

AN ACCESSIBLE WEB-BASED PEER-TO-PEER REMOTE DESKTOP CONTROL

AND ACCESS TOOL UTILIZING WebRTC

By

Heston Friedland

Dr. Mengjun Xie Dr. Dalei Wu

Professor of Computer Science and Associate Professor of Computer Science and

Engineering Engineering

(Chair) (Committee Member)

Dr. Yu Liang

Professor of Computer Science and

Engineering

(Committee Member)

ii

AN ACCESSIBLE WEB-BASED PEER-TO-PEER REMOTE DESKTOP

CONTROL AND ACCESS TOOL UTILIZING WebRTC

By

Heston Friedland

A Thesis Submitted to the Faculty of the University of

Tennessee at Chattanooga in Partial

Fulfillment of the Requirements of the Degree

of the Master of Science

The University of Tennessee at Chattanooga

Chattanooga, Tennessee

May 2024

 iii

Copyright © 2024

By Heston Davis Friedland

All Rights

 iv

ABSTRACT

 In the modern tech environment, remote desktop sharing is very popular and often much-

needed for daily work. Yet, many existing solutions hinge on the conventional client-server

model, necessitating additional tools and software for effective desktop access. There exists a

notable research gap concerning Desktop-as-a-Service (DaaS) delivery via a peer-to-peer

architecture. This study introduces a browser-centric web application leveraging peer-to-peer

communication for seamless remote desktop access. By integrating state-of-the-art technologies

including Google’s WebRTC framework, STUN servers, and signaling servers, we offer an in-

browser remote desktop experience, evaluating its performance in terms of responsiveness and

user-friendliness. Our findings indicate promising prospects for WebRTC-driven remote desktop

platforms.

 v

DEDICATION

 I would like to dedicate this thesis to my beloved partner Emery, who has provided so

much emotional support during my time at graduate school. I am eternally grateful to her for

allowing me to see this process through to the end and for always being there for me.

 vi

ACKNOWLEDGEMENTS

 First and foremost, I would like to immensely thank Dr. Mengjun Xie for teaching me

and taking me on as a Graduate Assistant early in my master’s degree, allowing me to get

immense practical experience in multiple disciplines within the field of Computer Science, as

well as providing encouraging support throughout this process. I would also like to thank my

fellow Nexus Lab members, in particular Ruipeng Zhang and Chen Xu for helping me decide on

my thesis topic and guiding me through my early years of graduate school and teaching me so

many new important skills. Furthermore, I would like to thank Dr. Yu Liang and Dr. Dalei Wu

for agreeing to be on my committee and providing their assistance. Finally, I would like to thank

fellow graduate student Ayman Gumaa with whose support I was finally able to create my final

application.

 vii

TABLE OF CONTENTS

ABSTRACT ... iv

DEDICATION .. v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES... x

LIST OF ABBREVIATIONS .. xi

CHAPTER

 1. INTRODUCTION ... 1

 Background .. 2

 Web Real-Time Communication .. 2

 ICE, STUN, and TURN .. 3

 Signaling ... 5

 Contributions of Study ... 5

 Organization ... 6

 2. LITERATURE REVIEW .. 7

 Client-Server Model ... 7

 Peer-to-Peer .. 10

 Accessibility and Security .. 11

 Summary .. 14

 viii

 3. METHODOLOGY .. 15

 Motivations for Design... 15

 Architecture .. 16

 Remote Desktop Endpoint .. 18

 Public Web Application Endpoint .. 18

 STUN and Signaling Endpoints ... 19

 Implementation... 20

 Front-end Implementation .. 20

 Remote Desktop and Back-end Implementation .. 21

 Signaling Implementation... 23

 4. RESULTS .. 25

 Evaluation Parameters .. 25

 Network Performance Results .. 27

 Accessibility Comparison .. 30

 Summary .. 31

 5. DISCUSSION AND CONCLUSION ... 33

 Objectives of the Study .. 33

 Summary of the Findings ... 34

 Conclusions .. 35

 Recommendations for Further Study ... 36

REFERENCES ... 38

VITA ... 40

 ix

LIST OF TABLES

4.1 Application Performance Comparison ...30

 x

LIST OF FIGURES

1.1 Basic WebRTC Communication Pipeline ..3

1.2 STUN Events ...4

3.1 Full-scale Application Architecture ...17

3.2 Order for Handling Mouse and Keyboard Events..23

4.1 noVNC and Reverse Proxy Architecture ...27

 xi

LIST OF ABBREVIATIONS

API, Application Programming Interface

AWS, Amazon Web Services

CPU, Central Processing Unit

CSS, Cascading Style Sheets

DaaS, Desktop-as-a-Service

GUI, Graphical User Interface

HTML, Hypertext Markup Language

I/O, Input/Output

ICE, Interactive Connectivity Establishment

IP, Internet Protocol

IT, Information Technology

MJPEGS, Motion Joint Photographic Experts Group

MMT, MPEG Media Transport

NAT, Network Address Translation

P2P, Peer-to-Peer

RDP, Remote Desktop Protocol

RFB, Remote framebuffer

ROT, Remote Order Transmission

RTC, Real-Time Communication

RTT, Round-Trip Time

SDP, Session Description Protocol

SSL, Secure Socket Layer

STUN, Session Traversal Utilities for NAT

TURN, Traversal Using Relays around NAT

 xii

UDP, User Datagram Protocol

VDC, Virtual Desktop Clouds

VDI, Virtual Desktop Infrastructure

VNC, Virtual Network Computing

VPN – Virtual Private Network

WebRTC – Web Real-Time Communication

 1

CHAPTER 1

INTRODUCTION

 Currently, in the field of computing, there is a growing need for access to machine

resources – and it is growing exceedingly necessary that large organizations and typical users

have an accessible method for acquiring such resources. As a result, virtual desktop technologies

such as Virtual Desktop Infrastructure (VDI), Virtual Desktop Clouds (VDC), and Desktop-as-a-

Service (DaaS) have become standard services that are widely offered across many platforms.

They provide a method of virtualization for end users to gain access to a wide variety of machine

types that may otherwise be unavailable. Furthermore, these technologies are key in providing

not just local virtual machine systems, but access to remote desktop machines as well [1].

