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ABSTRACT

A random polynomial is a polynomial whose coefficients follow some probability dis-

tribution. The fundamental questions that need to be studied are the distribution and

correlations between zeros, pairing between zeros and critical points, distribution values,

and nodal surfaces. The computation of the average distribution of real zeros of random

polynomials was studied by Bloch and Pólya, Littlewood and Offord, Erdős, Kac and oth-

ers. For standard normally distributed coefficients, the expected density of real zeros is

given by Kac’s exact formula. The famous result due to Hammersley asserts that, when

the coefficients are complex independent standard normal random variables, the zeros of a

random complex polynomial largely tend towards the unit circle as the degree approaches

infinity. For complex zeros, the expected density was dealt with by Shepp and Vanderbei for

real independent and identically distributed normal coefficients. Their technique exploits the

argument principle and Cholesky factorization to reduce the question to the evaluation of a

holomorphic function of four correlated normal random variables. Their results were gen-

eralized by Ibragimov and Zeitouni to a wide class of distribution of coefficients. Recently,

Vanderbei extended the results he obtained with Shepp to random sums with holomorphic

functions that are real-valued on the real line as the basis functions. Our interest in this dis-

sertation is to refine the techniques of random fields pioneered by Rice in his treatment of the

questions on real zeros to obtain exact formulas for the expected density of the distribution

of complex zeros of a family of random sums, such as truncated random trigonometric series

and random orthogonal polynomials on the unit circle. We further study the level crossings
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and answer the question about the expected number of complex zeros for coefficients with

nonvanishing mean values and distinct variances.
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CHAPTER 1

INTRODUCTION

A random polynomial is a polynomial whose coefficients follow some probability dis-

tribution. Since the coefficients are random variables, it is of interest to study how the zeros

of the polynomial are distributed. The problem of characterizing the distribution of zeros

of random polynomials has a long history, starting with the work of Bloch and Pólya [10].

Kac [34] was the first to study the distribution of real zeros of random polynomials whose

coefficients are real standard normal independent random variables. He obtained an exact

formula for the expected value of the number of its zeros in measurable subsets of the reals.

The distribution of the number of real zeros of random polynomials was further studied by

Bharucha-Reid and Sambandham [9], Edelman and Kostlan [20], Farahmand [26,27], Farah-

mand and Jahangiri [29], Kostlan [35], Mezincescu, Bessis, Fournier, Mantica, and Aaron [41]

and many others.

Shepp and Vanderbei [48] developed a remarkable technique based on the argument

principle and Cholesky factorizarion for extending Kac’s result to the complex plane. They

obtained exact formulas for the expected number of complex zeros in measurable subsets

of the complex plane, when the coefficients are real standard normal independent random

variables. Their computer plots of the density functions and empirical distributions from

randomly generated polynomials show that, as the degrees of the random polynomials be-

come large, the zeros appear to be approximately uniformly distributed around the circle.

Their asymptotic analysis of the density functions confirm the classical result due to Ham-

mersley [32]. Ibragimov and Zeitouni [33] employed a different method, based on the math-
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ematical theory of random noise developed in a notable paper by Rice [46], to obtain the

results in [48]. They also showed the limiting distributions of the density functions under

more general distributional assumptions.

In recent years, research on random polynomials has branched off in a number of

directions. The zeros of many ensembles of random polynomials have been found to be

asymptotically equidistributed near the unit circumference. Pritsker and Yeager [43] pro-

vided quantitative estimates for such equidistribution in terms of the expected discrepancy

of a certain zero counting measure and the expected number of zeros in various subsets of

the complex plane. The random polynomials they studied have coefficients which may be

dependent and need not have identical distributions.

Vanderbei [52] later introduced a modest generalization to the central assumptions

underlying the results in [48]. He showed that comparable exact formulas for the distri-

bution of the zeros in the complex plane can still be obtained for any value of the degree

of the random polynomial. For many years, most authors establish certain properties of

the zeros under very general distributional assumptions at the cost that most results hold

asymptotically only as the degree of the random polynomial tends to infinity.

Inspired by these works the aim of this dissertation is to study the expected density

of the complex zeros and level crossings of these random sums. The main device for treating

the expected density function throughout the complex plane is the Rice formula, which

provides a representation for the expected number of zeros of certain random fields. Our

computations and method of proof [11–14] are done in the spirit of the study conducted by

Ibragimov and Zeitouni [33].

In Chapter 2 we compute the expected density of complex zeros and level crossings of a

family of random sums constructed from sequences of independent and identically distributed

random complex standard normal variables and sequences of given holomorphic functions

that are real-valued on the real line as the basis functions. Several practical examples are
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considered, such as random Weyl polynomials, random root-binomial polynomials, random

truncated Fourier sine and cosine series. In addition, we consider random sums whose basis

functions are polynomials orthogonal on the real line and unit circle. We then obtain the

limiting behavior of the expected density function and produce numerical computations

for the density function and empirical distributions. In Chapter 3 we compute the expected

density for the case of mean zero and general variances. We apply this result to random sums

constructed from sequences of successive observations of a Brownian motion. In Chapter 4

we consider the basic question about the expected number of complex zeros for coefficients

of nonvanishing mean values and general variances, thereby generalizing the key results from

Chapters 2 and 3. This process can get very involved technically. Only the main steps are

provided. In Chapter 5 we consider the expected density and level crossings for a certain form

of a random complex trigonometric polynomials. Finally, the expected number of complex

zeros in a measurable region of the complex plane can be obtained from these results.
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CHAPTER 2

THE DENSITY OF COMPLEX ZEROS OF RANDOM SUMS

Let {aj}Nj=0 and {bj}Nj=0 be sequences of mutually independent and identically dis-

tributed (i.i.d.) random real Gaussian variables defined on the complete probability space

(Ω,F , P ), with each sequence normally distributed with mean zero and variance one. As

usual, Ω is a set with generic elements ω, F is a σ-field of subsets of Ω, and P is a probability

measure on F . Throughout this chapter, we shall assume that all sub σ-fields contain all

sets of measure zero (see [19]). Let {fj(z)}Nj=0 be a sequence of given holomorphic functions

that are real-valued on the real line. Furthermore, let us define the random sum

SN(z) =
N∑
j=0

ηjfj(z), (2.1)

where z is the complex variable x + iy, and the ηj are i.i.d. random complex Gaussian

variables (with density e−zz̄/π) given by ηj = aj + ibj for 0 ≤ j ≤ N . Suppose that Φ is

a compact subset in the complex plane C. We denote by νN,K(Φ) the number of complex

zeros in Φ of the random sum SN(z) with respect to the complex level K = K1 + iK2, where

K1 and K2 are constants independent of z. We do not assume necessarily that the scalars

K1 and K2 are equal. From [26, 29, 36, 54] (see, also, Equation (8.17) in [27]), we see that,

with probability one, the value of the density function hN,K(z) for multivariate Gaussian

coefficients is given by

E νN,K(Φ) =

∫
Φ

hN,K(z) dz, (2.2)
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where E νN,K(Φ) is the mathematical expectation of νN,K(Φ). Thus, hN,K(z) is the expected

density of the complex zeros of the random equation

SN(z) = K.

Shepp and Vanderbei [48] wrote a beautiful paper on the complex zeros of the random

polynomial
∑N

j=0 ηjz
j, where the ηj are i.i.d. random real Gaussian coefficients. In their

paper, Shepp and Vanderbei introduced a sophisticated method based on Cauchy’s argument

principle for producing an explicit density function for the complex zeros. The method uses

the Cholesky decomposition for representing correlated random Gaussian variables in terms

of uncorrelated (and hence independent) random Gaussian variables. Shepp and Vanderbei

generated computer plots of this density function and hundreds of thousands of zeros from

randomly generated polynomials that show that, as the degree N becomes large, the zeros

tend to lie very close to the unit circle and, when the real zeros are ignored, appear to

be approximately uniformly distributed around the unit circle. Their asymptotics for the

density function confirm the classical result due to Hammersley [32].

Ibragimov and Zeitouni [33] obtained the results in [48] using a different method,

based on an integral representation of the average number of zeros of a random field. Fur-

thermore, Ibragimov and Zeitouni demonstrated the limiting distributions for the density

function under more general distributional assumptions.

In later work, Vanderbei [52] introduced a modest generalization to the central as-

sumptions underlying the results in [48] and showed that comparable explicit formulas for

the distribution of complex zeros can still be obtained for any N . Following the same general

methodology given in [48], Vanderbei derived analogous explicit formulas for the density of

complex zeros of the random sum SN(z) for the case when the ηj are i.i.d. random real

Gaussian coefficients, and the fj(z) are given holomorphic functions that are real-valued on

the real line.
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In this chapter, we shall continue the line of investigation begun by Vanderbei and

study the number of level crossings of the random sum SN(z) when the ηj are assumed to be

i.i.d. random complex Gaussian variables. To consider this challenging general case, we shall

employ a multivariate analysis approach based on results due to Adler [1], which provide

a representation for the expected number of zeros of certain random fields. The method

of proof was first applied by Ibragimov and Zeitouni [33]. Our main result generalizes the

density function obtained independently by Yeager [54] and one of the authors [36] to nonzero

K. (See the remarks in [48, Section 6] and [52, Section 4].) Its proof exploits the assumption

that the holomorphic functions fj(z) are real-valued on the real line. By Schwarz’s reflection

principle (see Ahlfors’s classical book [3, pages 172–173]), these holomorphic functions have

the property that fj(z) = fj(z) for 0 ≤ j ≤ N and all z ∈ C. Their derivatives also have

this property.

Theorem 2.1 Let the density function hN,K(z) be defined by (2.2). Under the conditions

imposed on the random sum SN(z) and the sequences {ηj}Nj=0 and {fj(z)}Nj=0 in (2.1), for

all integers N > 1 we have

hN,K(z) =
e−(K2

1+K2
2 )/2B0,N (z)

πB0,N(z)

B2,N(z)− |B1,N(z)|2

B0,N(z)

(
1− K2

1 +K2
2

2B0,N(z)

) ,

where the kernels Br,N(z) for 0 ≤ r ≤ 2 are given by

B0,N(z) =
N∑
j=0

|fj(z)|2, B1,N(z) =
N∑
j=0

fj(z)f ′j(z), B2,N(z) =
N∑
j=0

|f ′j(z)|2.

The value of the density function hN,K(z) is expressed in fairly simple terms, in that

we can clearly see its form of dependence on K. Its form is reminiscent of Farahmand and

Jahangiri’s [29, Theorem 1] expected density for the random polynomial
∑N

j=0 ηjgjz
j with
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respect to K, where the gj are given real constants. (See [26,27] for the case when gj = 1.)

From Theorem 2.1, we have the following consequence.

Corollary 2.1.1 For any vector K restricted to a circle of radius K > 0 and for all

integers N > 1 we have

hN,K(z) =
e−K

2/B0,N (z)

πB0,N(z)

B2,N(z)− |B1,N(z)|2

B0,N(z)

(
1− K2

B0,N(z)

) .

Immediate by Corollary 2.1.1 is the following consequence, which was proved inde-

pendently by Yeager [54] and one of the authors [36].

Corollary 2.1.2 If K is the zero vector, then for all integers N > 1 we have

hN,0(z) =
B0,N(z)B2,N(z)− |B1,N(z)|2

πB0,N(z)2
.

In Section 2.1, we shall prove Theorem 2.1. In Section 2.2, we shall use the formula

for the density function hN,K(z) in Theorem 2.1 for the special choices of fj(z) to study its

limiting behaviour as N tends to infinity. This shall demonstrate how the zeros of the random

equation SN(z) = K are clustered in the limit. In Section 2.3, using the appropriate forms

of the Christoffel–Darboux formulas, we derive the density functions for the complex zeros of

orthogonal polynomials, with the orthogonality relation being satisfied on the real line and

the unit circle. These random polynomials have been studied by many authors, including

Das [15], Lubinsky, Pritsker, and Xie [39,40], Yattselev and Yeager [53], and Yeager [54,55].

In connection to these works, we are led to study the density functions for their complex

zeros with respect to K.

Finally, we remark that the method introduced by Shepp and Vanderbei [48] could

be applied in many circumstances. Their method could be modified to produce the number
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of K complex level crossings. Furthermore, working with real coefficients, in fact, makes the

analysis more complicated. This will be addressed in a future work.

2.1 The Evaluation of the Density Function

We shall begin the proof of Theorem 2.1 by letting X1,N and X2,N be the real and

imaginary parts of the random sum SN(z), respectively. For convenience in computation,

we shall write

fj(z) = uj(x, y) + ivj(x, y),

where uj(x, y) and vj(x, y) are real-valued functions of (x, y) ∈ R2. We have

SN(z) = X1,N + iX2,N ,

where

X1,N =
N∑
j=0

(ajuj − bjvj)

and

X2,N =
N∑
j=0

(ajvj + bjuj).

In our application of Adler’s theorem, we need to find all real and complex zeros of SN(z) =

K. They are the zeros of the random equations X1,N = K1 and X2,N = K2 for (x, y) ∈ R2.

For the sake of brevity, we let XN be the two-dimensional random field of the real and

imaginary parts of the random sum SN(z) defined by the column vector XN = (X1,N , X2,N)′,

and we denote the Jacobian matrix of the transformation (x, y) −→ (X1,N , X2,N) by the

matrix ∇XN of the first-order partial derivatives of XN with respect to x and y, namely,

∇XN =
∂(X1,N , X2,N)

∂(x, y)
=


∂X1,N

∂x

∂X2,N

∂x

∂X1,N

∂y

∂X2,N

∂y

 .
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Let Φ be a compact subset in the complex plane C containing not more than a finite

number of points such that XN = K, where K = (K1, K2)′. We assume that the boundary

∂Φ of Φ does not contain any points for which XN = K and Φ does not contain any points

satisfying XN = K and det∇XN = 0 at the same time. It is clear that the number of

points is finite, as N is fixed. The two former conditions are satisfied in the problem setup.

Since the set of points for which XN = K is of measure zero, the latter two conditions

are satisfied almost surely. It is easy to check that the conditions in Theorem 5.1.1 and

its Corollary in Adler’s classical book [1, pages 95–97] hold (see, also, the papers by Azäıs

and Wschebor [6] and Ibragimov and Zeitouni [33]). Hence, the density function hN,K(z)

for multivariate Gaussian coefficients given by (2.2) can be expressed through a conditioned

expected value given by

hN,K(z) = E (|det∇XN | | X1,N = K1, X2,N = K2) pX1,N ,X2,N
(K1, K2)

= E (|det∇XN | |XN = K) pX1,N ,X2,N
(K ′), (2.3)

where pX1,N ,X2,N
(K ′) is the two-dimensional joint density function of the random vector

XN . Since det∇XN is always nonnegative, let us eliminate the absolute value sign from

future occurrences of the extreme right side of (2.3) in the evaluation of the density function

hN,K(z).

We now find the determinant of ∇XN . It will be convenient to first use the Cauchy–

Riemann equations to rewrite the expressions for ∂X1,N/∂y and ∂X2,N/∂y. In order to obtain

the conditional expectation of |det∇XN | on the extreme right side of (2.3), we separate the

diagonal terms from the cross terms in the random determinant det∇XN . It is an easy
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computation, and with a little algebra we find that

det∇XN =

∣∣∣∣∣∣∣∣∣∣∣∣

N∑
j=0

(
aj
∂uj
∂x
− bj

∂vj
∂x

) N∑
j=0

(
aj
∂vj
∂x

+ bj
∂uj
∂x

)
N∑
j=0

(
−aj

∂vj
∂x
− bj

∂uj
∂x

) N∑
j=0

(
aj
∂uj
∂x
− bj

vj
∂x

)
∣∣∣∣∣∣∣∣∣∣∣∣

=
N∑
j=0

N∑
k=0

{
(ajak + bjbk)

(
∂uj
∂x

∂uk
∂x

+
∂vj
∂x

∂vk
∂x

)

+(ajbk − bjak)
(
∂vj
∂x

∂uk
∂x
− ∂uj

∂x

∂vk
∂x

)}

=
N∑
j=0

(a2
j + b2

j)

{(
∂uj
∂x

)2

+

(
∂vj
∂x

)2
}

+
N∑
j=0

N∑
k=0
k 6=j

{
(ajak + bjbk)

(
∂uj
∂x

∂uk
∂x

+
∂vj
∂x

∂vk
∂x

)

+(ajbk − bjak)
(
∂vj
∂x

∂uk
∂x
− ∂uj

∂x

∂vk
∂x

)}
. (2.4)

Thus, the evaluation of the density function hN,K(z) leads to the computation of the expected

value of a quadratic form det∇XN of i.i.d. Gaussian random variables, conditioned on two

linear combinations.

