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ABSTRACT

In this dissertation we focus on the numerical analysis of tumor growth models. Due to the

difficulty of developing physically meaningful approximations of such models, we divide the main

problem into more simple pieces of work that are addressed in the different chapters.

First, in Chapter 2 we present a new upwind discontinuous Galerkin (DG) scheme for the

convective Cahn-Hilliard model with degenerate mobility which preserves the pointwise bounds and

prevents non-physical spurious oscillations. These ideas are based on a well-suited piecewise constant

approximation of convection equations. The proposed numerical scheme is contrasted with other

approaches in several numerical experiments.

Afterwards, in Chapter 3, we extend the previous ideas to a mass-conservative, positive and

energy-dissipative approximation of the Keller–Segel model for chemotaxis. Then we carry out several

numerical tests in regimes of chemotactic collapse. These ideas are used later in Chapter 4 to develop a

well-suited approximation of two different models related to chemotaxis: a generalization of the classical

Keller-Segel model and a model of the neuroblast migration process to the olfactory bulb in rodents’

brains.

Now we propose and study a phase-field tumor growth model in Chapter 5. Then, we develop

an upwind DG scheme preserving the mass conservation, pointwise bounds and energy stability of the

continuous model and we show both the good properties of the approximation and the qualitative behavior

of the model in several numerical tests.

Next, in Chapter 6, we present two new coupled and decoupled approximations of a Cahn–

Hilliard–Navier–Stokes model with variable densities and degenerate mobility that preserve the physical

properties of the model. Both approaches are compared in different computational tests including

benchmark problems.

Consequently, we propose, in Chapter 7, an extension of the previous tumor model including

the effects of the surrounding fluid by means of a Cahn–Hilliard–Darcy model for which obtaining a

physically meaningful approximation seems rather plausible using the previous ideas.
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Finally, this and other future lines of research are described, along with the conclusions and the

scientific production of the dissertation, in Chapter 8.
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RESUMEN

En esta tesis nos centramos en el análisis numérico de modelos de crecimiento tumoral. Debido

a la dificultad para desarrollar aproximaciones fı́sicamente significativas de dichos modelos, dividimos el

problema principal en trabajos más sencillos que se abordan en los diferentes capı́tulos.

En primer lugar, en el Capı́tulo 2 presentamos un nuevo esquema aguas arriba de tipo Galerkin

discontinuo (DG) para el modelo de Cahn–Hilliard convectivo con movilidad degenerada que preserva

las cotas puntuales y evita las oscilaciones espurias no fı́sicas. Estas ideas se basan en una aproximación

adecuada, usando funciones constantes a trozos, de ecuaciones de convección. El esquema numérico

propuesto se compara con otras técnicas en varios experimentos numéricos.

Después, en el Capı́tulo 3, extendemos las ideas anteriores a una aproximación que conserva la

masa, es positiva y disipa la energı́a del modelo de Keller–Segel para la quimiotaxis. Posteriormente,

realizamos varios experimentos numéricos en situaciones de colapso quimiotáctico. Estas ideas se utilizan

más adelante en el Capı́tulo 4 para desarrollar una aproximación adecuada de dos modelos diferentes

relacionados con la quimiotaxis: una generalización del modelo clásico de Keller–Segel y un modelo del

proceso de migración de neuroblastos al bulbo olfatorio en el cerebro de roedores.

Tras esto, proponemos y estudiamos un modelo de crecimiento tumoral de tipo campo de fases en

el Capı́tulo 5. A continuación, desarrollamos un esquema DG aguas arriba que preserva la conservación de

la masa, las cotas puntuales y la estabilidad energética del modelo continuo y mostramos tanto las buenas

propiedades de la aproximación como el comportamiento cualitativo del modelo en varios experimentos

numéricos.

Más adelante, en el Capı́tulo 6, presentamos dos nuevas aproximaciones, acoplada y desacoplada,

de un modelo Cahn–Hilliard–Navier–Stokes con densidades variables y movilidad degenerada que

preservan las propiedades fı́sicas del modelo. Ambas aproximaciones se comparan en diferentes tests

computacionales que incluyen problemas de referencia.

Luego, proponemos, en el Capı́tulo 7, una extensión del modelo de tumor anterior incluyendo los

efectos del fluido que se encuentra en el entorno mediante un modelo Cahn–Hilliard–Darcy para el que la

v



obtención de una aproximación fı́sicamente significativa parece bastante plausible utilizando las ideas

anteriores.

Finalmente, se describen esta y otras futuras lı́neas de investigación, junto con las conclusiones y

la producción cientı́fica de la tesis, en el Capı́tulo 8.
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CHAPTER 1

INTRODUCTION

Cancer is the first or the second leading cause of death before the age of 70 years in at least 112

countries, according to the estimates of the World Health Organization (WHO) in 2019, [176]. This

overwhelming issue has led the scientists of a vast number of disciplines to make an enormous effort

towards the understanding of its mechanism with the purpose of fighting and overcoming the disease.

In particular, mathematics has acquired an increasingly important role as it has been postulated as a

discipline that can shed light on the prediction of the development of tumors and their consequences,

therefore filling gaps that other more experimental sciences have not been able to address yet.

