridge SM (FBSM)

provides flexibility control over the DC-link and hence this topology is suitable for PV-BESS

grid integration. In this topology, the PV arrays are interfaced with SMs through a DC-DC

converter with an independent MPPT controller to extract the maximum power under partial

shading conditions and provide independent voltage regulation for each SM capacitor. In the

proposed topology, the BESS is connected to DC-link of the FBMMC without the need for

any extra power electronics converter to control the BESS charging or discharging operation.

This work also proposes an AC output Current Control design to ensure that all the PV and

BESS powers are sent to the grid and no extra energy is stored in the FBMMC SM capacitors.

Since the interconnected BESS has a fast response, a novel BESS power control design is
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introduced to support the power grid by following the variable grid power demand-supply the

mismatch between the grid demand load and the distributed PV system power output. Also, the

proposed solution includes power grid frequency control to support the power grid in the event

of frequency deviation by utilizing the BESS to emulate inertia and damping. The proposed

solution improves power grid reliability and flexibility.

1.4 Thesis Outline

The Thesis is organized into six chapters as follows:

1. Chapter 2 provides an overview of the literature onMMC applications for PV and BESS grid

connection.

2. Chapter 3 reviews the fundamental operation of MMC, MMCmathematical model, the main

control design and its modulations techniques.

3. Chapter 4 proposes a novel MMC-Based distributed maximum power point tracking for pho-

tovoltaic (PV) systems.

4. Chapter 5 proposes a novel MMC solution for solar PV-battery energy storage system inte-

gration.

5. Finally, the conclusions and future work suggestions are reported in chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 Power Electronics Converters

Power electronics converters are an integral part of today’s world industries. With the re-

cent research efforts on developing high efficiency switching devices, power electronics converters

are getting more popular with a wide range of applications. They are used in the transportation in-

dustry on the motor drives of electric vehicles, trains and e-bikes, and in the power conversion

system of electric vehicles charging stations [16–19]. In the power system industry, they are used

in flexible AC transmission systems (FACTS) devices and high voltage direct current (HVDC)

systems [20–22] as well as DER grid integration like solar PV systems [4, 5, 23], and battery en-

ergy storage systems integration [24,25]. There are different types of power electronics converters

but they can be categorized into two main types: current source converters (CSC) and voltage

source converters (VSC). The latter is more popular in the applications of DER integration and is

divided into two subcategories of two-level and multilevel converters. Two-level converters have

prominent challenges in grid-connected PV systems applications, as they require large DC-link ca-

pacitors, have power quality issues, and need high switching frequency. They also have voltage

sharing issues when they are connected in series to achieve high power ratings [26,27]. Due to the

limited power rating of this type of VSC, a large number of them are needed for large scale PV

systems, which will make the aforementioned issues even worse.

6



2.2 Modular Multilevel Converters

To address these shortcomings of two-level VSC, power electronics researchers came up

with the other subcategory of VSC which is the multilevel converters. Multilevel converters are

built from a low or medium voltage switching devices to achieve higher voltage and power ratings,

where multiple high level output voltage waveforms to mimics the AC sinusoidal waveform can

be obtained. The main characteristics that make these types of converters stand out include less

filter requirements, higher power quality output, increased efficiency, and the elimination of bulky

connection transformers [28, 29]. The concept of multilevel converters dates back to the early

80’s [30, 31]. There are different topologies and structures including the widely-known neutral

point clamped pulsewidth modulation inverter [31] which was followed by the development of the

flying capacitor [32, 33]. These topologies have seen a tremendous improvement which led to the

introduction of active neutral point clamped (ANPC) multilevel converters [34]. These multilevel

converter solutions had voltage scalability issues which were later solved by the development of

cascaded converters like the cascaded h-bridge (CHB) converter [35].

One of the recently proposed multilevel converter topologies is modular multilevel con-

verter (MMC), which was firstly introduced in [36]. The main features which make MMC outlined

and very popular are its modularity and scalability, which reduce the cost of bulk components and

allow for higher power ratings. Besides, MMC requires a lower switching frequency which trans-

lates to less switching losses and has higher efficiency and reliability [37, 38]. MMC has a wide

range of applications in the medium and high-power applications, but the major application is in
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the high-voltage direct current (HVDC) [22, 36, 39–41]. Recently, there have been extensive re-

search works that employ MMC for integration DER to the AC system grid, such as photovoltaic

systems [4–9,23, 42–45].

2.3 MMC for Grid Integration of Solar Photovoltaic (PV)

Some researchers have investigated the connection of the PV system to the DC-link of the

MMC as in [7–9]. An MMC solution is proposed to integrate series-connected PV arrays to the

power grid, where the PV system is connected to the DC-link of MMC through a DC-DC converter.

This solution does not address the partial shading problem, hence the system is not able to extract

all the received solar PV power. An MMC based HVDC system is proposed in [42] where the PV

system is connected to the MMC DC-link through a two-stage DC-DC converter. In [43], a single

phase MMC solution connected to a DC-DC converter with MPPT control is proposed to interface

the PV system, but the partial shading problems persist using this solution.

New MMC topologies for PV systems connection have been developed for large scale

PV systems to solve the partial shading issues. An MMC-based module-level power electronics

(MLPE) solution is proposed in [4,23] where each submodule (SM) is connected to one or multiple

PV modules. However, in [4] and [23], the control system and the switching algorithm were not

efficient and lead to power quality issues and relatively high total harmonic distortion (THD) in

the output voltage and current waveforms under partial shading conditions. The proposed solution

in [5] uses an extra SM in each arm to compensate for other SM voltage fluctuation in that arm

and achieve voltage balancing between phases but it increases the cost and the switching losses.
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Moreover, it does not have a circulating current control while it is one of the primary objectives in

the MMC control design.

To address the circulating current issue, [6] proposes a similar MMC-based MLPE solu-

tion with circulating current control. The solution, however, suffers from SM voltage balancing

perspective. In PV interconnection to power grid where no energy storage systems are available,

it is required that there should be no mismatch between the energy captured from PV modules

and the energy transferred to the grid. Any power mismatch is stored in or provided by the MMC

SM capacitors that can cause long-term deviation in SM capacitor voltages. Thus, it is physically

impossible to capture maximum solar power and perform demand response at the same time un-

less energy stored in capacitors is compromised. [6] also fails to provide any SM capacitor voltage

results to prove otherwise.

2.4 MMC for Grid Integration of PV-BESS

MMC is also used to couple BESS energy systems to the grid as reported in [24, 25, 46–

50]. A simplified model of modular multilevel converters (MMC) and modular multilevel cascade

converter(MMCC) for BESS integration applications are introduced and compared in [46]. In

[24], three BESS integration topologies, MMCC, MMC with centralized BESS, and MMC with

distributed BESS are reviewed and compared based on their efficiency, cost, module redundancy,

and reliability. A simple modular integration topology for various BESS types within a grid-tie

converter to provide additional system flexibilities is proposed in [47].
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Applications of MMC in utility-scale PV systems and BESS are investigated in [25,48,49].

Also, a three-phase MMC-based BESS is proposed in [25]–where BESS is interfaced with half-

bridge SMs ofMMC through non-isolated DC-DC converters–and a real scaled 500 kW full-bridge

MMCC is developed and investigated in [48]. However, both systems suffer from power losses and

high cost due to the considerable number of semiconductor devices and have complicated BESS

SOC control systems. AnMMC-based BESS integration system which operates without a DC-link

capacitor is introduced in [49], where battery cells are distributed in SMs. The paper is focused on

MMC component design and selection of the manufacturers through cost comparison. In [50], a hy-

brid modular multilevel converter (HMMC) solution is proposed, in which the integrated BESS is

based on a quasi-full bridge with integrated battery (QFBIB) SM that offers a DC fault ride-through

capability. Different MMC-based solutions have been reported in the literature to interconnect PV-

BESS to the power grid. In all these topologies, PV modules and battery cells are distributed and

connected to SMs of MMC [51–54]. For instance, in the utility-scale PV-BESS integration studies,

a single-stage power conversion re-configurable solar converter with Lithium-Ion battery structure

is proposed in [51]. This solution uses fewer power electronics stages and a simple control strategy,

leading to lower system cost, volume, and weight. [52] proposed a PV-BESS MMC system, where

each arm consists of one BESS, and the rest of SMs are connected to PV modules, and the MMC

utilizes the power exchange between its internal power flow control and the embedded BESS to

develop power mismatch elimination strategy. An MMC-based multi-string PV system with in-

tegrated BESS is introduced in [53], which interfaces PV modules and BESS through a separate

DC-DC converter connected to SMs. However, the solution increases the cost, volume, and weight

of the system. To mitigate this issue, a hybrid PV-BESS conversion system is proposed in [54],
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where each SM is interfaced to a PV module and BESS through a dual active bridge converter to

allow bidirectional power flow, and its system performance is compared to the conventional two-

level system without any focus on control system design. While MMC with full-bridge SMs–Also

known as full-bridge MMC (FBMMC)–provides the required voltage flexibility on DC-link volt-

age to interconnect PV systems or BESS [55–58], all the aforementioned studies just utilized SMs

to interconnect these resources and none have considered DC-link as a possible point of connection.

This thesis employs this voltage flexibility to design MMC-based solutions to interconnect these

DERs to the power grid.
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CHAPTER 3

MODULAR MULTILEVEL CONVERTER PRINCIPLES

This chapter covers the fundamentals of modular multilevel converter (MMC) including

both half-bridge submodules and full-bridge submodules. It also presents the MMC operating

principle and the mathematical model of the MMC. It finally reviews model predictive control

modulation as an advanced switching technique.

