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ABSTRACT

Window functions are commonly used in data processing to detect transient events or for

time-averaging of frequency spectra. A generalized window function is demonstrated using the

Ionizing Radiation Effects Spectroscopy (IRES) technique to enhance the measurement of transient

anomalies within arbitrary waveforms. The IRES filter convolves time data with a sliding window

consisting of a moment-generating function. The resulting time-dependent statistical moments

are used to eliminate any steady-state signatures, including noise, and extract transient behav-

iors. The IRES filter analyzes data from heavy-ion exposures of commercial off-the-shelf (COTS)

operational amplifiers, laser-induced transients in Complementary Metal-Oxide-Semiconductor

(CMOS) phase-locked loops, and simulated transients in digital and analog circuits.The perfor-

mance of the IRES filter in noisy environments shows that transients can be measured with higher

fidelity than standard amplitude thresholding. This statistical window analysis technique may re-

move the need for complex triggering mechanisms on instrumentation and doesn’t require a-priori

knowledge of transient characteristics.
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CHAPTER 1

INTRODUCTION

An understanding of radiation effects in microelectronics is required for space-bound sys-

tems. The harsh space environment poses significant challenges for electronic systems due to

ionizing radiation from solar emissions and Galactic Cosmic Rays (GCR). Single-event transients

(SETs) are radiation-induced transients that can occur in electronic systems operating in space.

Single-event transients (SETs) are radiation-induced temporal phenomena caused by the interac-

tions of single ionizing particles that deposit energy in the electronic material, leading to a tem-

porary or permanent malfunction. Before a mission, accelerated radiation testing of individual

electronic components is typically carried out; testing at these radiation facilities is crucial to un-

derstand the effects of radiation on microelectronics and for developing radiation-hardened elec-

tronic systems capable of withstanding the harsh space environment.

In recent years, the commercialization of space has been on the rise, with private companies

and governmental agencies launching satellites, space probes, and crewed spacecraft for commu-

nication, navigation, scientific exploration, and other applications at an increasing rate. The United

States went from launching 190 objects into space in 2018 to launching 1,796 objects into space

in 2022 [1]. However, with this increased commercialization, there has also been a higher demand

for faster and more efficient ground-based radiation testing at facilities. Furthermore, commer-

cial off-the-shelf (COTS) components, systems-on-chip (SOC), and heterogeneous packaged parts

often require extra time, specialized facilities, and extensive preparation before experimentation,

which can be a significant hurdle for researchers and companies. As a result, developing automa-

tion techniques for radiation testing, data collection, and analysis has become crucial to meet the

growing constraints and demands for available time at heavy ion facilities.
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1.1 Contributions to the State-of-the-Art

This work further investigates the uses of a non-invasive technique, Ionizing Radiation Ef-

fects Spectroscopy (IRES), for analyzing SETs in arbitrary signals and the ability to filter noise. Al-

though this technique is simple, it could provide critical advantages during radiation testing. First,

this technique uses a generalized window function to measure sudden changes caused by SETs in

DC, RF, and Digital waveforms. The IRES filter produces time-dependent statistical moments by

convolving time data with a sliding window that consists of a moment-generating function. These

moments help to remove steady-state signatures, allowing for the extraction of the transient behav-

iors. Second, this work looks at the performance of the IRES filter for noisy environments such

as heavy ion facilities and shows that transients could be measured with higher fidelity than stan-

dard instrumentation techniques, such as amplitude thresholding. This statistical window analysis

technique may remove the need for complex triggering mechanisms on instrumentation and would

not require a-priori knowledge of transient characteristics. The work presented in this thesis is

demonstrated in the peer-reviewed paper [2].

1.2 Thesis Outline

The Background presents the fundamental knowledge needed to understand this work, the

origins of IRES, single-event effects (SEE), and radiation testing.

The Methods present the new techniques developed in this study, including how IRES is

used to analyze single-event effects, the generalized flow of the IRES model, and how the IRES

window filter calculates the moments for the IRES spectrogram.

The Results present IRES’s ability to analyze SET in various signals, beginning with the

analog DC and RF signals, followed by the digital deterministic and stochastic signals, and con-

cluding with a comparison between standard instrumentation amplitude thresholding and IRES

filter with statistical thresholding while increasing the signal-to-noise ratio (SNR).
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CHAPTER 2

BACKGROUND

2.1 Introduction

This section presents the relevant background information for the thesis. This section intro-

duces the concept of single-event effects (SEE) caused by ionizing particles depositing charge to

a device’s sensitive nodes. SEE can lead to single-event transients (SETs) in analog systems (ana-

log single-event transients or ASETs) and single-event upsets (SEUs) in digital electronic devices.

SEE can result in temporary performance degradation or permanent damage, making them a criti-

cal concern for electronic systems used in space applications. Additionally, this section introduces

the challenges associated with radiation testing, the limitations of conventional approaches, and the

need for precise detection methods. Finally, the section covers the history of Ionizing Radiation

Effect Spectroscopy (IRES) and its development for studying radiation effects. It also provides an

overview of previous studies that used machine learning (ML) to analyze and classify the results

of clock signals from an RF PLL circuit [3–5].

2.2 Space Environment

Space-bound electronic systems can experience many different radiation effects phenom-

ena, such as Single Event Effects (SEE), Total Ionizing Dose (TID), and Displacement Damage

Dose (DDD) during their mission life span. Ionizing radiation can penetrate spacecraft and af-

fect the performance and reliability of electronic systems. This radiation originates from various

sources, including the sun (solar particle events), galactic cosmic rays (GCR), and trapped radiation

belts within Earth’s Magnetosphere.

Trapped within the Earth’s magnetosphere are the Van Allen belts. The inner belt is pri-
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Figure 2.1 Sources of Ionizing Radiation in Interplanetary Space [6]

marily composed of high-energy protons, while the outer belt consists of a mixture of protons

and electrons [7]. These particles are captured and held in place by the Earth’s magnetic field,

forming a protective barrier against incoming radiation from the solar wind and GCR shown in

Fig. 2.1. However, the Van Allen belts can pose challenges for space missions, particularly for

satellites and spacecraft that pass through these regions. Space agencies and mission designers

must carefully consider the effects of space radiation and employ radiation-hardened designs and

mitigation strategies to ensure the reliable operation of satellites and spacecraft. Making SEE a

significant concern for space-based electronic systems and effective radiation testing analysis tools

make IRES a necessity when studying the radiation effects in microelectronics.

2.3 Single-Event Effects

When a single ionizing particle collides with a sensitive node inside a semiconductor de-

vice, it causes an unwanted behavior called a Single Event Effect (SEE). This interaction causes
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electron-hole pairs to form in the circuit’s semiconductor material that can be collected at a met-

allurgical junction [8]. Linear Energy Transfer (LET) measures the energy deposited in a material

by a charged particle per unit length of its path. LET depends on the type and energy of the

particle, as well as the density and composition of the material it passes through. Shown in Fig.

