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ABSTRACT 
 

The natural world is dynamic, and species must successfully respond to the 

environmental changes they experience. Pityopsis ruthii (Ruth’s golden aster) is an imperiled 

endemic perennial confined to boulder crevices along short stretches of the Hiwassee and Ocoee 

Rivers in Polk County, TN. To investigate plasticity of this species within the context of such 

change, we used a comparative approach to observe general differences in plasticity between P. 

ruthii and its widespread congener P. graminifolia by assessing the responses of individuals to 

experimentally imposed environmental change. Overall, P. ruthii exhibited lower plasticity than 

P. graminifolia, but these differences were resource-dependent with P. ruthii having significantly 

greater plasticity within the context of water availability while P. graminifolia exhibited greater 

plasticity within the context of light availability and temperature. The plasticity differences of P. 

ruthii and its positive associations with productivity provide context for understanding its 

constrained distribution and habitat specificity.  
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CHAPTER I 
 

INTRODUCTION 
 
 

The question of why some species are rare while others are common is long-standing 

within the biological community (Darwin 1859, Stebbins 1942, Kruckeberg & Rabinowitz 1985, 

May 1999, Murray et al. 2002, McGill 2006, Wiegand et al. 2020). Understanding the factors 

influential to species’ rarity and the responses of those factors to environmental change has 

important implications for ecological theory as it relates to differences in species’ relative 

abundance, as well as to the conservation of species and overall biodiversity (Bevill & Louda 

1999). While invasive plant species, at the extreme opposite end of the spectrum of relative 

abundance, have been widely researched (see reviews by Daehler 2003, Cadotte et al. 2006, 

Pyŝek & Richardson 2007, van Kleunen & Fischer 2009, Vanderhoven et al. 2010, van Kleunen 

et al. 2010, Davidson et al. 2011, Palacio-López & Gianoli 2011, Leffler et al. 2014), research on 

rare plant species has been relatively limited (but see reviews by Murray et al. 2002, Farnsworth 

2006, Combs et al. 2013). It has been suggested that knowledge of the biological characteristics 

of invasive species as elucidated from a richer body of reported research could be directly 

applicable to understanding species rarity as an opposite condition, but research of this concept 

has produced mixed results (see Bradshaw et al. 2008, Jeschke & Strayer 2008, Blackburn & 

Jeschke 2009, Pandit et al. 2011, Schmidt et al. 2012), suggesting that rare species merit distinct 

research attention. 
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Pityopsis ruthii (Small) Small (Asteraceae; Ruth’s golden aster) is a rare plant species 

restricted primarily to soil-filled cracks in boulders on exposed banks along 5.7 km of the 

Hiwassee River and 4.6 km of the Ocoee River in Polk County, Tennessee, USA downstream of 

dams operated by the Tennessee Valley Authority (TVA). In total, the TVA has delineated 67 

distinct occurrences or clusters of this species with individual occurrences ranging in size from 

<5 to ~1000 plants (personal communication, A. Dattilo, Botanist, TVA). Endemism is the most 

common type of species rarity and the type that has traditionally received the most attention from 

conservationists (Rabinowitz 1981, May 1988), and we categorize P. ruthii as ‘endemic’ based 

on its small geographic range, narrow habitat specificity, and large size of at least a single 

occurrence (see Rabinowitz 1981). Given its rarity and associated conservation concerns, P. 

ruthii is listed as both federally and State endangered (ESA; USFWS 1985) and is ranked G1 

(critically imperiled) by NatureServe (2009). Although P. ruthii is notably rare, other species of 

Pityopsis differ dramatically in their relative abundance. The most abundant species in the genus, 

P. graminifolia (Michx.) Nutt. (narrowleaf silkgrass), occurs throughout the southeastern United 

States and northern Central America across a variety of habitat types (Semple 2006). 

Research comparing rare plant species with closely related common plant species has the 

potential to advance ecological theory about species rarity by revealing consistent patterns while 

providing control of the potential influences of life history and phylogeny on comparative 

outcomes (Kunin & Gaston 1997, Godt & Hamrick 2001, Murray et al. 2002, Farnsworth 2006). 

Comparisons of the genetic diversity of rare and common congeners at both population and 

species levels have suggested that rare species tend to have lower levels of genetic diversity than 

their widespread plant congeners (see reviews by Gitzendanner & Soltis 2000, Cole 2003), 

which could impede their ability to adapt to environmental change. However, plasticity could 
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allow for acclimation to environmental change without any associated genetic change. Recent 

research that combined investigation of developmental plasticity in response to seasonal 

temperature change with measures of genetic diversity of rare and common species within a 

single genus revealed that plasticity in growth responses could help to explain differences in 

geographical distribution when genetic diversity did not (Lovell & McKay 2015). 

Although a range of qualitative and quantitative life history characteristics and ecological 

traits related to growth, reproduction, and abiotic and biotic interactions also have been 

compared between rare and common congeneric plant species, attempted syntheses of this body 

of research have concluded that most foci were the subject of single-to-few studies and studies 

with shared foci often generated mixed findings (Bevill & Louda 1999, Murray et al. 2002). 

Some particularly comprehensive but location-specific studies comparing life history traits 

within suites of primarily congeneric pairs of rare and common species (as defined by 

geographic distribution) have suggested that rare endemic species generally may be shorter in 

stature, produce fewer but larger seeds, and less likely to reproduce vegetatively than are 

common species (Lavergne et al. 2004, Farnsworth 2006). Among studies that have used a trait-

based approach to compare rare and common plant species, foci on the mean values of traits 

associated with growth, reproduction, and abiotic and biotic interactions have been common 

(Murray et al. 2002). In comparison, relatively few studies have included comparisons of 

ecophysiological traits that could underlie more observable traits (e.g., Baskauf & Eickmeier 

1994, Schulze et al. 1996, Baskin et al. 1997, Osunkoya & Swanborough 2001, Cleavitt 2002, 

Lavergne et al. 2004, Pohlman et al. 2005, Dangremond et al. 2015). Similarly, investigations of 

plasticity in this context have remained limited (e.g., Pohlman et al. 2005, Denton et al. 2007, 

Runk & Zobel 2007, Marchin et al. 2009, Lovell & McKay 2015) although plasticity of key 
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traits also could influence organismal fitness and species performance (Nicotra & Davidson 

2010, Godoy et al. 2012). In studies of invasive species, researchers have reported positive 

associations between invasiveness – as a form of extreme commonness – and plasticity 

(Ruprecht et al. 2014), particularly when ecophysiological traits were considered (Funk 2008, 

Davidson et al. 2011, Godoy et al. 2012), demonstrating the potentially important role that 

ecophysiological traits and plasticity of such traits could play in species rarity and commonness.  