Lately, significant work on the mathematical modeling of tumor growth has been carried out. As

a result, many different models have arisen, some of which have even been applied to predict the response

of the tumor to its surrounding environment and possible medical treatments. Most of these models can

be classified into micro-scale discrete models, macro-scale continuum models or hybrid models, [57,

145]. Regarding the continuum models, different approaches has been developed among which we can

find models using both ODE, for instance, [46, 147], and PDE, for example, [79, 164].

In this sense, phase field models such as the Cahn-Hilliard (CH) equation have become a very

popular tool. This model describes the evolution of a thin, diffuse, interface between two different phases

or states of a process [36, 154] through a so-called phase-field variable, which minimizes an adequate

free energy. Sometimes, this CH model is coupled with a degenerate mobility to impose phase-related

pointwise bounds on this variable.

In particular, in the context of tumor modeling, the phase-field variable u is usually interpreted as

a tumor volume-fraction (with 0 ≤ u ≤ 1) and this model is coupled with other equations describing

the interaction between the tumor and the surrounding environment. The complexity of these models

vary depending on their constitutive assumptions and intrinsic limitations, but most of them are based on

multicomponent mixture theory which accounts for the mass, momentum and energy balances for each of

the constituents. One can trace back these kind of thermodynamically consistent mixture models to the
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work of Wise et al., [189] and the references therein. As a consequence of this pioneering work, many

other models have arisen taking into account different kind of processes and proposing simplifications.

For instance, we can find [85] where the model in [189] is extended to describe angiogenesis and tumor

invasion, the work by [113] where the nutrients are included as a component of the mixture, or the more

recent model in [94] where mechanical effects are also taken into account, just to mention a few.

In this regard, considerable effort has been made in describing a general framework for the correct

modeling and calibration of the diffuse-interface models of tumor growth, oriented to their possible

physical application, as summarized in [88, 112, 156, 157] and the references therein. So far, there are

several examples of success in this direction as different approaches have been capable of providing

accurate enough results to be compared with real clinical data. Among these celebrated models we can

find the work by Pozzi et al. [160] where a Cahn–Hilliard equation is coupled with a Keller–Segel system;

the works by Agosti et al. [7, 8, 9] where a Cahn-Hilliard equation for the tumor with nonsymmetric

degenerate mobility (as the one shown in Chapter 5) is coupled with a diffusion-reaction equation for

the nutrients; or the works of Lima et al. [137, 138] where phase-field models are compared against

reaction-diffusion models regarding data prediction.

In this context of tumor modeling, chemotaxis, a biological process through which organisms

(e.g. cells) migrate in response to a chemical stimulus, often plays an important role, see for instance

[91, 113]. The classical chemotaxis model was introduced in the 70’ by E. F. Keller and L. A. Segel,

[125, 126] attracting huge interest from the mathematical community due to both its interesting analytical

properties and its possible application to describing real phenomena (as shown in Section 4.4.1).

Also, among the existing literature, one can find different works which have tried to model the

tumor tissue immersed in a fluid that transports the mixture of cells and nutrients. On the one hand,

as initially proposed in [189], some authors have derived models relying on the Cahn–Hilliard–Darcy

equations, [86, 92, 93, 95], where the tissue is assumed to behave as a porous medium. On the other

hand, some alternatives have arisen for the cases where the tissue cannot be modeled as porous medium,

for instance, a Cahn–Hilliard–Brinkman model [54, 67, 68] and, very recently, a Cahn–Hilliard–Navier–

Stokes system [69]. In this sense, even more general models have been proposed where the previous

approaches have been generalized to satisfy the Darcy–Forchheimer–Brinkman law, [89], or to introduce

viscoelastic effects, [91].
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Regarding the numerical approximation of these equations, significant advances have been done

both with respect to the time and the spatial discretizations.

On the one hand, the classical approach for the time discretization of the phase-field models is

the convex-splitting decomposition introduced in [77] which preserves the energy stability. Nonetheless,

other time-discrete schemes have been introduced in the literature (see, for instance, [105, 106, 180]).

Among these time approximations we find the idea of introducing a Lagrange multiplier in the potential

term in [24] which was extended in [105, 106, 180]. This idea led to the popular energy quadratization

(EQ) schemes [192, 193, 194], later extended to the scalar auxiliary variable (SAV) approach [169].

On the other hand, in the case of the Cahn-Hilliard equation with degenerate mobility, designing a

suitable spatial discretization consistent with the physical properties of the model, specially the pointwise

bounds, is a difficult task and only a few works have been published in this regard. Among the currently

available structure-preserving schemes we can find some schemes based on finite volumes, [25, 118], and

on finite elements, [27, 103].

In addition, the main difficulty from the point of view of the numerical approximation in the

context of chemotaxis is dealing with the cross-diffusion term. Not only for its non-linearity, but due to

its convective nature, which makes particularly difficult to deal with using the finite element (FE) method.

This difficulty is specifically significant in steep-gradient regions for v, which are precisely relevant

in blow-up settings. Furthermore, preserving the physical properties of the continuous model (mass

conservation, positivity and energy dissipation) in the discrete case adds an extra level of complication

when it comes to designing a well-suited approximation. Despite that, many interesting works have been

published on numerical simulation of chemotaxis equations using different kinds of approaches, see [23,

41, 45, 72, 73, 104, 108, 111, 117, 120, 136, 165, 168, 195].

