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ABSTRACT

The 21st-century electric power grid is transitioning from a centralized structure designed

for bulk-power transfer to a distributed paradigm that integrates the variable renewable energy

(VRE) resources spatially distributed across the grid. This work proposes algorithmic solutions for

distributed economic dispatch based on Subgradient method and Alternating Direction Method of

Multipliers (ADMM), both designed to be agnostic with any initialization vector. The proposed

distributed online solutions leverage a dynamic average consensus algorithm to track the time-

variant linearly coupled constraint that allows an abrupt change in power demand of the network

because of the high penetration of VRE resources. The problems are modeled as discrete dynamic

systems to investigate the stability and convergence of the algorithm. The update procedures are

designed such that the iterates converge to the optimal solution of the original optimization problem,

steered by the gain parameter corresponding to the second largest eigenvalue of the system matrix.
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CHAPTER 1

INTRODUCTION

1.1 General Background

The steady growth of distributed energy resources (DER), due to the society’s increasing

commitment to a low-carbon economy along with the remarkable progress in technology, is ques-

tioning the relative benefit of large-scale electricity generation which is supposed to stem from high

economies of scale. The disruption at the grid edge of the physical layers of the power system–

generation, transmission, and distribution–has profoundly transformed the 21st-century power sys-

tems, and the time has come to revisit the classic categorization of these physical layers. The explo-

sion of data with the proliferation of DER has allowed researchers to look for new ways to control,

monitor, and optimize resources. The dispatch of generators has become challenging because of the

number of players in the electricity markets and their hesitation to share their own control variables

and economic data due to privacy and economic reasons.

Economic Dispatch (ED) is a typical resource allocation problem in power system, where

each generator finds its optimum strategy in order to ensure power balance in the network [2]. In

traditional ED problem, generators share their control variables to global control center, which then

implements the centralized dispatch algorithms and sends back the information to all the generating

units. However, microgrids and DERs owned and managed by private sectors urge the ED problem

to be solve in different fashion.
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Distributed Energy Resources (DER) are the resources spatially distributed in the physical structure

of the grid, and often tend to be smaller in size.

Smart Grid is often used to contrast the traditional electric grid. Smart Grid is basically defined as

the grid with computational intelligence that uses two-way communication [3].

Distributed Economic Dispatch is an optimization problem where each agent finds their optimal

strategy based on their own and that of its directly connected neighbors’ information. Figure 1.1

shows the structure of centralized and distributed structure of ED in power grids.

Conventional 
Generation

Community 
Microgrid

Commercial 
Wind Farm

Control
Center

Commercial 
Solar Farm

Communication 
Line

Centralized Structure

Community 
Microgrid

Conventional 
Generation

Plug-and-Play 
Loads

Commercial 
Solar Farm

Commercial 
Wind Farm

Distributed 
Generation

Hybrid PV-
Wind 

Generation 

Communication 
Line

Distributed Structure

Figure 1.1 Different approaches of economic dispatch in power grids

Agents are the players of the market in a typical optimization problem. Each bus or node is an agent

in the formulation. It can be the bus with only demand, or generating unit, or both.

Online Algorithms are designed such that they can track the real-time changes and allocate resource.

They are sometimes described by real-time algorithms.

Consensus based gradient algorithms are often exploited to realize the distributed version of eco-

nomic dispatch. The algorithms, however, are designed for constant load demand, which do not
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capture the change in the demand pronounced by the penetration of variable energy resources in

the grid.

1.2 Statement of Problems

The high penetration of DERs in the grid has raised some serious concerns on the overall

operation of the power systems. This work investigates the current issues with the alternatives

proposed to optimally dispatch the generating units. I discuss each one of them below:

• Distributed Algorithms for Time-Variant Load Demand: In recent years, popular al-

gorithms based on (sub)gradient method and Alternating Direction Method of Multipliers

(ADMM) have been extensively employed to provide distributed solutions to energy man-

agement system, and in particular ED and optimal power flow (OPF) problems. Both of the

algorithms can solve distributed ED problem in presence of a coordinator (also referred to

as a leader or a master node) which addresses power mismatch in the network. Several so-

lutions have been proposed in recent years to remove the coordinator [4–7], but none of the

works addresses the fluctuations of demand in real-time without some adjustments.

• Comprehensive Study on the Convergence Speed: Speed of algorithm is governed by the

gain parameter; gain is often called gradient step in (sub)gradient algorithm, and penalty pa-

rameter in ADMM algorithm. While the convergence of algorithm is proven theoretically

exploiting different approaches such as Lyapunov function, there is a research gap in provid-

ing comprehensive study on the role of gain parameter in the speed of distributed algorithm.
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• Privacy Preserving Algorithm: Confidentiality of data is the basic tenet of distributed algo-

rithms. Sharing of decision variables and cost parameters of the optimization problem would

question the implementation of fair electricity market. Most of the distributed approaches in

the literature are based on the sharing of decision variables. Authors in [8] introduce power

mismatch for data privacy as a sharing variable, but is designed with the strict assumption

that power balance has already been ensured in the network in the first place.

1.3 Objectives

In this thesis, the algorithmic solutions to distribute ED problem are investigated, where the

total demand of the network fluctuates in granularity of seconds because of the high penetration

of Variable Renewable Energy (VRE) sources. ED problem is a constrained optimization prob-

lem with an equality constraint that linearly couples the decision variables of all agents. While

ED problem may not necessarily be convex, the study is limited to convex problem with smooth

cost functions. ED is a resource allocation problem in which all agents cooperate to collectively

minimize a global objective function, which is a sum of all local objective functions. The algo-

rithms are designed to attain the same objective in distributed fashion without the need of a master

node or a coordinator. The design is distinct in the sense that algorithms proposed are agnostic to

any initialization vector, and can track the time-variant constraint violation in real-time, thus called

online algorithms. Besides, the proposed design does not discriminate between the type of agents

(bus with or without generating unit).
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This work leverages average consensus theory and its dynamic aspect in that agents commu-

nicate through the underlying communication network in distributed fashion. The network is dis-

tributed if the agents can communicate only with their directly connected neighbors. Even though

consensus problems can handle communication imperfections such as network splitting, time de-

lays [9, 10], the study here is restricted to perfect communication. The contribution of this thesis

are as follows:

• Distributed Online ED for Any Convex Problem: First, a consensus based algorithm for

ED problem is proposed in chapter 3. In a departure from the existing literature where the

all the decision variable are coupled to meet certain time-invariant constraint set, the pro-

posed online algorithm finds consensus on the time-varying estimate of the average power-

mismatch in a purely distributed setting via dynamic average consensus algorithm detailed in

chapter 2, thus ensuring power-balance in the network. The equivalent dual problem of the

Lagrange relaxed problem is first formulated, and solved using consensus theory and Sub-

gradient method. It is shown that the iterates provably go to optimal points using the famous

Karush–Kuhn–Tucker conditions. As the algorithm tracks the real-time changes in demand

using dynamic average consensus algorithm, it is agnostic to any initialization vector. In

other words, optimization can start from any random points without any apology.

Second, the distributed online solution, in chapter 4, is extended to modify ADMMalgorithm

to address the performance requirement. ADMM algorithms are widely known for its ability

to handle any convex problem without limiting to differentiable and strictly convex problem.

The ADMM is different from a regular Lagrange relaxation in that it has a penalty term added
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in the relaxed version which vanishes to zero at primal feasibility. This brings robustness in

the problem. From the optimization point of view, the augmented penalty term makes the

dual problem differentiable under mild conditions. In other words, it removes the assumption

of the strictly convex problem to have a equivalent differentiable dual problem. While I

simulate the case for quadratic cost curve based on the law of diminishing marginal returns

[11], the future grid looks for algorithm that can only handle real-time changes in cost curve

but also may not be differentiable. Chapter 4 proposes a novel distributed online ADMM

algorithm to solve the ED problem, where the optimization problem is fully decomposed

between participating agents and solved online without any need to initialize the solution

process. The primal and dual feasibility of distributed-ADMM problem are proved, and

shown that the primal and dual iterates provably go to the optimal points. In addition, the

algorithm ensures privacy of data as agents communicate the estimate of the average power

mismatch to their neighbors, which quickly goes to zero, instead of the generated power and

the demand of the node. Privacy preserving is fundamental for fair electricity trading in the

market.

• Convergence Speed using Modal Analysis: The algorithms are modeled as discrete dy-

namic systems to investigate the stability and convergence of the algorithm detailed in chap-

ter 3 and chapter 4. The optimum gain parameters are calculated based on the study of the

state matrix and modal analysis, thus ensuring stability and convergence. The update pro-

cedures are designed such that the iterates converge to the optimal solution of the original

optimization problem, steered by the gain parameter corresponding to the second largest

6



eigenvalue of the system matrix. Lastly, the parallels between two distributed algorithms in

terms of their speed are drawn.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces some background on

graph theory, consensus theory, and convex optimization. Chapter 3 discusses a privacy preserving

consensus algorithm for ED for distributed optimization. Chapter 4 proposes a distributed algo-

rithm based on ADMM that handles any convex problem, and draws parallel between subgradient

and ADMM algorithm in terms of their convergence speed. Chapter 5 concludes with directions

ahead for future research.
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CHAPTER 2

PRELIMINARIES

This chapter introduces some basic concept on graph theory, convex optimization, opti-

mality conditions, and stability of discrete dynamic system. While the intent is not to detail the

concepts that are quite basics, this background serves as the foundation to the algorithms presented

in coming chapters.

2.1 Distributed Consensus Algorithms

2.1.1 Graph Theory

Notation: Let G denote a graph with the set of vertices V = {1, · · · , N} and the edges

E ⊆ V × V ; G is restricted to simple, undirected graph without multi-edges and self-edges. For a

set V , its cardinality is represented by |V|. I define Ni = {j ∈ V|(j, i) ∈ E and j ̸= i} as the set

of all the neighbors of the agent i and di = |Ni| as degree of any node i; di = |{j : (i, j) ∈ E}| .

R denotes the set of all real numbers, 0 ∈ RN×N is a null matrix, III ∈ RN×N is an identity matrix,

111 ∈ RN×N is a unit vector, and γ is the eigenvalue. (·)T is the transpose. Matrices and vectors are

written in bold throughout the thesis.

Spectral Graph theory is the study of eigenvalues and eigenvectors to understand the inter-

esting properties of graph. LetAAA be the adjacency matrix of graph G, and D be the degree matrix

with the vertex degree along its diagonal. Then, the graph Laplacian L ∈ RN×N can be expressed
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in matrix form as:

L = D− A (2.1)

In full form:

lij :=


di i = j,

−1 i ̸= jand there is an edge (i,j)

0 otherwise

(2.2)

The Laplacian consensus dynamics is given by the equation

ẋ̇ẋx = −LxLxLx (2.3)

where xxx ∈ RN is the values of corresponding vertices of the network. The spectral analysis on the

Laplacian graph shows that

0 = γ1(LLL) ≤ γ2(LLL) ≤ · · · ≤ γN(LLL) (2.4)

where γi denotes eigenvalue

Observe that LLL is a symmetric positive semi-definite matrix, andL1L1L1N = 0. For a connected

graph G, the connectivity is given by γ2(LLL) , also called algebraic connectivity [12]. Consensus is

achieved if and only if γ2(LLL) is greater than zero. The convergence speed to consensus is governed

by γ2(LLL), i.e., the slowest mode [13]. With these conditions, according to [9], any initial condition

9



leads to a consensus and any consensus is an equilibrium, i.e.,

1

N
1Tx(0) =

1

N

∑
i

xi(0) (2.5)

where i denotes the initial value xi(0) ∈ R, and x(0) = (x1(0), · · · , xN(0)) denotes the vector of

the initial values of the network. Below are some Lemmas on communication network, which I

will employ later in coming chapters.

Lemma 1 Communication topology between all the agents AAA(t) is connected at all times t ≥ 0.

i.e., γ2(LLL) ≥ 0

Lemma 2 Any bus i can exchange information only with its neighboring agents i.e. Ni = {j ∈

V|(j, i) ∈ E and j ̸= i}. The coloring scheme of the network is available.

Lemma 3 LaplacianMatrix LLL is positive semidefinite,
∑

j Lij = 0, and γ2(LLL) is the algebraic con-

nectivity of the network. The speed of convergence to reach the consensus in the iterative process

is governed by γ2(LLL) for it represents the convergence rate of the slowest mode [13].

2.1.2 Decentralized and Distributed Algorithms

Optimization algorithms are iterative process of searching for some desired iterates. They

are usually tailored to address some specific need. Based on their architectural framework, they

are categorized in three types: centralized, decentralized, and distributed. Figure 2.1 shows three

different design architectures of algorithms.

In a centralized framework, one central entity runs the optimization by collecting informa-

tion from all the agents, and communicate back to the agents. This algorithm has been employed

10



Centralized Decentralized Distributed

Figure 2.1 Figure showing the schematic of algorithms

for a long time, and still extensively used. While it is often characterized by its simplicity, the com-

putation and communication challenges are quite serious. In decentralized algorithms, all agent can

individually run the optimization in the presence of a master node(s) for tight coordination. This

coordinator are often called by the name of aggregators. While the large problem is divided among

agents, but this is still vulnerable to single point failure, and the concern for the confidentiality of

data still alarms the participating agents.