Thus, to combine many of the current tools available in the remote desktop field and

provide a solution to many of the current issues that both users and administrators face, a peer-

to-peer architecture for connections of remote desktops, P2P-Connect, is proposed. Through the

utilization of the web-based screen capture technology through the browser-based JavaScript

framework Electron, P2P-Connect aims to make the remote desktop generally more accessible

than other methods which, for example, may require installation of a separate VNC viewer

application on the user’s end to access the virtual machine running the VNC server. Additionally,

the implementation of the WebRTC protocol provides a simple API that is open source, easy to

modify and customize, and aims to increase or at least match speed when compared to traditional

 2

technologies and software such as pure WebSocket communications and noVNC-based

implementations of remote desktop protocols.

Background

Web Real-Time Communication

 Published as an open-source technology in 2011, Web Real-Time Communication

(WebRTC) is a relatively novel web-based protocol that allows for a browser or mobile

application to interact with a variety of data and media sources in real time. WebRTC is

supported by most of the major browsers, including Google Chrome, Mozilla Firefox, and

Opera. Furthermore, WebRTC has components for becoming accessible via built-in Web APIs

that are easily interactable using a variety of programming languages [2], [3]. Several

components go into the WebRTC connection establishment process, including STUN/TURN

servers, ICE candidates, SDP information, and signaling servers, which all result in a fast UDP

(User Datagram Protocol) based peer-to-peer connection over the web. Figure 1.1 shows a basic

WebRTC communication pipeline using signaling servers to establish an RTC Peer Connection

to exchange media data.

 3

Figure 1.1

Basic WebRTC Communication Pipeline

ICE, STUN, and TURN

One of the most prevalent issues in the design of the peer-to-peer communication scheme

is allowing the peers to talk to one another, despite peers typically residing within a private

subnet, rather than having a public IP address that is visible to peers outside the network. As a

result, it is necessary to bypass these NAT (Network Address Translation) restrictions via NAT

traversal. Thus, WebRTC leverages the ICE (Interactive Connectivity Establishment) protocol,

which is an established method in which peers can generate traversal candidates that can tell the

other peers how to communicate with one another. The two most popular techniques to

implement the ICE protocol are in the form of either STUN (Simple Traversal of UDP over

NATs) or TURN (Traversal Using Relay NAT) servers as stated by [4]. Figure 1.2 shows the

typical event order of requests between two peers on a STUN server. Initially, binding requests

are sent, then binding responses are sent back and determine if NAT is being used. This allows

 4

the peers to then communicate their public IP and port number to one another to allow them to

connect behind NAT.

Figure 1.2

STUN Events

 5

A STUN server allows clients to send their respective IP and port combinations that they

are using to communicate and in the same way, acquire that information about other clients from

the STUN server so that the client knows with what machines it is able to communicate.

However, this exchange of information is only possible if the machines that are trying to

communicate with one another are all behind normal or restricted NAT types. In the case that a

client is behind symmetric NAT, this style of communication will fail, and a TURN server must

be used instead. The TURN server acts as a traditional client-server mechanism in order to

facilitate communication between two peers, with the TURN server acting as a relay for the

peers.

Signaling

 The final main communication protocol required to enable WebRTC is a signaling

protocol. It is a necessity that for two or more RTC peers to establish a connection via the ICE

Candidates via a STUN or TURN server, they must first signal to each other their Session

Description Protocols (SDPs), which contains all of the multimedia information that the two

peers will use in their established RTC peer connection. An important aspect of signaling is that

it can essentially be done via any method that allows information to get from one peer to another.

One of the most common methods of signaling is to utilize WebSocket connections. These

socketed connections allow for two-way communication over a single TCP socket via a web

client and a remote host, allowing users to instantiate the necessary SDP information within the

RTC configurations before establishing the UDP-based RTC peer connection.

Contributions of Study

The following are the contributions of this study:

 6

• A remote desktop accessibility application using WebRTC, which has little exploration

for use in the field of Desktop-as-a-Service.

• A peer-to-peer architecture for a distribution service of remote desktops. Whereas most

current solutions provide a client-server model, this paper explores a peer-to-peer

architecture as a promising potential model for alleviating the issue of server overhead.

This is particularly important for smaller organizations that cannot support full

integration of multiple servers and the load balancing overhead that comes along with

those servers.

• Finally, a way to traverse typical NAT restrictions without requiring the use of additional

tools such as a reverse proxy server to expose machines behind a private NAT to a

publicly facing application. Additionally, by reducing the amount of persistent middle

points within a network infrastructure, less provisioning will ideally be required for

service managers and administrators when maintaining services within an organization.

Organization

The remainder of the paper is organized as follows. Chapter II examines the related

works on remote desktop services and technologies. Chapter III provides an overview of the

methodology and tools used to develop the architecture of the solution. Chapter IV will provide

the findings of the design analysis. Finally, Chapter V discusses the results and future

developmental possibilities, and a short conclusion is given.

 7

CHAPTER 2

LITERATURE REVIEW

In this chapter, thorough descriptions and reviews of the literature relating to virtual

machines and virtual desktop infrastructures are given. Specifically, this chapter examines the

different models that are used to serve virtual desktops for both viewing as well as control. It also

details some key accessibility tools used to improve current virtual desktop solutions. Section I

details several architectures that use a client-server model for desktop distribution. Section II

examines the architectures that use peer-to-peer connections for distribution. Section III reviews

other architectures focused on accessibility and security as primary components for distribution.

Finally, section IV discusses and summarizes the chapter.

Client-Server Model

The most common form of distributing virtual desktops is through a client-server model,

wherein a client accesses the virtual services provided by a server node on the network. This

model provides an easy way for providers to grant access to a virtual environment for the end

user.

Kim et al. in [5] explored the resource utilization of cloud-based virtual desktop

infrastructure, particularly the increased bandwidth usage of the virtual desktop display

protocols. They describe that while many proprietary virtual desktop display protocols are

improving in terms of the user experience via the implementation of feature enrichment such as

 8

audio and video services on the remote desktop, these protocols are continuously increasing in

bandwidth usage. As a result, they propose a new design and implementation of the virtual

desktop system using a lightweight virtual desktop display protocol based on cloud Desktop-as-

a-Service (DaaS). It was concluded that the most efficient method of reducing the bandwidth of

the display protocol was to reduce the size of the display session data using the MJPEGS video

compression algorithm.

