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Abstract

In any engineering endeavor, it is important to have the ability to efficiently and
intelligently break up a region of interest in order to explore and investigate the
interesting and dynamic aspects of the system enclosed in the region. In the field of fluid
mechanics — and, in particular, computational fluid dynamics — this region breakup
(known as discretization) has traditionally been done using structured meshes but,
because of their flexibility with capturing real-world geometry, unstructured meshes are
being increasingly utilized. Not surprisingly, techniques that have traditionally been
reserved for structured meshes are migrating to the world of unstructured meshing as
well. One such technique is the application of the Winslow elliptic smoothing equations
to an unstructured mesh. The Winslow equations have proven to be powerful tools for
smoothing unstructured meshes and some early difficulty using the Winslow equations
with unstructured meshes was alleviated when it was determined that it was not necessary
for the entire computational mesh to be constructed as an overarching system of nodes
and elements, but rather, each node in computational space could be treated as an
individual virtual control volume. Winslow equations have been shown to be ideal for
smoothing non-boundary nodes in inviscid regions but of limited use in other situations.
This presented two opportunities to improve and extend the usefulness of the Winslow
equations in relation to unstructured meshes. Research documented herein allowed the
Winslow equations to be applied to boundary nodes which, traditionally, have been held
static while interior mesh points are smoothed. In addition, several methods were tested
to make the Winslow equations applicable to highly anisotropic viscous regions of a
mesh. The most successful methodology that was developed and explored in relation to a
viscous region was to use an iteratively adapted computational space for each of the
nodes in the viscous region. This technique allowed a mesh with an amenable
connectivity structure to be smoothed in such a way that it could match a desired viscous
profile based on an initial off-body spacing and the geometric progression of the viscous

layers of the mesh.
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Chapter 1 — Introduction

In any engineering field, it is important to have the ability to break up a given system
into manageable parts in order to explore and investigate the interesting and dynamic
aspects of the system. This is true for the study of thermodynamic systems or for the use
of finite element analysis to study static and dynamic properties of parts and facilities. It
is also true within the field of fluid mechanics and especially the sub-discipline of

computational fluid dynamics (CFD).

The analysis of aerodynamic systems is often broken down into three separate but
complimentary categories: flight test, ground test (wind tunnel testing) and CFD. CFD
deals directly with applying the laws of conservation (mass, momentum and energy) to an
aerodynamic system. It relies on a logical and effective breakup of the system of interest
in order to properly apply the conservative laws of fluid dynamics to the system in a way

that properly captures the necessary physics to realistically define the system.

Further delving into the field of computational fluid dynamics is the study of mesh
generation. This is the discipline that explores and analyzes the breakup (known as
discretization) of a system into finite discrete segments so that the characteristics of the
overarching system can be explored using the Navier-Stokes equations (or, in the case of
inviscid flow, the Euler equations). This system of equations — named after the
Frenchman Claude-Louis Navier and the Englishman Gabriel Stokes — are a system of
partial differential equations. Analytical solutions to partial differential equations involve

closed-form expressions which give the variation of the dependent variables continuously
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throughout a domain [1]. However, to analyze a physical system computationally, both
the defining equations and the domain must be discretized. Discretization of the
equations is accomplished by replacing the original system of partial differential
equations with a system of algebraic equations that can be solved to calculate the values
of the flow-field variables (pressure, temperature, velocity etc.) at discrete points (these
points are often referred to as grid points, mesh points or nodes). Depending on the way
the equations are discretized, a finite difference or finite volume numerical solution is
obtained. In contrast to differential equations, numerical solutions generaHy give answers
only at discrete points in the doﬁain; effectively generating these discrete grid point

locations is at the heart of mesh generation.

There are many ways that a region where the flow is to be analyzed might be
discretized. Traditionally, the region has been discretized using structured meshes, where -
the discretization of the domain reﬂegts some type of consistent geometrical regularity.
However, because of their flexibility with capturing real-world geometry, unstructured
meshes (where mesh points are placed in the flow field in a very irregular fashion) are
being utilized more and more regularly [1]. As computational power and storage increase
and as unstructured meshes are becoming better understood and handled with increasing
skill, techniques that have, in the past, been reserved for structured meshes are migrating
to the world of unstructured meshing as well. One such technique is the application of the

Winslow elliptic smoothing equations to a mesh.



1.1 — Mesh Smoothing and Adaptive Mesh Refinement

Mesh smoothing, which is the primary topic of this dissertation, falls loosely into the
field of study known as Adaptive Mesh Refinement (AMR). AMR is employed with the
purpose of reducing the computational cost of generating a flow solution while
maintaining a given level of accuracy for the solution. In a finite element context,
adaptive mesh refinement is generally classified into three categories: h-refinement

(enrichment), r-refinement (movement) and p-refinement (reconnection).

H-refinement schemes often use an error estimator to determine regions of the grid
where the solution is under-resolved and add elements locally to improve the resolution.
This is done with the intent of improving the accuracy of the solution. While h-
refinement schemes have demonstrated the ability to improve solution accuracy through
local refinement, there is added overhead due the increased number of mesh elements [2].
The p-refinement approach increases the element order by increasing the degree of the
piecewise polynomials over the triangular mesh elements. The r-refinement approach
involves the redistribution of points. R-refinement involves moving the nodes of the
mesh while maintaining the cell connectivity and the size of the mesh [3]. R-refinement
is the category that includes mesh smoothing. Conceptually, r-refinement is relatively
straightforward but it can produce highly skewed cells and prohibitively small (or
negative) cell volumes if not performed correctly. AMR generally refers to adapting a
mesh to a particular flow solution. The primary research performed here deals only with

adapting a mesh to changes in geometry.



1.2 — Winslow Elliptic Smoothing Equations

The Winslow elliptic smoothing equations, first proposed by Alan Winslow in 1967
[4], are derived from Poisson’s Equation (or Laplace’s Equation for the homogeneous
case) for a parameter distribution over a region. In structured meshing there is an implicit
computational space that lends itself well to the application of the Winslow equations.
However, no such implicit computational space exists for unstructured meshes and the
computational space must, therefore, be explicitly defined. It can be shown that a
computational space'can be constructed using the initial discretized physical space. This
works well for many applications and often provides a well-defined connectivity and
spatial definition for a mesh that is applicable even if the geometry that defined the mesh
was then allowed to move. However, this also creates the requirement that an initial valid
mesh exists. This is not always the case; an initial unstructured mesh might not exist and,
if one does exist, it is possible that there might exist sections in the mesh that are invalid
due to mesh érossing, negative volumes or other problems. Using the original mesh as the
computational space is also problematic if there is a requirement that certain mesh

characteristics (such as viscous spacing) need to be varied.

It is apparent that there are significant limitations with using the original mesh as the
computational space but a mathematically expedient way of defining a general
overarching unstructured computational space has proven elusive. Because the
unstructured mesh connectivity needs to be explicitly defined and the valence count (the
number of connected nodes or neighbors) varies throughout the domain, no theory
currently exists to generate a global computational space that reflects a consistent

geometric regularity as was done with structured meshes. Many difficulties that were due
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to the lack of a global unstructured computational space were alleviated when a
breakthrough was made [5][6] that showed it was not necessary for the entire
computational mesh to be constructed as an overarching system of nodes and elements
but rather, each node in computational space could be broken off from the overarching
system and coupled only though the coordinates in physical space, which were treated as

free variables.

The simplest way to discretize a physical region using structured meshes is to break
up the area into quadrilaterals (quads) in two dimensions and hexahedra (hexes) in three
dimensions. The simplest way to discretize a physical region using unstructured meshes
is to break up the area into triangles in two dimensions and tetrahedra (tets) in three
dimensions. There are many other ways to discretize a region as well but‘this dissertation
will only address the simplicial geometry elements. Examples of a simple two-
dimensional region that has been discretized using both structured and unstructured
methodologies, as well as the corresponding computational spaces, are shown on Figure 1
and Figure 2. The convention used within this document is that physical space is
generally displayed with a red mesh while computational space is generally displayed
with a black or gray mesh; this convention is illustrated in Figure 1 and Figure 2.
Additional information concerning grid metrics, which describe the relationship (or

mapping) between physical and computational space is assembled in Appendix A.

When applied to an unstructured mesh, the Winslow elliptic smoothing equations
allow mesh points to be moved and smoothed to conform to a moving (or non-moving)
surface. The Winslow equations deal with derivatives of physical space (x,y) with respect

to computational space (&,77). A detailed derivation of the Winslow equations is
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demonstrated in Appendix B and it is interesting to note how much more complex the

equations become when they are transformed from the relatively simple form with
respect to coordinates in physical space compared to the form where the derivatives are

with respect to the computational coordinates.
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Figure 2 — Unstructured mesh in physical and computational space.

Note that, in unstructured computational space, the nodes, which correspond to the four nodes shown as
black dots in physical space, are broken off from the overarching system and are coupled only through the
coordinates in physical space. Each node will have a unique computational space similar to the ones shown

in the figure. Note that the computational space for a boundary node does not have a complete neighbor-

node stencil.
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1.3 — Extension of the Winslow Equations

Noté from the unstructured computational space shown on Figure 2 that the central
node in each of the computational spaces is surrounded by neighbors using equal angles
and equal edge-lengths and that it is necessary to be fully surrounded by neighboring
nodes for the computational stencil to be complete. (A note on terminology: the node-of-
interest — i.e. the node being smoothed at a given instant — Will often be referred to in this
document as the central node and is always located at the origin in computational space.)
The characteristics of the Winslow equations make them ideal for smoothing inviscid
mesh elements in the interior region of a mesh because the equations drive the mesh
elements to display an isotropic behavior; that is, the triangular mesh elements in physical

space will all become as close to equilateral as possible within the constraints of the

overall system.

However, the need for a complete computational neighbor-node stencil and the
tendency to drive mesh elements to exhibit isotropic behavior makes the conventional
Winslow methodology unsuitable to two situations that are common in fluid mechanics.
The first situation is where the nodes on the boundaries need to move to accommodate
the movement of the interior mesh nodes. This situation may arise because, often,

keeping the boundary nodes static while interior nodes move will result in elements that

exhibit a sufficient amount of skew that the numerical solutions generated on a mesh will
become unstable or unreliable. The second situation is one where the viscous properties
of the flow are important. In order to capture the viscous boundary layer in an effective
manner, it is necessary that the mesh elements near the viscous surface are not isotropic

but rather have high aspect ratios in order capture the gradients in the flow where the
i



flow field variables are changing very rapidly normal to the surface but much more

mildly in the direction parallel to the surface.

These two common situations are addressed in detail within this dissertation. A
methodology is presented and described that will make it possible to apply the Winslow
elliptic smoothing equations to a 'node on a boundary. Implementation of this
methodology will allow the boundary nodes to float and greatly improve the mesh in
certain situations. Several examples are shown that illustrate the benefit of implementing

the Winslow equations is such a way that the surface nodes are allowed to float.

Several methodologies are also presented that allow the Winslow elliptic smoothing
equations to be applied to viscous regions of a mesh, where it is required that the mesh be
highly anisotropic. These different methodologies are compared for effectiveness and
several examples are shown that illustrate the benefit of applying the Winslow equations

is such a way that viscous properties of the mesh are preserved.



Chapter 2 — Background Methodology

2.1 — Divergence Theorem

The gradient in an unstructured element is derived by manipulating the Divergence
Theorem (often alternately referred to as the Gauss Divergence Theorem or, in 2D, as
Green’s Theorem). The Divergence Theorem states that if there is a solid region (i.e., a

control volume) whose boundary surface has positive orientation (outward facing surface

normals, i) and let F be a vector field whose component functions have continuous

partial derivatives on an open region containing the control volume [7], then:
[[[v-Fav=¢pF-nds @.1)

Note that the equation above is for a three-dimensional control volume. The majority
of the research that was performed for this dissertation was limited to 2 dimensions; this
required that the divergence theorem be simplified to two dimensions, which is done in
the following section. Because much of the work performed herein was proof-of-concept
level work, it made sense to test the theory in 2 dimensions and work out the details of
the algorithms and logic in a 2D environment where the results could be viewed more
quickly and efficiently. However, many concepts were also expanded to three dimensions
as it is the intention of the author to extend this work to 3D in postdoctoral work. Certain

concepts that have been extended to 3D can be found in Appendix C.



2.2 — Calculating Gradients

In two dimensions, the Divergence Theorem, which is shown in the previous section

can be simplified to equation (2.2).
”V-FdA=gSF-ﬁds 2.2)

The control volume in 2D is effectively a “control area” but will continue to be
referred to as a control Qolume herein. Consider a two dimensional domain broken up
into an unstructured mesh comprised of triangles similar to the one shown below in
Figure 3. Each triangle becomes a control volume and the gradient within the control
volume (which is treated as constant throughout the control volume and discontinuous at
the surface of the control volume) can be found by manipulating the Divergence
Theorem. Note that because the gradient is constant within the control volume, the mesh
must be refined into smaller control volumes if a more precise gradient is desired in a

given region.

n2 _ ni

i

Figure 3 — Two-dimensional triangular control volume with outward facing normals.
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A generic scalar function (denoted as¢) is used to illustrate the process for

calculating the gradient in a triangular control volume. Any scalar function that is

continuous in the region can be calculated using the following methodology.

The gradient of a scalar function is a vector function. In two dimensions, this

gradient can be written:

The averages of the components of the gradient in a 2D control volume can be

calculated as:

1 jpo¢
=I5
1 (g
X_UaydA

2.3)

Consider a vector, F; the divergence of the vector, V -F, is a scalar and can be

related to either of the two components of the two dimensional gradient as follows:

0 [9):4
F=[O}:V-F=O+%=%
¢ dy Oy

fgtua- [ Eangt-nia-4[][{ g
H }ds $gn, ds

Ha¢dA HV -FdA =§F- ‘7idS = ¢

Dlvergence Thm

I_—_l
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So, the components of the average gradient in a control volume can be calculated as:

8 1o 1
o~ allZaa=gfenas

op 1 og,, 1
g-gﬂgd‘*-;wnyds

Dropping the overbar for simplicity, with the understanding that the gradient is

treated as constant within the control volume, the equation for the gradient becomes:

o¢ 1
o B X9‘3¢nxds
g=| . |= 24)
L l(ﬁ;}ﬁn ds
o1 LA 4

The surface integrals can be discretized by examining and summing the scalar for
which a gradient is desired on each of the triangle’s 3 faces (edges in 2D). Using the x-

component for example, the gradient is discretized as follows.
1 1 s ”
—®@n dS=— ) ¢n T, 2.5
A PondS~ Y An,T, @)

Where: @, = the average value of the scalar over the edge, calculated as the average

of the value of the two nodes that makes up the face or as the average of
the value at the two cell centers on either side of the face. It will be

shown that using the nodal values adds simplicity to the final equations.
n; = x component of the surface unit-normal vector for face i. The unit-

normal is normalized by the edge length, I;

I, = length of face i
12



A non-hatted n will indicate a non-unit normal vector component, which is found

using equation (2.6).

=S on, =AT,
i 2.6
At ; 2.6)
n, =F:>nyi =n,I;
The normal vectors for each of the three edges are calculated as follows:

n,=y;-Y, ny1="(X3_X2)

DHo=Y17Ys ng, = =(x, —x3) 2.7

Ny =Y~V n, =-(x,—-x)

The value of the gradient on each edge will be treated as the average of the value at
the two nodes that define the edge (note from Figure 3 that the edge number corresponds

to the node opposite the edge) and will be designated by an overbar.

=5 (#+8)
¢72 :%(ﬂ +¢3)
g~ (6+4)

Using the numbering convention from Figure 3, we get the following equation.

1y LS 1
X; Bl F-=X;¢inxi=%(%(¢2 +¢3)nx1+%(¢3+¢1)nx2+5(¢1 +¢2)nxsj

Rearranging this equation generates equation (2.8):
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2 L (4 4)n, (54 #)na (4 +)0)
2.8)
%? =i((¢2 +¢3)ny1 +(¢3 +¢1)ny2 +(¢1 +¢2)ny3)

Rearranging equation (2.8) gives the most common form for the gradient component

equations.

%xgzi((nxz +10,5) 6 + (0, +1,)8 +(ny, +nx%)¢3)
% :i((nﬂ - ny1)¢1 +(ny3 +ny1)¢2 +(n>’1 +ny2)¢3)

2.9)

Using the fact that the normals sum to zero (which can be easily seen from (2.7))
equation (2.9) simplifies to equation (2.10) and the derivatives from (2.10) are used to

form the 2D gradient of the scalar, which is shown on equation (2.11).

0 1
&¢ 3 ﬂ(_nxlﬂ —N,¢, - nx3¢3)

(2.10)
0 1
Bg " ﬂ(—nylﬂ ~Dy,f, ~ Dy, )
og
Py 1 [n,é +n,64, +n.4
gylloe| 1 2.11
¢ % 2A |:ny1¢1 +1n,,0, + ny3¢3:| S

2.3 — Laplace and Poisson’s Equation

A large segment of the research presented herein deals with the Winslow elliptic
smoothing equations, which are derived in detail in Appendix B. The Winslow equations
are used to ensure smoothness in a computational mesh and are derived by applying the

Laplacian (with respect to the physical mesh coordinates) to the computational
14




coordinates. Because this system of equations is based on Laplace’s equation (for a
homogenous system) or Poisson’s equation (for a nonhomogeneous system) it is
interesting to compare it with other systems that follow the same laws.

Some other systems where the Laplacian is used are the steady state heat equation
(VZT = 0) and the velocity potential equation. When a flow is steady, irrotational and
isentropic, the Euler equations can be simplified into the potential velocity equation and it
can be observed that Vi =0 and V¢ =0 where lines of constant‘ w are known as
streamlines and lines of constant ¢ are known as equipotential lines. In this situation, ¢
is the equipotential function and y is the so-called stream function, defined so as to

satisfy continuity identically [8].

The equipotential function and stream function is developed by looking at the

continuity equation for incompressible flow.

ou Ov
=i} (2.12)
ox Oy
. . : . o¢ o _ .
The equipotential function, ¢, is defined such that o =u and g =V. Plugging

these relationships into equation (2.12) gives Laplace’s equation for ¢: V¢ =0. If the

0
stream function, ¥, is defined such that u= L and Vv E——a%then the continuity

equation is identically satisfied:

ou ov_ oy oy

i = - =0
Ox Oy 0xdy Oxoy
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This relationship can now be plugged into the equation for vorticity (a)z) and, if the flow

is irrotational, we again get Laplace’s equation:

L[l By = o, (2.13)
Oy Ox

oy Sy
Viy =-o,
Viy =0 _ (2.14)

It is interesting to examine a flowfield generated using the velocity potential

equations, such as the one shown on Figure 4, and note that the lines of constant y and
constant ¢ form a system similar to what would be expected when generating a mesh that

is smoothed using the elliptic smoothing equations (also based on Laplace’s equations).

2 I

Figure 4 — Flowfield generated using the velocity potential equation.
In the equation above, the darker blue lines are streamlines, and the lichier blue lines are equipotential
lines.
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2.4 — Laplacian Smoothing vs. Winslow Smoothing

Prior to work done by Knupp, smoothing techniques on unstructured meshes were
predominated by Laplacian smoothing becausé of its generality and ease of
implementation. However, Knupp felt that the additional work of implementing the
Winslow elliptic smoothing equations was worth the effort because of the robustness

against grid folding that is achieved by using the Winslow equations [9].

In Laplacian smoothing, node positions are determined by solving the Laplacian of
the physical coordinates with respect to the computational coordinates. In two

dimensions, this becomes:

2 2
Vx = 25 2’§=0

s a? (2.15)
Ny= —y Y

os*  on’

This is easy to implement because the position of a node can be solved as the
average of the positions of the N neighboring nodes:

oh s 5 1
nﬁz | (2.16)

m=0

Although Laplacian smoothing is easy to implement, its usefulness is limited by the
fact that it sometimes results in mesh folding/spillover and no mathematical guarantee

against such folding can be constructed [9].

The Winslow equations are obtained by requiring that the computational coordinate
variables (£ and 77) be harmonic functions and then interchanging the dependent and

independent variables in the corresponding Laplace equations. That is, we now deal with

17




Laplacians of the computational space with respect to physical space, as shown in

equation (2.17).

5X2 A2
. ZZ (2.17)
V277 —%4—# =0

The derivation of the Winslow equations from the above Laplace equations
(equation (2.17)) is discussed in detail in Appendix B but it is worth noting that the
technique that was used by Knupp was to let a local discrete uniform computational space
for a node with a valence count of N be given by equation (2.18) and then letting the

physical coordinates of the nodes be a function of the computational space coordinates:

x=x(§,77) and Y=Y(§=77)'

&, =cosf,
. (2.18)
N, =siné,
where: = LA
N

By assuming that there exists smooth functions, x =x(&,77) and y =y(&,77), on the

local computational space and that these functions can be approximated about the origin
by a Taylor series expansion, the expansion can be used to approximate the first and
second derivates of x an y that are needed to construct the necessary coefficients of the

Winslow equations.
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2.5 — Computational Mesh Derived from Connectivity

Early in the research process, a small amount of time was taken to examine the
possibility of developing an algorithm in pursuit of a connectivity-based meshing code
that could generate an unstructured global mesh using only the number of grid points and
node connectivity information (i.e. no coordinate or boundary information would be
provided). The reason why it was thought that this capability could prove valuable was
that when a moving-body problem is being studied, the grid may become invalid once
one of the boundaries (i.e. one of the moving bodies) has moved from its initial location.
A connectivity-based meshing technique could have interesting implications for quickly
creating an arbitrary but valid unstructured mesh that could then be used as the
computational space in which to perform elliptic mesh smoothing. As mentioned in the
introduction, elliptic smoothing has historically been used to construct high-quality
structured grids but, because of the lack of an implicit unstructured computational space,
it has traditionally been much less prevalent in the unstructured field. The ability to
quickly generate a valid mesh that could be used as computational space, therefore,

seemed worth investigating.