In distributed algorithms, each agent optimizes it resources based on its and neighbor’s

information. Some of the characterizing features of distributed algorithms are worth highlighting

here [14].

• Scalibility: The size of optimization problem doesn’t grow with the network size, unlike

centralized framework.

• Robustness: Most of the distributed algorithms can be modeled to handle communication

delays, packet drop, plug-and-play etc.
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• Data Privacy: Distributed algorithms do not need to trust a single entity to collect data, and

facilitate the optimization process. This is essential to fair market design problems.

2.1.3 Dynamic Average Consensus

Let subscript i denote the initial value x0i ∈ RN, and x(0) = [x1(0), · · · , xN(0)]T be the

vector of the initial values of the network. The discussion below is on the computation of aver-

age, 1
N

∑N
i=1 x

0
i , in distributed fashion, where each node in the graph communicates with only its

neighbors. Let us consider distributed linear iteration of the form

xk+1
i = wiix

k
i +

∑
j∈Ni

wijx
k
j , i = 1, . . . , N (2.6)

where k = 0, 1, 2, . . . and wij is the weight on xj at node i, andNi denotes the set of all neighbors

of agent i. Setting wij = 0 for j /∈ Ni, this iteration can be written as

xk+1 = Wxk (2.7)

or equivalently as

xk+1
i = WT

i x
k (2.8)

12



whereW = [wij] = [W1, · · · ,WN ] ∈ RN×N withWi ∈ RN×1. According to [15], the constraint

on the sparsity pattern of the matrixW can be expressed asW ∈ S , where

S =
{
W ∈ RN×N |Wij = 0 if {i, j} /∈ E and i ̸= j

}
(2.9)

and (2.7) can be written as

xk = Wkx0, k = 0, 1, 2, · · · (2.10)

I am interested in a matrixW such that

lim
k→∞

Wk =
11T

N
as (2.11)

This brings to state the following Lemma on weight matrixWWW.

Lemma 4 The following conditions are necessary to guarantee the convergence [15]



1TW = 1T

W1 = 1

ζ(W− 11T/N) < 1

(2.12)

where ζ(·) is the spectral radius of the matrix, 1 = [1, · · · , 1]T is the eigenvector associated with

weight matrixW, and 1T is the transpose of 1.

13



The choice of the coefficients of matrixW is detrimental to the speed of the convergence.

Constant edge weight and local degree weight matrices are discussed in [15]. The local degree

weight matrixW with coefficients depending only on the degree of the incident node is

wij =



1
max{di,dj} {i, j} ∈ E

1−
∑

j∈E
1

max{di,dj} i = j

0 otherwise

(2.13)

Thismethod is implied from theMetropolis-Hastings algorithm and often calledMetropolismethod.

The improvedMetropolis calledMean Metropolis is proposed in [16] where

wij =



2
{di+dj+ϵ} {i, j} ∈ E

1−
∑

j∈E
2

{di+dj+ϵ} i = j

0 otherwise

(2.14)

where ϵ is a very small number. The average consensus described by (2.7) can be extended to on a

consensus on general time varying signal [9].

In case the average of a dynamically changing signal z is desired, some modifications in

the algorithm are required. Let ∆z be the input bias (the difference of z in two consecutive time

steps) applied to average consensus system. It can be claimed that the following modification to

(2.7) makes the dynamic consensus algorithm tracks the time-varying average consensus:

xk+1 = Wxk +∆zk+1 (2.15)
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where the bias ∆zk+1 = zk+1 − zk. The extension in (2.15) is still fully distributed as each agent

need to obtain the information from its directly connected neighbors. Figure 2.2 shows an example

of communication network for IEEE bus.
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Figure 2.2 Communication Network for IEEE 39-bus; the value in each node can be thought as
changing over time and each node estimates the average of the network in a distributed
fashion

Lemma 5 Dynamic average consensus algorithm in (2.15) follows the conservation property.

Proof: The modified algorithm (2.15) tracks the time varying average consensus. In order to show

that any consensus is an equilibrium, I show that (2.15) holds the conservation property.
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If x(k) is subtracted from both sides of (2.15), we have:

xk+1 − xk = Wxk +∆z− xk (2.16)

1T (xk+1 − xk) = 1T (Wxk +∆z− xk) (2.17)

From the property of matrixW stated in (2.12), I can write:

∑
∆x = 1Txk − 1Txk + 1T∆z (2.18)∑

∆x =
∑

∆z (2.19)

Note that dynamic average consensus drives any initial points to consensus, and the consensus is

stable. Thus, the conservation property at iteration is proven.■

2.2 Convex Optimization

2.2.1 Constrained Optimization

A constrained optimization is of the form: [17]

minimize
x∈Rn

f(x) (2.20a)

subject to, hi(x) = 0, ∀iϵE (2.20b)

gi(x) ≤ 0, ∀i ∈ I (2.20c)
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Preliminarily, the Lagrange function of the problem (2.20):

L(x, λ, µ) = f(x) +
∑
i∈E

λihi(x) +
∑
i∈I

µigi(x) (2.21)

2.2.2 Convex Functions

A set S ∈ RN is a convex set if the straight line segment connecting two points in S lie

entirely inside S. Mathematically,

αx+ (1− α)y ∈ S ∀α ∈ [0, 1]

The function f is a convex function in its convex set domain S if it satisfy:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ∀α[0, 1] (2.22)

∀ x, y ∈ S [18]. A continuously differential function f : RN → R is smooth if it has a globally

Lipschitz gradient, ∃L > 0 ϶ ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥ ∀x, y ∈ RN . Readers can refer

[18] for more insight on convexity.

2.2.3 Optimality Conditions: KKT Conditions

I first define first order necessary conditions for the optimality, also know as Karush-Kuhn-

Tucker (KKT) conditions.
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Theorem 1 Suppose x∗ is a local solution of (2.20), and the fuctions f, hi, gi are continuously

differentiable, and linearly independent constraint qualification holds at x∗. Then there is a vector

of Lagrange multipliers λi ∈ E , µi ∈ I, such that the following conditions hold at (x∗, λ∗, µ∗): [17]

Stationarity: ∇L(x∗, λ∗, µ∗) = ∇f(x) +
∑

i∈E λi∇hi(x) +
∑

i∈I µi∇gi(x) = 0

Primal feasibility: hi(x∗) = 0, ∀i ∈ E gi(x
∗) ≤ 0, ∀i ∈ I

Dual feasibility: µ∗
i ≥ 0, ∀i ∈ I

Complementary slackness:
∑

i∈I µigi(x
∗) = 0

For convex problem, KKT conditions are sufficient for optimality.

Lemma 6 For any convex optimization problem with diffferentiable objective and constraint func-

tions, any points that satisfy the Karush–Kuhn–Tucker (KKT) conditions are primal and dual

optimal and have zero duality gap, and vice versa. [18].

2.3 Distributed Optimization

2.3.1 Primal and Dual Decomposition

Some optimization problems are inherently decomposed. The optimization problem is de-

composable if the decision variables are decoupled for each subproblem. The problem is non-

decomposable if the subproblems share some decision variables [19].

• Decomposable Problem:

min
x,y

f(x) + g(y) = min
x
f(x) +min

y
g(y) (2.23)
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• Non decomposable Problem:

min
x,y,z

f(x, z) + g(y, z) ̸= min
x,z

f(x, z) +min
y,z

g(y, z) (2.24)

Problem (2.24), however, can be decomposed using primal and dual decomposition.

Primal Decomposition:

min
x,y

f(x, z) + g(y, z) = min
x
f(x, z) +min

y
g(y, z)

Algorithm:

1. Solve sub-problems for a fixed value of z

2. Update z

Dual decompostion: Let us rewrite the problem in (2.24):

min
x,y,z

f(x, z) + g(y, z) = p∗p∗p∗ (2.25)

where p∗p∗p∗ is the optimal solution for non-empty feasible domain of (2.25). Correspondingly,

min
x,y,z1,z2

f(x, z1) + g(y, z2) subject to, z1 = z2 (2.26)
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The equality constrained can be relaxed using Lagrange Relaxation. The Lagrange function for

(2.26) is:

L(x, y, z1, z2;λ) = f(x, z1) + g(y, z2) + λ(z1 − z2) (2.27)

Corresponding Lagrangian dual is:

D(λ) =min
x,z

[f(x, z) + λz] +min
y,z

[g(y, z)− λz]

=max
λ

{min
x,z

[f(x, z) + λz] +min
y,z

[g(y, z)− λz]} (2.28)

Readers can refer [19] for the detail explanation on decomposition. Note that (2.28) is a uncon-

strained problem. Constructing a dual problem from the original problem, sometimes called primal

problem, can provide more insight such as finding the lower bound (upper bound) for minimization

(maximization) problem. Once the constrained problem is transformed to equivalent unconstrained

dual problem, all optimization algorithms for unconstrained can easily applied. Chapter 3 employs

this method to solve distributed economic dispatch problem .

2.3.2 Distributed Gradient Algorithm

For a system with N agents in a network, a typical unconstrained optimization problem can

be written as:

minimize
x∈RN

∑
i∈V

fi(x) (2.29)
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Any agent i can find consensus in the underlying communication network with descent step along

the local (sub) gradient direction of its own convex objective function [20]. Mathematically,

xk+1
i = WT

i x
k − ρ(k)gi(k) (2.30)

where xi(k) ∈ RN is agent i’s estimate of the optimal solution at time k, ρ(k) is a diminishing

step size,WWW is a stochastic weight matrix, and gi(k) is the (sub)gradient of local objective function

fi(x) which is convex.

2.3.3 Augmented Lagrangian and ADMM

Let us write a typical constrained optimization problem:

minimize f(xxx) + g(yyy) Subject to, AxAxAx+ByByBy = ccc (2.31)

The equivalent Lagrange relaxed function is:

max
λλλ

min
x,yx,yx,y

L(xxx,yyy,λλλ) = f(xxx) + g(yyy) + λTλTλT (AxAxAx+ByByBy − ccc) (2.32)

A penalty term is added (hence the name augmented) in the objective function in order to increase

the convergence speed to form the augmented Lagrangian function.

max
λλλ

min
x,yx,yx,y

Lρ(xxx,yyy,λλλ) = f(xxx) + g(yyy) + λTλTλT (AxAxAx+ByByBy − ccc) +
ρ

2

∥∥∥(AxAxAx+ByByBy − ccc)
∥∥∥2
2︸ ︷︷ ︸

penalty term

(2.33)

21



While the function in (2.33) is convergent without strict convexity and can take the value ∞, it

comes at a cost of compromising the decomposibility feature fromLagrange relaxed problem (2.32)

[21].

Alternative Direction Method of Multipliers (ADMM) introduces decomposibility in aug-

mented Lagrangian without compromising the ability to take not strictly convex function, where

primal iterates are updated in sequential fashion and a global dual updater collects all information

to adjust the dual variable by pulling all decision variables to the optimum points. The unscaled

problem (2.33) can be simplified to write in a compact form with the following sequence of itera-

tions:

xxxk+1 := argmin
xxx

Lρ(xxx,yyy
k,λλλk)

yyyk+1 := argmin
yyy

Lρ(xxx
k+1, yyy,λλλk)

λλλk+1 = λλλk + ρ(Axk+1Axk+1Axk+1 +Byk+1Byk+1Byk+1 − ccc)

The penalty parameter ρ is equivalent to proportional gain in control theory, and λ can be

interpreted as the integrator of the algorithm that integrates the error.
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2.4 Algorithm Stability: Discrete Dynamic Systems

A system is discrete if the time variables have been quantized. The state-space representa-

tion of a discrete-dynamic system is

xxxk+1 = AxAxAxk +BuBuBuk = f(xf(xf(xk,uuuk) (2.34)

yyyk+1 = CxCxCxk +DuDuDuk = g(xg(xg(xk,uuuk) (2.35)

wherexxx(·) is a state vector, anduuu(·) is an input vector. The natural response of state equation (2.34)

is

xxxk = AAAkxxx(0) (2.36)

where xxx(000) is the initial condition. The stability of the system exclusively depends on matrix A.

Theorem 2 Let γ1, · · · , γm m ≤ n be the eigenvalues ofAAA ∈ RN×N . The system is [22]

• asymptotically stable iff |γi| < 1,∀i = {1, · · · ,m}

• stable if |γi| ≤ 1,∀i = {1, · · · ,m}

• unstable if ∃ i such that |γi| > 1

The spectral radius of a matrix AAA is defined as the maximal modulus of all of its real and complex

numbers; ζ(AAA) = max{γ1, · · · , γN}.
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Correspondingly,

1 = γ1 ≥ |γ2| ≥ · · · ≥ |γN | (2.37)

Lemma 7 A fixed pointxxx of an iterative systemxxxk+1 = AxAxAxk is called stable if for every ϵ > 0 there

exists a δ > 0 such that whenever ∥xxx0 − xxx∗∥ < δ, then the resulting iterates satisfy ∥xxx0 − xxx∗∥ < ϵ

for all k [23].
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CHAPTER 3

DISTRIBUTED ECONOMIC DISPATCH VIA SUBGRADIENT

3.1 Introduction

Economic Dispatch (ED) is a typical resource allocation problem of power systems. Tradi-

tionally, power plants share their generation cost function and generator limit with the EnergyMan-

agement System (EMS), which runs the centralized optimization and shares the information back

to power plants. The growth of Residential Energy Storage (RES), power-responsive demand, and

distributed generation, however, has dramatically increased the size of the optimization problem,

and added complexity on the communication and computation front. In view of these challenges,

several decentralized and distributed algorithms are proposed as an alternative paradigm to solve

the ED problem.