Motivated by the increasing demand for the use of IT resources, and the issues that this

increasing demand poses, [6] investigates remote desktop virtualization technologies and thus

proposes a new desktop virtualization system, FastDesk. The research claims that FastDesk

provides a robust solution for improving upon many popular remote desktop virtualization

platforms, which are purported to be lacking in performance in terms of response time, quality,

and cost. FastDesk works utilizing a server-push mechanism, which is operated by one or many

management nodes that serve as the centralized control nodes that control the service nodes and

manage their resources. These service nodes are the physical machines in which the virtual

machines are run, depending on server requests. Utilizing a variety of algorithms and improved

video streaming technology, FastDesk can achieve low CPU utilization, quick response times,

and efficient bandwidth utilization.

While desktop virtualization has been greatly explored, much of the research and

technology developed for remote desktop virtualization is centered around providing an entire

desktop experience, reducing latency for the user, and user experience. However, Lai et al. claim

in [7] that there has been a low focus on the granularity of the system, as well as protocol

optimization. Thus, they propose a lightweight desktop virtualization system. This system allows

 9

for single application windows to be shared, as well as new protocol development to control the

interactions between the clients and servers. The main tools used to create this system are

application streaming to reduce application costs while increasing computing resource

utilization, as well as the Remote Order Transmission (ROT) protocol, which is a platform-

independent client-server protocol that reduces the data processing overhead and increases

portability among the systems.

While traditional remote desktop services provide utility in the form of resource

consolidation, reduced client overhead, and ease of management, many of the currently available

tools only allow for low-motion graphical cases, such that video streaming or real-time

interactivity becomes an issue. Thus, the streaming based remote interactivity architecture -

SRIDesk - is proposed in [8]. In order to achieve its high playback rate, SRIDesk implements a

server-push streaming mechanism and low-bandwidth high-performance encoders, such as the

H.264 encoder, to allow for low-latency client-server synchronization of the display. Compared

to other remote desktop services, SRIDesk is comparable to or better than many other tools

regarding interaction response times, video quality, scalability, and resource consumption.

The client-server model has several scalable remote desktop services that not only allow

for desktop sharing but full desktop control as well. However, this requires both management of

the client machine as well as the distributing server to ensure the end-user experience. This

model is contrasted by the relatively more easily managed peer-to-peer model, which uses a

distributed network of nodes to access and supply virtual desktop resources.

 10

Peer-to-Peer

Several tools were developed for desktop sharing that utilize peer-to-peer network

architectures. These architectures mainly rely on a WebRTC-based approach to achieve their

peer-to-peer configurations. For instance, Iwata et al. in [9] detail a solution to allow for greater

usability of a local desktop through the implementation of an any-window sharing mechanism on

remote desktops, such that the remote desktop takes up much less display utilization of the local

desktop. This has many use cases, particularly in collaborative work efforts where one wishes to

share a particular window of an application for shared editing or viewing, without wanting to

share access to the entire desktop. This architecture utilizes a smartphone to control the windows

to be accessed on the different machines. Wi-Fi is used to enable the sharing of files and

application window functions between the systems, and Bluetooth is used to connect the

smartphone and machines with a single operation device. Furthermore, the file-sharing and

application window-sharing mechanism uses the WebRTC API to leverage these utilities. The

host PC acts as a server which allows the remote clients to get the host client's peer ID for peer-

to-peer connections.

With a focus on the increased importance of online collaborative tools, Lucas et al.

propose a WebRTC-based solution in [10] for synchronous multi-user collaboration, known as

“USE Together”. This solution is unique in that it provides multiple improvements over many of

its modern counterparts, including a low-latency user experience, ease of access, encrypted

streams for heightened data security, and flexibility of deployment. This is accomplished by

implementing a specific architecture that enables multiple users to connect to each other through

a signaling server. First, the host user who initiates the connection activates the USE engine,

which is composed of two parts, namely the USE Engine Core and USE Engine GUI, which

 11

handle data transmission and GUI features respectively. Once the USE engine is activated by the

host, the signaling server can then handle the Peer-to-Peer communication between the host and

remote users, allowing the remote users to easily join the host session and utilize the

collaborative intent of the tool.

While these tools are successfully able to leverage the peer-to-peer nature of RTC, the

virtual desktop service isn’t complete. Most of the modern literature simply provides a video

stream or desktop viewing experience. There doesn’t seem to be much literature about full

desktop control using peer-to-peer architectures.

Accessibility and Security

Zhang et al. in [11] detail a solution that solves the problem of a user not being able to

maintain unique desktop configurations, even if running the applications on the same machine,

allowing a user to run personalized software on any computer, as long as it is compatible, across

the internet, even if the software does not exist on the local host being used to access the

software. Furthermore, the software configurations and customization options can be saved for

use across multiple systems. The main steps used to implement this solution are as follows. First,

they address the issue of the installation of the applications that are intended to be run. This is

done via a combination of an installation snapshot and API interception. The installation

snapshot is created using a system-monitoring tool to log any changes made to the hard disk,

registry, and configuration files during the application’s installation process. Then, the

installation snapshot is made accessible to the application’s executable file via an API

interception, which intercepts calls from the underlying system and reroutes the necessary calls

to the private registry which holds the unique configuration data. To facilitate the downloading

 12

of the portable application, a P2P architecture is implemented using a dedicated server that uses a

BitTorrent protocol in the form of libtorrent.

Accessibility is a very important concern for the user of virtualization technology. [12]

addresses this issue and describes potential solutions to common accessibility issues using the

noVNC service in conjunction with a remote desktop proxy. Using customizable virtual machine

technology, users can save and reload their settings easily, and thus quickly begin access to their

system. The main system architecture they propose integrates a Web-Socket proxy server, which

sits between the VNC server and the VNC web client. The proxy server receives commands from

the web application and relates these inputs to the VNC. Furthermore, the proxy server can

process screen content for the web application as well. Finally, CLEVER is used as the VIM for

the management of virtual machine environments.

In order to facilitate the usage of remote desktop applications, Sridhar et al. examine a

solution that implements IP tunneling. Several algorithms are designed to implement the

necessary tools required to run the remote-server application of both the client side, which the

user accesses, and the server side, which hosts the server and desktop to be shared. The client-

side consists of an HTML page, using JavaScript to capture any events that occur on the client’s

page. AJAX is then used to send requests to the server, as well as update the client image every

time that the server updates in response to these events. This system can be implemented in both

a local network, as well as over the internet. The local network deployment requires minimal tool

implementation, using Flask to run the server, and the algorithms handle the remote desktop

application. For over-the-internet deployment, IP tunneling is required to allow the local machine

to be accessed from outside the local network. The ngrok service is utilized in order to facilitate

 13

this IP tunneling, where an ngrok client exposes the port to the ngrok server, creating a tunnel to

the locally hosted server, which can be used to send and receive responses.