3.1 MMC Structure

Due to their salient characteristics, Modular multilevel converters are becoming one of the

most recently studied types of voltage source converters (VSC) for medium and high voltage ap-

plications, the main features that made them outline are summarized below:

i. MMC is modular as it offers a modular design based on identical converter cells [59].

ii. It is scalable as any voltage level can be met by connecting the converter cells in series [59].

iii. MMC is redundant because it can produce different output voltage levels with a different com-

bination of switched converter cells, hence redundancy can be realized simply [59].

iv. MMC features low switching power losses and high energy efficiency since it has much lower

switching frequency compared to conventional converters [26].
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v. MMC has lower filtering requirements because of the multilevel output voltage waveform that

has less total harmonic distortion (THD) content [60].

vi. MMC offers fault tolerant operation, where converter cells can be isolated by having switching

states that will isolate the cell during startups or fault conditions. also, in the case of a faulty

cell, it can be bypassed with an appropriated control system, without stopping the load [29,61].

vii. MMC eliminates the need for the bulky DC-link capacitor since the capacitor is distributed

within the converter cells [37].

viii. MMC eliminates the need for transformers since it can reach high voltage levels by scaling the

system and connect more converter cells in series [62].

3.1.1 Half-bridge and Full-bridge submodules

MMC consists of small switching devices to obtain higher voltages with a smaller step size

in the output voltage, which improves the output power quality and reduce filtering requirements.

The basic structure of MMC consists of series connected submodules (SMs). The most popular

types of SMs are half-bridge (HB) SM–also known as chopper cell–and full-bridge (FB) SM–also

known as bridge cell–both are built from a set of semiconductor switches and a capacitor.

The structure of half-bridge submodule (HBSM) is shown in Figure 3.1. The two switches

are switched inversely, when (S1= ON and S2= OFF) the SM is switched ON and its voltage vSM

equals the capacitor voltage vC . On the contrary, when (S1= OFF and S2= ON), the capacitor is

bypassed, SM is switched OFF and its voltage equals zero. HBSM different switching states are

summarized in Table 3.1. The two switches can not be switched ON together at the same time as
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it will cause a short circuit across the capacitor. HBSM is the most common topology of SMs, due

to its structure simplicity, it requires simple control design and it has high efficiency.

2 Switches

Half-Bridge 

Submodule

Capacitor

Figure 3.1 Structure of a half-bridge submodule

Table 3.1 HBSM different switching states

S1 S2 vSM
ON OFF vC
OFF ON 0

Full-bridge submodule (FBSM) demands twice the number of switches for the same voltage

rating in comparison to HBSMs, it consists of four switches (S1, S2, S3 and S4) and a capacitor

as illustrated in Figure 3.2. FBSM can offer bipolar voltages: it is switched ON with a voltage

equal to the voltage on the capacitor vC when (S1= ON, S2= OFF, S3= OFF and S4= ON) and is

switched ON with a voltage equal to negative the capacitor voltage−vC when (S1= OFF, S2= ON,

S3= ON and S4= OFF). Also, FBSM is switched OFF or bypassed in two cases when (S1= ON,
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S2= OFF, S3= ON and S4= OFF) or (S1= OFF, S2= ON, S3= OFF and S4= ON). These switching

states are summarized in Table 3.2.

4 Switches

Full-Bridge 

Submodule

Capacitor

vc

Figure 3.2 Structure of a full-bridge submodule

Table 3.2 FBSM different switching states

S1 S2 S3 S4 vSM
ON OFF OFF ON vC
OFF ON ON OFF −vC
ON OFF ON OFF 0
OFF ON OFF ON 0

3.1.2 MMC operating principles

To obtain a staircase output voltage, SMs are connected in series. Figure 3.3 shows the

schematic diagram of the MMC, which is modelled as a three-phase DC-AC converter connected

to the power grid. In this structure, each converter’s phase is called leg and every leg consists of
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two arms; upper arm and a lower arm. As shown in the schematic, each arm made up of n SMs,

and arm inductors all connected in series. The arm inductor is used to control the arm current, limit

the circulating current, attenuate the high frequency components of the arm current, and limit fault

current.

Figure 3.4 illustrates the circuit diagram of a half-bridge MMC–also known as HBMMC–it

is based on HBSMs that act as a controllable voltage source. Each leg has 2n SMs, but to get the

desired output voltage during normal operation only n switches in each leg are switched ON. The

nominal voltage of each SM is equal to V dc/n, where Vdc is the DC-link nominal voltage. The

MMC can produce n + 1 level voltage at the AC grid side. Therefore, the power quality output

of the MMC can be improved by increasing the number of SMs. The AC side grid is modelled by

three sets of inductors (L), resistors (R), and a voltage source (Vs,j) connected in series, where j

stands for the three phases (a,b and c).

Assuming that the arm inductors voltage drop is neglected in an ideal case, and applying

KVL to each phase loops in the diagram between the DC-link and the AC side we get the following:

vj =
vdc
2

− vup j = a, b, c (3.1)

vj = −vdc
2

+ vlow j = a, b, c (3.2)

By adding (3.1) and (3.2), the phase voltage can be written as:

vj =
vlow − vup

2
j = a, b, c (3.3)
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Figure 3.3 Modular multilevel converter schematic diagram
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Figure 3.4 Modular multilevel converter circuit diagram

3.2 MMCModelling

3.2.1 MMC Circuit Analysis

TheMMC circuit analysis here is based on the circuit diagram in Figure 3.4. TheAC current

of each phase can be described by the corresponding upper-arm (iup) and lower-arm (ilow) currents
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as:

ij = iup,j − ilow,j j = a, b, c (3.4)

The three phases subscripts a,b and c are removed for simplicity. The total current in the upper arm

and the lower arm consist of three components as expressed below:

iup =
i

2
+

idc
3

+ iz (3.5)

ilow = − i

2
+

idc
3

+ iz (3.6)

where the DC, the AC and the circulating currents are denoted by idc, i, and iz respectively.

The circulating current iz circulates between the converter legs and does not influence the

AC side current, but it has negative effects on the SM capacitor voltage ripples, converter losses

and hence the efficiency, and the rating of MMC components. Thus, the circulating current must

be minimized or eliminated.

Based on equations (3.5) and (3.6), the circulating current flowing through each phase leg

can be defined in terms of its corresponding upper arm, lower arm currents and Dc current as:

iz =
iup + ilow

2
− idc

3
(3.7)
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Referring to Figure 3.3, the dynamic behavior of the each phase upper and lower arms can

be described as follows:

vup =
Vdc

2
− l

diup
dt

−Ri− L
di

dt
− vs (3.8)

vlow =
Vdc

2
− l

dilow
dt

+Ri+ L
di

dt
+ vs (3.9)

where vs is the grid voltage.

By adding equation (3.8) to (3.9) we get the following:

vlow + vup = Vdc − 2l
diz
dt

(3.10)

while subtracting the two equations leads to:

vlow − vup = l
di

dt
+ 2Ri+ 2L

di

dt
+ 2vs (3.11)

The dynamic of submodule j capacitor voltage vCj is given by:

C
dvCj

dt
= iupuj ∀j ∈ [1, n] (3.12)

C
dvCj

dt
= ilowuj ∀j ∈ [n+ 1, 2n] (3.13)

where uj = 1 if submodule j is active, and uj = 0 otherwise.
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3.2.2 MMC Discrete Model

The discrete model of MMC used in this thesis was proposed in [15], where Euler’s approx-

imation of the current derivative that represents the next step value for the AC-side current can be

expressed as:

i(t+ Ts) =
1
K′

(
vlow(t+Ts)−vup(t+Ts)

2
− vs(t+ Ts) +

L′

Ts
i(t)

)
(3.14)

where the time step Ts is small sampling time, L′ = L+ l/2 and K ′ = R + L′/Ts. The measured

values at the current time are denoted by time indices (t) and the predicted values for the next

time step are denoted by (t + Ts). The sampling frequency is assumed to be significantly higher

compared to the grid frequency, the predicted value of grid voltage vs(t + Ts) can be replaced by

its measured value vs(t). The predicted capacitor voltage of individual SMs on upper-level and

lower-level arms are equal to:

vCj(t+ Ts) = vCj(t) +

(
Tsiup(t)

C

)
uj(t+ Ts) ∀j∈[1,n] (3.15)

vCj(t+ Ts) = vCj(t) +

(
Tsilow(t)

C

)
uj(t+ Ts) ∀j∈[n+1,2n] (3.16)

Where uj(t+ Ts) is the status of j-th SM.
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Thus, the predicted voltages across upper-level and lower-level arms for the next step are

defined as:

vup(t+ Ts) =
n∑

j=1

vCj(t+ Ts)uj(t+ Ts) (3.17)

vlow(t+ Ts) =
2n∑

j=n+1

vCj(t+ Ts)uj(t+ Ts) (3.18)

and the expected circulating current is expressed as:

iz(t+ Ts) =
Ts

2l
(Vdc − vlow(t+ Ts)− vup(t+ Ts)) + iz(t) (3.19)

3.3 MMC Control and Modulation

3.3.1 MMC Control Background

MMC successful control is very critical to achieve a high efficiency power conversion with

high power quality output waveforms. There are multiple control objectives in the MMC control

but the main goals are, controling the SM capacitor voltage and regulate it, which is vital for a

proper MMC operation, controling the MMC arm currents to govern the MMC output voltage and

current waveforms and finally eliminating the circulating current, which is coming from the instant

voltage difference between each phase upper and lower arms.

The most common MMC control techniques are mostly based on linear controllers, whose

control parameters are complicated to design and tune. Therefore, the control system response and

performance could be affected if these parameters are not optimal. Moreover, the conventional

modulation schemes such as pulse width modulation are utilized to determine the number of SMs
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to be switched ON in each time step. Along with other control blocks are needed to achieve the

MMC control objectives. However, these controllers mostly utilize a PI control which has a lim-

ited dynamic response based on their gains, the used switching frequency, and the type of PWM

modulation scheme [63, 64]. Model predictive control (MPC) is suitable for multi-input-multi-

output (MIMO) systems such as power electronics converter and it is one of the newly researched

modulation techniques, which seems like a promising solution to overcome the overshoot issues of

PI controllers, complex control structures and the PWM modulation shortcomings. MPC will be

discussed in detail in the following section.