2.2, is the process of charge generation and collection through drift and diffusion in a reverse-

biased n+/p junction [9]. As the dimensions of semiconductor devices are decreasing with the

technology trends, SEE is becoming more effective in disruption of the circuit operation [10].

SEE events can cause temporary performance degradation or permanent damage depending on the

amount of charge deposited, circuit topology, and the amount of charge collected on the circuit

node [10, 11]. SEE can be categorized as a Single Event Burnout (SEB), Single Event Functional

Interrupt (SEFI), Single Event Transient (SET), and Single Event Upset (SEU) to name a few. This

work is focused primarily on IRES detecting SET effects from the steady state.

Figure 2.2 Illustration of an ion strike on a reverse-biased n+/p junction [9]
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2.3.1 Digital Single Event Transients

If a particle strike happens in combinational logic, it can cause a voltage transient that

changes the logic state at the affected node. These DSETs can lead to SEUs in memory cells if

the timing exceeds latching requirements or if the total collected charge exceeds the cell’s critical

charge to upset. DSETs may propagate and induce an error in a memory element if the following

three conditions are fulfilled [12–14]: 1) the SET is generated at a sensitive logic node, 2) as shown

in Fig. 2.3 it propagates down an open logic path and arrives with sufficient amplitude and duration

to change the memory state at a latch or other memory element, and 3) it arrives during the cell

“window of vulnerability”, i.e. when the clocking condition enables the transient capture as shown

in Fig.2.4 [15]. Critical charge (Qcrit) is a metric used primarily for comparing SEE sensitivities

of digital ICs [16]. Qcrit is the minimum amount of charge required for producing a SEE. Qcrit

is a circuit property that may be calculated from the product of the node capacitance (C) and the

minimum voltage excursion (∆V ) required for a SEE [17].

Figure 2.3 Examples of DSET pulses that (a) do not meet pulse width criteria to upset [18] and are
electrically masked and (b) do meet criteria to upset [15]
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Figure 2.4 DSET latching window of vulnerability [19]

2.3.2 Analog Single Event Transients

When SETs are present in analog systems, they are called Analog Single Event Transients

(ASETs). In a mixed-signal system, ASETs originating in the “analog” portion may become

latched in a follow-on circuit; in the process, what starts as an ASET, ends up having characteristics

of a digital upset [17]. Depending on the analog device ASETs can affect a device differently; for

instance, operational amplifiers (OP-amp) like the LM124 can have positive, negative, and bipolar

ASETs as shown in Fig. 2.5. In voltage compensators, ASETs exhibit variations solely in terms

of their width and amplitude. For ASETs in pulse-width-modulators (PWMs), as shown in Fig.

2.6, having a shortened positive pulse for one of its cycles could also result in dropped pulses,

shortened pulses, or phase shifts [20]. Finally, for a voltage-controlled oscillator (VCO) shown in

Fig. 2.7, ASETs can affect the voltage amplitude and the desired oscillation frequency.

The value of Qcrit is somewhat arbitrary for linear devices since it must be related to a mea-

surable quantity, such as ASET amplitude. Qcrit may be defined as the minimum amount of charge

required to produce an ASET of a given amplitude in a particular operating configuration or with

respect to a system application for which some minimum amount of charge must be collected to

cause a system upset [17]. Many factors affect the ASET severity, including (a) ion strike location,

7



(a) (b)

(c) (d)

Figure 2.5 Analog SETs in the LM124 following exposure to Xe ions (16 MeV/amu) at the Lawrence
Berkeley National Laboratories (LBNL) 88" Cyclotron

(b) energy and nuclear charge of the incident ion, and (c) the device operating configuration (input

voltage, output impedance, supply voltage, gain, etc.). Because the operating configuration de-

termines ASET shape and sensitivity, measurements made for one operating configuration are not

necessarily applicable to another [17]. Also, imperfections during the manufacturing process will

lead to individual transistor responses from the other transistors in the same node. These variables

have profound implications for testing, which must be performed for each operating configuration,

making the process expensive and time-consuming [17].
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Figure 2.6 A pulse-width-modulator showing a shortened positive pulse in one of the pulse trains [21]

2.4 Radiation Testing

Typically, a test engineer will design an experiment to detect such anomalous behavior by

determining a threshold error in voltage or current to trigger measurement hardware. This approach

always presents a risk of missing unexpected erroneous behavior and is always based on the noise

constraints imposed by the measurement system. Unfortunately, particle accelerators used in heavy

ion irradiation are one way to test for SETs and often are extremely noisy environments in terms of

injecting artificial noise into the system. Laser facilities are another way to test for SETs; although

usually much less aggressive than a particle accelerator chamber in terms of the electromagnetic

environment, some experiments can require specific attention on the signal integrity to minimize

the impact of noise sources like scanning stages or optical modulators, and this is particularly the

case for SET testing of analog and ultra-low power devices [23,24]. Transients will not be detected

if the SET effect occurs below the noise level set in the triggering hardware, which is often the case

in RF signals shown in Fig. 2.8, where the red horizontal lines represent the instrument trigger to

9



Figure 2.7 Output voltage as a function of time for a voltage-controlled oscillator The ASET appears as a
reduction in amplitude that lasts for about 10 cycles [22]

start recording the anomalous signal. So in the case of periodic signals, the start of the recording

process is usually done manually by the test engineer or an external trigger controlled by the start

and stop of a beam. This process leads to larger files that will take longer to analyze and may

not contain any SETs at that LET. This can lead to insufficient testing, wasting valuable time and

money.

2.4.1 Conventional Measurement Analysis

SEEs are identified by assessing a part’s sensitivity to ion-stopping power, which is mea-

sured through its LET. LET refers to the energy loss per unit length as an ionizing particle travels

through a material. An SEE Cross-section is the device’s relative sensitive area to ionizing radia-

tion and is a function of the number of errors nerrors and ion fluence Φ(x) at a LET x shown in Eq.

(2.1).
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Figure 2.8 Example of an RF signal where the amplitude decreases before returning to its steady state
where the red lines represent the trigger settings set on your instrument hardware

σ(x) =
nerrors

Φ(x)
(2.1)

When trying to understand a device’s SET sensitivity, simply counting events and calculat-

ing a cross-section is not enough. To fully comprehend and develop a model of DSETs, only the

width ∆t is necessary. However, when it comes to ASETs and whether they pose a problem for

amplifiers and compensators, both amplitude ∆V and width ∆t are required. Combining knowledge

of SET waveform signatures with modeling and simulation is the key to developing and evaluat-

ing potential techniques for mitigating SETs in complex circuits [15]. The details of the pulse

shape are generally not necessary. However, it is essential to count only those SETs that exceed

the minimum amplitude ∆Vcrit and width ∆tcrit values determined by the application for propa-

gation through the system [17]. SETs, which manifest as unwanted signal transitions outside the

minimum amplitude and width values, can be mitigated through hardware manipulation, such as
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filtering or redundancy, at the cost of increased area and power and decreased bandwidth [8]. Re-

gardless of the radiation-hardening-by-design (RHBD) technique used, all fundamentally involve

a reduction in the amount of collected charge and/or the increase in the critical charge needed to

generate a SET [20]. However, effective RHBD generally requires detailed knowledge of how the

erroneous charge can change the observable behavior at the output of a device.