Li et al. propose in [12] a new protocol to facilitate mobile desktop-as-a-service systems.

They implement the MPEG Media Transport (MMT) system format which acts as the media

transport for streaming video in order to accommodate screen rendering in the system. In

conjunction with MMT streaming, a screen content coding extension is used for the compression

of the desktop screen. This architecture also utilizes the Google Congest Control algorithm to

maintain an efficient sending rate based on network probing in order to prevent congestion issues

within the network. These tools allow for a very simplified DaaS infrastructure and reduced

bandwidth consumption while maintaining a similar visual quality when compared to the Red

Hat SPICE DaaS application.

[13] examines improved security for the Windows Remote Desktop Protocol (RDP).

They detail that while RDP has many security features including user authentication and

encryption, the network is still vulnerable to attacks. The two main attacks of concern are

password guessing attacks, wherein the username and password credentials of the user are at risk

of being guessed. The other is a man-in-the-middle attack, wherein the attacker can impersonate

the real server and steal credentials using this method. Thus, they propose implementing the RDP

over an SSL VPN, which allows for credential authentication through digital certificates, as well

as establishing a monitored connection from the VPN to the application server to ensure validity

when the server information is relayed to the client.

In [14] a new device, ProGun, is proposed in order to address security issues that arise as

a result of remote access to systems. ProGun works as a USB dongle hardware device that has

 14

been hardened and restricted to allow for secure access from a local machine to a remote

location. A VPN configuration sits inside the USB, which fixes the connection from the local

machine automatically and forwards all connections through the VPN tunnel. Furthermore, the

USB has logging features to keep track of which device malicious network activity is coming

from for improved security. Additional accessibility features are also implemented in the

ProGun, as user data can be stored and reloaded whenever needed from the ProGun, e.g., the

remote desktop protocol settings for the user.

Summary

 Several different aspects of the literature were examined regarding the development and

usability of Desktop-as-a-Service structures. Both client-server models and peer-to-peer models

were examined in terms of their performance and design philosophy. Among the results that do

exist, most are bulky, requiring provisioning and installation from a user to either run the tool or

access the remote desktop. Additional parameters related to remote desktop services were also

examined, such as research involving the accessibility of a remote desktop, as well as the

security of remote desktops. It was shown that relatively little peer-to-peer data exists in the field

of remote desktop control, and even less utilizing RTC in general.

 15

CHAPTER 3

METHODOLOGY

 In this chapter, a description of the methods used to create and serve the virtual machines

and necessary networking components. The primary motivations for this design choice are given

in Section I. Next, in section II, an overview of the architecture and justification for the various

tools and services chosen is given. In addition, an in-depth examination of the various

communication endpoints is given in section II. Then, the specific implementation of the primary

methods and libraries used is given for both the front-end and back-end of the project in section

III.

Motivations for Design

The P2P-Connect platform is designed to provide an easily accessible and manageable

remote desktop environment. It aims to give remote desktop distributors a way to manageably

provide a remote desktop environment to users via its peer-to-peer network setup, reducing the

load on the servers handling the distribution, while keeping maintenance and management

overhead to a minimum, a problem commonly seen in client-server models. Additionally, the

various communication protocols can allow for a simple way to bypass NAT restrictions on both

ends of the architecture, allowing private machines to be accessed from a public web application.

Furthermore, it aims to allow users to access the remote desktop through a simple web

application interface, where they can connect to the provided machines with nominal knowledge

and application setup.

 16

Architecture

 The system design of P2P-Connect is targeted around allowing a private machine that is

not exposed to the internet, such as one behind a restricted NAT, to easily communicate with a

web server that serves the remote desktop via the browser. In total, there will be at least three

different communication endpoints during the set-up phase of the connection, or more depending

on how the administrator decides to establish the RTC connection with the remote desktop. Each

of these endpoints serves a unique purpose in the P2P-Connect networking schema, and as such

are necessary components for the system to run effectively. A detailed full-scale application

architecture diagram is given in Figure 3.1.

 17

Figure 3.1

Full-scale Application Architecture

 18

Remote Desktop Endpoint

 The first critical endpoint is the remote desktop that is to be shared with the public

webserver. It is on this remote desktop that almost all of the libraries and tools necessary for the

function of the system reside. These libraries include a JavaScript-based desktop application

framework known as Electron and a React framework application back-end to instantiate the

WebRTC connection and transmit this data to the web server endpoint. The primary focus of the

back-end logic for the remote desktop endpoint is serving the captured desktop through an RTC

peer connection, rather than through a common display protocol such as the remote framebuffer

protocol (RFB) that is used by VNC. This Electron desktop is the primary tool that results in the

real-time streaming of the remote machine’s desktop to the public webserver. This is

accomplished by capturing the screen of the remote desktop, and then passing the media stream

through the RTC peer connection to the other peer, where it can load and interact with the video

stream via the public webpage’s canvas. Additionally, there is some logic dedicated to

instantiating the peer connection and sending its SDP information, which is done via a

WebSocket connection using the socket.io library in combination with the signaling logic and

STUN server set up using the open source coturn library.

Public Web Application Endpoint

 The web application is created using a combination of HTML, CSS, JavaScript, and

React in order to serve the public-facing webpage. This webpage exists to render and stream the

captured desktop media stream data that is transmitted over the open RTC peer connection in the

browser. It is in this browser that the remote-control logic is created using the canvas elements

within the React application renderer. Using the RTC data channel created in the remote desktop

endpoint, which is an additional bidirectional arbitrary data transference channel separate from

 19

the one used to stream media over the RTC peer connection while remaining attached to the peer

connection, the React app can send real-time events that capture mouse and keyboard events

happening within the canvas of the public React application. This simultaneously provides user

accessibility to the remote desktop, while keeping the rest of the private network relatively

obfuscated from the users, only giving them access to the hosted web application and the single

remote desktop, which may reside on different networks, allowing for more fine-grained control

of the remote desktop’s security.

STUN and Signaling Endpoints

 The remaining necessary endpoints involved in the establishment of the connection

among the peers are solely dedicated to transmitting the information sent from one peer to

another or facilitating that transmission. The STUN server is the key component for allowing the

remote desktop and web server to communicate with one another, even behind NAT. The STUN

server is created using the open-source library “coturn,” due to its ease of setup and reliability.