In the following, we obtain the vectors of conditional expectations, variances, and

covariance matrices of the multivariate random vectors aN = (a0, . . . , aN)′ and bN =

(b0, . . . , bN)′. From standard methods in multivariate analysis (see the classical books by

Anderson [4] and Tong [51]), based on the assumption that all the scalar random variables

involved are independent and normally distributed, we define

Cov(aN , bN |XN = K) =

ΣaNaN ,XN
ΣaNbN ,XN

ΣbNaN ,XN
ΣbNbN ,XN

 (2.5)
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and

E (aN |XN = K) = EaN + ΣaNXN
Σ−1

XNXN
(K − EXN)′, (2.6)

where

ΣaNbN ,XN
= ΣaNbN −ΣaNXN

Σ−1
XNXN

ΣXNbN (2.7)

and

ΣaNbN = E (aN − EaN)(bN − E bN)′, (2.8)

which is a generalized covariance matrix of the vectors aN and bN . Whereas the distribution

of the aj and bj is central, we have EaN = 0, E bN = 0, and EXN = 0.

From (2.8) and the assumption of the theorem

ΣaNaN
= E (aN − EaN)(aN − EaN)′ = EaNa

′
N = IN , (2.9)

since the aj are distributed according to an N (0, 1) distribution and

E ajak =


1 if j = k,

0 if j 6= k.

(2.10)

In a similar fashion, from (2.8)

ΣbNbN = E (bN − E bN)(bN − E bN)′ = E bNb
′
N = IN . (2.11)

Since

E ajbk = 0, (2.12)

we have

ΣaNbN = E (aN − EaN)(bN − E bN)′ = EaNb
′
N = 0. (2.13)

11



It follows that

ΣbNaN
= Σ′aNbN

= 0. (2.14)

Now, from (2.10) and (2.12)

E ajX1,N =
N∑
k=0

(E (ajak)uk − E (ajbk)vk) = uj (2.15)

and

E ajX2,N =
N∑
k=0

(E (ajak)vk + E (ajbk)uk) = vj. (2.16)

If we apply (2.15) and (2.16) to (2.8), we obtain

ΣaNXN
= E (aN − EaN)(XN − EXN)′ = EaNX

′
N

=



E a0X1,N E a0X2,N

E a1X1,N E a1X2,N

...
...

E aNX1,N E aNX2,N


=



u0 v0

u1 v1

...
...

uN vN


. (2.17)

Thus,

ΣXNaN
= Σ′aNXN

=

u0 u1 . . . uN

v0 v1 . . . vN

 . (2.18)

Proceeding as above, using (2.10) and (2.12) with the obvious substitutions, we obtain

E bjX1,N =
N∑
k=0

(E (bjak)uk − E (bjbk)vk) = −vj (2.19)

and

E bjX2,N =
N∑
k=0

(E (bjak)vk + E (bjbk)uk) = uj. (2.20)

12



Then applying (2.19) and (2.20) to (2.8), we get

ΣbNXN
= E (bN − E bN)(XN − EXN)′ = E bNX

′
N

=



E b0X1,N E b0X2,N

E b1X1,N E b1X2,N

...
...

E bNX1,N E bNX2,N


=



−v0 u0

−v1 u1

...
...

−vN uN


. (2.21)

Hence,

ΣXNbN = Σ′bNXN
=

−v0 −v1 . . . −vN

u0 u1 . . . uN

 . (2.22)

Again, we use (2.8) to obtain

ΣXNXN
= E (XN − EXN)(XN − EXN)′

=

EX1,NX1,N EX1,NX2,N

EX2,NX1,N EX2,NX2,N

 . (2.23)

We compute that

EX1,NX1,N = E

 N∑
j=0

N∑
k=0

(ajuj − bjvj)(akuk − bkvk)


=

N∑
j=0

N∑
k=0

(E (ajak)ujuk + E (bjbk)vjvk − E (ajbk)ujvk − E (bjak)vjuk)

=
N∑
j=0

(u2
j + v2

j ) =
N∑
j=0

|fj(z)|2. (2.24)

13



We get, similarly to (2.24),

EX2,NX2,N = E

 N∑
j=0

N∑
k=0

(ajvj + bjuj)(akvk + bkvk)


=

N∑
j=0

N∑
k=0

(E (ajak)vjvk + E (bjbk)ujuk + E (ajbk)vjuk + E (bjak)ujvk)

=
N∑
j=0

(u2
j + v2

j ) =
N∑
j=0

|fj(z)|2. (2.25)

Furthermore, we have

EX2,NX1,N = EX1,NX2,N = E

 N∑
j=0

N∑
k=0

(ajuj − bjvj)(akvk + bkuk)


=

N∑
j=0

N∑
k=0

(
E (ajak)ujvk − E (bjbk)vjuk + E (ajbk)ujuk − E (bjak)vjvk

)
=

N∑
j=0

(ujvj − vjuj) = 0. (2.26)

Then combining (2.24)–(2.26) in (2.23), we obtain

ΣXNXN
=

N∑
j=0

|fj(z)|2I2.

We note that the existence of the density function hN,K(z) depends on the evaluation of the

covariance matrix Cov(aN , bN | XN = K), which in turn depends on the existence of the

inverse matrix Σ−1
XNXN

. This is guaranteed, since

det|ΣXNXN
| =

 N∑
j=0

|fj(z)|2
2

.
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Thus,

Σ−1
XNXN

=
I2√

det|ΣXNXN
|
. (2.27)

Moving now to the components of the covariance matrix given by (2.5), we obtain

the results for the jth row and the kth column. Let δjk denote the Kronecker delta, that is,

δjk =

 1 if j = k,

0 if j 6= k.

From (2.7), (2.9), (2.17), (2.18), and (2.27)

(ΣaNaN ,XN
)1≤j≤N
1≤k≤N

= (ΣaNaN
)1≤j≤N
1≤k≤N

− (ΣaNXN
Σ−1

XNXN
ΣXNaN

)1≤j≤N
1≤k≤N

= δjk −
ujuk + vjvk√
det|ΣXNXN

|
. (2.28)

From (2.7), (2.11), (2.21), (2.22), and (2.27)

(ΣbNbN ,XN
)1≤j≤N
1≤k≤N

= (ΣbNbN )1≤j≤N
1≤k≤N

− (ΣbNXN
Σ−1

XNXN
ΣXNbN )1≤j≤N

1≤k≤N

= δjk −
ujuk + vjvk√
det|ΣXNXN

|
. (2.29)

From (2.7), (2.13), (2.17), (2.22), and (2.27)

(ΣaNbN ,XN
)1≤j≤N
1≤k≤N

= (ΣaNbN )1≤j≤N
1≤k≤N

− (ΣaNXN
Σ−1

XNXN
ΣXNbN )1≤j≤N

1≤k≤N

=
ujvk − vjuk√
det|ΣXNXN

|
. (2.30)

From (2.7), (2.14), (2.18), (2.21), and (2.27)

(ΣbNaN ,XN
)1≤j≤N
1≤k≤N

= (ΣbNaN
)1≤j≤N
1≤k≤N

− (ΣbNXN
Σ−1

XNXN
ΣXNaN

)1≤j≤N
1≤k≤N
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= − ujvk − vjuk√
det|ΣXNXN

|
. (2.31)

We next find the necessary conditional expectations for computing E (det∇XN |

XN = K). The conditional expectations of aN and bN are easily derived, respectively, from

(2.6), (2.17), and (2.27) as

(E (aj |XN = K))1≤j≤N = (ΣaNXN
Σ−1

XNXN
K)1≤j≤N

=
K1uj +K2vj√
det|ΣXNXN

|
(2.32)

and from (2.6), (2.21), and (2.27) as

(E (bj |XN = K))1≤j≤N = (ΣbNXN
Σ−1

XNXN
K)1≤j≤N

=
K2uj −K1vj√
det|ΣXNXN

|
. (2.33)

We derive from (2.32)

(E (a2
j |XN = K))1≤j≤N = (E (aj |XN = K))2

1≤j≤N + (Var(aj |XN = K))1≤j≤N

=
K2

1u
2
j +K2

2v
2
j + 2K1K2vjvj

det|ΣXNXN
|

+ 1−
u2
j + v2

j√
det|ΣXNXN

|
(2.34)

and from (2.33)

(E (b2
j |XN = K))1≤j≤N = (E (bj |XN = K))2

1≤j≤N + (Var(bj |XN = K))1≤j≤N

=
K2

2u
2
j +K2

1v
2
j − 2K1K2vjvj

det|ΣXNXN
|

+ 1−
u2
j + v2

j√
det|ΣXNXN

|
. (2.35)

By virtue of (2.34) and (2.35)

(E (a2
j + b2

j |XN = K))1≤j≤N =
(K2

1 +K2
2)(u2

j + v2
j )

det|ΣXNXN
|

+ 2−
2(u2

j + v2
j )√

det|ΣXNXN
|
. (2.36)
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Next, using (2.5) and (2.28)–(2.32), we get

(E (ajak |XN = K))1≤j≤N
1≤k≤N

= (E (aj |XN = K))1≤j≤N (E (ak |XN = K))1≤k≤N

+ (Cov(aj, ak |XN = K))1≤j≤N
1≤k≤N

=
K2

1ujuk +K2
2vjvk +K1K2(ujvk + vjuk)

det|ΣXNXN
|

− ujuk + vjvk√
det|ΣXNXN

|
. (2.37)

Using (2.5), (2.28)–(2.31), and (2.33), we find

(E (bjbk |XN = K))1≤j≤N
1≤k≤N

= (E (bj |XN = K))1≤j≤N (E (bk |XN = K))1≤k≤N

+ (Cov(bj, bk |XN = K))1≤j≤N
1≤k≤N

=
K2

2ujuk +K2
1vjvk −K1K2(ujvk + vjuk)

det|ΣXNXN
|

− ujuk + vjvk√
det|ΣXNXN

|
. (2.38)

By virtue of (2.37) and (2.38)

(E (ajak + bjbk |XN = K))1≤j≤N
1≤k≤N

=
(K2

1 +K2
2)(ujuk + vjvk)

det|ΣXNXN
|

− 2(ujuk + vjvk)√
det|ΣXNXN

|
. (2.39)

Next, we derive from (2.5) and (2.28)–(2.33)

(E (ajbk |XN = K))1≤j≤N
1≤k≤N

= (E (aj |XN = K))1≤j≤N (E (bk |XN = K))1≤k≤N

+ (Cov(aj, bk |XN = K))1≤j≤N
1≤k≤N

=
K1K2(ujuk − vjvk)−K2

1ujvk +K2
2vjuk

det|ΣXNXN
|

+
ujvk − vjuk√
det|ΣXNXN

|
(2.40)
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and

(E (bjak |XN = K))1≤j≤N
1≤k≤N

= (E (bj |XN = K))1≤j≤N (E (ak |XN = K))1≤k≤N

+ (Cov(bj, ak |XN = K))1≤j≤N
1≤k≤N

=
K1K2(ujuk − vjvk) +K2

2ujvk −K2
1vjuk

det|ΣXNXN
|

− ujvk − vjuk√
det|ΣXNXN

|
. (2.41)

By virtue of (2.40) and (2.41)

(E (ajbk − bjak |XN = K))1≤j≤N
1≤k≤N

=
(K2

1 +K2
2)(vjuk − ujvk)

det|ΣXNXN
|

+
2(ujvk − vjuk)√

det|ΣXNXN
|
. (2.42)

It remains to evaluate the conditional expectation of the random determinant det∇XN .

From (2.4), (2.36), (2.39), and (2.42), it emerges from an arduous calculation that

E (det∇XN |XN = K)

=
N∑
j=0

E (a2
j + b2

j |XN = K)

{(
∂uj
∂x

)2

+

(
∂vj
∂x

)2
}

+
N∑
j=0

N∑
k=0
k 6=j

{
E (ajak + bjbk |XN = K)

(
∂uj
∂x

∂uk
∂x

+
∂vj
∂x

∂vk
∂x

)}

+
N∑
j=0

N∑
k=0
k 6=j

{
E (ajbk − bjak |XN = K)

(
∂vj
∂x

∂uk
∂x
− ∂uj

∂x

∂vk
∂x

)}

= 2
N∑
j=0

|f ′j(z)|2 −

(
2√

det|ΣXNXN
|
− K2

1 +K2
2

det|ΣXNXN
|

)

×
N∑
j=0

N∑
k=0

{
(ujuk + vjvk)

(
∂uj
∂x

∂uk
∂x

+
∂vj
∂x

∂vk
∂x

)

+(vjuk − ujvk)
(
∂vj
∂x

∂uk
∂x
− ∂uj

∂x

∂vk
∂x

)}
.
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An uninspired calculation then shows that the double sum on the extreme right side can be

reduced to

N∑
j=0

N∑
k=0

(
uj
∂uj
∂x

+ vj
∂vj
∂x

)(
uk
∂uk
∂x

+ vk
∂vk
∂x

)

+
N∑
j=0

N∑
k=0

(
uj
∂vj
∂x
− vj

∂uj
∂x

)(
uk
∂vk
∂x
− vk

∂uk
∂x

)

=


N∑
j=0

(
uj
∂uj
∂x

+ vj
∂vj
∂x

)
2

+


N∑
j=0

(
uj
∂vj
∂x
− vj

∂uj
∂x

)
2

=

∣∣∣∣∣∣
N∑
j=0

{(
uj
∂uj
∂x

+ vj
∂vj
∂x

)
+ i

(
uj
∂vj
∂x
− vj

∂uj
∂x

)}∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
N∑
j=0

(uj − ivj)
(
∂uj
∂x

+ i
∂vj
∂x

)∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
N∑
j=0

fj(z)f ′j(z)

∣∣∣∣∣∣
2

.

Thus,

E (det∇XN |XN = K)

=
2√

det|ΣXNXN
|

√det|ΣXNXN
|
N∑
k=0

|f ′k(z)|2 −

∣∣∣∣∣∣
N∑
j=0

fj(z)f ′j(z)

∣∣∣∣∣∣
2


+
K2

1 +K2
2

det|ΣXNXN
|

∣∣∣∣∣∣
N∑
j=0

fj(z)f ′j(z)

∣∣∣∣∣∣
2

.

(2.43)

For definiteness, we recall from [31, Chapter 10] (see, also, [51, Chapter 2]) that the joint

density of two random real Gaussian variables X1,N and X2,N at the points K1 and K2,

respectively, is equal to

pX1,N ,X2,N
(K1, K2) =

1

2πσ2
√

det|ΣXNXN
|

exp

(
−(K1 − EX1)2 + (K2 − EX2)2

2σ2
√

det|ΣXNXN
|

)
.
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In our case, the conditions EX1 = 0,EX2 = 0, and σ2 = 1 apply. Thus, we have

pX1,N ,X2,N
(K ′) =

1

2π
√

det|ΣXNXN
|

exp

(
− K2

1 +K2
2√

det|ΣXNXN
|

)
. (2.44)

By virtue of (2.3), (2.43), and (2.44), upon simplifying and applying the formulas for the

kernels Br,N(z) for 0 ≤ r ≤ 2 in Theorem 2.1, the required result follows.

2.2 The Asymptotic Analysis

It is well known and, for example, Farahmand [21] has shown that, for large values

of N , the real zeros of random polynomials with real coefficients are clustered about ±1.

(See, also, Bharucha-Reid and Sambandham’s book [9].) In order to understand better

the behaviour of the density function hN,K(z) in Theorem 2.1 as N tends to infinity, we

define special values of the functions fj(z). Indeed, we are restricted to the cases that the

evaluation of sums in Theorem 2.1 becomes analytically feasible. To exhibit the numerical

behaviour of the density function hN,K(z) and the zeros of the random equation SN(z) = K

for various values of N numerically, we used the general computing environment Wolfram

Mathematica R© version number 12.0.0.0 developed by Wolfram Research for the platform

Mac OS X x86 (64-bit), which ran on the Apple Mac Pro (late 2013) with the 2.7 GHz

12-core Intel R© Xeon R© Processor E5-2697 v2.

The simplest example of random sums is when

fj(z) = zj. (2.45)

The resulting limits are best expressed in terms of the function

B(z) =
1

1− |z|2
.
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Using the notation given in Theorem 2.1, we have

B0,N(z) =
N∑
j=0

|z|2j = (1− |z|2N+2)B(z).

By repeated differentiation, we obtain

zB1,N(z) =
N∑
j=0

j|z|2j = (N |z|2N+2 − (N + 1)|z|2N + 1)|z|2B(z)2

and

B2,N(z) =
N∑
j=0

j2|z|2j−2 = (1 + |z|2 − |z|2N(N2|z|4 − (2N2 + 2N − 1)|z|2 + (N + 1)2))B(z)3.

Clearly, if |z| < 1, then

lim
N→∞

B0,N(z) = B(z)

and

lim
N→∞

zB1,N(z) = |z|2B(z)2,

as well as

lim
N→∞

B2,N(z) = (1 + |z|2)B(z)3.

The following follows from Theorem 2.1.