2.5 IRES Past Studies

Ionizing radiation effects spectroscopy (IRES) is based on Radio Frequency-Distinct Na-

tive Attributes (RF-DNA) fingerprinting methodologies and signal processing techniques [25–35].

RF-DNA is used in wireless communication applications to augment security protocols by basing

authenticity requirements on statistical features derived from transmitted waveforms. Features are

associated with intrinsic variability within the system and are often measured via short-time do-

main statistical behavior. These inherent variabilities within the system act as unique identifiers

similar to how a fingerprint is a unique feature for the identification of an individual.

The first publication of the IRES method for monitoring devices for radiation effects analy-

sis looked at total ionizing dose (TID) degradation [3]. It used IRES and a 2-D linear discriminant

(LD) machine learning classification model in the 130-nm CMOS phase-locked-loop (PLL) and

voltage-controlled oscillator (VCO) to predict TID levels based on a given bias voltage. By uti-

lizing IRES’s mean and standard deviation features of the instantaneous frequency, TID levels can

be classified at a given bias voltage. The IRES-ML combination was able to predict TID levels

and bias voltage with an impressive accuracy rate of between 97.5% and 100%. The prediction

accuracy remained high for training set sizes of 50 samples or greater but decreased to 96.47% and

94.95% for training set sizes of 40 and 30 samples, respectively [3]. These were the first results,

demonstrating the potential of IRES in device monitoring for radiation effects analysis.

The next two publications of the IRES method for monitoring devices for radiation effects

analysis looked at single event transients (SETs) in the 130-nm CMOS PLL [4,5]. In these studies,

the k-nearest neighbors (kNNs) ML algorithm was used with IRES data. The statistical features,
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derived from several standard circuit metrics like cycle-to-mean (c2m), cycle-to-cycle (c2c), and

frequency (f) and up to eight moment-generating functions, show that SETs can be automatically

identified by the kNN models, with several features resulting in greater than 98% correct identi-

fication of SETs [5]. These results further demonstrate the potential of IRES method in device

monitoring for radiation effects analysis but now also for SETs.

Thus far, previous works introduced IRES for in-situ analysis of TID degradation [3] and

SETs in RF circuits [4, 5]. IRES leverages time-frequency domain analysis techniques common

in data communications [36, 37] for identifying anomalous behavior by “imaging" the statistical

features of a waveform. However, all previous studies that leverage IRES use in clock signals from

an RF PLL circuit [3–5]. Additionally, these studies all paired IRES with machine learning (ML)

for the study and classification of the results.

2.6 Summary

In this section, the relevant background information was discussed and one of particu-

lar interest was the detection of SET effects, which can lead to voltage transients and changes

in logic states. These Digital Single Event Transients (DSETs) and Analog Single Event Tran-

sients (ASETs) have significant impacts on various circuit elements including memory cells, op-

erational amplifiers, comparators, pulse-width modulators, and voltage-controlled oscillators. To

test for such effects, radiation testing methods involving particle accelerators and laser facilities

are employed, albeit with challenges related to noise and maintaining signal integrity. Conven-

tional measurement analysis and radiation-hardening-by-design techniques are utilized to mitigate

the impact of SEE. One promising approach is Ionizing Radiation Effects Spectroscopy (IRES),

which leverages RF-DNA fingerprinting and machine learning to monitor devices for radiation ef-

fects analysis. Previous studies have demonstrated the potential of IRES in detecting total ionizing

dose (TID) degradation and analyzing SETs in PLL CMOS circuits. In the next chapter, we will

look at how IRES detects SET signatures in arbitrary signals and the experimental setups for each

device under test.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

Ionizing Radiation Effects Spectroscopy (IRES) offers a powerful and versatile method-

ology for characterizing the effects of ionizing radiation on electronic devices and systems. By

leveraging statistical profiles and moment-based analysis, IRES enables the detection and assess-

ment of transient behavior, including SETs, in an efficient and reliable manner. This technique

enhances measurement fidelity, particularly in noisy environments, and contributes to the devel-

opment of radiation-hardened technologies. In the following sections, we will delve deeper into

the working principles and advantages of IRES, providing insights into its application in radiation

testing and analysis.

3.2 IRES Window Filter

IRES extracts stochastic features of a waveform and uses the resulting profiles for a statistics-

based assessment of transient behavior. The presence of a transient is determined based on the

likelihood that a sampled behavior is statistically different from expected steady-state behavior.

A diagram of the general methodology is shown in Fig. 3.1 [2], where an arbitrary discrete

time-domain waveform or data sequence is analyzed by viewing smaller “windowed" segments

and sliding the viewing window throughout the waveform. This work uses a window function

for computing the statistical moments to develop time-dependent statistical profiles. The window

function can include features from any signal metric in the time or frequency domain. Furthermore,

the window function may be applied concurrently or sequentially with additional windowing func-

tions.
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Figure 3.1 Block diagram of the IRES methodology where an arbitrary time-domain waveform or data
sequence is analyzed by viewing smaller "windowed" segments and sliding the viewing
window throughout the waveform. A statistical profile is developed with respect to time and
can include features from any signal metric in the time or frequency domain [2]

The proposed IRES window filter convolves measured data with a statistical moment-

generating function through a sliding window. As a result, any number of statistical moments

describing nuanced features of data contained within a given window can be computed. Given

time-domain data within a window, represented as a random variable X , the kth moment of a ran-

dom variable X is defined as the expectation of Xk, or E(Xk). Likewise, the kth central moment

of a random variable X is defined to be E((X −E(X))k). For example, the first moment can be

computed by determining the expectation of X and is defined as the mean (µ), whereas the second

central moment is defined as the variance (σ2). Rather than deriving expressions for the individual

moments, a moment-generating function, MXi , can compute all moments of X . Eq. (3.1) represents

the moment generating function for Xi, the data consisting of the N time samples within the ith win-

dow and consisting of real-valued numbers t. In other words, M is determined as the expectation

of the random variable etXi .

MXi(t) = E(etXi) (3.1)
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For a discrete and windowed data set, M can be reduced to (3.2), where Pi(x) is the proba-

bility mass function (PMF) of Xi.

MXi(t) = ∑
Xi

etxPi(x) (3.2)

It follows that M can then be used to derive up to k moments of Xi using (3.3), where the kth

derivative of M with respect to t is computed and evaluated at t = 0. Thus, any number of moments

E(Xk) can be calculated within each discrete window and appended to form an IRES spectrogram

as described in [4].