While there are several public STUN servers available to use, creating one’s own server allows

for more flexible management of the STUN configurations, and is thus much more maintainable,

and prevents any errors from a sudden third-party shutdown or denial of service such as during

server maintenance.

The signaling server logic is contained in both the public web application as well as the

back-end react logic that waits for specific SDP types to be broadcast to the server hosting the

socket.io server, namely the offer and answer from the peers, collects the messages that contain

these types, and then relays the SDP information from one peer to the other depending on

whether the type was an offer or an answer. The scripts utilize socket.io, a JavaScript wrapper

 20

for WebSocket connections chosen for its reliability and ease of use, to transmit these

descriptions to and from each peer which allows them to set their local and remote session

descriptions and transmit ICE candidates to establish the connection that instantiates the media

and data channels between the peers.

Implementation

A combination of both front-end and back-end tools is necessary for the creation and

implementation of the architecture. The main approach utilized for the peer-to-peer architecture

involved using a combination of the WebRTC protocol and JavaScript/React for creating and

interfacing with the front-end web application, and Electron, a JavaScript-based framework to

capture the desktop and transfer the remote desktop’s screen information using the media stream

to the public webserver.

Front-end Implementation

Sitting on the front-end of the public web server is a React application created using npx,

a JavaScript/Node.js package execution tool. React is a component-based JavaScript application

framework that allows for the easy production of quality JavaScript code, with many quality-of-

life features over regular JavaScript pages. JavaScript was chosen as the base of the frameworks

as it provides an intuitive and flexible platform for web interactivity that can be effortlessly read

and duplicated. On the public web interface, the offer from the remote desktop application is

replied to with a new RTCPeerConnection(), SDP answer, and any generated ICE candidates,

which encompasses all the information required for the public webserver connection to complete

its instantiation of a peer connection with other users. Among the other critical functions

executed on the public webserver are the creation and capture of the mouse and keyboard events

 21

on the React webpage. Using React’s keyboard and mouse handlers, data such as the mouse

location and click or key tap events can be captured within the canvas of the web application.

Furthermore, the new peer connection allows the sending of data across the RTC peer

connection’s data channels, which are established via the remote desktop application using the

createDataChannel() method. This channel enables arbitrary data transfer across the peer

connection, crucial for facilitating user access to the remote desktop. Among the critical

functions executed on the public webserver are the creation and capture of the mouse and

keyboard events on the React webpage which utilizes this data channel to funnel events to the

other peer. For instance, the OnMouseMove() function handler will extract the coordinates from

the mouse location on the React page’s canvas. Once these coordinates are extracted, the event

handler can then send these coordinates across the data channel at very fast speeds, allowing

almost every single mouse event on the user’s end to be sent over to the remote desktop

application where the mouse movement logic can be processed. Similar logic applies to mouse

and keyboard interactions. While the remote desktop primarily manages the underlying logic

processing, the front-end is responsible for capturing the necessary data over the data channel

and ensuring it is transferred over the data channel without any abnormal interaction from the

user. This aims to create a user-friendly interface in which accessing the remote desktop is as

effortless and efficient for the end-users as possible.

Remote Desktop and Back-end Implementation

The back-end of this system is also powered by a separate React application, which sits

behind an Electron server that collects all of its data to render and generate any key events

passed from the public webserver. The React application sitting in the App.js file handles much

 22

of the initialization logic for setting up the RTC peer connection to the front-end peer. When the

screen is shared, the back-end React server creates a media stream object that can be added to the

peer connection and captures the current desktop based on the selected screen. The React app

simultaneously creates the offer to the other peer using the createOffer() method and generates

the necessary SDP information that is sent to the front-end web application via the signaling

server, while also handling the answer returned from the front-end using the

setRemoteDescription() method. Additionally, like the front-end, it also has the necessary

signaling logic to handle the ICE candidates that are generated. It also handles the creation of the

RTC data channel, where arbitrary data, such as the mouse movement, mouse clicks, and

keyboard tap events, are able to be related from one peer to another, i.e., from the front-end peer

to the back-end React server to be rendered via the Electron application.

In addition to the React application, a Node.js framework, Electron, is also utilized to

create the interface with which the back-end logic is rendered and selected. As it is a Node-based

application, it is able to be controlled as well as interact with the remote desktop in an automated

manner. Electron uses a context bridge to ensure that any data that is passed to the React

application can be rendered in the Electron application. Thus, the data that is passed to the back-

end server is also able to be captured by the Electron application, which can then be used to send

mouse and keyboard events via an automation library, Robotjs. As data is sent from the front-end

to the back-end React server, Electron is able to utilize these data channel messages and

automatically control the remote desktop. Figure 3.2 details the typical flow of the full event

capture from the front-end to the Electron application, including the data channel and context

bridge intermediaries.

 23

Figure 3.2

Order for Handling Mouse and Keyboard Events

Signaling Implementation

The signaling logic is a basic WebSocket server implementation utilizing the socket.io

library. Given certain events within any peer connected to the socket.io server host, such as

messages with an ‘offer’ or ‘answer’, or ‘icecandidate’ type, the WebSocket server is able to

broadcast the messages with any associated data to the other peers connected to the socket server

via the established TCP connection. Thus, when either peer receives these messages, they can

reply to the WebSocket server which can then broadcast the reply to the other peers, allowing a

 24

peer-to-peer connection to be established. At this point, the signaling logic is not necessary to

continue communications, however, it remains best practice to keep the connections open if the

ICE candidates update or there is an interruption in the current peer connection that needs to be

re-signaled.

 25

CHAPTER 4

RESULTS

 In this chapter, an examination of the results of the designed architecture of a remote

desktop-sharing application will be conducted. Section I will discuss the evaluation parameters

used to analyze the application. Then, Section II will include the results of the analysis of the

metrics for the application, as well as a comparison against a few other commonly used remote

desktop-sharing applications in terms of both quantitative performance as well as quality-of-

life/accessibility parameters.

Evaluation Parameters

 In order to examine the efficacy of the peer-to-peer architecture, different scenarios of

load are tested across several platforms using several common metrics in remote desktop

applications. The latency of the signaling server connection, the Round-Trip Time (RTT)

between the peer connections used to transmit the video data, as well as the latency for basic

keyboard and mouse events that are sent over the data channel within the RTC peer connection

are all measured. Other additional metrics such as the frames per second of the encoded shared

video, packet loss, and frames dropped will also be provided for the WebRTC-based connection.