3.1.1 Motivation and Related Work

The study on distributed computation over networks can be traced back to seminal work

for distributed decision making and parallel computation [24], and ”consensus” in multi-agent sys-

tems [25]. Distributed algorithms have recently gained renewed interest because of their ability to

handle large problems using parallel computation as well as protect the privacy and confidentiality

of data [14]. Authors in [20, 26, 27] review distributed algorithms for the optimization in power
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systems such as economic dispatch, coordination of Distributed Energy Resources (DERs) and op-

timal power flow. Most of these algorithms are based on dual decomposition such as Alternative

Direction Method of Multipliers (ADMM) [21, 28], primal-dual [29], subgradient [5] among oth-

ers. In these algorithms, the Lagrange multiplier (dual variable) associated with equality constraint

couples all the decision variables, and each agent finds its optimum strategy in tight coordination

with a master node(s). In the economic dispatch problem, the dual variable of the power balance

constraint is identified as the market energy price which is updated by the central coordinator to

eliminate any power mismatch between total demand and generation. The update procedure is as

simple as increasing energy price in case of excess demand in order to attract more generations and

vice versa. It can be presented as λ(k+1) = λ(k)+α(
∑
pdi−

∑
pgi)where λ is the market price,

α is the gradient step, pdi is the demand at node i and pgi is the generation at node i. The equation

is referred to as subgradient (SG) update. The caveat of these algorithms is their need for a cen-

tral coordinator to gather and broadcast information to all the agents which adds a communication

burden and force to disclose private information of generators [26, 30].

There are several solutions to remove the central coordinator, which include the use of

primal-dual [29, 31] and center-free algorithms [5]. The idea behind these algorithms is to let all

agents have their own estimates of the dual variables, and to design some iterative algorithms for

them to communicate with their neighbors only and reach a consensus about these variables. In a

distributed economic dispatch problem, for example, agents have their own estimates of the mar-

ket price at each iteration which must i) have to converge to a single consensus price eventually

and ii) reflect the update procedure previously carried out by the removed central coordinator to

balance total demand and generation. In addition to the market price, the total power imbalance at
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each moment must be known by all the agents. A distributed sub-gradient based solution has been

proposed to coordinate among distributed renewable generators in [5] where the local frequency

measurements are used as a proxy for power balance constraint. Although the frequency measure-

ments are local, a central coordinator (named power system model) is still required to determine

the local measurements. Authors in [6] proposed a gradient-based algorithm, with a coordinator

agent to ensure power balance in the network.

In [7], an average consensus algorithm is developed for decentralized economic dispatch

with the need of a master node(s) to obtain the primal and dual variables of the system in order

to address power imbalance of the entire network. The authors in [4, 32, 33] eliminate the need

for a master node in the consensus algorithm and introduce ”innovation” to address power mis-

match. Two major shortcomings are identified in their proposed solutions. First, the convergence

of the algorithm depends on the trade-off between the update coefficients chosen for consensus

and innovation. The choice of diminishing step size makes the algorithm slow, and the fixed step-

size would settle for sub-optimal solution points. Second, the update coefficients go to zero after

enough number of iterations, and thence the algorithm is not suitable for economic dispatch to meet

dynamically changing power demands. Authors in [34] modified [4] with fixed step-size, but it is

restricted to communication topology with quadratic cost function. If the demand is changed in the

bus without the generating unit, this algorithm cannot capture the change. In addition, a consensus

based ADMM is proposed in [35, 36] to solve ED in a distributed fashion, but for a constant load

demand. This algorithm also cannot capture the continuous change in the demand of the network

because of the penetration of VRE resources.
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Algorithms based on finite-time consensus is proposed to address the changing demand

in [37], and the convergence speed is improved in [38]. In [38], the bus without the generating unit

has to find a way to communicate its demand to its nearest generator bus as the design of algorithm

restricts the communication network to the bus with generating unit. Authors in [8] propose a

consensus-based algorithm, and they introduce mismatch as a feedback variable. The algorithm is

designed with the strict assumption that power balance has already been ensured in the network,

which is not a practical assumption for grids with high penetration of DER. While the algorithm

can handle ”slight demand change” in the bus if it has the generating unit to supply, any demand

change on purely demand buses or on generating buses operating at their generation limit can’t be

addressed.

In [39], a distributed economic dispatch is realized using projected gradient and finite-time

average consensus method. In this method, the update coefficients of agents are defined based on

the eigenvalues of their Laplacian graph. Such a choice for updating coefficients is challenging

since it simply contradicts the fact that the design of distributed algorithms requires all agents

to determine their updating coefficients based on their own and, at most, their neighbors’ shared

information. The need for every agent to know the Laplacian graph, calculate all eigenvalues in the

same order, and determine what eigenvalue to be used at each iteration, makes the algorithm too

challenging for large networks. In addition, if an agent(s) voluntarily leaves the participation, which

in turn changes the eigenvalues of the network, the algorithm cannot address the configuration

change.

In a departure from the existing literature, a consensus based optimization algorithm based

on dynamic average consensus that allows each agent track the time-varying coupling constraint
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set is proposed. The algorithm proposed is agnostic to any initialization vector and is not restricted

to agents with generating units. This feature gives freedom to the purely demand bus to respond by

increasing or decreasing the demand based on its own estimate of market price. In addition, modal

analysis is presented to determine the optimum value of the gradient step of the algorithm.

In the proposed Distributed-subgradient (D-subgradient) algorithm, at each iteration, agents

first solve their own optimization problems given the market price, then they update their estimate

of total power mismatch via dynamic average consensus, and finally they update their estimate of

market price using average consensus and subgradient step to find consensus while ensuring the

power balance in the network. Four desirable properties of the proposed algorithm are discussed

below:

1. Distributed Consensus : Different from the existing distributed algorithm where the all the

decision variables are coupled to meet certain time-invariant constraint, our proposed online

algorithm finds consensus on the time-varying estimate of the average power-mismatch in a

purely distributed setting via dynamic average consensus algorithm detailed in [9, 14] , thus

ensuring power-balance in the network.

2. Optimality: The KKT conditions are leveraged to show that the generator’s output and mar-

ket price are the saddle points of the Lagrangian function.

3. Stability and Convergence: The proposed algorithm has been modeled as a discrete time

dynamic system in order to study the characteristics of the system. The optimum gradient

step was calculated based on the study of the state matrix and modal analysis, thus ensuring

stability and convergence.
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4. Privacy: Our algorithm ensures privacy of data as agents communicate the estimate of the

average power mismatch to their neighbors, which quickly goes to zero, instead of the gen-

erated power and the demand of the node. Privacy is fundamental to fair electricity trading

in the market.

The efficacy of the proposed algorithm was tested against different IEEE 300-bus network

with dynamic demand profiles in order to show that the algorithm dynamically responds to the

real-time changes.

The remainder of the chapter is presented as follows. Section 3.2 details the design of online

distributed economic dispatch based on dual decomposition . Section 3.3 discusses the numerical

stability and convergence of the proposed Distributed-subgradient (D-subgradient) algorithm. Sec-

tion 3.4 presents and discusses the simulation results. Section 3.5 concludes the paper.

3.1.2 Notation

Let G denote a graph with the set of vertices V = {1, · · · , N} and the edges E ⊆ V×V ; G is

restricted to simple, undirected graphwithout multi-edges and self-edges. For a setV , its cardinality

is represented by |V|. I define Ni = {j ∈ V|(j, i) ∈ E and j ̸= i} as the set of all the neighbors of

the agent i and di = |Ni| as degree of any node i; di = |{j : (i, j) ∈ E}| . R denotes the set of all

real numbers, 0 ∈ RN×N is a null matrix, III ∈ RN×N is an identity matrix, 111N ∈ RN×N is a unit

vector, and γ is the eigenvalue. (·)T is the transpose. D stands for distributed in D-subgradient,

DED stands for distributed economic dispatch, SG stands for subgradient. Matrices and vectors

are written in bold throughout the thesis.
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3.2 Economic Dispatch Problem

Economic Dispatch is a typical resource allocation problem in power system, where each

generator finds its optimum strategy in order to ensure power balance in the network [2].

Let each agent i ∈ V = {1, . . . , N} be the bus of the power network. The economic dispatch is,

then, modeled as

minimize
pkgp
k
gp
k
g

∑
i∈V

ai(p
k
gi)

2 + bip
k
gi + ci︸ ︷︷ ︸

Ci(pkgi)

(3.1a)

s.t
∑
i∈V

pkgi =
∑
i∈V

pkdi (3.1b)

pmingi ≤ pkgi ≤ pmaxgi ∀i ∈ V = {1, . . . , N} (3.1c)

with the following details.

1. pkgpkgpkg = {pkgi, . . . , pkgN} denotes the power generation of all buses at the time-step k, and is the

set of decision variables

2. (3.1a) represents the objective function as minimization of the total generation cost at any

time-step k with ci(·)|R → R equal to the generation cost function of agent i. To preserve the

convexity of (3.1), I assume ci(pgi) is Lipschitz continuous and convex, defined as Ci(·) =

aip
2
gi + bipgi + ci if agent i has a generating unit, and 0 otherwise; the coefficients ai, bi, ci

are the characterstic cost parameters of generator i and pgi is its generation,

3. (3.1b) represents the power balance constraint; it ensures that the network’s total generation

and total demand are equal at any time, where pdi denotes the demand at bus i.
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4. (3.1c) guarantees all generations operate within the minimum and maximum generation ca-

pacities at any time.

The optimization problem (3.1) has local objective function (3.1a) and local constraint

(3.1c), coupled by the global constraint (3.1b) on the network’s total generation and total demand.

In this chapter, I aim to model problem (3.1) as a completely distributed optimization problem that

allow each agent to determine the value of its decision variables pgi ∈ pgpgpg.

Let us define agent i’s power mismatch by pi = pgi − pdi and its feasible set by

Ωi = [pmini , pmaxi ] = [pmingi − pdi , p
max
gi − pdi ]

Substituting pgi = pi + pdi in the cost function ci(pgi) defined in the problem formulation (3.1),

Ci(pgi) modifies to fi(pi) where

fi(pi) = aip
2
i + (2aipdi + bi)pi + aip

2
di + bipdi + c (3.2)

Then, (3.1) can be written as

minimize
ppp∈ΩΩΩ

f(ppp) :=
∑
i∈V

fi(pi) (3.3a)

subject to,
∑
i∈V

pi = 0 (3.3b)
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where fi : R → R is a local convex objective function of agent i,ΩΩΩ = [Ω1; · · · ; ΩN ] ∈ RN

is compact and convex constraint sets, and ppp ∈ RN is the set of the decision variables. (3.3b)

represents a global equality constraint, and I assume that the set of feasible points is non-empty. I

formalize the assumptions in the following Lemma.

Lemma 8 The function fi and thus fff : RN → R is closed, proper, and convex. The interior

of the feasible region is non-empty. This is known by Slater’s condition for convex optimization

problems [18]

3.2.1 Dual Decomposition of Economic Dispatch

The dual representation of (3.1) is

max
λ∈R

∑
i∈V

{
min
Ωi

fi(pi)− λpi

}
︸ ︷︷ ︸

Φ†
i (λ)

where the optimal solution of the minimization problem for given λ can be explicitly defined as

Φ†
i (λ) := fi(p

†
i ) (3.4)

with

p†i (λ) :=
[
MC−1

i (λ)
]pmax

i

pimin (3.5)

33



where MCi(pi) = ∂fi
∂pi

is the marginal cost corresponding to bus i, MC−1
i denotes the inverse of

marginal cost of power output, and [·]ba denotes max{min{·, b}, a} for a, b ∈ R, a ≤ b.

The dual variable λ is updated as

λk+1 = λk − α
∑
i∈V

pki = λk − αNpk = λk − ρpk ∀i (3.6)

to ensure that the power balance constraint is met where α and ρ are the feedback gain parameters

for average mismatch, andN is the total number of agents of the network. ρ is chosen below certain

critical value to ensure stability of convergence, which will be discussed later in the chapter. The

price update reflects the fact that with a demand excess, the market price must increase to attract

more generators to supply power, and the opposite otherwise.

Let Xg ⊂ V be the set of buses with the generating units, For the cost function defined in

the problem formulation (3.1), the marginal cost of generation is

dfi(pi)/dpi = 2aipi + 2aipdi + bi
.
= λi (3.7)

in its feasible region. The feasible region of any agent i is bounded by the lower and the upper limit

of its power mismatch. Consequently,

p∗i =

[
λ∗ − bi − 2aip

k
di

2ai

]pmax
i

pmin
i

(3.8)
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where superscript p∗i and λ∗ denote the corresponding parameters values at the optimal solution.

Thus, (3.8) can be written in a generalized form as

pppk+1 =
[
ΛΛΛλλλk − pppkd −ΛΛΛbbb

]pmaxpmaxpmax

pminpminpmin
(3.9)

where aaa = diag{ai}, bbb = diag{bi}, ΛΛΛ = diag{1/(2ai)}. For i /∈ Xg, ai = bi = Λi = 0.