3.3.2 Model Predictive Control

Model predictive control (MPC) is a discrete model-based control scheme, which uses the

model of the system along with an optimization model to obtain the predicted values of the control

system variables [63]. MPC has salient features that make it stands out such as simplicity of control

design, it can handle multiple objectives control requirements, and high dynamic performance. The

MPC model here is based on the discrete-time model of MMC, its main control objectives are: to

regulate the SM voltages, to control the output AC current, and to suppress the circulating current.

3.3.2.1 MPC Multi-objective Optimization Problem

To effectively control the MMC, the optimal switching sequence is obtained by using the

model predictive control (MPC) strategy from [15,58, 65], which seeks the following objectives:

i. tracking the ac-side current (i) of all phases to their reference values (iref ),

ii. regulating all the submodules capacitor voltages to their nominal value (VDC/n), and
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iii. eliminating the circulating current (iz) between the converter phase legs.

The MPC multi-objective optimization problem can be expressed as follows:

min
∣∣∣∣vCj

(t+ Ts)−
Vdc

n
)

∣∣∣∣
min |iref − i(t+ Ts)|

min |iz(t+ Ts)|

over: {u1, u2, ..., un}

subject to: (3.14)− (3.19)
2n∑
j=1

uj(t+ Ts) = n (3.20)

Assuming that the ideal value of corresponding variable for the next time step is donated

by (·)∗(t+ Ts), the ideal values implying exact AC current tracking can be represented by:

i∗(t+ Ts) = iref (3.21)

which is can be rewritten based on (3.14) as the following expression:

i∗(t+ Ts) = iref =
1

K ′

(
v∗low(t+ Ts)− v∗up(t+ Ts)

2
− vs(t+ Ts) +

L′

Ts

i(t)

)
(3.22)

From (3.22), the relation between v∗up and v∗low can be expressed as:

v∗low(t+ Ts)− v∗up(t+ Ts) = 2K ′iref (t+ Ts) + 2vs(t)−
2L′

Ts

i(t) (3.23)
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If the predicted circulating current is set to the ideal value zero i∗z(t + Ts) = 0, then from

(3.19) when the variables are replaced by the their ideal values, we get the following:

i∗z(t+ Ts) = 0 =
Ts

2l

(
Vdc − v∗low(t+ Ts)− v∗up(t+ Ts)

)
+ iz(t) (3.24)

v∗low(t+ Ts) + v∗up(t+ Ts) = Vdc +
2l

Ts

iz(t) (3.25)

The anticipated values of upper and lower level voltages of MMC are calculated as:

v∗up(t+ Ts) =

(
Vdc

2
+

l

Ts

iz(t)

)
−
(
K ′iref + vs(t)−

L′

Ts

i(t)

)
(3.26)

v∗low(t+ Ts) =

(
Vdc

2
+

l

Ts

iz(t)

)
+

(
K ′iref + vs(t)−

L′

Ts

i(t)

)
(3.27)

Let∆i = i− iref (t+Ts),∆vlow = v∗low−vlow, and∆vup = v∗up−vup donates the deviation

of the corresponding variables from their ideal values. The deviation of the AC current and the

circulating current from their ideal values are derived as:

∆i =
1

2K ′ (∆vlow(t+ Ts)−∆vup(t+ Ts)) (3.28)

iz(t+ Ts) =
Ts

2l
(∆vlow(t+ Ts) + ∆vup(t+ Ts)) (3.29)

Applying a weighted sum method to the optimization problem, the AC current tracking

and circulating current mitigation objectives with weights w and wz respectively. The following
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multi-objective optimization problem describes the switching algorithm:

min
U

2n∑
j=1

∣∣∣∣vCj
(t+ Ts)−

Vdc

n

∣∣∣∣ (3.30)

min
U

f =



w
2K′ |∆vlow(t+ Ts)−∆vup(t+ Ts)|+

wzTs

2l
|∆vlow(t+ Ts) + ∆vup(t+ Ts)|


(3.31)

subject to: (3.14)− (3.19)

U = [u1, u2, ..., u2n] : uj ∈ {0, 1} ∀j∈[1,2n] (3.32)

Where the first objective (3.30) regulates SM capacitor voltages and the second objective

(3.31) follows the reference values of AC current and circulating currents.

3.3.3 MPC switching algorithm

Based on [15], the optimization problem is solved in two separate steps; submodule sorting

first and then submodule selection.

3.3.3.1 Submodule Sorting

In this step, the SM capacitor voltage regulation objective function (3.30) is solved by sort-

ing SMs effectively where the highest priority is given to the SMs contributing the most in voltage

balancing. It starts by sorting the upper and lower arms SMs based on their expected capacitor volt-

ages. Based on (3.15) the upper arm SMs voltages increase or decrease based on the direction of iup.

For instance, if iup > 0, the capacitor of a switched ON SM will be charged, hence the algorithm
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will select the SMwith least capacitor voltages. Hence, the SMs are sorted based on their capacitor

voltages in the descending order if iup < 0 or in the ascending order if iup ≥ 0. After sorting, the

algorithm define the SMs voltages on the upper arm after sorting as V sort
Cup

= [V sort
C1

, ..., V sort
Cn

] and

the SMs voltages on the lower arm after sorting as V sort
Clow

= [V sort
Cn+1

, ..., V sort
C2n

].

3.3.3.2 Submodule selection

After the SMs are sorted based according to their capacitor voltages in the previous step,

this step first calculates the cumulative sum vectors of the components of V sort
Cup

and V sort
Clow

to get

V sum
Cup

and V sum
Clow

as defined as below.

V sum
Cup

= {αk : k = 0, 1, ..., n} (3.33)

V sum
Clow

= {βk : k = 0, 1, ..., n} (3.34)

where

α0 = β0 = 0

αk = Σk
i=1V

sort
Ci

∀k∈[1,n]

βk = Σn+k
i=n+1V

sort
Ci

∀k∈[1,n]

To minimize the objective function (3.31), the required combination of (α, β) is defines

by th switching algorithm. In [15], it is proven that the optimal solution is a member of the set

{(αi, βj), (αi+1, βj), (αi, βj+1), (αi+1, βj+1)} if v∗up ∈ [αi, αi+1) and v∗low ∈ [βj, βj+1). That is, to
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select the best combination of SMs to switch on, it is sufficient to check the objective function

for these 4 points only instead of for n2 solutions and select the solution outputting the minimum

objective function.

The whole MMC switching control based on MPC can be summarized in a block diagram

similar to the one in [40] as depicted in Figure 3.5 below.

Switching Control

MPC Algorithm

Reference 

Parameters

V
dc
ref

vc
ref

i
abc
ref

MMC

Control

Step 1:

Sorting

Step 2:

Selection

vc(t+Ts) vup
∗ , vlow

∗

Switching

Sequence U

Measurements of

vc, iup,ilow,idc

Measurements of

iup, ilow

VCup
sort

VClow

sort

Figure 3.5 MMC switching control block diagram
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CHAPTER 4

HBMMC BASED DISTRIBUTED MAXIMUM POWER POINT TRACKING FOR PV

SYSTEMS

This chapter covers different grid-connected PV system configurations and then it reviews

MMC-based PV system topologies. In this work, a HFMMC based PV system is proposed to

improve the system performance under partial shading conditions. Then, the proposed topology is

tested for a 7-level HBMMC under different irradiance conditions to validate the effectiveness of

the developed control system. Finally, it reviews the computational expenses of the utilized model

predictive control and presents its computation requirements in several computers with different

processor properties.

4.1 Modular Multilevel Converters for Solar PV Integration

4.1.1 Grid-Connected PV System Configurations

Most of grid-connected PV systems configurations utilize the conventional two-level volt-

age source converters (VSC) for both residential-scale and utility-scale PV systems. However, they

This chapter has been accepted to IEEE PESGMas a conference paper and is to appear on IEEEXplore, a pre-print
version of the accepted paper is published on https://arxiv.org/ in Feb 2020 [66, 67].
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can be classified into five groups, centralized PV configuration, string PV configuration, multi-

string PV configuration, micro-inverter PV configuration and module-level power electronics con-

figuration.

4.1.1.1 Central Configuration

This configuration is the most practiced topology so far. As shown in Figure 4.1, PV mod-

ules are connected in series and parallel to form an array of strings. The power from the array is fed

to single central DC-AC inverter, and subjected to maximum power point tracking (MPPT) control,

which is then inverted and injected to the power grid [11]. This configuration features simplicity

and low cost. However, it has several performance issues since all the PV array relay only on one

MPPT possible voltage, in the events of partial shading it has low conversion efficiency due to

power mismatch losses. Moreover, its based on conventional VSC which has power quality issues

and lack of scalability.
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Figure 4.1 Centralized PV configuration

4.1.1.2 String Configuration

In this configuration each PV string is interfaced to the power grid through a separate as-

signed DC-AC inverter as illustrate in Figure 4.2. Even though this configuration has a better power

conversion performance compared to the centralized configuration still, it has power quality issues

and needs a transformer for grid integration [68].
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4.1.1.3 Multi-string Configuration

As depicted in Figure 4.3, in this topology each PV string is connected to a dedicated DC-

DC converter that has an MPPT algorithm to improve the system performance. Then the total

DC power is injected to the power grid through a central DC-AC inverter. This configuration has

improved performance, however, the MPPT is not fully distributed and the power mismatch issues

persist.
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4.1.1.4 Micro-inverter configuration

Figure 4.4, where each PV module is connected to the power grid through a dedicated

DC/AC converter with MPPT control, hence an independent MPPT can be achieved [68]. Each

PV module output is effectively in parallel, which eliminates the module mismatch power losses.