The rapid pace of contemporary environmental change due to anthropogenic activities 

and influences (Palumbi 2001) has been implicated as a particular threat to rare species (Mouillot 

et al. 2013), and a detailed comparison of plasticity could provide insight into the relative ability 

of rare species to acclimate to such change. For the narrow endemic, P. ruthii, the active 

management of the rivers along which this species is found profoundly influences its habitat and 

changes in this management regime would be associated with environmental changes that could 

impact the species. Currently, the habitat of P. ruthii is characterized by moisture availability 

that range widely from frequent, often prolonged drought-like conditions to periodic high-flow 

events that produce total inundation (Moore et al. 2016). Population monitoring data collected 

for this species following several high-flow dam releases indicates that longer term inundation 

may negatively impact occurrences (unpublished report, TVA). In contrast, reduced water flow 

regimes could allow for the encroachment of other plant species along the riverbanks, and it has 

been suggested that P. ruthii is sensitive to shading by surrounding vegetation (Thomson & 

Schwartz 2006). In addition to environmental changes associated with river management, P. 

ruthii will experience increasing temperatures associated with global climatic warming, and 

influence of temperature on this species are unknown (Moore et al. 2016). Toward elucidating 

the potential responses of P. ruthii to changes in light, moisture, and temperature, we 
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investigated the plasticity of individuals propagated from naturally occurring field populations of 

each species as a potential acclimatory constraint. 

 
 

Methodology 
 
Seed collection & propagation 

We aimed to obtain seed from throughout the ranges of both rare P. ruthii and common 

P. graminifolia so as to account for potential genetic and phenotypic variation across locations. 

Seeds of rare P. ruthii were collected in October 2017 from two occurrences along the Hiwassee 

River (H1 and H2) and two occurrences along the Ocoee River (O1 and O1; Polk County, 

Tennessee, USA); selected occurrences were separated by at least 2 km such that gene flow 

between occurrences was unlikely. Seed of widespread P. graminifolia were collected in October 

and November 2017 from five locations: Ocoee River (TN; Polk County, Tennessee), Black 

Mountain Road (GA1; Stephens County, Georgia, USA), Currahee Mountain (GA2; Stephens 

County, Georgia), Little Manatee River State Park (FL; Hillsborough County, Florida, USA), 

and Zube Park (TX; Harris County, Texas, USA; Table 1). All P. ruthii seeds and P. 

graminifolia seeds from the Tennessee and Georgia occurrences were collected by the author; P. 

graminifolia seeds from the Florida and Texas occurrences were collected by local contacts 

made through the biodiversity information platform iNaturalist (http://inaturalist.org). For both 

species, numerous seeds from each of 15-25 distinct parent individuals per occurrence were 

sampled. Collected seeds were deposited in paper bags and stratified in cold storage for a period 

of four months prior to germination. 
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Table 1 Locations of natural occurrences of Pityopsis ruthii and P. graminifolia from which seeds were collected to 
propagate offspring for plasticity experiments and genetic investigations 

 

Species Site County, State Latitude Longitude Elevation (m) 

P. ruthii Hiwassee River 1 (H1) Polk Co., TN 35.17593 -84.39513 317 

 Hiwassee River 2 (H2) Polk Co., TN 35.18130 -84.40772 271 

 Ocoee River 1 (O1) Polk Co., TN 35.08117 -84.52805 277 

 Ocoee River 2 (O2) Polk Co., TN 35.09188 -84.53164 262 

      
P. graminifolia Ocoee River (TN) Polk Co., TN 35.09188 -84.53164 262 

 Black Mountain Road (GA1) Stephens Co., GA 34.64799 -82.88583 208 

 Curahee Mountain (GA2) Stephens Co., GA 34.52865 -83.37592 502 

 Little Manatee River (FL) Hillsborough Co., 
FL 

27.67007 -82.40177 4 

 Zube Park (TX) Harris Co., TX 30.02872 -95.81427 62 
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Stratified seeds were sorted by hand to identify rounded, filled seeds (containing a mature 

embryo) for planting as detailed for P. ruthii by Wadl et al. (2014). Approximately 6-8 filled 

seeds from each parent individual from each occurrence were sowed into each of four 7-cm2 × 

8.5-cm-deep pots filled with a commercially available potting medium (Pro-Mix Bx 

Biofungicide + Mycorrhizae, Premier Tech Horticulture, Quakertown, Pennsylvania, USA). The 

four pots containing seeds from each parent plant were then randomly assigned to each of four 

controlled-environment growth chambers (model PGR15, Conviron Controlled Environments 

Limited, Winnipeg, Manitoba, CAN) such that each chamber contained one pot of seed from 

each parent plant. All chambers were set initially to provide a 12-h photoperiod at a constant 

25°C. All pots were watered similarly as needed to keep the soil moist during a 1-month 

germination period. Germination was highly successful and following the germination period, 

each pot was thinned to the single individual that exhibited the earliest third leaf development. 

To minimize the chance of growing plants becoming root bound during the course of the 

experiments, these individuals and the surrounding soil were then carefully transplanted into 

separate 11-cm2 × 9.5-cm-deep pots filled with the same commercially available potting medium.  

 

Environmental treatments 

To assess plasticity of P. ruthii and P. graminifolia in response to light, temperature, and 

soil moisture, we conducted three simultaneous experiments with the four controlled-

environment growth chambers. Following the germination period, one chamber (i.e., the 

‘ambient’ chamber) was programmed to provide temperature and light conditions to replicate 
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field conditions during the P. ruthii growing season based on historical weather data (NOAA 

2018) and field measurements, respectively. This chamber was programmed to provide 

temperature ranging night-day from 20-30°C based on three decades of weather data from an 

observation station closest to the location where P. ruthii is found (NOAA 2018) and a 12-h 

photoperiod with a maximum daily light level of 600 umol photons m-2 s-1 in accordance with 

our field measurements in P. ruthii habitat. Soil moisture availability in P. ruthii is highly 

variable across time due to a combination of precipitation and river management and flow 

regimes; pots in the ambient chamber were watered as needed to 50% field capacity, determined 

by weighing a subset of pots of each species every 2 days in accordance with the methods of Liu 

et al. (2005). 