The code that was developed read in the connectivity information and then (using
only connectivity information) determined which nodes were boundary nodes and how
many levels of connectivity existed in the mesh (the boundary was set to level 0, all
nodes connected to a boundary node were on level 1, etc.). The code then broke up the
interior and used a space marching scheme to march inward until all of the node positions
had been defined in the region. Initially, the marching algorithm made the assumption

that there was only one boundary. The results for this were tested on a small mesh
19



(Figure 5) and the algorithm was then made more general to include the possibility of
multiple boundaries. Different options were also added to handle cases where the

positions of one or more boundaries are specified.

Additional cases with multiple boundaries were also tested and some of these results
are shown on Figure 6. An interesting issue that arose stemmed from the fact that, for an
unstructured grid with, say, a farfield at the outer boundary and an airfoil on the inner
boundary, the number of connecﬁvity levels between the outer boundary and the inner
boundary can vary greatly at different locations on the boundary. One reason for this
could be that the grid spacing on the inner boundary could vary by an order of magnitude
or more from the leading edge, where high curvature requires fine spacing to capture the
shape of the airfoil, to an area closer to the trailing edge where the airfoil has much less

curvature and would, therefore, not require such a fine mesh.

For simple cases such as those that are shown on Figure 5 and Figure 6, variable
connectivity levels do not cause significant problems. However, for larger cases, variable
connectivity levels will cause grid crossing if a constant radius is used for each of the
connectivity levels. To alleviate this problem, experiments were performed with ways to
make the radius of the connectivity level be a function of position and thus morph the

level to better fit the local behavior of the mesh.

After exploring the connectivity-based mesh generation scheme and dealing with all
of the difficulties that arose, it was determined that a better way to deal with the
computational space for an unstructured mesh was to use the decoupled computational

space shown on Figure 2. By decoupling the nodes in computational space, the only
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information that is needed to construct the computational space is connectivity
information, which was essentially the goal of the connectivity based global algorithm.
Using a decoupled computational space, coordinate information is implied bas¢d on th¢
way the computational space is implemented and the valence count of each node. The
computational space can then be modified based on the requirements of the physical

mesh, as is discussed in the following chapters.
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Figure 5 — Single boundary simple connectivity-based mesh.

Figure 6 — Multiple boundary cases.
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Chapter 3 — Isotropic Winslow Smoothing

3.1 — Elliptic Smoothing

Winslow smoothing is the term generally used to describe the method of elliptic
mesh smoothing based on manipulating a mesh (structured or unstructured) using the
Winslow elliptic smoothing equations. The Winslow equations, which are derived in
detail in Appendix B, are found by taking the Laplacian of the computational space
coordinates with respect to physical space.

V2% =0

G.1)
Vi =0

The Laplacian follows the Min/Max principle, which says that given a scalar field
over a region R that satisfies Laplace’s equation V¢ =0, the value of a non-constant
scalar, ¢, cannot attain its maximum or minimum in the interior. This can be deduced
from the fact that Laplace’s equatiqn, which is said to be harmonic, has the property that
the average value over a spherical surface is equal to the value at the center of the sphere
(Gauss’s harmonic function theorem) [10]. Suppose that we wish to solve Laplace’s
equation in any region R. Consider any point p inside R and a circle of any radius ro (such

that the circle is inside R). Let the value on the circle be f (6’) If Laplace’s equation

holds, the value at any point is the average of the values along any circle of radius r
(lying inside R) centered at that point. The proof is by contradiction. Suppose the
maximum or minimum was at point p as illustrated in Figure 7. The value at point p

should be the average of all points on any surrounding circle, such as the one with radius
22



1o; it is impossible for the value at p to be larger or smaller than the maximum or

minimum surrounding point.

Figure 7 — Region surrounding a control volume.

The Winslow Equations, which are at the heart of the elliptic mesh smoothing that is
examined throughout the remainder of this document, are derived by transforming the
Laplacian of the computational space coordinates with respect to physical coordinates
such that the equations are now with respect to computational coordinates and the
physical coordinates are now the dependent variables. This transformation is necessary
because it is generally the physical coordinates that will be modified using elliptic
smoothing. The coordinates of the computational space need to be defined (either
implicitly or explicitly) and can then be further manipulated to affect the physical mesh
as required. The Winslow equations, in the form most relevant to the work performed

herein, are shown below as equation (3.2).
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3.2 — Virtual Control Volumes

In order to explore the computational space of a two dimensional unstructured fnesh,
consider a small subsection of a mesh comprised of triangles such as that shown on
Figure 8. There are three internal nodes (marked as: @« ) in the mesh subsection shown
on Figure 8. Unlike structured grid methods, unstructured methods have not traditionally
had a well-defined computational space associated with the physical space. While a
global unstructured computational space remains elusive, nodes in an unstructured mesh
can be mapped to an individualized computational space based on virtual control volumes
decoupled from one another in computational space (‘;hqy remain loosely coupled through
their relationship in physical space). The computational space that is suggested by
Karman et al [11] is one in which the node in question lies at the center of a virtual
control volume based on a regular (equiangular) polygon whose vertices intersect a unit
circle. For each of the internal nodes shown in physical space on Figure 8, the
corresponding computational space can be seen on Figure 9. Defining the computational
space in this way lends itself well to solving the Winslow equations (especially in
inviscid regions where an isotropic mesh is desired) and allows the equations to be solved

even if the physical grid is inextricably tangled.
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Figure 8 — Subsection of an unstructured mesh.

Figure 9 — Virtual control volumes in computational space.
The Computational space (§-1 space) is based on the valence count of the node in physical space, which is

mapped to the center of a regular polygon whose vertices intersect a unit circle. The nodes in this figure are
color-coordinated to the nodes in physical space in Figure 8.

3.3 — Discrete Form of the Winslow Equations

The discretization of the Winslow equations will focus on the Laplace form of the
equations (i.e. the homogeneous equations without any forcing functions). The
justification for this is that a desired grid spacing that might incline a user to use the
Poisson form of the equations can also be generated by manipulating the computational
space so forcing functions become superfluous. The computational space manipulation

that allows the homogeneous form of the Winslow equations to be used exclusively is
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described in detail in many places in subsequent chapters but a particularly illuminating

description is in section 6.6.4. The Laplace form of the Winslow equations for x and y

(using condensed notation for the derivatives) are X, —2,3)(4,,7 + X, =0 and
QY —2pYs, + 7Y, =0. Because the Winslow Equations are cast in computational

space, the gradient operator (V) will be defined such that when operating (through the

gt
dot product) on a vector in computational space such as F= l: f;}, the results are as
) n
follows:
v-F:iff +if,, (3.4)
og ~ 0n

The following logic is used to get the Winslow equations in a form that can be used
to solve the overall global system consisting of all nodes in a region that are to be
smoothed. (Note that the physical coordinate in the x direction is used in the following

derivation but that the derivation, of course, also applies to the gradients of y with respect

to £and 7 as well.)

= | X; == <) ¥ i e
F—_O_:V F—a—g(x§)+0—x§§:>F-n—x¢.n¢
—'__Xﬂ— V —'_ a iy A i
F=| 7 |= F——aE(x”)+O—-x5ﬂ$F fi =x,fi, (3.5)
sile -] = 2
F=( :>V-F=O+i(xﬂ)=x,sz fi=xn,
%y on

Consider the Winslow equations in a control volume:
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The logic illustrated in (3.5) combined with the divergence theorem (2.2) generates
the homogeneous Winslow equations in terms of the surface integral over the surface of

the control volume.

cﬁ(axgﬁg -2Bx, 4, +yx, 0, )dS =0

3.6)
(ﬁ(ayéﬁf 3 Zﬂy”ﬁg * },yﬂﬁﬂ )dS =0

Consider a node with a valence count of four, such as the node represented as « in
Figure 8. The virtual control volume for this node is shown on Figure 10 where t; through
t4 are the non-unit normal vectors for the surface of the overall virtual control volume. As
will become clear when the equations are further expanded, t is used instead of the more
typical n when describing the overall surface normal vectors because these vectors need
to be distinguished from the normal vectors of the individual triangular elements that
comprise the control volume (which are used to calculate the gradients in the control

volume).

On Figure 11, the control volume from Figure 10 is shown exploded into the
triangular sectors that make up the overall control volume. The non-unit normal vectors
for each of the triangles comprising a control volume are illustrated in Figure 11, which
elucidates the distinction between the normal vectors of the overall control volume (the t
values) and the normal vectors of each of the triangular sectors of the control volume (the

n values).
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3 2

Figure 11 — The control volume for a single valence-4 node exploded into its individual triangular
components.
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The variable t is the non-unit surface normal vector of the overall control volume
(e t =fi dI"where fi is the unit normal vector and dI" is the length of face i). The

discretized Winslow equation (for x), defined for a given control volume with a valence
count of N (i.e., N is the number of neighboring nodes and thus the number of triangles
comprising the control volume) is shown below as equation (3.7).

" ,
Cf)(axfﬁg =28 i, ;/x,]ﬁ”)dS e Z[angf —2,Bx,7f§ + yx,,fq] dr=0
i=1 :

N
;[ax e —2Bx,t, %t ] =0 3.7)

Expanding this summation for a node with a valence count of 4, such as the central

node shown on Figure 10, gives:
4
Y [axgt, 28t +yx,t, | =0
i=1 i

I:axg.té —-2fx%.t, +yx.t, ]1 + [axétf =20t +yx,t, ]2
+[ax§t§ - 2,Bx,7t§ Frxt, ]3 + [axgtg - 2,Hx,7t§ +ox t ]4 =0
The discretized integral expanded above is the integral for the central node’s entire
control volume, whose surface has been discretized into 4 line-segments. However, the
elliptic smoothing equations apply to an arbitrary control volume so the argument can be
made that the only way for this in‘;egral to be zero in general is if the integrand is zero.
Another way to think about this is that the discrete form of the Winslow equations have

to apply everywhere in the domain, both globally and locally. Thus, for each of the
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sectors (the individual triangles in discretized space) of the control volume, the following
equations apply.

ax,t, —2px t, +yx.t =0

(3.8)
ayt, -2yt +ry,t,=0

From the Gradient Section in chapter 2 we can apply equation (2.11) to get the

values of the gradients (with respect to the computational coordinates) in each triangle.

1
X§ = —a( §1X1 +n§2X2 +n§3x3)
(3.9)
Xﬂ = —ﬁ(nmx] + n,ﬂxz =+ an3X3)
1
Y. = _ﬁ(na}ﬁ TNy, n{3Y3)
(3.10)
1
Yo _ﬁ(nm)ﬁ +n,,y, + n173Y3)

In the equations for the gradients, 1, N, and n,; represent the & component of the
non-unit normal vector of the three sides of the triangle and likewise for 7.

Using the gradient relationships from equation (3.9) and (3.10) in equation (3.8) and
multiplying by -2A (which can be done because no forcing functions are being used and
the equations are homogeneous) results in equation (3.11).

a:(nﬂx1 +1,,X, +n53x3)t§ —2,B(n,ﬂx1 +1,,X, +n,,3x3)t~f

+}/(n,ﬂx1 +n,,X, + n,73x3)t,, =0
(3.11)

“ (n§1Y1 TNy, +04Y; ) t, — 2ﬂ(nq1Y1 T1,,y, +0,;Y; )tf

+7(n,,1}’1 +n,,Y, +nr)3Y3)tn =g
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Rearranging equations (3.11) gives the Winslow equations in a form that allows
them to be solved for the central node (x3,y;) using an iterative method such as the Point
Implicit method. This final form is shown as equation (3.12).

% (an§1t§ —2fn,t, +ynt, ) % (angztf —=2pn,t, +yn,t, )
X (anﬂtg —=2fn , + 7n,,3t,7) =0
(3.12)
N (an§1t§ —=2fnt, +ynt, ) +Y, (angztg —2fn,,t, + }/n,ﬂtﬂ)
+Y, (anﬂté —2pn .t + }/n.,ﬂt,]) =0

The values in parentheses in equation (3.12) can be thought of as weights for the
Winslow equations at each node and the two equations shown in equation (3.12) can be
rewritten in matrix form as follows.

X Wy + X, W) +X3W3 =0

YWy Y, Wy 1YW,y =0

Rt i G e
0 wylly 0 wylly, 0 wyllys

To solve the overall system, a global matrix is constructed where each element of the
global matrix is a 2 x 2 matrix and each row of the global matrix represents a single node
in the system. The values of tﬁe elements of the row associated with a given node are
constructed by using the values of w;; and w»; as contributions to the diagonal element of
the row (the central node) and the values of w2, w22, w13 and w3 as contributions to the
off-diagonal elements. Refer to Figure 11 and it becomes clear that the contributions for
each triangle making up the control volume for a node are being summed to satisfy the

integrals first shown as equation (3.6) and then discretized in equation (3.7).
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Consider a node with a valence count of 4, such as the central node shown in Figure
11. This node will have a control volume comprised of 4 triangles, each of which will
have a vertex that represents the central node and two vertices that represent two of the
central node’s neighbors. The local numbering convention used for each of the triangles
is that the central node is node number 1 and the two neighboring nodes are numbered
node 2 and node 3 based on the right-hand rule. The weights for each of the nodes in each
of the triangles are calculated based on the normal vectors and the Winslow coefficients
for each triangle (the gradients, and thus the coefficients, are treated as constant within
each triangle). When the contributions for each of the triangles have been summed up, the
off diagonal contributions (W12, W22, w13 and w»3) can be moved to the right hand side of
the global equation and central node values (w1 and w»;), which are on the diagonal, can

be solved in an iterative fashion.

3.4 — Effects of Computational Space on the Winslow
Equations

‘When employing structured techniques for mesh generation, the mapping between
the physical mesh and the computational mesh is well established with the mesh in
computational space generally represented by a Cartesian grid. The spacing of the nodes
in computational space may be manipulated to affect the spacing in physical space but the
computational space is generally always defined as a Cartesian mesh with the directions

orthogonal to each other.

In unstructured meshing, there is no such universally accepted way for defining the

computational space. There has been a significant amount of success in unstructured
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mesh smoothing by using a virtual control volume paradigm for the computational space
where each node is effectively decoupled from the computational spaces of the other
nodes. Because this mapping, while successful, is still relatively immature, alternate
paradigms for the unstructured computational space were also explored. This was done to
better understand the characteristics of the Winslow equations as applied through a
virtual control volume and also to investigate whether modifying the virtual control
volume construction might result in improved grids in certain instances. Three

computational space paradigms were initially investigated and compared. They were:
E The Virtual Control Volume Paradigm

2. A Direct Mapping Paradigm that directly mapped the physical space to the

computational space

< A Hybrid Mapping Paradigm that used the mesh from the original physical mesh

but then scaled it onto a unit circle

For the simple physical space shown on Figure 12, the three computational spaces
generated using the three paradigms described above are shown on Figure 13. In these
figures, the edges in physical space are color-coordinated with the normal vectors in

computational space for ease of comparison.

The three paradigms for the unstructured computational space (illustrated on Figure
13) were applied to a coarse NACA0012 mesh and the results that occurred are shown on
Figure 14. The first two approaches (using virtual control volumes and direct mapping for

the computational space) seem to generate similar grids while the hybrid computational
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space blows the mesh away from the surface. However, even though mesh A and mesh B
on Figure 14 look similar, the computational spaces for each of the cases are significantly

different and are affecting the physical mesh in different ways.

A simpler case was also examined with similar results. A simple box mesh was
investigated that had the same characteristic geometric progression as that seen on the
NACAO0012 mesh (i.e., the mesh goes from a comparatively small mesh element size at
the solid surface (bottom) to a comparatively large mesh element size at the farfield
(top)). Figure 15 shows that the new grids have the same characteristics as seen before.
The virtual control volume approach and direct mapping result in similar grids while the
hybrid approach, where the original physical mesh is scaled to a unit circle, stretches the
mesh away from the surface. For additional clarity, look also at a superimposed view of

the original mesh with the hybrid mesh, which is shown on Figure 16.

Figure 12 — Physical domain of a 5-point mesh (box5).
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A — Virtual Control Volume, B — Direct Mapping, C — Hybrid Mapping.

Figure 15 — Effect of computational space on a simple box mesh.

Figure 16 — Original mesh compafed with a mesh generated using a hybrid computational space
paradigm.
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To explore exactly what is happening, the smallest possible non-trivial mesh was
examined. This was a mesh with a total of 5 points, 4 of which are boundary points that
will remain static. The physical domain for this mesh was shown on Figure 12. It is
instructive to look at this simple mesh because the Winslow equations are a system of
equations that work on the entire system of mesh points in an iterative and collective
fashion. This 5-point mesh (referred to as box5) allows an observer to isolate a single

point for analysis.

While examining the box5 test mesh, it is important to keep focused on the fact that
at each node (in this case only one node) the Winslow equations, which are derived by

taking the Laplacian of the computational coordinates with respect to physical space (
V2£=0 and V’np=0) are being solved. By focusing on the Winslow equations, which
are shown on equation (3.2), and keeping in mind the characteristics of Laplace’s
equation, much insight can be gained from examining the elliptic smoothing of the single

interior point.

The first of the three computational space paradigms used to smooth the box5 mesh
is the virtual control volume paradigm. This computational space is shown on as the top
illustration on Figure 13 with the edge normals color coordinated to the edge colors of the
physical mesh shown in Figure 12. The second paradigm uses the original mesh as the
computational space (shown on the bottom left of Figure 13) and the third paradigm uses
a hybrid approach where the original mesh is used for the computational space but the
space is scaled such that each of the surrounding points are on a unit circle surrounding

the node of interest (shown on the bottom right of Figure 13).
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The virtual control volume paradigm results in the interior mesh point being driven
to a location equidistant from the surrounding nodes. The direct mapping paradigm
results in the interior mesh point remaining exactly where it started out. The hybrid
paradigm causes the interior node to be driven away from the surface that it was located
closest to initially. The final smoothed positions of the interior node and the
accompanying meshes for all three smoothing approaches are shown on Figure 17. By
examining each of the resulting meshes, which are generated using each of the three
computational space paradigms, it can be seen that the choice of computational space
does, indeed, have a profound effect on the final position of the elliptically smoothed

nodes.

To capture the effect that each of the three computational spaces is having when
driving the physical mesh to its new orientation, note that each of the computational
space meshes is driving the physical mesh to mimic the‘ characteristics of the given
computational mesh. This can be clearly seen (as on Figure 18) when looking at the ratios
of where the mesh falls in its domain in computational space compared with the ratios of

where it falls in physical space; they are exactly the same.

38



T L

Virtual Control Volume -

Hybrid Mapping .
Direct Mapping -~

2 Y
\‘n
.\:\\
1.5 |
1+
0.5
0
0 0.5

1 1.5

'y ]
0s
075
/
Al
05 i
028
¥ y
- o} S - - -
0s 05 0s 05
4 i
05
0.7s
Al
4
38
T i
025
Y Y
- | - - ] =
0s i 05 0s ; 05

Figure 17 — Physical Box5 mesh after smoothing.
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Figure 18 — Comparison of an interior point in computational (top) and physical (bottom) space.

Results on the left are for the virtual control volume case; results in the middle are for the direct mapping
case; results on the right are for the hybrid (scaled) mapping case.
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In all three of the box5 cases that were examined, the x coordinates of the nodes are
distributed evenly and will not have any effect on the interior node. Thus, the y
coordinate can be focused on in order to understand what is happening mathematically.

The Winslow equation for y, first shown on equation (3.2) and restated here is:

2 2 2
all 0P 0V
o5 ogon ~ on

Recall that the coefficients for the Winslow Equations, which are made up of
derivatives of the physical coordinates with respect to the computational coordinates, are:

(xY (oyY ,_oxx oydy _(axY (avY
“'(%) +(5] » P=oeon oe oy ’”(%J +(65)

The Winslow equations originated with structured meshes, where it is easy to think
of the derivatives from a finite difference perspective. To illustrate the concept of the
derivatives of physical space with respect to the computational space coordinates from a
finite difference perspective, consider the structured mesh surrounding a NACA0012

airfoil shown on Figure 19 where the £ direction wraps around the airfoil and the 7

direction emanates out from the airfoil.
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Figure 19 — Structured mesh around an airfoil.

Consider the green dot on the structured grid surrounding the airfoil that is shown on

Figure 19. If the & direction wraps around the airfoil and the 7 direction emanates out

from the airfoil, the derivatives can be found as:

% = i—'f where Ax is the x distance between the pink dots and A€ is 2.
X
% _A¢

— where Ay is the y distance between the pink dots and A¢ is 2.

oy Ay

%7 = i—g where Ax is the x distance between the orange dots and A7 is 2.
X

on A
L where Ay is the y distance between the orange dots and A7 is 2.

o Ay

There is, however, no equivalent finite difference way to do this using unstructured

methods and, instead, the derivatives are examined from a finite volume perspective,

which is derived from the divergence theorem and relies on surface normals. The partial

derivatives can be found using the non-unit normal vectors of each of the edges and the
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average value of some parameter over an edge of a control volume. Specifically, the

gradients of y with respect to the computational coordinates (&, 7), can be determined as:

ay 1 #of edges

S ying

o Ao T.T

ay 1 #of edges_

o A & T
n i=1

The non-unit surface normal vectors for the three computational space paradigms

shown on Figure 13 and described above have the values tabulated in Table 1.

Virtual Control Volume Direct Mapping Scaled Mapping
r =10 n,=10 |[n:.=00 n,=-20 |[n:=00 n, =-1.79
=10 |[n,=10 |m=20 |n,=00 |n:=128 |n,=0340
dge =10 [Ap=-10 [B:=00 |n,=20 {m:=00 n, =-1.11
£~ 1.0 n,=-1.0 n: = -2.0 n, = 0.0 n: =-1.28 1, = 0.340

Table 1 — Non-unit normal values.