E(Xk) =
dk

dtk MXi(t)
∣∣∣∣
t=0

(3.3)

The first four moments (i.e., mean µ , variance σ2, skewness γ , and kurtosis κ) are described

in [4]. µ is useful for identifying the worst-case deviation of the signal, whereas σ2 or σ measures

emphasize the sharpness of a transition within the signal. γ and κ are measures indicating an abrupt

transition from steady-state (i.e., the start, recovery, or ending of a transient anomaly). Here, the

6th and 7th moments are also used, representing smoothed versions of γ and κ , respectively. The

6th and 7th moments may be used to identify an anomaly through more discrete indicators of a

disruption.

An advantage of the IRES moment-generating filter is the ability to process arbitrary (i.e.,

the signal type is irrelevant) discrete waveforms. The resulting statistical moments can aid in

detecting abnormalities caused by SETs, improving measurement fidelity, especially in noisy en-

vironments. An example is shown in Fig. 3.2, where time-sequenced moments of a clock signal’s

frequency and phase are used to develop and visualize the shifting statistical profiles before, dur-

ing, and after the presence of a SET. In Fig. 3.2, a clock signal’s behavior (a) pre-, (b) during, and

(c) post-strike are visualized after applying IRES window filters and normalizing each moment to

the maximum value in each field. PMFs are estimated within the sliding windows, and several

statistical moments are calculated. Here, the time evolution of the mean of the signal’s frequency
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(a) (b) (c)

(d)

Figure 3.2 Example IRES spectrogram for visualizing various statistical moments of a signal’s behavior
(a) pre-, (b) during, and (c) post-strike. Probability density functions are estimated within the
sliding windows, and several statistical moments are calculated. Here, the time evolution of
the mean of the signal’s frequency (µ( f )), the mean of the signal’s phase (µ(φ)), the variance
(σ2), standard deviation (σ ), kurtosis (κ) and skewness (γ) of the phase are illustrated.
after [5]

(µ( f )), the mean of the signal’s phase (µ(φ)), and σ2, σ ,κ and γ of the phase are illustrated

following a perturbation by an ion [5].

3.2.1 IRES Window Size

To optimize window size, the aim is to minimize the impact of the signal’s steady state

portion allowing for the extraction of the SET. This is particularly useful for periodic signals in

which identifying the SET is sometimes challenging. IRES significantly decreases the AC portion,

leaving only the DC SET. To ensure accurate features of SET signal, the window size should be

kept small. The ideal window size for periodic signals is determined by calculating the period T

of the periodic signal using eq. (3.4), where f represents frequency.

17



T =
1
f

(3.4)

(a) (b)

Figure 3.3 (a) represents a typical periodic sinusoidal signal having an amplitude of 1. Three different
sample rates from signal (a) were compared in Fig. (b) demonstrating the relationship of
setting the window size as a percent of the (a) sinusoidal signal’s period to the peak-to-peak
amplitude of IRES’s mean moments

As shown in Fig. 3.3 (b) by setting the window size to the period it standardizes the values

inside the window to have very little to no variations of the statistical moments as the window

moves along the periodic signal. Also, inferred by Fig. 3.3 (b) if the frequency of the signal was

to change so that the window would not fall on the optimum window size it would show up as an

increase in amplitude shift in the IRES moments. As the number of samples per cycle increases

the amplitude of the signal decrease allowing for smaller variations to be detected.

3.2.2 IRES Statistical Threshold

When radiation testing, certain devices can experience gradual shifts in their normally de-

signed steady-state operating conditions. This effect is called total ionizing dose (TID). The TID

effect causes issues for modern SET studies because the test engineer will design an experiment

to detect SET anomalous behavior by determining a threshold error in voltage or current to trigger

measurement hardware. If the threshold error in voltage or current changes throughout the test
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due to TID, it will cause the test engineer also to change the trigger setting on the measurement

hardware. IRES allows for a statistical threshold to be implemented without the need to redefine

the error threshold due to the TID effect. The IRES statistical threshold is computed by taking

the mode of the mean moment (µ) plus or minus (due to SETs being bi-directional) mode of the

standard deviation moment (σ ) as shown in Eq. (3.5).

IRESthresh = mode(µ)±mode(σ) (3.5)

The effectiveness of Eq. 3.5 takes advantage of the nature of a transient, being a short

anomalous behavior, meaning the most frequent value (mode) of a signal should be the steady

state. IRES’s (µ) moment, which can be thought of as a filter version of the raw signal, amplifies

the SET signature from the steady-state signature. IRES also builds a series of discrete times of

the standard deviation moment σ of the signal. Since signals are affected by added environmental

noise the standard deviation moment is selected over the variance moment for that reason. With

the addition of a binary conditional statement the extraction of the SET duration is possible with

Eq. (3.6),

f (x,y) =

1 if f (x,y)< lower IRESthresh OR f (x,y)> upper IRESthresh

0 otherwise
(3.6)

where signal values below the lowerIREStresh and above upperIREStresh are assigned a bi-

nary value of 1 meaning that part of the signal lies outside the signal steady state parameter. IRES’s

process of extracting the SET is shown in Fig. 3.4. One assumption is that the instigating window

is large enough for the most frequent value of the µ moment. It needs to be the nominal steady-

state value and not part of the SET signature as shown in Fig. 3.4 (e). Where the lower IRESthresh

and upper IRESthresh are placed on the saturation part of the SET.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4 Raw signal (a) is an ASET collected in the LM124 while at LBNL. Fig. (b) and (e) the output
of IRES’s mean moment in blue and in red the results of IRESthresh. (c) being the results of the
binary conditional statement where the values equal to 1 fall outside the nominal steady state
indicating a SET. Finally, Fig. (d) and (f) show the full width of the extracted SET
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3.3 Device Under Test

3.3.1 Device Under Test LM124

The LM124 Op-Amps were irradiated at the LBNL 88” Cyclotron and the MSU FRIB

linear accelerator. At LBNL, Xe and Kr ions in the 16 MeV/amu cocktail were utilized in air

(with approximate LET values of 49 MeV*cm2/mg and 25 MeV*cm2/mg, respectively) with fluxes

ranging from 4.5e3 to 2.0e7 ions/cm2/s. At the MSU FRIB, 20 MeV/amu Ar and 30.5 MeV/amu

O ions were utilized (with approximate LET values of 7.9 MeV*-cm2/mg and 1.0 MeV*cm2/mg,

respectively) with fluxes ranging from 4.5e3 to 1e4 ions/cm2/s. SRIM [38] was used in all cases to

determine the LET at the surface of the de-lidded die.