Theorem 2.2 Let the sequence of functions {fj(z)}Nj=0 in the definition of the random

sum SN(z) in (2.1) be given by (2.45). If |z| < 1, then we have

lim
N→∞

hN,K(z) =
1

π
e−(K2

1+K2
2 )/2B(z)B(z)

B(z) +

(
K2

1 +K2
2

2

)
|z|2
 .
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Then for any vector K restricted to a circle of radius K > 0 we have

lim
N→∞

hN,K(z) =
1

π
e−K

2/B(z)B(z)(B(z) +K2|z|2).

Furthermore, if K is the zero vector, then we have

lim
N→∞

hN,0(z) =
1

π
B(z)2.

We note that, in all the cases considered, the limiting value of the density function

hN,K(z) has |z|4 − 2|z|2 + 1 in its denominators. An exponential factor is present when K

is nonzero.

If now |z| > 1, then for all sufficiently large N we can write

B0,N(z) ∼ −|z|2NB(z)

and

zB1,N(z) ∼ |z|2B(z)2,

as well as

B2,N(z) ∼ (1 + |z|2 −N2|z|2N(|z|4 − |z|2 + 1))B(z)3.

The following follows from Theorem 2.1.

Theorem 2.3 Let the sequence of functions {fj(z)}Nj=0 in the definition of the random

sum SN(z) in (2.1) be given by (2.45). If |z| > 1, then for all sufficiently large N we have

hN,K(z) ∼ 1

π
e(K2

1+K2
2 )/2|z|2NB(z)

×B(z)2

N2(|z|4 − |z|2 + 1)− |z|
2 + 1

|z|2N
− |z|

2

|z|4N

(
1 +

K2
1 +K2

2

2|z|2NB(z)

) .
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Then for any vector K restricted to a circle of radius K > 0 we have

hN,K(z) ∼ 1

π
eK

2/|z|2NB(z)

×B(z)2

N2(|z|4 − |z|2 + 1)− |z|
2 + 1

|z|2N
− |z|

2

|z|4N

(
1 +

K2

|z|2NB(z)

) .

Furthermore, if K is the zero vector, then we have

hN,0(z) ∼ 1

π
B(z)2

(
N2(|z|4 − |z|2 + 1)− |z|

2 + 1

|z|2N
− |z|

2

|z|4N

)
.

Using the appropriate power sum formulas in Theorem 2.1, we obtain the following.

Theorem 2.4 Let the sequence of functions {fj(z)}Nj=0 in the definition of the random

sum SN(z) in (2.1) be given by (2.45). If z = ±1, then we have

hN,K(±1) =
1

12π
e−(K2

1+K2
2 )/(2N+2)

2N +N2

(
1 +

3(K2
1 +K2

2)

2N + 2

) .

Then for any vector K restricted to a circle of radius K > 0 we have

hN,K(±1) =
1

12π
e−K

2/(N+1)

2N +N2

(
1 +

3K2

N + 1

) .

Furthermore, if K is the zero vector, then we have

hN,0(±1) =
1

12π
N(N + 2).

In Figure 2.1, the left-hand plot is a grey-scale image of the density function hN,K(z)

with N = 10 and K = (10, 10)′. The right-hand plot shows the zeros obtained by generating

20,000 random polynomials and explicitly finding the zeros of the random equation S10(z) =

K. The zeros cluster near the unit circle, and the density function does not have mass
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concentrated on the real axis. There is no jump present near the real axis. For larger values

of K the effect is more pronounced.

Figure 2.1 Twenty thousand random degree 10 polynomials for the random equation
S10(z) = η0 + η1z + η2z

2 + . . .+ η10z
10 = 10 + i10

Also of interest are random Weyl polynomials in which

fj(z) =
zj√
j!
, (2.46)

also studied by Farahmand and Jahangiri [29], Littlewood and Offord [37, 38], Offord [42],

and Vanderbei [52]. For this case, the limiting forms of the various functions defining hN,K(z)

are computed by repeated differentiation. We have

lim
N→∞

B0,N(z) = lim
N→∞

N∑
j=0

|z|2j

j!
= e|z|

2

and

lim
N→∞

B1,N(z) = lim
N→∞

N∑
j=0

|z|2j

(j − 1)!z
= ze|z|

2

,
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as well as

lim
N→∞

B2,N(z) = lim
N→∞

N∑
j=0

j|z|2j−2

(j − 1)!
= (|z|2 + 1)e|z|

2

.

Substituting these values into Theorem 2.1, we obtain the following result.

Theorem 2.5 Let the sequence of functions {fj(z)}Nj=0 in the definition of the random

sum SN(z) in (2.1) be given by (2.46). Then we have

lim
N→∞

hN,K(z) =
1

π
e−(K2

1+K2
2 )/2e|z|

2

(
1 +

(K2
1 +K2

2)|z|2

2e|z|2

)
.

Then for any vector K restricted to a circle of radius K > 0 we have

lim
N→∞

hN,K(z) =
1

π
e−K

2/e|z|
2

(
1 +

K2|z|2

e|z|2

)
.

Furthermore, if K is the zero vector, then we have

lim
N→∞

hN,0(z) =
1

π
.

We note that the distribution of the real zeros becomes uniform over the real line.

The complex zeros are much more uniformly distributed than was the case when the factor

1/
√
j! was not present. The pictures in Figure 2.2 show the density function h10,K(z) and

the empirical distribution for 20,000 random sums when fj(z) = zj/
√
j! and K = (10, 10)′,

that is, random degree 10 Weyl polynomials. The behaviour of the density function and the

empirical distribution for the random sums becomes very noticeable and intensified when K

is increased.

Next, let us assume that

fj(z) =

√(
N

j

)
1

j + 1
zj. (2.47)
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Figure 2.2 Twenty thousand random degree 10 Weyl polynomials for the random equation
S10(z) = η0 + η1z + η2z

2/
√

2! + . . .+ η10z
10/
√

10! = 10 + i10

The random root-binomial polynomials were also studied by Farahmand and Jahangiri [29],

Littlewood and Offord [37, 38], Offord [42], and Vanderbei [52]. The pictures in Figure 2.3

show the density function h10,K(z) and the empirical distribution for 20,000 random degree

10 root-binomial polynomials with K = (50, 50)′.

By repeated differentiation, we can easily verify that

B0,N(z) =
N∑
j=0

(
N

j

)
|z|2j

j + 1
=

(|z|2 + 1)N+1 − 1

(N + 1)|z|2

and

B1,N(z) =
N∑
j=0

(
N

j

)
j|z|2j

(j + 1)z
=

(N |z|2 − 1)(|z|2 + 1)N − 1

(N + 1)z|z|2
,

as well as

B2,N(z) =
N∑
j=0

(
N

j

)
j2|z|2j−2

j + 1
=

(|z|2 + 1)N(|z|2(N2|z|2 −N + 1) + 1)− |z|2 − 1

(N + 1)|z|4(|z|2 + 1)
.
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Figure 2.3 Twenty thousand random degree 10 root-binomial polynomials for the random
equation S10(z) = η0 +

√
5η1z +

√
15η2z

2 + . . .+
√

1/11η10z
10 = 50 + i50

If we now assume that |z| > 0, that is, except at the origin, for all sufficiently large N we

can write

B0,N(z) ∼ (|z|2 + 1)N

N |z|2

and

B1,N(z) ∼ (|z|2 + 1)N

z
,

as well as

B2,N(z) ∼ N(|z|2 + 1)N−1.

We immediately get the following from Theorem 2.1.

Theorem 2.6 Let the sequence of functions {fj(z)}Nj=0 in the definition of the random

sum SN(z) in (2.1) be given by (2.47). Then for |z| > 0 and all sufficiently large N we have

hN,K(z) ∼ e−(K2
1+K2

2 )N |z|2/2(|z|2+1)N N
2|z|4((K2

1 +K2
2)N − 2(|z|2 + 1)N−1)

2π(|z|2 + 1)N
.
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Then for any vector K restricted to a circle of radius K > 0 we have

hN,K(z) ∼ e−K
2N |z|2/(|z|2+1)N N

2|z|4(K2N − (|z|2 + 1)N−1)

π(|z|2 + 1)N
.

Furthermore, if K is the zero vector, then we have

hN,0(z) ∼ − N2|z|4

π(|z|2 + 1)
.

Finally, we consider examples of random trigonometric sums. The behaviour of the

density function h10,K(z) and the empirical distribution for a family of 20,000 random sums

with fj(z) = cos jz for 0 ≤ j ≤ 10 and K = (50, 50)′ can be seen in Figure 2.4. Since

cos iy = cosh y, these random truncated Fourier cosine series are real-valued on both the real

axis and the orthogonal imaginary axis. Figure 2.5 shows the corresponding behaviour for

the random truncated Fourier sine/cosine series defined by

fj(z) =


cos

(
jz

2

)
if j is even,

sin

(
(j + 1)z

2

)
if j is odd.

The right-hand plot requires 10 days, 16 hours, and 48 minutes of Central Processing Unit

time to generate. The density functions for these examples have been studied by Vanderbei

[52] solely for the case when the ηj are i.i.d. random real Gaussian coefficients and K =

(0, 0)′. For this case, Vanderbei verified that the density function for the random truncated

Fourier sine/cosine series depends on the imaginary part of z only.

2.3 The Crossings of Random Orthogonal Polynomials

We shall now consider the case when the functions fj(z) are either polynomials pj(z)

orthogonal on the real line or polynomials ϕj(z) orthogonal on the unit circle. These or-
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Figure 2.4 Twenty thousand random sums of the first 10 terms in a Fourier cosine series for
the random equation S10(z) = η0 +η1 cos z+η2 cos 2z+ . . .+η10 cos 10z = 50+ i50

thogonal polynomials have real coefficients, and are real-valued on the real line. We shall

examine these objects in turn. First, we let α denote a nondecreasing function with an infi-

nite number of points of increase in the interval [a, b]. Assuming that moments of all orders

exist, we say that a sequence of polynomials {pj(z)}∞j=0, where the pj(z) have degree N , is

orthogonal with respect to the distribution dα if

∫ b

a

pj(z)pk(z) dα(z) = δjk.

From [5, Theorem 5.2.4] (see, also, [50, Theorem 3.2.2]), the Christoffel–Darboux formula for

orthogonal polynomials pj(z) on the real line can be stated as follows: Let kj be the highest

coefficient of pj(z). Suppose that the orthogonal polynomials pj(z) are normalized. Then

for complex variables z and w

N∑
j=0

pj(z)pj(w) =
kN
kN+1

(
pN+1(z)pN(w)− pN(z)pN+1(w)

z − w

)
. (2.48)

29



Figure 2.5 Twenty thousand random sums of the first 10 terms in a Fourier sine/cosine series
for the random equation S10(z) = η0+η1 sin z+η2 cos z+. . .+η9 sin 5z+η10 cos 5z =
50 + i50

We proceed to find the representations for the kernels Br,N(z) for 0 ≤ r ≤ 2. We shall

utilize the fact that the polynomials pj(z) are real-valued on the real line. Thus, we have that

pj(z) = pj(z) for j ≥ 0 and all z ∈ C. First, setting w = z, so that pj(w) = pj(z) = pj(z),

and z − z = 2i Im(z) in (2.48), we obtain

B0,N(z) =
N∑
j=0

pj(z)pj(z) =
kN
kN+1

(
Im(pN+1(z)pN(z))

Im(z)

)
. (2.49)

Second, for B1,N(z) we first take the derivative of (2.48) with respect to w to achieve

N∑
j=0

pj(z)p′j(w) =
kN
kN+1

(
pN+1(z)p′N(w)− pN(z)p′N+1(w)

z − w

)

+
1

z − w

N∑
j=0

pj(z)pj(w). (2.50)
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Then using z in the place of z and putting w = z, so that pj(z) = pj(z) and p′j(w) = p′j(z),

and z − z = −2i Im(z) in (2.50), we obtain

B1,N(z) =
N∑
j=0

pj(z)p′j(z)

=
kN
kN+1

(
pN(z)p′N+1(z)− pN+1(z)p′N(z)

2i Im(z)

)
− B0,N(z)

2i Im(z)
. (2.51)

Third, for B2,N(z) we first take the derivative of (2.50) with respect to z to attain

N∑
j=0

p′j(z)p′j(w) =
kN
kN+1

(
p′N+1(z)p′N(w)− p′N(z)p′N+1(w)

z − w

)

− kN
kN+1

(
pN+1(z)p′N(z)− pN(z)p′N+1(w)

(z − w)2

)

+
1

z − w

N∑
j=0

p′j(z)pj(w)− 1

(z − w)2

N∑
j=0

pj(z)pj(w)

=
kN
kN+1

(
p′N+1(z)p′N(w)− p′N(z)p′N+1(w)

z − w

)

− 1

z − w

N∑
j=0

pj(z)p′j(w) +
1

z − w

N∑
j=0

p′j(z)pj(w).

Thus,

B2,N(z) =
N∑
j=0

p′j(z)p′j(z)

=
kN
kN+1

(
Im(p′N+1(z)p′N(z))

Im(z)

)
− B1,N(z)

2i Im(z)
+
B1,N(z)

2i Im(z)
. (2.52)

We apply (2.49), (2.51), and (2.52) to Theorem 2.1 to obtain the following formula

for the density function hN,K(z) for the complex zeros of random polynomials orthogonal on

the real line.
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Theorem 2.7 Let the sequence of functions {fj(z)}Nj=0 in the definition of the random

sum SN(z) in (2.1) be polynomials pj(z) orthogonal on the real line. For all integers N > 1

we have

hN,K(z) =
1

π
exp

(
−(K2

1 +K2
2)kN+1 Im(z)

kN Im(pN+1(z)pN(z))

)

×


Im(p′N+1(z)p′N(z))

Im(pN+1(z)pN(z))
−
|pN(z)p′N+1(z)− pN+1(z)p′N(z)|2

4 Im(pN+1(z)pN(z))2
+

1

4 Im(z)2

+
(K2

1 +K2
2)kN+1

kN

 |pN(z)p′N+1(z)− pN+1(z)p′N(z)|2 Im(z)

8 Im(pN+1(z)pN(z))3

−
Re(pN(z)p′N+1(z)− pN+1(z)p′N(z))

4 Im(pN+1(z)pN(z))2
+

1

8 Im(z) Im(pN+1(z)pN(z))


.

Furthermore, if K is the zero vector, then we have

hN,0(z) =
1

π

(
Im(p′N+1(z)p′N(z))

Im(pN+1(z)pN(z))
−
|pN(z)p′N+1(z)− pN+1(z)p′N(z)|2

4 Im(pN+1(z)pN(z))2
+

1

4 Im(z)2

)
.

We remark that, when K is the zero vector in Theorem 2.7, we recover Equation

(1.5) of Theorem 1.1 in [55].

Next, the sequence of polynomials {ϕj(z)}∞j=0 are orthogonal on the unit circle with

respect to a probability Borel measure µ on T = R/2πZ (i.e., the real line modulo 2π) if

∫
T

ϕj(e
iθ)ϕk(eiθ) dµ(eiθ) = δjk,

for all j, k ∈ N∪{0}. As remarked in [55], when µ is restricted to be symmetric with respect

to conjugation, the sequence {ϕj(z)}∞j=0 will have real coefficients and, hence, be real-valued
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on the real line. From [49, Theorem 2.2.7], the Christoffel–Darboux formula for this sequence

of polynomials is that, for complex variables z and w with wz 6= 1,

N∑
j=0

ϕj(z)ϕj(w) =
ϕ∗N+1(w)ϕ∗N+1(z)− ϕN+1(w)ϕN+1(z)

1− wz
, (2.53)

where

ϕ∗N = zNϕN

(
1

z

)
. (2.54)

As before, we find the representations for the kernels Br,N(z) for 0 ≤ r ≤ 2. We recall that

the polynomials ϕj(z) are real-valued on the real line. Thus, we have that ϕj(z) = ϕj(z) for

j ≥ 0 and all z ∈ C. First, from (2.53)

B0,N(z) =
N∑
j=0

ϕj(z)ϕj(z) =
|ϕ∗N+1(z)|2 − |ϕN+1(z)|2

1− |z|2
. (2.55)

Second, for B1,N(z) we first take the derivative of (2.53) with respect to w and use ϕ∗N+1(w) =

ϕ∗N+1(w) and ϕN+1(w) = ϕN+1(w) to obtain

N∑
j=0

ϕj(z)ϕ′j(w) =
ϕ∗′N+1(w)ϕ∗N+1(z)− ϕ′N+1(w)ϕN+1(z)

1− wz
(2.56)

+
z(ϕ∗N+1(w)ϕ∗N+1(z)− ϕN+1(w)ϕN+1(z))

(1− wz)2
.