Each of the edges in computational space is color coordinated with the edge in
physical space. When the average values of y (i.e., ¥) over each of the edges in
computational space are used in the equations for calculating gradients, the coefficients
for the Winslow equations can be calculated. Coefficients were generated for all three

paradigms and the results are compiled in Table 2.

Virtual Control Direct Mapping Scaled Mapping
Volume

a=1.0 a=2.0 oa=2.44
$=0.0 $=0.0 g=0.0

v=1.0 y=2.0 v=1.90

Table 2 — Winslow equation coefficients.
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For the virtual control volume paradigm and the direct mapping paradigm, the
Winslow equation for y, when the coefficients from Table 2 are used, reverts to the

simple homogeneous Laplace’s Equation for y in computational space (shown below).

2 2 2
aaz_ﬂ oy +76};=0
o0& okon  on
2 2
05" on

From inspection of the computational space domains for the virtual control volume
and direct mapping paradigms (Figure 13), and knowledge of the behavior of Laplace’s
Equation, it becomes obvious that the y value for the interior points would become what
they did (the values became what would be expected given regions bounded by Dirichlet

boundary conditions such as those shown on Figure 20).

y=2
y=1 y=0
=1 y=1 S dn,
YD (=1 y=0.5
y=0
Figure 20 — Interior value for y given Dirichlet boundary conditions and regions driven by Laplace’s

equation.
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The case where a hybrid computational space is used is more interesting because it

does not revert to a simple homogeneous Laplace equation but instead ends up in a more
general second order partial differential equation (shown below) where the coefficients
are not unity. These non-unity coefficients are affecting the solution in such a way that

that they are driving the node away from the nearest surface in physical space.

2 2 2
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Consider once more a generic mesh for analyzing external flow on a body which
progresses from a smaller element size at the body surface to a larger element size at the
farfield. Consider a mesh node with a valence count of 6 (a node connected to 6 other
neighboring nodes). If this node were in a perfectly uniform mesh, it could be modeled
by a point in the center of a circle. However, if there is some effective geometric
progression in the mesh, the node could be modeled as a point offset in a circle. So, a
point above a surface could be modeled as shown on Figure 21. If this point was then
mapped to the center of a circle (as is done with the Hybrid Computatiénal Space
Paradigm) the results would be as seen on Figure 22. Note the effect that this has on the

normals. The normals have all shifted away from the surface.

As an example from an actual (though still simple) mesh, the mesh shown originally
in Figure 15 is reexamined here with the focus on the region surrounded by the green box

and the node highlighted by the green dot in Figure 23.
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If the node shown in green in Figure 23 is mapped to a unit circle, the results can be
seen on the image on the right of Figure 23. The same effect as seen on Figure 22 is also
seen on these normal vectors, which is that the normal vectors are again shifted away
from the surface. The normals from the original mesh are shown in black on Figure 23
while bthe normals of the shifted space are shown in red. Both normals are shifted to the
surface of the unit circle for easier comparison. Because the normals are driving the
Winslow equations, is not surprising that, as the normals are shifted away from the

surface, the mesh is driven away from the surface as it is smoothed.

Figure 21 — Offset node. Figure 22 — Offset node and computational
space using hybrid scaling.
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Figure 23 — Effect of hybrid scaling on a node near a surface.
Note that manipulating the computational space has a direct effect on the physical space. It is this fact that
allows the homogeneous form of the Winslow equations to be used. If no direct effect was realized, forcing
functions would be required to manipulate the physical mesh.

3.5 — Isotropic Winslow Equations Applied to a Flat Plate

Prior to the research described herein, the Winslow equations have been explored
and utilized on many meshes suitable for analyzing inviscid flow fields. However, very
little research has been performed in which the equations are applied to unstructured
meshes suitable for analyzing viscous flow fields. The logical place to start the
exploration into this area was with a flat plate since viscous flow on a flat plate is well
defined and understood. In addition to the well-established characteristics of a flat plate, a
flat plate also has the benefit of being able to be manipulated within a mesh in ways (such

as bending and warping) that could cause problems with more complex geometries.

A two dimensional flat plate was created using the Gridgen software package [12]

and converted to the format required by the mesh manipulation code. The initial flat plate
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mesh that was used is shown on Figure 24. This initial flat plate mesh was very coarse

and there was no symmetry in the mesh surrounding the flat plate surface.

The flat plate surface was rotated 45 degreés within the surrounding mesh domain
and the mesh smoothing code utilizing the Winslow equations was run on the
surrounding mesh. It was found that, due to the coarseness of the mesh and the proxinﬁty
of the modified inner surface to the stationary outer surface, the resulting mesh, seen on
Figure 25, resulted in considerable grid crossing. This was an interesting test because it
illustrated the limits of the Winslow elliptic smoothing equations, especially if bdundary

nodes are held static.

The unsatisfactory result shown on Figure 25 leads to two conclusions: It is
necessary to use a finer mesh around the flat plate and, also, there is a need to have the
ability to move mesh points on a boundary surface. It can be seen from Figure 25 that
there is an insufficient number of points between the endpoints of the flat plate and the
outer surface. Because of this, combined with the fact that the points on the outer surface
are not permitted to move, fhe Winslow code was not able generate (at least not with the
relaxation factor that was utilized) a viable mesh for the modified (rotated) flat plate

given the original connectivity.

Moving boundary points will be discussed in subsequent sections but consider here
the effects of the Winslow equations on the same flat plate with a finer interior mesh. The
same basic mesh setup was used again but with the exception that the boundary-decay
was changed from 0.5 to 0.9 within the Gridgen grid generation package. This resulted in

the refined mesh shown on Figure 26. The flat plate surface was again rotated 45 degrees
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and the surrounding unstructured mesh was again smoothed using the Winslow

equations. Unlike the results for the coarser mesh, the smoothing algorithm now

generated a viable smoothed mesh around the rotated flat plate, which is shown on Figure

26.
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Figure 25 — Results of Winslow smoothing on a rotated coarse flat plate mesh.
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Figure 26 — Original and rotated flat plate using a boundary decay of 0.9.

Although the last mesh shown on Figure 26 is a viable mesh (i.e., there is no edge
crossing or negative volumes) it is obvious that without allowing the boundary points to

move, the Winslow equations will generate some unreasonably high skewness in some of

the cells of the final mesh.

To further explore the Winslow Equations on a flat plate. A mesh was generated that

closely resembled the mesh described in Reference [13]. This paper explored the area of
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Figure 27 — Refined symmetric flat plate mesh.

Three cases were examined using the mesh from Figure 27: rotation, translation and
28. For each of the cases, the mesh is shown after the inner surface is moved before and

mesh movement but used entirely different techniques, which were based on the Linear
a warping of the flat plate surface. The results from these three cases are shown in Figure

Elastic equations. The new flat plate mesh is shown on Figure 27.

after smoothing has been performed.




translated and warped into a semi-circle.
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Although all of the grids on Figure 28 look relatively good, the mesh where the flat
plate has been warped into a semi-circle again illustrates the need to have the ability to
move boundary points if a surface near another boundary is going to be modified. A
close-up of the mesh near fhe right endpoint of the flat plate is shown on Figure 29 and
Figure 30. This close-up follows two sets of points (marked as black and blue dots)
before and after mesh smoothing is performed and shows the difficulty in trying to wrap
the mesh around the new geometry while retaining the original connectivity and outer

surface grid spacing.

Examining what is happening on Figure 30, it can be seen that the smoothing
equations are trying to wrap the two lines of connectivity around the warped flat plate but
in some areas the Spécing and limited connectivity between the two lines in not adequate
to generate a high-quality mesh. Note the connectivity between the two sets of points
near the flat plate. Before the flat plate is warped, there is adequate space in between the
two sets of nodes to accommodate the connectivity between the sets. However, after the
flat plate is warped and the mesh has been smoothed, the two sets of nodes are driven

together in a way that makes it difficult for valid connectivity to be maintained.
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Figure 29 — Lines of connectivity between an inner boundary and an outer boundary.

The area surrounded by the blue box in this figure is examined in greater detail in Figure 30.
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Figure 30 — Connectivity path between surface and outer boundary before and after surface
modification.
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3.6 — Isotropic Winslow Equations Applied to a NACA0012
Airfoil

| It should be noted that although isotropic Winslow Equations have significant
limitations, there are also many situations in which they are extremely valuable tools for
mesh manipulation. One of these situations is to smooth the inviscid mesh of a body that
has been moved or deformed in some manner. Another situation where the isotropic
Winslow equations can add significant value is in Adaptive Mesh Refinement where h-

refinement is employed.

H-refinement schemes determine regions of the grid where the solution is under-
resolved and add elements locally to improve the resolution. However, if no smoothing is
employed, the mesh can become extremely skewed as more points are added to a given
area. Winslow elliptic smoothing can alleviate this tendency toward skewed cells as

additional nodes are added.

A NACAO0012 airfoil was used to further test the implementation of the isotropic
Winslow grid smoothing algorithms. The airfoil, which had an initial angle of attack of 0
degrees, was rotated to a nose-down position of 60 degrees and the mesh was smoothed.
Tile grid before and after the rotation can be seen on Figure 31 and Figure 32. Note that
after the initial rotation, the mesh is completely invalid. The boundary points associated
with the airfoil surface were moved but all of the interior points remained stationary and
this resulted in a mesh containing extreme grid crossing and skewness. This is not an
issue when structured grids are utilized because structured grids have an implicit

computational space that is not invalidated by an invalid physical mesh as long as the
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grid connectivity does not change. Likewise, by using equal angle equal edge-length
virtual control volume as the computational space for the unstructured mesh, the invalid
physical space was not an issue and a high-quality inviscid mesh was generated for the

transformed airfoil mesh.
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Figure 32 — NACA0012 mesh after Winslow smoothing has been performed.
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The next case that was examined was a transonic case involving a NACA0012 airfoil
in a Mach 0.95 flow. At Mach 0.95 and zero angle of attack, the flow speed increases to
about Mach 1.3 as the flow traverses the airfoil and then shocks down at the tail.
However, the flow does not quite shock down to subsonic at that point and remains
slightly supersonic for several chord lengths behind the airfoil. The flow then shocks
down below the speed of sound, causing the airfoil to exhibits a distinct sonic line ér
“fishtail shock™ in its wake. This is illustrated on Figure 33. The objective of examining
this case was to use solution adaptation to adapt the original grid (shown on Figure 33)
with the hope of capturing the shockwaves coming off the airfoil and also the secondary
shock behind it. This was an excellent case for employing the inviscid Winslow equations
because the areas of interest (the sonic lines) )were in the inviscid region of the mesh and

thus an isotropic mesh in these regions was adequate.

Three different flow parameters (which were generated using an in-house 2D Euler-
based CFD code) were examined: Mach number, pressure, and velocity magnitude.
Successful solution adaptation was performed with all three parameters but Mach number
was focused on because it captured some elements of both pressure and velocity. Shown
below in the images comprising Figure 34 is a progression of the grid over 6 refinement
passes. Figure 34 shows that the adaptation algorithm, coupled with the Winslow elliptic
smoothing algorithm, successfully captured the shock coming off of the airfoil and also
the secondary shock behind it. As the solution was repeatedly refined, the mesh elements
in the area of the shock would have become increasingly skewed if no smoothing was
erhployed. It is likely that eventually the skewness of the cells would have negatively

affected the CFD solution. An enlarged image of the final mesh is also shown on Figure
56



35 and it can be seen that even after many refinement iterations, the mesh elements in the

region of the shock still have good isotropic aspect ratios.
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Figure 33 — Flowfield and original mesh around a NACAO0012 airfoil at Mach 0.95.
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Figure 34 — Progression of grid refinement.
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Chapter 4 — Winslow Equations on
Boundaries

4.1 — Background

As noted in previous sections, the Winslow elliptic smoothing equations are derived
from Laplace’s ’Equations for a parameter distribution over a region. When applied to an
unstructured mesh, the equations allow interior mesh points to be moved and smoothed to
conform to a moving surface. Prior to the work outlined in this section, the Winslow
equations have been applied only to interior mesh points on unstructured meshes. The
following methodology allows for the implementation of the Winslow equations on

boundary points as well.
The Winslow equations' deal with derivatives of physical space (x,y) with respect to
computational space (&,77). The equations, which were first defined in equation (3.2) are

restated below:

0°x o*x o*x
&2ty ==

o¢ o0son ~ On

2y &y &y

g Lclag L. =
o0& ocon ' on

The Winslow equations are applied to a control volume (in computational space)

around each point in the mesh. By employing the Divergence Theorem, a set of surface
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integrals, shown below, is generated on which the Winslow equations can be solved to

smooth the physical coordinates of the mesh points.

0°x ’x " ox .
ﬂ(aagz_z o ]dA cj&(a%nf nn5+75’;n”)ds=0

0’ n
”(aa‘f};—2 yﬂ }lA @(a%ng—Zﬂ—-n§+7%n”}iS=0

In the above equations, fi,is the £ component of the unit normal vector on the

surface of the control volume in computational space and i, is the 7 component of the

unit normal vector on the surface. The surface integrals can be discretized as follows:
4.1

In the discretized equations, dI' is the length of a discrete surface segment. Equation

(4.1) can be simplified by applying the relationship between the unit normal vector (ﬁ)

and a non-unit normal vector (n) on a given surface segment. Applying this relationship,

which is A" = n, simplifies equation (4.1) to (4.2).

“4.2)

To see an applicatiori of a control volume on which this would be applied, consider

the real (though simple) 9-point unstructured mesh shown in Figure 36. In this figure, the
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nodes are numbered in order to illustrate the mapping from physical space to

computational space, where the Winslow equations are applied.

The only interior node in Figure 36 is node 8 and the computational space for node 8
is shown on the right hand side of Figure 36.The computational stencil for the interior
point (node 8) is relatively straight-forward but no intrinsically obvious stencil exists for
a point on a boundary, such as node 5. Recall from Figure 2 in Chapter 1 that the
computational stencil of a bounciary point is incomplete. In order to complete the
computational stencil for a boundary point, the concept of ghost nodes is introduced. If,
for example, it was desired that node 5 on Figure 36 be allowed to float, a ghost point

could be placed as shown on Figure 37.

The ghost point, which in this case is node 9, allows the control volume in
computational space to be closed. The closed virtual control volume making up the

computational space for the surface node (node 5) can be seen on Figure 37.

,«/

2= i} i =

0 1 : s A
Figure 36 — Interior node (node 8) in physical (left) and computational (right) space.

61



.7+ Point
l \
i N
i
6 e 5 N 4
T T T T 5 /
o‘/l
P
o
/'//
,'/
g i
B A
7 yZE A3
//'
y. 4
P
///
v |
vl
,'// /
/ L L 7 Il 1

¢ : 1 : E R e e e :
Figure 37 — Surface node (node 5) and ghost node (node 9) in physical (left) and computational
(right) space.

4.2 — Placing Ghost Points

Consider a surface node such as node 5 in Figure 37. If a node on a surface is to be
allowed to float, it will need an associated ghost point (such as node 9 in the previous
figures) in order to close the virtual control volume to which the node is mapped in
computational space. The Winslow equations are solved in computational space and the
parameters they are solving for are the physical x and y coordinates of node 5 based on
the physical x and y values of the connected neighboring nodes (nodes 6, 7, 8, 4 and 9).
Because the value of x and y for node 5 is a function of the values of x and y for the
connected nodes, it is necessary to place the ghost point at some reasonable location in
physical space.
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The first attempt at placing the ghost point was to place it at the same location as the
associated boundary node. However, this had a fatal effect on the boundary points. For
example, when the top outer boundary of a mesh surrounding a flat plate was allowed to
float and the ghost point values were set to the values of their associated boundary nodes,
the surface points were all driven either to the corners of the boundary or, because of the
symmetry characteristics of the mesh, to the symmetry plane. This effect can be seen on

Figure 38.

Upon further consideration, it makes sense that this method of placing ghost points
would cause problems. To illustrate this, consider the control volume shown on Figure
37, which is in computational space. It is apparent from Figure 37 that node 5 will never
be able to reach equilibrium with the surrounding points if one of the surrounding points
is always being driven to the same value as the point at the center. This is what is
happening as the attempt is made to generate a solution on the flat plate mesh. The
central nodes in computational space that represent floating-node boundary points will
never be able to reach a converged solution and nodes in physical space will be driven in

some direction until the solver runs out of iterations.

i ‘ p
;l“"-i -¥" "#"f%g"l}‘

Figure 38 — Effect of co-locatmg ghost pomts wnth their associated surface pomts.
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The next attempt at defining the coordinates of the ghost point involved calculating
the average location of all interior points (Pa) connected to a surface point (Ps) and then
extending the line connecting P4 and Ps. Once the line connecting Po and Ps was
extended, a ghost point (Pg) was then placed on this extended line at a distance equal to

the distance between P4 and Ps.

To graphically illustrate the placement of the ghost points, consider the surface point
shown as Pgs on Figure 39. Ps has 3 interior nodes to which it is connected; these points
are shown in green on Figure 39. The average interior point (Pa) is placed at the average

coordinates of the three attached points. A line is then formed between PA and Ps using
the point slope equation of a line (y -y, = m(x - xl))and a ghost point, Pg, is placed on

that same line at a distance outside the boundary equal to the distance between P4 and Ps.
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4.2.1 — Reflection vs. Extension

Placing the ghost points using the extension technique described above gave
reasonable results but, in order to most efficiently place the ghost points, the
methodology used for the ghost point placement was explored further. As described
previously, the first viable method for placing the ghost points involved extending a line
] connecting Po to Ps and placing Pg on that line at a distance equal to the distance
between Pa and Ps. Another possible technique would be to use a direct reflection of Py
about the boundary surface at Ps. The contrast in the placement of the ghost point using

these two techniques is illustrated on Figure 40.

PG, extension

/
- / /P G, reflection

>\ _ ///

Figure 40 — Ghost point placement: reflection vs. extension
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Intuitively, from examining Figure 39 and Figure 40, it appears that plaéing the ghost
point using reflection would tend to be a better convention. Looking at the mesh in these
figures, which has a circular outer boundary, it can be seen that P, is at a location which
is generally clockwise from Ps. However, placing the ghost point using extension will put
the ghost point at a position which is slightly counterclockwise to Ps, thus diminishing
some of the force that is driving the surface point in the desired direction (toward the
average of the connected interior points). By using reflection to place the ghost point, the
ghost point complements the interior points in driving tﬁe surface point to a new location

rather than counterbalancing them.

4.2.2 — Reflection Methodology

If reflection is to be used, a matrix of transformation is used to place the ghost point

by mapping P4 onto a reflected position. This transformation, T : R* — R?, has the form:
T(x)=[R]X (4.3)

In equation (4.3), [R] is a standard matrix of linear transformation and X is the

coordinate vector of the point that is being mapped to a new position. In order to

calculate the standard matrix of reflection, one must construct the tangent vector,

= d
d= [dl } , about which the point will be reflected. This tangent vector will represent a line
2

tangent to the boundary surface at the point Ps. For a discretized boundary surface, the

tangent can be approximated as P, —P._ whereP,_ is the point on the surface before Pg
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and P, is the point on the surface after Ps. Using the tangent vector of the line tangent to

the surface at Ps, the standard matrix of reflection can be found as:

l=hdh=dinic 240,
(Rl - e oy (4.4)
d +d" ) 2d5d,5 =d it 4dy
Once the matrix of reflection is known, the ghost point can be calculated as follows:
Pa :
P, = [PG }= [R]P, (4.5)
Gy

As expected, using the reflection technique to place the ghost points did improve
convergence. However, the effect was not drastic. The meshes in Figure 41, Figure 42
and Figure' 43 show a comparison that illustrates the difference in using the two
techniques after 1000, 3000 and 5000 iterations respectively. It can be seen thaf the mesh
that is generated using the reflection technique (shown in magenta) is “leading” the mesh
that is generated using the extension technique (shown in blue) as the two meshes
advance toward a converged solution. The effect is best observed by looking at lines
coming off the ends and center of the flat plate, which are seeking a state such that they

are normal to both the inner surface (the flat plate) and the outer surface.
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Figure 41 — Comparison of mesh using extension vs. reflection to place ghost points after 1,000
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iterations.
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nodes.
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In addition to the comparisons shown on Figure 41, Figure 42 and Figure 43, a more
lucid view of the difference in the convergence using the two ghost-point placement
methods (after 1,000 iterations) can be seen on Figure 44 above. The technique that is
used to perform the coordinate reflection in two dimensions is extended to apply to three

dimensions in Appendix C.

4.3 — Flat Boundaries

The first case that was used to test the methodology for manipulating surface points

using the Winslow equations was a flat-plate surrounded by an unstructured mesh
bounded by flat (constant in X or constant in y) boundary surfaces. This mesh can be seen
in Figure 45. Recall that the Winslow equations are a set of 2 equations (for each node)
that are solved for the x and y coordinates. Therefore, in the case where the boundary is
flat (horizontal or vertical), only one of the equations will require a solution. For
example, on the top boundary of Figure 45, the y-coordinate will not be changing so the

second Winslow equation will not require a solution.
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Figure 45 — Flat plate bounded by flat boundary surfaces.

The mesh shown on Figure 45 gave a good initial testbed for looking at the effects of
a moving boundary. The flat plate surface embedded in the mesh in Figure 45 was
translated, rotated and deformed into a semi-circle and the mesh was smoothed using the
Winslow equations. The resulting meshes, with and without floating boundary points, are

shown on Figure 46.