Figure 3.5 LM124 SET cross-section (cm2/dev) versus LET (MeV*cm2/mg) for data obtained at LBNL
and MSU and compared to the reference data “H" represented by green stars obtained at
NSRL [20]. TABLE 3.1 details the test configurations [2]

The LM124 DUTs were tested in inverting and non-inverting configurations having dif-

ferent gains, varying input voltages, and with VDD = 15 V and VSS = -15 V. TABLE 3.1 details

the configurations of each DUT. The angle of incidence was set to either 0 or 45 degrees. Each

ion exposure was conducted until 100 SETs were acquired, except for the O ion at the FRIB that

was run to a total fluence of 5.16e7 ions/cm2. In this case, the incident LET (of approximately

1 MeV*cm2/mg) was near the LET threshold of the LM124, and the fluence was chosen to estab-
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Table 3.1 Testing conditions

Measurements Device Facilities Configuration Gain Bias

A LM124 LBNL Inverting 10V/V 0.1V

B LM124 LBNL Inverting 10V/V 0.5V

C LM124 LBNL Non-Inverting 10V/V 0.1V

D LM124 LBNL Non-Inverting 10V/V 0.5V

E LM124 LBNL Non-Inverting 1V/V 1V

F LM124 LBNL Non-Inverting 1V/V 5V

G LM124 FRIB(MSU) Non-Inverting 1V/V 1V

H LM124 NASA Non-Inverting 1V/V 1V

I Mixed-Signal PLL* NRL

* The mixed-signal PLL circuit, fabricated in the IBM 130 nm CMRF8RF CMOS technology, is detailed in [39]. The device
has a center frequency of 200 MHz and a maximum frequency of 530 MHz. The locking range of the PLL is between 40

and 350 MHz, with a gain of 7.75 GHz/V.

lish a limiting cross-section; three SETs were recorded.

The LM124 DUTs were connected to a Tektronix DPO7104 Oscilloscope (Oscope) through

coaxial cables and BNC connectors. A window trigger was set to be ±0.5 V above the nominal out-

put voltage, and pre-irradiation measurements were obtained to ensure that no false-positive, noise-

induced events were captured. SETs were saved locally to a solid-state drive. A programmable

DC power supply was connected by a coaxial cable and a BNC connector to the differential input

of the DUT. A second power unit supplied a biasing voltage of ±15 V. The programmable DC

power supply and Oscope were connected to a computer through an ethernet switch. Python script

commands were sent from the computer to the testing equipment. After testing, the SET data were

evaluated with the IRES analysis software. Fig. 3.5 [2] shows the SET cross-section (cm2/dev)

versus LET (MeV*cm2/mg) results for the LM124 DUTs irradiated at LBNL and MSU. Data ob-

tained at NSRL from [20], marked by the green stars in Fig. 3.5 [2], are also included for reference

and to show consistent results with prior literature. A Weibull curve was used to fit the LM124’s

measured cross-section probability data to a particle LET. The Weibull curve is a four-parameter

best fit to the data, calculating the rate of radiation-induced single event effects for a device using
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Eq. (3.7).

F(x) = A(1− e−
(x−xo)

W
s

) (3.7)

Where x is the effective LET in (MeV-cm2/mg), F(x) is the SEE cross-section (cm2/dev), A is

the saturating cross-section, xo is the onset parameter, W is the width parameter, and s is the

dimensionless exponent. The Weibull curve shown in Fig. 3.5 had the following fitting parameters

A = 1.47e-3, x0 = 1.01, W = 60, and s = .42.

3.3.2 Device Under Test CMOS PLL

Figure 3.6 2-D spatial map of the regions in the CP subcircuit sensitive to SETs. The experiment was
performed using laser TPA at a step size of 0.2 µm. Each pixel represents the average
maximum phase displacement (instantaneous cycle-to-cycle phase error) for ten SETs
generated at each x -y location. The image shows that the output of the CP circuit, in
particular, the nMOS switches and current sources contain the most sensitive junctions due to
their ability to deplete the charge stored in CLPF (after [39])

A custom PLL fabricated in a 130 nm CMOS technology was used to obtain transient data

at NRL’s TPA facility using a high peak power femtosecond laser at sub-bandgap optical wave-
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lengths [40–44]. The DUT was mounted on a motorized xyz translation platform with 0.1 µm

resolution, and the TPA laser was focused on the PLL’s sub-circuits. Waveforms were collected at

the PLL circuit’s output at the resulting ten thousand (10,000) strike locations, allowing for visual-

ization of the 2-D spatial sensitivity map shown in Fig. 3.6. Ten independent measurements were

taken at each strike location, amounting to one hundred thousand (100,000) individual waveforms.

Additional details on this data set can be found in [5,39]. This work leverages these data to analyze

the effectiveness of the IRES window filter on sinusoidal data in the presence of noise.

3.4 Summary

Ionizing Radiation Effects Spectroscopy (IRES) is a powerful technique that enables the

characterization of ionizing radiation effects in devices and systems. By extracting features of a

waveform and analyzing statistical profiles, IRES allows for a thorough assessment of transient

behavior. The windowed analysis of time-domain waveforms, where statistical moments are com-

puted using a moment-generating function. These moments provide valuable information about

the waveform, such as mean, variance, skewness, and kurtosis. The IRES technique offers several

advantages, including its ability to process arbitrary waveforms and its effectiveness in detect-

ing anomalies caused by Single Event Transients (SETs). It also addresses challenges posed by

Total Ionizing Dose (TID) effects by implementing a statistical threshold that remains consistent

throughout the test. The optimal window size is determined based on the periodic signal’s period,

minimizing the impact of steady-state portions and facilitating SET extraction. Overall, IRES

contributes to improving measurement fidelity, particularly in noisy environments, and enables a

comprehensive analysis of ionizing radiation effects on devices.
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CHAPTER 4

RESULTS

4.1 Introduction

This section presents the results from simulations and measured data collected on an LM124

at LBNL and Michigan State University (MSU) FRIB facility. This section goes over the findings

to analyze SET in various signals. It begins with an analysis of analog DC and RF signals, fol-

lowed by an analysis of digital deterministic and stochastic signals, and concludes with a compar-

ison between standard instrumentation amplitude thresholding and IRES filtering with statistical

thresholding in the presence of noise. Any erroneous behavior can be identified in-situ, allowing

for further analysis by a radiation test engineer or through ML.

4.2 IRES for Analog Signals

Figs. 4.1(a) and (c) illustrate examples of analog SETs captured from an LM124 during

a heavy ion radiation test at LBNL. In both cases, the LM124 was configured in a non-inverting,

unity-gain configuration (i.e., voltage follower) with a DC input of 1 V. The Xe ion (16 MeV/amu)

was utilized with an incident LET of 49.3 MeV*cm2/mg. Fig. 4.1(e) illustrates a similar transient

with a sinusoidal input where the DC offset was 1 V, and the sinusoidal amplitude was approxi-

mately 4 V.