Then putting w = z in (2.56) and applying (2.55) we obtain

B1,N(z) =
N∑
j=0

ϕj(z)ϕ′j(z)

=
ϕ∗′N+1(z)ϕ∗N+1(z)− ϕ′N+1(z)ϕN+1(z)

1− |z|2
+
zB0,N(z)

1− |z|2
. (2.57)
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Third, for B2,N(z) we first take the derivative of (2.56) with respect to z to obtain

N∑
j=0

ϕ′(z)ϕ′j(w) =
ϕ∗′N+1(w)ϕ∗′N+1(z)− ϕ′N+1(w)ϕ′N+1(z)

1− wz

+
w(ϕ∗′N+1(w)ϕ∗N+1(z)− ϕN+1(w)ϕN+1(z))

(1− wz)2

+
z(ϕ∗N+1(w)ϕ∗N+1(z)− ϕN+1(w)ϕ′N+1(z))

(1− wz)2

+
ϕ∗N+1(w)ϕ∗N+1(z)− ϕN+1(w)ϕN+1(z)

(1− wz)2

+
2wz(ϕ∗N+1(w)ϕ∗N+1(z)− ϕN+1(w)ϕN+1(z))

(1− wz)3
.

(2.58)

Thus, putting w = z in (2.58), applying (2.55) and (2.59), and noting that

z(ϕ∗′N+1(z)ϕ∗N+1(z)− ϕN+1(z)ϕN+1(z))

(1− |z|2)2
=
zB1,N(z)

1− |z|2
− zB0,N(z)

1− |z|2

and

z(ϕ∗N+1(z)ϕ∗N+1(z)− ϕN+1(z)ϕ′N+1(z))

(1− |z|2)2
=
zB0,N(z)

1− |z|2
− |z|

2B0,N(z)

(1− |z|2)2
,

we obtain

B2,N(z) =
N∑
j=0

ϕ′j(z)ϕ′j(z)

=
|ϕ∗′N+1(z)|2 − |ϕ′N+1(z)|2

1− |z|2
+

2 Re(zB1,N(z))

1− |z|2
+
B0,N(z)

1− |z|2
. (2.59)

To facilitate the derivation of the density function hN,K(z) for the complex zeros of random

polynomials orthogonal on the unit circle, we note that the formula for the density function

hN,K(z) in Theorem 2.1 contains the quotients (B0,NB2,N − |B1,N |2)/B2
0,N and |B1,N |2/B3

0,N .

We treat these quotients in turn.
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From (2.55) and (2.59)

B0,N(z)B2,N(z) =
|ϕ∗′N+1(z)ϕ∗N+1(z)|2

(1− |z|2)2
+
|ϕ′N+1(z)ϕN+1(z)|2

(1− |z|2)2

−
|ϕ∗′N+1(z)ϕN+1(z)|2

(1− |z|2)2
−
|ϕ∗N+1(z)ϕN+1(z)|2

(1− |z|2)2

+
2B0,N Re(zB1,N(z))

1− |z|2
+
B0,N(z)2

1− |z|2
.

(2.60)

From (2.59)

|B1,N(z)|2 = B1,N(z)B1,N(z)

=
|ϕ∗′N+1ϕ

∗
N+1(z)|2

(1− |z|2)2
+
|ϕ′N+1(z)ϕN+1(z)|2

(1− |z|2)2

−
2 Re(ϕ∗′N+1(z)ϕ∗N+1(z)ϕ′N+1(z)ϕN+1(z))

(1− |z|2)2

+
2B0,N(z) Re(zB1,N(z))

1− |z|2
− |z|

2B0,N(z)2

(1− |z|2)2
.

(2.61)

Thus, from (2.60) and (2.61)

B0,N(z)B2,N(z)− |B1,N(z)|2 =
(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)2

(1− |z|2)4

−
|ϕ∗N+1(z)ϕ′N+1(z)− ϕ∗′N+1(z)ϕN+1(z)|2

(1− |z|2)2
.

(2.62)

From (2.55) and (2.61)

|B1,N(z)|2

B0,N(z)3
=

(1− |z|2)|ϕ∗′N+1(z)ϕ∗N+1(z)− ϕ′N+1(z)ϕN+1(z)|2

(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)3

+
2 Re(z(ϕ∗′N+1(z)ϕ∗N+1(z)− ϕ′N+1(z)ϕN+1(z)))

(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)2

+
|z|2

(1− |z|2)(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)
.

(2.63)

We deduce from Theorem 2.1, (2.55), (2.62), and (2.63) the following result.
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Theorem 2.8 Let the sequence of functions {fj(z)}Nj=0 in the definition of the random

sum SN(z) in (2.1) be polynomials ϕj(z) orthogonal on the unit circle. Let, further, the

polynomial ϕ∗N(z) be given by (2.54). For all integers N > 1 we have

hN,K(z) =
1

π
exp

−
(
K2

1 +K2
2

2

)
1− |z|2

|ϕ∗N+1(z)|2 − |ϕN+1(z)|2


×


1

(1− |z|2)2
−
|ϕ∗N+1(z)ϕ′N+1(z)− ϕ∗′N+1(z)ϕN+1(z)|2

(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)2

+

(
K2

1 +K2
2

2

)(1− |z|2)|ϕ∗′N+1(z)ϕ∗N+1(z)− ϕ′N+1(z)ϕN+1(z)|2

(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)3

+
2 Re(z(ϕ∗′N+1(z)ϕ∗N+1(z)− ϕ′N+1(z)ϕN+1(z)))

(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)2

+
|z|2

(1− |z|2)(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)


.

Furthermore, if K is the zero vector, then we have

hN,0(z) =
1

π

(
1

(1− |z|2)2
−
|ϕ∗N+1(z)ϕ′N+1(z)− ϕ∗′N+1(z)ϕN+1(z)|2

(|ϕ∗N+1(z)|2 − |ϕN+1(z)|2)2

)
.

Finally, we remark that, when K is the zero vector in Theorem 2.8, we recover

Equation (1.6) of Theorem 1.1 in [55].
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CHAPTER 3

THE CROSSINGS OF RANDOM SUMS, PART I

An exact formula for the expected number of real zeros of a random polynomial was

obtained by Kac [34] under i.i.d., real, standard normal coefficients. For complex coefficients,

Dunnage [17, 18] gave some estimates for the number of real zeros. For complex zeros, the

expected density of zeros was studied by Shepp and Vanderbei [48] for i.i.d., real, standard

normal coefficients and generalized by Ibragimov and Zeitouni [33] for a wider class of dis-

tributions of coefficients. Relevant to these investigations is the work of Kostlan [35]. The

expected density was dealt with, also, by Hammersley [32], Edelman and Kostlan [20], and

Farahmand and Grigorash [28]. Vanderbei [52] generalized the work in [48] to random sums

with holomorphic functions that are real-valued on R as basis functions. Motivated by the

studies conducted by Vanderbei [52] and Farahmand [26], the present authors [11] obtained

results on the level crossings of these random sums. The chief purpose of the present chapter

is to extend certain of these results.

In what follows, let {aj}Nj=0 and {bj}Nj=0 be sequences of mutually i.i.d., real, normal

random variables defined on the complete probability space (Ω,F ,Prob) with mean zero

and variances {σ2
aj
}Nj=0 and {σ2

bj
}Nj=0. As per usual, Ω is a set with generic elements ω, F is

a σ-field of subsets of Ω and Prob is a probability measure on F . Assume all sub σ-fields

contain all sets of measure zero (see [19]). Let {fj}Nj=0 be a sequence of holomorphic functions

fj(z) = uj(x, y) + ivj(x, y) for 0 ≤ j ≤ N and (x, y) ∈ R2 that are real-valued on R, so that
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fj(z) = fj(z) for 0 ≤ j ≤ N and all z ∈ C. Define

S(z) =
N∑
j=0

(aj + ibj)fj(z). (3.1)

It is of interest to study the number of times that S crosses a complex level. If, for each

compact subset T of C, NS
K(T ) denotes the random number of complex zeros, counted with

multiplicity, in T of S in (3.1) that cross the complex level K = K1 + iK2, where K1 and K2

are constants independent of z, then from [11], with probability one, the expected density

hK of the complex zeros of

S(z) = K (3.2)

is given by

E(NS
K(T )) =

∫
T

hK(z) dz. (3.3)

The explicit derivation of hK constitutes the primary reason for studying the zeros of (3.2).

The main device for treating hK throughout C is the Rice formula. This remarkable result

provides a representation for the expected number of zeros of certain random fields. It

is reproduced below from [8, Theorem 6.2, pp. 163-164]. (See, also, [2, Theorem 11.2.3,

Corollary 11.2.4, pp. 269-271], [6, Theorem 2.1, p. 256], and [7, Theorem 1, p. 3]).

Theorem 3.1 Let Z : U → RN be a random field, let U be an open subset of RN and let

u ∈ RN be a fixed point in the codomain. Assume the following conditions are satisfied with

probability one:

(i) Z is normal.

(ii) Almost surely the function t Z(t) is of class C1.

(iii) For each t ∈ U , Z(t) has a nondegenerate distribution—i.e., Var(Z(t)) � 0.

(iv) For each u ∈ RN , Prob(∃ t ∈ U : Z(t) = u, det(Z ′(t)) = 0) = 0.
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If NZ
u (B) denotes the number of zeros of Z(t) = u that belong to the Borel subset B ⊂ U ,

then one has

E(NZ
u (B)) =

∫
B

E(|det(Z ′(t))| | Z(t) = u) pZ(t)(u) dt, (3.4)

where pZ(t)(u) is the probability density function of Z(t) at u. If B is compact, then both

sides of (3.4) are finite.

The function Z in (3.4) is defined on RN . In our application, we need to find the real

and complex zeros of (3.2)—i.e., the real zeros of Re(S(x+iy)) = K1 and Im(S(x+iy)) = K2

for (x, y) ∈ R2. The conditions (i)–(iv) are easy to check. Formula (3.4) is interesting. It

shows that hK, as defined by (3.3), can be expressed through a conditioned mean function

of a quadratic form of i.i.d., real, normal random variables conditioned on certain linear

combinations.

Theorem 3.2 Provided all the conditions imposed on S in (3.1) and T are satisfied, then

for all integers N > 1 one has

hK =
1

2πD0

exp

(
−K

2
1Y3 +K2

2Y1 − 2K1K2Y2

2D2
0

)

×

D3 −
|D1|2

D0

(
Y2 + Y3

D0

− (K1Y3 −K2Y2)(K1(Y2 + Y3)−K2(Y1 + Y2))

D3
0

)

− |D2|2

D0

(
Y1 + Y2

D0

− (K1Y2 −K2Y1)(K1(Y2 + Y3)−K2(Y1 + Y2))

D3
0

)

+
|D1 + iD2|2

D0

(
Y2

D0

− (K1Y3 −K2Y2)(K1Y2 −K2Y1)

D3
0

) ,

where

Y1(z) =
N∑
j=0

(σ2
aj
u2
j + σ2

bj
v2
j ), Y2(z) =

N∑
j=0

(σ2
aj
− σ2

bj
)ujvj,

Y3(z) =
N∑
j=0

(σ2
bj
u2
j + σ2

aj
v2
j ),
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and

D0(z) =
√
Y1(z)Y3(z)− Y 2

2 (z), D1(z) =
N∑
j=0

(σ2
aj
uj − iσ2

bj
vj)(ujx + ivjx),

D2(z) =
N∑
j=0

(σ2
bj
uj − iσ2

aj
vj)(ujx + ivjx), D3(z) =

N∑
j=0

(σ2
aj

+ σ2
bj

)(u2
jx + v2

jx),

where ujx = ∂uj/∂x and vjx = ∂vj/∂x.

In relation to the work in [11], let us first observe that when σ2
aj

= σ2
bj

= σ2 for

0 ≤ j ≤ N

Y1(z) = Y3(z) = σ2B0(z), Y2(z) = 0,

and

D0(z) = σ2B0(z), D1(z) = D2(z) = σ2B1(z), D3(z) = 2σ2B2(z),

where

B0(z) =
N∑
j=0

|fj(z)|2, B1(z) =
N∑
j=0

fj(z)f ′j(z), B2(z) =
N∑
j=0

|f ′j(z)|2.

Then

|D1(z) + iD2(z)|2 = |D1(z)|2 + |D2(z)|2 = 2σ4|B1(z)|2.

The following result is obtained by using these substitutions in Theorem 4.1, factoring and

simplifying.
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Theorem 3.3 If σ2
aj

= σ2
bj

= σ2 for 0 ≤ j ≤ N , then for all integers N > 1 one has

hK =
1

πB0

exp

(
−K

2
1 +K2

2

2σ2B0

)B2 −
|B1|2

B0

(
1− K2

1 +K2
2

2σ2B0

) .

Then, as a consequence of Theorem 3.3, when σ2 is set to be one, Theorem 1 in [11]

is recovered. Further, if K is the zero vector, Corollary 3 in [11] is recovered, which was

proved independently by Yeager [54] and one of the authors [36].

The following result follows, also, from Theorem 4.1.

Corollary 3.3.1 For all vectors K restricted to a circle of radius K > 0 and all integers

N > 1, one has

hK =
1

2πD0

exp

(
−K

2(Y1 − Y2 + Y3)

2D2
0

)

×

D3 −
|D1|2

D0

(
Y2 + Y3

D0

− K2(Y2 − Y3)(Y1 − Y2 − 1)

D3
0

)

− |D2|2

D0

(
Y1 + Y2

D0

− K2(Y1 − Y2)(Y2 − Y3 + 1)

D3
0

)

+
|D1 + iD2|2

D0

(
Y2

D0

− K2(Y1 − Y2)(Y2 − Y3)

D3
0

) .

A special case of Corollary 4.1.1 follows.

Corollary 3.3.2 If K is the zero vector, then for all integers N > 1 one has

hK =
D2

0D3 − |D1|2(Y2 + Y3)− |D2|2(Y1 + Y2) + |D1 + iD2|2Y2

2πD3
0

.

The proof of Theorem 4.1, in the spirit of the method credited to Ibragimov and

Zeitouni [33], is presented in Section 4.1. Finally, in relation to the works of Rezakhah and
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Shemehsavar [44] and Rezakhah and Soltani [45], an application of Theorem 4.1 entailing a

Brownian motion is given in Section 4.2.

3.1 The Density Function for Multivariate Normal Coefficients

The proof of Theorem 4.1 starts with the decomposition

S(z) = X1 + iX2,

where

X1 =
N∑
j=0

(ajuj − bjvj), X2 =
N∑
j=0

(ajvj + bjuj).

If the column vector

X = (X1, X2)′

genuinely represents a two-dimensional random field, then, from the Cauchy–Riemann equa-

tions, for z = x+ iy the Jacobian matrix of (x, y)→ (X1, X2) is

∇X =


N∑
j=0

(ajujx − bjvjx)
N∑
j=0

(ajvjx + bjujx)

N∑
j=0

(−ajvjx − bjujx)
N∑
j=0

(ajujx − bjvjx)


and

det(∇X) =
N∑
j=0

N∑
k=0

((ajak + bjbk)(ujxukx + vjxvkx) + (ajbkbjak)(vjuk − ujvk))

=
N∑
j=0

(a2
j + b2

j)(u
2
jx + v2

jx) +
N∑
j=0

N∑
k=0
k 6=j

((ajak + bjbk)(ujxukx + vjxvkx)

+ (ajbk − bjak)(vjxukx − ujxvkx)). (3.5)
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It is interesting to note that det(∇X) is always nonnegative. Since N is fixed, T contains

not more than a finite number of zeros of

X = K, (3.6)

where

K = (K1, K2)′. (3.7)

Since the set of zeros of (3.6) is of measure zero, assume ∂T does not contain any zeros of

(3.6) and T does not contain any such zeros such that det(∇X) = 0. Theorem 3.1 applies,

and

hK(z) = E(det(∇X) |X = K) pX1,X2(K
′), (3.8)

where px,y denotes the probability density of X. By (3.6), and since X1 and X2 are linear

forms with respect to aj and bj for 0 ≤ j ≤ N , hK is the conditional mean of a quadratic

form with respect to aj + ibj for 0 ≤ j ≤ N . This form can be calculated in terms of

components by means of multivariate analysis.

Based on the assumption that the scalar random variables are independent and nor-

mally distributed, the multivariate random vectors

a = (a0, . . . , aN)′, b = (b0, . . . , bN)′

are such that

Cov(a, b | Y = K) =

Σaa,X Σab,X

Σba,X Σbb,X

 . (3.9)

The elements can be computed using

Σab,X = Σab −ΣaXΣ−1
XXΣXb (3.10)
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and the corresponding expression

Σab = E((a− E(a))(b− E(b))′).

Since the distribution of aj and bj is central for 0 ≤ j ≤ N , E(a) = 0 and E(b) = 0. Then

clearly

Σab = E(ab′). (3.11)

Thusly, the conditional expected values are expressed in terms of unconditional expected

values and covariances.