The difficulties of the discretization are emphasized in the case of phase-field tumor models. In

particular, in [113] an energy-stable finite element scheme with a first-order convex-splitting scheme in

time is proposed for (5.1) and extended in [190] to a second-order time discretization. Other types of

approximations of this model (5.1) using meshless collocation methods, [62], stabilized element-free

Galerkin method, [151], and SAV Fourier-spectral method, [171], can be found in the literature. However,

no bounds are obtained on the discrete variables whatsoever.

As a consequence, not many works have been able to provide a successful, unconditionally

physically meaningful approximation of more complicated tumor models as the ones involving tumor-
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nutrient interactions and fluid flows. In this context, the transport of the diffuse interface by the velocity

of the fluid is typically modeled by means of a convective term that is introduced into the Cahn-Hilliard

equation which may lead to numerical instabilities in highly convective regimes if it is not treated

carefully. In this regard, the works [68, 93, 95] propose a finite element bound-preserving discretization

that involves solving a discrete variational inequality following the ideas in [27] whereas [91] introduce

a finite element approximation that mimic some entropies of the model at the discrete level. On the

contrary, in [69], a combination of a suitable phase-field variable transformation, the time-discrete SAV

approach and an upwind finite volume spatial discretization is used to preserve the pointwise bounds and

the energy-stability in their approximations, although a CFL condition that is difficult to check beforehand

is required.

In this work, we aim to develop a suitable discretization of diffuse-interface tumor models that

can be useful for approximating not complicated models and extended to models describing more complex

phenomena as the interaction with fluid flows. Moreover, we provide some notions on how some of the

tumor models existing in the literature can be modified to ensure the physical meaning of the variables.

To this purpose, we apply the “divide and conquer” principle and we address separately the different

problems involved in the tumor models existing in the literature. Finally, we pretend to extend the ideas

resulting from this work to other fields where we will obtain really good results. The outline of this PhD

thesis and the notation that we are going to follow are presented below.

This work is divided in eight chapters, each of which treats specific topics that we will summarize

now.

In Chapter 2 we develop numerical schemes for the convective Cahn-Hilliard (CCH) problem

(2.1) which guarantee punctual estimates of the phase at the discrete level, in addition to maintaining

the rest of continuous properties of (2.1). The main idea is to introduce an upwind DG discretization

associated to the transport of the phase by the convective velocity v, but also associated to the degenerate

mobility M(u). These ideas are first applied to the linear convection equation itself in Sections 2.3.2 and

2.3.3, and then, further extended to the more complex CCH model in Section 2.4. The main result in

this work is Theorem 2.4.11, where we show that, for a piecewise constant approximation of the phase,

our DG scheme preserves the maximum principle, that is the discrete phase is also bounded in [0, 1]. In

addition, we present several numerical tests in Section 2.5 comparing our DG scheme with two different
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space discretizations found in the literature: classical continuous P1 finite elements and the SIP+upwind

sigmoid DG approximation proposed in [81].

In Chapter 3, we propose a new upwind DG scheme for the Keller-Segel model (3.1) that

preserves the mass-conservation, positivity (Theorem 3.4.7) and energy stability (Theorem 3.4.13)

properties of the continuous problem. As in [168], the proposed discretization takes advantage of the

gradient flow structure of the model. This idea follows from the work introduced in Chapter 2 in the

case of the convective Cahn-Hilliard system, where now we introduce a particular approximation of the

normal derivative of the flux to ensure the energy stability in Section 3.4.1. Moreover, in Section 3.5,

we reproduce several benchmark numerical tests that endorse the good behavior of the approximation

obtained with the new scheme, which allows us to capture very steep gradients at the discrete level.

Then, in Chapter 4, we extend the ideas in Chapters 2 and 3 and provide some insight on the

mathematical analysis of generalized chemotaxis models and the modeling and computational simulation

of real-life processes involving chemotaxis.

On the one hand, we study some extensions of the Keller-Segel model (3.1) describing population

dynamics, (4.1) and (4.2), in Section 4.3. In this regard, we first state some results about the existence

and regularity of the solution of these models in Section 4.3.2. Then, in Section 4.3.3, we present and

analyze the properties of a discrete approximation of the models using the upwind DG ideas previously

introduced in Chapters 2 and 3. Finally, we implement this scheme in the computer and carry out some

tests in Section 4.3.4, whose results are in accordance with the previous theoretical analysis concerning

the global in time existence and regularity of the solutions under certain constraints on the parameters.

On the other hand, we present a mathematical model of neuroblast migration in Section 4.4.

Neuroblasts are primitive nerve cells which develop into neurons after a migration phase, particularly

to the olfactory bulb in a rodent’s brain. This model, inspired in chemotaxis, supplements a transport

equation with some extra reaction terms modeling the birth of neuroblasts and their disappearance due

to evolution in mature neurons. Moreover, in Section 4.4.2, we develop a discrete approximation of

this model using a discrete upwind DG scheme inspired in the one given in Chapter 2. In this sense, in

Section 4.4.3, we show several numerical simulations of the neuroblasts migration process where the

model has been calibrated and validated using real data experimentally obtained by the research group

INIBICA INCO-5, led by Dr. Carmen Castro-González.