Testing is usually conducted under DC conditions because the transients (as in Figs. 4.1(a)

and (c)) [2] are detectable above a static threshold above the noise level. As seen in Fig. 4.1(e) [2],

AC transients require more complicated instrumentation thresholding techniques. However, IRES

can extract the SET signal even when the error response competes with excessive noise or AC

signals. IRES allows for the analysis of short-duration transient behavior via time-frequency anal-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1 Analog SETs in the LM124 following exposure to Xe ions (16 MeV/amu) at LBNL. The
incident LET was 49.3 MeV*cm2/mg. The LM124 was configured in unity gain with a DC
input of Vin= 1 V in (a) and (c) and with a sinusoidal input and a 10 V amplitude in (e). Figs.
(b), (d), and (f) are the corresponding IRES spectrograms, including the mean, variance,
standard deviation, skewness, kurtosis, and the 6th and 7th moments [2]
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ysis [4] and filters out the nominal circuit behavior, thus extracting the error signal. Figs. 4.1(b),

(d), and (f) [2] illustrate the IRES spectrograms for the three transients and are constructed using

µ , σ , σ2, κ , γ , and the 6th and 7th moments. The spectrograms are unique to the underlying tran-

sient characteristics, as seen by comparing Figs. 4.1(b) and (d) [2], and are readily obtained from

DC or sinusoidal signals as seen by comparing Figs. 4.1(b) and (f) [2]. µ represents an AC-filtered

version of the original signal. σ and σ2 are measures of the transient time constants, and κ and γ

both signal event transitions. As seen in Fig. 4.1 (f) [2], the steady-state AC sinusoidal waveform

has a secondary effect on the calculated moments.

4.2.1 Analysis of oscillation frequency and amplitude shifts

The output signal induced by a SET varies based on the type of integrated circuit (IC),

where the strike occurs in the circuit, and the amounts of energy transferred to the semiconductor

material. IRES’s ability to filter out or reduce the influence that the steady state portion exhibits

on the signal, is especially useful for signals that are periodic by design where the identification of

SET may not be clearly distinguishable for traditional measurement hardware; for example, with

changes in frequency shown in Fig. 4.2 (a) and drops in amplitude shown in Fig.4.2 (c). By setting

IRES’s Window Size to the signal’s period (the time it takes to complete one cycle) the AC portion

is dramatically reduced leaving just the DC SET signature. It is important for the window size to

be as small as possible to maintain the accuracy of SET features.

Simulations in Python were developed to study IRES’s responses to changes in the fre-

quency and amplitude of periodic signals, as well as changes in both frequency and amplitude, as

seen in Fig. 4.2 (a), (c), and (e), respectively. For each IRES spectrogram shown in Fig. 4.2 (b),(d),

and (f), the window size was set to the steady-state period of the waveform in this case 3311, and

with a stride of 2. In all three scenarios, the steady-state oscillation element of the signal was re-

moved, and a DC average was computed for each statistical moment. By separating the frequency

and amplitude, the signal’s characteristics can be better understood as to how different moments

affect the impact of IRES’s ability to analyze signals experiencing an ASET. Fig. 4.2 (b) effectively
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2 Figs. (a) change in frequency, (c) change in amplitude, and (e) change in both frequency and
amplitude are examples of ASETs in an oscillating signal. Figs. (b), (d), and (f) are the
corresponding IRES spectrograms, including the mean, variance, standard deviation,
skewness, kurtosis, and the 6th and 7th moments
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demonstrates how IRES possesses the capability to detect changes in frequency. This is achieved

by optimizing the window to the steady-state period, which allows any frequency changes present

in the signal to be amplified as the window moves across the periodic signal. Additionally, Fig.

4.2 (d) showcases the ability of IRES to detect changes in amplitude. Here, all sinusoidal aspects

are removed from the signal and only the DC portion remains. Fig.4.2 (f) provides insight into

changes in both frequency and amplitude are applied to the periodic signal. The mean, skewness,

and kurtosis moments from Fig.4.2 (b), where frequency plays the largest role, exhibit similar sta-

tistical features to those observed in Fig.4.2 (f). Similarly, the standard deviation, variance, and

7th moments from Fig.4.2 (d), where the amplitude is the key factor, also have similar statistical

features to those observed in Fig.4.2 (f).

4.2.2 Analysis of Dropped Pulses, Shortened Pulses, or Phase Shifts

Pulse Width Modulation (PWM) is a technique used in electronics and communication

systems to control the amount of power delivered to a device or component. PWM works by

rapidly switching a power source on and off at a fixed frequency while varying the ratio of the on-

time to the off-time. The duration of time that the power source is switched on during each cycle

is called the pulse width, and it determines the average power delivered to the load. By adjusting

the pulse width, the effective voltage or power delivered to the load can be controlled. ASETs

can induce changes to the signal’s pulse width in terms of a dropped pulse Fig. 4.3 (a), Shortened

Pulses Fig. 4.3 (c), or Phase Shifts Fig. 4.3 (e). Using Python to simulate the three different effects

so we could observe IRES’s responses. For each IRES spectrogram shown in Fig. 4.3 (b),(d), and

(f), the window size was set to the period of the waveform in this case 10, and with a stride of 1.

For the dropped pulse Fig. 4.3 (b) and shortened plus Fig. 4.3 (d) IRES was able to identify

the ASET anomaly but the pulse width duration is lost for the shortened pulse. One way to correct

this loss in the pulse width duration would be to extract the anomaly and perform IRES a second

time with a smaller window. For signals that experience a phase shift like Fig. 4.3 (e) where the

blue signal is the normal signal and the orange signal contains a phase shift around time forty-five.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3 Figs. (a) plus drop, (c) shortened plus, and (e) phase shift are examples of ASETs in a PWM
signal. Figs. (b), (d), and (f) are the corresponding IRES spectrograms, including the mean,
variance, standard deviation, skewness, kurtosis, and the 6th and 7th moments
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IRES produces a unique binary transition in all seven-moment features as shown in Fig. 4.3 (f).

Although the IRES spectrogram is able to detect the phase shift, Fig. 4.3 (f) could be misinterpreted

as an anomaly that occurred for only one cycle before returning back to its designed steady-state,

which is not true as seen in Fig. 4.3 (e) where the phase shifted signal (in Orange) continues to the

end of the signal. It is important to note, these simulations are of ideal signal waveform conditions

and ASET effects, and while useful for understanding IRES abilities for detection further testing

is needed for validation.