Then, if E(X1) = 0 and E(X2) = 0, E(X) = 0, whence, by (3.11),

ΣXX =

E(X1X1) E(X1X2)

E(X2X1) E(X2X2)

 =

Y1 Y2

Y2 Y3

 , (3.12)

which implies that

det(ΣXX) = Y1Y3 − Y 2
2 > 0,

if X1 and X2 are not strictly correlated. Thus,

Σ−1
XX =

1

Y1Y3 − Y 2
2

 Y3 −Y2

−Y2 Y1

 . (3.13)

Direct evaluation shows that

Σaa = E(ajak) = δjkσ
2
aj

(3.14)

and

Σbb = E(bjbk) = δjkσ
2
bj

(3.15)
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for 0 ≤ j ≤ N and 0 ≤ k ≤ N , where δjk denotes the Kronecker delta. Further, notice that

Σab = E(ajbk) = 0 (3.16)

and

Σba = 0. (3.17)

Next, since E(ajX1) = σ2
aj
uj and E(ajX2) = σ2

aj
vj for 0 ≤ j ≤ N ,

ΣaX = (σ2
aj
uj σ2

aj
vj), (3.18)

whence

ΣXa =

σ2
ak
uk

σ2
ak
vk

 . (3.19)

Analogously, E(bjX1) = −σ2
bj
vj and E(bjX2) = σ2

bj
uj for 0 ≤ j ≤ N . Then

ΣbX = (−σ2
bj
vj σ2

bj
uj), (3.20)

whence

ΣXb =

−σ2
bk
vk

σ2
bk
uk

 (3.21)

for 0 ≤ k ≤ N .

Then, from (3.10), (3.13), (3.14), (3.18) and (3.19), for the jth row and kth column

Σaa,X = δjkσ
2
aj
−

σ2
aj
σ2
ak

Y1Y3 − Y 2
2

(Y1vjvk − Y2(ujvk + vjuk) + Y3ujuk). (3.22)
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Likewise, from (3.10), (3.13), (3.15), (3.20) and (3.21)

Σbb,X = δjkσ
2
bj
−

σ2
bj
σ2
bk

Y1Y3 − Y 2
2

(Y1ujuk + Y2(ujvk + vjuk) + Y3vjvk). (3.23)

From (3.10), (3.13), (3.16), (3.18) and (3.21)

Σab,X = −
σ2
aj
σ2
bk

Y1Y3 − Y 2
2

(Y1vjuk − Y2(ujuk − vjvk)− Y3ujvk). (3.24)

From (3.10), (3.13), (3.17), (3.19) and (3.20)

Σba,X = −
σ2
bj
σ2
ak

Y1Y3 − Y 2
2

(Y1ujvk − Y2(ujuk − vjvk)− Y3vjuk). (3.25)

The mean function in (3.8) is then found by applications of

E(a |X = K) = E(a) + ΣaXΣ−1
XX(K − E(X)),

which, for the aforesaid reasons, reduces to

E(a |X = K) = ΣaXΣ−1
XXK. (3.26)

From (3.7), (3.13), (3.18) and (3.26)

E(aj |X = K) =
σ2
aj

Y1Y3 − Y 2
2

((K1Y3 −K2Y2)uj − (K1Y2 −K2Y1)vj). (3.27)

From (3.7), (3.13), (3.20) and (3.26)

E(bj |X = K) = −
σ2
bj

Y1Y3 − Y 2
2

((K1Y3 −K2Y2)vj + (K1Y2 −K2Y1)uj). (3.28)
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Then, from (3.9), (3.22)–(3.25) and (3.27),

E(ajak |X = K) = E(aj |X = K)E(ak |X = K) + Cov(aj, ak |X = K)

=
σ2
aj
σ2
ak

(Y1Y3 − Y 2
2 )2

((K1Y3 −K2Y2)2ujuk + (K1Y2 −K2Y1)2vjvk

− (K1Y3 −K2Y2)(K1Y2 −K2Y2)(ujvk + vjuk)) + δjkσ
2
aj

−
σ2
aj
σ2
ak

Y1Y3 − Y 2
2

(Y3ujuk + Y1vjvk − Y2(ujvk + vjuk)).

(3.29)

From (3.9), (3.22)–(3.25) and (3.28)

E(bjbk |X = K) = E(bj |X = K)E(bk |X = K) + Cov(bj, bk |X = K)

=
σ2
bj
σ2
bk

(Y1Y3 − Y 2
2 )2

((K1Y2 −K2Y1)2ujuk + (K1Y3 −K2Y2)2vjvk

+ (K1Y2 −K2Y1)(K1Y3 −K2Y2)(ujvk + vjuk)) + δjkσ
2
bj

(3.30)

−
σ2
bj
σ2
bk

Y1Y3 − Y 2
2

(Y1ujuk + Y3vjvk + Y2(ujvk + vjuk)).

From (3.9), (3.22)–(3.25), (3.27) and (3.28)

E(ajbk |X = K) = E(aj |X = K)E(bk |X = K) + Cov(aj, bk |X = K)

=
σ2
aj
σ2
bk

(Y1Y3 − Y 2
2 )2

((K1Y2 −K2Y1)2vjuk − (K1Y3 −K2Y2)2ujvk

− (K1Y3 −K2Y2)(K1Y2 −K2Y1)(ujuk − vjvk))

−
σ2
aj
σ2
bk

Y1Y3 − Y 2
2

(Y1vjuk − Y2(ujuk − vjvk)− Y3ujvk)

(3.31)
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and

E(bjak |X = K) = E(bj |X = K)E(ak |X = K) + Cov(bj, ak |X = K)

=
σ2
bj
σ2
ak

(Y1Y3 − Y 2
2 )2

((K1Y2 −K2Y1)2ujvk − (K1Y3 −K2Y2)2vjuk

− (K1Y3 −K2Y2)(K1Y2 −K2Y1)(ujuk − vjvk))

−
σ2
bj
σ2
ak

Y1Y3 − Y 2
2

(Y1ujvk − Y2(ujuk − vjvk)− Y3vjuk).

(3.32)

Then, from (3.29) and (3.30),

E(ajak + bjbk |X = K) =
1

(Y1Y3 − Y 2
2 )2

((K1Y3 −K2Y2)2(σ2
aj
σ2
ak
ujuk

+ σ2
bj
σ2
bk
vjvk) + (K1Y2 −K2Y1)2(σ2

aj
σ2
ak
vjvk + σ2

bj
σ2
bk
ujuk)

− (K1Y3 −K2Y2)(K1Y2 −K2Y1)(ujvk + vjuk)(σ
2
aj
σ2
ak
− σ2

bj
σ2
bk

))

− 1

Y1Y3 − Y 2
2

(Y1(σ2
aj
σ2
ak
vjvk + σ2

bj
σ2
bk
ujuk) (3.33)

+ Y2(ujvk + vjuk)(σ
2
bj
σ2
bk
− σ2

aj
σ2
ak

) + Y3(σ2
aj
σ2
ak
ujuk + σ2

bj
σ2
bk
vjvk))

+ δjk(σ
2
aj

+ σ2
bj

).

From (3.31) and (3.32)

E(ajbk − bjak |X = K) =
1

(Y1Y3 − Y 2
2 )2

((K1Y2 −K2Y1)2(σ2
aj
σ2
bk
vjuk

− σ2
bj
σ2
ak
ujvk)− (K1Y3 −K2Y2)2(σ2

aj
σ2
bk
ujvk − σ2

bj
σ2
ak
vjuk)

− (K1Y3 −K2Y2)(K1Y2 −K2Y1)(ujuk − vjvk)(σ2
aj
σ2
bk
− σ2

bj
σ2
ak

))

− 1

Y1Y3 − Y 2
2

(Y1(σ2
aj
σ2
bk
vjuk − σ2

bj
σ2
ak
ujvk)

+ Y2(vjvk − ujuk)(σ2
aj
σ2
bk
− σ2

bj
σ2
ak

)− Y3(σ2
aj
σ2
bk
ujvk − σ2

bj
σ2
ak
vjuk)).

(3.34)
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Altogether, in view of (3.5), (3.33) and (3.34), after all the necessary simplifications,

E(det(∇X) |X = K) =
N∑
j=0

(σ2
aj

+ σ2
bj

)(u2
jx + v2

jx)

−

(
Y1 + Y2

Y1Y3 − Y 2
2

− (K1Y2 −K2Y1)2 + (K1Y3 −K2Y2)(K1Y2 −K2Y1)

(Y1Y3 − Y 2
2 )2

)

×

∣∣∣∣∣∣
N∑
j=0

(σ2
bj
uj − iσ2

aj
vj)(ujx + ivjx)

∣∣∣∣∣∣
2

−

(
Y2 + Y3

Y1Y3 − Y 2
2

− (K1Y3 −K2Y2)2 + (K1Y3 −K2Y2)(K1Y2 −K2Y1)

(Y1Y3 − Y 2
2 )2

)

×

∣∣∣∣∣∣
N∑
j=0

(σ2
aj
uj − iσ2

bj
vj)(ujx + ivjx)

∣∣∣∣∣∣
2

+

(
Y2

Y1Y3 − Y 2
2

− (K1Y3 −K2Y2)(K1Y2 −K2Y1)

(Y1Y3 − Y 2
2 )2

)

×

∣∣∣∣∣∣
N∑
j=0

((σ2
aj
uj − iσ2

bj
vj) + i(σ2

bj
uj − iσ2

aj
vj))(ujx + ivjx)

∣∣∣∣∣∣
2

.

(3.35)

Since X1 and X2 are random variables distributed according to the normal law, their joint

density is

pX1,X2(K
′) =

1

2π
√
Y1Y3 − Y 2

2

exp

(
−K

2
1Y3 − 2K1K2Y2 +K2

2Y1

2(Y1Y3 − Y 2
2 )

)
. (3.36)

Finally, in accordance with (3.8), (3.35) and (3.36), the required result is proved.

3.2 A Sequence of Observations of a Brownian Motion

If {Aj}∞j=0 and {Bj}∞j=0 are sequences of i.i.d., real, normal random variables for

which the respective increments Aj − Aj−1 and Bj − Bj−1 are independent for j ≥ 0 and
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A−1 = B−1 = 0 by convention, then the increments

∆j = (Aj − Aj−1) + i(Bj −Bj−1)

are independent, real, normal random variables with mean zero and finite Var(∆j) such that

Aj + iBj = ∆0 + · · ·+ ∆j for j ≥ 0. Then {Aj + iBj}∞j=0 can be interpreted as a sequence of

successive observations of a Brownian motion. More precisely, Aj + iBj = W (tj) for j ≥ 0,

where t0 < t1 < . . . and {W (t)}∞t=0 is the standard Brownian motion. It is plain that Var(∆j)

is the distance between the successive times tj−1 and tj for j ≥ 0. Thus, the sum in (3.2)

assumes the form

S(z) =
N∑
j=0

(Aj + iBj)fj(z) =
N∑
k=0

Fk(z)∆k, (3.37)

where

Fk(z) =
N∑
j=k

uj(x, y) + i
N∑
j=k

vj(x, y) (3.38)

for 0 ≤ k ≤ N and (x, y) ∈ R2. In fact, {Fk}Nk=0 is a sequence of holomorphic functions that

are real-valued on R. Hence, Fk(z) = Fk(z) for 0 ≤ k ≤ N and all z ∈ C. Regard that the

covariance matrix of ∆k is given by

Γk =

σ2
ak

0

0 σ2
bk


for 0 ≤ k ≤ N . Then, from Theorem 4.1, the following result is attained.

Theorem 3.4 Provided all the conditions imposed on S in (3.37) and (3.38) and T are

satisfied, then for all integers N > 1 the formula for hK in Theorem 4.1 now holds for

D0(z) =
√
Y1(z)Y3(z)− Y 2

2 (z),
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where

Y1(z) =
N∑
k=0

σ2
ak

 N∑
j=k

uj

2

+ σ2
bk

 N∑
j=k

vj

2
 ,

Y2(z) =
N∑
k=0

(σ2
ak
− σ2

bk
)

 N∑
j=k

uj

 N∑
j=k

vj


 ,

Y3(z) =
N∑
k=0

σ2
bk

 N∑
j=k

uj

2

+ σ2
ak

 N∑
j=k

vj

2
 ,

and

D1(z) =
N∑
k=0

σ2
ak

N∑
j=k

uj − iσ2
bk

N∑
j=k

vj

 N∑
j=k

ujx + i
N∑
j=k

vjx

 ,

D2(z) =
N∑
k=0

σ2
bk

N∑
j=k

uj − iσ2
ak

N∑
j=k

vj

 N∑
j=k

ujx + i
N∑
j=k

vjx

 ,

D3(z) =
N∑
k=0

(σ2
ak

+ σ2
bk

)


 N∑

j=k

ujx

2

+

 N∑
j=k

vjx

2
 .
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CHAPTER 4

THE CROSSINGS OF RANDOM SUMS, PART II

For real i.i.d. standard normal coefficients, the expected density of real zeros of a

random polynomial is given by an exact Kac [34] formula. For complex coefficients, Dunnage

[17, 18] gave some estimates for the number of real zeros. For complex zeros, the expected

intensity of zeros was studied by Shepp and Vanderbei [48] for real i.i.d. standard normal

coefficients and generalized by Ibragimov and Zeitouni [33] for a wider class of distributions

of coefficients. The expected intensity was also dealt with by Hammersley [32], Edelman

and Kostlan [20], and Farahmand and Grigorash [28]. Then Vanderbei [52] generalized

the work in [48] to random sums with holomorphic functions that are real-valued on the

real line as the basis functions. Motivated by the studies conducted by Vanderbei [52] and

Farahmand [26], the present authors [11, 12] obtained results on the level crossings of these

random sums. More precisely, the results were initially based on standard normal coefficients

and later extended for coefficients with unrestricted variances. Our interest in this chapter

is to answer the basic question about the expected number of complex zeros for coefficients

with nonvanishing mean values and unrestricted variances.

Let

S(z) =
N∑
j=0

(aj + ibj)fj(z),

where aj and bj are mutually independent and identically distributed, real, random vari-

ables such that aj ∼ N (µaj , σ
2
aj

) and bj ∼ N (µbj , σ
2
bj

) and fj(z) = uj(x, y) + ivj(x, y) are

holomorphic functions that are real-valued on the real line for 0 ≤ j ≤ N . By the Schwarz
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reflection principle, fj(z) = fj(z) for 0 ≤ j ≤ N and all z ∈ C. Let us assume that T is a

manifold in the complex plane. Assume that T is compact and the boundary of T does not

contain points for which S(z) = K, where K = K1 + iK2 with K1 and K2 being constants

independent of z. Assume, further, that the origin does not belong to T .

Denote

X1 =
N∑
j=0

(ajuj − bjvj), X2 =
N∑
j=0

(ajvj + bjuj),

as the real and imaginary parts of S and

X = (X1, X2)′.

Then, from the Cauchy–Riemann equations, for z = x + iy the Jacobian of the random

transformation (x, y)→ (X1, X2) is

∇X =


N∑
j=0

(ajujx − bjvjx)
N∑
j=0

(ajvjx + bjujx)

N∑
j=0

(−ajvjx − bjujx)
N∑
j=0

(ajujx − bjvjx)

 ,

where ujx = ∂uj/∂x and vjx = ∂vj/∂x.

Assume that there are no points in T for which both equalities S(z) = K and

det(∇X) = 0 take place. Since N is fixed, T contains not more than a finite number of

zeros of X = K, where K = (K1, K2)′. If NS
K(T ) denotes the random number of complex

zeros, counted with multiplicity, in T of S that cross the complex level K, then according

to Rice formula

E(NS
K(T )) =

∫
T

hK(z) dz, (4.1)

where

hK(z) = E(|det(∇X)| |X = K) pX1,X2(K
′). (4.2)
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Here, px,y is used to denote the probability density of the random vector X. (See [2, Theorem

11.2.3, Corollary 11.2.4, pp. 269-271] and [6, 7].) The explicit derivation of hK constitutes

the primary reason for studying the zeros of S(z) = K.

For the sake of brevity, let

Y1(z) =
N∑
j=0

(σ2
aj
u2
j + σ2

bj
v2
j )−

 N∑
j=0

(µajuj − µbjvj)

2

,

Y2(z) =
N∑
j=0

(σ2
aj
− σ2

bj
)ujvj −

 N∑
j=0

(µajuj − µbjvj)

 N∑
j=0

(µajvj + µbjuj)

 ,

Y3(z) =
N∑
j=0

(σ2
aj
v2
j + σ2

bj
u2
j)−

 N∑
j=0

(µajvj + µbjuj)

2

.