These tests will be performed using a combination of machines including Linux and Windows-

based user endpoints to view a remote host while using Google Chrome as the web browser due

to the current functionality of WebRTC implementations in other browser selections.

Furthermore, these various factors will be checked under different load uses, such as web

 26

browsing, playing a video, and keyboard/mouse interaction to collect a wider array of data

points.

After such tests are completed, they are compared against the available results from a

similar architecture utilizing vncserver with noVNC together sitting behind a reverse proxy to

emulate a comparable system that uses NAT traversal techniques akin to the WebRTC

architecture. The noVNC and VNC protocols were chosen due to their widespread usage in

remote desktop applications, as well as the similarity in design philosophy utilizing only a

browser for the user to access remote desktops as well as the relatively straightforward

integration with reverse proxy servers. Similar parameters will be captured in these tests, at

which point they will be compared to one another for a careful analysis of results. Figure 4.1

shows the basic noVNC architecture that is being used for comparison.

 27

Figure 4.1

noVNC and Reverse Proxy Architecture

Network Performance Results

One important aspect to consider in deciding the efficacy of the WebRTC-based

architecture is its network performance. Several metrics such as the round-trip time, connection

establishments, and signaling latency will be examined for both the client and host side of the

application. The screen-capture side of the application running Electron on the remote Windows

10 machine can successfully send the video component via the WebRTC peer connection video

encoding, as well as handle the mouse and keyboard events that are sent from the RTC data

 28

channel. Using the built-in Date functions within JavaScript, the RTT for the socket.io

WebSocket-based signaling server is ~140 milliseconds on average when sending and returning

from Peer A to the Amazon Web Services (AWS) Signaling server to Peer B and back with a

range of 135 milliseconds to 150 milliseconds. Using the internal Chrome RTC stats API, an

RTT of 1-3 ms was found in the RTC peer connection. Then, in examining the RTC connection

between the two peers after signaling, the initial delay for establishing and sending data such as

mouse and keyboard events across the RTC data channel appears to be around 200 milliseconds,

but once established it is able to log every single mouse and keyboard event within 1-10

milliseconds of one another, and it can occasionally send over 2 messages per millisecond.

Additionally, the CPU utilization on the machine sharing the remote desktop screen is

approximately 15 – 20% while active via browsing the web and other activities such as typing,

and a CPU utilization of around 3-5% when inactive, meaning that no activities are being

performed via the public web interface. Furthermore, data provided from Google Chrome’s

WebRTC internals shows a constant 28-30 frames per second (FPS) during active use of the

screen-capture application from the user’s window, with a relatively low RTT of 5 milliseconds

for the peer connection. However, despite the low RTT between the two peers, the encoding and

decoding process for the rendering of the desktop view adds a significant processing delay,

which is around another additional 30 milliseconds, which aligns with the frames per second data

that the RTC internals are displaying.

 The user side of the application runs on a Windows 10 machine. On the front-end web

application, the CPU usage is relatively low at .5% – 1% for an inactive browser window,

increasing to around 5%-11% when generating mouse and keyboard events in the browser

window. The bitrate of the peer connection is 3000-5000 bits sent/s when completely idle, 7000-

 29

9000 bits sent/s when only playing a video in the browser and no other interaction but sees a

drastic increase to around 130,000 bits sent per second when actively controlling KBM controls

in the browser. The bits received/s are noticeably greater as well, which aligns with the media

transference from the desktop application to the web application, with ranges from 95,000 –

130,000/ 230,000 – 270,000/ and 250,000 – 290,000 with I/O events, again aligning with the

bidirectional nature of the RTC architecture of the two peers. Similar networking results are seen

when running the front-end server from a Kali Linux machine on the same network.

 Next, a VNC architecture utilizing noVNC being exposed to the internet via a reverse

proxy on the same AWS server used in the previous tests will be examined. The initial time to

establish a connection between the user and the noVNC server after routing through the reverse

proxy is approximately 580-800 milliseconds if all of the assets are cached in the browser, and

up to 5 seconds to establish a connection if none of the assets are preloaded. However, due to the

lightweight nature of noVNC, the host machine only runs at around 3-4% CPU utilization during

inactive phases and only goes up to around 7% utilization from all of the related processes to

serve the noVNC client even when utilizing a heavy I/O load from the keyboard and mouse.

Additionally, the RTT for sending data between the noVNC client and VNC server is around 120

milliseconds, mostly due to the connection through the reverse proxy on both ends. Like the

RTC connection, multiple images are rendered in a short period, taking ~3 milliseconds between

each new base 64 image to be rendered within the noVNC page according to the browser

networking traffic logs. Tracking I/O event data in noVNC is not natively supported through its

RFB capture, so there is no direct way to measure the mouse and keyboard events for direct RTC

comparisons. Table 4.1 shows the relevant information comparing the P2P-Connnect and

noVNC applications.

 30

 Table 4.1

Application Performance Comparison

 P2P-Connect noVNC

RTT (ms) 1 - 3 ~120

CPU Utilization Idle (%) 3 - 5 3-4

CPU Utilization Active (%) 15 - 20 6 - 8

Instantiation Time (ms) 200-400 580 - 800

ms/Message 0-10 3

Accessibility Comparison

 Another important factor to examine outside of the quantitative network performance is

the accessibility and usability of the tool. Currently, installing the VNC server, the noVNC

library, along with a reverse proxy tool on a public server is quite easy to automate. On the

contrary, the current solution for the WebRTC architecture requires manual selection of the

screen one wishes to share, as browsers such as Chrome and Firefox have specifically placed

restrictions on certain APIs within the WebRTC library that make it very difficult if not

impossible to automate the selection of the desktop capture without exposing the remote desktop

to great security risk. However, in terms of the user accessing the remote desktop after the

connection has been established between the browser and remote host, there is relatively little

difference between a reverse proxy noVNC webserver and the WebRTC web application.

Furthermore, the trade-off for WebRTC’s greater bandwidth usage is that the application can

maintain a constant framerate, even when streaming video while the user is not active, as the

noVNC/VNC protocol works to maintain bandwidth when idle, as compared to maintaining a

constant latency. This is reliant on the importance of the UDP protocol, as constantly sending

 31

packets, even if they arrive slightly out of order or get dropped, allows for a constant consistent

video quality that noVNC is not able to provide over its implementation.