The three other growth chambers were programmed to provide the same conditions as the 

ambient chamber but each with a contrasting level of a single environmental condition (light, 

temperature, or soil moisture) to mimic how that abiotic factor could change as a result of 

significant threats to P. ruthii according the U.S. Fish and Wildlife Service (USFWS 2007; 

personal communication, G. Call, Recovery Specialist, USFWS). Specifically, the chamber set to 

provide altered light availability (i.e., the ‘light’ chamber) was programmed to provide the same 

conditions as the ambient chamber but with a maximum daily light level of 300 photons umol m-

2 s-1 (i.e., a 50% reduction) based on the measured PAR of forest habitat along the edges of P. 

ruthii habitat with ~50% canopy cover. The chamber set to provide altered temperature (i.e., the 

‘temperature’ chamber) was programmed to provide the same conditions as the ambient chamber 

but with temperature ranging night-day from 22-32°C to simulate average projections of global 
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temperature increase for this century (IPCC 2014). The chamber subject to altered soil moisture 

availability (i.e., the ‘water’ chamber) was programmed to provide the same conditions as the 

ambient chamber but pots in this chamber were watered to 100% field capacity to represent 

increased inundation along the currently dammed rivers where P. ruthii is found. The positions 

of pots within each chamber were rotated weekly to control for spatial differences in 

microclimate and treatment levels assigned to each chamber were reassigned monthly with all 

plants moved accordingly to minimize any chamber effects and alleviate issues of 

pseudoreplication (Gibson 2014).  

 

Data collection 

All individuals were grown for 6 months in the growth chambers following treatment 

initiation during which growth, phenological, and ecophysiological data were collected. Growth 

was assessed biweekly by counting the numbers of leaves, stems, and buds/flowers and 

measuring the shoot height of each individual. Maximum values of growth measures were 

determined from these repeated measurements; maximum values were used to calculate leaf 

production and shoot elongation rates. To investigate potential physiological processes 

underlying observable performance, instantaneous rates of leaf-level photosynthesis were 

measured at 3 months after treatment initiation using a portable gas-exchange system (6800XT, 

LI-COR, Inc., Lincoln, Nebraska, USA) for the single youngest fully expanded leaf for all 

individuals with leaves large enough to fill the cuvette. All photosynthesis measurements were 

made within 2 h of the middle of the daily photoperiod during a 3-week measurement period. 
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Measurements were made after gas exchange had equilibrated as was determined when the 

coefficient of variation for the CO2 partial pressure differential between the sample and reference 

analyzers was below 1% with an average wait time of 3-5 minutes. Conditions of PAR and 

temperature inside the cuvette were set to match the environmental conditions inside the growth 

chamber occupied by each measured individual. For all measurements, a constant external CO2 

partial pressure of 40 Pa was provided by a CO2-control module and water vapor pressure deficit 

of the sample air was maintained between 1.0 and 1.5 kPa. The range of CO2 depletion in the 

chamber that defined the CO2 concentration around the leaf was generally <1 Pa. 

At 6 months after treatment initiation, all individuals were destructively harvested to 

assess productivity, biomass allocation, and leaf structure. Harvests involved removing each 

individual from its pot and thoroughly washing the soil away from roots. Root length was 

measured as the distance from the start of the green shoot to the tip of the longest root when 

plants were held upright. A single young fully expanded leaf from each individual was removed 

and fully dried in a laboratory oven to determine specific leaf area. The remaining whole plants 

were sorted into leaves, stems (for P. graminifolia only as P. ruthii lacks discernable stems), 

roots, and buds/flowers and also dried to determine dry mass of each component for each 

individual. These values were summed to yield total biomass per individual. To investigate 

biomass allocation, we calculated root-shoot ratio, shoot mass fraction, root mass fraction, root 

length ratio, and specific root length. Units, calculations, and other details for all measured and 

calculated traits are provided in Table 1.  
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Plasticity determination 

A relative distances plasticity index (RDPI; see Valladares et al. 2006) was used to 

calculate trait plasticity within the context of light, temperature, and soil moisture differences for 

species and occurrences within species for all assessed growth, allocation, and leaf traits. The 

RDPI is based on the absolute phenotypic distances of genotypes across different environments 

and allows for statistical comparison of plasticity for species and populations within species (i.e., 

occurrences; Valladares et al. 2006). We used the index to calculate individual-level trait 

plasticity across siblings within the context of light, temperature, and soil moisture as: 

RDPI = 	'!"	→	!!"!/(*!!"! + *!") 

where j and j' are two individuals of the same species or occurrence (we compared offspring of 

the same parent), i and i' represent two different environments (i.e., ambient vs. reduced light, 

ambient vs. elevated temperature, ambient vs. increased water in our experiment), '!"	→	!!"! is the 

distance among trait values for the pair of individuals (with distance defined as the absolute 

value of the difference in trait values), and *!!"! + *!" is the sum of the trait values (see 

Valladares et al. 2006). RDPI values range from 0 (no plasticity) to 1 (maximum plasticity); this 

standardized range can allow for comparisons across traits. 

 

Statistical analyses 

We determined if the proportions of plants that survived and produced flowers differed 

between P. ruthii and P. graminifolia with Fisher’s exact tests and between occurrences within 

species with likelihood ratio tests (LRT). In the event of a significant main effect of occurrences, 
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comparisons among occurrences were made with subsequent pairwise comparisons. To 

investigate potential differences in the responses of P. ruthii and P. graminifolia to light, 

temperature, and water availability, we used two-way multivariate analyses of variance 

(MANOVA) to evaluate the interactions of species and each environmental treatment (i.e., light, 

temperature, water) on the grouped growth and allocation dependent variables listed in Table 2. 