Price Update Sector

Agent
1 Agent 

N

𝜆

Figure 3.1 Information flow in decentralized platform

Decentralized Algorithm for Economic Dispatch: The algorithm for all the agents in the

network can be summarized in vector format as


pppk+1 =

[
Λλλλk − pppkd −ΛΛΛbbb

]pmaxpmaxpmax

pminpminpmin

λk+1 = λk − ρpk

(3.10)
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In a decentralized framework, a central coordinator (price updater) tightly coordinates between all

agents to ensure supply and demand balance in the network. In the semantics of optimization, λ

is a dual variable in Lagrange relaxed function associated with equality constraint, and is updated

based on the information from all the participating agents. It should be noted that in an optimization

problem with an equality constraint(s) binding all the agents, the feasible region of an individual

agent’s decision variable is influenced by other agents’ decision variables [20]. In addition to the

concerns on data privacy and vulnerability to single point failure, the central question is, ”Who

adjust the market price?”

Remark: Price adjustment process in general equilibrium theory is known by tatonnement

process, which is a simple way to model supply and demand of any market. The fundamental idea

is that all generators find optimum strategy to adjust their output based on their own cost function

and local sets of constraints for the given market price. With all agents in perfect coordination, the

market goes to equilibrium after some trial and error process. That is, the price updater increases the

market price when total generation falls short and decreases for surplus in supply. The equilibrium

price is in locally stable equilibrium if the initial price in the small neighborhood of λ∗ converges

to optimum price , and it is globally stable if any initial value of market price λ converges to

λ∗ [40]. This raises a very important question of who can possibly be that benign updater for price

adjustment. This following section presents the formulation without the price updater.

3.2.2 Distributed Economic Dispatch

The objective functionΦ†
i (λ) is not separable across buses i ∈ V since it has a scalar variable

λ which is common between all i ∈ V . The variables λi are constrained to be equal for all i ∈ V
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at the optimal solution i.e. λi = λj ∀i, j ∈ V . In a connected graph, it suffices to define the

constraint λi = λj just across the neighboring agents i.e. ∀(i, j) ∈ E . With these modifications,

the Distributed Economic Dispatch (DED) problem can be written as below.

max
λ

Φ(λ) :=
∑
i∈V

Φ†
i (λi) s. t. λi = λj ∀(i, j) ∈ E (3.11)

The following two results suggest solving the distributed optimization problem (3.11) is equivalent

to solving problem (3.3) . The unique optimal point (p∗i ) will then be recovered from the unique

dual optimal λ∗. A proof has been provided in Appendix B of [41] for these two results.

Lemma 9 The objective function Φ of DED in (3.11) is strictly concave over RN .

Lemma 10 Optimization problem (3.11) has a unique optimal point (λ∗) with λ∗i = λ∗j = λ∗ for

all (i, j) ∈ E . DED has a unique optimal point (p∗) where p∗i = p†i (λ
∗).

Similar to (3.4)-(3.5), any agent i can find its optimal solution point given λi as

Φ†
i (λi) := fi(p

†
i ) (3.12)

with

p†i (λi) :=
[
MC−1

i (λi)
]pmax

i

pimin . (3.13)

In order to realize this, all the market prices should reach to one consensus value while

power balance constrained is ensured in the network. Based on Lemma 1, 2, and Lemma 4, all
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participating agents reach consensus on market price given as:

λk+1
i = W T

i λλλ
k − ρpki (3.14)

where λλλ = [λ1; · · · ;λN ] ∈ RN , and Wi ∈ RN×1 is the vector of agent i’s update weights as

defined in (2.14). Notice that the global variable average power mismatch p is replaced with the

local variable pi, defined as the agent i’s estimate of the average power mismatch. For this, any

agent i estimates the network’s average mismatch using dynamic average consensus algorithm in

(2.15).

pk+1
i = W T

i ppp
k + (pk+1

i − pki ) (3.15)

where ppp = [p1; · · · ; pN ] ∈ RN .

Consequently, fully distributed form of (3.8) is:

p†i (λi) :=
[
MC−1

i (λi)
]pmax

i

pimin =

[
λ∗i − bi − 2aip

k
di

2ai

]pmax
i

pmin
i

(3.16)
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Figure 3.2 Information flow in distributed platform

The distributed algorithm for all the agents in the network can be summarized in vector

format as



pppk+1 ∈
[
ΛΛΛλλλk − pppkd −ΛΛΛbbb

]pmaxpmaxpmax

pminpminpmin

λλλk+1 =WWWλλλk − ρpppk

pppk+1 =WWWpppk + (pppk+1 − pppk)

(3.17)

where λλλ = [λ1; · · · ;λN ] ∈ RN .

With reference to Lemma 8, I state the following Lemma to investigate the optimality of our pro-

posed DED Algorithm (3.17).
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Lemma 11 For any convex optimization problem with diffferentiable objective and constraint

functions, any points that satisfy the Karush–Kuhn–Tucker (KKT) conditions are primal and dual

optimal and have zero duality gap, and vice versa. [18].

Let us reintroduce the DED optimization problem to investigate the optimality. The Lagrange

relaxation of the DED for any agent i is:

inf
pi∈Ωi

sup
λi∈R

Φ†
i (pi, λi) := inf

pi∈Ωi

sup
λi∈R

{
fi(pi)− λi(pi − pki +Npk)

}
:= inf

pi∈Ωi

sup
λi∈R

{
fi(pi)− λipi

}
(3.18)

where pi − pki +Npk = 111Tppp = 0 is the power balance constraint of the network.

Consequently, based on strong duality of the problem

inf
ppp∈ΩΩΩ

sup
λλλ∈RN

Φ†Φ†Φ†(ppp,λλλ)︸ ︷︷ ︸
primal problem

= sup
λλλ∈RN

inf
ppp∈ΩΩΩ

Φ†Φ†Φ†(ppp,λλλ)︸ ︷︷ ︸
dual problem

(3.19)

whereΦ†Φ†Φ† = [Φ†
1; · · · ; Φ

†
N ].

I need to show that a fixed point (ppp,λλλ) is the solution of (3.19). In other words, (ppp,λλλ) are

the KKT points. Using stationary condition for (3.18) in vector format,

∇pppΦΦΦ ∈ ∂f(p∗p∗p∗)− λ∗λ∗λ∗ ∈ 0 (3.20)

∇λλλΦΦΦ ∈ p∗p∗p∗ − pkpkpk + pppk ∈ 0 (3.21)

where ∇ is the partial differentiation operator. The update process of market price λλλ in (3.17) can

be written asWWWλλλk − λWWWλλλk − λWWWλλλk − λk+1 = ρpppk. It is pretty straight forward that each market price finds stable
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point once the mismatch term goes to zero. Then, the consensus on λ is guaranteed based on the

properties ofWWW in (2.12). So, for a fixed point (ppp,λλλ), p∗p∗p∗ − pkpkpk = 0 and pppk = 0, hence the left

hand side of (3.21) goes to zero, and all market prices settle in their optimum points. This can now

be readily interpreted as price adjustment process in general equilibrium theory but in distributed

fashion. All players find optimum strategy to adjust its output based on its own objective function

and local sets of constraints for their estimated market price, which in turn depends on its estimated

mismatch of the network.

Distributed Algorithm for Economic Dispatch: The proposed distributed Economic Dis-

patch in (3.17) now can be designed to solve in an iterative procedure. Each agent after receiving

the information on price, estimate of the average generation and demand of the network from its

directly connected neighborsNi finds the optimum value of generation. It then updates its price and

the estimate of network’s power generation and demand and broadcasts to its connected neighbors.
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Algorithm 1 elaborates the iterative processes for our consensus based economic dispatch problem.
Algorithm 1: Distributed-Subgradient (D-Subgradient) Algorithm from the per-

spective of agent i
Input: cost-coefficients {ai,bi}, and control parameter ρ

Initialization: λi0, pi0 = pi
0 = −pd0

1 for k = 0 to∞ do

2 Receive ppp and λλλ. Each agent receives data from its neighboring agents only.

3 Compute power mismatch pk+1 as:

pk+1 ∈
[
Λiλi

k − pkdi − Λibi

]pmax

pmin

4 Update λk+1
i = W T

i λλλ
k − ρpki

5 Update pk+1
i = W T

i ppp
k + (pk+1

i − pki )

6 Broadcast pik+1, λik+1. Each agent broadcasts its data to its neighboring agents

only.

3.3 Numerical Stability and Convergence

A system is discrete if the time variables have been quantized. I model the optimization

problem in (3.17) to investigate the stability and convergence of our proposed DED algorithm.
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The state-space representation of a discrete-dynamic system is

xxxk+1 = AxAxAxk +BuBuBuk = f(xf(xf(xk,uuuk) (3.22)

yyyk+1 = CxCxCxk +DuDuDuk = g(xg(xg(xk,uuuk) (3.23)

where xxx(·) is a state vector, and uuu(·) is an input vector. Recall that the natural response of state

equation (3.22) is

xxxk = AAAkxxx(0) (3.24)

where xxx(000) is the initial condition. The stability of the system exclusively depends on state matrix

A.

The state equation for market price vector is

λλλk+1 =WWWλλλk − ρpppk (3.25)

Similarly, the state equation of power output is:

pppk+1 = ΛΛΛλλλk − pppkd −ΛΛΛbbb (3.26)

The state equation for average power mismatch is:

pppk+1 =WWWpppk + (pppk+1 − pppk)
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Consequently,

pppk+1 =WWWpppk + (ΛΛΛλλλk − pppkd −ΛΛΛbbb− pppk) (3.27)

The state equations (3.25), (3.26), (3.27) can be written in matrix form as


λλλk+1

pppk+1

pppk+1

 =


WWW 0 −ρIII

ΛΛΛ 0 0

ΛΛΛ −III WWW


︸ ︷︷ ︸

AAA


λλλk

pppk

pppk


︸ ︷︷ ︸

xxx

+


0 0

−III −bbbΛΛΛ

−III −bbbΛΛΛ


︸ ︷︷ ︸

BBB

Pdk
111N


︸ ︷︷ ︸

uuu

(3.28)

Output Matrix:

λλλ(k)
Pg(k)

 =

III 0 0

0 III 0


︸ ︷︷ ︸

CCC


λλλk

pppk

pppk


︸ ︷︷ ︸

xxx

+

0 0

III 0


︸ ︷︷ ︸

DDD

Pdk
111N


︸ ︷︷ ︸

uuu

(3.29)

Comparing (3.28) and (3.29) with the canonical form in (3.22), AAA ∈ R3N×3N is the state

matrix, BBB ∈ R3N×2N is the input matrix, CCC ∈ R2N×3N is the output matrix, andDDD ∈ R2N×2N is

the feed-forward matrix.

Theorem 3 Let γ1, · · · , γm m ≤ n be the eigenvalues ofAAA ∈ R3N×3N . The system (3.22) is [22]
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• asymptotically stable iff |γi| < 1,∀i = {1, · · · ,m}

• stable if |γi| ≤ 1,∀i = {1, · · · ,m}

• unstable if ∃ i such that |γi| > 1

The spectral radius of a matrix AAA is defined as the maximal modulus of all of its real and complex

numbers; ζ(AAA) = max{γ1, · · · , γ3N}. Based on theorem (5), the stability can be examined by the

study of spectral radius. I am interested in the stability to a non-zero fixed point, thus

ζ(AAA) = 1 (3.30)

Correspondingly,

1 = γ1 ≥ |γ2| ≥ · · · ≥ |γ3N | (3.31)

Lemma 12 A fixed point xxx of an iterative system xxxk+1 = AxAxAxk is called stable if for every ϵ >

0 there exists a δ > 0 such that whenever ∥xxx0 − xxx∗∥ < δ, then the resulting iterates satisfy

∥xxx0 − xxx∗∥ < ϵ for all k [23].

The solution of the natural response (3.24) is:

xxx(k) =
3N∑
i=1

ciγ
k
i ξi (3.32)
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where ci is the scalar prescribed by initial conditionxxx(0), γi is the eigenvalue ofAAA, and ξi is linearly

independent eigenvector. Consequently,

lim
k→∞

xxx(k) = c1ξ1 (3.33)

Note that the stability means the stability of all the fixed points, which in fact are the elements of

eigenspace xi1 corresponding to γ = 1.

Corollary 1 All solutions of linear iterative solution xxxk+1 = AAAxxxk converges to a vector ξ that lies

in the γ1 = 1 eigenspace provided (3.30) holds true. Moreover, the rate of convergence of the

solution is governed by the modulus |γ2| of the subdominant eigenvalue. [23].
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Figure 3.3 Plot showing the locus of eigenvalues for different feedback gain parameter ρ; γ =
max |γj|, j /∈ i; |γi| = 1
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I am interested in investigating the correlation of gain parameter ρ with the convergence

speed of the algorithm. Figure 3.3 shows the plot of second highest eigenvalues of the state matrix

AAA for different input of ρs. The algorithm becomes unstable beyond the critical value ρcr. As

stated in the corollary 2, smaller the second largest eigenvalue, faster the convergence. As depicted

in the Figure 3.3, the subdominant eigenvalue quickly decreases as ρ is decreased. The system

has oscillatory behavior at the margin of stability, and the oscillation is controller with lower gain.