4.3 IRES for Digital Signals

4.3.1 Deterministic Digital Signals

An 8-bit software DAC and a fault injection tool were developed using Python to accept

a discrete-time sequence of 8-bit digital data and convert it to an analog signal for analysis with

the IRES module. Fig. 4.4(a) [2] illustrates the 8-bit decimal code with an applied ramp function

(counting from 0x00 to 0xFF). Faults (SEUs) were injected by randomly selecting one of eight

bits during a random sample out of signal. The SEUs can be seen as positive or negative spikes

in the digital ramp signal, having different amplitudes based on which bit was flipped: two are

distinct because the SEUs occurred in the most significant bits, whereas one SEU is not visible

at scale because it occurred in the least significant bit (LSB). However, when IRES is applied to

the digital waveform, shown in Fig. 4.4(b) [2], small changes in κ and γ appear at approximately

150 cycles (sample number), indicating the otherwise undetectable presence of the SEU. The two

most significant features for the digital data appear to be κ and γ , as they represent coarse data

transitions. The window size for the IRES spectrogram was set to five-time steps with a stride of 1

step. The changing colors represent the normalized values ranging from 0 (purple) to 1 (red). Note

that the IRES algorithm does not require a golden sample of the unperturbed data sequence as it

establishes probabilities of upset based on prior functionality. Although a DAC with an applied

ramp function was used to illustrate the implementation of IRES with binary (base-2) signals, the

technique can be applied to any digital code as long as the window is larger than the number of
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(a)

(b)

Figure 4.4 (a) SEUs in the software DAC with an applied ramp function and (b) associated IRES
spectrogram. Two periods of an 8-bit ramp function are visualized with three SEUs injected in
random bit locations. Two SEUs are visible in (a) samples 100 and 325. However, small
changes in the skewness and kurtosis indicate the presence of an otherwise undetectable SEU
in sample 150. The changing colors represent the normalized values ranging from 0 (purple)
to 1 (red) [2]

bits required to represent the base-2 numbers.

4.3.2 Stochastic Digital Signals

Signals with low entropy (such as a ramp function or other deterministic digital data) are

straightforward to analyze; however stochastic data with high entropy present a challenge for the

technique. When a signal is stochastic, like in digital communication signals, and has a high

entropy factor, the IRES methodology loses its effectiveness. One way of detecting SEUs in digital
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Figure 4.5 (a) SEUs in the software DAC with an applied stochastic digital signal and (b) associated
IRES spectrograms. Changes in the mean, variance, standard deviation, skewness and kurtosis
indicate the presence of SEUs. The changing colors represent the location of the SEUs

stochastic signals could be through double transmission. By having a double transmission IRES

has the ability to compare the two signal’s probability distributions functions and find the bits that

were flips accrued. As shown in Fig. 4.5 is an example of how IRES was used to compare two

transmitted signals. Where you have SEU injected to the left of the purple line and the right a clean

signal. The green boxes represent the window size, showing a stride of 1. By having the window

size contain all of the first transmission (left of the purple line), IRES can compare the two signal

PMFs and find the accrued error using temporally or spatially redundant information, but further

work is needed for validation.
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4.4 IRES Noise Sensitivity

The IRES window filter is naturally robust to noisy signals as the method extracts transient

phenomena based on probabilities. Therefore, a comparison was conducted between a typical

thresholding technique (a priori determination of signal boundaries, typically based on maximum

and minimum levels of acceptable voltage/current) and the IRES method. First, the PLL dataset,

including 100,000 transient measurements induced by the TPA laser at NRL, was used to evaluate

the sensitivity of IRES with varying window settings and under varying noise constraints. These

measured data include ten samples for each location where a SET was injected. These data were

augmented by adding artificial random White Gaussian Noise (WGN) to the original waveform

data, resulting in SNR values ranging from 0 dB to 13.01 dB. The SNR was calculated by (4.1)

where µ is the mean of the expected signal power of the raw data, and σ is the standard deviation

of the WGN. To convert SNR to decibels, equation (4.2) is used. The ten unique signals (corre-

sponding to identical locations in the PLL) were each evaluated with a different WGN profile at

the same SNR value.

SNR =
µ

σ
(4.1)

SNRdB = 10log10(SNR) (4.2)

Each augmented, noisy waveform consists of 500 timesteps. First, a baseline threshold method

was defined; in this case, µ and σ of 100 random waveforms were measured. Next, SETs were

defined if any point within a sample fell outside of 3 standard deviations from the mean. This

process was repeated for all SNR values.

Additionally, each waveform was transformed using window IRES filters with varying win-

dow sizes (ranging from 10% of the time steps to 90% of the time steps) and a fixed stride of 10%.

Similar to the baseline amplitude thresholding method, the sensitivity of the individual moments

to WGN was evaluated by defining a SET when any point within a sample fell outside of 3 stan-
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Figure 4.6 Comparison of error thresholding a raw waveform against IRES-generated moments with
different window filter sizes. The Y axis represents the SNR, and the bottom X axis portion
represents the window size of the IRES filter (in units % of timesteps). The top X axis portion
indicates the waveform or time-sequenced moment that was evaluated, separated by the
vertical lines [2]

dard deviations from the mean of the moment under study. This process was repeated for all SNR

values. The % error was used to compare the results and is determined by (4.3). True positive

(TP) represents the number of times a waveform was correctly identified as containing a SET; true

negative (TN) represents the number of correctly identified waveforms without a SET; false posi-

tive (FP) represents the number of incorrectly identified transients; false negative (FN) represents

the number of waveforms incorrectly identified as unperturbed. Note that this process was con-

ducted to examine the sensitivity of each IRES-generated moment to the transient signal and is not
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intended to suggest a SET detection process. An IRES-inspired SET detection process will likely

involve a combination of moments and ML-based classification.

Error =
FN +FP

T N +T P+FN +FP
(4.3)

Fig. 4.6 [2] shows the % error of a chosen threshold metric (i.e., the original, raw wave-

form vs. various IRES-generated moments) with respect to window size and SNR. The color

corresponds to the error value of each cell. First, the baseline thresholding technique resulted in

a minimum error of 31% for an SNR of 13 dB. The method cannot tolerate high levels of noise

without defining new metrics. Moreover, transients that exist within the noise boundaries are not

detectable. The first and second moments outperform the baseline technique, with µ as perhaps

the most reliable single metric for identifying the presence of a transient. The lowest error rate is

observed at a window size of 26%; however, larger window sizes improve performance for criti-

cally low SNR values. In other words, while small window sizes can be useful for detecting fast

transients, calculations will be more sensitive to noise when compared to large window sizes. The

third moments and higher are susceptible to noise and cannot be used for transient thresholding

except in cases with large SNR values. The % error generally increases with decreasing SNR for

all moments, though the SNR value at which the % error saturates increases with increasing mo-

ments. There are trade offs in accuracy and precision when implementing the IRES window filter.

For example, large window sizes improve tolerance to noise at the sacrifice of precision, whereas

smaller window sizes improve accuracy while less effective in filtering noise.