Figure 46 shows the benefit of allowing the nodes on the boundary to float. Without
allowing the boundary nodes to float (i.e. when they are held static as they are on the left-
hand side of Figure 46) the interior elements near boundaries exhibit large amounts of
skew as the elements are forced to stretch to try to accommodate the moving inner
boundary. When the nodes on the outer boundaries are éllowed to float (as on the right-
hand side of Figure 46) less skewing results because less element stretching is necessary.
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The mesh shown on Figure 45 is of limited practical valuevbecause it has such a
rigorous definition of what shape the outer boundaries must be (i.e., they must be
constant in x or constant in y). For the cases with the flat outer b.oundaries, the
implementation of the Winslow equations explicitly took this into account. The equations
were implemented by only solving the equation for the coordinate that was moving. The
nodes on the top boundary of Figure 45, for example, were not allowed to move in the y
direction so the Winslow equation for movement in y did not even need to be solved. In
general, this is not the case; in general, boundaries are described in one of two ways.
They are defined analytically (circle, quadratic, spline etc.) or they are described by
discrete segments. In either case, the Winslow equations for both x and y must be solved
and the surface points must then be manipulated so that they conform to the original

surface definition.
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— Mesh smoothing with and without moving boundary nodes.

This figure shows the benefit of allowing the nodes on the outer boundaries to move. By allowing the

Figure 46
reduced compared to meshes where the boundary nodes are fixed (illustrated by the meshes on the left

boundary nodes to float (illustrated by the meshes on the right side) the skewness of the mesh has been

side).
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4.4 — Projecting a Node onto the Boundary

The algorithm that performs the mesh movement is a point iterative scheme where
the coefficients in the Winslow equations, o, B, and y, must be recomputed at each
iteration. Each time an iteration is performed, all of the nodes will move to a point that
the smoothing algorithm considers the optimal placement for that iteration. For interior
points, this new position will be the starting place for the next iteration. However, for

boundary points there is an additional step.

At each iteration, each boundary point that has moved must be projected back to the
surface that defines the original boundary. If this is not done, the boundary will begin to
wander away from its original position to a position that better satisfies the elliptic
smoothing equations and not conform to the true boundary. Projection methods were
implemented for two different boundary types: analytically and explicitly defined

boundaries.

4.5 — Analytically Defined Boundaries
It has been the author’s experience that the most common analytically defined outer

boundary used in two-dimensional external-flow CFD is a circle. This boundary, for a
region where the center is at the origin, can be defined by the expression x> +y’ =1’

where x and y are the coordinates of a boundary point and r is the radius of the outer

boundary. Once Winslow smoothing has been performed, x and y will be modified and

now X’ +y> #1”. The boundary point must then be moved to the closest point which is
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on the original boundary surface definition. It can be shown (See Appendix D) that for a

point, p= (xp,yp) , the closest point on a circle with radius r is the point of intersection

between the circle and a ray originating from the origin and passing through point p. This

ray can be defined by the equation for a line: y = mx + b where the slope is m = bid and

Xp

the y-intercept, b, is zero. There are now two equations and two unknowns for the closest

point:

Solving the equations for x gives:

(4.6)

In the “closest point” section of the Winslow smoothing code, the logic for
determining the smoothed x and y coordinates of a boundary point is coded up as

follows:

if(xp = 0 and y, = 0) - an error will be generated because if the point is at the origin, all
points on the boundary are exactly the same distance away and the

closest point is undefined.
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If only x, = 0 then the slope is zero and the closest point is found by inspection as:
ifxp=0andy,<0)» x=0and y=-r

ifxp=0andy,>0)» x=0and y=r

If neither x, nor y, are zero, then:

2
T

if(xp<0) - X=- > and y =mx
1+m
I,2
if(xp<0) - X = > and y=mx
+m

4.5.1 — Flat Plate Results Using Analytically Defined Boundaries

The logic described above was applied to a mesh whose outer boundary was
analytically defined as a circle. This mesh, prior to any smoothing, can be seen below on

Figure 47.

The nodes on the inner flat-plate surface of Figure 47 are described in some position
(either their original position or deformed in some way) and then the rest of the mesh,
including all of the nodes on the outer surface, are allowed to float. The mesh is
smoothed using the Winslow equations and, at each iteration, the nodes on the outer
surface are projected to the nearest point on the analytically-defined surface so that the

outer surface definition is not changed. The results for a mesh surrounding a flat plate

76



1.5

0.5

Figure 47 — Mesh region with outer boundary analytically defined as a circle.
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that has been translated, rotated, deformed and both rotated and deformed are shown on

An interesﬁng comparison can be made if the mesh is smoothed in its original
position and then smoothed again after the flat plate has been rotated 45 degrees. The
mesh, including the outer boundaries, should look the same, just rotated 45 degrees.

Compéring the two meshes in Figure 52 shows that this is indeed what happens.

Figure 48 through Figure 51.
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Figure 48 — Translated flat plate with floating-node outer boundary.
Figure 49 — Rotated flat plate with floating-node outer boundary.
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Figure 50 — Warped flat plate with floating-node outer boundary.

g
Figure 51 — Warped and rotated flat plate with floating-node outer boundary.




Figure 52 — Comparison of a smoothed mesh, before and after rotation.
Allowing the nodes on the outer boundary to float allows the rotated mesh to closely mimic the
characteristics of the original mesh, just rotated 45 degrees.

4.6 — Explicitly Defined Boundaries

Although meshes used in CFD analysis sometimes have boundaries defined by
analytical functions as described in the Section 4.5, it is more common for boundaries to
be defined explicitly by a discrete shape that is defined in a geometry file. The nature of
the geometry file will vary but, for two-dimensional analysis, the geometry file will
generally take the form of a segment file where the shape is defined by discrete line
segments. Any arbitrary level of accuracy in capturing the boundary shape or curvature
can be achieved by increasing the number (and shortening the lengths) of the line
segments in the geometry file. In three-dimensional analysis, the file will generally take
the form of a tessellated surface file such as a VRML or STL file. Because boundary

surfaces are most commonly defined in this manner, it is necessary that a floating-node
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boundary on a mesh which is to be smoothed is able to adhere to a boundary explicitly

defined in this way.

Projection onto an explicitly defined boundary is achieved by utilizing a C++
“geometry” class that was developed by Dr. Steve Karman at The University of
Tennessee at Chattanooga (UTC). Using this class, the boundary is defined by a discrete
geometry file, which is comprised of a user-defined number of line segments on the
surface. The number of segments will vary depending on the desired tolerance of the
projection onto the surface. The geometry file on which the‘ geometry surface is based
can be easily generated using Gridgen by exporting a curve (or number of curves) under

the INPUT/OUTPUT commands in the Gridgen interface [12].

Once a geometry object is read in from the geometry file, a closest-point method
(which is defined within the C++ geometry class) is used to project the surface node back
onto the surface after it has been moved due to Winslow Smoothing. It was desired that
the smoothing and projection methodology be tested on a shape other than just a simple
circular surface so a discrete outer boundary resembling an ellipse was created and a flat-
plate was manipulated vwithin this new boundary. The smoothing of this mesh is

demonstrated in the images shown on Figure 53 below.

81



1.5
defined elliptically shaped outer

0.5

boundary.
The top image shows the mesh in the original position and the bottom image shows the mesh after the
82
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embedded flat plate has been rotated and the mesh has been smoothed.

Winslow smoothing on a mesh with an explicitly
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Figure 53 —




4.7 — Floating Points on Multiple Boundaries

Once the Winslow elliptic smoothing equations were working correctly on a single
boundary, the code was extended to be able to handle moving points on multiple
boundaries. To test this, a mesh was generated that had a structure similar to the flat-plate

mesh but, instead of a flat plate, the inner surface was a NACA0012 airfoil.

When dealing with a shape such as an airfoil, which has two portions of the surface
that are relatively close together, it is necessary to split the surface into an upper and
lower portion and limit the surface-point projection to the original surface. Otherwise
(e.g., at the sharp tail of an airfoil) a node from the upper surface can easily be projected
onto the bottom surface if the node is moved in between the two surfaces when

smoothing is performed. This undesirable effect is illustrated on Figure 55.

A separate bouridary cpndition was added to the code to handle boundaries that were
comprised of multiple sections. The boundary condition was implemented in such a way
that when the mesh was smoothed, the endpoints remained in their original position while
the remaining points on the boundary were allowed to float. This was different from the
previous implementation where all surface nodes, even the nodes at endpoints, were
allowed to float. When this new boundary condition was implemented, the mesh
surrounding the interior (airfoil) surface acted as expected. The results can be seen below

on Figure 56.
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Figure 55 — Effect of projecting onto the wrong surface of a sharp airfoil tail.
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Figure 56 — Close-Up of mesh near interior surface at the nose and tail of an airfoil.

In this figure, the airfoil surface was defined as two distinct surfaces (a lower surface and an upper surface)

and the surface mesh was confined to its original surface. This eliminated the possibility of a node from the

upper surface being projected onto the lower surface if the smoothing equations placed the node in between

the two original surface locations.

L

As seen on Figure 56, the modified mesﬁ around the airfoil surface is comprised of
what would normally be considered very “good” triangles in that they are close to
equilateral. However, note from Figure 56 that in order to equalize the angles in the
surface triangles, the mesh points were driven away from the airfoil surface. This might
by a good mesh for an inviscid flow but, if it is desired to capture the viscous effects of a
flow within a viscous boundary layer, this will have a negative impactb on capturing the
correct characteristics of the flow in this region. To alleviate this effect, the smoothing
logic must be modified such that the computational space (which currently utilizes equal
angles) can be utilized to try to better retain the characteristics of the original mesh. This

is discussed in detail in chapter 5.
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4.8 — Multiple Element Airfoil
4.8.1 — Airfoil Rotation

The final case that was examined to explore the effects of applying the Winslow
equation to the boundaries was to apply Winslow elliptic smoothing to a multi-element
airfoil. The airfoil that was employed for this purpose was the 30P30N multi-element
high-lift airfoil. The 30P30N is a three-element airfoil consisting of a ceﬁtral airfoil
section with a flap section in the rear and.a slat section in the front. The mesh that was
used was a relatively dense mesh with 23,012 mesh points and 44,437 triangular
elements. The original configuration of the airfoil was with the flap and slat extended (the
high-lift configuration); the entire mesh can be seen on Figure 57 and a close-up view

near the airfoil surface can be seen on Figure 58.

The 30P30N airfoil was pitched 30 degrees counter clockwise and the surrounding
mesh was smoothed using the Winslow equations to adapt the flowfield mesh to the new
airfoil surface position. The mesh was smoothed using both a static outer boundary and a
floating-node outer boundary, which can be seen on the left and right sides of Figure 59,
respectively. Initially, because of the dense mesh and the abundance of levels of
connectivity between the inner and outer surfaces, it was unclear if the outer boundary
would be greatly affected by the treatment of the outer boundary nodes (static vs.
floating). After the cases were examined, it was determined that, in fact, the outer
boundary was significantly affected. As shown on Figure 59, when a floating-node
boundary was employed, the nodes on the outer boundary floated in a counter-clockwise

direction until the final mesh closely resembled the original mesh, just rotated 30 degrees.
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Four representative outer-boundary mesh points are marked in black on Figure 59 so the

rotation can be easily discerned.

-~ A close up of the mesh near the airfoil (before and after the 30° pitch) is seen on
Figure 60 and Figure 61. In order to test the quality of the mesh, a CFD flow solution was
generated using an in-house 2D Euler solver for the airfoil at both 0° and 30° angle of
attack using a freestream Mach number of 0.95 and the results are shown on Figure 62
and Figure 63. The solver did not have any problems generating a flow solution on either

the zero angle of attack or the rotated mesh.
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Figure 57 — 30P30N airfoil and mesh.

— Close-up of 30P30N airfoil.

Figure 58
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Figure 59 — 30P30N mesh, without (left) and with (right) a floating-node outer boundary.
When a floating-node boundary was employed, the nodes on the outer boundary floated in a counter-
clockwise direction until the final mesh closely resembled the original mesh, just entirely rotated 30 degree.
Four representative outer-boundary mesh points are marked in black so the rotation can be easily discerned.
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Figure 60 — 30P30N airfoil at zero degree angle of attack.
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Figure 61 —30P30N airfoil at thirty degrees angle of attack.
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Figure 62 — CFD Solution on a 30P30N airfoil.

4.8.2 — Airfoil Slat Movemént

Because the goal of analyzing the 30P30N airfoil was to demonstrate the power of
the Winslow Equations applied to a boundary, it made sense to look at how two surfaces
that were close together behaved if one of the surfaces was moved relative to the other.
For this, the slat at the front of the airfoil was rotated from its original extended (high-lift)
position to a retracted position. The slat was rotated over two steps and the change in

position can be seen on Figure 63.

The mesh was smoothed at each of the two slat rotation steps. The first case that was
examined was using static nodes on all of the airfoil bo{lndaries. When this was done, the
mesh between the slat and the central airfoil section became highly skewed. These results
can be seen on Figure 65. The next case that was examined involved letting the boundary
- points on the surface of the central airfoil section float as the slat was rotated. This gave a
much better mesh near the leading edge of the central airfoil section and these results can

be seen on Figure 66.
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The results from the exploration of the 30P30N multi-element airfoil show one
practical “real world” case where utilizing the ghost node technique for applying the
Winslow ellipﬁc smoothing equations to the boundaries of an unstructured mesh resulted
in a significant improvement compared to the case where static-node boundaries were

used and only the interior mesh was smoothed.
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Figure 63 — 30P30N airfoil with front (slat) section moved from the extended to the retracted
position. '
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Figure 66 — Slat movement using a floating-node boundary on the central airfoil section.
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Chapter S —Viscous Region Manipulation
on a Flat Plate

5.1 — Equal Angle, Equal Edge-Length Computational Space
The Winslow elliptic smoothing equations, which are applied to a node in
computational space, are implemented using the discretized form of the equations first

shown on equation (4.2) and repeated below.

o ¢ d
Z( %n§—2ﬂ%ng+yﬂnﬂj=0

Recall that the computational space has been implemented in such a way that each
node in the mesh has a unique computational space. Up to this point, the computational
space for a given node, which is comprised of all of the connected neighboring nodes, has
been constructed by placing each of the connected nodes on a unit circle such that both
angles and edge-lengths are all equal for a given computational space control volume. If
the Winslow equations are to be utilized on a mesh that has been generated to analyze a
viscous flow, the treatment of the computational space will need to be modified. This
equal angle, equal edge-length computational space is illustrated in Figure 67, which

shows a node (node 8) in physical and computational space, respectively.
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Figure 67 — Interior node (node 8) in physical and computational space.

By implementing the computational space in the way shown in Figure 67 (i.e., using
equal angles and equal edge-lengths), the Winslow equations smooth the physical mesh
in such a way that the modified (i.e., smoothed) mesh is ideally suited for an inviscid
flow. The modified mesh will be comprised, to the greatest extent possible given the
overall system, of near-equilateral triangles, which is what would be desired for an
inviscid flow analysis. However, equilateral mesh elements are not ideally suited for the
analysis of a viscous flow. The nature of a viscous mesh near a no-slip wall is in direct
opposition to the goals of the unmodified Winslow equations utilizing ¢qual angles and

equal edge-lengths in computational space.

Consider the flat plat mesh that has been examined previously. This mesh, before
and after smoothing has been performed, is shown on Figure 68. A cursory examination
of Figure 68 shows that the spacing seems to be retained when smoothing is performed
and the observer may infer that perhaps a viscous grid will also retain some of the tight
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surface mesh spacing necessary to capture a viscous boundary layer. However, a closer
view of the mesh near the flat-plate surface, such as on Figure 69 and Figure 70, shows
that the spacing of the smoothed mesh is not actually determined by the original off-wall
(i.e., normal) spacing of the mesh. Rather, the spacing near the surface remains tight
because the surface nodes, which are not moving, are relatively close together so the
nodes just off the surface remain close together because the elements containing them are

being driven to an equilateral shape.

When a mesh actually has a near-body spacing that would be characteristic of a mesh
designed to capture a viscous flow, the fact that the spacing near the wall is not being

retained is much more pronounced. This is illustrated in Figure 71 through Figure 74.

Figure 68 — Flat plate mesh, with inviscid spacing near the solid surface, before and after smoothing
has been performed.
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Figure 73 — Close-up of flat plate near end before (red) and after (green) smoothing.

Figure 74 — Viscous mesh before and after smoothing.

As shown in Figure 74, the mesh, after smoothing has been performed, is now a
viable mesh but is completely incapable of capturing a viscous boundary layer. An
additional problem can also arise if the elliptic smoothing equations are used without any
knowledge of the original mesh and it is just assumed that the final mesh should be

optimized to drive all of the elements to an equilateral shape; this is illustrated in Figure
97



75. Figure 75 shows what happens if one of the viscous elements near the edges is
reversed (which might arise depending on how a marching algorithm has been
implemented to create viscous layers). In this scenario, the mesh points directly above
and below the end of the flat plate (shown as black circles on Figure 75) are driven away
from the surface and — because there are now three inward nodes trying to pull the end
nodes toward the center of the flat plate — the end nodes move inward away from the end.
The node shown as a black square in Figure 75 has nowhere to go because the symmetric

nature of the grid prevents the node from moving up or down and thus skewed cells

result.
T \ \~.\'\\ 1 T T T B T "
Veocad
[~ A Fan /N ki o4
~ NP A Y N\ |
LY \ \ |
AR kY P Ly \ / N
\ // MW /// \\ /:7’(\» T v\}{ -
T A N N
- \\ '—-/ % _AX /’ / \
\\ i - \}‘\\‘ % i \ / 1
N \
e \l \\ / \ \
< . > :\7\/ i N
LA //T / /\ / \\ |
3 / e ﬁ/ 5 // | / \|/
b RIS R ) 4
\"\ / LY \\ /A
T /\ A T
> = l/ M // \ ,/ \ // k\ .
y / \ / \\ "/ \ i
A1) T A B N /" /)._/ N 7 |
4 \ ' iy ji Ry A PR AT oWl } L /\ L/ I \

Figure 75 — Skewed elements resulting from smoothing a viscous mesh.

5.2 — Rigidly Deformed Viscous Region

One approach that was explored was to rigidly deform the viscous layers using direct
coordinate mapping. This is a technique that is used in the Kestrel software [14] [15] and,
although the technique lacks some of the elegance of applying a smoothing equation to
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the entire mesh, in many cases it may be the most pragmatic approach. When applying
this technique, each interior node in the viscous region was associated with a boundary
node on a no-slip viscous surface. The associated boundary node was then used to drive

the mapping (i.e. coordinate translation and rotation) for the node in the viscous region.

The assumption was made that, for a node in the viscous region, the shortest edge-
length attaching a node to its neighbors is the edge that would lead to the no-slop surface.
While this is just an assumption, it is quite reasonable given the nature of a viscous mesh.
Standard geometric progression will ensure that the spacing increases with distance from
the no-slip surface and the high aspect ratio of the viscous-region cells will ensure that
the neighbors in the longitudinal direction will be connected via edges that are longer
than the edges leading to the surface. If this high aspect ratio is not the case, the mesh
was probably not designed to vcapture a viscous boundary layer in the first place and it

may be logical to revert to the standard isotropic Winslow equations.

For each node, the connectivity will be known. A recursive algorithm is used to walk
around the connected edges and determine the closest connected neighbor. This
neighboring node is then tested to determine if it is a boundary node. If it is not, it
becomes the new point about which the algorithm explores until its closest neighbor is
found. This continues until a point is reached which is on a viscous boundary surface.
Once the surface node is identified, it is used to drive the coordinate mapping. As seen in
Figure 76 and Figure 77, this technique does a good job of retaining the original

characteristics of the mesh near the surface as the surface is deformed.
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The rigid deformation has effectively moved the surface that is used as the boundary
for the Winslow smoothing from the geometry surface to the edge of the viscous region
of the mesh. While this may be the most pragmatic solution, it does not address the
question as to whether or not the Winslow elliptic smoothing equations can be used to
efficiently modify a viscous region. Thus, a more elegant solution is sought where the
computational space is manipulated in such a way that smoothing the entire grid — both

viscous and inviscid regions — is possible.

5.3 — Hybrid Mesh

One of the paramount benefits of employing the Winslow elliptic smoothing
equations is the ability of the equations to conform the mesh around a surface that that
has been deformed in some way. This gives the equations the potential to have powerful
applications to moving bodies and aeroelasticity. Consider the case where the flat-plate
surface shown on the left of Figure 74 is rotated 45 degrees. If the Winslow equations are
applied to the mesh using the equal angle, equal edge-length (isotropic) virtual control
volume method for constructing the computational space, the mesh will indeed conform
to the new position of the inner flat-plate surface but any meaningful viscous spacing will

be lost. This is shown in Figure 78 below.

Examining the way that the isotropic computational space affects the mesh in the
viscous boundary layer, it becomes apparent that a better method is required. One method
that will allow the Winslow equations to smooth the mesh without destroying the viscous
spacing is to use the original unmodified mesh to generate the control volumes in
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computational space for each of the viscous nodes rather than using the virtual control
volumes constructed on a unit circle. This computational space based on the original
mesh will be referred to as an anisotropic control volume in computational space because

the properties will no longer be independent of orientation.

Using the original mesh has some drawbacks because there is little flexibility in
manipulating the computational space. If the' original mesh is of high quality, the
computational space will be of high quality. If the original mesh is of low quality, the
computational space will be of low quality. Furthermore, if the original mesh is of low
quality, the final smoothed physical mesh will almost certainly be of low quality but a
high quality original mesh does not guarantee a high qualify modified (smoothed)
physical mesh. In all the examples used in this section, the original mesh was a high
quality mesh but it will be demonstrated that difficulties, nonethéless, arise due to the

inflexibility of using the original mesh as the computational space.