But the high cost of this system prevent its widespread adoption.
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4.1.1.5 Module Level power Electronics Configuration

This topology was developed to overcome the shortcomings of other PV grid-connected

configurations. As shown in Figure 4.5, it decouples the maximum power point of the individual

modules from the overall MPP of the system by introducing DC-DC converters in each PV module

before inverting, hence it allows for fully independent MPPT.
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Figure 4.5 Module-level power electronics PV configuration

4.1.2 Maximum Power Point Tracking

PV system generated power varies with the surrounding environmental conditions such as

irradiation, temperature and shading conditions. All these factors affect the fluctuations in the

open-circuit voltage and the short circuit current. Moreover, the PV module model has nonlinear

characteristics as shown in Figure 4.6, thus a maximum power point tracking (MPPT) control is

needed to control the voltage to the point where the maximum available power can be ex traced.

[69].

35



Voltage (V)

C
u

rr
en

t 
(A

)
VMPP Voc

IMPP

Isc

MPP

Figure 4.6 PV module IV characteristics curve

Different MPPT algorithms have been developed and reviewed as in [70] such as constant

voltage (CV ), perturb and observe (P&O), current sweep, and incremental conductance (IC).

However, perturb and observe (P&O) is one of the most common algorithms due to its simplicity

and good performance.

The P&O algorithm takes the measurement of both PV voltage V and current I to calculate

the power P1. Then it applies a small perturbation on the voltage in one direction and calculates

the corresponding power P2. It compares the calculated power with the old power, if it is higher

that means the perturbation is in the correct direction; otherwise the direction should be reversed.

Following this way, the maximum power point voltage is located and hence the maximum power

can be extracted [71]. A generic flowchart of P&OMPPT algorithm is shown in Figure 4.7 below.
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Figure 4.7 Flowchart of P&O MPPT algorithm

4.1.3 MMC Based Grid-Connected PV System Configurations

Modular multilevel converters are one of the newly used topologies for PV systems inte-

gration [4–9, 23, 42–45], they have gained huge interest from industry and researchers due to their

salient features, such as modularity, scalability, lower switching frequency, low components rat-

ings, and high efficiency. For PV applications, the PV system could be either connected to the

DC-link of the MMC through as DC-DC converter; and this requires new MMC structure to con-

trol the DC voltage, which will be discussed in Chapter 5 in detail. The other configuration takes

advantage of the system modularity and allows for distributed PV panels installation. In this thesis,

a distributed PV system is proposed to solve the partial shading effects on system performance.

The proposed topology and its control design will be discussed in detail in the following section.
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4.2 HBMMC based Distributed Maximum Power Point Tracking

To address the centralized PV system partial shading challenges, this work proposes a novel

integrated power electronics system that utilizes MMC to connect distributed PV systems using

DMPPT across the MMC SMs, given the benefits of DMPPT in solving the partial shading per-

formance issues. An average SM capacitor voltage control algorithm is proposed in this thesis to

ensure all the captured solar energy is transferred to the AC grid. The model predictive control

(MPC) strategy proposed in [15] is implemented to get the best switching sequences of SMs to

control ac-side current, capacitor voltage, and circulating current simultaneously. The algorithms

are tested against different case studies to demonstrate their performance.

4.2.1 Topology Design

The proposed three-phase MMC solution is shown in Figure 4.8. It consists of two arms

at each phase, where each arm has n SMs. The SMs are HBSMs with two IGBT switches and a

capacitor, each connected to one PV module through a DC optimizer. Each SM voltage is either

zero or its capacitor voltage vci depending on the SM switches states. The MMC is connected

to the three-phase AC system at the point of common coupling (A, B, and C) through a filter with

resistance and inductance ofR andL on each phase. Each arm has an inductor (l) placed for current

control.
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Figure 4.8 Topology of the proposed HBMMC-PV system

The proposed solution is scalable from residential systems size up to utility-scale systems

size, by adjusting power and voltage ratings of MMC components or by increasing the number of

SMs on each arm.

4.2.2 Distributed MPPT Control Design

4.2.2.1 Distributed PV Modules

The proposed MMC-PV topology removes the PV modules strings connected to the MMC

DC side and connects each PV module to the SM DC-link through a DC-DC converter with MPPT
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controller as shown in Figure 4.9. With this topology, in case of partial shading, the MPPT con-

troller of each SM captures the maximum power of its PV module by regulating the voltage across

the PV module on the MMP voltage (Vmmp) at any time. In this work perturb and observe (P&O)

method is implemented to control the SM capacitor voltage to (Vmmp). The voltage control signal

at each time step is defined based on the effect of the previous adjustment on the PV power output

as discussed in Section.4.1.2.

SM PV

PV Module

DC-DC

Boost

Converter

MPPT 

controller

vpv

ipv

d

vpvvc

+

-

Figure 4.9 Half-bridge SM and PV module connection

4.2.2.2 HBMMC AC output Current Control

The reference AC waveforms irefabc are controlled to regulate the average voltage of SM

capacitors on their nominal values to ensure that no extra energy is stored in the SM capacitors.

This control is shown in Figure 4.10 below, it takes the average of measured SM capacitor voltages,

the reference value of the average of SM capacitor voltages and the grid reference current to get
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the AC output current that should be sent to the grid. The instant total power of distributed PV

modules is applied to minimize transients. The PI controller acts upon the average SM capacitor

voltage deviation from its nominal value to generate a control signal in terms of a reference current

on a direct axis irefd . With an addition of a quadrature axis component of current irefq , the generated

dq-component of current ∆irefdq is added to the dq-components of actual output current (iabc). The

total output signal is finally converted into abc-frame and the AC reference current irefabc is fed to the

MMC switching algorithm.
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Figure 4.10 HBMMC AC output current control

4.3 Case Study

4.3.1 Simulation Setup

The proposed topology is simulated on MATLAB and tested to verify the performance of

MMC and the control methods. Since each SM is connected to a PV array, the focus is to control the
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SM capacitor voltage under partial shading conditions and guarantee the tracking of the maximum

power. The system has 36 solar PV Panels individually controlled via a P&O DMPPTmethod, and

their Parameters are listed in Table 4.1. The MMC parameters are given in Table 4.2. The PV array

temperature input is assumed to be 25 C◦ all the time. To study the partial shading, the irradiance

data was provided by the PV Power Research Plant of Tampere University [72]. The simulations

were run for 3 seconds and the system was tested under severe partially cloudy conditions. Given

that theMMC simulated has 6 SMs, the case study is designed such that no partial shading occurs on

SMs 1-4 of all arms; thus, they are exposed to 100% of their associated irradiance. On the contrary,

SMs 5-6 of all arms are shaded and receive 20% of their associated irradiance. The following

discussions are focused on the performance of MMC to realize DMPPT.

Table 4.1 Solar PV Array Data

Parameter value
Module SunPower SPR-305E-WHT-D

Maximum Power 305.226 W
Cells per module 96

Open circuit voltage (Voc) 64.2 V
Short-circuit current (Isc) 5.96 A
Voltage at MPP (VMPP ) 54.7 V
Current at MPP (IMPP ) 5.58 A

Temperature coefficient of Voc -0.27269 %/C◦

Temperature coefficient of Isc 0.061745 %/C◦
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Table 4.2 HBMMC Parameters

Parameter Value
Number of submodules per arm 6

Active power delivery 10.9 kW
Nominal DC voltage VDC 600 V

Sampling period Ts 25 µs
Output current reference Iref 16 A
Submodule capacitor Csm 5000 µF

R 0.003 Ω
L 5 mH
l 5 mH

4.3.2 MMC Control Performance Under Partial Shading Condition

In this case, PV arrays on the MMC SMs receive fluctuating irradiance in normal operation.

Figure 4.11 shows the irradiance and the output power of phase A upper arm SMs, It shows that

the power output of PV modules changes with their own irradiance. The PV arrays on SM 5-6

receive extremely low irradiance (20%) due to partial shading. From Figure 4.11, the power output

of the PV systems connected to these SMs is around 100 Watt since the irradiance never exceeds

250 Watt/m2. Although, these PV modules are partially shaded, the PV modules connected to

SMs 1-4 are not affected and work at their maximum power point. Therefore, the efficiency of the

system is maximized by individually controlling the PV arrays.
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Figure 4.11 Phase A upper arm submodules irradiance and power. The figure is shown in double-
axis format where irradiance and power are shown in different colors (red and blue)
on the left and right axes, respectively

4.3.3 MMCModulation Performance

Other than capturing the maximum power from individual PV modules, it is important to

ensure that MMC operates as expected at all times. Parameters of interest are SM capacitor volt-

ages, AC current waveform, and circulating current.

Figure 4.12 shows capacitor voltages of all SMs on phase A upper and lower arms. The

results show that capacitor voltage waveforms of upper arm SMs match each other at any time
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regardless of partial shading condition. The same behavior is observed for capacitor voltage wave-

forms of lower arm SMs. This proves perfect performance of the SM capacitor voltage balancing

implemented in MPC-based switching algorithm. Moreover, the fact that the average SM capacitor

voltage ofMMC is controlled within a±3%demonstrates that the AC output current control shown

in Figure 4.10 successfully transfers the entire solar energy captured from PV modules to the AC

power grid and no energy is accumulated on SMs of MMC.

Figure 4.12 (a) Phase A upper and lower arms SMs voltage for the whole simulation time 3s, (b)
a zoom on phase A upper and lower arms SMs voltage for 0.1s
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The other objectives of theMPC-based switching algorithm are AC current waveform track-

ing and circulation current mitigation. Despite all the abnormal PV conditions simulated, Fig-

ure 4.13 illustrates that the AC output current of phase A is tracked perfectly during the whole

simulation time. Circulating current of phase A is also minimized around zero throughout the sim-

ulations as depicted in Figure 4.14. Similar results are observed for other phases of MMC but not

shown here to avoid the repetition of similar results.