 Another important factor in the examination of the accessibility is the system agnosticism

of each application. The WebRTC application is system agnostic, able to run on Windows and

Linux with a simple installation using the given libraries already built into the application

packages. In contrast, noVNC in combination with VNC is not easily implemented within

Windows Operating Systems but is relatively easy to establish the architecture on Linux. In

terms of browser support, ultimately both applications are fully capable of supporting modern

browsers given the correct RTC browser adapters are placed into the libraries before running,

due to the differences in RTC implementation between browsers. Finally, due to the nature of

symmetric NAT, any time a user behind a symmetric NAT wishes to utilize P2P-Connect, they

will first have to establish a TURN server and modify the current ICE server configurations in

order to support running the application, which will ultimately increase the delay. This is

particularly detrimental to those using mobile networks to maintain internet access, as most

mobile network configurations reside behind symmetric NAT types. This will ultimately cause

the P2P-Connect design to more closely resemble the client-server and reverse proxy models that

the noVNC application is based on, which is antithetical to the design philosophy of the project

goals.

Summary

 The results of the application were examined under several different metrics, including

round-trip time between communication endpoints, streaming bitrate, frames per second of

video, and I/O latency. These results were then analyzed and compared against a noVNC reverse

 32

proxy model, which is a current solution with similarities to the WebRTC architecture due to its

NAT traversal abilities while sharing a remote environment. The results showed clear use cases

for both applications, particularly that the WebRTC application is effective when video fidelity

and consistent performance are of importance and is usable in small-scale environments for

sharing remote desktops without overburdening either system. In this way, P2P-Connect was

able to prove itself as a concept for remote desktop sharing.

 33

CHAPTER 5

DISCUSSION AND CONCLUSION

 This chapter explores the primary objectives of the study, as well as the findings and

potential other avenues for research complete Section I details the primary objectives that were

sought out in this study. Section II then summarizes the results from the evaluation of the

application. Then, a brief conclusion on the project is given in section III. Finally, future

recommendations for areas of interest study are given in section IV.

Objectives of the Study

 In the current field of Desktop-as-a-service, there is relatively little research related to

peer-to-peer-based architectures for serving remote desktops. Most current peer-to-peer

architectures are based either on a back-end application that utilizes software that both the user

and the host must install, or instead based on a client-server model. The client-server model is an

effective solution, however, in small to medium-sized organizations, server overhead can be a

great cost. As a result, this project sought to use the web-based peer-to-peer framework WebRTC

as a method to establish an easy-to-use application interface for remote desktop sharing while

minimizing server costs. The primary objective of this study was to determine the efficacy of

such a solution.

 Another objective of this study was to find a secure method of sharing a desktop

environment that sits behind a NAT. Typically when exposing multiple private machines to a

 34

service, a reverse proxy server must be used to expose their services to a public interface. This

can also result in greater latency and overhead in remote desktop services. One of the key

features of WebRTC is its utilization of the STUN/TURN protocols, which allow for NAT

traversal, even between two peers behind NATs. This allows for a minimal setup method for two

peers behind NAT to communicate with one another over the web.

Summary of the Findings

 The primary objectives for the peer-to-peer architecture were successful. Particularly a

successful remote desktop capture and control tool was able to be made leveraging the primary

WebRTC protocol components, allowing peers to communicate with one another over UDP.

Furthermore, the STUN protocol implementation within WebRTC addressed the primary issue of

NAT traversal. However, the quantitative analysis of P2P-Connect against the reverse-

proxy/noVNC infrastructure shows that it has specific use cases that may not be suitable for all

implementations. Particularly, the remote desktop client CPU utilization was relatively greater

than the CPU utilization found in the noVNC solution, so if the remote desktop has low

processing capabilities, it may bottleneck performance. Similarly, on the public webserver, there

was a slight increase in CPU utilization when using the browser. This increased CPU utilization,

along with the increased network bandwidth, however, is necessary to ensure the high-quality

stream of the remote desktop, which has applications in services that require a greater video

fidelity than the lower bitrate solutions provide. Furthermore, the application can doubly serve as

a desktop sharing mechanism, as the CPU utilization and bandwidth utilization are substantially

lower when I/O is not being sent and processed over the RTC data channel/and rendered in the

media stream. In terms of accessibility, the WebRTC met most of the ease-of-use standards,

requiring minimal knowledge from the user to access the remote desktop. Furthermore, little

 35

application setup is required on the server end, the only major limitation to accessibility being

found in the initialization of the screen-sharing mechanism, which requires manual user input

due to the nature of the desktop capturer in the web-based Electron application.

Conclusions

 In an effort to provide an accessible and efficient remote desktop sharing mechanism, a

peer-to-peer connection architecture was developed. This was accomplished using a variety of

different protocols and libraries. The primary communication protocols that exist in this

architecture are the WebRTC protocol, responsible for creating the SDP information that

determines the media stream behavior between the two peers, as well as exchanging arbitrary

data in the form of mouse and keyboard events over its data channels. Other communication

protocols include the STUN protocol that is used to establish a connection behind NAT for the

two peers, as well as the signaling servers, which provide a communication endpoint for the

users to allow them to establish the peer-to-peer connections. The other tools used include

JavaScript and React to create the public webserver interface and render any user inputs to be

sent over the data channel. Then on the remote desktop endpoint, a combination of React and

Electron are used to capture and process user inputs.

 This combination of tools proved to provide a successful build of a peer-to-peer remote

desktop-sharing architecture. The performance of this architecture was measured on both its

quantitative performance, using metrics such as latency, bitrate, frames per second, and CPU

utilization, as well as its accessibility parameters. These results were also contrasted against a

reverse proxy noVNC architecture to give scope to the objectives that this project was attempting

 36

to accomplish. The fulfillment of these objectives intends to provide future researchers with a

path to examine similar and improved remote desktop-sharing applications.

Recommendations for Further Study

 There is still a great deal of research and exploration that can be done in the field of

Desktops-as-a-Service. The key limitation found in the accessibility of the P2P-Connect

architecture was with the automation of the screen sharing decision that is performed by the

Electron application running on the remote desktop endpoint. Thus, an examination of different

desktop capturing methods that could stream over the RTC peer connection would potentially

prove effective in automating the screen capture. For instance, if a command-line RTC client that

could capture and stream the desktop were available, it could potentially solve a multitude of

issues within the current solution such as the automation of setup during the provisioning of a

new remote desktop environment. Additionally, the data flow on the remote desktop side of the

application may be potentially improved, as the current solution of rendering a local React server

in the Electron application, and then processing the data provides an additional layer of

communication between the user and remote desktop control, which could be a communication

point that could be optimized in future editions of the application in order to reduce client load.