15 T T T T T

“as -1 0.5 0 05 1 15
Figure 78 — Flat plate rotated and smoothed using equal angle equal edge-length (isotropic) virtual
control volumes.
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5.3.1 — Comparison of Hybrid Methodologies

It has been shown (such as on Figure 78) that using isotropic virtual control volumes
as the computational space for all internal nodes causes any viscous spacing
characteristics of the physical mesh to be lost. A possible mechanism for alleviating this
loss of viscous spacing is to pursue a hybrid approach where the nodes in the viscous
region are treated differently from the nodes in the inviscid region. For nodes in the
inviscid region, where isotropic properties are desired, the conventional isotropic (equal
angle equal edge-length) virtual control volumes will be used. For nodes in the inviscid
region, where anisotropic properties are desired, anisotropic control volumes in

computational space can be constructed from the original unmodified physical mesh.

An investigation was performed that compared the effect of utilizing the hybrid
mechanism described above vs. simply using the original unmodified physical space for
all interior nodes (which would have the effect of utilizing anjsbtropic control volumes
for all interior nodes). In both cases (described in greater detail as Method 1 and Method
2 below) the outer boundary utilizes isotropic virtual control volumes. This is required so
that the ghost node methodology described in Chapter 4 could be employed to close the
virtual control volume computational space stencils and the outer boundary points could
be allowed to float. The two methods are summarized below and a comparison of the
results is shown in Figure 79 and Figure 80. The most noticeable difference is near the
end of the flat plate when it had been translated (shown on Figure 79) and when the flat

plate was warped into the shape of a semi-circle (shown on Figure 80).

103



Method 1 — All Interior Nodes Based on the Original Physical Mesh.

For this implementation, all of the interior nodes, both viscous and inviscid, have a
computational space based on the original undeformed physical mesh. This means that
all interior nodes will be treated as anisotropic and no interior nodes will be smoothed
using the conventional isotropic virtual control volumes. The only nodes that use a
computational space based on an isotropic (equal angle, equal edge-length) virtual control
volume are the nodes on the outer boundary, which are allowed to float. The results from

this method are shown on the left hand side of Figure 79 and Figure 80.

Method 2 — Hybrid Computational Space.

For this implementation, the nodes in the viscous region use a computational space
based on the original undeformed physical mesh (an anisotropic computational space)
while the nodes in the inviscid region (as well as the outer boundary nodes) use an
isotropic computational space. The results from this method are shown on the right hand

side of Figure 79 and Figure 80.

When the flat-plate surface was rotated 45 degrees, both methods generated very
similar results. However, when the flat-plate surface was translated, shown on Figure 79,
and warped, shown on Figure 80, the meshes generated using the two methods diverged
more significantly. For the cases involving translation and warping, the hybrid method

(method 2) generated better results.
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The most telling case involved warping the flat-plate into a semi-circle. This case
was interesting because it subjected the smoothing algorithm to the most significant
stress. This case is also interesting because it is a good test case for what might be
encountered when examining a problem (e.g. an aeroelastics problem) where the shape of
a surface was changing in some way from its original shape. As expected, using isotropic
virtual control volumes for the computational space results in a viable mesh but all of the
viscous boundary layer spacing associated with the original mesh is lost. Figure 80,
shows that when the original mesh and hybrid mesh methods are employed, the
characteristics of the original spacing in the viscous region is generally preserved. The
subsequent figures (Figure 81 and Figure 82), however, show that there are significant

deficiencies with using these methods to smooth a significantly deformed mesh.
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Figure 79 — Close-up near the end of the flat plate after surface has been translated and the mesh has
been smoothed.

The mesh on the left uses a computational space based on the original physical mesh for all interior mesh

points in the domain. The mesh on the right uses the hybrid methodology described above.
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Figure 80 — Warped mesh using original anisotropic (left) and hybrid (right) virtual control volumes.
The mesh on the left uses a computational space based on the original physical mesh for all interior mesh

points in the domain. The mesh on the right uses the hybrid methodology described above.

1

The two meshes shown on Figure 80 look similar but a close-up near the end of the
warped flat-plate (Figure 81) reveals that they are actually quite different. The hybrid
method (shown on the right of Figure 81) results in a better mesh; the all anisotropic
method, by contrast, results in a non-viat;le mesh with grid crossing near the end of the

ﬂat-plate.

Although the hybrid method results in a viable mesh, it is still far from what would
be considered to be an ideal mesh. The ideal mesh, illustrated on the left of Figure 82,
would keep all of the viscous nodes placed in such a way that the edge attaching them to

the viscous surface would remain orthogonal to the surface.
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Figure 81 — Close-up of warped mesh using original anisotropic (left) and hybrid (right) virtual
control volumes.

Figure 82 — Ideal mesh in viscous region vs. hybrid implementation
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5.3.2 — Effect of Increasing Mesh Size/Density

The hybrid computational space was revisited using a larger and denser mesh. The
intention of this exploration was to determine if adding connectivity layers between the
inner and outer surfaces would have a positive effect on the final smoothed mesh. Several
modifications were made to the viscous flat-plate mesh, the results of which can be seen

on Figure 83 below. The first change was that the radius of the outer boundary was

roughly doubled from /2 (left most mesh on Figure 83) to 3 (other two meshes on Figure
83). Second, the number of viscous layers was increased from 2 to 4. Finally, the density

of the mesh was increased. The original mesh was comprised of 346 nodes.

The newer meshes had 1,236 nodes for the coarser mesh and 5,104 nodes for the
finer mesh. Additional information is tabulated in Table 3. Smoothing was applied to the
1,236 node mesh (large-coarse) using the hybrid computational space where the node in
the viscous region had a computational space based on the original mesh. Recall that
when the original mésh was used, the viscous layers pulled away from the surface (this
was shown in Figure 80). It was found that adding more nodes and more viscous layers

does not alleviate this problem.

3.0 ;
1236 5104
2367 9792

81 401

4 4

Table 3 — Flat plate mesh characteristics.
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Figure 83 — Comparison of flat plate meshes of varying size and density.

An unexpected result of reexamining the viscous smoothing using a hybrid
computational space was that having a larger mesh with more separation between the
inner and outer surfaces (both in physical space and in layers of connectivity) did not
improve the manner in which the mesh points forming the most direct connection
between the flat-plate end-points and the outer boundary behaved. This is illustrated in
Figure 84. Ideally, the mesh points would come off the flat-plate surface in a manner
such that the mesh points would extrude outward from the inner surface in a normal
manner. When the flat plate is undeformed, the mesh points that most directly connect the
endpoints of the flat-plat to the outer boundéry extend from the ends of the ﬂat-plate to
the outer surface in a horizontal fashion (this “direct-connection line” is shown as a

horizontal line of edges on Figure 83 and is highlighted in blue on Figure 84).

When the flat-plate is warped into a semi circle, the direct-connection line should
extend from the flat-plate endpoints to the outer surface in a near-vertical fashion to
preserve the original characteristics of the mesh near the flat-plate ends. As

conspicuously shown on Figure 84, this does not happen. When a larger mesh was used,
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the hypothesis was that if there were more cells in the interior, the direct-connection lines
would rotate downward more and would connect the inner and outer surfaces in a more
vertical fashion. This seemed to make sense because, if more cells exist, it was assumed
that the direct-connection lines would be able to move down farther without causing the
inviscid mesh elements to diverge greatly away from their ideal equilateral shape.
However, the larger mesh actually decreased the shift in the direct-connectivity line

between the flat-plate end points and the outer boundary.

When the flat-plate embedded in the 5,104 node mesh (large-fine) was warped into a
semi-circle and the mesh was smoothed, the solution mesh became highly crossed — the
solution did not diverge but rather converged to an invalid (crossed) mesh. When the
mesh was closely examined it was found that in the first iteration of smoothing, when the
endpoint on the flat-plate was forced downward via a prescribed-motion deformation, the

point just off the end point horizontally was driven upward.

In the coarser meshes, the smoothing algorithm recovered from this anomaly and the
mesh points near the flat-plate surface were driven down to regain their respective
positions near the surface. However for the denser mesh, the algorithm never recovered
and the endpoints continued to be driven up resulting in an invalid mesh. This is

illustrated in Figure 85.
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Figure 84 — Behavior of nodes directly connecting the flat plate’s end points to the outer boundary.
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Figure 85 — Behavior of an off-body node on the first smoothing iteration.
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5.4 — Computational Space Reference Frame

. If a small mesh with a single interior node, such as the box5 mesh shown on Figure
86, is smoothed using the physical space for the computational space control volume, the
smoothing algorithm will return the exact same mesh that it started with. This, in itself, is
not a very interesting case. However, an interesting characteristic of the smoothing
equations is that the computational space is reference-frame insensitive; i.e., it is
unaffected by translation, scaling or rotation. The algorithm could use any . of the
transformed computational spaces shown on Figure 87 and the final mesh would not
change from the original mésh. Because of this property, simply rotating the control
volumes in order to try to affect the orientation of one of the edges (e.g. the edge between
the surface and the first viscous node) will not have any effect on the final (smoothed)

mesh.

EiR e T gt
Figure 86 — Box5 mesh before and after smoothing.

The simple box5 mesh is smoothed using the original mesh as the computational space and the original
mesh is returned. This is the case regardless of the manner in which the computational space is rotated,
translated or scaled. Any of the computational spaces shown in Figure 87 can be used and smoothed mesh

will remain unchanged.
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Examples of computational space control volumes

55- Manipulating the Computational Space

Consider Node 35, shown on Figure 88 and Figure 89. This node is in the viscous
region and so it is appropriate that it have a cémputational space control volume based on
the original mesh. This is because the original characteristics of the surrounding mesh
will need to be retained as smoothing is performed. The computational space (based on

the original mesh) for node 35 is shown on Figure 89.

The only information that node 35 has to determine how it is to move, comes from
the control volume shown in Figure 89. Node 35 only knows what the edge lengths and
interhal angles are supposed to be, relative to one another. It does not know that edge 35-
1 is supposed to stay the same length in order to maintain a desired off-body (y+)
spacing. Node 35 also does not know that edge 35-1 is supposed to be orthogonal to the
surface, which is shown as a dotted line on Figure 89. As the flat-plate surface is warped,

the nodes on the surface will move farther apart (this is illustrated on Figure 90). This
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causes edge 35-36 to expand, and this, in turn, drives the rest of the edges to expand as

well because they are trying to maintain the same relative shape.

The first attempts to better maintain the viscous spacing as the surface was Warped
was to reduce the size of edge 35-1 such that it was the proper off-body spacing relative
to the new (warped) surface-node spacing. After edge 35-1 was resized, angle 1-35-36
was then set equal to angle 4-35-1; this had the effect of increasing the magnitude of
angle 35-1-4 in physical space. When these initial fixes were implemented, the grid was
improved somewhat and a comparison of the mesh before and after the fix has been
implemented is shown on Figure 91. This figure illustrates that node 35 now has a

position closer to its original viscous spacing but the mesh is still not ideal.
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Figure 88 — Viscous node (node 35).
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Figure 91 — Viscous mesh, near the edge of the flat plate, before and after the viscous control volume
fix has been implemented.
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In this chapter, several methodologies and mechanisms were explored in the attempt
to preserve the viscous spacing characteristics in viscous regions of a mesh as the
-surfaces embedded in the mesh were transformed in some manner. Using isotropic virtuai
control volumes generally generates high quality meshes but, because of the isotropic
nature of the computational space, the physical space looses the ability to capture viscous

flow characteristics where the characteristics of the flow are highly direction-dependent.

The method that was explored in the greatest detail was a hybrid approach where the
nodes in the inviscid region continued to be smoothed using an isotropic (equal angle
equal edge-length) virtual control volume while the nodes in the viscous region used an
anisotropic control volume based on the original undeformed physical mesh. This hybrid
method had the ability to preserve some of the desired viscous spacing characteristics but,
in many cases, did not result in a high quality mesh with low skewness in the cells. This
method is also limiting because a high quality physical mesh, which is not always
available, is required and because any 'ﬂexibility with regards to changing the
characteristics of the mesh (such as modifying the mesh for different Reynolds numbers)
is severely diminished. Because of these limitations, other methods for smoothing

viscous regions of a mesh are explored in Chapter 6 and Chapter 7.
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Chapter 6 — Riemannian Metric Tensors

It has been demonstrated that the Winslow elliptic smoothing equations can be used
to smooth an unstructured mesh by employing uncoupled virtual control volumes as the
computational space for each node [5]. Because the virtual control volumes
(computational space) are not affected by the physical mesh (physical space), smoothing
can be performed even if the original physical mesh is of low quality or, due to mesh
movement or deformation, has even become unviable (i.e., the mesh has grid crossing,
negative volumes etc.). The way the Winslow smoothing methodology has
conventionally been implemented is that isotropic virtual control volumes with equal
angles and equal edge-lengths have been employed as the computational space. This has
the effect of driving all of the triangular elements in physical space to exhibit isotropic
behavior; that is, to be as close to equilateral as possible within the confines of the
overarching system. This is the ideal situation for inviscid regions of a mesh but is
inadequate for viscous regions. Because of the anisotropic nature of fluid flow in a
viscous region, large aspect-ratio mesh elements are required. Conventional isotropic
Winslow smoothing techniques do not preserve these anisotropic — high aspect-ratio —
elements so a technique was investigated to manipulate the computational space using

Riemannian metric tensors.

6.1 — Viscous Region Elements
In general, a node in the viscous region will be surrounded by high-aspect-ratio
elements whose characteristics are defined by the surrounding nodes. Except in unusual
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cases, a 2D node in the viscous region will have a valence count between 4 and 8.
Typical mesh structures for a given node in the viscous region are shown below on
Figure 92. As stated in the introduction chapter, the node-of-interest — i.e. the node being
smoothed at a given instant (which is shown as green on Figure 92) will often be referred
to in this document as the central node and is always located at the origin in

computational space.

The two structures that will be focused on in this chapter are the valence-4 and the
valence-6 structures. This is because the valence-6 case is the most common and the

valence-4 is the easiest case on which to describe the viscous smoothing logic.
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Figure 92 — Typical mesh structures surrounding a node in a viscous region.

119




Far Normal Node

| : | 4 |Normal
’ Spacing
. ¥
Lateral | -~ ’4 Central Node =1 Lateral
Node | i .- R =Y 1 Node
L ey 1
Near Normal Node |

Lateral Spacing

Figure 93 — Mesh structure for a valence-4 viscous node.

The structure of the mesh surrounding a node in the viscous region is determined by
the normal spacing (orthogonal to the surface) and the lateral spacing (parallel to the
surface) of the mesh near a viscous surface. For a gi?en valence-4 node, there will be two
edges normal to the surface and two edges parallel to the surface. The edges connecting

the central node to the lateral nodes will generally be close to the same length but the

edges connecting the central node to the normal nodes will generally be different lengths

because the spacing usually has some sort of geometric progression that increases the cell

size as the mesh moves away from a surface. When applying a Riemannian metric tensor

‘ to a virtual control volume, normal spacing will be treated as the average of the edge
length between the central node and the near-normal-node and the central node and the
far-normal-node. Figure 93 attempts to elucidate the terminology and spacing distances in

physical space.
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6.2 — Isotropic Computational Space

The isotropic computational space is defined by a unit circle where the first node is
at £;=(1,0) and the rest of the nodes are distributed evenly around the unit circle. The
isotropic computational space for a valence-4 node and a valence-6 node can be seen

below on Figure 94.

Using the valence-4 node as an example, Figure 95 shows what happens if the
isotropic computational space is used to smooth the mesh. The node that is being
smoothed pulls away from the surface (from y=0.25 to y=0.45). This is not the desired
effect in a viscous region because it will undermine the mesh’s ability to capture a

viscous boundary layer.
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Figure 94 — Isotropic computational space for valence-4 and valence-6 nodes.
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Figure 95 — Original mesh vs. smoothed mesh.

6.3 — Calculating the Riemannian Metric Tensor

To manipulate the computational space in such a way that it is more representative of
the physical mesh, the concept of Riemannian metric tensors is employed. The concept of
Riemannian metric tensors is based on the generation of the transformation matrix that
will transform a unit circle to an ellipse (or an ellipse to a unit circle). The conventional

way to write the Riemannian Metric Tensor (M) is as follows:
M = RAR™ (6.1)

In equation (6.1), the columns of the matrix R are the right eigenvectors of M and the

diagonal matrix A has diagonal values which are the eigenvalues of M.
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Figure 96 — Traditional interpretation of a Riemannian metric tensor.

A geometric interpretation of M is that R is a rotation matrix and A is a scaling
matrix. The columns of R are the basis vectors for the ellipse and the scaling is

traditionally defined using Figure 96 and equation (6.2).

- TEE e L Lo R
M=[g ez][h‘O h'z}[;T} (6.2)
2 2

There are some subtleties to the Riemannian metric tensor that make the behavior of
the tensor open to misinterpretation. Defined in the way shown above, M will not
transform a point on an ellipse to an equivalent point on the unit circle. Rather, using the
definition for metric length shown with equation (6.3), the tensor will map a point on the
ellipse to the unit length. In other words, it will take a point on the ellipse and map it to

unity.

dy =y AB [M]4B (6.3)

In equation (6.3), 4B is the vector from the center of the ellipse to the ellipse

surface. For an ellipse centered at zero mapped to the unit circle, this becomes:
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FMi=1 (6.4)

where ¥ is any point on the ellipse

It is important to understand the nature of the scaling (eigenvalue) matrix, A, and
how it must be applied. If M is being used to map a vector to the scalar value of 1 (i.e.,
R? — R'), the axes of the ellipse are squared to compute the eigenvalues. However if the
metric tensor is being used to map a point on the ellipse to an equivalent point on the unit

circle, the values or the axes are not squared. The convention used herein is that ¢ and 4,

will be associated with the normal spacing while ¢, and 4, will be associated with the

lateral spacing. Depending on the nature of the mapping, the scaling matrix will be

defined as follows:

— 0
2

Mapping a point on the ellipse to a unit scalar (R* - R'): A= B i
h?

L

Mapping a point on the ellipse to a point on a unit circle (R*> - R?): A= h .
0 -

h,

When manipulating the computational space used for Winslow smoothing, it is
generally of more practical value to map a vector-defined point in the computational
space to another vector-defined point (R* — R?). Because this is the case, the non-
squared values will be used to define A. Because of the way the virtual control volumes

are constructed, the values on the unit circles are already known; what is really needed is
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a transformation from the unit circle to the ellipse (M "). Fortunately, M™ is easy to
calculate based on the matrix property (4B) " =B"4™.

It can be shown through elementary matrix manipulation that the inverse of M can be
calculated using the inverse of A:

M =RAR"
M7 =(RAR™)

-1

M =(R")" (RA)
M—l =RA—1R~1

Since Ais a diagonal matrix, the inverse of the matrix is just the inverse of the

entries. So, when mapping a point on the unit circle to a point on an ellipse, equation

(6.5) will be used.
M =RA™R (6.5)
a_|m 0
here: A=
where [0 hj

6.3.1 — Elements of the Tensor

The tensor M can be decomposed into a rotation matrix and a scaling matrix using a
single value decomposition algorithm. The rotation matrix, R, is an orthogonal matrix
where the columns (which form an orthonormal set) represent the basis vectors for the
orientation of the transformed space. The scaling matrix is a diagonal matrix where the
aiagonal elements are the eigenvalues of M. The decomposition in two and three

dimensions is shown below:
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M = RAR™
-2 —T ]
2D - M=[¢ &] A 0_2 it
0 h € |
h1—2 O O _é’lT
3-D > M=[é’1 e 63] 0 hz'2 0 ézT
0 0 hn” _E3T

A geometric interpretation of the metric is the transformation of an ellipse in
physical space to a circle in control space (or, in 3D, the transformation of an ellipsoid in

physical space to a sphere in control space) and so M can be written as M = RAR" .

Note from the equations above, that R™' =R". This is because R is an orthogonal
matrix' (a matrix is defined as orthogonal if the columns form an orthonormal set, i.e. a
set of orthogonal unit vectors) [16]. The diagonal terms of A correspond to the inverse of

the squared target sizes h; and h, along the prescribed directions ¢ and ¢, .

The characteristics of M can be determined from R and A. M must be a certain class
of matrix because not all square matrices are diagonalizable (a matrix, A, is
diagonalizable if there is a diagonal matrix D such that A is similar to D (i.e. P"'4P=D
)). Also, a square matrix, A, with real gntries will not necessarily have real eigenvectors.
waever, if A is a real symmetric matrix, then the eigenvalues of A are real and, if all of
the eigenvalues of A are positive then A is symmetric positive definite (i.e. ¥" 4% >0 for

all x#0).

! Orthogonal matrix is an unfortunate bit of terminology. “Orthonormal matrix” would clearly be a better
term, but it is not standard (Poole, Linear Algebra, pg 371).
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There exists an invertible matrix R and a diagonal matrix A such that R"MR=A (or,
M =RAR™) if and only if the columns of R are linearly independent eigenvectors of M
and the diagonal entries of A are the eigenvalues of M corresponding to the eigenvectors
in R. Further, the Spectral Theorem says that if 4 is an nxn real matrix, then A is
symmetric if and only if it is orthogonally diagonalizable [16]. Obviously, from the
definitions of R and A, M is orthogonally diagonalizable so M will be symmetric positive

definite.

For a single triangle, there are 3 known vectors that define the edges of the triangle.
Mapping each of these vectors to a unit length allows a linear system to be generated to
solve for 3 unknowns. The matrix, M, has 4 entries but, because M is symmetric,
M, =M, and M can be determined by solving the linear system. For a given triangle,
such as the one shown below on Figure 97, the elements of M can be found by solving
system (6.6) [5]. It is impoﬁant to note that the same metric tensor will be generated

regardless of the way the edge vectors are defined. That is, %, v, and ¥can be
interchanged and the same tensor will be generated.

(x3,y3)

(x2,y2)
(x1y7) 57 !

Figure 97 — Triangular mesh element used for calculating the Riemannian metric tensor.