Figure 4.13 (a) Phase A AC output current tracking for the whole simulation time 3s, (b) a zoom
on Phase A AC output current tracking for 0.1s showing the actual current ia and the
reference current ib
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Figure 4.14 (a) Phase A circulating current for the whole simulation time 3s, (b) a zoom on Phase
A circulating current for 0.1s

4.4 Model Predictive Control Computation Requirements

4.4.1 MPC Computation Background

The conventional MPC algorithm from [39] requires a considerable computation time since

it compares all the feasible switching sequences for theMMC switches in one bridge for their antic-

ipated performance one time-step ahead. While the algorithm computation at any time should not

take more than one time-step. The algorithm needs to check the optimal switching state among all

Cn
2n switching combinations, which will increase significantly as the number of SMs n at each arm

increases. However, the utilized MPC algorithm in this work from [15], cuts down the number of

combinations to 4 possible solutions and then selects the best solution. Even though the number of
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combinations is decreased, the computational burden to solve the SM sorting and selection process

is one of the main challenges of MPC switching. In case the computation process takes more than

a one time step, the algorithm will apply the previous switching sequence to the SMs.

4.4.2 MPC Computation Expenses

To investigate the computational time elapsed to solve the sorting and selection operations

of the MPC optimization problem, we dedicated a computer with good processor properties. The

test was conducted in two different computers with different processor proprieties to observe the

effect on the computation time.

9.38%

88.51%

2.02% 0.05% 0.02% 0.01% 0.01%

Figure 4.15 MPC computation time Statistics in Computer 1

48



The statistics of the first test on computer 1 are illustrated in Figure 4.15, it shows that

99.99% of the switching observations obtained in less 25µs. This means the computation time

took more than one time-step in just 0.01% of the time. Also, it is noticed that the majority of

the switching observation took 5µs or less to get solved. While the statistics of the second test on

computer 2 are shown in Figure 4.16. The results show that 99.99% of the switching observations

obtained in less 25µs. Also, it is shown that 99% of switching observation took 5µs or less to get

solved. This proves the efficiency and reliability of the utilized MPC switching technique.

1.54%

97.53%

0.17% 0.32% 0.39% 0.05% 0.01%

Figure 4.16 MPC computation time Statistics in Computer 2
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CHAPTER 5

FBMMC FOR SOLAR PHOTOVOLTAIC-BATTERY ENERGY STORAGE SYSTEM

INTEGRATION

This chapter reviews the challenges of solar PV integration to the power grid and the role

of battery energy storage system (BESS) in addressing these challenges; covers the application of

BESS in support power grid ancillary services; presents the limitations of conventional HBMMC

in renewable energy integration. In this chapter, a FBMMC-based solution is proposed to integrate

distributed PV modules to the full-bridge SMs and interface a BESS to the MMC DC-link. The

interfaced BESS is used to support the grid ancillary services. A 13-level FBMMC is tested to

validate the performance of the proposed topology and its control systems.

5.1 MMC-Based PV-BESS systems

5.1.1 Background

Renewable energy resources integration to the power grid presents a challenge to power sys-

tem stability and reliability due to its intermittent nature and fluctuated power output [73]. Among

renewable energy resources, solar Photovoltaic energy penetration has increased rapidly during the

past decade and the PV generation increased almost 50 times just between 2008 and 2018. All this

poses concerns over a reliable and efficient operation of the power network. One of the promising

solutions to tackle these concerns, is the integration of BESS to the power system network. This
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solution is getting more attraction in the past few years since BESS costs are projected to decrease

by 10-52% by 2025 [74]. Moreover, BESS has great features such as high energy density and fast

response as they can go from charge to discharge mode in a range of a few milliseconds. Given all

that, BESS is coupled to PV systems to address the intermittency challenges and support the power

grid operation. This chapter proposes a FBMMC solution to integrate PV and BESS to the power

grid using a single converter as described later.

5.1.2 Applications of BESS for Power Grid Support

There are several applications for BESS in power grid support whether in the generation,

transmission, or distribution. These applications have been reviewed and analyzed in [75], some

of them are summarized below:

i. Spinning reserve: due to the fast response of BESS, it can be charged and hold just to be used

in the events of generation failure and prevent power supply interruption.

ii. Commodity storage: the BESS is charged during the off-peak time and then its used in eco-

nomic dispatch during peak times. This includes peak shaving and load leveling.

iii. Frequency control: The BESS is used to support the grid as a reserve generation that can be

used in the events of frequency deviation.

iv. Renewable energy management: in this application, BESS is charged by renewable energy

resources and this energy is used during peak hours.

v. Power quality and reliability: BESS is used to improve the power quality by utilizing it to

avoid voltage flickers and power outages that lasts for a few cycles.
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In this work, the BESS is used to support the grid in two applications, load following, and

frequency control support as discussed later in section 5.2.4.4.

5.1.3 Advantages of FBMMC over HBMMC for DER Integration

Figure 5.1 from [58] depicts the operating regions of both HBMMC and FBMMC. Also, as

explained in [58, 65] and as shown in the Figure 5.1(c), HBMMC requires constant Vdc (=
π√
6
Va)

voltage on the DC side to generate the sinusoidal AC-side RMS voltage of Va. This inflexibility in

the DC-link is the main reason for conventional MMC not being able to be applicable in the grid

integration of DERs, which requires flexibility on the DC side.

However, with the FBMMC, as shown in Figure 5.1(d), FBMMC can provide the flexibility

in the DC-link to generate the output AC side voltage with Va even when there is DC-link voltage

from [−Vdc,+Vdc]. Employing full-bridge SMs (FBSMs), the topology gives the control algorithms

enough flexibility to set the DC-link voltage to any voltage value in [−Vdc, Vdc] while maintaining

the capability of being connected to the same AC grid. Therefore, FBMMC is well suited for the

integration of PV and BESS to the AC power grids.
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Figure 5.1 Configuration and operating region of (a)(c) HBSM (b)(d) FBSM

5.2 System Topology and Modulation Design

5.2.1 System Configuration

This work proposes a novel FBMMC-based solution to interconnect PV-BESS to the power

grid with PV arrays interfaced with SMs and a BESS connected to DC-link. The System configu-

ration of the proposed three-phase MMC PV-BESS is shown in Figure 5.2. It consists of three legs,

represents the system three phases, each phase has 2 arms namely upper and lower arms, where

each arm has n SMs that are connected in series an arm inductor (l), it helps for current control and

DC side faults limiting. The SMs are FBSM, each consists of four IGBT switches and a capacitor
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and connected to one PV module through a DC-DC converter. A high-voltage BESS is connected

to the DC-link capacitor of the MMC. The MMC is connected at the point of common coupling

(A, B, and C) with the AC grid system through a filter with resistance and inductance of R and L

on each phase.
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Figure 5.2 The FBMMC-based PV-BESS configuration

5.2.2 FBMMCMathematical Model

Similar to the mathematical model proposed in [15] for HBMMCs, we develop a discrete-

time model for the MMC system shown in Figure 5.2 in this section.

Figure 5.3 shows the proposed FBSM integrated with PV modules through a DC-DC con-

verter with an MPPT controller. Similar topology–but with half-bridge SM (HBSM) instead of
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FBSM–has been analyzed in chapter4. Unlike a HBSM the voltage across which is either zero or

equal to its capacitor voltage (+vC), there are three options of {0,+vC ,−vC} for voltage across an

FBSM depending on the IGBT switching states.

FBSM PV

PV Module

DC-DC

Boost

Converter

MPPT 

controller

vpv

ipv

d

vpv

Figure 5.3 Full-bridge SM and PV module connection

The anticipated capacitor voltage of individual SMs on upper-level and lower-level arms is

equivalent to:

vCj(t+ Ts) = vCj(t) +
Ts

C

(
uj(t+ Ts)iup(t) +

PPVj

VCj
(t)

)
(5.1)

for any j ∈ [1, n], and

vCj(t+ Ts) = vCj(t) +
Ts

C

(
uj(t+ Ts)ilow(t) +

PPVj

VCj
(t)

)
(5.2)
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for any j ∈ [n+ 1, 2n], where uj(t+ Ts) ∈ {−1, 0,+1} is the status of j-th SM.

Euler’s approximation of the current derivative that represents the AC-side current next step

value can be defined as:

i(t+ Ts) =
1
K′

(
vlow(t+Ts)−vup(t+Ts)

2
− vs(t+ Ts) +

L′

Ts
i(t)

)
(5.3)

where the time step Ts is a small sampling time, L′ = L+ l/2 andK ′ = R+L′/Ts. The measured

values at the current time are denoted by time indices (t) and the predicted values for the next

time step are denoted by (t + Ts). The sampling frequency is assumed to be significantly higher

compared to the grid frequency, the predicted value of grid voltage vs(t + Ts) can be replaced by

its measured value vs(t). Thus, the predicted voltages across upper-level and lower-level arms for

the next step are defined as

vup(t+ Ts) =
n∑

j=1

vCj(t+ Ts)uj(t+ Ts) (5.4)

vlow(t+ Ts) =
2n∑

j=n+1

vCj(t+ Ts)uj(t+ Ts) (5.5)

and circulating current is equal to

iz(t+ Ts) =
Ts

2l
(VBESS − vlow(t+ Ts)− vup(t+ Ts)) + iz(t) (5.6)

where VBESS is the instantaneous voltage across BESS to control BESS charging or discharging

currents.
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5.2.3 FBMMCModulation Design

This section presents the overall switching control design of the proposed MMC system.

5.2.3.1 Model Predictive Control (MPC) Based Modulation

The model predictive control (MPC) strategy employed here is from [15, 40, 41, 76] to de-

termine the best switching sequence to control MMC effectively. At each time-step, the proposed

switching algorithm solves an optimization problem that targets the following three control objec-

tives at the very next time-step.

i. It balances and regulates the submodules capacitor voltages to their nominal value (vCj
=

Vdc/n for any j).

ii. It controls the ac-side current of all phases to their reference values (i = iref ).

iii. It suppresses the circulating currents (iz = 0) between the converter phase legs.