Then define

D0(z) =
√
Y1(z)Y3(z)− Y2(z)2

and

M(z) =
N∑
j=0

E(aj + ibj)f
′
j(z),

D2(z) =
N∑
j=0

(Bj,2(z)− iAj,2(z))f ′j(z),

D1(z) =
N∑
j=0

(Aj,1(z)− iBj,1(z))f ′j(z),

D3(z) =
N∑
j=0

(σ2
aj

+ σ2
bj

)|f ′j(z)|2,

where

Aj,1(z) = σ2
aj
uj − µajE(X1),

Bj,1(z) = σ2
bj
vj + µbjE(X1),

Aj,2(z) = σ2
aj
vj − µajE(X2),

Bj,2(z) = σ2
bj
uj − µbjE(X2),

for 0 ≤ j ≤ N . The following theorem is proved in Section 4.1.
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Theorem 4.1 For all integers N > 1 one has

hK

=
1

2πD0

exp

(
−(K1 − E(X1))2Y3 + (K2 − E(X2))2Y1 − 2(K1 − E(X1))(K2 − E(X2))Y2

2D2
0

)

×

D3 −
|D1|2

D2
0

(
Y3 −

((K1 − E(X1))Y3 − (K2 − E(X2))Y2)2

D2
0

)

−|D2|2

D2
0

(
Y1 −

((K1 − E(X1))Y2 − (K2 − E(X2))Y1)2

D2
0

)

+

(
|D1 + iD2|2 − |D1|2 − |D2|2

D2
0

)

×

(
Y2 −

((K1 − E(X1))Y3 − (K2 − E(X2))Y2)((K1 − E(X1))Y2 − (K2 − E(X2))Y1)

D2
0

)

−

(
|M +D1|2 − |M |2 − |D1|2

D2
0

)
((K1 − E(X1))Y3 − (K2 − E(X2))Y2)

+

(
|M + iD2|2 − |M |2 − |D2|2

D2
0

)
((K1 − E(X1))Y2 − (K2 − E(X2))Y1)

 .

Several consequences of Theorem 4.1 are of special interest. They are used to recover

the key results from our work in [11] and [12]. These consequences are derived in Section

4.2.

4.1 A Generalized Density Function for Multivariate Normal Coefficients

In order to utilize (4.1) and (4.2), first note that for values of X1 and X2

det(∇X) =
N∑
j=0

N∑
k=0

((ajak + bjbk)(ujxukx + vjxvkx) + (ajbk − bjak)(vjuk − ujvk))

=
N∑
j=0

(a2
j + b2

j)(u
2
jx + v2

jx) +
N∑
j=0

N∑
k=0
k 6=j

((ajak + bjbk)(ujxukx + vjxvkx)
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+ (ajbk − bjak)(vjxukx − ujxvkx)).

Thus, the evaluation of hK leads to the computation of the expected value of a quadratic

form det(∇X) of i.i.d. random variables, conditioned on two linear combinations. We define

Σab = E((a− E(a))(b− E(b))′)

for the generalized nonconditional covariance matrix of the two vectors a = (a0, . . . , aN)′

and b = (b0, . . . , bN)′, and

Σab,X = Σab −ΣaXΣ−1
XXΣXb. (4.3)

Based on the assumption that all the scalar random variables involved are i.i.d., by standard

multivariate analysis,

Cov(a, b | Y = K) =

Σaa,X Σab,X

Σba,X Σbb,X


and

E(a |X = K) = E(a) + ΣaXΣ−1
XX(K − E(X)). (4.4)

The formula for E(b |X = K) is analogous.

Direct computation leads to the equalities

E(X1) =
N∑
j=0

(µajuj − µbjvj), E(X2) =
N∑
j=0

(µajvj + µbjuj).
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Hence,

ΣXX =

 E(X2
1 )− (E(X1))2 E(X1X2)− E(X1)E(X2)

E(X1X2)− E(X1)E(X2) E(X2
2 )− (E(X2))2

 .

Now, since

E(X2
1 ) =

N∑
j=0

(σ2
aj
u2
j + σ2

bj
v2
j ), E(X2

2 ) =
N∑
j=0

(σ2
aj
v2
j + σ2

bj
u2
j),

and

E(X1X2) =
N∑
j=0

(σ2
aj
− σ2

bj
)ujvj,

it follows that

ΣXX =

Y1 Y2

Y2 Y3

 .

Thus,

det(ΣXX) = Y1Y3 − Y 2
2 > 0,

if X1 and X2 are not strictly correlated. Hence,

Σ−1
XX =

1

Y1Y3 − Y 2
2

 Y3 −Y2

−Y2 Y1

 .

Expanding our definitions, we obtain Σaa,X ,Σbb,X ,Σab,X , and Σba,X as follows. For

the jth row and kth column

Σaa = E(ajak)− E(aj)E(ak) = δjkσ
2
aj
− µajµak ,

Σbb = E(bjbk)− E(bj)E(bk) = δjkσ
2
bj
− µbjµbk ,

Σab = E(ajak)− E(aj)E(bk) = −µajµbk ,

57



Σba = Σ′ab = −µbjµak ,

where δjk denotes the Kronecker delta. Since

E((aj − E(aj))(X1 − E(X1))) = E

 N∑
k=0

(ajakuk − ajbkvk)

− µajE(X1)

= Aj,1,

E((aj − E(aj))(X2 − E(X2))) = E

 N∑
k=0

(ajakvk + ajbkuk)

− µajE(X2)

= Aj,2,

E((bj − E(bj))(X1 − E(X1))) = E

 N∑
k=0

(bjakuk − bjbkvk)

− µbjE(X1)

= −Bj,1,

E((bj − E(bj))(X2 − E(X2))) = E

 N∑
k=0

(bjakvk + bjbkuk)

− µbjE(X2)

= Bj,2,

it follows that

ΣaX = (Aj,1 Aj,2), ΣaX = (−Bj,1 Bj,2)

for 0 ≤ j ≤ N . Using (4.3), simple algebra then leads to

Σaa,X = δjkσ
2
aj
− µajµak

− (Aj,1Ak,1Y3 + Aj,2Ak,2Y1 − (Aj,1Ak,2 + Aj,2Ak,1)Y2)/(Y1Y3 − Y 2
2 ),

Σbb,X = δjkσ
2
bj
− µbjµbk

− (Bj,1Bk,1Y3 +Bj,1Bk,2Y1 + (Bj,1Bk,2 +Bj,2Bk,1)Y2)/(Y1Y3 − Y 2
2 ),

Σab,X = −µajµbk
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+ (Aj,1Bk,1Y3 − Aj,2Bk,2Y1 + (Aj,1Bk,2 − Aj,2Bk,1)Y2)/(Y1Y3 − Y 2
2 ),

Σba,X = −µbjµak

+ (Bj,1Ak,1Y3 −Bj,2Ak,2Y1 + (Bj,2Ak,1 −Bj,1Ak,1)Y2)/(Y1Y3 − Y 2
2 ).

Using these in (4.4), we obtain

E(a |X = K) = µaj − (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)Aj,1

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)Aj,2)/(Y1Y3 − Y 2
2 ),

E(b |X = K) = µbj + (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)Bj,1

− ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)Bj,2)/(Y1Y3 − Y 2
2 ).

Thus, for the jth row and kth column

E(ajak |X = K) = E(aj |X = K)E(ak |X = K) + Cov(ajak |X = K)

= δjkσ
2
aj
− (Aj,1Ak,1Y3 + Aj,2Ak,2Y1 − (Aj,1Ak,2 + Aj,2Ak,1)Y2)/(Y1Y3 − Y 2

2 )

− (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)(µajAk,1 + µakAj,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)(µajAk,2 + µakAj,2)/(Y1Y3 − Y 2
2 )

+ ((K1 − E(X1))Y3 − (K2 − E(K2))Y2)((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (Aj,1Ak,2 + Aj,2Ak,1)/(Y1Y3 − Y 2
2 )2

+ (((K1 + E(X1))Y3 − (K2 − E(X2))Y2)2Aj,1Ak,1

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y 2
2 Aj,2Ak,2)/(Y1Y3 − Y 2

2 )2,

E(bjbk |X = K) = E(bj |X = K)E(bk |X = K) + Cov(bjbk |X = K)

= δjkσ
2
bj
− (Bj,1Bk,1Y3 +Bj,2Bk,2Y1 + (Bj,1Bk,2 +Bj,2Bk,1)Y2)/(Y1Y3 − Y 2

2 )
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+ ((K1 − E(X1))Y3 − (K2 − E(X2))Y2)(µbjBk,1 + µbkBj,1)

− ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)(µbjBk,2 + µbkBj,2)/(Y1Y3 − Y 2
2 )

− ((K1 − E(X1))Y3 − (K2 − E(X2))Y2)((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (Bj,1Bk,2 +Bj,2Bk,1)/(Y1Y3 − Y 2
2 )2

+ (((K1 − E(X1))Y3 − (K2 − E(X2)Y2)2Bj,1Bk,1

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)2)Bj,2Bk,2)/(Y1Y3 − Y 2
2 )2,

E(ajbk |X = K) = E(aj |X = K)E(bk |X = K) + Cov(ajbk |X = K)

= (Aj,1Bk,1Y3 − Aj,2Bk,2Y1 + (Aj,1Bk,2 − Aj,2Bk,1)Y2)/(Y1Y3 − Y 2
2 )

− (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)(µbkAj,1 − µajBk,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)(µajBk,2 + µbkAj,2))/(Y1Y3 − Y 2
2 )

+ ((K1 − E(X1))Y3 − (K2 − E(X2))Y2)((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (Aj,1Bk,2 − Aj,2Bk,1)/(Y1Y3 − Y 2
2 )2

+ (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)2Aj,1Bk,1

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)2Aj,2Bk,2)/(Y1Y3 − Y 2
2 )2,

E(bjak |X = K) = E(bj |X = K)E(ak |X = K) + Cov(bjak |X = K)

= (Bj,1Ak,1Y3 −Bj,2Ak,2Y1 + (Bj,2Ak,1 −Bj,1Ak,2)Y2)/(Y1Y3 − Y 2
2 )

− (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)(µbjAk,1 − µakBj,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)(µbjAk,2 + µakBj,2))/(Y1Y3 − Y 2
2 )

+ ((K1 − E(X1))Y3 − (K2 − E(X2))Y2)((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (Bj,2Ak,1 −Bj,1Ak,2)/(Y1Y3 − Y 2
2 )2

− (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)2Bj,1Ak,1
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− ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)2Bj,2Ak,2)/(Y1Y3 − Y 2
2 )2.

Having obtained the four expectations above, we can now derive the required expectations

for computing the value of E(|det(∇X)| |X = K). Thus, for j 6= k

E(ajak + bjbk |X = K)

= (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)2(Aj,1Ak,1 +Bj,1Bk,1)

+ ((K1 − E(X1))Y1 − (K2 − E(X2))Y2)2(Aj,2Ak,2 +Bj,2Bk,2))/(Y1Y3 − Y 2
2 )

− (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)(µajAk,1 + µakAj,1 − µbjBk,1 − µbkBj,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (µajAk,2 + µakAj,2 + µbjBk,2 + µbkBj,2))/(Y1Y3 − Y 2
2 )

+ (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (Aj,1Ak,2 + Aj,2Ak,1 −Bj,1Bk,2 −Bj,2Bk,1))/(Y1Y3 − Y 2
2 )2

+ (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)2(Aj,1Ak,1 +Bj,1Bk,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)2(Aj,2Ak,2 +Bj,2Bk,2))/(Y1Y3 − Y 2
2 )2,

E(ajbk − bjak |X = K)

= −((Bj,1Ak,1 − Aj,1Bk,1)Y3 + (Aj,2Bk,2 −Bj,2Ak,2)Y1

− (Aj,1Bk,2 +Bj,1Ak,2 − Aj,2Bk,1 −Bj,2Ak,1)Y2)/(Y1Y3 − Y 2
2 )

+ (((K1 − E(X1))Y3 − (K2E(X2))Y2)(µajBk,1 + µbjAk,1 − µakBj,1 − µbkAj,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (µbjAk,2 + µakBj,2 − µbkAj,2 − µajBk,2))/(Y1Y3 − Y 2
2 )

+ (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (Aj,1Bk,2 +Bj,1Ak,2 − Aj,2Bk,1 −Bj,2Ak,1))/(Y1Y3 − Y 2
2 )2
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+ (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)2(Bj,1Ak,1 − Aj,1Bk,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)2(Aj,2Bk,1 −Bj,2Ak,2))/(Y1Y3 − Y 2
2 )2,

E(a2
j + b2

j |X = K)

= (σ2
aj

+ σ2
bj

)− ((A2
j,1 +B2

j,1)Y3 + ((A2
j,2 +B2

j,2)Y1

− 2(Aj,1Aj,2 −Bj,1Bj,2)Y2)/(Y1Y3 − Y 2
2 )

− 2[((K1 − E(X1))Y3 − (K2 − E(X2))Y1)(µajAj,1 − µbjBj,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)(µajAj,2 + µbjBj,2)]/(Y1Y3 − Y 2
2 )

+ 2(((K1 − E(X1))Y3 − (K2 − E(X2))Y2)((K2 − E(X2))Y1 − (K1 − E(X1))Y2)

× (Aj,1Aj,2 −Bj,1Bj,2))/(Y1Y3 − Y 2
2 )2

+ (((K1 − E(X1))Y3 − (K2 − E(X2))Y2)2(A2
j,1 +B2

j,1)

+ ((K2 − E(X2))Y1 − (K1 − E(X1))Y2)2(A2
j,2 +B2

j,2))/(Y1Y3 − Y 2
2 )2.

After all the necessary simplifications, since det(∇X) is nonnegative,

E(det(∇X) |X = K) =
N∑
j=0

(σ2
aj

+ σ2
bj

)(u2
jx + v2

jx)

− (I1S1 − I2S2 − I3S3 − I4S4 − I5S5)/(Y1Y3 − Y 2
2 ),

where

I1 = Y3 − ((K1 − E(X1))Y3 − (K2 − E(X2))Y2)2/(Y1Y3 − Y 2
2 ),

I2 = Y1 − ((K1 − E(X1))Y2 − (K2 − E(X2))Y1)2/(Y1Y3 − Y 2
2 ),

I3 = Y2 + ((K1 − E(X1))Y3 − (K2 − E(X2))Y2)((K2 − E(X2))Y1

− (K1 − E(X1))Y2)/(Y1Y3 − Y 2
2 ),

I4 = (K1 − E(X1))Y3 − (K2 − E(X2))Y2,
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I5 = (K2 − E(X2))Y1 − (K1 − E(X1))Y2,

and

S1 =
N∑
j=0

N∑
k=0

((Aj,1Ak,1 +Bj,1Bk,1)(ujxukx + vjxvkx)

+ (Bj,1Ak,1 − Aj,1Bk,1)(vjxukx − ujxvkx)),

S2 =
N∑
j=0

N∑
k=0

((Aj,2Ak,2 +Bj,2Bk,2)(ujxukx + vjxvkx)

+ (Aj,2Bk,2 −Bj,2Ak,2)(vjxukx − ujxvkx)),

S3 =
N∑
j=0

N∑
k=0

((Aj,1Ak,2 + Aj,2Ak,1 −Bj,1Bk,2 −Bj,2Bk,1)(ujxukx + vjxvkx)

+ (Aj,1Bk,2 +Bj,1Ak,2 − Aj,2Bk,1 −Bj,2Ak,2)(vjxukx − ujxvkx)),

S4 =
N∑
j=0

N∑
k=0

((µajAk,1 + µakAj,1 − µbjBk,1 − µbkBj,1)(ujxukx + vjxvkx)

+ (µbkAj,2 + µajBk,2 − µbjAk,2 − µakBj,2)(vjxukx − ujxvkx)),

S5 =
N∑
j=0

N∑
k=0

((µajAk,2 + µakAj,2 + µbjBk,2 + µbkBj,2)(ujxukx + vjxvkx)

+ (µbkAj,2 + µajBk,2 − µbjAk,2 − µakBj,2)(vjxukx − ujxvkx)).

On noting that

S1 = |D1|2, S2 = |D2|2,

S3 = |D1 + iD2|2 − |D1| − |D2|2,

S4 = |M +D1|2 − |M |2 − |D1|2,

S5 = |M + iD2|2 − |M |2 − |D2|2,
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after regrouping the terms, with a little algebra we can write

E(det(∇X) |X = K) = D∗3 −
1

Y1Y ∗3 − (Y ∗2 )2
(|D∗1|2I1 − |D∗2|2I2

+ (|D∗1 + iD∗2|2 − |D∗1|2 − |D∗2|2)I3 − (|M +D∗1|2 − |M |2 − |D∗1|2)I4

− (|M + iD∗2|2 − |M |2 − |D∗2|2)I5).

Now, the joint density of two random normal variables X1 and X2 is given by

pX1X2(K1, K2) =
1

2π
√
Y1Y3 − Y 2

2

exp

(
−1

2
(K − E(X))′Σ−1

XX(K − E(X))

)
=

1

2π
√
Y1Y3 − Y 2

2

× exp

(
−(K1 − E(X1))2Y3 + (K2 − E(X2))2Y1 − 2(K1 − E(X1))(K2 − E(X2))Y2

2(Y1Y3 − Y 2
2 )

)
.