We similarly used a two-way analysis of variance (ANOVA) to investigate the interactions of 

species and each environmental treatment on leaf structure, physiology, and total biomass as 

individual dependent variables (Table 2). To directly investigate potential differences in trait 

plasticity of P. ruthii and P. graminifolia within the context of modified light, temperature, and 

water conditions, we used one-way MANOVA with grouped traits or one-way ANOVA with 

individual traits to evaluate the main effects of species (and occurrence within species) on trait 

plasticity values. Correlation between dependent variables included in the MANOVA tests was 

verified with Pearson correlations.  
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Table 2 Measured traits of Pityopsis ruthii and P. graminifolia in plasticity experiments 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trait Description Measurement 

   
Growth   

Height Shoot height cm 
Leaves Number of leaves number 
Stems Number of stems number 
LPR Leaf production rate number day-1 

SER Shoot elongation rate mm day-1 

RL Root length cm 
   
Allocation   

RSR Root-shoot ratio root g1 shoot g-1 

SMF Stem mass fraction stem g total biomass g-

1 RMF Root mass fraction root g total biomass g-1 
SRL Specific root length root cm root g1 

RLR Root length ratio root cm total biomass 
g1    

Leaf Morphology   
SLA Specific leaf area cm g-1 

   
Leaf Physiology   

A Photosynthetic rate µmol m‑2 s‑1 
   
Productivity   

Biomass Total dry biomass g 
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A significant species-level MANOVA was followed by analysis of variance (ANOVA) to 

assess the main effects and interactions of species (or occurrence) and the associated 

environmental treatments on the included individual dependent variables. Plasticity values for 

offspring of the same parent were regressed against the mean total biomass (as a fitness proxy) of 

those offspring across relevant environmental treatment levels to ascertain whether plasticity was 

adaptive (i.e., positively correlated with fitness), maladaptive (i.e., negative correlated with 

fitness), or neutral (i.e., not correlated with fitness). Results of statistical tests were considered 

significant if p ≤ 0.05. All statistical analyses were performed in SPSS (SPSS Statistics Version 

26 software, IBM Corp., Armonk, New York, USA). 

 

Results 
 
Germination, survival, & flowering 

Germination was highly successful for all occurrences except for the FL P. graminifolia 

occurrence. Nearly all pots planted with seeds from all other occurrences produced at least one 

successful germinant. Across all environmental conditions, survival also was highly successful 

for both species. In total, 99.3% of P. ruthii individuals and 97.8% of P. graminifolia individuals 

used in our plasticity experiments survived to harvest (Table 3). All individuals of both species 

survived in the ambient conditions and when water was increased, while differences in survival 

between species in reduced light and elevated temperature were not significant (p = 0.309 and 

0.358, respectively). Observable differences in the survival of P. ruthii from different 

occurrences when grown in elevated temperature were not significant (LRT = 3.405, df = 3, p = 

0.333). Similarly, observable differences in the survival of P. graminifolia occurrences when 
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light was reduced and temperature was elevated were not significant (LRT = 2.240, df = 3, p = 

0.520 and LRT = 3.394, df = 3, p = 0.335, respectively). 
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Treatment Species Occurrence n survived flowered 

      
Ambient P. ruthii H1 19 19 0 

  H2 22 22 2 
  O1 15 15 0 
  O2 19 19 0 
      
 P. graminifolia TN 17 17 0 
  GA1 13 13 1 
  GA2 9 9 4 
  TX 9 9 2 
      

Light P. ruthii H1 19 19 1 
  H2 22 22 9 
  O1 15 15 3 
  O2 19 19 0 
      
 P. graminifolia TN 16 15 3 
  GA1 13 13 2 
  GA2 9 9 1 
  TX 9 9 0 
      

Temperature P. ruthii H1 18 17 1 
  H2 22 22 0 
  O1 14 13 0 
  O2 19 19 0 
      
 P. graminifolia TN 14 12 1 
  GA1 12 11 3 
  GA2 9 9 7 
  TX 8 8 2 
      

Water P. ruthii H1 19 19 0 
  H2 22 22 0 
  O1 15 15 0 
  O2 19 19 0 
      
 P. graminifolia TN 17 17 3 
  GA1 13 13 7 
  GA2 9 9 1 
  TX 9 9 2 
      

Table 3 Number of individuals propagated from field-collected seed from occurrences of 
rare Pityopsis ruthii and common P. graminifolia that survived and flowered 
within environmental treatments (ambient, modified light, modified temperature, 
modified water) in plasticity experiments 
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Overall, <25% of plants produced flowers during the plasticity experiments, but 

flowering was 4-fold greater in P. graminifolia than in P. ruthii (p < 0.001; Table 3). Flowering 

in P. graminifolia also was significantly greater than in P. ruthii in ambient conditions (p = 

0.027) and with elevated temperature (p < 0.001) and water (p < 0.001), although flowering did 

not differ between species when light was reduced (p = 0.804). Flowering did not differ among 

occurrences of P. ruthii in ambient conditions (LRT = 5.040, df = 3, p = 0.539) and in elevated 

temperature (LRT = 2.843, df = 3, p = 0.416), but flowering did differ among P. ruthii 

occurrences when light was reduced (LRT = 16.555, df = 3, p < 0.001). Specifically, in low light, 

flowering of plants from the H2 occurrence was greater than for occurrences H1 and O2 (p = 

0.011 and p = 0.002, respectively). When water was increased relative to ambient conditions, P. 

ruthii did not flower. Flowering differed among occurrences of P. graminifolia in ambient 

conditions (LRT = 10.929, df = 3, p = 0.013) and with increased water availability (LRT = 

10.826, df = 3, p = 0.013). Specifically, flowering was greater in occurrence GA2 than TN in 

ambient conditions (p = 0.008) and greater in GA1 than GA2 with more water (p = 0.017). 

Flowering among occurrences of P. graminifolia did not differ when light was reduced (LRT = 

0.494, df = 3, p = 0.920) or temperature was elevated (LRT = 2.085, df = 3, p = 0.416) relative to 

ambient conditions. 

 

Effects of environmental conditions on trait values 

The interaction of species × light on growth and A (photosynthetic rate) of P. ruthii and 

P. graminifolia was significant (Tables 4,5). However, of individual growth traits, only the mean 

number of stems was significantly influenced by this interaction (F1,244 = 6.179, p = 0.014). 