5



Afterwards, in Chapter 5, we consider the diffuse-interface model (5.1) presented by Hawkins-

Daarud et al. in [113], which describes the interaction between a tumor and the nutrients in the extracellular

water. In this sense, in Section 5.3, we propose a modification of the model using possibly nonsymmetric

mobility and proliferation functions, see (5.3) below, in accordance with its physical interpretation. This

modification leads us to obtain pointwise bounds on the tumor and the nutrient volume fractions which

are consistent with the physical meaning of the variables and which may be helpful to a future application

of this model (or a variant of it) for real tumor growth prediction.

In addition, we introduce a well-suited convex-splitting upwind DG scheme of the proposed

model (5.3), based on [120] and the previous work in Chapters 2 and 3, in Section 5.4. This approximation

preserves the physical properties of the phase-field tumor model (mass conservation, pointwise bounds

and energy stability), as shown in Theorems 5.4.9 and 5.4.11, and prevent numerical spurious oscillations.

Finally, we carry out a numerical comparison between the new robust DG scheme and a standard FE

discretization of (5.12) in Section 5.5, the latter of which fails in the case of strong cross-diffusion and

we show the behavior of the model under different choices of parameters and mobility/proliferation

functions.

Next, in Chapter 6, we provide a fully-coupled upwind DG approximation (6.10) of the Cahn–

Hilliard–Navier–Stokes (CHNS) model by Abels et al. [1] with variable densities and degenerate

mobility in Section 6.4. This approximation preserves all the mass-conservation, pointwise bounds

(Theorem 6.4.5) and energy-stability properties (Theorem 6.4.8). Moreover, using similar ideas, a

decoupled approximation of this model, (6.34), is developed by means of the well-known projection

method in Section 6.5. This decoupled approximation lacks the energy-stability property but is much

more computationally efficient than the coupled counterpart. Finally, in Section 6.6 we conduct several

numerical experiments in which we compare both the coupled and the decoupled approaches both through

simple test and well-known benchmark problems. Furthermore, we compute a preliminary accuracy test

that suggests that both schemes may have similar convergence order for all the variables.

Subsequently, in Chapter 7, we introduce a possible extension of the results presented in both

Chapters 5 and 6 with the purpose of developing a physically meaningful approximation for a tumor

system coupled with a fluid equation. In this sense, in Section 7.3, we derive a mass-conservative,

pointwise-bounded and energy-stable Cahn–Hilliard–Darcy model from the more general model intro-

duced by Garcke et al. in [95] under certain constitutive assumptions by means of the non-symmetric
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mobility and proliferation functions used in Chapter 5 to modify the tumor model in [113]. The resulting

model lies in the framework of the previous tumor model studied in Chapter 5 and the CHNS studied in

Chapter 6, hence a successful approximation using the upwind DG ideas developed throughout this work

is likely to be obtained.

Finally, in Chapter 8, we briefly summarize the results presented in the different chapters of this

dissertation providing the scientific publications that have been derived from this work. In addition, we

present the lines of research that we are currently exploring as a consequence of this dissertation and we

discuss the possible extensions of this work.

1.1 Notation

Let Ω ⊂ Rd with d ∈ N be a regular-enough bounded domain, e.g. polygonal, with n its unit

normal vector.

We consider a finite element shape-regular triangular mesh Th = {K}K∈Th in the sense of

Ciarlet, [48], of size h over Ω. We denote by Eh the set of the edges of Th (faces if d = 3) with E i
h the set

of the interior edges and Eb
h the boundary edges, thus Eh = E i

h ∪ Eb
h.

Now, we fix the following orientation over the mesh Th:

• For any interior edge e ∈ E i
h we set the associated unit normal vector ne. In this sense, when

refering to edge e ∈ E i
h we will denote by Ke and Le the elements of Th with e = ∂Ke ∩ ∂Le and

so that ne is exterior to Ke pointing to Le.

If there is no ambiguity, to abbreviate the notation we will denote the previous elements Ke and Le

simply by K and L, respectively, with the assumption that their naming is always with respect to

the edge e ∈ E i
h and it may vary if we consider a different edge of E i

h. See Figure 1.1.

• For any boundary edge e ∈ Eb
h, the unit normal vector ne points outwards of the domain Ω.

Therefore, we can define the average {{·}} and the jump [[·]] of a function v on an edge e ∈ Eh as

follows:

{{v}} :=


vK + vL

2
if e ∈ E i

h, e = K ∩ L,

vK if e ∈ Eb
h, e ⊂ K,

[[v]] :=


vK − vL if e ∈ E i

h, e = K ∩ L,

vK if e ∈ Eb
h, e ⊂ K.
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L

Ke

ne

Figure 1.1 Orientation of the unit normal vector ne

We denote by Pdisc
k (Th) and Pcont

k (Th) the spaces of finite element discontinuous and continuous

functions, respectively, which are polynomials of degree k ≥ 0 when restricted to the elements K of

Th. In this sense, we will denote the broken differential operators (see [63, 163]) the same way than the

standard differential operators in the absence of ambiguity.