Recall that the update process of the market price λ has a consensus part and a gradient part. With

the higher ρ, the mismatch of the network goes to acceptable limit before the state variables settle

to a fixed point. A trade off can be sought by choosing ρ in between ρcr and ρ corresponding to

minimum subdominant eigenvalue.

3.4 Results and Discussions

This section presents the distributed online economic dispatch results for IEEE-300, fol-

lowed by the discussion on the choice of optimum gain parameter ρ.

3.4.1 Simulation Setup

The Algorithm 1 is implemented in MATLAB R2020a environment to test the efficacy of

the optimization problem (3.10) for IEEE network ranging from IEEE-14 bus to IEEE-300 bus.

The cost-coefficients ai and bi , generator limit, and the initial values of power demand at each bus

are adopted from [42]. The power demands of all buses shift in three different positions during

the iterative process to mimick the dynamic nature of the load. This is accomplished by uniform

distribution functions, that are used to randomize the drop percentages for each individual load.
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In all cases, as the algorithm is robust enough to drive any initial value to convergence, I

initialize power generations at zero, and prices at a uniform distribution around the initial optimal

value. I use Mean Metropolis algorithm with ϵ = 1 to set up the weight matrix WWW assuming

that each bus of the network is an agent and the communication topology follows the electrical

connection between buses. All the case study results are benchmarked against MATPOWER 7.0.

3.4.2 Algorithm Performance
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Figure 3.4 Results for IEEE 300-bus case; (a) displays the total generated power and total demand
of the network, (b) shows the magnified version of the convergence process when all
the units start from 0 MW, (c) shows the generating units moving together from one
equilibrium point to another after the change in demand

Figure 3.4 (a) shows that all 69 generating units in IEEE 300-bus network collectively en-

suring power balance in the network, while finding their optimal strategies. Figure. 3.4 (b) is the
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magnified version showing the convergence at 0.4266s (8000 iterations), and Figure. 3.4 (c) shows

the magnified version when all the generating units move from one equilibrium point to another.

The demand fluctuates in every 2 seconds, and the generating units quickly find their optimal points

based on the demand of the network. While the number of iteration is higher, the time for each iter-

ation is quite small because all nodes participate in the update process and the optimization problem

doesn’t need any sophistic ted computation.

Figure 3.5 (a) shows the convergence of market price λ (dual variable) of all the nodes.

Similar to Figure 3.4, all agents reach one consensus value, and any consensus that is stable is the

optimal dual variable. Figure 3.5 (b) depicts the magnified version of the initial consensus process,

where all agents take 0.37786s(7086) iterations to find the settling point. In the iterative process,

agents calculate their iterates based on their estimation of average and gradient descent to find the

market equilibrium. In Figure3.5 (c) all agent increase λ based on their estimation as the network

had sudden deficit of power because of the increment in demand.

Our algorithm preserves the privacy of the agents participating in the market. Figure 3.6

(a) shows the estimate of total power mismatch by each agent. With the the change in demand in

the network in different nodes, all agents quickly estimate the power imbalance of the network in

order to adjust their market price. Figure 3.6 (b) and Figure 3.6 (c) are the enlarged version of the

individual estimates of price mismatch. In our algorithm, any agent i share just two information

to their directly connected neighbors, λi and pi. As displayed, the estimate of price quickly vanish

to zero as the iteration proceeds which makes difficult for any other agent to track the data of its

neighbors. This feature of the algorithm is necessary for any fair market operation.
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3.4.3 Convergence and Stability Results

The computer specification used to implement the Algorithm 1 is Desktop PC with Intel

Core i7 processor (3.6 GHz) 64 GB RAM. I investigate the convergence speed of our proposed

algorithm using modal analysis. Based on the state matrix AAA, I first calculated the value of gain

parameter ρ such that the spectral radius of the matrix is unity. The value of ρwas further decreased

in small step by looking at the second largest eigenvalue γ2. I am interested in the fixed point

stability of state variablesxxx, and the oscillation of the dynamics depend on γ2. Figure 3.7 (a) shows

the plot of absolute value of γ2 for different ρs from 0 to critical value. Recall that critical value of

ρ corresponds to the border of stability zone. In the plot, red color shows the critical eigenvalue and

yellow shows the pri-critical value. The value in green is obtained using time domain simulation in

MATLAB Simulink, where the oscillation of λ for given ρ is looked for any disturbance, and final

value is obtained for 2% of oscillation of market price around its steady value. The value is blue

corresponds to the minimum of second largest eigenvalues for the range of ρs. I see in Figure 3.7

(a) that |γ2| decreases at first with decreasing ρs, and diverges from a knee point in blue. Finally, I

randomly select a point in purple that is for lower value of ρ than the optimum.

In order to illustrate the effect of different ρs, Figure 3.7 (b) is plotted. It shows all 3N

eigenvalues for each value of ρ shown in the same purple, blue, green, yellow, and red color.

Eigenplot shows that higher the value of ρ, farther the points go from real-axis. There is always

one eigenvalue that has unity real part, which in fact takes care of the stability at fixed point.

Remark 1.: The algorithm has its equivalence with the dynamic system in control theory.

The mismatch gain ρ corresponds to the proportional controller, which is exactly what I can see in
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Figure 3.7 (b); with the larger value of proportional gain , higher will be the overshoot and hence

oscillations in the system. The update of market price λ corresponds to integral controller, where

it is adding all the errors set from the optimum point.

Figure 3.8 shows the convergence process for different residuals. First I define the following resid-

uals:

∆P =

∥∥∥ppp(k)− ppp∗
∥∥∥
2∥∥∥ppp(0)− ppp∗
∥∥∥
2

; ∆λ =

∥∥∥λλλ(k)− λλλ∗
∥∥∥
2∥∥∥λλλ(0)− λλλ∗
∥∥∥
2

;
∑

∆P =

∥∥∥∑i∈V

(
pi(k)− pi

∗
)∥∥∥

2∥∥∥∑i∈V

(
pi(k)− pi∗

)∥∥∥
2

;

Where ∆P is the residual of primal iterates, ∆λ is the residual of dual iterates, and
∑

∆P is the

residual of power mismatch.
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Figure 3.7 Results for IEEE 300-bus case. (a) the locus illustrates the relationship between vari-
ous values of ρ, admitted in the system matrix (3.28), and the matrix’s second largest
eigenvalue; (b) displays, on the imaginary plane, the set of eigenvalues that were ob-
tained for each value of ρ shown in the legend

Figure 3.8 (a), (b), (c) show the convergence for different ρs depicted in Figure 3.7. Figure

3.8 (a) shows the convergence of primal iterates with iterations (time). It is seen that the ρ corre-

sponding to lowest of the second largest eigenvalues in blue color takes any initialization of ppp to

52



0 7337
(0.4396s)

14971
(0.98287s)

35783
(2.1343s)

66717
(2.0965s)

100000

(a)

10!4

10!3

10!2

10!1

100

"
P

;1 =9.544e-05
;2 =1.909e-04
;3 =3.757e-03
;4 =7.381e-03

0 7086
(0.42456s)

14766
(0.96941s)

33742
(2.0126s)

62926
(1.9769s)

100000

(b)

10!4

10!3

10!2

10!1

100

"
6

;1 =9.544e-05
;2 =1.909e-04
;3 =3.757e-03
;4 =7.381e-03

0 1375
(0.082014s)

8095
(0.48502s)

17008
(1.1166s)

30000

(c)
Iterations

10!9

10!6

10!3

100

'
"

P

;1 =9.544e-05
;2 =1.909e-04
;3 =3.757e-03
;4 =7.381e-03
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the fixed optimal solution faster than any other values. We see that for 300 bus network, ppp settles

in less than half a second. Similar convergence is displayed in Figure 3.8 (b) for dual iterates λλλ.

Figure 3.8 (c), on the other hand, shows the ρ corresponding to green has faster convergence. This

shows that the mismatch of power in the network can be cleared faster with higher gain parameter,

while compromising the time for the agents to reach their optimal primal and dual points. Note that

with all the choices of ρ, the algorithm will eventually find the optimal solution points.

Remark 2: In the hierarchy of control, stability of power system always comes at first to

the economics of operation. Any power mismatch is the network is first responded by the inertia,

primary control, secondary control, and tertiary control (economic dispatch) in the same order as

the name suggests. This motivated us to look for the gain parameter in green using time domain

simulation.

3.5 Summary

In this chapter, a fully distributed algorithm is proposed for economic dispatch problem

where all agents’ computations are just based on their own data and their neighbors’ shared infor-

mation. The algorithm employs dual decomposition and dynamic average consensus algorithms to

develop the update procedures. Use of dynamic average consensus has enabled the algorithm to

track time varying constraint set of the optimization problem, which in fact translates to tracking

of demand change in the network. Modal analysis is presented to speed up the convergence to a

fixed point solution. Performance of the proposed solution including convergence and computa-

tion speed are tested against different IEEE 300 bus test case. Simulations demonstrate promising
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results for the algorithm to solve real-time economic dispatch problems with dynamic load varia-

tions. It would be interesting to study the communication imperfection in data transfer as the future

work. It is assumed that the communication network is perfect ,but time delays and packet drops

are ubiquitous. In addition, an optimization problem (semi definite programming) to calculate the

optimum gain is an interesting work to pursue in the future.
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CHAPTER 4

DISTRIBUTED ECONOMIC DISPATCH VIA ADMM

4.1 Introduction

4.1.1 Motivation and Related Work

Future electric grid will likely be dominated by small-scale distributed energy resources

(DER) mostly comprising of variable energy resource (VRE), which are characterized by their un-

predictability and variability [43–45]. This necessitates newways to control, monitor, and optimize

resources. With the proliferation of DERs and their participation at the grid-edge, a central entity

to dictate the decision to all the players of the market to allocate resources is simply impractical

given the unprecedented size of data and the challenges involved in computation and communica-

tion [27, 46]. Against this backdrop, distributed algorithms that would dynamically adapt to real-

time changes are projected as a promising solution for economic dispatch [28, 32, 47, 48]. More,

high penetrations of VRE in the future power grids leads to dynamically changing net power de-

mand on the grid, which requires online (real-time) solutions for its optimal operation–e.g. online

economic dispatch–without a need for initialization of the optimization process.

Inspired by the multi-agent systems from control theory [25] and a seminal work on dis-

tributed computation [24], a plethora of papers have investigated the relevance of decentralized and

distributed algorithms for economic dispatch including analytical target cascading (ATC), proximal

message passing (PMP) [26], auxiliary proximal message passing (APMP) [49], and Alternating
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Direction Method of Multipliers (ADMM) [21, 50, 51]. ADMM algorithm is widely reported in

the literature due to its capabilities to handle large-scale problems, and its O(1/k) convergence

rate [52]. The fundamental idea of this optimization method is that the central coordinator gathers

the information including decision variables from all agents to update the global dual variable, and

broadcasts necessary information back to all the agents. The central coordinator adjusts the dual

variable until the market is cleared, and optimum resource is allocated. An application of this pris-

tine ADMM algorithm with model predictive control is used in [28] to control and schedule DERs

in real-time in a micro-grid. This and all the decentralized algorithms, however, are vulnerable to

single point failure, and even might have data-privacy concerns.

Different from decentralized algorithms, distributed algorithms are designed to remove the

need for a coordinator (master node) by letting each agent communicate only with its directly con-

nected neighbors to compute its optimum decision variables [53]. Gradient and sub-gradient based

algorithms are well established distributed algorithms [54]. Gradient-based algorithm is proposed

in [6] to solve economic dispatch problem, but with an additional agent to communicate with all the

agents in order to ensure power-balance of the network. A distributed subgradient based algorithm

is introduced in [5], where frequency is used as a proxy for power balance to coordinate among

renewable generations. Besides, [29, 55] exploit primal-dual algorithm to implement distributed

economic dispatch.

A consensus based ADMM is proposed in [35, 36] to solve distributed economic dispatch

problem in a microgrid. An average consensus algorithm and projection methods are exploited to

realize a distributed ADMMby seeking the consensus of the primal variables, i.e. the agents’ power

generation. While both of these algorithms are effective for a constant demand, none of them is
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practical for real-time implementation in the grid with high penetration of variable energy resources

as they cannot capture the dynamics of real-time changes in demand and renewable resources.

Besides, [20] identified the need of distributed algorithms to solve the online convex optimization

problem with time-varying constraint sets.

The convergence rate of (sub)gradient and ADMM algorithm have been studied. Authors

in [56] investigate the convergence of decentralized gradient descent algorithm for a proper closed

convex function with Lipschitz gradient. The paper shows that for a strongly convex problem,

solution converge to the global minimizer at a linear rate. Similarly, the convergence rate of ADMM

algorithm for different functions have been explored given the popularity of this algorithm to solve

large scale optimization problem. A Survey paper [21] explicitly states that the algorithm is slow to

converge to high accuracy compared to its counterparts, but converges to modest accuracy within

a few iterations. Authors in [57] study the convergence of ADMM for strongly convex and have

Lipschitz continuous gradient, and show that the sequence generated by the algorithm converges

linearly to the optimal solution. They further show that the convergence depend on the connectivity

of communication matrix and the weights associated with the each edge of the graph. Authors

in [58] add to the conclusion on [57] and demonstrate with the simulation results that average

consensus is faster in convergence for highly connected graph, quantified in terms of spectral radius

of graph.