Specifically, reduced light availability was associated with a significant decrease in both A and 
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stem number in P. ruthii, but reduced light availability did not significantly influence these 

variables in P. graminifolia (Figure 1).   
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Table 4  Results of two-way multivariate analysis of variance (MANOVA) to test for the 
interactions of species and light, temperature, and water on grouped growth and 
allocation traits and results of two-way analysis of variance (ANOVA) to test for 
the interactions of species and light, temperature, and water on specific leaf area 
(SLA) and instantaneous leaf-level photosynthetic rate (A) of rare Pityopsis ruthii 
and common P. graminifolia individuals in plasticity experiments. Individual traits 
included in growth and allocation groups are listed in Table 2. Asterisks denote p-
values significant at ≤ 0.05 significance level 

 

Dependent 
variables Source df Wilk’s 

lambda F p 

      
Growth Species × light 6 0.941 2.878 0.010* 

 Species × temperature 6 0.842 7.779 <0.001* 

 Species × water 6 0.918 3.4867 0.003* 
      

Allocation Species × light 5 0.980 1.236 0.296 
 Species × temperature 5 0.971 1.435 0.224 
 Species × water 5 0.916 4.448 0.002* 

      
Dependent 
variable Treatment df Mean 

square F p 

      

SLA Species × light 1 1710.243 0.574 0.449 
 Species × temperature 1 53.963 0.019 0.891 

 Species × water 1 171.057 0.178 0.673 
      

A Species × light 1 101.307 30.072 <0.001* 
 Species × temperature 1 0.208 0.029 0.866 
 Species × water 1 43.842 7.740 0.006* 
      

Biomass Species × light 1 5.042 1.512 0.220 
 Species × temperature 1 23.358 5.441 0.021* 
 Species × water 1 31.810 6.627 0.011* 
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Table 5  Results of one-way multivariate analysis of variance (MANOVA) to test for the 
main effect of species on plasticity measured as a relative distances plasticity index 
(RDPI) on grouped growth and allocation traits and results of one-way analysis of 
variance (ANOVA) to test for the main effect of species on plasticity of specific 
leaf area (SLA) and instantaneous leaf-level photosynthesis rate (A) of rare 
Pityopsis ruthii and common P. graminifolia individuals. Individual traits included 
in growth and allocation groups and units of measure are listed in Table 2. Asterisks 
denote p-values significant at ≤ 0.05 significance level 

 

Dependent 
variables 

Environmental 
condition df Wilk’s 

lambda F p 

      
RDPIgrowth Light 6 0.879 2.515 0.026* 

 Temperature 6 0.829 3.646 0.002* 
 Water 6 0.894 2.230 0.045* 

      
RDPIallocation Light 5 0.846 2.902 0.019* 

 Temperature 5 0.759 5.583 <0.001* 

 Water 5 0.727 7.061 <0.001* 
      

Dependent 
variable 

Environmental 
condition df Mean 

square F p 

      
RDPISLA Light 1 <0.001 0.001 0.978 

 Temperature 1 0.008 0.434 0.512 
 Water 1 0.012 0.486 0.488 

      
RDPIA Light 1 0.012 0.430 0.514 

 Temperature 1 0.404 12.383 0.001* 

 Water 1 0.150 3.887 0.053 
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Figure 1  Mean number of stems (A) and instantaneous leaf-level photosynthesis rate (B) of individuals 

of rare Pityopsis ruthii and common P. graminifolia grown from field-collected seed in ambient 

light (600 mmol photons m-2 s-1) and with reduced light (300 mmol photons m-2 s-1). Error bars 

represent 1 SE of the mean. Asterisks denote significant differences between mean values in 

ambient and reduced light within species at the p ≤ 0.05 significance level 
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The interaction of species × temperature on growth and total biomass of P. ruthii and P. 

graminifolia was significant (Tables 4 and 5). The majority of individual growth traits were 

significantly influenced by this interaction, including height (F1,238 = 15.855, p < 0.001), number 

of leaves (F1,238 = 13.941, p < 0.001), number of stems (F1,238 = 14.658, p < 0.001), LPR (F1,238 = 

13.898, p < 0.001), and SER (F1,238 = 12.359, p = 0.001). For all individual traits with significant 

interactions, elevated temperature was associated with increased mean values in P. graminifolia 

(Figure 2). In contrast, elevated temperature did not significantly influence the mean values of 

most growth traits or biomass in P. ruthii; however, the number of stems of P. ruthii decreased 

significantly with elevated temperature (Figure 2). 
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Figure 2  Mean height (A), number of leaves (B), number of stems (C), leaf production rate (D), stem 

elongation rate (E), and total dry biomass (F) of individuals of rare Pityopsis ruthii and common 

P. graminifolia grown from field-collected seed in ambient temperature (20-30°C night-day) and 

in elevated temperature (22-32°C night-day). Error bars represent 1 SE of the mean. Asterisks 

denote significant differences between mean values in ambient and elevated temperature within 

species at the p ≤ 0.05 significance level 
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The interaction of species × water on growth, allocation, and total biomass of P. ruthii 

and P. graminifolia was significant (Table 4 and 5). Of individual allocation traits, only RLR 

was influenced significantly by the species × water interaction (F1,245 = 6.385, p = 0.012). 

Growth traits significantly influenced by this interaction included number of leaves (F1,245 = 

8.244, p = 0.004) and number of stems (F1,245 = 10.931, p = 0.001), and LPR (F1,245 = 7.862, p = 

0.005). For all individual traits with significant interactions, increased water influenced P. ruthii 

but not P. graminifolia (Figure 3). Specifically, increased water was associated with increased 

RLR, but decreased leaf number, stem number, LPR, and biomass (Figure 3).  
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Figure 3 Mean number of leaves (A), number of stems (B), leaf production rate (C), root length ratio (D), 

and total dry biomass (E) of individuals of rare Pityopsis ruthii and common P. graminifolia 

grown from field-collected seed with ambient water availability (50% field capacity) and 

increased water availability (100% field capacity). Error bars represent 1 SE of the mean. 

Asterisks denote significant differences between mean values in ambient and elevated 

temperature within species at the p ≤ 0.05 significance level 
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Phenotypic trait plasticity 

Plasticity of growth and allocation in response to modified light differed significantly 

between P. ruthii and P. graminifolia (Table 5). Plasticity of height and SER were significantly 

lower in P. ruthii than P. graminifolia, while P. ruthii exhibited greater plasticity of SMF than 

did P. graminifolia (Table 6). Plasticity of both height (F3,45 = 12.412, p < 0.001) and SER (F3,45 

= 14.424, p < 0.001) also differed significantly among distinct occurrences of P. graminifolia, 

with the GA2 occurrence exhibiting significantly greater plasticity of both variables than the 

other three occurrences; however plasticity of SMF did not differ between P. graminifolia 

occurrences (F3,45 = 1.518, p = 0.217). Similarly, there were no differences between P. ruthii 

occurrences for plasticity of height (F3,73 = 3.915, p = 0.492), SER (F3,73 = 0.073, p = 0.403), or 