As the optimization problem has to be solved in a matter of micro-seconds to be effective, it

is very crucial to employ a very fast solution algorithm. In this thesis, we first reformulate the opti-

mization problem based on capacitor voltages of individual FBSMs and set up a sorting+selection

algorithm similar to the proposed solution in [15]. Assuming that the exact AC current tracking

and exact circulating current suppression can be expressed as i(t + Ts) = iref and iz(t + Ts) = 0

respectively. The upper and lower level voltages of MMC expected values are calculated as:

v∗up =

(
VBESS

2
+

l

Ts

iz(t)

)
−

(
K ′iref + vs(t)−

L′

Ts

i(t)

)
(5.7)

v∗low =

(
VBESS

2
+

l

Ts

iz(t)

)
+

(
K ′iref + vs(t)−

L′

Ts

i(t)

)
(5.8)
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Where the ideal value of corresponding variable for the next time step is denoted by (·)∗(t+

Ts), let∆i = i− iref (t+Ts),∆vlow = v∗low − vlow, and∆vup = v∗up − vup denotes the deviation of

the corresponding variables from their ideal values. Deviation of the AC current and the circulating

current from their anticipated values are equal to:

∆i =
1

2K ′ (∆vlow(t+ Ts)−∆vup(t+ Ts)) (5.9)

iz(t+ Ts) =
Ts

2l
(∆vlow(t+ Ts) + ∆vup(t+ Ts)) (5.10)

A weighted sum method is applied to the optimization problem, where the AC current

tracking and circulating current suppression objectives are combined with weights w and wz re-

spectively. The multi-objective optimization problem below describes the switching algorithm:

min
U

2n∑
j=1

∣∣∣∣vCj
(t+ Ts)−

Vdc

n

∣∣∣∣ (5.11)

min
U

f =



w
2K′ |∆vlow(t+ Ts)−∆vup(t+ Ts)|+

wzTs

2l
|∆vlow(t+ Ts) + ∆vup(t+ Ts)|


(5.12)

subject to: (5.3)− (5.6)

U = [u1; ...;u2n]

uj ∈ {−1, 0,+1} ∀j∈[1,2n]
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Where (5.11) regulates SM capacitor voltages and (5.12) addresses the reference values of AC

current tracking and circulating currents suppression.

5.2.3.2 SM Sorting

This sorting process here is similar to the one discussed before in chapter3. The objective

function (5.11) is addressed in this step, where the SM are sorted according to their capacitor volt-

age such that the SMs contributing the most in voltage balancing are given the highest priority.

The upper and lower arms SMs are first sorted based on their expected capacitor voltages. iup

direction these SM voltages increase or decrease, the SMs are sorted based on their capacitor volt-

ages in the descending order if iup < 0 or in the ascending order if iup ≥ 0. After sorting, define

V sort
Cup

= [V sort
C1

, ..., V sort
Cn

] and V sort
Clow

= [V sort
Cn+1

, ..., V sort
C2n

] denote SM voltages on upper and lower

arms respectively.

5.2.3.3 SM selection

The FBSM can select any of the three voltage values of {−vc, 0, vc}, which correspond to

switching states of (GSM ∈ {−1, 0, 1}), hence it could have four switching levels (State 1, State 2,

State 3, and State 4), as summarized in Table 5.1.

Table 5.1 Switching states of a FBSM

State GSM g1 g2 g3 g4 vSM
1 1 1 0 0 1 vC
2 0 1 0 1 0 0
3 0 0 1 0 1 0
4 -1 0 1 1 0 −vC
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According to the three-level voltage condition in FBSMwhich results in extended operating

region, MPC algorithms for FBMMC require major modifications, briefly discussed below. For

HBMMC, the number of switched-on SMs is calculated by v∗up divided by a nominal SM capacitor

voltage (vC) and is unique.

In FBMMC, however, the upper and lower arm voltages vup and vlow can be any voltage val-

ues in range [−Vdc,+Vdc] in order to obtain the AC side voltage va ∈ [−Vdc

2
,+Vdc

2
]. Therefore, the

values of both v∗up and v∗low should range in [−Vdc,+Vdc]. This results in more than one combination

of [N+1, N0, N−1] (number of SMs with GSM = +1, GSM = 0, and GSM = −1 respectively) to

achieve v∗up at the upper arm. For instance, if v∗up = +vup, any combination of [N+1, N0, N−1] that

ensures N+1 −N−1 =
v∗up
vup

and N0 = n−N+1 −N−1 is a valid answer. The selection algorithm

selects the solution with the maximum value of N+1 + N−1 as the optimal answer to achieve the

best SM capacitor voltage balancing, among all of the possible solutions.

5.2.4 Control Systems Design for PV-BESS Integration

5.2.4.1 MPPT for Distributed PV Modules

The proposed MMC-PV topology in Figure 5.3 connects each PV module to one FBSM

through a DC-DC converter with anMPPT controller. With this topology, in case of partial shading,

the MPPT controller of each SM captures the maximum power of its PV module by regulating the

voltage across the PVmodule on the maximum power point voltage (Vmpp) at any time. The perturb

and observe (P&O) algorithm is also used here similarly to chapter 4.
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5.2.4.2 FBMM AC output Current Control

To satisfy the second objective of MPC–to regulate SM capacitors voltage to their nominal

values–the reference AC waveforms irefabc must be controlled to ensure that no additional energy is

accumulated in the SM capacitors. Figure 5.4 shows this control, which regulates the the average

voltage of all SM capacitors V c on its reference value V
ref

c via a PI controller. The discharging

power of BESS and instant total power of PVs are applied to minimize transients. The control

signal∆irefdq is added to the d-q components of current measurement to achieve the irefdq . Applying

an inverse park transformation leads to the three-phase AC system reference current irefabc to be fed

into the FBMMC modulation algorithm.
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Figure 5.4 FBMMC AC output Current Control

5.2.4.3 Circulating Current Control

When the upper arm voltage vup and the lower arm voltage vlow have opposite polarity,

any circulating current (iz) value will cause energy transfer between the arms and hence result in
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a voltage difference between them. There are several proposed circulating current control designs

that is used to balance the energy allocation between the upper and lower arms in a phase leg as

reported in [65,77]. The circulating current control design proposed in [65] is applied in this work.

The operating region of vup and vlow of the FBMMC is illustrated in Figure 5.6. When both vup and

vlow share the same polarity as indicated by the first and third quadrants in the operating region, any

applied circulating current will result in voltage drop or rise on all capacitors on both arms. Hence

iz must be regulated to zero in these cases. On the other hand when vup and vlow do not share

the same polarity as indicated by operating in the second and fourth quadrants in the operating

region applying a controlled non-zero circulating current can help in balancing the energy between

arms and transfer energy from the arm with higher average capacitor voltage to the one with lower

average capacitor voltage. Table 5.2 shows how the reference circulating current irefz is expressed

for different cases of vlow − vup, v∗up, and v∗low. For instance, in the first case, when vup is higher

than vlow, while the upper arm voltage is positive and the lower arm voltage is negative. In this

case, applying a negative circulating current transfers energy from the upper arm to the lower arm

to converge average capacitor voltages of both arms.
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The proposed values for irefz in Table 5.2 can be expressed by:

irefz = κ(vlow − vup)
sgn(v∗up)− sgn(v∗low)

2
(5.13)
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Table 5.2 Different Cases of irefz for all operating region

Case v∗up v∗low vup − vlow iz
1 + − + κ(vlow − vup)
2 + − − κ(vlow − vup)
3 − + + −κ(vlow − vup)
4 − + − −κ(vlow − vup)
5 + + ± 0
6 − − ± 0

which is used to modify (3.29) as:

iz(t+ Ts) =
Ts

2l
(∆vlow(t+ Ts) + ∆vup(t+ Ts)) = irefz . (5.14)

Defining the parameter vrefz = irefz
2l
T s
, the optimization problem of the MPC algorithm is

updated to:

min
U

2n∑
j=1

∣∣∣∣vCj
(t+ Ts)−

Vdc

n

∣∣∣∣ (5.15)

min
U

f =



w
2K′ |∆vlow(t+ Ts)−∆vup(t+ Ts)|+

wzTs

2l

∣∣∆vlow(t+ Ts) + ∆vup(t+ Ts)− vrefz

∣∣


(5.16)

subject to: (3.14)− (3.19)

U = [u1, u2, ..., u2n] : uj ∈ {0, 1,−1} ∀j∈[1,2n]. (5.17)
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5.2.4.4 BESS Control for Load Following and Frequency Control

Figure 5.7 shows the control system for the MMC which is responsible for controlling the

output power of the MMC, the charging and discharging of the BESS based on the needs of the

grid power demand and the grid frequency deviation. The power which MMC should exchange

with the grid P ref
g consists of two main parts: (i) the grid demand load following power Pd, (ii)

the frequency control power Pf to support the grid frequency by providing some virtual inertia and

damping. The MMC total power contribution P ref
g can be described as:

P ref
g = Pd + Pf (5.18)

TheMMCoutput powermeasurementPmeas
g should always follow the grid requested power

P ref
g . The error between these two values is applied to a PI controller to get the reference MMC

output power P ∗
g .