This chapter proposes a completely distributed algorithm called distributed Alternating Di-

rection Method of Multipliers (D-ADMM) with an application in online economic dispatch, where

each agent updates its time-varying local estimate of the average of power mismatch using dynamic

average consensus algorithm [9, 14], and updates its dual variable via a combination of average

58



consensus and subgradient step. Based on the updated information, all agents find their optimal

decision projected onto its local constraint set from its augmented Lagrangian objective function.

Preliminary result was published by the author in [59]. The proposed D-ADMM algorithm possess

the following five desirable properties:

i. Distributed Consensus: It ensures Consensus on average power-mismatch and market price

via a purely distributed setting—as opposed to one central coordinator calculating and shar-

ing these global values with all agents.

ii. Optimality: The optimal solution sought is proven optimal by leveraging the KKT conditions

to show its primal and dual feasibility.

iii. Stability and Convergence: Its stability and convergence to the optimal solution are guaran-

teed via eigensystem analysis. In addition, D-ADMM is compared with D-Subgradient in

terms of convergence speed.

iv. Scalability: It fully decomposes the optimization problem between agents, and its compu-

tational complexity does not grow with the network size; its scalability is demonstrated by

testing it against IEEE 1354-bus network.

v. Data Privacy: It ensures minimum sharing of data between agents as it lets agents commu-

nicate their power mismatch with their neighbors only—rather than sharing their generation

and demand data with all the agents or a central coordinator.
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4.1.2 Notation

Let G denote a graph with the set of vertices V = {1, · · · , N} and the edges E ⊆ V × V ;

G is restricted to simple, undirected graph without multi-edges and self-edges. For a set V , its

cardinality is represented by |V|. I define Ni = {j ∈ V|(j, i) ∈ E and j ̸= i} as the set of all the

neighbors of the agent i and di = |Ni| as degree of any node i; di = |{j : (i, j) ∈ E}| . R denotes

the set of all real numbers, 0 ∈ RN×N is a null matrix, III ∈ RN×N is an identity matrix, 111N ∈ RN×N

is a unit vector, and γ is the eigenvalue. (·)T is the transpose. DED stands for distributed economic

dispatch, SG stands for subgradient, and ADMM is Alternating Direction Method of Multipliers.

Matrices and vectors are written in bold throughout the thesis.

4.2 Distributed Economic Dispatch

Economic Dispatch is the determination of the optimal output of each generator based on

the marginal cost of production in order to meet the demand of the network.

Let each agent i ∈ V = {1, . . . , N} be the bus of the power network. The economic

dispatch is, then, modeled as

min
pkgp
k
gp
k
g

∑
i∈V

Ci(p
k
gi) (4.1a)

s.t
∑
i∈V

pkgi =
∑
i∈V

pkdi (4.1b)

pmingi ≤ pkgi ≤ pmaxgi ∀i ∈ V (4.1c)
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where pkgpkgpkg = {pkgi, . . . , pkgN} denoting the power generation of all buses at the time-step k is the set

of decision variables; (4.1a) represents the objective function as minimization of the total gener-

ation cost at any time-step k with Ci(·)|R → R equal to the generation cost function of agent i;

(4.1b) represents the power balance constraint, with pdi denoting the demand at bus i, to ensure the

network’s total generation and total demand are equal at any time; (4.1c) guarantees all generations

operate within the minimum and maximum generation capacities at any time.

The optimization problem (4.1) has local objective function (4.1a) and local constraint

(4.1c), coupled by the global constraint (4.1b) on the network’s total generation and total demand.

In this chapter, I aim to model problem (4.1) as a completely distributed optimization problem that

allow each agent to determine the value of its decision variables pgi ∈ pgpgpg.

4.2.1 Economic Dispatch Problem in a Decentralized Setting

Let us define agent i’s power mismatch by pi = pgi − pdi and its feasible set by

Ωi = [pmini , pmaxi ] = [pmingi − pdi , p
max
gi − pdi ]

Substituting pgi = pi + pdi in the cost function Ci(pgi) defined in the problem formulation (4.1),

Ci(pgi) modifies to fi(pi) where

fi(pi) = aip
2
i + (2aipdi + bi)pi + aip

2
di + bipdi + c (4.2)
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Then, (4.1) can be written as

min
ΩΩΩ

∑
i∈V

fi(pi) (4.3a)

s.t.
∑
i∈V

pi = 0 (4.3b)

where ΩΩΩ = [Ω1; · · · ; ΩN ] ∈ RN is the set of the decision variable. The problem (4.3) is as an

exchange ADMM problem as detailed in [21] in which each agent participates in the competitive

market and the market equilibrium is reached.

Another canonical form of the exchange problem (4.3) is the sharing problem [21, 60]

min
ΩΩΩ

f(ppp) + g(zzz) s.t. pi = zi; i ∈ V (4.4)

where ppp = [p1; · · · ; pN ], zzz = [z1; · · · ; zN ] is an auxiliary vector,g(zzz) is a shared objective term

defined as

g(zzz) =


0 if

∑
i∈V zi = 0

∞ otherwise
(4.5)

and f =
∑

i∈V fi : RN is the total cost function.

Assumption 1 The function f : RN → R
⋃
{+∞} is closed, proper, and convex.

I consider the augmented Lagrangian Lρ associated with (4.4):

Lρ(p, z, λ) = f(ppp) + g(zzz)− λT (p− z) +
ρ

2

∥∥∥p− z
∥∥∥2
2

(4.6)
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where ρ > 0 is the penalty parameter, ∥ · ∥2 is the usual euclidean norm and λλλ = [λ1; · · · ;λN ] is a

vector of dual variables associated with equality constraints.

A classic ADMM runs the iterations in the following sequence

pk+1
i = argmin

Ωi

fi(pi)− λki pi +
ρ

2

∥∥∥pi − zki

∥∥∥2
2

(4.7)

zzzk+1 = argmin
zzz

g(zzz) + λλλk
T
zzz +

ρ

2

∥∥∥pppk+1 − zzz
∥∥∥2
2

(4.8)

λi
k+1 = λi

k − ρ
(
pk+1
i − zk+1

i

)
(4.9)

Based on definition of g(z) in (4.5), optimization problem (4.8) can be formulated as

min
z

∑
i∈V

{
λki

T
zi +

ρ

2

∥∥pk+1
i − zi

∥∥2
2

}
(4.10a)

s.t.
∑
i∈V

zi = 0; (4.10b)

Correspondingly, the Lagrangian of (4.10) is equal to

∑
i∈V

L(zi, y) =
∑
i∈V

{
λki

T
zi +

ρ

2

∥∥pk+1
i − zi

∥∥2
2
+ yzi

}
(4.11)

where y is the Lagrangian variable.

Proposition 1 For any convex optimization problem with diffferentiable objective and constraint

functions, any points that satisfy theKarush–Kuhn–Tucker conditions are primal and dual optimal

and have zero duality gap [18].
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Thus, using the stationary condition i.e., ∆L(zi, y) = 0 of KKT conditions:

∆ziL(zi, y) = 0 → zi = pk+1
i − λki

ρ
− y

ρ
(4.12)

∆yiL(zi, y) = 0 →
∑
i∈V

zi = 0 (4.13)

Solving (4.12) and (4.13) yields:

y = ρ

(
pk+1 − λ

k

ρ

)
(4.14)

where pk+1 = 1/N
∑

i∈V p
k+1
i is the network’s averagemismatch of power and λk = 1/N

∑
i∈V λ

k
i

is the network’s average price of generations.

Substituting (4.14) in (4.12) leads to

zk+1
i = pk+1

i − pk+1 − λi
k

ρ
+
λ
k

ρ
(4.15)

and substituting the gradient term in (4.9) with (4.15) gives

λi
k+1 = λi

k − ρpk+1 + λ
k − λki = λ

k − ρpk+1 (4.16)

which implies that all the individual prices of the agents are in fact in consensus as the average

market price and averagemismatch of power are constant terms. In other words, λi = λ = λ ∀i ∈

V .
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Consequently, (4.15) can be written as

zk+1
i = pk+1

i − pk+1 (4.17)

and substituting (4.17) on (4.7), the decentralized ADMM algorithm can be summarized as:

pk+1
i := argmin

Ωi

(
fi(pi)− λkpi +

ρ

2

∥∥∥pi − (pki − pk
)∥∥∥2

2

)
(4.18)

λk+1 := λk − ρpk+1 (4.19)

In this exchange ADMM algorithm, the central coordinator receives the average mismatch

of power from all the agents, which then adjusts the market price to ensure the supply-demand

balance of the network. From the semantics of optimization, in (4.19), λ is constantly pulling

the decision variables pi ∈ ppp toward the optimal value projected onto the feasible space Ωi. Each

agent, then, updates their pi independently based on the broadcasted values λ and p from the central

coordinator.

4.2.2 Economic Dispatch Problem in a Distributed Setting

I am interested in a platform which lacks any coordinator that has access to all the agents’

information and the agents communicate exclusively with their directly connected neighbors. In

order to make the exchange ADMM algorithm summarized in (4.18) and (4.19) completely dis-

tributed, (i) each agent must be able to obtain a meaningful estimate of the network average power

mismatch p and the dual variable λ by communicating with its neighboring agents, and (ii) all the
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agents must reach consensus about their estimates. Let us denote these estimates for any agent i by

pi and λi, respectively.

To achieve this, I use (2.15) to leverage the concept of dynamic average consensus discussed

in chapter 2 to convert these global variables to local ones. Localization of these two parameters

are achieved by

pk+1
i = W T

i ppp
k + (pk+1

i − pki ) (4.20)

λk+1
i = W T

i λλλ
k − ρpk+1

i (4.21)

with ppp = [p1; · · · ; pN ] ∈ RN , λλλ = [λ1; · · · ;λN ] ∈ RN , and where Wi ∈ RN×1 is the vector of

agent i’s update weights as defined for (2.8).

Note that although each agent communicates its own estimate of the network power mis-

match which might include some information about its own local power mismatch, they never

communicate their actual generation and demand data with any other agents. This makes it diffi-

cult for any agent to track the private information–e.g. the generation cost coefficients–of any other

agents, which leads to a higher level of preservation of data privacy.

Using (4.20) and (4.21), every agent can estimate the average power mismatch power and

the dual variable by communicating exclusively with its directly connected neighbors. A fully

distributed form of a decentralized ADMM in (4.18) becomes

Lρ(pi, λi) = fi(pi)− λki pi +
ρ

2

∥∥∥pi − (pki − pi
k
)∥∥∥2

2
(4.22)
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and the distributed ADMM algorithm of all the agents in the network can be summarized in vector

format network as



pppk+1 ∈ argminΩΩΩ
{
fff(ppp)− λλλk

T
ppp+ ρ

2

∥∥∥ppp− (pppk − pppk
)∥∥∥2

2

}
pppk+1 =WWWpppk + (pppk+1 − pppk)

λλλk+1 =WWWλλλk − ρpppk+1

(4.23)

where fff(ppp) =
[
f1(p1); · · · ; fN(pN)

]
∈ RN → R

⋃
{+∞} and λλλ = [λ1; · · · ;λN ] ∈ RN .

4.2.3 Distributed Economic Dispatch Algorithm

The distributed ADMM (D-ADMM) now can be designed to solve in an iterative procedure.

At each iteration, each agent receives the information on price and average power mismatch from

its connected neighbors Ni, and finds the optimum value of its primal variable. It then updates its

price and the estimate of network’s power mismatch and broadcasts to its connected neighbors.

Algorithm 2: Distributed ADMM Algorithm
Input: cost-coefficients {aaa,bbb}, and penalty parameter ρ
Initialization: Let λλλ0 = 0N , ppp0 = ppp0 = −pdpdpd0

1 for k = 0 to∞ do
2 Receive ppp and λλλ. Each agent receives data from its neighboring agents only.
3 Compute power mismatch pppk+1 as:

pppk+1 =
[
ΛΛΛλλλk + ρΛΛΛpppk − ρΛΛΛpppk − (2aaaΛΛΛ +ψψψ)pppkd − bbbΛΛΛ

]pmaxpmaxpmax

pminpminpmin

4 Update pppk+1 =WWWpppk + (pppk+1 − pppk)

5 Update λλλk+1 =WWWλλλk − ρpppk+1

6 Broadcast pppk+1, λλλk+1. Each agent broadcasts its data to its neighboring agents only.
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Differentiating (4.22) with respect to pi leads to

∂

∂pi
Lρ(pi, λi) =

∂fi(pi)

∂pi
− λki + ρ(pi − pki + pi

k) = 0 (4.24)

in order for any agent i to define its optimal value of pi at each iteration k + 1. Letting Xg ⊂ V be

the set of buses with the generating units, (4.24) for any agent i ∈ Xg leads to

pk+1
i =

λki + ρpki − ρpi
k − 2aip

k
di − bi

2ai + ρ
(4.25)

For any agent i /∈ Xg, the optimal value of pi is simply

pk+1
i = pk+1

gi − pk+1
di = −pk+1

di (4.26)

For a more concise presentation, (4.25) and (4.26) is written in a generalized form of

pppk+1 = ΛΛΛλλλk + ρΛΛΛpppk − ρΛΛΛpppk − (2aaaΛΛΛ +ψψψ)pppkd − bbbΛΛΛ (4.27)

where aaa = diag{ai}, bbb = diag{bi}, ΛΛΛ = diag{1/(2ai + ρ)}, and ψψψ = diag{ψi}. If i /∈ Xg, ψi = 1

and ai = bi = Λi = 0; otherwise, ψi = 0.