 Another area of research to explore is a combination of current DaaS solutions such as

the P2P-Connect and noVNC solutions. This may prove to be valuable as a focal point to explore

in future editions of the application by combining the best aspects of each different tool. This

would ideally allow for the video fidelity and quick sent I/O events that WebRTC provides while

maintaining a relatively lightweight nature that can be seen in VNC or X server implementations.

 37

An additional important topic to potentially examine is the feasibility of provisioning

these web-based remote desktop applications under greater load, particularly when multiple

desktops are accessed from the same public server. It is important to examine large-scale

applicability for multiple users utilizing the application at the same time as to determine the

scalability and bottlenecks of the application.

 38

REFERENCES

[1] E. Magaña, I. Sesma, D. Morató, and M. Izal, “Remote access protocols for Desktop-as-a-

Service solutions,” PLoS ONE, vol. 14, no. 1, p. e0207512, Jan. 2019, doi:

10.1371/journal.pone.0207512.

[2] B. Sredojev, D. Samardzija, and D. Posarac, “WebRTC technology overview and signaling

solution design and implementation,” in 2015 38th International Convention on

Information and Communication Technology, Electronics and Microelectronics (MIPRO),

Opatija, Croatia: IEEE, May 2015, pp. 1006–1009. doi: 10.1109/MIPRO.2015.7160422.

[3] R. Eskola and J. K. Nurminen, “Performance evaluation of WebRTC data channels,” in

2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca: IEEE, Jul.

2015, pp. 676–680. doi: 10.1109/ISCC.2015.7884873.

[4] G. Li, Y. Ding, B. Xu, and X. Li, “Development and Research Based on WebRTC Mobile

Phone Video Communication,” in 2019 IEEE 3rd Information Technology, Networking,

Electronic and Automation Control Conference (ITNEC), Chengdu, China: IEEE, Mar.

2019, pp. 2487–2490. doi: 10.1109/ITNEC.2019.8729024.

[5] S. Kim, J. Choi, S. Kim, and H. Kim, “Cloud-based virtual desktop service using

lightweight network display protocol,” in 2016 International Conference on Information

Networking (ICOIN), Kota Kinabalu, Malaysia: IEEE, Jan. 2016, pp. 244–248. doi:

10.1109/ICOIN.2016.7427070.

[6] T. Song et al., “FastDesk: A remote desktop virtualization system for multi-tenant,” Future

Generation Computer Systems, vol. 81, pp. 478–491, Apr. 2018, doi:

10.1016/j.future.2017.07.001.

[7] G. Lai, H. Song, and X. Lin, “A Service Based Lightweight Desktop Virtualization

System,” in 2010 International Conference on Service Sciences, Hangzhou, China: IEEE,

2010, pp. 277–282. doi: 10.1109/ICSS.2010.44.

 39

[8] Jiewei Wu, Jiajun Wang, Zhengwei Qi, and Haibing Guan, “SRIDesk: A Streaming based

Remote Interactivity architecture for desktop virtualization system,” in 2013 IEEE

Symposium on Computers and Communications (ISCC), Split, Croatia: IEEE, Jul. 2013, pp.

000281–000286. doi: 10.1109/ISCC.2013.6754960.

[9] S. Iwata, T. Ozono, and T. Shintani, “Any-Application Window Sharing Mechanism Based

on WebRTC,” in 2017 6th IIAI International Congress on Advanced Applied Informatics

(IIAI-AAI), Hamamatsu: IEEE, Jul. 2017, pp. 808–813. doi: 10.1109/IIAI-AAI.2017.211.

[10] L. Lucas, H. Deleau, B. Battin, and J. Lehuraux, “USE Together, a WebRTC-Based

Solution for Multi-user Presence Desktop,” in Cooperative Design, Visualization, and

Engineering, vol. 10451, Y. Luo, Ed., in Lecture Notes in Computer Science, vol. 10451. ,

Cham: Springer International Publishing, 2017, pp. 228–235. doi: 10.1007/978-3-319-

66805-5_29.

[11] Y. Zhang, X. Wang, and L. Hong, “Portable Desktop Applications Based on P2P

Transportation and Virtualization,” in 22nd Large Installation System Administration

Conference (LISA 08), San Diego, CA: USENIX Association, Nov. 2008. [Online].

Available: https://www.usenix.org/conference/lisa-08/portable-desktop-applications-based-

p2p-transportation-and-virtualization

[12] D. Mulfari, A. Celesti, M. Villari, and A. Puliafito, “Using Virtualization and noVNC to

Support Assistive Technology in Cloud Computing,” in 2014 IEEE 3rd Symposium on

Network Cloud Computing and Applications (ncca 2014), Italy: IEEE, Feb. 2014, pp. 125–

132. doi: 10.1109/NCCA.2014.28.

[13] Longzheng Cai, Shengsheng Yu, and Jing-li Zhou, “Research and implementation of

remote desktop protocol service over SSL VPN,” in IEEE International Conference

onServices Computing, 2004. (SCC 2004). Proceedings. 2004, Shanghai, China: IEEE,

2004, pp. 502–505. doi: 10.1109/SCC.2004.1358052.

[14] K. Bicakci, Y. Uzunay, and M. Khan, “Towards Zero Trust: The Design and

Implementation of a Secure End-Point Device for Remote Working,” in 2021 International

Conference on Information Security and Cryptology (ISCTURKEY), Ankara, Turkey: IEEE,

Dec. 2021, pp. 28–33. doi: 10.1109/ISCTURKEY53027.2021.9654298.

 40

VITA

 Heston Friedland was born in San Antonio, TX, to parents John and Suzanne. He is the

youngest of three children, with two older brothers. He attended Sango Elementary in

Clarksville, TN, and continued to Rossview Middle and High School in Clarksville, Tennessee.

In 2019, he received a Bachelor of Science degree in Chemistry from the University of

Tennessee – Knoxville. In 2020, he accepted a Graduate Research Assistant position, where he

has worked while continuing to pursue his Master of Science degree in Computer Science at the

University of Tennessee – Chattanooga.