Virtual Inertia and Virtual Damping Control: the BESS is used to emulate inertia and damp-

ing by proportionally relating the BESS active power and the system frequency deviation to get

frequency control power contribution Pf . The input to this control circuit is the grid frequency

deviation in per-unit ∆ωpu
g , which deviates from zero only when the system experiences a distur-

bance e.g. due to a load change or a fault. This frequency deviation measurement should be fast

and accurate for efficient inertia emulation and fast response, and it is given by:

∆ωpu
g =

ωg − ωref
g

ωref
g

(5.19)
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where the measured grid frequency is denoted by ωg, ωref
g denotes the reference grid frequency and

the superscripts (·)pu and (·)ref stand for the per-unit and reference values respectively (note that

fpu
g = fg/f ref

g = ωg/ωref
g = ωpu

g ). The frequency control power contribution Pf is expressed as:

Pf = −M

(
d∆ωpu

g

dt

)
−D∆ωpu

g (5.20)

where M is the virtual inertia coefficient, D is the virtual damping coefficient.

BESS Power Control: The BESS supplies the power mismatch between the grid support

power P ∗
g and the total output power of the distributed PV system PPV . Hence, the distributed PV

system output power PPv is subtracted from P ∗
g to get the required power from the BESS P ref

BESS ,
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which is defined as:

P ref
BESS = P ∗

g − PPV (5.21)
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×Pg
∗ PBESS
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Figure 5.8 BESS Power Control for power grid support

Based on the real time BESS power measurement Pmeas
BESS , the PI controller controls the

BESS power and tries to make the mismatch equal to zero and get the required BESS power P ∗
BESS .

Since the BESS voltage VBESS is relatively fixed, the power can be controlled by the current IrefBESS

which is formulated as:

IrefBESS =
P ∗
BESS

VBESS

(5.22)
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5.2.4.5 BESS State of Charge Management

To stay within the BESS power rating limits the PI controller has an output saturation limits

(1,-1 pu). Also, a current limiter is applied for BESS state of charge (SOC) control whose operation

criteria is depicted in the flowchart shown in Figure 5.9. The BESS stops the charging or discharg-

ing operation when the SOC reaches some preset values as maximum and minimum thresholds.

When SOC >= 90%, the minimum BESS current Imin
BESS is set to zero to force BESS

current to be positive (Discharging). The maximum BESS current Imax
BESS is set to the nominal

BESS current InomBESS since the discharge operation is not limited by the SOC. On the other hand,

when the SOC <= 10%, the maximum BESS current Imax
BESS is set to zero to force the BESS

current just to be negative (Charging).The minimum BESS current Imin
BESS is set to negative of the

nominal BESS current −InomBESS to enable any charging operation within the normal limits.

SOC ≥ 90%

SOC ≤ 10%

SOC

No

IBESS
max = IBESS

nom

IBESS
min = 0

yes

IBESS
max = 0

IBESS
min = −IBESS

nom

yes

No

END

Figure 5.9 BESS SOC Control Flowchart
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5.2.4.6 BESS current control

To control the BESS charging/discharging current, the BESS power control block sends the

BESS reference current IrefBESS signal, as shown in Figure 5.10. To regulate the measured BESS

current IBESS to its reference IrefBESS , the error∆IBESS between them is obtained and regulated via

a PI controller. Since IBESS can be controlled by adjusting the DC-link voltage, the measured DC-

link voltage Vdc is regulated to the output of the first PI controller to obtain the reference DC-link

voltage V ref
dc which is then fed to the MMC switching algorithm.

MPC

Switching

V
dc
ref

-
+

+
-

PI

𝑉𝑑𝑐

I
BESS
ref

IBESS

PI

∆IBESS

Figure 5.10 BESS current control

5.3 Case Study

5.3.1 Simulation Setup

The proposed three-phaseMMC PV-BESS system is simulated inMATLAB/Simulink soft-

ware environment. The system is tested to evaluate its performance and demonstrate the effective-

ness of the proposed control methods. The MMC PV-BESS has 6 SMs per arm, where each FBSM

is connected to a PV Module with the same specification to the PV module that used in chapter 4,
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Table 4.1. The system has a total of 36 solar PV Panels individually controlled through a P&O

DMPPT method with overall STC power rating of the distributed PV system is 10.98 kW. The

BESS is connected to the DC-link of the MMC and it has a capacity of 270 Ah, the rest of its

parameters are shown in Table 5.3 and MMC parameters are given in Table 5.4.

The distributed PV system is tested under partial shading conditions in a similar setup to

section 4.3 to demonstrate the system capability to track the maximum power the whole time. In

this setup, all SMs receive time-varying irradiance. We assumed that SMs 1-4 of all arms receive

the same irradiance, and SMs 5-6 of all arms receive 20% of this irradiance. The system is tested

for two case studies. In the first case, we demonstrate the PV-BESS system ability to follow the grid

demand and control. In the second case, we evaluate the system performance in inertia and damping

emulation to provide frequency support to the grid while following the grid power demand.

Table 5.3 BESS Parameters

Parameter Value
Storage energy capacity 270 Ah
Rated energy capacity 108 kWh

Nominal discharge Power 46.95 kW
Nominal BESS voltage 400 V

Nominal discharge current Ibnom 117.4 A
Minimum State of charge SOCmin 10%
Maximum State of charge SOCmax 90%
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Table 5.4 FBMMC Parameters

Parameter Value
Number of submodules per arm 6

Active power delivery 57.9 kW
Nominal DC voltage VDC 600 V

Sampling period Ts 25 µs
Submodule capacitor Csm 20 mF

R 0.003 Ω
L 0.5 mH
l 0.5 mH

5.3.2 Case 1: PV-BESS for Grid Demand Load Following Support

5.3.2.1 FBMMC Power Control

In this case study, the proposed FBMMC is tested for supporting the grid demand load

following and to validate that the MMC output power will always follow that demand load. The

distributed PV system receives a fluctuating irradiance with severe partial shading based on the

data from the case study in Chapter 4. Where it is also validated, that the maximum PV power is

extracted since each PV module is individually controlled. The overall PV output power is shown

in Figure 5.11, where it fluctuates between 1.5− 8kW .

For t ∈ [0s, 0.5s], the grid demand load is 5kW , when the PV output power is higher than

this load, the extra power is stored in the BESS as depicted by the negative power. However, when

the load is higher than the PV output power, the needed power is supplied by discharging the BESS

as indicated by the positive BESS power. For the whole simulation time, the BESS reference power

is updated based on this power mismatch.
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As shown in Figure 5.11, the MMC output power to the grid is following the grid demand

load. All the control systems are enabled after 1 cycle, hence theMMCpower starts to build up after

a short period. There’s a slight overshoot in the MMC output power when the grid load changes,

but the control system tracks the reference power the whole time.

(a)

Figure 5.11 (a) Grid power demand and the MMC output power to the grid and (b) the distributed
PV system output power and the BESS power for grid demand following support

Figure 5.12 shows the BESS operation parameters when it is used to support the grid demand

load following. The BESS started with initial SOC of 50%, this SOC is changing proportionally

with charging/discharging operation. It decreases when the BESS current is positive (discharging
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operation), and the SOC increases when the BESS current is negative (charging operation). How-

ever, there is a slight change in the BESS SOC because the used BESS has a size of 270Ah, with a

rated energy capacity of 108kWh as indicated in Table 5.3. This BESS size is very large compared

to the consumed power during this short simulation time, with a minimal effect on the SOC. The

BESS voltage is fluctuating around 431V to allow the charging or discharging operation based on

the BESS reference power.

Figure 5.12 BESS Parameters when it is used for grid demand following support, (a) BESS state
of charge (SOC), (b) BESS charging/discharging current and (c) the instantaneous
voltage across the BESS
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5.3.2.2 MMC Performance With Circulating Current Control

Figure 5.13 shows that phase A upper and lower arms SMs capacitor voltages with the circu-

lating current applied. They are regulated to their reference value within less than±3% regardless

of the fluctuated PV power output, variable grid demand or the BESS charging or discharging

operation. This proves that the entire captured power from the PV modules and the BESS is trans-

ferred to the grid and the SMs of MMC are not storing any energy. Also, the capacitor voltages

of all SMs of the upper-arm travel together with minimal deviations from each other. The same

is true for those of the lower-arm, too, which demonstrate the effectiveness of the proposed MPC

switching algorithm in capacitor voltage balancing.

Figure 5.13 (a) Phase A upper and lower arms SMs voltage with iz control and (b) a zoom on
phase A upper and lower arms SMs voltage for 0.1s
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Figure 5.14 depicts the AC output current of phase A, as shown this current is balanced and

tracked its reference during the whole simulation time, with a very low total harmonic distortion

even under all operation conditions.

Figure 5.14 (a) Phase A AC output current tracking for the whole simulation time 3s and (b) a
zoom on Phase A AC output current tracking for 0.1s showing the actual current ia
and the reference current ib

Figure 5.15 illustrates the circulating current of phase A which is not forced to be zero all

the time. Its controlled to balance the energy within the arms to make SM capacitor voltages of the

upper- and lower-arms converge.
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Figure 5.15 (a) Phase A circulating Current for the whole simulation time 3s and (b) a zoom on
Phase A circulating Current for 0.1s

5.3.2.3 MMC Performance Without Circulating Current Control

In this case the the circulating current is forced to be zero, which led divergence in the SM

capacitor voltages of upper and lower arms, as shown in Figure 5.16. The upper and lower arms

voltages are not travelling together and diverge since no there is no control over energy allocation

between these arms.
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Figure 5.16 (a) Phase A upper and lower arms SMs voltage without iz control and (b) a zoom on
phase A upper and lower arms SMs voltage for 0.1s

5.3.2.4 BESS SOC Control

The flowchart in Figure 5.9, shows that the BESS charging/discharging operation is limited

within a 10−90% SOC range. To test the control system when the SOC reaches the higher limit of

90%, the BESS initial SOC is set to 89.9996% near the upper limit. Figure 5.17 depicts the BESS

operation parameters for grid demand load following support. Since the initial SOC is close to

the upper SOC operation limit, any charging operation is controlled to zero when the SOC reaches

90%. Those limited operation areas are indicated by the dashed red rectangles at t ∈ [0.8s, 1.4s]
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and t ∈ [2.35s, 3s] as indicated the BESS power is zero in these areas. While on the other hand for

t ∈ [0s, 0.8s] and t ∈ [0s, 0.8s], the BESS has a normal charging/discharging operation depending

on the grid reference power.