We refer the reader to [34, 74] and to [63, 66, 163] for a further insight on continuous and

discontinuous finite elements, respectively.

Moreover, we take an equispaced partition 0 = t0 < t1 < · · · < tN = T of the time

domain [0, T ] with ∆t = tm+1 − tm the time step. If v is a function depending on space and time,

e.g. defined in Ω × [0, T ], we set v(t) := v(·, t) for every t in the time domain [0, T ]. Also, for any

function v depending on time, we denote vm+1 ≃ v(tm+1) and the discrete time derivative operator

vt(tm+1) ≃ δtv
m+1 := (vm+1 − vm)/∆t.

We denote by (·, ·) and (·, ·)h the standard and the mass-lumped scalar products in L2(Ω) (or

L2(Ω)d as there is no ambiguity), respectively. Also, ⟨·, ·⟩ denotes a duality product in an algebraic dual

space.

Finally, we set the following notation for the positive and negative parts of a function v:

v⊕ :=
|v|+ v

2
= max{v, 0}, v⊖ :=

|v| − v

2
= −min{v, 0}, v = v⊕ − v⊖.
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CHAPTER 2

AN UPWIND DG SCHEME PRESERVING THE MAXIMUM PRINCIPLE FOR THE CONVECTIVE

CAHN–HILLIARD MODEL

2.1 Abstract

The design of numerical approximations of the Cahn-Hilliard model preserving the maximum

principle is a challenging problem, even more if considering additional transport terms. In this chapter

we present a new upwind discontinuous Galerkin scheme for the convective Cahn-Hilliard model with

degenerate mobility which preserves the maximum principle and prevents non-physical spurious oscilla-

tions. Furthermore, we show some numerical experiments in agreement with the previous theoretical

results. Finally, numerical comparisons with other schemes found in the literature are also carried out.

The results shown in this chapter have already been published in [4].

2.2 Introduction

This chapter is concerned with the development of discontinuous Galerkin (DG) numerical

schemes for the following convective Cahn-Hilliard (CCH) problem (written as a second order system):

Given an incompressible velocity field v ∈ C(Ω)d with ∇ · v = 0 in Ω, such that v · n = 0 on ∂Ω, find

two real valued functions, the phase u and the chemical potential µ, defined in Ω× [0, T ] such that:

∂tu =
1

Pe
∇ · (M(u)∇µ)−∇ · (uv) in Ω× (0, T ), (2.1a)

µ = F ′(u)− ε2∆u in Ω× (0, T ), (2.1b)

∇u · n = (M(u)∇µ− uv) · n = 0 on ∂Ω× (0, T ), (2.1c)

u(0) = u0 in Ω. (2.1d)

The phase field variable u localizes the two different phases at the values u = 0 and u = 1, while the

interface occurs when 0 < u < 1. Parameters are Pe > 0 the Péclet number of the flow and ε > 0 related
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to the width interface. For simplicity, we take Pe = 1. The given initial phase is denoted by u0. The

classical Cahn–Hilliard equation (CH) corresponds to the case without convection, i.e. v = 0.

We consider the double-well Ginzburg-Landau potential

F (u) =
1

4
u2(1− u)2

and the degenerate mobility

M(u) = u(1− u). (2.2)

This type of degenerate mobility, vanishing at the pure phases u = 0 and u = 1, implies the following

maximum principle property (see [71] for the CH equation): if 0 ≤ u0 ≤ 1 in Ω then 0 ≤ u(·, t) ≤ 1

in Ω for t ∈ (0, T ). This property does not hold for constant mobility, and in general for fourth-order

parabolic equations. We are concerned in numerical schemes maintaining this property at the discrete

level.

Cahn-Hilliard equation was originally introduced in [35, 36] as a phenomenological model of

phase separation in a binary alloy and it has been successfully applied in different contexts as a model

which characterizes phase segregation and interface dynamics. Applications include tumor tissues [189,

190], image processing [29] and multi-phase fluid systems, see e.g. the review [128]. The dynamics

of this equation comprises a first stage in which a rapid separation process takes place, leading to the

creation of interfaces, followed by a second stage where aggregation and development of bulk phases

separated by thin diffuse interfaces take place. These two phenomena (separation and aggregation) are

characterized by different temporal and spatial scales which, together with the non-linear and fourth-order

nature of CH, makes efficiently solving this equation an interesting computational challenge.

The interface is represented as a layer of small thickness of order ε and the auxiliary function u

(the phase-field function) is used to localize the (pure) phases u = 0 and u = 1. The chemical potential µ

is the variational derivative of the Helmholtz free energy E(u) with respect to u, µ = ∂uE(u), where

E(u) =

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx. (2.3)

Then the dynamics of CH correspond to the physical energy dissipation of ut = −∇ · J(u),

where J(u) = −M(u)∇µ = −M(u)∇∂uE(u). For existence of solution for CH equation with a

10



degenerate mobility of the type (2.2), besides bounds for the phase over time, we can refer to [71]. A

review and many variants can be read in [149].