This completes the proof of the theorem.

4.2 Some Ramifications

Theorem 4.1 has several interesting consequences. First, if µaj = µbj = µ for 0 ≤

j ≤ N in Theorem 4.1, then hK holds with some modifications to the auxiliary functions,

namely,

E(X1) = µ

N∑
j=0

(uj − vj), E(X2) = µ
N∑
j=0

(uj + vj),

Y1(z) =
N∑
j=0

(σ2
aj
u2
j + σ2

bj
v2
j )− µ2

 N∑
j=0

(uj − vj)

2

,

Y2(z) =
N∑
j=0

(σ2
aj
− σ2

bj
)ujvj − µ2

 N∑
j=0

(uj − vj)

 N∑
j=0

(uj + vj)

 ,

Y3(z) =
N∑
j=0

(σ2
aj
v2
j + σ2

bj
u2
j)− µ2

 N∑
j=0

(uj + vj)

2

,
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and

Aj,1(z) = σ2
aj
uj − µ2

N∑
k=0

(uk − vk),

Bj,1(z) = σ2
bj
vj + µ2

N∑
k=0

(uk − vk),

Aj,2(z) = σ2
aj
vj − µ2

N∑
k=0

(uk + vk),

Bj,2(z) = σ2
bj
uj − µ2

N∑
k=0

(uk + vk),

for 0 ≤ j ≤ N . Observe that M is changed implicitly by the change in E(aj + ibj).

Further, if µaj = µbj = 0 for 0 ≤ j ≤ N , then E(X1) = E(X2) = 0. Thus,

Aj,1 = σ2
aj
uj, Aj,2 = σ2

aj
vj, Bj,1 = σ2

bj
vj, Bj,2 = σ2

bj
uj, and M = 0. Consequently, Theorem 2

in [12] is recovered, which can be summarized as follows.

Corollary 4.1.1 If µaj = µbj = 0 for 0 ≤ j ≤ N , then for all integers N > 1 one has

hK =
1

2πD0

exp

(
−K

2
1Y3 +K2

2Y1 − 2K1K2Y2

2D2
0

)

×

D3 −
|D1|2

D2
0

(
Y3 −

(K1Y3 −K2Y2)2

D2
0

)
− |D2|2

D2
0

(
Y1 −

(K1Y2 −K2Y1)2

D2
0

)

+

(
|D1 + iD2|2 − |D1|2 − |D2|2

D2
0

)(
Y2 −

(K1Y3 −K2Y2)(K1Y2 −K2Y1)

D2
0

) ,

where

Y1(z) =
N∑
j=0

(σ2
aj
u2
j + σ2

bj
v2
j ), Y2(z) =

N∑
j=0

(σ2
aj
− σ2

bj
)ujvj, Y3(z) =

N∑
j=0

(σ2
aj
v2
j + σ2

bj
u2
j),

and

D0(z) =
√
Y1(z)Y3(z)− Y2(z)2,

D2(z) =
N∑
j=0

(σ2
bj
uj − iσ2

aj
vj)f

′
j(z),

D1(z) =
N∑
j=0

(σ2
aj
uj − iσ2

bj
vj)f

′
j(z),

D3(z) =
N∑
j=0

(σ2
aj

+ σ2
bj

)|f ′j(z)|2.
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Second, if σ2
aj

= σ2
bj

= σ2 for 0 ≤ j ≤ N in Theorem 4.1, then Y2(z) = −E(X1)E(X2)

and

Y1(z) = σ2

N∑
j=0

|fj(z)|2 − (E(X1))2, Y3(z) = σ2

N∑
j=0

|fj(z)|2 − (E(X2))2.

Observe that

Aj,1(z)− iBj,1(z) = σ2fj(z)− E(X1)E(aj + ibj),

Bj,2(z)− iAj,2(z) = σ2fj(z) + iE(X2)E(aj + ibj).

Altogether, the formula for hK in Theorem 4.1 holds with

D0(z) =

√√√√√
σ2

N∑
j=0

|fj(z)|2

2

− σ2

N∑
j=0

|fj(z)|2

∣∣∣∣∣∣
N∑
j=0

fj(z)E(aj + ibj)

∣∣∣∣∣∣
2

,

D1(z) = σ2

N∑
j=0

fj(z)f ′j(z) + E(X1)
N∑
j=0

f ′j(z)E(aj + ibj),

D2(z) = σ2

N∑
j=0

fj(z)f ′j(z) + iE(X2)
N∑
j=0

f ′j(z)E(aj + ibj),

D3(z) = 2σ2

N∑
j=0

|fj(z)|2.

The form of M remains unchanged. Further, if µaj = µbj = µ for 0 ≤ j ≤ N ,

E(X1) = µ
N∑
j=0

(uj − vj), E(X2) = µ
N∑
j=0

(uj + vj).

Then the formula for hK in Theorem 4.1 now holds with

D0(z) =

√√√√√
σ2

N∑
j=0

|fj(z)|2

2

− 2µ2σ2

N∑
j=0

|fj(z)|2

∣∣∣∣∣∣
N∑
j=0

fj(z)

∣∣∣∣∣∣
2

,

D1(z) = σ2

N∑
j=0

fj(z)f ′j(z) + µ

N∑
j=0

(uj − vj)
N∑
j=0

f ′j(z)E(aj + ibj),
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D2(z) = σ2

N∑
j=0

fj(z)f ′j(z) + iµ

N∑
j=0

(uj + vj)
N∑
j=0

f ′j(z)E(aj + ibj),

D3(z) = 2σ2

N∑
j=0

|fj(z)|2.

Third, in Corollary 4.1.1 if the random variables aj and bj are i.i.d. with mean 0 and

variance 1 for 0 ≤ j ≤ N , then

Y1(z) = Y3(z) =
N∑
j=0

|fj(z)|2, Y2(z) = 0,

so that

D0(z) =
N∑
j=0

|fj(z)|2.

From

Aj,1(z)− iBj,1(z) = fj(z), Bj,2(z)− iAj,2(z) = fj(z),

it follows that

D1(z) = D2(z) =
N∑
j=0

fj(z)f ′j(z), D3(z) = 2
N∑
j=0

|f ′j(z)|2.

Then immediate by Corollary 4.1.1 is the following consequence, which recovers Theorem 1

in [11].

Corollary 4.1.2 In the notation of Theorem 1 in [11], let

B0(z) =
N∑
j=0

|fj(z)|2, B1(z) =
N∑
j=0

fj(z)f ′j(z), B2(z) =
N∑
j=0

|f ′j(z)|2.
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If σ2
aj

= σ2
bj

= 1 for 0 ≤ j ≤ N , then for all integers N > 1 one has

hK =
1

B0

exp

(
−K

2
1 +K2

2

2B0

)B2 −
|B0|2

B0

(
1− K2

1 +K2
2

2B0

) .

Fourth, and finally, the following follows from Theorem 4.1.

Corollary 4.1.3 For any vector K restricted to a circle of radius K > 0 and all integers

N > 1, one has

hK =
1

2πD0

exp

(
−(K − E(X1))2Y3 + (K − E(X2))2Y1 − 2(K − E(X1))(K − E(X2))Y2

2D2
0

)

×

D3 −
|D1|2

D2
0

(
Y3 −

((K − E(X1))Y3 − (K − E(X2))Y2)2

D2
0

)

−|D2|2

D2
0

(
Y1 −

((K − E(X1))Y2 − (K − E(X2))Y1)2

D2
0

)

+

(
|D1 + iD2|2 − |D1|2 − |D2|2

D2
0

)

×

(
Y2 −

((K − E(X1))Y3 − (K − E(X2))Y2)((K − E(X1))Y2 − (K − E(X2))Y1)

D2
0

)

−

(
|M +D1|2 − |M |2 − |D1|2

D2
0

)
((K − E(X1))Y3 − (K − E(X2))Y2)

+

(
|M + iD2|2 − |M |2 − |D2|2

D2
0

)
((K − E(X1))Y2 − (K − E(X2))Y1)

 .

Then immediate by Corollary 4.1.3 is the following result.

Corollary 4.1.4 If K is the zero vector, then for all integers N > 1 one has

hK =
1

2πD0

exp

(
−(E(X1))2Y3 + (E(X2))2Y1 − 2E(X1)E(X2)Y2

2D2
0

)
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×

D3 −
|D1|2

D2
0

(
Y3 −

(E(X1)Y3 − E(X2)Y2)2

D2
0

)

−|D2|2

D2
0

(
Y1 −

(E(X1)Y2 − E(X2)Y1)2

D2
0

)
+

(
|D1 + iD2|2 − |D1|2 − |D2|2

D2
0

)

×

(
Y2 −

(E(X1)Y3 − E(X2)Y2)(E(X1)Y2 − E(X2)Y1)

D2
0

)

−

(
|M +D1|2 − |M |2 − |D1|2

D2
0

)
(E(X1)Y3 − E(X2)Y2)

+

(
|M + iD2|2 − |M |2 − |D2|2

D2
0

)
(E(X1)Y2 − E(X2)Y1)

 .
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CHAPTER 5

THE CROSSINGS OF GAUSSIAN TRIGONOMETRIC POLYNOMIALS

The classical random trigonometric polynomial
∑N

j=0 aj cos jθ with identically dis-

tributed standard Gaussian coefficients
{
aj
}N
j=0

was studied by Dunnage [16]. He showed

the number of real zeros in the interval (0, 2π), other than a set of measure 0, is 2n/
√

3 plus

an error term that is at most O(n11/13(log n)3/13). Farahmand [22, 24, 25] later computed

the expected number of real zeros of the equation
∑N

j=0 aj cos jθ = K. He showed that this

asymptotic formula remains valid. This result for different assumptions on the distribution

of the coefficients was also obtained by Sambandham and Renganathan [47], Farahmand [23]

and others. A study involving coefficients with different means and variances was studied by

Farahmand and Sambandham [30]. It shows an interesting result for the expected number of

level crossings in the interval (0, 2π). Based on these works, the aim of the present chapter

is to study the complex zeros of a random trigonometric polynomial of a different form.

Let {aj}Nj=0, {bj}Nj=0, {cj}Nj=0, and {dj}Nj=0 be sequences of real i.i.d. standard Gaussian

random variables. Let ηj = aj + ibj and γj = cj + idj for 0 ≤ j ≤ N . Further, let z be the

complex variable x+ iy. We consider the random trigonometric polynomial

D(z) =
N∑
j=0

(ηj cos jz + γj sin jz).

It is of interest to study the number of times that D crosses a complex level. If, for each

compact subset T of C, ND
K(T ) denotes the random number of complex zeros, counted with

multiplicity, in T of D that cross the complex level K = K1 + iK2, where K1 and K2
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are constants independent of z, then, with probability one, the expected density hK of the

complex zeros of

D(z) = K

is given by

E(ND
K(T )) =

∫
T

hK(z) dz.

The explicit derivation of hK constitutes the primary reason for studying the zeros of D(z) =

K. The main device for treating hK throughout C is the Rice formula, which provides a

representation for the expected number of zeros of certain random fields. The following

theorem is proved in Section 5.1.

Theorem 5.1 Provided all the conditions imposed on D in D(z) = K and T are satisfied,

then for all integers N > 1 one has

hK = exp

−(K2
1 +K2

2)

/
2

N∑
j=0

cosh 2jy

π N∑
j=0

cosh 2jy

−1

×


N∑
j=0

j2 cosh 2jy −

 N∑
j=0

j sinh 2jy

2

N∑
j=0

cosh 2jy

1− (K2
1 +K2

2)

/
2

N∑
j=0

cosh 2jy



.

It is of special interest to study the behavior of hK for large values of N . In Section

5.2 we prove the following corollary.

Corollary 5.1.1 One has

lim
N→∞

1

N2
hK = 0.

71



5.1 The Derivation of the Density Function

If

X = (X1, X2)′

denotes a two-dimensional random field in C, where

X1 = Re(D(z)) =
N∑
j=0

((aj cos jx+ cj sin jx) cosh jy + (bj sin jx− dj cos jx) sinh jy),

X2 = Im(D(z)) =
N∑
j=0

((bj cos jx+ dj sin jx) cosh jy − (aj sin jx− cj cos jx) sinh jy).

then the Jacobian matrix of the random transformation (x, y)→ (X1, X2) is given by

∇X =


∂X1

∂x

∂X2

∂x

∂X1

∂y

∂X2

∂y

 .

Assume that there are no points in T for which both equalities S(z) = K and det(∇X) = 0

take place. Since N is fixed, T contains not more than a finite number of zeros of X = K,

where K = (K1, K2)′. Then, by [2, Theorem 11.2.3, Corollary 11.2.4, pp. 269-271], the

expected density hK can be expressed through the conditioned expected value

hK(z) = E(|det(∇X)| |X = K) pX1,X2(K
′),

where pX1,X2(K1, K2) denotes the probability density of the random vector X at the point

indicated by K ′. On noting that

∂X1

∂x
=

N∑
j=0

j((cj cos jx− aj sin jx) cosh jy + (bj cos jx+ dj sin jx) sinh jy),

∂X2

∂x
= −

N∑
j=0

j((bj sin jx− dj cos jx) cosh jy + (aj cos jx+ cj sin jx) sinh jy),

72



∂X1

∂y
=

N∑
j=0

j(aj cos jx+ cj sin jx) sinh jy + (bj sin jx− dj cos jx) cosh jy),

∂X2

∂y
=

N∑
j=0

j((bj cos jx+ dj sin jx) sinh jy + (cj cos jx− aj sin jx) cosh jy),

with a little algebra we have

det(∇X) =

 N∑
j=0

j((cj cos jx− aj sin jx) cosh y + (bj cos jx+ dj sin jx) sinh jy

2

+

 N∑
j=0

j((aj cos jx+ cj sinx) sinh jy + (bj sin jx− dj cos jx) cosh jy)

2

=
1

2

N∑
j=0

N∑
k=0

jk((cjck + djdk)(cos jx cos kz + cos jz cos kz)

+ (ajak + bjbk)(sin jz sin kz + cos jz sin kz)

− (djbk + cjak)(cos jz sin kz + cos jz sin kz)

− (bjdk + ajck)(sin jz cos kz + sin jz cos kz)

+ i(cjbk − djak)(cos jz sin kz − cos jz sin kz)

− i(bjck − ajdk)(sin jz cos kz − cos jz cos kz)

− i(cjdk − djck)(cos jz cos kz − cos jz cos kz)

− i(ajbk − bjak)(sin jz sin kz − sin jz sin kz)).

It is clear that det(∇X) is always positive.

We now calculate the covariance matrices

Cov(a, b | Y = K), Cov(c,d | Y = K), Cov(a, c | Y = K),

Cov(b,d | Y = K), Cov(c, b | Y = K), Cov(a,d | Y = K),
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where

a = (a0, . . . , aN)′, b = (b0, . . . , bN)′,

c = (c0, . . . , cN)′, d = (d0, . . . , dN)′,

and

Cov(a, b |X = K) =

Σaa,X Σab,X

Σba,X Σbb,X


with

Σab,X = Σab −ΣaXΣ−1
XXΣXb

and

Σab = E((a− E(a))(b− E(b))′).

We first find Σ−1
XX . Since E(X1) = E(X2) = 0, direct computation leads to

ΣXX =

E(X1X1) E(X1X2)

E(X2X1) E(X2X2)

 =


N∑
j=0

cosh 2jy 0

0
N∑
j=0

cosh 2jy

 ,

from which follows

det(ΣXX) =

 N∑
j=0

cosh 2jy

2

.

Thus,

Σ−1
XX =

1√
det(ΣXX)

1 0

0 1

 .
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For 0 ≤ j ≤ N and 0 ≤ k ≤ N

Σaa = E((a− E(a))(a− E(a))′) = E(aa′) = E(ajak) = (δjk),

where δjk denotes the Kronecker delta. Similarly,

Σbb = Σcc = Σdd = (δjk).

Further,

Σab = Σba = 0, Σcd = Σdc = 0, Σac = Σca = 0,

Σbd = Σdb = 0, Σad = Σda = 0.

Now, for 0 ≤ j ≤ N

E(ajX1) = cos jx cosh jy, E(ajX2) = − sin jx sinh jy,

E(bjX1) = sin jy sinh jy, E(bjX2) = cos jx cosh jy,

E(cjX1) = sin jx cosh jy, E(cjX2) = cos jx sinh jy,

E(djX1) = − cos jx sinh jy, E(djX2) = sin jx cosh jy.