Figure 5.17 BESS parameters when it is SOC reached 90%, (a) BESS state of charge (SOC), (b)
BESS charging/discharging current and (c) the BESS charging/discharging power

On the contrary, Figure 5.18 shows the BESS operation parameters when the BESS initial

SOC is close to the lower SOC operation limit. To test this control system the BESS initial SOC is

set to 10%. Hence, any discharging operation is controlled to stop when the SOC reaches 10%. At

t ∈ [0.45s, 0.55s] and t ∈ [1.8s, 2.1s], the BESS current is controlled to zero to prevent discharging
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operation. These limited operation areas are shown by the two dashed rectangles. while during

other times of the simulation the BESS has a normal charging/discharging operation.

Figure 5.18 BESS parameters when it is SOC reached 10%, (a) BESS state of charge (SOC), (b)
BESS charging/discharging current and (c) the BESS charging/discharging power

5.3.3 Case 2: PV-BESS for Load Following and Frequency support

The BESS control is designed to perform frequency control through virtual inertia and vir-

tual damping is illustrated in Figure 5.8. It is assumed that the PV-BESS provides some frequency

support in response to the frequency deviation at the terminal of the FBMMC, but its individual
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contribution is not enough to significantly change the system frequency. In this case study, the vir-

tual inertia coefficient M is equal to 1/2πs and the virtual damping coefficient D is equal to 1pu.

Figure 5.19 illustrates the input frequency deviation∆fpu
g . Its obtained from a virtual synchronous

generator system with a 60 Hz reference frequency f ref
g and then a 40% step-up load change is

applied at 1.2s.

Figure 5.19 Grid frequency under a 40% step-up load change and reference frequency

5.3.3.1 FBMMC Power Control

Figure 5.20 demonstrates the performance of the system with a grid demand load similar

to Case 1. The MMC output power Pg tracks its reference Pin and varies in proportion to the grid

demand and grid frequency deviation. For t ∈ [0s, 1.2s] the BESS has an output power similar to

case 1. However, when the frequency deviation happens at 1.2s, the frequency control system is

activated with a power contribution of Pf . This can be seen from the spike in the BESS power at
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t = 1.2s, which represents the frequency control power contribution and the grid demand following

power contribution at that time.

Figure 5.20 (a) Grid total power demand, grid power for demand following (case1) and theMMC
output power to the grid and (b) the distributed PV system output power and the BESS
power for grid demand following support

The BESS frequency control contribution, as inertia power and damping power, can be seen

in Figure 5.21. The BESS power contribution for grid demand following Pd is illustrated with the

blue curve, which is identical to the BESS output power of case 1. The frequency control power
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contribution Pf is shown with the orange curve. It is zero until 1.2s but after that there a power dis-

charge to the grid. This proves the control system effectiveness as it varies with system frequency.

Their summation, which is the BESS power charging/discharging from the grid is illustrated with

the yellow curve, where the maximum power discharge of 10.55kW happened at 1.32s.

Figure 5.21 BESS power contribution to grid demand following and frequency control

Figure 5.22 compares the BESS parameters in case 1 and case 2. The BESS SOC is identical

for both cases until 1.2s. When the frequency deviation happens, the SOC for case 2 gets lower

since more BESS power is discharged to support the frequency control. The BESS current is also

identical for both case 1 and case 2 until 1.2s. However, the BESS current has a spike for the curve
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the represent the system when it is performing frequency control. This high current discharge is

the frequency control power discharged to the grid.

Figure 5.22 BESS Parameters when it is used for grid demand following and frequency control
support, (a) BESS state of charge (SOC) with and without frequency support and (b)
BESS charging/discharging current with and without frequency support

5.3.3.2 MMC Performance With Circulating Current Control

In this case study, the system experienced a fluctuated PV output power, variable grid de-

mand, and frequency deviation during the simulation time. Despite all these changes, the MPC
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control objectives are fulfilled. As shown in Figure 5.23 phase A upper and lower arms capaci-

tor voltages are travelling together and regulated within less than ±3% of their nominal voltage.

Figure 5.24 shows the AC output current of phase A, it is balanced, and tracking its reference the

whole simulation time. Phase A circulating current is minimized as illustrated in Figure 5.25.

Figure 5.23 (a) Phase A upper and lower arms SMs voltage for the whole simulation time 3s and
(b) a zoom on phase A upper and lower arms SMs voltage for 0.1s
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Figure 5.24 (a) Phase A AC output current tracking for the whole simulation time 3s and (b) a
zoom on Phase A AC output current tracking for 0.1s showing the actual current ia
and the reference current ib
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Figure 5.25 (a) Phase A circulating current for the whole simulation time 3s and (b) a zoom on
Phase A circulating Current for 0.1s
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

Modular multilevel converters (MMC) are expected to play a significant role in the future

of medium and high voltage networks applications. This thesis investigates the application of mod-

ular multilevel converters for solar photovoltaic (PV) and battery energy storage systems (BESS)

integration to the power grid. This work can be concluded in two parts as follow.

First, this thesis proposes an MMC-based solution to interconnect PV systems through

distributed maximum power point tracking (DMPPT). The proposed solution includes single PV

modules connected to the HBSMs of the MMC through DC-DC converters to realize independent

MPPT. A novel average SM capacitor voltage control algorithm is proposed to control power ex-

change between MMC and the AC power grid. A model predictive control (MPC) based switching

algorithm is employed to obtain the best switching sequences of SMs. The results demonstrate

that at any shading conditions, the proposed solution leads to capturing the maximum solar energy

and achieves SM capacitor voltage balancing, AC current tracking, and circulating current sup-

pression. Moreover, this work investigates the computation expenses of model predictive control

(MPC) switching and the time elapsed to perform the SM sorting and SM selection process. The

computation burden was evaluated in two computers with different processor properties and the

results prove the effectiveness and robustness of the utilized advanced MPC switching.
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Second, this thesis proposes a novel power electronics solution based on FBMMC to in-

tegrate BESS to PV systems. In this solution, the FBSMs are interfaced with single PV modules

through a DC-DC converter to enable distributed MPPT. Effective switching of FBSM increases

the range of voltage operation and control flexibility over the MMC DC-link, where the BESS is

connected directly without the need for extra power electronics level to control it. The BESS is

used to support the power grid, by following the grid demand load power. Moreover, this BESS

is used to support the grid ancillary services and contribute to system stability by supporting load

following and frequency control in the event of a disturbance. The simulation results verify the

effectiveness of the proposed topology and its control systems.

6.2 Future Works

The future work recommendations of this thesis can be summarized in the following points.

First, the proposed FBMMC topology can be investigated for simultaneous connection of

multiple distributed energy resources (DER) to the power grid through one MMC. For instance,

each SM can be connected to a PV module and EV charger at the same time, while a BESS is

connected to the DC-link of the MMC.

Second, the maximum level of controllability in the proposed FBMMC solution is not al-

ways required for grid connection of all types of DER, and an optimal combination of HBSM

and FBSM could be used to minimize the design costs, volume and switching losses without any

compromise in the MMC performance.

Third, to verify the effectiveness of the proposed topologies and their control design, hardware-

in-the-loop (HIL) tests and a hardware prototype design are needed for real-world tests.
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Table A.1 shows the module data and the model parameters and of the PV module used in

this thesis. All the parameters are given in standard testing condition (STC).

Table A.1 Solar PV module data and parameters

Parameter value
Module SunPower SPR-305E-WHT-D

Maximum Power 305.226 W
Cells per module 96

Open circuit voltage (Voc) 64.2 V
Short-circuit current (Isc) 5.96 A

Voltage at maximum power point (VMPP ) 54.7 V
Current at maximum power point (IMPP ) 5.58 A

Temperature coefficient of Voc -0.27269 %/C◦

Temperature coefficient of Isc 0.061745 %/C◦

Light-generated IL 6.0092 A
Diode Saturation current I0 6.3014e−12 A

Diode ideality factor 0.94504
Shunt resistance Rsh 269.5934 ohms
Series resistance Rs 0.37152 ohms

The I-V characteristics curve of the PV module is illustrated in Figure A.1(a), it shows

the I-V characteristics at 25C◦ for different irradiance levels. While Figure A.1(b) shows the P-

V characteristics curve of the PV module where the maximum power and maximum power point

voltage are depicted for different irradiance levels
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Figure A.1 (a) The I-V characteristics of SunPower SPR-305E-WHT-D PV module and (b) The
P-V characteristics of SunPower SPR-305E-WHT-D PV module
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Table B.1 shows the Battery energy storage system (BESS) model parameters used in this

thesis. The used BESS type is Lithium-Ion battery model.

Table B.1 BESS model Parameters

Parameter Value
Type Lithium-Ion

Cell rated capacity 5.4 Ah
Number of cells in series 50
Storage energy capacity 270 Ah
Rated energy capacity 108 kWh
Battery response time 0.1 s
Nominal BESS voltage 400 V

Cut-off voltage 300 V
Fully charged voltage 465.5949 V

Nominal discharge current 117.4 A
Nominal discharge Power 46.95 kW
Capacity at nominal voltage 244.1739 Ah

Internal resistance 0.014815 ohms

Figure B.1(a) shows the nominal current discharge Characteristic curve at 0.43478C which

is 117.3913A. It shows both the nominal area and the exponential area. The BESS consists of

50 of Lithium-Ion battery cells connected in series to reach a nominal voltage rating of 400 V.

Figure A.1(b) shows the current discharge curve at the rated voltage with different discharge current

levels.
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Figure B.1 (a) Nominal current discharge Characteristic curve of Lithium-Ion BESS and (b) Cur-
rent discharge curve at the rated voltage with different discharge current levels
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