Algorithm 2 elaborates the iterative processes for the distributed ADMMmethod proposed

for the economic dispatch problem. Note that the update processes are presented in vector format

and preserve the distributed characteristics of the .
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4.2.4 Optimality Conditions

This section sheds light on the optimality of the proposed distributed ADMM algorithm in

(4.23). I make the following assumption on the optimization problem (4.3).

Assumption 2 Any saddle point (ppp∗, λ∗) of L0 is a pair of primal and Lagrangian dual optimal

solutions. This assumption, which is a standard result on Lagrangian duality, implies that

L0(ppp
∗, λ∗) = inf

ppp∈ΩΩΩ
L0(p, λ

∗); L0(ppp
∗, λ∗) = sup

λ

L0(ppp
∗, λ)

where L0 is the unaugmented Lagrangian.

Theorem 4 The necessary and sufficient optimality conditions for the D-ADMM are primal and

dual feasibility.

Proof: If the optimization problem (4.23) is primal and dual feasible, the optimality of the problem

is guaranteed.

(a) Primal Feasibility: The equality constraint (4.3b) in a generalized form Ax = b is:

pi +
∑

j∈V,j ̸=i

pj = 0; Api = −
∑

j∈V,j ̸=i

pj; A = 1 (4.28)

Using Farkas Lemma [17], only one of the two alternatives holds

1. ∃ pi ≥ 0 such that Api = −
∑

j∈V,j ̸=i pj

2. ∃ µ such that µTA ≥ 0 and µT (−
∑

j∈V,j ̸=i pj) < 0
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if (1) is true, then suppose µTA ≥ 0 , then using (1), µTApi = −µT
∑

j∈V,j ̸=i pj ≥ 0 which shows

that (2) cannot be true.

(b) Dual Feasibility: Here, I show that the optimization problem in (4.23) is dual feasible, that is,

0 ∈ ∂f(ppp∗) − λλλ∗. Applying Stationarity of Karush–Kuhn–Tucker conditions to the augmented

Lagrangian Lρ (4.22) for agent i; that is

∆pLρ(p, λ) = 0 ∈ ∂fi(pi)
k+1 − λki + ρ(pk+1

i − pki + pi
k)

Correspondingly,

0 ∈ ∂fi(pi)
k+1 − λk+1

i + λk+1
i − λki + ρ(pk+1

i − pki + pi
k)

Substituting λk+1
i from (4.21),

0 ∈ ∂fi(pi)
k+1 − λk+1

i +W T
i λλλ

k − ρpi
k+1 − λki + ρ(pk+1

i − pki + pi
k)

Substituting pik+1 from (4.20) and arranging,

0 ∈ ∂fi(pi)
k+1 − λk+1

i − (λki −W T
i λλλ

k) + ρ(pk+1
i − pki + pi

k −W T
i ppp

k − pk+1
i + pki )

which leads to the dual feasibility condition for agent i

(λki −W T
i λλλ

k)− ρ(pi
k −W T

i ppp
k) ∈ ∂fi(pi)

k+1 − λk+1
i (4.29)
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where left hand side quantity is the dual residual. For the complete network, the dual residual S

can be written in vector format as:

SSSk+1 = (III −WWW )λλλk − ρ(III −WWW )pppk (4.30)

whereSSS ∈ RN is the dual residual at iteration k+1. The matrix (I −WI −WI −W ) is a Laplacian matrix and

SSS converges to zero as soon as all agents reach consensus onλλλ andppp. Recall that, under Lemma 1-2,

the consensus on average mismatches and on market prices is guaranteed because of the conditions

imposed for the choice ofW as detailed in (2.12).

4.3 Numerical Stability and Convergence

The optimization problem in (4.23) is modeled as a discrete-time linear system to study

the stability of our proposed D-ADMM algorithm. The state-space representation of a discrete-

dynamic system is

xxxk+1 = AxAxAxk +BuBuBuk = f(xf(xf(xk,uuuk) (4.31)

yyyk+1 = CxCxCxk +DuDuDuk = g(xg(xg(xk,uuuk) (4.32)

where xxx(·) is a state vector, and uuu(·) is an input vector. Recall that the natural response of state

equation (4.31) is

xxxk = AAAkxxx(0) (4.33)
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wherexxx(000) is the initial condition. This means the stability of the system exclusively depends onAAA,

which motivates modeling of D-ADMM algorithm as a discrete state-space model. With reference

to (4.23) and (4.27), one can formulate the state equations of the proposed model as

pppk+1 = ΛΛΛλλλk + ρΛΛΛpppk − ρΛΛΛpppk − (2aaaΛΛΛ +ψψψ)pppkd − bbbΛΛΛ (4.34)

pppk+1 =WWWpppk + (pppk+1 − pppk)

=WWWpppk + (ΛΛΛλλλk + ρΛΛΛpppk − ρΛΛΛpppk − (2aaaΛΛΛ +ψψψ)pppkd − bbbΛΛΛ− pppk)

Correspondingly,

pppk+1 = ΛΛΛλλλk + (ρΛΛΛ− IIIN×N)ppp
k − (ρΛΛΛ−WWW )pppk

− (2aaaΛΛΛ +ψψψ)pppkd − bbbΛΛΛ (4.35)

Finally, the state equation for price vector is

λλλk+1 =WWWλλλk − ρpppk+1

Correspondingly,

λλλk+1 = (WWW − ρΛΛΛ)λλλk + (ρIIIN×N − ρ2ΛΛΛ)pppk − (ρWWW − ρ2ΛΛΛ)pppk

+ (2ρaaaΛΛΛ + ρψψψ)pppkd + ρbbbΛΛΛ (4.36)

The state equations (4.3) can be written in matrix form as
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pppk+1

pppk+1

λλλk+1

 =


ρΛΛΛ −ρΛΛΛ ΛΛΛ

(ρΛΛΛ− III) −(ρΛΛΛ−WWW ) ΛΛΛ

(ρIII − ρ2ΛΛΛ) −(ρWWW − ρ2ΛΛΛ) (WWW − ρΛΛΛ)




pppk

pppk

λλλk

+


−(2aaaΛΛΛ +ψψψ) −bbbΛΛΛ

−(2aaaΛΛΛ +ψψψ) −bbbΛΛΛ

(2ρaaaΛΛΛ + ρψψψ) ρbbbΛΛΛ


Pdk
111N



(4.37)

with an output matrix equal to

λλλ(k)
Pg(k)

 =

0 0 III

III 0 0



pppk

pppk

λλλk

+

0 0

III 0


Pdk
111N

 (4.38)

Comparing (4.37) and (4.38) with the canonical form in (4.31), we seeAAA ∈ R3N×3N is the

state matrix,BBB ∈ R3N×2N is the input matrix,CCC ∈ R2N×3N is the output matrix, andDDD ∈ R2N×2N

is the feed-forward matrix.

Theorem 5 Let γ1, · · · , γm m ≤ n be the eigenvalues ofAAA ∈ R3N×3N . The system (4.31) is [22]

• asymptotically stable iff |γi| < 1,∀i = {1, · · · ,m}

• stable if |γi| ≤ 1,∀i = {1, · · · ,m}

• unstable if ∃ i such that |γi| > 1

From theorem (5), we see that the spectral radius ζ(AAA) is detrimental to the stability of the iterative

process. Besides, I am interested in the stability of non-zero fixed point for the linear iterative
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system. In other words, for the stability to a non-zero fixed point

ζ(AAA) = 1 (4.39)

Also, the solution of the natural response (4.33) is:

xxx(k) =
3N∑
i=1

ciγ
k
i ξi (4.40)

where ci is the scalar prescribed by initial conditionxxx(0), γi is the eigenvalue ofAAA, and ξi is linearly

independent eigenvector. From (4.39) and (4.40), I can write

1 = γ1 ≥ |γ2| ≥ · · · ≥ |γ3N | (4.41)

Correspondingly,

lim
k→∞

xxx(k) = c1ξ1 (4.42)

which can be interpreted as the state variables xxx ∈ R3N convergences to a fixed point that is the

multiple of eigenvector ξ1.

Corollary 2 All solutions of linear iterative solution xxxk+1 = AAAxxxk converges to a vector ξ that lies

in the γ1 = 1 eigenspace provided (4.39) holds true. Moreover, the rate of convergence of the

solution is governed by the modulus |γc| of the subdominant eigenvalue. [23].
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Figure 4.1 Plot of of γs for different control gains ρ; γc = max |γj|, j /∈ i; |γi| = 1

With corollary 2, also note that the smaller the |γc|, the faster the convergence. The penalty

parameter ρ is equivalent to the step size in gradient methods and proportional controller in control

literature. A close observation onAAA reveals that for a given network , ρ is the governing parameter

for the stability and convergence of the iterative system. The value of ρ is computed for ζ(AAA) = 1

is the critical value ρcr beyond which the system is unstable. The reduction of ρ would decrease

the subdominant eigenvalue |γc|, which corresponds to faster convergence of the fixed points. It

is because the behavior of the system was stable but oscillatory at the margin of stability. With

decreasing ρ from ρcr, the oscillation of the iterative process was controlled. When the ρ is further

continuously decreased, |γc| starts to increase as depicted in fig 4.1, which translates to slowing of

the speed of convergence. The value of ρ before |γc| starts to increase is the optimum value ρ∗.
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4.4 Results and Discussions

4.4.1 Simulation Setup

The Algorithm 2 is implemented in MATLAB R2020a environment to test the efficacy of

the optimization problem (4.23) for IEEE network ranging from IEEE-30 bus to IEEE-1354 bus.

The cost-coefficients ai and bi , generator limit, and the initial values of power demand at each bus

are adopted from [42]. The power demands of all buses drop by up to 50% along the half-way of

the simulations. Uniform distribution functions are used to randomize the drop percentages.In all

cases, as the algorithm is robust enough to drive any initial value to convergence, I initialize power

generations and prices at zero, {PPP 0
g,λλλ

0} = {000}. I useMean Metropolis algorithm with ϵ = 1 to set

up the weight matrixW assuming that each bus of the network is an agent and the communication

topology follows the electrical connection between buses.

4.4.2 Algorithm Performance

Figure 4.2 illustrates the IEEE-30 bus test case where the iteration is carried up to 1200

iterations and the demand of the network abruptly changes at 600th iteration. Figure 4.2(a) shows

the primal residuals of all the buses converging to zero, which is detrimental to ensure power bal-

ance. The residuals go to zero as iteration k proceeds. A compassion with the plot on network’s

generation and demand Figure 4.2(d) illustrates that the generation meets the demand once all the

residuals converge to zero. At iteration 600, the net demand is changed and the generators adjust

to new optimal value in order to ensure power balance in the network. Here, the primal residuals

quickly vanish to zero as the buses were already in one equilibrium point.
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Figure 4.2 Results for IEEE 30-bus case. (a), (b) and (c) show the convergence process of primal
residual, dual residual and market price respectively; (d) displays the total generation
following the total demand of the network; (e) illustrates the optimum generation pro-
file of all the plants in the network; (f) shows the eigenvalues of the state-space given
in (4.37), for ρ = 2.768e− 3
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Figure 4.3 Results for IEEE 1354-bus case; (a) displays the convergence process for the market
price (λ); (b) displays the total generation following the total demand on the system;
(c) shows the eigenvalues of the state-space given in (4.37), for ρ = 1.593e− 4
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Figure 4.4 Results for Primal Residual Convergence:(a) displays the convergence process for pri-
mal residual along thewhole simulation. (b) and (c) show in details the first and second
iterative dynamics of this process respectively

0 20e3 40e3 60e3 80e3 100e3

-0.4

-0.2

0

0.2

(a)

0 125 250
-0.2

0

0.2

(b)

49990 50100 50200

-0.05

0

0.05

(c)

Iterations

D
u
al

R
es
id
u
al

S
[$
/M

W
h
]

Figure 4.5 Results for dual residual convergence: (a) displays the convergence process for dual
residual along the whole simulation. (b) and (c) show in details the first and second
iterative dynamics of this process respectively
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The dual residuals converge to zero once all the buses have consensus on market price and

the estimate of power mismatch of the network. In other words, the market is cleared once the

primal residuals and dual residuals converge to zero, thus dispatching all the generators in their

optimum value. The optimum decision of all the generators is shown in Figure 4.2(e). Observe

that the generations start from zero as initialized and quickly find their optimum points.

Figure 4.2(c) shows the convergence of all the prices to one market price. The price in all

agents are travelling together as it is is set zero at the start. When the demand is reduced, market

price finds consensus to a lower value, which comply with the supply-demand curve.

In order to demonstrate the stability of the proposed algorithm, Figure 4.2 shows the eigen-

values of state matrix AAA from the state-space aforementioned in (4.37); for the gradient step ρ =

2.768e − 03, visibly the eigenvalues are all within the unit that guarantees the stability. Further-

more, the predominance of eigenvalues closer to the abscissa announces the system reaches the

steady-state without oscillating between operation states which in real time operation is a valuable

characteristic. Recall that any eigenvalue outside the unity circle invites instability in the algorithm.