While Fig. 4.7 [2] is intended to show the sensitivity of a single IRES-generated moment to

noise and various filter settings, IRES is most beneficial because several time-sequenced moments

are generated simultaneously. In this case, an algorithm is required to leverage more than one

moment for thresholding an event detector. Nevertheless, the transient nature of the moments can

help develop a more complete understanding of the transient phenomena, and be used to build a

new definition of a transient threshold or be used in ML applications and classification models

such as [5].
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Figure 4.7 Comparison of error thresholding a raw waveform against IRES-generated moments with
different window filter sizes. The Y-axis represents the average % error for all SNR values,
and the bottom X-axis represents the window size of the IRES filter for each moment (in units
% of timesteps)

In addition, IRES window filters may be applied in sequence. Fig. 4.8(a) [2] shows an

example analog SET measured at the output of the LM124 following exposure to Xe ions (16

MeV/amu) at LBNL. The incident LET was 49.3 MeV*cm2/mg. The LM124 was configured in

unity gain with a DC input of Vin= 5 V. Fig. 4.8(b) [2] shows the identical transient with added

WGN to reduce the SNR to -17 dB. Two passes of the IRES window filter were applied to these

data. IRES1 corresponds to the output of the first IRES window filter, and IRES2 corresponds to the

output of the second IRES window filter in sequence. Since the µ of IRES1 was identified as the

most informative according to Fig. 4.6 [2], µ from IRES1 was fed back into the IRES algorithm to

produce the spectrograms shown in Figs. 4.8 (e) and (f) [2]. A similar process could be conducted

using the other moments. The identical spectrograms in Figs. 4.8 (e) and (f) [2] show that IRES is

highly effective in removing high levels of noise, allowing for the extraction of the true transient

error signals with high accuracy.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8 Analog SETs in the LM124 following exposure to Xe ions (16 MeV/amu) at LBNL. The
incident LET was 49.3 MeV*cm2/mg. (a) The LM124 was configured in unity gain with a DC
input of Vin= 5 V. (b) The LM124 was configured in unity gain with a DC input of Vin= 5 V
with random WGN added to the transient for an SNR of -17 dB. (c) and (d) are the
corresponding spectrograms following one application of the IRES filter (IRES1), while (e)
and (f) are the corresponding spectrograms following two sequential applications of the IRES
filter (IRES2). Both IRES1 and IRES2 spectrograms include the mean, variance, standard
deviation, skewness, kurtosis, and the 6th and 7th moments [2]
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4.5 Summary

Measured data shows that the IRES window filter enhances transient analysis by elimi-

nating all steady-state signatures, including continuous noise, and extracts transient behaviors by

amplifying shifts in statistical moments. IRES is highly effective in extracting transients within

AC waveforms, such as clock signals, without requiring prior signal transformations. Also, by set-

ting the Window Size to the period of a periodic signal, the AC portion gets canceled out, leaving

just the DC Signal. The fault injection experiments on an 8-bit digital-to-analog converter (DAC)

illustrate the ability to detect single event upsets (SEUs) in a digital sequence. The most notable in-

dicators for an SEU in a deterministic signal are in the skewness and kurtosis moments. Finally, the

performance of the IRES filter in noisy environments shows that a single IRES filter can reduce the

signal-to-noise ratio (SNR) requirement for detection by over 10 dB, and sequential IRES filters

can improve the response by over 20 dB when compared to traditional threshold triggers. Addi-

tionally, while threshold triggers require a positive-valued SNR, IRES is shown effective even with

SNR values as low as -17 dB, detecting anomalies in high noise environments without requiring

multi-sampling.
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CHAPTER 5

FUTURE WORK

In future work, an important direction is the implementation of the Ionizing Radiation Ef-

fects Spectroscopy (IRES) dynamic statistical trigger mentioned in Chapter 3 for in-situ analysis

using instrumentation hardware such as an oscilloscope. Currently, IRES method has been only

used for automating post-processing data to extract transient behavior for analysis. However, by

integrating this dynamic statistical trigger into the instrumentation would enable real-time monitor-

ing and detection of transient events. Also, This would provide valuable insights into the behavior

of the circuit during operation and allow for immediate response or mitigation strategies in the

presence of Single Event Effects (SEE). The implementation of IRES’s dynamic trigger in the in-

strumentation would enhance the efficiency and effectiveness of radiation testing, enabling more

accurate and timely identification of SETs and ASETs, ultimately leading to improved device reli-

ability and performance in radiation environments.
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CHAPTER 6

CONCLUSION

The harsh conditions of space pose significant challenges for electronic systems due to ra-

diation from solar emissions and Galactic Cosmic Rays (GCR). This ionizing radiation can cause

Single-Event Transients (SETs) in electronic systems operating in space. Before a mission, indi-

vidual electronic components undergo accelerated radiation testing to understand radiation’s ef-

fects on microelectronics and effectively implement radiation-hardening-by-design (RHBD) tech-

nique in their systems. With the increased commercialization of space, there is a higher demand

for faster and more efficient ground-based radiation testing facilities. Commercial off-the-shelf

(COTS) components and systems-on-chip (SOC) often require extra time. Automation techniques

for radiation testing and analysis have become crucial to meet the growing constraints and demands

for available time at heavy ion facilities. This work analyzes two areas for improvement when it

comes to radiation testing: 1) improving the fidelity of detection of single event effects in arbitrary

signals and 2) eliminating added environmental noise.

This approach presents Ionizing Radiation Effects Spectroscopy (IRES) as a powerful tech-

nique that enables the characterization of ionizing radiation effects in devices and systems, by ex-

tracting waveform features and analyzing statistical profiles in arbitrary signals. IRES allows for

a thorough assessment of transient behavior while eliminating added environmental noise. The

proposed IRES window filter is an exceptionally effective tool for filtering unwanted noise. It ac-

complishes this by utilizing a unique approach that identifies transient events based on a statistical

window analysis technique. In order to assess its efficacy, a comparison between the IRES filter

and a more traditional thresholding technique that relies on pre-determined voltage and current

levels to identify signals is provided. The evaluation resulted in guidelines for applying IRES un-
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der a variety of noise conditions. Findings indicate that the IRES filter significantly outperformed

the threshold triggers by reducing the signal-to-noise ratio requirement for detection by more than

10 dB. Moreover, when sequential IRES filters were applied, the response was further improved

by over 20 dB in noisy environments. Unlike threshold triggers, the IRES filter remained ef-

fective even in high-noise environments with SNR values as low as -17 dB, without requiring

multi-sampling.

IRES is a tool that can detect SET signatures in various signals, including digital data

busses, analog DC and sinusoidal waveforms, and RF signals, without the need for an arbitrary

error threshold. The IRES window filter is useful for transient analysis as it removes steady-state

signatures like continuous noise and amplifies shifts in statistical moments to extract transient

behaviors. It can even extract transients within AC waveforms like clock signals without any signal

transformations. By adjusting the Window Size to the period of a periodic signal, IRES can cancel

out the AC portion and leave only the DC Signal. In experiments with an 8-bit digital-to-analog

converter (DAC), IRES detected single event upsets (SEUs) in a digital sequence. The skewness

and kurtosis moments were significant indicators for an SEU in a deterministic signal.

This work presents a statistical window analysis technique for improving the efficiency of

data collection during radiation testing. IRES may remove the need for complex triggering mecha-

nisms on instrumentation and does not require a-priori knowledge of transient characteristics. This

can lead to better implementation of RHBD technique in systems and chip development.
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