Numerical approximation of CH is a research topic of great interest due to the wide spectrum

of its applications, as well as a source of interesting mathematical challenges due to the computational

issues referred above. Time approximations include both linear schemes [105] and nonlinear ones, where

a Newton method is usually employed. Although some authors (see e.g. [70]) consider the fourth-order

equation obtained by substitution in the equation (2.1a) of the expression of µ given in (2.1b), the spatial

discretization is usually based on the mixed phase field/chemical potential formulation presented in (2.1).

These equations can be approximated by classical numerical methods, including: (a) Finite differences,

see e.g. [44, 90] for constant mobility M(u) ≡ 1 and [127] for degenerate mobility similar to (2.2), see

also [184] for applications in crystallography. (b) Finite volumes, see e.g. [25, 58] for degenerate mobility

schemes. (c) And, above all, finite elements see the precursory papers [70] (constant mobility) and [27]

(degenerate mobility).

In recent years, an increasing number of advances has been published exploring the use of

discontinuous Galerkin (DG) methods both for constant [20, 124] and degenerate mobility [81, 141, 185,

191]. Although DG methods lead in general to more complex algorithms and to bigger amounts of degrees

of freedom, they exhibit some benefits of which one can take advantage also in CH equations, for instance

doing mesh refining and adaptivity [20]. In this chapter we are interested in the following relevant point:

the possibility of designing conservative schemes preserving the maximum-principle 0 ≤ u(t, x) ≤ 1 at

the discrete level, even for the CCH variant of CH equations, namely where a convective term models the

convection or transport of the phase-field.

The idea of introducing a convection term in the CH equations modeling a phase-field driven by

a flow, arriving at the CCH problem (2.1), arouses great interest. Specially, in the case where the phase

field is coupled with fluid equations.

To design adequate numerical approximations of these CCH equations is an extremely challenging

problem because it adds the hyperbolic nature of convective terms to the inherent difficulties of the CH

equation. There are not many numerical methods in the literature on this topic, although some interesting

contributions can be found. The first of them [22] is worth mentioning for the application of high-

resolution spectral Fourier schemes. We also underline the papers [33, 133], based on finite volume

11



approximations, and also [43, 109], where finite difference techniques are applied for Navier-Stokes CH

equations.

Some authors have recently worked in DG methods for spatial discretization of the CCH problem.

Using DG schemes in this context is natural because they are well-suited in convection-dominated

problems, even when the Péclet number is substantially large. For instance, the work of [124] is focused

on construction and convergence analysis of a DG method for the CCH equations with constant mobility,

applying an interior penalty technique to the second order terms and an upwind operator for discretization

of the convection term. Authors of [81] consider CCH with degenerate mobility applying also an interior

penalty to second order terms in the mixed form (2.1) and a more elaborated upwinding technique, based

on a sigmoid function, to the convective term.

These previous works show that DG methods are well suited for the approximation of CCH

equations, obtaining optimal convergence order and maintaining most of the properties of the continuous

model. But they have room for improvement in one specific question: getting a maximum principle for

the phase in the discrete case. Although there are some works in which the maximum principle for the

CH model is preserved at the discrete level using finite volumes [25] and flux limiting for DG [82], to the

best knowledge of the authors, no scheme has been published in which an upwind DG technique is used

to obtain a discrete maximum principle property.

Our main contribution in this chapter is made in this regard: the development of numerical

schemes which guarantee punctual estimates of the phase at the discrete level, in addition to maintaining

the rest of continuous properties of (2.1). The main idea is to introduce an upwind DG discretization

associated to the transport of the phase by the convective velocity v, but also associated to the degenerate

mobility M(u). The main result in this work is Theorem 2.4.11, where we show that, for a piecewise

constant approximation of the phase, our DG scheme preserves the maximum principle, that is the discrete

phase is also bounded in [0, 1].

Our scheme is specifically designed for the CH equation with non-singular (polynomial) chemical

potential and degenerate mobility. For the CH equation with the logarithmic Flory-Huggins potential,

a strict maximum principle is satisfied without the need of degenerate mobility. In this case, designing

maximum principle-preserving numerical schemes is a different issue. See, for instance, the paper [42]

where a finite difference numerical is proposed in this regard.
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The chapter is organized as follows: In Section 2.3, we fix notation ax/nd review DG techniques

for discretization of conservative laws. We consider the linear convection given by a velocity field and

show that the usual linear upwind DG numerical scheme with P0 approximation preserves positivity

in general, and the maximum principle in the divergence-free case. In Section 2.4, we consider the

CCH problem (2.1). Using a truncated potential and a convex-splitting time discretization we obtain

a scheme satisfying an energy law, which is decreasing for the CH case (v = 0). Then we introduce

our fully discrete scheme (2.30) providing a maximum principle for the discrete phase variable. Finally,

in Section 2.5 we present several numerical tests, comparing our DG scheme with two different space

discretizations found in the literature: classical continuous P1 finite elements and the SIP+upwind

sigmoid DG approximation proposed in [81]. We show error order tests and also we present qualitative

comparisons where the maximum principle of our scheme is confirmed (and it is not conserved by the

other ones).

The results shown in this chapter have already been published in [4].