2 2

Vi, 2lev1y Viy M, 1
2 2 =

Ve 20V, Wy || M, =1 (6.6)
2 2

Vi, 2v3xv3y Vs, M,, 1
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6.3.2 — Scaling

The computational space has conventionally been constructed on a unit circle (i.e., a
circle with a radius of one). This is done for simplicity but the computational space is
insensitive to scaling so a circle with a radius of any other length could be used as well.
When transforming the computational space using Riemannian metric tensors, it is
possible to continue to use a unit scale but this is not necessary. To keep a unit scale, the
ellipse to which the computational space will be mapped will have a major axis of 1. In

this case, A will be constructed as follows:

S

A4
A =

o

O
]2

h,
1

where:

This establishes the following scaling factor (Cg)between physical and

computational space:

c-A A

=== 6_7
s h h, 6.7)
where: A, = length of axis associated with ¢

A, = length of axis associated with ¢, =1
h; =normal spacing in physical space

h, = lateral spacing in physical space
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Because the major axis of the ellipse is one, the scaling factor to operated on a unit

1 g R ' .
scale becomes C; =Z. Again, this is not necessary because the computational space is

insensitive to scaling. It may, however, make analyzing the system easier by being able to
compare the computational spaces before and after transformation on the same scale. If

(as in the simple example mesh shown above on Figure 95) the lateral spacing is 1, the

scaling factor will be C; = 3.1,

6.4 — Elliptic-Mapped Computational Space
6.4.1 — Origin Centered Elliptic Computational Space

One interesting observation is that when the computational space is mapped from a
unit circle to an ellipse, equal angles are not maintained. This was not necessarily known
a priori. It was originally thought that the transformation might map in the way shown in

Figure 98-A (preserving angles) rather than Figure 98-B.

After analyzing the results from the transformation that takes place using the
Riemannian metric tensor, it becomes apparent that Figure 98-B is, in fact, the realized
behavior. The next (quite interesting and unintuitive) discovery was that transforming a

computational space in this manner has absolutely no effect on the physical mesh.

This was a curious discovery. Consider the computational space for the central node
shown in Figure 93. The aspect ratio of the normal spacing to the lateral spacing is 0.5 so
the computational space before and after a Riemannian metric transformation is shown on

Figure 99.
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Figure 99 — Valence-4 computational space before and after transformation.

The Winslow equations with zero forcing functions, which are

2 2 2 2 2 2
ai%_z 2324_}/_6_);:0 and aa}zl—z,ﬂa);+ya}2’=0 , will have different
o& on* " on o0& on* " on° -

coefficients (a,B,y) as well as different element surface normal vectors and areas; yet,

when the system is solved, the differences all cancel out and the solution is unchanged. In
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order to effect a change in the physical space, the computational space must not only be
“squished” using the Riemannian metric tensor, it must also be offset so that the gradients

of the physical coordinates are changed in computational space.

6.4.2 — Offset Elliptic Computational Space

Initially, the equation for an ellipse offset from the origin, which is a nonlinear

multivariate polynomial and shown as equation (6.8), seems intimidating.

Ax* + Bxy +Cy” —(24x, + By, ) x — (2Cy0 + on)y + (2Ax02 +Bx,y, +Cy,> - 1) =0 (6.8)

cos’a sin‘a
= +

A a2 b2
5 1 1
where: B=2cosasina| ———
a b
e sina cos’a

o i b’
Equation (6.8) becomes more tractable, however, when manipulated into the form

shown on equation (6.9).
A(x+x0)2+B(x+x0)(y+y0)+C(y+y0)2=1 (6.9)

This form now more closely resembles the equation for an ellipse which has not been

translated away from the origin (in fact, it is the same equation with x, and y, set to zero):
Ax* + Bxy +Cy* =1 (6.10)

This gives insight into how the Riemannian metric tensor can be applied. Recall that

the tensor is defined as M = RAR™ where the rotation matrix, R, has the basis vectors for
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the ellipse as the columns (i.e., R=[¢ §&,]). Another way of thinking about R is as the

transformation of rotation where the angle, o, rotates from the Cartesian frame to the new

frame (i.e., the x coordinate is rotated to the direction of ¢ and y coordinate is rotated to

the direction of &, ). In this case, R becomes:

cosa -sina
R=|: : } (6.11)
sina cosa

Equation (6.4) states that a vector is mapped to a unit length using the relationship

¥'M % =1. It is instructive to break this down using the rotation matrix from (6.11).

M3 =1
roar
x X

RAR =]
LY ] ¥

1
- AT : — 0 3
x| |cosa —sma || g2 cosa sino || x 1
|y | |sina cosa 0 1 ||-sina cosa |y
277
1
- : r[— 0 :
xcosa +ysmao a* Xcoso+ysinx
| —xsina + ycosa 0 1 || —xsina + ycosa
=

r . T

xcosa + ysina

a? xcosa+ysina |
—xsina + ycosa | | —xsina + ycosa
b '

cos’a sin‘a ) 1+ 1 sina  cos’a
( — + i jx2+cosasma(?—b—2)xy+(7+ S ]y2=1 (6.12)
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It can be observed that equation (6.12) is the equation for a rotated (but not offset)

ellipse: Ax* + Bxy + Cy* =1.

Now, knowledge of an offset ellipse can be combined with the behavior of
Riemannian metric tensors and the equation for the metric length (¥"M X =1). This
coalescence of knowledge can be used to map a point on an offset ellipse to the unit

length (R*> > R') or to a point on the unit circle (R* — R?). Using the computational

ﬂ the transformation to the unit length becomes:

space coordinate system where & ={
n

(E-&) M(E-&)=1 (6.13)
Lo
where: M=R & R!
it
h22

And, the equation for mapping a point on the ellipse to a point on the unit circle (

R* — R?) can be modified to become:

M(E-E)=¢, (6.14)

1y
h ” Al hl -1
where: M=R R
0
h,
In equation (6.14), £. is the point on the unit circle, which is already known. What is
needed is the point on the transformed computational space (i.e. the point on the ellipse,

f ). This is found as:
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E=M"(E +ME,) (6.15)

The angle that defines the rotation matrix is determined by the position of the near-
normal node in the list of neighbors. The near-normal node will not have the same
position in the list for each node but will have an arbitrary position that is based on the
overall node-numbering schéme and the way the triangular elements are looped over in
the smoothing code to create the neighbor list. The process for creating the offset

anisotropic computational space is detailed in the following section.

6.5 — Valence-4 and Valence-6 Node Applications

It is instructive to follow the trahsformation of computational space through the
entire process that transforms it from an equal angle, equal edge-length isotropic virtual
control volume to a transformed anisotropic control volume appropriate for generating
anisotropic mesh elements in physical space. To investigate this transformation, the

valence-4 and valence-6 node cases will be considered.

The manipulation of the computational spaces for these two cases (valence-4 and
valecne-6) is carried out below where all figures and equations specifically relating to the
valence-4 case are on the left and all figures and equations specifically relating to the
valence-6 case are on the right. Figure 100 shows the physical space for the two cases
and Figure 101 shows the initial unmodified isotropic computational spaces. Also on
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E=M"(& +ME,) (6.15)

The angle that defines the rotation matrix is determined by the position of the near-
normal node in the list of neighbors. The near-normal node will not have the same
position in the list for each node but will have an arbitrary position that is based on the
overall node-numbering scheme and the way the triangular elements are looped over in
the smoothing code to create the neighbor list. The process for creating the offset

anisotropic computational space is detailed in the following section.

6.5 — Valence-4 and Valence-6 Node Applications

It is instructive to follow the trahsformation of computational space through the
entire process that transforms it from an equal angle, equal edge-length isotropic virtual
control volume to a transformed anisotropic control volume appropriate for generating
anisotropic mesh elements in physical space. To investigate this transformation, the

valence-4 and valence-6 node cases will be considered.

The manipulation of the computational spaces for these two cases (valence-4 and
valecne-6) is carried out below where all figures and equations specifically relating to the
valence-4 case are on the left and all figures and equations specifically relating to the
valence-6 case are on the right. Figure 100 shows the physical space for the two cases
and Figure 101 shows the initial unmodified isotropic computational spaces. Also on
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Figure 101 — Isotropic Computational space.

The angle that defines the direction to the near-normal neighbor node in
computational space (o in Figure 101), along with the scaling necessary to capture the
normal and lateral characteristics of the physical space mesh, are plugged into equation

(6.16) to generate the transformation matrix for each of the two cases.

The transformation matrices that will transform the points on the unit circle in the
isotropic computational space (the central node’s neighboring nodes) to points on an
ellipse, which is also centered at the origin, are shown below where the valence-4 case is
on the left and the valence-6 case is on the right. A geometric interpretation of the

transformation tensors is shown on Figure 102.
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Figure 102 — Geometric interpretation of transformation tensors.

It is important to remember that M is the transformation that will transform a point
on an ellipse to a point on a unit circle. However, the points on the unit circle are already

known; what is actually needed are the points on the ellipse so instead of M, what will
actually be used for the transformation is the inverse of M (ie., M™). In the
Transformations, which can be seen below, &. is a point on the unit circle and & is a new

transformed point on an ellipse. When these transformation relationships are applied to

the original computational spaces, the results are shown on Figure 103.
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Figure 103 — Anisotropic (elliptic-mapped) origin-centered computational space.

Recall that £, is the notation for the offset in computational space. This offset will

not be immediately known. Instead, what will be known is the offset in physical space.

The physical offset will need to be repositioned in order to generate the offset in
computational space.

In computational space, the offset will be directly opposite ¢ and the magnitude of
the offset will be A —|%,| where ¥, is the vector from the central node to the near-normal
node. (If the computational space has been scaled to be represented by a unit ellipse, the

magnitude will be C; (n—|%]).) The offset in computational space can be constructed as:

(6.17)

0

= cos(a%lSO) s
Lin(a+180)](h‘ =)
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Returning to the valence-4 and valence-6 example cases, we get the transformation
relationships shown below (valence-4 case on the left and valence-6 case on the right).

The final transformed offset anisotropic computational spaces are shown on Figure 104.
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Figure 104 — Anisotropic (elliptic-mapped) offset computational space.
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6.6 — Test Results
6.6.1 — Box9 Mesh

A test mesh containing 9 nodes (8 boundary nodes and one free node) was created
and a valence-4 node case was examined using several different computational space
setups. In the cases where an offset was utilized, the offset was calculated in accordance
with equation (6.17). The original mesh is shown on Figure 105 and the results are shown

on Figure 106 through Figure 109.

Although none of the results give back the exact original mesh (since none of the
computational spaces perfectly captures the volumetric gradient characteristics of the
physical mesh), it appears that the best results occur when the computational space is

modified using the offset Riemannian metric tensor.

A 4

Original Mesh
' (1.0, 0.25)

0 05 1 15

Figure 105 — Original valence-4 mesh before smoothing.
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: Figure 107 — Mesh smoothed using computational space modified with Riemannian metric tenor
= centered at the origin.
k- This case exhibits no change in physical space compared with the isotropic computational space case.
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Figure 108 — Mesh smoothed using computational space modified using offset Riemannian metric
tensor.

141




0t '(1 .0,0.3281)

&
Figure 109 — Mesh smoothed using computational space offset from the origin but not modified using
Riemannian metric tenor.

6.6.2 — Box16 Mesh

The next test case that was run was a case with multiple free nodes in a viscous-like
formation. All of the free viscous nodes in this case were valence-6. The results, which
are shown on Figure 110 show that the anisotropic computational space is able to retain

the viscous characteristics of the mesh as it is smoothed.

6.6.3 - NACAO0012

In order to explore and refine the behavior of the Winslow elliptic smoothing
equations, the equations were applied to a NACAO0012 airfoil mesh with viscous spacing
near the airfoil surface using anisotropic control volumes. The full domain of the

unsmoothed NACA0012 mesh is shown below on Figure 111.
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Figure 112 shows a close-up of the NACA0012 airfoil with the original viscous
spacing and again after the Winslow smoothing equations have been applied to the mesh
using isotropic control volumes for the computational space. It can be seen that, when the
. Winslow equations are applied in this manner, the viscous spacing is not retained near the

surface and the ability of the mesh to capture a viscous boundary layer has been lost.

Now, instead of isotropic control volumes being used everywhere, anisotropic
control volumes were used in the viscous region. The anisotropic Winslow algorithm
calculates a normal and lateral spacing for each node in the viscous region (based on the
original mesh). It also calculates the necessary rotation angles and transforms the

computational space for each node in a manner similar to that shown on Figure 113.

Using anisotropic virtual control volumes for the computational space results in the

NACAO0012 mesh shown on Figure 114.
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Figure 110 — Comparison of mesh smoothing using isotropic and anisotropic computational space.
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Figure 113 — Transformed computational space.

Figure 114 — NACA0012 airfoil mesh smoothed using anisotropic computational space.
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6.6.4 — Sharp Corners

Figure 114 shows that, using anisotropic control volumes for the computational
space, the viscous spacing is retained. However, zooming in on the back of the airfoil
reveals that there is an issue with the sharp trailing edge. This is illustrated on Figure 115
and zoomed further in Figure 116. In these figures, shown below, the first node off the

sharp trailing edged is marked in green for easy identification.

Consider the node directly off the trailing edge (highlighted in green on Figure 115
and Figure 116). This node (as well as the next two nodes trailing the airfoil) was marked
as a viscous node. However, the viscous methodology had no effect because the node was

on a symmetry plane and therefore had a zero offset in computational space.

To deal with this, logic was added to the anisotropic Winslow algorithm to manually
apply a weighted offset to a sharp corner. Consider a case where the trailing edge is the
first neighbor in the neighbor list for the central node (the central node is highlighted in
green on Figure 117). The computational space for an offset of 0.0, 0.2 and 0.5 can be

seen on Figure 117 and the resulting physical meshes can be seen on F igure' 118.

Problems with sharp corners not only occur with viscous spacing but are also an
issue with Winslow smoothing in general. Because of this, offset computational spaces

can be advantageous even when an inviscid mesh is desired.
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Figure 115 —

Trailing edge ofa NACA0012 mesh before and after smoothlng has been performed.
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6.6.5 — Anisotropic Weighting Factor

One other issue that needed to be addressed was that, using an anisotropic
computational space in the manner described above, the mesh is drawn in toward the
surface in areas of high curvature; this is most noticeable at the leading edge. The original
mesh is compared to the smoothed mesh near the leading edge on Figure .1 19 and it can

be observed that the mesh is obviously being driven closer to the airfoil surface.

One way this can be addressed is by adding a weighting factor to the offset that is
used when manipulating the computational space of the nodes in the viscous region. The
effect of applying an offset can be seen below on Figure 120, where the nodes in the
viscous region are given a weighting factor of 0.8 and 0.6 respectively (compared to 1.0

in Figure 119).

0.2
0.3 -0.1
Figure 119 - NACA0012 leading edge before and after smoothing.
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-0.2 > 0.2
0 0.3 0.1

Figure 120 - NACA0012 smoothed leading edge after an offset weighting factor has been applied.

Because the Winslow equations are influenced by neighboring grid spacing (whereas
the original viscous spacing was uniform around the airfoil regardless of other influences)
it is not possible to perfectly match the original spacing everywhere on the airfoil using a

uniform weighting factor.

6.6.6 — Elliptic-Mapped vs. Hybrid Computational Space

Observation of the effect of the computational space on the physical mesh leads to
the conclusion that the shape of the cbmputational space does not directly affect the
physical mesh but, rather, it is the gradients of the physical coordinates with respect to
the computational space that affects the physical mesh. The most revealing example of
this is that the computational space can be mapped from a circular shape to a significantly
different elliptic shape and the physical mesh will not be affected in the least if the

gradients remain unchanged.
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By emulating the physical mesh qualities by applying an offset to the computational
space surrounding a given node, the mesh gradient (most notably the geometric
progression in a viscous layer) can be simulated. However, the orthogonal orientation of

the mesh with respect to the surface can be degraded. This is illustrated on Figure 121.

When the elliptic—maioped computational space (i.e., computational space that has
been mapped from a unit circle to an ellipse using Riemannian Metric Tensors) is used,
large angles may be generated. This is of concern because it has been shown that flow
prediction accuracy decreases if one of the angles of a triangular element becomes large

[17].

If an iteratively adapted coniputational space (described in detail in the next section)
is not used, the best way to keep the orientation of the mesh orthogonal near the surface is
to use the original unmoved physical space near the surface as the computational space.
Note that this requires that a viable viscous mesh exists, which may or may not be the
case. When physical elements in the viscous region are used as the computational space,
the results are superior to those generated .using elliptic-mapped virtual control volumes

as the computational space. This is illustrated on Figure 122.

Even if the exact original physical mesh is used as the computational space in the
viscous region, there is still an issue with the mesh being driven into the surface at a
corner (sharp or otherwise). This is noticeable at the moderate corners near the leading

edge but is especially obvious at the trailing edge (see Figure 123).
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Figure 121 — Viscous layers after smoothing.
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Figure 122 — Mesh comparison using differing computational space manipulations.
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Figure 123 — Smoothed mesh attracted to surface near corners.




In an attempt to better understand the corner issue described above, a simple airfoil
with very specific angles was created (shown on Figure 124) and used to see if there were
any exploitable correlations between the angles of corners on a surface and the magnitude
of the amount the mesh was being driven toward the surface. An example of a smoothed
mesh compared to the original can be seen on Figure 125. An exploitable correlation was

not detected but the simpler geometry did provide a good testbed for further observation.

The rough airfoil shown on Figﬁre 124 was used to conduct the first test combining
the viscous region Winslow algorithms with the moving boundary node algorithms. The
rough airfoil was rotated 45° from its original position and the surrounding mesh was
smoothed using the various Winslow smoothing implemehtations. Good results were

generated and the results are shown on Figure 126 and Figure 127.

Figure 124 — Rough airfoil with explicitly defined interior angles.

i Ll 1 1 1

- Original Mesh —— g .
Hybrid Mesh ~ B W e

] 1 1
Figure 125 — Mesh around rough airfoil.
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Close up of rotated rough airfoil with viscous spacing.
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Figure 126 — Results combining algorithms for Winslow on surface nodes with Winslow in viscous
~ regions




Chapter 7 — Iteratively Adapted
Computational Space

‘In order to get a high-quality smoothed mesh in the viscous layer surrounding a no-
slip wall using the techniques described in Chapter 7, there needs to be a viable viscous
mesh to reference (one with properties similar to the properties desired in the final mesh).
Obviously, this might not always be the case so it is necessary that a technique be devised
that allows for the creation of a viscous mesh with general spacing properties even if a
viable viscous mesh is not available. This technique needs to allow a mesh with an
amenable connectivity structure to be smoothed in such a way that it could match a
desired viscous profile based on an initial off-body spacing and geometric progression of
the viscous layers. The technique that was devised for this purpose was to iteratively

adapt the computational space to meet the requirements of the physical system.

The initial mesh that was used to experiment with this new technique was an inviscid
(isotropic) mesh around the rough airfoil first seen in Chapter 7. The mesh is shown

below on Figure 128 and, near the airfoil, on Figure 129.
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Figure 129 — Inviscid mesh around a rough airfoil near the airfoil surface.
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7.1 — Normal Offset

Throughout the development of the iteratively adaptive technique and algorithm, the
computational space that is used as the starting point on which to adapt is the equal angle,
equal edge-length virtual control volume shown as the first rimage on Figure 117. The
initial step in the development of an iteratively adaptive viscous smoothing algorithm was
to use a geometric progression factor to create the offset in computational space that
would be normal (orthogonal) to the no-slip surface in physical space. The offset can be
defined as the distance from the central node in computational space to the point at which
the center of all the neighboring nodes is located. (A note on terminology: as mentioned
in chapter 7, the node referred to as the central node is the node-of-interest or the node
being smoothed, it is always located at the origin in computational space and the
neighboring nodes are translated around it to accommodate the characteristics of the
physical mesh.) The direction of the normal offset is determined by which‘of the central
node’s neighbors is the near-surface node (where near-surface node refers to the
neighboring node either directly on the no-slop surface or on the direct path back to the
surface). This near-surface node will have a given position in the list of neighbors and

that position will determine where the node is positioned in computational space.

In the case where the associated surface node is located at position &;, the offset in
computational space will be as shown on Figure 130. By offsetting the computational
space in this manner, the distance between the central node in computational space and
the near-surface node (distance Z,) is now less than the distance between the central node
and the node opposite the surface (distance L;). This gradient in computational space

causes the node in physical space to move closer to the surface as well.
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P ‘

Figure 130 — Computational space offset normal to a viscous surface.

The magnitude of the offset (d in Figure 130, where the virtual control volume is
based on a unit circle; i.e., radius=1) is based on the geometric progression factor (g) and

is calculated as follows.

A little additional algebra gives the equation in terms of the offset, d: ‘
oLl
= 1Ed

g-dg=1+d
dg+d=g-1

g=g1 (7.1)
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If nothing but the geometric progression based normal offset is used to modify the
computational space control volumes, a viscous mesh can be achieved without iterative
computational space adjustment but, in order to get a desired off-body spacing, the
number of layers in the viscous region would have to be such that the normal distance of
the viscous region (i.e., the distance from the surface td the edge of the viscous region)
was pre-calculated to equal the sum of the progressive distances of each layer. This is a
limitation that can be overcome by adding a loop into the Winslow solver that
recalculates the offset “on the fly” to match off-body spacing in the first viscous layer
and the progressive spacing in the following layers. Consider the mesh shown below on
Figure 131 with an initial off-body spacing of 0.04 and a geometric progression factor of
1.5. This will give the viscous layer distances shown in Figure 131, where p!, p2 and p3

are all associated with the surface node p0.

After a determined number of smoothing iterations, the normal distances in the
viscous region (i.e. the distance from the viscous node to the associated surface node)
will be compared to the desired distances and, if they do not match, the computational
space will be adjusted accordingly. For example, if the distance 42, is greater than 0.6, the
offset will increase. This will increase the computational-space gradient in the normal
direction and draw d2 closer to dI. When this technique is applied to the inviscid mesh

shown on Figure 128, the mesh shown in Figure 132 and Figure 133 results.
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161

al offset computational space.