SMF (F3,73 = 2.650, p = 0.733).  
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Table 6  Relative distances plasticity index (RDPI) values of growth and allocation traits and specific leaf area (SLA) and instantaneous leaf-leaf 
photosynthesis rate (A) of rare Pityopsis ruthii and common P. graminifolia. Units of measure are listed in Table 2. Values shown are means ± 1SE of 
the mean. Asterisks denote significant differences in species means at the p ≤ 0.05 significance level 

 
 
  Light  Temperature  Water 

RDPI trait P. ruthii P. graminifolia  P. ruthii P. graminifolia  P. ruthii P. graminifolia 

         
Growth         

Height 0.13±0.01 0.20±0.03*  0.10±0.01 0.22±0.03*  0.14±0.02 0.19±0.02 
Leaves 0.34±0.02 0.40±0.04  0.24±0.02 0.36±0.04*  0.39±0.03 0.33±0.04 
Stems 0.34±0.03 0.33±0.03  0.26±0.02 0.33±0.03*  0.32±0.03 0.28±0.03 
LPR 0.34±0.02 0.40±0.04  0.25±0.02 0.35±0.04*  0.38±0.03 0.32±0.03 
SER 0.12±0.01 0.19±0.02*  0.12±0.01 0.18±0.02*  0.15±0.01 0.15±0.02 
RL 0.18±0.02 0.17±0.02  0.17±0.02 0.15±0.02  0.20±0.02 0.16±0.02 
         

Allocation         
RSR 0.31±0.03 0.26±0.03  0.27±0.03 0.31±0.03  0.41±0.03 0.26±0.03* 

SMF 0.20±0.03 0.12±0.02*  0.17±0.02 0.14±0.02  0.29±0.02 0.12±0.02* 
RMF 0.15±0.02 0.16±0.02  0.12±0.02 0.19±0.02*  0.17±0.02 0.16±0.03 
SRL 0.41±0.03 0.38±0.04  0.39±0.03 0.43±0.04  0.40±0.03 0.41±0.04 
RLR 0.37±0.03 0.35±0.04  0.34±0.03 0.39±0.04  0.41±0.03 0.34±0.04 
         

Leaf morphology         
SLA 0.16±0.01 0.16±0.02  0.17±0.02 0.15±0.02  0.15±0.02 0.17±0.03 
         

Leaf physiology         
A 0.27±0.02 0.24±0.03  0.18±0.02 0.31±0.04*  0.26±0.03 0.35±0.04 
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Within the context of elevated temperature, plasticity of growth, allocation, and leaf A 

differed significantly between species (Table 5). Plasticity of all measured growth traits with the 

exception of RL was significantly less in P. ruthii than in P. graminifolia (Table 6). Similarly, P. 

ruthii was characterized by less plasticity of both RMF and leaf A than P. graminifolia (Table 6). 

There were no differences among occurrences of either species in any of the plasticity measures 

that differed between species.  

Plasticity of growth and allocation in response to altered water availability differed 

significantly between P. ruthii and P. graminifolia (Table 5). Although there were no significant 

differences in the plasticity of individual growth traits between species, plasticity of both RSR 

and SMF as allocation traits was significantly greater in P. ruthii than in P. graminifolia (Table 

6). Among P. ruthii occurrences, there were significant differences in the plasticity of SMF (F3,72 

= 3.327, p = 0.022) with the O1 occurrence exhibiting significantly greater plasticity of this 

variable than the other three occurrences of this species; however, plasticity of RSR did not 

differ between P. ruthii  occurrences (F3,72 = 1.242, p = 0.297). Similarly, there were no 

differences between P. graminifolia occurrences for plasticity of SMF (F3,45 = 0.618, p = 0.605) 

or RSR (F3,73 = 0.480, p = 0.697). 

There were numerous significant associations between trait plasticity and total biomass 

(as a fitness proxy) in both P. ruthii and P. graminifolia (Table 7). For P. ruthii, these 

associations were positive within the context of light and negative within the context of water. 

When assessed across temperature conditions, total biomass was negatively associated with 

plasticity of growth traits but positively associated with allocation traits in P. ruthii (Figure 4).  

For P. graminifolia, significant associations between trait plasticity and total biomass were 

consistently negative within the context of light, temperature, and water (Figure 5).  
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  Light Temperature Water 

Species RDPI trait r2 p r2 p r2 p 

        
P. ruthii Growth       

 Height 0.021 0.283 0.059 0.061 0.081 0.020* 

 Leaves <0.001 0.979 0.101 0.014* 0.039 0.122 
 Stems 0.120 0.008* 0.001 0.804 0.380 0.126 
 LPR 0.001 0.752 0.126 0.005* 0.034 0.150 
 SER 0.004 0.614 0.016 0.336 0.075 0.031* 

 RL 0.003 0.659 0.001 0.744 0.027 0.195 
 Allocation       

 RSR 0.091 0.023* 0.088 0.021* 0.006 0.526 
 SMF 0.103 0.015* 0.113 0.009* 0.034 0.149 
 RMF 0.047 0.106 0.013 0.384 0.009 0.451 
 SRL 0.054 0.082 0.035 0.154 0.007 0.473 
 RLR 0.036 0.158 0.017 0.313 0.029 0.185 

 Leaf morphology       
 SLA <0.001 0.976 0.007 0.577 0.072 0.080 

 Leaf physiology       
 A 0.011 0.513 0.003 0.692 0.028 0.355 
        
        

P. graminifolia Growth       
 Height 0.044 0.224 0.017 0.445 0.032 0.279 
 Leaves 0.097 0.068 0.039 0.247 0.033 0.272 
 Stems 0.041 0.242 <0.001 0.918 0.024 0.352 
 LPR 0.144 0.024* 0.013 0.500 0.058 0.144 
 SER 0.093 0.073 <0.001 0.882 0.005 0.663 
 RL 0.242 0.004* 0.003 0.721 0.019 0.414 
 Allocation       
 RSR 0.004 0.686 0.134 0.027* 0.039 0.229 
 SMF 0.026 0.347 0.151 0.019* 0.014 0.473 
 RMF <0.001 0.965 0.131 0.029* 0.058 0.144 
 SRL 0.016 0.493 <0.001 0.960 0.084 0.112 
 RLR 0.214 0.009* 0.045 0.216 0.169 0.011* 

 Leaf morphology       
 SLA <0.001 0.913 <0.001 0.992 0.012 0.505 
 Leaf physiology       
 A 0.194 0.059 0.048 0.231 0.007 0.704 
        

Table 7  Results of linear regression analysis to test for the significance of associations between trait plasticity 
assessed with a relative distances plasticity index (RDPI) in response to differences in light, 
temperature, and water conditions and total dry biomass (as a fitness proxy) of rare Pityopsis ruthii and 
common P. graminifolia individuals. Asterisks denote p-values significant at ≤ 0.05 significance level 
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Figure 4  Linear regressions of depicting significant associations between trait plasticity in assessed with a relative distances plasticity index (RDPI) in response to differences in light 

(A, B, C, D), temperature (E, F, G, H), and water (I) conditions and total dry biomass (as a fitness proxy) of rare Pityopsis ruthii. Trait abbreviations are listed in Table 2. 