The choice of optimum ρ is discussed in subsection 4.4.3.

Figure 4.3,4.4 and 4.5 illustrate the similar results but for a larger system, IEEE 1354-bus.

This network has 260 generators and for this reason the individual generation profiles are not shown

in the figures. The convergence of primal residuals and dual residuals to zero is shown in Figure

4.4, 4.5 respectively. This shows that the algorithm is scalable.
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4.4.3 Computation Time

The computer specification used to implement the Algorithm 2 is Desktop PC with Intel

Core i7 processor (3.6 GHz) 64 GB RAM. The the total number of iterations and time for test cases

IEEE-30 bus, IEEE-118 bus, IEEE-300 bus and IEEE-1354 bus are displayed on Figure 4.6. I see

that the larger the network, the longer time taken for the convergence of dual residuals, primal

residuals and market price.

0
.0
1
1
s

0
.0
0
7
s

0
.0
0
9
s0
.1
0
5
s

0
.0
3
9
s

0
.0
9
5
s

0
.1
4
8
s

0
.0
9
2
s

0
.2
5
4
s4
.6
2
s

0
.2
2
6
s 7
.9
s

Dual Residual Primal Residual Lambda

10!3
10!2
10!1
100
101

T
im

e
[s
]

30 bus 118 bus 300 bus 1354 bus

4
6
2

2
9
9

3
9
2

2
0
8
9

7
8
0 1
8
8
0

1
9
0
3

1
1
8
5 3
2
6
8

5
3
5
1

2
6
2

9
2
0
6

Dual Residual Primal Residual Lambda
100

101

102

103

104

105

It
er
a
ti
o
n
s

Figure 4.6 Figure shows (a) the time, and (b) the number of iterations necessary for the algorithm
to converge within the limits of ϵ = 1e-5 of the final value. For visualization purpose,
the convergence time and iterations are shown on top of each bar of the figures

Observe that the number of iterations for the convergence dual residuals of IEEE 1354-bus

is lower than that of smaller networks. This inconsistency can be explained using the definition of
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dual residual S in (4.30). Note that S has two terms, the first term in which the Laplacian matrix

drives the consensus on the market price to zero and the second term with in which the gradient ρ

and Laplacian matrix together drives the consensus on the estimate of power mismatch to zero. As

ρ is very small (= 1.593e − 04), the effect second term quickly vanishes to zero ,and Figure 4.3

shows that market price λ find consensus quite early and move together to settle in its optimum

value.

4.4.4 Convergence and Stability Results

Chapter 3 discusses the choice of optimal gain parameter ρ, and demonstrates the effect, in

simulations, for the proposed D-subgradient algorithm. Section 4.3 builds on the same conceptual

framework to quantify the value of optimal gain parameter (penalty parameter) ρ. This section

intends to compare the convergence of two algorithms by extensive simulations.

In order to have a fair comparison, I simulate the case for strongly convex with quadratic

cost function to compare the convergence speed between two algorithms. Table 4.1 describes the

IEEE networks in terms of their connectivity, and weight of edges.

Table 4.1 IEEE Graph Network Characterstics

Test |γc(LLL)| max |γj(WWW )| Maximum Average
Case j ̸= i, |γi(WWW )| = 1 Degree Degree

Case 39 0.076186 0.020896 5 2.359
Case 300 0.0093838 0.0021002 11 2.7267
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Figure 4.7 Results for: the locus of the second largest eigenvalues for corresponding gain pa-
rameter for (a) IEEE 39-bus network for (b) IEEE 300-bus network;displays the set
of all eigenvalues on imaginary plane for (c)IEEE 39-bus network (d) IEEE 300-bus
network
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Figure 4.8 Results for IEEE 39-bus case. Based on different values of ρ, the figure
displays the convergence process for residuals
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Figure 4.9 Results for IEEE 300-bus case. Based on different values of ρ, the figure
displays the convergence process for residuals
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Figure 4.7 (a) and (b) compares the response of second largest eigenvalues for different

gain parameters in D-subgradient and D-ADMM algorithm. The second largest eigenvalue keeps

decreasing with the decrease in ρ, and departs from the knee point. The simulation demonstrates

that it is not algorithm, but the graph network that defines the convergence of iterates to the optimal

solution.

Similarly, Figure 4.7 (c) and (d) compares the response of all eigenvalues in complex plane

for the change in gain parameter for IEEE 39-bus network and IEEE 300-bus network. The purple

area corresponding to ADMM algorithm are more to real plane than subgradient algorithm. This

can be interpreted as D-ADMM is more stable than D-subgradient algorithm, which supports the

fundamental idea behind augmented part in the Lagrange relaxation of D-ADMM algorithm.

First I define the following residuals in order to show the convergence of different iterate.

The metric of convergence speed is same as in chapter 3.

∆P =

∥∥∥ppp(k)− ppp∗
∥∥∥
2∥∥∥ppp(0)− ppp∗
∥∥∥
2

; ∆λ =

∥∥∥λλλ(k)− λλλ∗
∥∥∥
2∥∥∥λλλ(0)− λλλ∗
∥∥∥
2

;
∑

∆P =

∥∥∥∑i∈V

(
pi(k)− pi

∗
)∥∥∥

2∥∥∥∑i∈V

(
pi(k)− pi∗

)∥∥∥
2

;

Where ∆P is the residual of primal iterates, ∆λ is the residual of dual iterates, and
∑

∆P is the

residual of power mismatch.

Figure 4.8 and 4.9 demonstrate the convergence of primal iterates, dual iterates, and power

mismatch. The results show that subgradient and ADMM algorithm converge with the same rate

for strongly convex functions.
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4.5 Summary

In this chapter, the ADMM algorithm is fully distributed to solve the economic dispatch

problem in real-time without a need for a master node. The proposed solution exploits dual decom-

position and dynamic average consensus algorithms to develop the update procedures with minimal

information shared between the directly connected neighbors. The performance of the proposed

solution including optimality, stability, convergence, and computation speed is investigated against

standard IEEE test cases. Simulations demonstrate that the algorithm dynamically responds to the

real-time change in the demand of the network.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this thesis, consensus based distributed algorithms to allocate resources in real-time have

been proposed to solve economic dispatch problems. First, a decentralized problem was trans-

formed into a fully distributed problem using consensus theory and dual decomposition, where

all agents’ computations are just based on their own data and their neighbors’ shared information.

The net load (passive load minus renewable generation) in the future grid is expected to fluctuate

quickly, and the distributed algorithms must be able to track the real-time changes in the constraint.

The dynamic average consensus algorithm was embedded in the Subgradient algorithm to track the

time-variant constraint, and distributed online algorithm was proposed. It has been further proved

that the primal and dual iterates converges to the optimal points using KKT conditions of optimality.

The algorithm proposed can continuously perform without a need for agents to collect information

overtime to run the optimization since the algorithm is agnostic to any initialization vector. Thus,

the algorithm can be embedded in the any intelligent device. For example, plug-and-play loads

like electric vehicles can independently decide how to control their charging and discharging pro-

cess, any price responsive load can be programmed for features like demand response and auxiliary

services like frequency regulation with no need for coordination with other entities.
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Similarly, a decentralized version of ADMM was modified to handle fully distributed op-

timization problems. The ADMM is different from a regular Lagrange relaxation in that it has a

penalty term added in the relaxed version which vanishes to zero at primal feasibility. This brings

robustness in the problem. From the optimization point of view, augmenting penalty term makes

the dual problem differentiable under mild conditions. In other words, this removes the assump-

tion of the need for strictly convex problem to have a equivalent differentiable dual problem. In

the future electric grid, then, the objective functions (cost function, utility function) whose objec-

tive function is not necessarily strictly convex can be modeled. The dynamic average consensus

algorithms has been embedded in order to transform the solution to a fully distributed version. It

has been further shown that the optimal solution is successfully sought by the distributed algo-

rithm developed in this thesis. Using KKT conditions, It has been demonstrated that the problem is

both primal- and dual-feasible, and it still has a saddle point. Our proposed distributed ADMM al-

gorithm decomposes the optimization problem into subproblems for individual agents where each

agent calculates the primal minimizer (cost minimization) and the dual maximizer (subgradient up-

date) at the same time, leading to the saddle point of the Lagrange surface. The proposed ADMM

algorithm–similar to the proposed subgradient algorithm–possess the properties of starting from

any initialization vector and handling the demand change in real-time in a distributed fashion with

any risk to deviate from the optimal solution. In addition, the algorithm has been designed in a

way such that the agent’s information is kept confidential, which in turn helps a fair electricity

trading. The test cases are simulated from IEEE 30 bus network to the network as large as 1354

bus, thus demonstrating the scalibility of the algorithm. Second, the stability and the convergence

were investigated by modeling both algorithms as discrete dynamic systems. In the dynamics of the
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proposed algorithms–i.e. minimization over primal variables and maximization over dual variables

in alternating sequence–large gradient step might lead to instability of the algorithm. The optimal

and stable gain parameter was calculated based on the study of the state matrix and modal analy-

sis. It has been shown that the convergence rate is governed by the gradient step corresponding to

the second largest eigenvalue of the state matrix. Lastly, the parallels have been drawn between

two algorithms for a given quadratic cost function via simulations. Through simulations of IEEE

test cases for various gradient steps, the convergence speed of the Subgradient and ADMM algo-

rithms are similar for equivalent gradient steps. More, increasing the network connectivity level

significantly increases the convergence speed.

5.2 Future Directions

There are ample research directions to pursue. Some of them are briefly summarized in

bullets below:

• Security Constraint Economic Dispatch: While, in this work, the primal iterates are projected

to its feasible domain in every iteration, the optimization can be expanded to problems with

inequality constraints. For economic dispatch, this is equivalent to adding reserve limit in

the problem. Development of distributed algorithms for this problem has not been targeted

in the literature yet.

• Holistic Control Framework: The traditional power system has layers of hierarchical fre-

quency control including primary control (droop control), secondary control (Automatic

Generation Control), and tertiary control (static Economic Dispatch). With the future smart

90



power grids dominated byVRE resources in imminent future, there is a need for a new control

platform to control frequency and perform power system optimization simultaneously.

• Communication Imperfections: It is suggested to study the communication imperfection in

data transfer as the future work. In this thesis, it has been assumed the communication net-

work is perfect and real-time while time delays and packet drops are ubiquitous.

• Analytical Solutions for Distributed Gain Calculation: In this work, the stability analysis and

defining the optimal gain parameters are done in a central fashion. Given that the algorithm

is distributed in nature and agents may join or drop at any time, it is recommended to develop

algorithms to calculate the optimal gain parameter in a distributed fashion, too.

With the power grid going through an unprecedented transformation because of the pene-

tration of DER, there is an imminent need to design the market and address some pressing issues

that have recently surfaced. The algorithms proposed can set the foundation for electricity market

design with high penetration of DERs.
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Figure A.1 IEEE 30-bus Network [1]
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Figure A.2 IEEE 300-bus Network [1]

99



VITA

Shailesh Wasti received his Bachelor’s degree in Electrical Engineering (2015) from Trib-

huvanUniversity, Nepal, and is currently working toward anMS degree in Electrical Engineering at

the University of Tennessee at Chattanooga under the supervision of Dr. Vahid R. Disfani. Shailesh

has worked on a market design of electric vehicles, distributed optimization for resource alloca-

tion problems, allocation of inertia in the power grid dominated with renewables, and modular

multilevel converters for grid integration of solar photovoltaic systems.

His research interest lies in the study of distributed algorithms, market design, control and

optimization of the power system, and the economics of power system. He is passionate, and quite

serious about the welfare of society in general while transcending the technicalities of electricity

generation and distribution.

100


	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER
	INTRODUCTION
	General Background
	Statement of Problems
	Objectives
	Thesis Outline

	PRELIMINARIES
	Distributed Consensus Algorithms
	Graph Theory 
	Decentralized and Distributed Algorithms
	Dynamic Average Consensus

	Convex Optimization
	Constrained Optimization
	Convex Functions
	Optimality Conditions: KKT Conditions

	Distributed Optimization
	 Primal and Dual Decomposition
	Distributed Gradient Algorithm
	Augmented Lagrangian and ADMM

	Algorithm Stability: Discrete Dynamic Systems

	DISTRIBUTED ECONOMIC DISPATCH VIA SUBGRADIENT
	Introduction
	Motivation and Related Work
	Notation

	Economic Dispatch Problem 
	Dual Decomposition of Economic Dispatch
	Distributed Economic Dispatch

	Numerical Stability and Convergence
	Results and Discussions
	Simulation Setup
	Algorithm Performance 
	Convergence and Stability Results

	Summary

	DISTRIBUTED ECONOMIC DISPATCH VIA ADMM
	Introduction
	Motivation and Related Work
	Notation

	Distributed Economic Dispatch 
	Economic Dispatch Problem in a Decentralized Setting
	Economic Dispatch Problem in a Distributed Setting
	Distributed Economic Dispatch Algorithm
	Optimality Conditions

	Numerical Stability and Convergence
	Results and Discussions
	Simulation Setup
	Algorithm Performance
	Computation Time
	Convergence and Stability Results

	Summary

	CONCLUSIONS AND FUTURE WORKS
	Conclusions
	Future Directions


	REFERENCES
	APPENDIX
	IEEE TEST CASES

	VITA