7.2 — Normal and Lateral Offset

As shown on Figure 132 and Figure 133, the spacing profile of the viscous layers is
quite good. However, using only the normal offset algorithm, it is not possible to
manipulate the spacing in the lateral direction (parallel to the surface) so the nodes in the
viscous region do not remain orthogonal to their associated surface point. This results in
the situation shown in Figure 134 where the angle, o, begins to get larger and can result

in numerical instability [17].

The lateral spacing issue is handled by implementing another offset in computational
space, this time in a direction orthogonal to the normal offset direction. The

computational space will now look like Figure 135.

There are two possibilities to direct the lateral offset: normal offset direction +90° or
normal offset direction -90°. The direction is based on which side of the surface normal
the node is on. However, this can be handled implicitly by using the cross product
(equation (7.2)) of the unit normal surface vector (7i) and the unit vector that passes
through the n(;de that is going to be smoothed (¥) (illustrated on Figure 136). The cross
product_of two vectors is itself a vector but because two-dimensional meshes are being
utilized, the direction will simply be k or —k sothe value of the cross product can be

effectively treated as a scalar value.

(7.2)

Sy
X
<i
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The cross product defined by equation (7.2) is extremely well suited for the task of
smoothing a viscous node in the lateral direction. It is a powerful tool because it gives
information on both magnitude and direction. By using the cross product, the initial
direction of the lateral offset can always be given by the normal direction + 90°. If the
cross product is negative, the direction will effectively become -90° so the direction does
not have to be explicitly adjusted if the node switches from one side to the other side of
the surface normal. Also, as the node gets closer to the normal direction, the magnitude of
the cross product is equal to twice the area of the triangle formed by the two vectors (
nxv =24, the area is shown in light blue on Figure 136) will get smaller and smaller so
the cross product (multiplied by some relaxation factor) intrinsically makes a powerful
parameter that can be used to adjust the offset and measure convergence. Because the
magnitudes of the vectors in Figure 136 and the radius of the virtual control volume have

all been normalized to 1, the initial offset can be calculated as the height (#) of the

triangle formed by the two vectors. The area of a triangle is 4= %bh. The base (b) of the

triangle is one, so 4 becomes:
h=24b=7ix¥ (7.3)

The computational space for the viscous nodes is adjusted at given intervals (say,
every 100 smoothing iterations). The algorithm that is used to calculate the normal and
lateral offsets and adjust the computational space accordingly is described by the
following bullets. When this algorithm is implemented and applied to the rough airfoil,

the results shown on Figure 137 and Figure 138 are achieved.
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The initial normal offset is calculated based on the geometric progression factor

(see equation (7.1)), which is read in as an input.

The initial lateral offset is calculated as the distance # (see equation (7.3)), based
on the cross product of the unit surface normal vector (1) with the unit vector

from the associated surface node to the central node (V).

The normal offset direction is cal‘culated based on the position of the near-surface
node in the array of neighboring nodes. (For the node in the first viscous layer, the
near-surface node will be the associated surface node, for a node in the 2™ layer,
the near-surface node will be the associated node from layer one, etc. For a node
with 6 neighbors: If the near surface node isvﬁrst in the neighbor-array, the offset
will be away from the 0° position; if the near-surface node is second in the

neighbor-array, the offset will be away from the 60° position, etc.)

The initial lateral offset direction is determined to be the normal offset direction

+90°. (If the cross product is negative, this will effectively behave like -90°.)

At each computational space adjustment iteration the normal offset is adjusted by
10% of its original value to target in on the offset that will give the proper off-

body spacing.

At each computational space adjustment iteration the lateral offset is adjusted by
the new cross product multiplied by a relaxation parameter to target a position
normal to the no-slip surface (a relaxation factor of 0.1 has been found to give
good results but might need to be decreased as the initial off-body spacing gets

closer to the viscous surface).
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surface node through the off-body node of interest.

Figure 136 — Area representation of the cross product.
This figure shows the area representation of the cross product that is formed by the unit normal vector of
the surface at the location of the associated surface node and the unit-length vector from the associated
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Figure 138 — Close-up of smoothed viscous region near the rough airfoil surface.
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7.3 — Viscous NACA0012 Results

To further explore the Winslow equations using iteratively adapted offset
computational space, the NACAO0012 airfoil was employed. The full domain surrounding
thé NACAO0012 airfoil is shown on Figure 139. A close up of the original mesh is shown
on the left side of Figure 140 and Figure 141. The mesh that was used as the starting
point for the smoothing was essentially an inviscid mesh; however, the mesh was
generated using extrusion off the airfoil surface so that the connectivity was amenable to

treating the nodes in the viscous region as viscous layers.

The viscous region surrounding the NACAO0012 airfoil was specified to have five
viscous layers and an off-body spacing and geometric progression factor were also
specified (these values are specified as inputs in a viscous parameter file read in by the
code). Once all of the viscous region parameters were specified, the iteratively adaptive
Winslow smoothing algorithm was applied to the inviscid NACAQ012 mesh. The results
are shown on the right side of Figure 140 and Figure 141. Figﬁre 140 and Figure 141
illustrate that the iteratively adaptive Winslow algorithm is doing an admirable job of
meeting the viscous mesh requirements (i.e. mesh spacing sufficient to capture a viscous

boundary layer and orthogonality of nodes in progressive layers of the viscous region).
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— NACAO0012 airfoil before and after smoothing.

Figure 140

Figure 139 — Inviscid domain surrounding a NACA0012 airfoil

Figure 141 — ClosEa up of NACA0012 airfoil before .and after smoothing.




7.3.1 — Rotation and Translation

The Winslow elliptic smoothing equations using an iteratively adaptive
' computational space algorithm were tested on situations where an airfoil (the
NACA0012) was moved around within the domain. The airfoil was rotated, translated
and then both rotated and translated simultaneously. In any of the cases, the mesh can
start out as viscous, inviscid or even an unviable mesh with grid crossing and negative
volumes. The Winslow equations will cause the mesh to conform to the new position and
orientation of the airfoil and the offset computational space will maintain the viscous
layer regardless of orientation. The results from the mesh movements can be seen below

on Figure 142, Figure 143 and Figure 144.

! 1 1 1 $ o 1 1 ! 1
Figure 142 — NACAO0012 rotation using Winslow iteratively-adaptive computational space algorithm.
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NACAO0012 translation using Winslow iteratively-adaptive computational space

algorithm.
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7.3.2 — Airfoil Shape Modification

The next area that was explored was to look at how the equations behaved on a
deforming airfoil surface. This has many practical applications to parametric design
where it may be required that many designs be examined but manually generating meshes

for each design would be prohibitively expensive.

In many cases, the exact carﬁber of an airfoil (fof example) will not be known a
priori. A design engineer might want to tfy many different incremental designs. However,
the requirement that a mesh be generated for each design could potentially be
significantly detrimental to the design process. By employing the Winslow equations
using iteratively adapted offset computational spaces, no additional direct mesh
generation would be required. The surface can be significantly deformed from its original
shape and the smoothing equations will conform the surrounding mesh to the new shape
and maintain the original off-body spacing and desired geometric progression. An

example of this is shown on Figure 145.
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desired characteristics.
173

Figure 145 — Viscous mesh conforming to a deforming surface
Note that even though significant grid crossing occurs when the airfoil shape is modified (second
illustration) the iteratively adaptive Winslow algorithm is still able to generate a viscous grid with the




7.3.3 — Change in Reynolds Number

Another powerful application of the iteratively adaptive Winslow smoothing
algorithm would be in a case where the required off-body spacing was changing. This is
something that is guaranteed to be an issue in any kind of testing environment because it
will always be necessary to explore properties at different Mach numbers and
atmospheric conditions. As these conditions change, the required off-body spacing
changes as well. The viscous smoothing algorithm has the ability to quickly and
efficiently change the off-body spacing or geometric progression of the viscous layers to
accommodate changes to the flow characteristics with very little (or none, if the offset is
coupled to the flow solution) manual adjustment to the mesh. Results are demonstrated
below where the mesh starts out having inviscid properties and is then adjusted to

accommodate different flow conditions.

The viscous mesh surrounding a NACAO0012 airfoil that was seen in the previous
examples of this section has an off-body spacing (As) of 0.010. For a y+ of 100 and a
Reynolds number of 20,000 (and using a reference length of 1.0) this off-body spacing
would be sufficient to yield 1 grid point in the laminar sublayer [18] and thus make this
an adequate mesh for examining a viscous flow in a very low speed region using wall
functions. The NACAQ012 airfoil mesh at these conditions is shown below on Figure

146.

The mesh shown on Figure 146 would only be sufficient for capturing a boundary
layer on extremely low speed flows and it would be likely that higher speeds would need

to be explored as well. If the speed was increased 5 fold (resulting in a corresponding 5-
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times increase in the Reynolds number) the required off-body spacing for the same y+
(y+ = 100) would now be: As = 0.00233. Using the iteratively adapted computational
space Winslow equations, no new mesh would need to be manually generated. A simple
input change specifying the new off-body spacing would be sufficient to generate a new
mesh with the required characteristics (it might also be necessary to adjust relaxation
factors to the smoother). A mesh with characteristics necessary to analyze the flow at the
new higher Reynolds number is shown on Figure 147 and a close-up comparison of the

two meshes, along with the original inviscid mesh, is shown on Figure 148.

Figure 147 — Mesh with off-body spacing of As=0.00233 (y+ =100, Re = 100,000).
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Chapter 8 — Conclusions

There are many ways that a region that is to be analyzed might be broken up and
discretized. This dissertation focused on breaking up a region of interest using
unstructured grid methodology (as opposed structured grid methodology, where the
breakdown of the domain reflects some type of consistent geometrical regularity).
Although the focus was on unstructured meshes, many of the algorithmic and

mathematical techniques found herein owe their origins to structured methods.

Of particular note are the Winslow elliptic smoothing equations. These equations
were first applied to structured meshes as far back as the 1960s and, more recently, have
started to become powerful tools for smoothing unstructured meshes as well. However,
unlike for structured meshing, no implicit computational space exists for unstructured

meshes and the computational space must be explicitly defined.

Because the unstructured mesh connectivity needed to be explicitly defined and the
valence count (the number of connected nodes or neighbors) varies throughout a domain,
no theory exists to generate a general overarching computational space that reflects a
consistent geometrical regularity as was done with structured meshes. This difficulty was
alleviated when it was determined that it was not necessary for the entire computational
mesh to be constructed as an overarching system of nodes and elements but rather, each
node in computétional space could be treated as an individual virtual control volume and
coupled only though the coordinates in physical space, which were treated as free

dependent variables.
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Using these loosely coupled virtual control volumes as the unstructured
computational space, the Winslow elliptic smoothing equations allow interior mesh
points to be moved and smoothed to conform to a moving surface. Conventionally, the
unstructured computational space for each of the nodes formulated in this manner is
surrounded by neighbors using equal angles and equal edge-lengths and it is necessary
that the central node in each virtual control volume be fully surrounded by neighboring
nodes for the computational template to be complete. This makes the Winslow equations
ideal for smoothing non-boundary nodes in inviscid meshes because the equations drive

the mesh elements to display an isotropic behavior.

This also, however, makes the conventional Winslow methodology unsuitable to two
situations that are common in fluid mechanics. The first is the situation where the nodes
on the boundaries need to move to accommodate the movement of the interior mesh
nodes, where keeping the boundary nodes static will result in elements that exhibit a
sufficient amount of skew that the numerical solutions become unstable or unreliable.
The second situation is one where the viscous properties of the flow are important. In
order to capture the viscous boundary layer in an efficient manner it is necessary that the
mesh elements near the viscous surface not be isotropic but rather have high aspect ratios
in order to capture the gradients in the flow where the flow field variables are changing
very rapidly normal to the surface but much more mildly in the direction parallel to the
surface. Oyercoming these two limitations to the Winslow elliptic smoothing equations
applied to unstructured meshes were the two major contributions that are presented in this

dissertation.
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The first of these two major areas of study that was examined was the case where the
Winslow equations could be applied to the boundaries of an unstructured mesh.
Traditionally, boundary points were always held static in their original position and only
interior mesh points were permitted to move. This however caused difficulties if a surface
exhibited a significant amount of movement or if a surface that was very close to another
surface was moved while the other surface remained static. Both of these situations
tended to result in significant skewness in the mesh because, since the connectivity of the
mesh was not changing, the mesh elements needed to stretch in order conform to the new

surface positions.

The problem with applying the Winslow equations to a point on a surface is that, the
virtual control volume that was being utilized for the computational space for each of the
nodes needed to have a complete unbroken stencil of neighboring nodes in order for the
Winslow equations to be properly solved. For a node on a surface, an unbroken stencil
did not exist. The template was completed by utilizing ghost points outside the proper
physical mesh domain and several methods of placing the ghost points were explored.
After significant exploration info the placement of ghost points, it was determined that
the best results occurred by implementing a reflection technique. This technique used a
reflection matrix, which took into account the coordinate positions of all of the
neighboring nodes within the domain, and reflected this composite neighbor location
across a line tangent to the boundary at the location of the boundary node for which a

dynamic floating position was desired.

The floating-surface Winslow algorithm was tested on several geometries. The first

case was a flat plate in a domain where the outer boundary was relatively close to the flat
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plate surface. The flat plate was taken through a full range of movements that included
translation, rotation and even the deformation of the surface. Valid meshes were
generated for all cases. Several types of boundaries, on which the surface points were
allowed to float, were examined as well. The simplest type (a flat boundary) was
explored first and then progressively more complicated boundaries were explored using

analytically defined boundaries and finally explicitly defined arbitrary boundaries.

Once the Winslow floating-surface algorithms and logic were working correctly on a
single boundary using a flat plate, they were extended to be able to handle moving points
on multiple boundaries. To test this, a mesh was generated that had a structure similar to
the flat-plate mesh but, instead of a flat plate, the inner surface was a NACA0012 airfoil.
Just as with the flat plate tests. The tests involving a NACAO0012 airfoil and multiple

floating-node boundaries also generated valid unstructured smoothed meshes.

The final case that was examined to explore the effects of applying the Winslow
equations to the boundaries was to apply Winslow elliptic smoothing to a multi-element
airfoil. The airfoil employed for this purpose was the 30P30N multi-element high-lift
airfoil. The 30P30N is a three-element airfoil consisting of a central airfoil section with a
flap section in the rear and a slat section in the front. The 30P30N airfoil was pitched 30
degrees and the surrounding mesh was smoothed using the Winslow equations to adapt
the flowfield mesh to the new airfoil surface position. The mesh was smoothed using
both a static outer boundary and a floating-point outer boundary. Good results were
generated and the smoothed mesh was tested further by using it to generate a transonic

flow solution.
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Because the goal of analyzing the 30P30N airfoil was to demonstrate the power of
the Winslow Equations applied to a boundary, it made sense to look at how two surfaces
that were close together behaved if one of the sﬁrfaces was moved relative to the other.
For this, the slat at the front of the airfoil was rotated from its original extended (high-lift)
position to a retracted position. The mesh was smoothed at each of the two slat rotation
steps. The first case that was examined was using static nodes on all of the airfoil
boundaries. When this was done, the mesh became highly skewed in the region between
the slat and the central airfoil position. The next case that was examined involved letting
the boundary points on the surface of the central airfoil section float as the slat was

rotated. This gave a much better mesh near the leading edge of the central airfoil section.

The next area where a significant contribution was made was in the application of
the Winslow elliptic smoothing equations to a viscous region of a mesh. Prior to this
research, the computational space for a given node was constructed by placing each of
the connected nodes on a unit circle such that both angles and edge-lengths are all equal
for a given computational space control volume. By implementing the computational
space in this way, the Winslow equations smooth the physical mesh in such a way that
the modified (i.e., smoothed) mesh is highly isotropic and thus ideally suited for an
inviscid flow. The nature of a viscous mesh near a no-slip wall, however, is highly
anisotropic and is in direct opposition to the goals of the unmodified Winslow equations

utilizing equal angles and equal edge-lengths in computational space.

Several methods were tested to make the Winslow equations applicable to a viscous
region. One of these methods was to use a hybrid computational space where the virtual

control volumes for the nodes in the inviscid region were isotropic and the virtual control
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volumes in the viscous regions were based on the original mesh. Another method that
was explored at length was to modify the computational space using Riemannian metric
tensors to make the characteristics of the computational space more similar to the
characteristics of the physical space. Both of these techniques resulted in some success
but also had issues such as skewed (though still valid) elements near sharp corners and

loss of orthogonality in viscous layers of a mesh.

The final, and most successful, methodology that was developed and explored to
apply the Winslow equations toa viscous region of an unstructured mesh was to use an
iteratively adapted computational space for each of the nodes ih the viscous region. This
technique allowed a mesh with an amenable connectivity structure to be smoothed in
such a way that it could match a desired viscous profile based on an initial off-body

spacing and geometric progression of the viscous layers.

The iteratively adaptive Winslow algorithm was first tested on a rough airfoil and
then, to further explore the Winslow equations using iteratively adapted offset
computational space, the NACAO0012 airfoil was employed. The viscous region
surrounding the NACAO0012 airfoil was specified to have five viscous layers and an off-
body spacing and geometric progression factor were also specified (these values are
specified as inputs in a viscous parameter file read in by the code). Once all of the
viscous region parameters were specified, the iteratively adaptive Winslow smoothing
algorithm was applied to the inviscid NACAO0012 mesh and the resulting viscous region
of the mesh was generated exactly as would be required to analyze the viscous region of a

flow.
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The Winslow elliptic smoothing equations using an iteratively adaptive
computational space algorithm were tested on situations where an airfoil (the
NACAO0012) was moved around within the domain. The airfoil was rotated, translated
and then both rotated and translated simultaneously. In any of the cases, the mesh can
start out as viscous, inviscid or even an unviable mesh with grid crossing and negative
volumes. The Winslow equations will cause the mesh to conform to the new position and
orientation of the airfoil and the offset computational space will maintain the viscous

layer regardless of orientation.

The next area that was explored was to look at how the equations behaved on a
deforming airfoil surface, which has many practical applications to parametric design
where it may be required that many designs be examined but manually generating meshes
for each design would be prohibitively expensive. Again, a proper viscous mesh was

generated.

A final application of the iteratively adaptive Winslow smoothing algorithm was a
case where the required off-body spacing was changing. This is something that is
guaranteed to be an issue in any kind of testing environment because it will always be
necessary to explore properties at different Mach numbers and atmospheric conditions.
As these conditions change, the required off-body spacing changes as well. It was shown
that the iteratively adaptive Winslow smoothing algorithm has the ability to quickly and
efficiently change the off-body spacing or geometric progression of the viscous layers to

accommodate changes to the flow characteristics.
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The research and results described above significantly éxpand the possible role of the
Winslow elliptic smoothing equations as related to unstructured mesh generation and
smoothing. The explorations and developments that were made herein make the
equations applicable to many common sifuations in fluid mechanics that they, previously,

would not have been well suited.

For the results to truly impact applied practical fluid mechanics, they need to be
expanded from two dimensions to three dimensions. This process is already underway to

some degree and it is the intent of the author to pursue this further in post-doctoral work.
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~Appendix A — Metric Relationships and
the Jacobian

Partial derivatives with respect to the two dimensional computational space

coordinates (5,77) can be written as: %z[%J(%)+(%J(—:—y) and

et i L] (i) + L8 (et . The coefficients in these equations are referred to as the
on \on \ox) \on\oy

inverse grid metrics. Using a condensed form for the derivatives (i.e., % =¢  etc.) the

above relationships can be written as the following system:

ol |2
e Yelox|_| 08 (A1)
[Xﬂ YJ b

oy ] |on

Cramer’s rule allows us to construct the relationship between the grid metrics

(&> SysMy» 1, ) and the inverse grid metrics (X, X,,¥,,y,). Using Cramer’s rule, new

relationships for the partial derivatives in physical space shown as equation (A.2) and

equation (A.3) are constructed.

o
o
o
4 8y (A2)
ox Xz Ve
X77 y77
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X: 5;5
8
X” ==
0 2l - of (A3)
o |X: Y
X77 y77

In the equations above, the value in the denominator is the Jacobian, which is

defined as:

=XeYn T XY

(A4)

Using the definition of the Jacobian, equations (A.2) and (A.3) can now be written as

follows:
o 1 0 0
—=|y, ——y,— A5
B J(y"ag yfanj (A-3)
8. 1 0 0
— =X, ——x — A6
dy J[x"‘an X"aﬁj 5=

Comparing equations (A.5) and (A.6) to the chain-ruled equations for partial

derivatives in physical space (i.e. ta =& 6 +7, i3 and —=¢ Ain +7 i) reveals
ox 05 on oy “o& “on

the following relationships:

0 0 1 0 0

— e+, —==y, —-y,— A7
0 o 1 0 0

N IRy ) [ T S T A5 A8
fyé‘f " an J(Xfan X"-afj o
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Combining equations (A.7) and (A.8) into matrix form (shown as equation (A.9))

allows for the relationships between the grid metrics and the inverse grid metrics to be

easily seen via inspection.