All regressions shown are significant at the p ≤ 0.05 level 
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Figure 5 Linear regressions of depicting significant associations between trait plasticity in assessed with a relative distances plasticity index (RDPI) in 

response to differences in light (A, B, C), temperature (D, E, F), and water (G) conditions and total dry biomass (as a fitness proxy) of rare 

Pityopsis graminifolia. Trait abbreviations are listed in Table 2. All regressions shown are significant at the p ≤ 0.05 level 
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Discussion 
 
Comparative responses to environmental differences in Pityopsis species  

Insights from recent research investigating intraspecific variability of trait values suggests 

that the ability to deviate from mean trait values may influence species abundance by enabling 

colonization of novel habitats throughout a species’ range (Umaña et al. 2015).  Furthermore, 

intraspecific trait variation may play an important role in how plants respond to anthropogenic 

changes (Henn et al. 2018, Norberg et al. 2001) with traits that exhibit low variation across 

different environments responding more slowly to a shift in ideal trait values (Henn et al. 2018). 

Each altered environmental condition influenced both the rare and common Pityopsis species’ 

trait values in markedly different ways. The overall decrease in trait values for P. ruthii  across 

altered conditions and the increase in trait values of P. graminifolia within increased temperature 

conditions exemplifies the relationship between greater intraspecific variation and increased 

abundance through success across numerous environment types.  

Environmental conditions were purposely manipulated to reflect anthropogenic changes 

experienced by P. ruthii and thus allowed us to assess the potential responses and impacts of 

these alterations in comparison to its widespread congener. The results of decreased light 

availability are validated by previous assessments of P. ruthii describing a species adapted to 

grow best in high light conditions that may be negatively impacted by the shade of encroaching 

competitors (Moore 2016, Thompson and Schwartz 2006). While observed responses to 

temperature are supported by research suggesting a significant alteration in the physiological 

responses of rare species to temperature change and ultimately predicting a greater vulnerability 

of endemic species than generalists to a continued rise in temperature (Jeong et al. 2018). Our  
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results imply that while P. graminifolia may fare well in a warming climate, P. ruthii may not.  

The response to water availability is most relevant to persistence of P. ruthii as it is often 

subjected to drought, inundation, and scouring events historically and as a result of continued 

river management (Thomson and Schwartz 2006, Moore et al. 2016). Although previous studies 

have found a persistence of P. ruthii individuals under periodic inundation, more recent evidence 

gathered by the TVA seems to suggest any extended periods of consistently elevated water levels 

may be potentially harmful to the species (A. Dattilo unpublished report 2019). Decreased trait 

values seem to corroborate the findings of the TVA while the increase in root length ratios 

suggests that in response to extended inundation P. ruthii may expand its root system possibly to 

anchor itself deeper into the boulder crevices. 

Based on our results we can assume that P. ruthii will experience negative growth and 

productivity consequences while P. graminifolia will experience no change or a potentially 

increased growth pattern in terms of response to changing conditions. Considered collectively, 

the results of both Pityopsis species’ trait values indicate an intraspecific trait variability that is 

primarily dependent on response to resource availability. Additionally, their responses to altered 

conditions/resources are reflective of how rare and common species might respond to future 

anthropogenic change suggesting a potential series of consequences for P. ruthii especially with 

regards to increased water levels. In comparison, we can speculate that although altered light and 

water seem to have no effect on P. graminifolia increased temperatures may lead to greater 

growth and productivity.  

 

Comparative plasticity of Pityopsis species 

 Understanding the biological factors underlying species rarity and commonness and the 
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responses of these factors to environmental change has vital implications for ecological theory as 

it relates to inherent differences in species prevalence (Bevill and Louda 1999). Knowledge of 

plasticity may have an outsized role in rare species conservation, highlighted by the rapid 

environmental change threatening rare species in particular (Mouillot et al 2013).  Plasticity may 

allow for acclimation to change without the required genetic changes of adaptation, a fairly long-

term process that may be inhibited by the low genetic diversity of many rare species (Leimu 

2008). Ecophysiological trait plasticity, in particular, has been shown to have an especially fast 

response time to environmental change relative to other types of traits (Funk et al. 2007). Thus, it 

is feasible that plasticity could buffer negative impacts of environmental change in the short-

term, potentially allowing time for genetic adaptations to evolve (Jump and Peñuelas 2005). Yet, 

to our knowledge, the results of the broader body of literature comprised primarily of 

autoecological studies comparing the biological traits of rare and common species has not been 

comprehensively reviewed in nearly 20 years (Murray et al 2002) and, as a consequence, the link 

between traits, plasticity, and species’ prevalence remains a knowledge gap in the field of 

ecology (Umaña et al. 2015). 

Plants are signified by high degrees of trait plasticity (Sultan 2000) and plant species and 

populations can vary dramatically in their responses to environmental change due to plasticity 

differences (Osunkoya & Swanborough 2001, Cleavittt 2002, Pohlman et al. 2005, Dangremond 

et al. 2015, Nicotra & Davidson 2010, Godoy et al. 2012, Sultan 2000, Schlichting & Levin 

1984, Valladares et al. 2000, Balaguer et al. 2001, Valladares et al. 2007). Several previous 

studies have intimated the potential importance of rarity and plasticity in terms of persistence and 

dynamics of habitat specialists (See Review by: Murray et al. 2002). The results of our plasticity 

comparisons suggest that rare plant species may exhibit less plasticity of traits than their 
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common congeners. Each altered environmental condition affected the plasticity indices of each 

species differently and plasticity was similarly influenced by resource dependence much like the 

responses of the mean trait values.  