2.3 DG discretization of conservative laws

Throughout this section we are going to study the problem of approximating linear and nonlinear

conservative laws preserving the positivity of the continuous models. To this purpose, we introduce an

upwinding DG scheme which follows the ideas of the paper [120] based on an upwinding finite volume

method.

2.3.1 Conservative laws

We consider the following non-linear conservative problem for v:

vt +∇ · F (v) = 0 en Ω× (0, T ), (2.4)

where the flux F (·) is a vectorial continuous function.

Let Sh = Pdisc
k (Th). Multiplying by any v ∈ Sh and using the Green Formula in each element

K ∈ Th: ∫
Ω
∂tv v −

∑
K∈Th

∫
K
F (v) · ∇v +

∑
K∈Th

∫
∂K

(
F (v) · nK

)
v = 0,
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where nK is the normal vector to ∂K pointing outwards K. If v is a strong solution of (2.4), such that v

is continuous over e ∈ Eh, we get:

∫
Ω
∂tv v −

∑
K∈Th

∫
K
F (v) · ∇v +

∑
e∈Eh

∫
e

(
F (v) · ne

)
[[v]] = 0. (2.5)

But, if we look for functions v ∈ Sh which are discontinuous over e ∈ Eh, then the term F (v) · ne in the

last integral of (2.5) is not well defined and we need to approach it. Hence, the concept of numerical flux

is used, taking expressions like Φ(vK , vL,ne) such that:

∫
e

(
F (v) · ne

)
[[v]] ≈

∫
e
Φ(vK , vL,ne) [[v]] .

From now on we will consider fluxes of the form

F (v) =M(v)β,

with M = M(v) ∈ R and β = β(x, t) ∈ Rd. Since in this chapter we are interested in studying

conservative problems defined over isolated domains, we impose from now on that the transport vector β

satisfies the slip condition

β · n = 0 on ∂Ω. (2.6)

Remark 2.3.1. We will have to take into consideration the sign of M ′(v), i.e. if M(v) is nonincreasing

or nondecreasing, in order to work out a well-suited upwinding scheme. This is due to

∇ · F (v) = ∇ · (M(v)β) =M ′(v)β · ∇v +M(v)∇ · β. (2.7)

where

• The first term M ′(v)β · ∇v is a transport of v in the direction of M ′(v)β.

• The second term M(v)∇ · β can be seen as a reaction term with coefficient ∇ · β.

It may be specially interesting the case β = −∇v, where the whole term ∇·(M(v)β) = −∇·(M(v)∇v)

is a nonlinear diffusion term.
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2.3.2 Linear convection and positivity

Taking M(v) = v, we arrive at the linear conservative problem:

vt +∇ · (vβ) = 0 in Ω× (0, T ), (2.8a)

v(0) = v0 in Ω, (2.8b)

where β : Ω → Rd is continuous.

Remark 2.3.2. The problem (2.8) is well-posed without imposing boundary conditions due to the slip

condition (2.6) (it can be derived writing an integral expression of solution in terms of the characteristic

curves, see for example [158]). In particular, this integral expression implies the positivity of the solution,

namely, if v0 ≥ 0 in Ω, then the solution v of (2.8) satisfies v ≥ 0 in Ω× (0, T ).

For the linear problem (2.8a), we introduce the upwind numerical flux

Φ(vK , vL,ne) := (β · ne)⊕vK − (β · ne)⊖vL, (2.9)

which leads to the following discrete scheme for (2.8a): Given vm ∈ Sh, find vm+1 ∈ Sh solving

∫
Ω
δtv

m+1v + a
upw
h (β; vm+1

⊕ , v) = 0, ∀v ∈ Sh, (2.10)

where

a
upw
h (β; v, v) :=−

∑
K∈Th

∫
K
v(β · ∇v) +

∑
e∈E i

h,e=K∩L

∫
e
((β · ne)⊕vK − (β · ne)⊖vL) [[v]] (2.11)

and δtvm+1 = (vm+1 − vm)/∆t denotes a discrete time derivative.

Notice that we have truncated v by its positive part v⊕, taking into account that the solution of

the continuous model (2.8a) is positive.

Remark 2.3.3. The numerical flux Φ(vK , vL,ne) giving in (2.9) can be rewritten as follows:

Φ(vK , vL,ne) = (β · ne) {{v}}+
1

2
|β · ne| [[v]] ,

where (β · ne) {{v}} is a centered-flux term and 1
2 |β · ne| [[v]] is the upwind term.
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Now we will prove that if we set Sh = Pdisc
0 (Th), the scheme (2.10) preserves the positivity of

the continuous model. In this case, since
∑

K∈Th
∫
K(β · ∇v)v = 0, the upwind term (2.11) reduces to

a
upw
h (β; v, v) =

∑
e∈E i

h,e=K∩L

∫
e
((β · ne)⊕vK − (β · ne)⊖vL) [[v]] . (2.12)

Theorem 2.3.4 (DG scheme (2.10) preserves positivity). If Sh = Pdisc
0 (Th), then the scheme (2.10)

preserves positivity, that is, for any vm ∈ Sh with vm ≥ 0 in Ω, then any solution vm+1 of (2.10) satisfies

vm+1 ≥ 0 in Ω.