0
X X a_ i 6
S M Sl 1 ¥ ~Ye| 08 A9)
é:y y i JI=%, X _a_
on |- on
_In
S T
_Ye
UM T
X
5 =-2
2

It is also necessary to define the inverse of this procedure. The partial derivatives of

the  physical variables, which are ¢ =(§—§—] i +(6_77] 9 and
ox \ox )\ o& ox J\ on

0 = (afj(ij + (6_77]( 0 J can be written as the following system:
oy \oy/)\o&) \ oy )\on

8] T8
[g’x nx} of|_|ox (A10)
& mj|o| |9

Lon] Loy

Applying Cramer’s rule to equation (A.10) gives the equations for the partial

derivatives in computational space shown as equation (A.11) and equation (A.12).
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ax nx
5 n
g g (A.11)
o0& |& M,
Ll
0
& x
0
B ==
&y % (A.12)
on |5, 7,
Sy My

The value in the denominators of (A.11) and (A.12) is now the inverse-Jacobian,

which will be denoted with a script J ():

e 1L

B (A.13)
gy 77y fxny gynx

=

The equations for the partial derivatives in computational space above can now be

written as follows:

Bl =8 )
Lol 3 e R (A.14)
o g[”yax 77"65/]
izL(gxi_ ﬂj (A.15)
on g\ oy Tox

Comparing equations (A.14) and (A.15) to the equations for partial derivatives in

computational space, i.e. = = (%](E) + [ﬁ)(ij and
o0& (o0& \ox o0& \ oy

i= % (i)+ 24 Eua reveals the following relationships:
on \on \ox on \ oy
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Combining equations (A.16) and (A.17) into matrix form (shown as equation (A.18))
allows for the following relationships between the grid metrics and the inverse grid

metrics (this time utilizing the inverse Jacobian) to again be easily seen via inspection.

0 o
Xe Yellox | 1| m, -7 ox
Rl H el
oy Oy -
G
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g
Yn P
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Appendix B — Derivation of the Winslow
Equations

Elliptic Smoothing can be used to generate and improve meshes in physical space.
The equations that are used for the smoothing process are derived from the relationship
that exists between a mesh in physical space and computational space. The Winslow
equations were originally applied to structured meshes. A very simple structured mesh, in

both physical and computational space, can be seen below.

A e
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Computational
: Space

Figure 149 — Physical and computational space for a structured mesh.
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The coordinates in two dimensional physical space are represented as (x,y) and the
coordinates in two-dimensional computational space are represented as (&,m). The

mapping between these two domains is defined with the transformations shown as

equations (B.1) and (B.2) [11].

&=4(x,y) B.1)
n=1(x,y)
x=x(&,7) B2)
y=y(&.m)

Elliptic smoothing utilizes elliptic partial differential equations in the form of

Poisson's equation (B.3) or the homogeneous Laplace's equation (B.4) [19].

Vi =f(x,y) (B.3)

V=0 (B.4)

The elliptic smoothing equations are constructed by having a Laplacian operator with
respect to physical coordinates act on the computational coordinates. The result is then
set equal to zero if the Laplace form is desired and set equal to a forcing ﬁinction if the
Poisson form is desired. The elliptic smoothing equations are conventionally expressed in

one of the two forms shown below:

P-Q Form:
g P
e (B.5)
Vzn — EX_J_Z_ + .67727 = Q
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®-Y Form:
0? 8
V= gf + ﬁf = (VEVE) D
sy ot (B.6)

These equations are currently cast in physical space and represent the smooth
variation of the computational coordinates in physical space. When the forcing functions
are set equal to zero, the equations convert to Laplace’s equations, which have the
property that the average value over a spherical surface is equal to the value at the center
of the sphere. This has the effect of causing a node to move to the centroid of the nodes to
which it is connected. Solutions to Laplace’s equations also satisfy the
maximum/minimum principle, which states that the dependent variables on the interior of
the domain are bounded by the values on the boundary of the domain. This ensures that

the interior grid lines do not cross if the boundaries of the domain are chosen to be

constant & and constant 1 gridlines [11] as seen in Figure 149.

It was noted that the equations in the form shown in (B.5) and (B.6) represent a
smooth variation of the computational coordinates in physical space. However, the
computational coordinates (£ and n) are generally known and it is the values of the
physical coordinates (x and y) that are desired. For the equations to be of practical value,
they are transformed to computational space (i.e. the partial derivatives will be with
respect to computational space). The final transformed equations are referred to as the

Winslow Equations, the derivation of which is shown below.
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The chain rule for differentiation in multiple variables states that if f = f(&,7)and

of 6f 65 af 677 g
X,y)and X,y) then the d tive for fis — = . Th
£= f( y) n= 77( y) en the derivative for f i . agax 6776x is can

069 (63,08 O gy,

be rewritten in operator form as —(f )=
B BedE " Bk bir

Now, consider the case where f = —gg This will give the equation for the second

derivative:

( ) 0 [ ) on ( ]
ox \ 0x 0x 0&\ 0x ox ox
Or, in condensed notation:

Sxx = xSz TSy

u =i gp(E)+m (8)

$u =T i(J‘ly,,)fx -Jy, %(J"y,,)

o =Ty, [0y, + 770 |- Ty, -T2y, + 17y, |

b =2 (Wi =19, )0y = 113,) ®.7)

Likewise:
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o(én) o'n & o'n on
—| == =+ === +
ax(ax) ox0E ox  oxon ox  exex Tl

0 0
NN = é:x -é_g(ﬂx)-'-ﬂx %(77)()

4. 0 o 4. 0 "
B = lyq %(_J 1Y§)é:x =T 1Y§ %(_J chf.)

s ="y, [J_ZJ:}’; B J_ly:r:J = J_IY: [J_2Jﬂyn B J—lyfrl:l

N =%(—Jy§¢ +J§y,,)—}JI—f(—Jy§,, +Jf7y'7) (B.8)

The derivatives of the Jacobian are:

Je =XV Y, X =X, Ve =YXy

Jo = XeYun Y YnXpe =X Yoy = YeXyy

Substituting the values of the Jacobian and the Jacobian derivatives into (B.7) gives:

y 2
S = ]%(X:Ynng =X, YeYne ~XeYneYy ~ Yy Ko XYYy +YeKY, )

Ye
7 J_s(xfynymi XY eYun T XeYunYn T YnXneYn XYYy t yfxrmyn)

Rearranging and combining terms gives:

S = J%[X'l (erz}’g + Ve Yor = 2YeYnYen ) Yy (yn2X5¢ Vg Ky = 2Y5Y Xy ):l

Following the same steps for the other terms gives:

1

i . 2 P 2 2.
i J_3|: Ya (Xn Xeg T Xg Xy 2X§X77X§ﬂ)+xr7 (Xn Yer ¥ Xe Yoy 2X§Xnyf7§ ):I

S

1
M = —F[Xf (yrzz}Iéf T Y§2y”l7 i ZY-fynyﬂ ) Ve (y'lzxff ¥ Y£2X'rv IR 2y,:y,,x,,5 )]
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1
My = _1_3[—3’: (Xﬂ2X§§ + X, "X, — 2X,X, X, ) + Xy (any.x + Xy Yy = 2%, Y )}

Recall that the Laplacian of the computational coordinates are:

Viee o #8,
Vi = %{—yn [(szz T Y'IZ)Xs‘g’ —2(X§X77 T yiyn)xfﬂ * (sz ¥ yfz)x"":l

=y [(Xﬂz T y,,z)yg T 2(X§Xu T yfyﬂ)yfn + (X.fz + Ygz)y,,,,]}

VN =1+,
Vin= _J%{_Y: |:(X772 > YnZ)X:f: ~2(XX, +¥e¥, ) Xy + (X¢2 & y;)x,m]

e [(Xn2 Y, ) Ve =2(%%, 359, Ve + (2 +3.7) ¥, ]}

Breaking out the coefficients gives the Laplacians in computational coordinates in

the following form:

V¢ = JL;;{_Y,, [axgg —2f%,; + 7er:|+xﬂ I:ayfé’ ~2fYey + Y :|}

(B.9)
1
Vin= "3?{_3’5 I:“X:§ =2B%, + yxrm:|+X§ [“Yr:f =285 + 7Yy ]}
a=x+y,
where B=%xX,+Y,y,
y= sz ke yfz
Now we define an operator G(-) as:
2 2 2

G(-)=aa ()—2ﬂa ()+7/a() (B.10)

os* oson ° on’
Using the operator G, equations (B.9) now become:
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l
{

V¢ = (-3,600+%,60)) =~ (6600 +£,6(7))

Vi =5 (3,000 + X,G() = 55 (1,609 +1,6(9)

X:l and these become:

Define a vector T = l:
y

V2 = —%(Vg .G(f)) and V77 = -Jiz(vn .G())

Rearranging the above equations slightly gives:

(£,G(x)+£,G(y))=-TV*¢
(7,G(x)+1,G(y)) = -V’

Fx r:y}{mx)}:_ﬁ[v%}
e 1y |LG(Y) Vn

Solving for G(x) and G(y) gives:

GW]__p Fx ¢, } [vzﬂ
[ G() ] T M) [V

Reles T {ny —fy]{vzf}
G Em~Emion & ||V

Using the inverse-Jacobian, derived in Appendix A and shown as (A.13), this becomes:

In Matrix form this is:

{G(x)} _-r [ n,VE-E Vi }

G| 4 [-nVE+E VP
G(x) =-J2 {"—y ViE -~ éy—vzn} =-I[x gvzg +x,V°7] (B.11)
g g f
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G(y)=-J {—%Vzg + %vsz =-1[y,Vé+y, V] (B.12)

B.1 — Zero Forcing Function
The desired conditions for smooth interior points using the homogeneous Laplace’s
Equation is V*¢ =0and V5 =0.If V5 and V>£ are set to zero in equation (B.11) and

equation (B.12) then it follows that G(x) = 0 and G(y) = 0. Using the definition for G(x)

and G(y) shown in equation (B.10) gives the final form of the Winslow equations with no

Forcing Function:
Gx)=0

G(y)=0

o =25 +y =0
1 (B.13)

i 2
a=x,+y,
where: B=%xX,+Y,y,

e B 2
F=%s +Y,

B.2 — Winslow Equations with Forcing Functions
Consider Equations (B.5) and (B.6) with the forcing functions (P and Q) intact (i.e.
the nonhomogeneous Poisson’s Equation form):
V’E=P(x,y)

Vin=Q(x,y)
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The Laplacians of the computational coordinates can now again be related to G(x)
and G(y) by examining equation (B.11) and equation (B.12). (Note that, at this point, no
assumptions were made as to whether or not the equations were in the Laplace or Poisson

form.)

G(x)=-1[x,V?¢+x,V’n]
G(y) = -1y, V¢ +y, V7|

Applying the forcing functions gives:

G(x)=-1*[x,P+x,Q]
G(y)=-1[y.P+y,Q]

Thomas and Middlecoff [20] proposed the following form for the forcing functions:

P(x,y)=®(&,n)(VEVE)

Q(x,y)="¥(&n)(VnVn) (B.14)

Using the Thomas-Middlecoff form (a.k.a. the @ -¥ form) we get:

G(x)=-1[x,@(VEVE) +x, ¥ (VVr) |
G(y)=-1[y,®(VEVE)+y, ¥ (VnVn)]

Employing the definition of the G operator from equation (B.10) results in:

axy = 2%, +yx,, = =P [x,@(VEVE)+x, ¥ (VnVn)]
@Y =285y + 1Yy =V [9,@(VEVE) +y, ¥ (V-V )]

ax,; — 2%, +7x,, +Vx,0(VEVE)+ %, ¥ (VneV17) =0

(B.15)
Y =2BY ey ¥ VY + I’y gqn(vg.vg) + Jzyn‘P (VneVn)=0

202



Applying the dot product to the computational coordinates gives:

Yo Vo  TEy X 1
HNESLL AL = s pt e s e

~Ye Ve X X 1
ViV =na =t =g (v )

This is now plugged into equation (B.15).
2) - 0

Xy = 20K, + 1%, +x§(I>(y,72 +x,]2)+x,7‘l’(y¢2 +X,
0

Yy =2BY 5 + 70y + 9,0y, +%,2)+y, ¥ (v, +x,.) =

AX g — 20X, + X, +X,Pa+x, Yy =0
QY —2ﬂy¢,] +¥Y,, ty:Pa+y ¥y=0

Rearranging the equations above results in the final form of the Winslow Equations

using forcing functions in the Thomas-Middlecoff form:

a(xg +(I)x¢)—2ﬂx§,, +}/(xm] +‘I’x,])=0
(Vg + QY. ) =28y +7 (Y +¥Y,) =0

D 2
ax=Xx,"+y,

where, again: B=x:X,+Y.y,
2 2
y=x;+Yy,
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Appendix C — Extension to 3D

C.1-2Dvs. 3D

As mentioned in the background section, because much of the work performed for
this dissertation was proof-of-concept level work, it made sense to test the theories and
work out the details of the algorithms in a 2 dimensional environment where the results
could be viewed more quickly and efficiently. When possible, concepts were explored in
limited cases in 3 dimensions and in all cases it was the desire of the author to design the
concepts and algorithms in such a way that they would be extensible to 3D in the future.
It is the intent of the author to continue this research and fully extend the concepts to 3D
in post-doctoral work. Some of the concepts that were explored in 3D are described in

this section.

C.2 - Gradients in 3D

Consider a three dimensional domain broken up into an unstructured mesh
comprised of tetrahedra similar to the one shown below in Figure 150. Each tetrahedron
becomes a control volume and the gradient within the control volume (which is treated as
constant throughout the control volume) can be found by manipulating the Divergence

Theorem (equation (2.1)).
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llgure 150 — Tetrahedral control vol

In three dimensions, the gradient of a scalar can be written: V¢ =

The x component of the gradient will be used for illustrative purposes. The other

components are derived in similar fashion. The average gradient can be calculated as:

2 [l 2av 1

The divergence of a vector (VI:“) can be related to a single value of the gradient

(i.e., the gradient in a particular coordinate direction) using the same logic that was

described in the 2D gradient section (Section 2.2).
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sl
I

Sv.F=2 0102
ox

2|

Hv Fdv=¢pF- fidS = cj;B :|n, |dS={p¢n, ds

vaergenceThm n,

Using the logic described above, the average x-direction gradient in a control volume

can be calculated as:

% _L1[%av=Lgjgn,as

Dropping the overbar for simplicity with the understanding that the gradient is

treated as constant within the control volume, the equation for the 3D gradient becomes:

op] [1 ]
_log) 11
Vo= - Vqﬁﬁqﬁnyds | (C.2)
op| | L
_8—2_ _Vc‘fﬁgfﬁnzds_

The surface integral can be discretized by examining and summing the scalar for

which the gradient is desired on each of the 4 faces of the tetrahedron:

(C.3)

pon, ds~ >4
i=1

1
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Where: 51 = the average value of the scalar over the face, this can be calculated as the

average of the value at each of the 3 nodes that makes up the face or as the

average of the value at the two cell centers on either side of the face.

n,; = the x component of the surface unit-normal vector for face i

|F‘ = the magnitude of the area of face i

The area of a triangle in 3D space can be calculated as the cross produce of two of its
edges. A tetrahedron (tet) is defined to have a positive volume if the surface normals are
outward-facing. The areas of each of the surfaces will be defined to be positive if the
normal vectors are coming out of the tet as well. Look at the base of the tet shown in
Figure 150 and re-shown in Figure 151 below. The numbering convention that will be
used for the faces is that the face number will correspond to the node opposite it. The
base (face 4) is formed by nodes 1, 2 and 3. The area of the face is calculated using

equation (C.4).

[
i
X
<

(C.4)
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Figure 151 — Vectors for calculating the area of face 4.

The right hand rule will confirm that face 4 has a positive area (outward facing
hormal). The coordinates of the nodes are denoted using the following convention:

Coordinates of node 1 are (xi, y1, z1) etc.

i f k
1_—:4 =X X, Yi7Y, 4,7, (C.5)

X37X, Y37V, 2377

. (Y1—Y2)(Z3“Zz)_(Y3_Y2)(Zl_Zz) 1 15
L, =|=(x,-%,)(2; - 2,) + (% - %, )(z, - 2,) | =| T, (C.6)
(Xl"Xz)(}’3—Y2)_(X3—X2)(Y1_Y2) 8 4

The magnitude of the area is lf’[ = \/F . +T2+T? and the area vector is in the

same direction as the unit normal vector, which is defined by equation (C.7):

S X 1

n=|n, (=T (o))
y 2 2 2

r \/rx +T 24T,
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For face i, this gives the following relationships: fi; Fi[ =T,
n. =T

zi [T zi

These relationships can be used to simplify equation (C.3) as follows.

g cu 4
#¢ﬁx dS~ z¢1ﬁx1 Iri| = Z¢1rm
i=1

i=1

And, using the differential form of the gradient equation seen in (C.2) we get

Now the area components (using face 4) are calculated as:

T =(v1-¥2)(z5-2,) = (¥v; -y )(z - 2,)
Ly ==(x—%,) (23— 2,) + (x: = %,) (2 - 2,)

L. =(X1 _Xz)(Y3 —Y2)_(X3 "Xz)(Y1 _Y2)

The final form of the three dimensional gradient is seen below as equation (C.8).

(o] | Ly

i at
_|9¢|_| 1+

V¢— ay V§¢iryi
o¢ 1

_6_2_ _V§¢irzi—
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C.3 — Extending Reflection for Ghost Points to 3D

Placing a ghost point (Pg) requires that a coordinate location (in this case the location
is the coordinates of P4, which is the average of all interior nodes connected to a surface
point, Ps) on the interior of the domain be reflected outside the region of the proper
domain. The technique that is used to place Pg in two dimensions is described in Chapter

4. The following logic extends the technique to three dimensions

In order ,to extend the reflection technique for placing a ghost point in three
dimensions, the Householder matrix can be employed. The Householder matrix (or
reflector) is a transformation matrix that reflects a vector through the plane for which n
is the unit normal. In the context of placing a ghost point, i would be the normal out of

the outer boundary surface at the surface point Ps. The Householder matrix is defined as

H=1-2nn" and is applied to a general vector @ as follows:
Ha=[1-2iid" |a (C.9)
Appling this to Pa, which is the coordinate vector of the average interior point, gives:

P, =[H]P, =[1-27d" |P,
P, =P, —2ff'P,

Noting that f"P, is a scalar, the equation is rearranged to get:

P, =[H]P, =[1-2iid" |,
P, =P, -2(i"P, )i

A graphical interpretation of a Householder reflector working on the vector a is

shown on Figure 152 below.
210



Uine with length ii'd)
and direction 1

Figure 152 — Graphical interpretation of the Householder Reflector.
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Appendix D — Closest Point Proof

It was stated without proof in section 4.5 that the closest point on a circle with radius
r is the point of intersection between the circle and a ray originating from the origin and

passing through point p. This can be proven as follows.

The distance, d, between point p and a given point on the circle is:
dist 2= (xp —x)2 +(yp —y)2
Defining d as dist® and recalling that x* +y” =r?, the distance equation is solved for x:
d=(x,-x) +(y,-y)’

d=(x, =x)(x, =x)+(y, =¥)(v,-¥)
d=%*-2xx 4+ ¢y ~2yy +y°
d=x’ +yp2—2(xxp+yyp)+x2 +y?
d=x’ +yp2—2(xxp+yyp)+r2
d=-2xx,-2yy +x+y +r’

d=~2x x -2y Nr*—x* +x ' +y 41

Notice that when d is at a minimum (actually, the absolute value of d), dist* will also
be at a minimum. The minimum can be found by taking the derivative and setting it equal

to zero.

d d
&d =&l:—2xpx—2yp\/r2 -x? +xp2 +yp2 +r2:| =0
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1
—2x, -2y, %(r2 —x’ )_E (-2x)=0

2V.X
= i - =2x,
r'—x
X X
r

o N
Y 2"'X2 yp

Recalling that m = To gives:
X
p

X e
Jri-x? m
x> !
r’—x? m?
1 1
X2 = —21'2 ——2X2
m m
1 r?
X2 +‘—2X2 = T
m m
1 r?
X2 (1 + —2) = =
m m
X2 5 r2 = r2
= e -
m2[1+~2—j (1+m )
m
I.2
Thus, it has been proven that x = o
1+m
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Vita

James Steven Masters was born in Denver, Colorado on July 24“’, 1975. He is a
Kung Fu fighter (he’s fast as ligh;cnin’) and has mad disco skills. In his youth, he made it
through the Jedi trials but was not knighted because he couldn’t bear to part with his
padawan braid. He never missed new-comic-book day growing up and still knows the
. secret identities of all the X-men and Avengers. He had a childhood much too happy to
consider a career as an avant-garde artist and graduated in 1993 from Greeley West (go
Spartans!). He spent three years in an Airborne Ranger Battalion where he graduated
from Ranger School, Stinger School, Assault Climber School and Jungle Warfare School.

He once shot down a drone with a Stinger missile.

After serving in the Rangers, he went back to Colorado where he served in the Army
Reserves, entered the Mechanical Engineering program at Colorado State University and
met his beautiful wife on a blind date. He graduated from Colorado State with Honors,
Cum Laude. After graduation, he spent the summer with his wife working in orphanages
in Romania and putting on youth camps through a Romanian Bible school. Upon his
return to the States, he entered grad school at Georgia Tech where he received a Masters
of Science in Aerospace Engineering. His favorite color used to be green but now it is

orange.

He is a seasoned triathlete who has finished long and ultra distance races. He works
by day as an engineer and has the ultimate nerd-street-cred title of Engineer/Scientist. No

one knows what he does by night, but the streets of his city are curiously free of crime.
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He knows the meaning to all of the verses in the Beatles song “I Am the Walrus.” He’s a
master of disguise, has friends in every town and village from here to the Sudan, he
speaks a dozen languages and knows all the local customs; he’ll blend in, disappear,

you’ll never find him.

He has written and presented multiple papers at AIAA conferences. He currently
works as a computational fluid dynamisist and the letters on his (non-vanity) license plate
are CFD. He was team lead for the team that won the 2001 ASME National Human
Powered Vehicle Competition. His inimitable Lego™ sculptures have brought onlookers
to tears and he has been known to rock the Kasbah. He can both lead a horse to water and
make it drink. He has always dreamed of climbing Mount McKinley and earning a PhD

(time to start packing for Alaska).

[Editor’s Note: not all of the claims in the above account were rigorously fact checked.]
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