Our results suggest that the ability for either P. ruthii or P. graminifolia to buffer the 

effects of change is dependent on the type of change the species experiences and what traits are 

most important to its persistence. With a reduction in light P. graminifolia might fare slightly 

better but only in terms of growth plasticity while P. ruthii could alter its allocation of shoot 

mass. Increased temperature conditions clearly favor P. graminifolia with a range of traits 

observed to have greater plasticity, all but ensuring this species will thrive with the arrival of 

higher temperatures while P. ruthii struggles to acclimate. Increased water availability as a 

condition favors a greater plastic response in P. ruthii allocation traits suggesting that, although 

this species may initially perform poorly in terms of physical response, the increased plasticity 

will allow potential time to acclimate with regard to how biomass is allocated below or 

aboveground. Trait type (i.e. growth, allocation, leaf level) also plays a part in plasticity with rare 

species individuals exclusively displaying greater plasticity in allocation traits only and common 

species exhibiting plasticity predominantly in growth, but also allocation and leaf level traits.  

These plasticity differences help explain the habitat specificity of P. ruthii, in terms of light 

constraints and ability to manage dynamic water regimes, as well as the species reduced 

distribution potential in comparison to P. graminifolia.  

As a result of anthropogenic changes, organisms with long generations and constrained 

dispersal, such as endemic perennial plants like P. ruthii, may be in need of rapid phenotypic 

adaptation (Lande 2009). Phenotypic adaptation occurs either through evolution by natural 

selection or the associated genetic changes of phenotypic plasticity brought on by environmental 
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change (Lande 2009).  In regard to fitness, phenotypic plasticity is often thought of as adaptive, 

but can also be maladaptive or neutral.  Adaptive plasticity, which offers a fitness benefit, is 

most likely to facilitate quick adaptation to altered environmental conditions, however, 

maladaptive plasticity can also fuel adaptative evolution by revealing cryptic genetic variation 

that may result in a more fit phenotype (Nicotra et al. 2010, Ghalambor et al. 2007). In this 

instance, maladaptive plasticity to environmental change increases the variance and by chance a 

subset of individuals exhibits a beneficial response that is passed on through reproduction 

allowing adaptation to occur (Ghalambor et al. 2007). Therefore, both maladaptive and adaptive 

plasticity are likely to play a significant part in how plants respond to anthropogenic changes in 

the future (Nicotra et al. 2010).  

At the very least our results suggest that greater plasticity under certain traits/conditions 

increases the fitness of P. ruthii individuals while others decrease fitness. Although this again 

was dependent on the trait type as well as the environmental change experienced with negative 

associations demonstrated under growth and leaf traits, and different resource availability. In 

contrast, P. graminifolia individuals experience a decreased level of fitness with all greater 

plasticity across traits and conditions. In short, plasticity is more likely to benefit P. ruthii than P. 

graminifolia in terms of fitness. This plasticity advantage implies that distribution of P. ruthii 

may be constrained by a lack of plasticity among most wild individuals. Although additional 

research into the potential of maladaptive plasticity to produce new phenotypes for both species 

should be investigated. Furthermore, it should be noted that our results may be potentially 

skewed as we used total biomass as a proxy for fitness in opposition to other studies which used 

more relevant fitness measures such as flower number or seed production.  
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Implications for P. ruthii persistence in the face of environmental change 

 As anthropogenic changes continue to impact P. ruthii the species will be undoubtedly 

affected by a range of consequences. Occurrences will be subjected to altered light and water 

availability as well as increased temperatures that will likely influence relative abundance and 

further constrain distribution potential. Individuals may respond to these changes with less 

growth and productivity reducing the future viability of the species. While plasticity might allow 

for buffering of environmental change under certain conditions this is reduced specifically to 

allocation traits which may not be sufficient to protect P. ruthii in the long term. Furthermore, 

the perceived lack of plasticity among individuals is problematic to ensuring the mechanism 

allows for adaptation within the species. As evidenced by the precipitous drop in individual 

numbers during TVA inundation events (A. Dattilo, unpublished report 2019) we can expect a 

similar decline as this and other impacts continue to play out. Without the time to adapt nor the 

ability to acclimate in the short-term P. ruthii faces an uncertain future and will require 

supplemental assistance to ensure its continued survival.  

 
Management recommendations 

Based on our findings, we have made several recommendations for the continued 

management of P. ruthii that may help the species persist and avoid potential extinction risks in 

response to expected anthropogenic changes. In regard to light alteration, we suggest the 

sustained control of encroaching woody vegetation involving the removal of any competitor 

species that have become establish near any vulnerable occurrences of P. ruthii as the species has 

continually proven to be adversely affected by increased shading. Further, continued assessments 
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of changes in encroaching vegetation should be made during the annual monitoring efforts for 

the species.  While little can be done to mitigate the changes in temperature increase expected to 

negatively influence P. ruthii we recommend including tracking these changes by measuring 

temperature fluctuations during monitoring. Each individual occurrence should be assessed for 

temperature change affects as different occurrences may respond in varied ways with special 

attention given to reduced stem number as a potential sign of negative temperature effects. Along 

both the Hiwassee and Ocoee Rivers extended periods of inundation and other altered flows are 

some of the most pressing issues for the TVA and its management of P. ruthii. Having confirmed 

the hazardous potential of long-term inundation we recommend avoiding it at all costs as 

increased water levels may cause a variety of issues that occurrences may not be able to recover 

from. Obviously, this is not always avoidable so if altered flows are required, say in the event of 

a dam closure, we instead recommend short periods of inundation or high flow releases that the 

species is accustomed to. If for some reason long term inundation is completely unavoidable, we 

also recommend collecting seed or cuttings to propagate individuals for transplantation back to 

the affected areas once waters have receded. As a last resort, we suggest moving occurrences of 

P. ruthii threatened by environmental change but only if there are no other options as 

translocation of the species has proven to be quite unsuccessful.  Finally, although the Ocoee1 

occurrence was significantly more plastic than all other occurrences for one trait in one altered 

condition this is not enough information to suggest changes in how to manage either rivers 

differently. Indeed, the Hiwassee River occurrences perform much better on average than those 

along the Ocoee River suggesting some unknown aspect affecting their abundances.  
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In this context we would recommend continued research into the differences between 

occurrences on each river, specifically with a focus on genetic variation, to determine the ways 

in which these occurrences differ and how to best manage them in the future.  
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