Thus, expanding our definitions, we obtain for 0 ≤ j ≤ N

ΣaX = (cos jx cosh jy − sin jx sinh jy),

ΣbX = (sin jy sinh jy cos jy cosh jy),

ΣcX = (sin jx cosh jy cos jx sinh jy),

ΣdX = (− cos jx sinh jy sin jx cosh jy).
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Simple algebra leads to for 0 ≤ j ≤ N and 0 ≤ k ≤ N

Σaa,X = Σbb,X = δjk −
cos jz cos kz + cos jz cos kz√

det(ΣXX)
,

Σcc,X = Σdd,X = δjk −
sin jz sin kz + sin jz sin kz√

det(ΣXX)
,

Σba,X = Σ′ab,X = −i(cos jz cos kz − cos jz cos kz)√
det(ΣXX)

,

Σdc,X = Σ′cd,X = −i(sin jz sin kz − sin jz sin kz)√
det(ΣXX)

,

Σac,X = Σbd,X = −cos jz sin kz + cos jz sin kz√
det(ΣXX)

,

Σca,X = Σdb,X = −sin jz cos kz + sin jz cos kz√
det(ΣXX)

,

Σcb,X = Σ′bc,X =
i(sin jz cos kz − sin jz cos kz)√

det(ΣXX)
,

Σda,X = Σ′ad,X = −i(sin jz cos kz − sin jz cos kz)√
det(ΣXX)

.

Then the conditional expectations follow from

E(a |X = K) = E(a) + ΣaXΣ−1
XX(K − E(X)).

Thus, for 0 ≤ j ≤ N

E(a |X = K) =
−K1 cos jx cosh jy +K2 sin jx sinh jy√

det(ΣXX)
,

E(b |X = K) =
−K1 sin jx sinh jy −K2 cos jx cosh jy√

det(ΣXX)
,

E(c |X = K) =
−K1 sin jx cosh jy −K2 cos jx sinh jy√

det(ΣXX)
,

E(d |X = K) =
K1 cos jx sinh jy −K2 sin jx cosh jy√

det(ΣXX)
.
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Next, for 0 ≤ j ≤ N and 0 ≤ k ≤ N

E(ajak |X = K) = E(aj |X = K)E(ak |X = K) + Cov(ajak |X = K)

=
K2

1 cos jx cosh jy cos kx cosh ky +K2
2 sin jx sinh jy sin kx sinh ky

det(ΣXX)

− K1K2(cos jx cosh jy sin kx sinh ky + sin jx sinh jy cos kx cosh ky)

det(ΣXX)

+ δjk −
cos jz cos kz + cos jz cos kz

2
√

det(ΣXX)
,

E(bjbk |X = K) = E(bj |X = K)E(bk |X = K) + Cov(bjbk |X = K)

=
K2

1 sin jx sinh jy sin kx sinh ky +K2
2 cos jx cosh jy cos kx cosh ky

det(ΣXX)

+
K1K2(sin jx sinh jy cos kx cosh ky + cos jx cosh jy sin kx sinh ky)

det(ΣXX)

+ δjk −
cos jz cos kz + cos jz cos kz

2
√

det(ΣXX)
,

E(cjck |X = K) = E(cj |X = K)E(ck |X = K) + Cov(cjck |X = K)

=
K2

1 sin jx cosh jy sin kx cosh ky +K2
2 cos jx sinh jy cos kx sinh ky

det(ΣXX)

+
K1K2(sin jx cosh jy cos kx sinh ky + cos jx sinh jy sin kx cosh ky)

det(ΣXX)

+ δjk −
sin jz sin kz + sin jz sin kz

2
√

det(ΣXX)
,

E(djdk |X = K) = E(dj |X = K)E(dk |X = K) + Cov(djdk |X = K)

=
K2

1 cos jx sinh jy cos kx sinh ky +K2
2 sin jx cosh jy sin kx cosh ky

det(ΣXX)

− K1K2(cos jx sinh jy sin kx cosh ky + sin jx cosh jy cos kx sinh ky)

det(ΣXX)

+ δjk −
sin jz sin kz + sin jz sin kz

2
√

det(ΣXX)
,
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E(ajbk |X = K) = E(aj |X = K)E(bk |X = K) + Cov(ajbk |X = K)

=
K2

1 cos jx cosh jy sin kx sinh ky −K2
2 sin jx sinh jy cos kx cosh ky

det(ΣXX)

+
K1K2(cos jx cosh jy cos kx cosh ky − sin jx sinh jy sin kx sinh ky)

det(ΣXX)

+
i(cos jz cos kz − cos jz cos kz)

2
√

det(ΣXX)
,

E(bjak |X = K) = E(bj |X = K)E(ak |X = K) + Cov(bjak |X = K)

=
K2

1 sin jx sinh jy cos kx cosh ky −K2
2 cos jx cosh jy sin kx sinh ky

det(ΣXX)

+
K1K2(cos jx cosh jy cos kx cosh ky − sin jx sinh jy sin kx sinh ky)

det(ΣXX)

− i(cos jz cos kz − cos jz cos kz)

2
√

det(ΣXX)
,

E(cjdk |X = K) = E(cj |X = K)E(dk |X = K) + Cov(cjdk |X = K)

=
−K2

1 sin jx cosh jy cos kx sinh ky +K2
2 cos jx sinh jy sin kx cosh ky

det(ΣXX)

+
K1K2(sin jx cosh jy sin kx cosh ky − cosjx sinh jy cos kx sinh ky)

det(ΣXX)

+
i(sin jz sin kz − sin jz sin kz)

2
√

det(ΣXX)
,

E(djck |X = K) = E(dj |X = K)E(ck |X = K) + Cov(djck |X = K)

=
−K2

1 cos jx sinh jy sin kx cosh ky +K2
2 sin jx cos jy cos kx sinh ky

det(ΣXX)

− K1K2(cos jx sinh jy cos kx sinh ky − sin jx cosh ky sin kx cosh ky)

det(ΣXX)

− i(sin jz sin kz − sin jz sin kz)

2
√

det(ΣXX)
,
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E(ajck |X = K) = E(aj |X = K)E(ck |X = K) + Cov(ajck |X = K)

=
K2

1 cos jx cosh jy sin kx cosh ky −K2
2 sin jx sinh jy cos kx sinh ky

det(ΣXX)

− K1K2(cos jx cosh jy cos kx sinh ky − sin jx sinh jy sin kx cosh ky)

det(ΣXX)

− cos jz sin kz + cos jz sin kz

2
√

det(ΣXX)
,

E(cjak |X = K) = E(cj |X = K)E(ak |X = K) + Cov(cjak |X = K)

=
K2

1 sin jx sinh jy cos kx sinh ky +K2
2 cos jx cosh jy sin kx cosh ky

det(ΣXX)

+
K1K2(sin jx sinh jy sin kx cosh ky − cos jx cosh jy cos kx sinh ky)

det(ΣXX)

− sin jz cos kz + sin jz cos kz

2
√

det(ΣXX)
,

E(bjdk |X = K) = E(bj |X = K)E(dk |X = K) + Cov(bjdk |X = K)

=
−K2

1 sin jx sinh jy cos kx sinh ky +K2
2 cos jx cosh jy sin kx cosh ky

det(ΣXX)

+
K1K2(sin jx sinh jy sin kx cosh ky − cos jx cosh jy cos kx sinh ky)

det(ΣXX)

− cos jz sin kz + cos jz sin kz

2
√

det(ΣXX)
,

E(djbk |X = K) = E(dj |X = K)E(bk |X = K) + Cov(djbk |X = K)

=
−K2

1 cos jx sinh jy sin kx sinh ky +K2
2 sin jx cosh jy cos kx cosh ky

det(ΣXX)

− K1K2(cos jx sinh jy cos kx cosh ky − sinjx cosh jy sin kx sinh ky)

det(ΣXX)

− sin jz cos kz + sin jz cos kz

2
√

det(ΣXX)
,
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E(bjck |X = K) = E(bj |X = K)E(ck |X = K) + Cov(bjck |X = K)

=
K2

1 sin jx sinh jy sin kx cosh ky +K2
2 cos jx cosh jy cos kx sinh ky

det(ΣXX)

+
K1K2(sin jx sinh jy cos kx sinh ky + cos jx cosh jy sin kx cosh ky)

det(ΣXX)

− i(cos jz sin kz − cos jz sin kz)

2
√

det(ΣXX)
,

E(cjbk |X = K) = E(cj |X = K)E(bk |X = K) + Cov(cjbk |X = K)

=
K2

1 sin jx cosh jy sin kx sinh ky +K2
2 cos jx sinh jy cos kx cosh ky

det(ΣXX)

+
K1K2(sin jx cosh jy cos kx cosh ky + cos jx sin jy sin kx sinh ky)

det(ΣXX)

+
i(sin jz cos kz − sin jz cos kz)

2
√

det(ΣXX)
,

E(ajdk |X = K) = E(aj |X = K)E(dk |X = K) + Cov(ajdk |X = K)

=
−K2

1 cos jx cosh jy cos kx sinh ky −K2
2 sin jx sinh jy sin kx coshky

det(ΣXX)

+
K1K2(cos jx cosh jy sin kx cosh ky + sin jx sinh jy cos kx sinh ky)

det(ΣXX)

+
i(cos jz sin kz − cos jz sin kz)

2
√

det(ΣXX)
,

E(djak |X = K) = E(dj |X = K)E(ak |X = K) + Cov(djak |X = K)

=
−K2

1 cos jx sinh jy cos kx cosh ky −K2
2 sin jx cosh ju sin kx sinh ky

det(ΣXX)

+
K1K2(cos jx sinh jy sin kx sinh ky + sin jx cosh jy cos kx cosh ky)

det(ΣXX)

− i(sin jz cos kz − sin jz cos kz)

2
√

det(ΣXX)
.
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We combine these in appropriate sums in order to compute the value of E(det(∇X) |X =

K). Thus, for 0 ≤ j ≤ N and 0 ≤ k ≤ N

E(ajak + bjbk |X = K) =
(K2

1 +K2
2)(cos jz cos kz + cos jz cos kz)

2 det(ΣXX)

− cos jz cos kz + cos jz cos kz√
det(ΣXX)

+ 2δjk,

E(cjck + djdk |X = K) =
(K2

1 +K2
2)(sin jz sin kz + sin jz sin kz)

2 det(ΣXX)

− sin jz sin kz + sin jz sin kz√
det(ΣXX)

+ 2δjk,

E(djbk + cjak |X = K) =
(K2

1 +K2
2)(sin jz cos kz + sin jz cos kz)

2 det(ΣXX)

− sin jz cos kz + sin jz cos kz√
det(ΣXX)

,

E(bjdk + ajck |X = K) =
(K2

1 +K2
2)(cos jz sin kz + cos jz sin kz)

2 det(ΣXX)

− cos jz sin kz + cos jz sin kz√
det(ΣXX)

,

E(cjbk − djak |X = K) = −i(K
2
1 +K2

2)(sin jz cos kz − sin jz cos kz)

2 det(ΣXX)

+
i(sin jz cos kz − sin jz cos kz)√

det(ΣXX)
,

E(bjck − ajdk |X = K) =
i(K2

1 +K2
2)(cos jz sin kz − cos jz sin kz)

2 det(ΣXX)

− i(cos jz sin kz − cos jz sin kz)√
det(ΣXX)

,
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E(cjdk − djck |X = K) = −i(K
2
1 +K2

2)(sin jz sin kz − sin jz sin kz)

2 det(ΣXX)

+
i(sin jz sin kz − sin jz sin kz)√

det(ΣXX)
,

E(ajbk − bjak |X = K) = −i(K
2
1 +K2

2)(cos jz sin kz − cos jz sin kz)

2 det(ΣXX)

+
i(cos jz cos kz − cos jz cos kz)√

det(ΣXX)
,

After all the necessary simplifications, we have

E(det(∇X) |X = K)

=
N∑
j=0

N∑
k=0

jk

δjk(cos jz cos kz + cos jz cos kz)

+ δjk(sin jz sin kz + sin jz sin kz)−

(
1√

det(ΣXX)
− K2

2 +K2
2

2 det(ΣXX)

)

×

(cos jz cos kz + cos jz cos kz)(sin jz sin kz + sin jz sin kz)

− (cos jz sin kz + cos jz sin kz)(sin jz cos kz + sin jz cos kz)

+ (cos jz sin kz − cos jz sin kz)(sin jz cos kz − sin jz cos kz)

− (cos jz cos kz − cos jz cos kz)(sin jz sin kz − sin jz sin kz)




= 2
N∑
j=0

j2 cosh2 jy −

(
1√

det(ΣXX)
− K2

2 +K2
2

2 det(ΣXX)

)

×
N∑
j=0

N∑
k=0

2jk sinh 2jy sinh 2ky
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= 2
N∑
j=0

j2 cosh2 jy −

2

 N∑
j=0

sinh 2jy

2

√
det(ΣXX)

(
1− K1 +K2

2

2
√

det(ΣXX)

)
.

Since X1 and X2 are random variables distributed according to the normal law, their joint

density is

pX1X2(K1, K2) =
1

2π
√

det(ΣXX)
exp

(
−1

2
(K − E(X))′Σ−1

XX(K − E(X))

)
=

1

2π
√

det(ΣXX)
exp

(
− K2

1 +K2
2

2
√

det(ΣXX)

)
.

Combining this with the above expression for E(det(∇X) | X = K), the required result is

obtained.

5.2 The Asymptotic Behavior

In this section we prove the corollary. For brevity’s sake, let us write

hK =
1

πB0

exp

(
−K

2
1 +K2

2

2B0

)B2 −
B2

1

B0

(
1− K2

1 +K2
2

2B0

) ,

where

B0 =
N∑
j=0

cosh 2jy, B1 =
N∑
j=0

j sinh 2jy, B2 =
N∑
j=0

j2 cosh 2jy.

We shall make use of the identity

B0 = csch y sinh(N + 1)y coshNy.
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We have

B1 =
1

2
(N csch y sinh(N + 1)y sinhNy

+ (N + 1) csch(N + 1)y cosh(N + 1)y coshNy − (coth y)B0)

and

B2 =
1

4
((N2 + (N + 1)2 − 1)B0 − 4(coth y)B1

+ 2N(N + 1) csch y cosh(N + 1)y sinhNy).

Then

lim
N→∞

B0 =∞.

Further,

lim
N→∞

B1

NB0

= lim
N→∞

1

2

(
tanhNy +

N + 1

N
coth(N + 1)y − 1

N
coth y

)

=

 1 if y > 0,

−1 if y < 0,

and

lim
N→∞

B2

N2B0

= lim
N→∞

1

4

(
2 +

2

N
− 4

N
(coth y)

(
B1

NB0

)
+

2(N + 1)

N

)

= 1.

Altogether,

lim
N→∞

1

N2
hK = lim

N→∞

1

π
exp

(
−K

2
1 +K2

2

2B0

) B2

N2B0

−
(

B1

NB0

)2
(

1− K2
1 +K2

2

B0

)
= 0.
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CHAPTER 6

CONCLUSION

The aim of this dissertation was to study the distribution of the complex zeros and

level crossings of random sums with holomorphic functions that are real-valued on the real

line as the basis functions. Our main results were obtained through refinements of existing

methods and techniques from random fields first pioneered by Rice [46] and applied by

Ibragimov and Zeitouni [33].

In Chapter 2 we computed an explicit formula for the expected density of the complex

zeros and level crossings of a family of random sums constructed from sequences of i.i.d.

random complex standard Gaussian variables and sequences of given holomorphic functions

as basis functions. We applied this result to several practical choices of basis function

that include random Weyl polynomials, random root-binomial polynomials, and random

truncated Fourier sine and cosine series. We obtained limiting behavior for the density

function and plots of the density function and empirical distributions of the zeros with

these chosen basis functions. Further, we considered random sums whose basis functions are

polynomials orthogonal on the real line and orthogonal on the unit circle.

In Chapter 3 we generalized the main result from Chapter 2 for random variables

with zero mean and general variances. We applied this more general density function to

random sums constructed from a sequence of successive observations of a Brownian motion

and obtained an explicit density function for the complex zeros of random sums constructed

in this manner.
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In Chapter 4 we considered the distrubtion of the zeros of random sums with coef-

ficients of nonvanishing means and general variances. The main result generalizes results

from Chapters 2 and 3.

Finally, in Chapter 5 we applied the Rice formula to a certain random trigonometric

polynomial. We obtained an explicit density function for the complex zeros and investigated

the asymptotic behavior of the density function.

There are several directions for future work. First, a modification of the method

used could be applied to the case of random sums constructed from real standard Gaussian

random variables. This would provide an alternate proof of the results in [48, 52], as well

as similar results on complex level crossings. Second, a modification of the method used in

[36,48,52,54,55], which utilizes Cauchy’s argument principle and the Cholesky decomposition

of a covariance matrix, to obtain the expected density of the level crossings would provide a

second proof of the main result in Chapter 2. Third, a continuation of the work in Chapter

5 would involve the derivation of a central limit theorem.
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