Proof. Taking the following test function

v =


(vm+1

K∗ )⊖ in K∗,

0 out of K∗,

v ∈ Sh,

where K∗ is an element of Th such that vm+1
K∗ = minK∈Th v

m+1
K , the scheme (2.10) becomes

|K∗|
(
δtv

m+1
K∗

)
(vm+1

K∗ )⊖ = −aupw
h (β; vm+1

⊕ ,1K∗(vm+1
K∗ )⊖). (2.13)

By applying for all L ∈ Th, vm+1
L ≥ vm+1

K∗ hence in particular (vm+1
L )⊕ ≥ (vm+1

K∗ )⊕ (the

positive part is a non-decreasing function), we deduce

a
upw
h (β; vm+1

⊕ ,1K∗(vm+1
K∗ )⊖) =

∑
e∈E i

h,e=K∗∩L

∫
e

(
(β · ne)⊕(v

m+1
K∗ )⊕ − (β · ne)⊖(v

m+1
L )⊕

)
(vm+1

K∗ )⊖

≤
∑

e∈E i
h,e=K∗∩L

∫
e

(
(β · ne)⊕(v

m+1
K∗ )⊕ − (β · ne)⊖(v

m+1
K∗ )⊕

)
(vm+1

K∗ )⊖.

Since (vm+1
K∗ )⊕(v

m+1
K∗ )⊖ = 0 then

a
upw
h (β; vm+1

⊕ ,1K∗(vm+1
K∗ )⊖) ≤ 0.

Therefore, from (2.13),

|K∗|
(
δtv

m+1
K∗

)
(vm+1

K∗ )⊖ ≥ 0.
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On the other hand,

0 ≤ |K∗|
(
δtv

m+1
K∗

)
(vm+1

K∗ )⊖ = −|K∗|
∆t

(
(vm+1

K∗ )2⊖ + vmK∗(vm+1
K∗ )⊖

)
≤ 0,

hence (vm+1
K∗ )⊖ = 0. Thanks to the choice of K∗, we can assure that vm+1 ≥ 0.

Theorem 2.3.5 (Existence of DG scheme (2.10)). Assume that Sh = Pdisc
0 (Th). For any vm ∈ Sh, there

is at least one solution vm+1 ∈ Sh of the scheme (2.10).

Proof. Consider the following well-known theorem:

Theorem 2.3.6 (Leray-Schauder fixed point theorem). Let χ be a Banach space and let

T : χ −→ χ be a continuous and compact operator. If the set

{x ∈ χ : x = αT (x) for some 0 ≤ α ≤ 1}

is bounded (uniformly with respect to α), then T has at least one fixed point.

Given a function w ∈ Pdisc
0 (Th) with w ≥ 0, we are going to define the operator T : Pdisc

0 (Th) −→

Pdisc
0 (Th) such that T (v̂) = v where v is the unique solution of the linear scheme:

v ∈ Pdisc
0 (Th),

∫
Ω

v − w

∆t
v = −aupw

h (β; v̂⊕, v), ∀v ∈ Pdisc
0 (Th). (2.14)

The idea is to use the Leray-Schauder fixed point theorem 2.3.6 to the operator T . First of all, T is well

defined.

Secondly, we will check that T is continuous. Let {v̂j}j∈N ⊂ Pdisc
0 (Th) be a sequence such

that limj→∞ v̂j = v̂. Taking into account that all norms are equivalent in Pdisc
0 (Th) since it is a finite-

dimensional space, the convergence v̂j → v̂ is equivalent to the convergence elementwise (v̂j)K → v̂K

for every K ∈ Th (this may be seen, for instance, by using the norm ∥ · ∥L∞(Ω)). Taking limits when

j → ∞ in the scheme (2.14) (with v̂ := v̂j and v := T (v̂j)), and using the notion of convergence

elementwise, we get that

lim
j→∞

T (v̂j) = T (v̂) = T

(
lim
j→∞

v̂j

)
,

hence T is continuous.
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In particular, as T is a continuous operator defined over Pdisc
0 (Th), which is finite-dimensional, T

is also compact.

Finally, let us prove that the set

B = {v ∈ Pdisc
0 (Th) : v = αT (v) for some 0 ≤ α ≤ 1}

is bounded. The case α = 0 is trivial so we will assume that α ∈ (0, 1]. If v ∈ B, then v is the solution

of the scheme

v ∈ Pdisc
0 (Th),

∫
Ω

v − αw

∆t
v = −αaupw

h (β; v⊕, v), ∀v ∈ Pdisc
0 (Th). (2.15)

Now, testing (2.15) by v = 1, we get that

∫
Ω
v = α

∫
Ω
w,

and, since w ≥ 0, and since it can be proved that v ≥ 0 using the same arguments than in Theorem 2.3.4,

we get that

∥v∥L1(Ω) ≤ ∥w∥L1(Ω).

Hence, since Pdisc
0 (Th) is a finite-dimensional space where the norms are equivalent, we have proved

that B is bounded. Thus, using the Leray-Schauder fixed point theorem 2.3.6, there is a solution of the

scheme (2.10).

Let us focus on the the following linear scheme (without truncating v by its positive part, v⊕):

Given vm ∈ Pdisc
0 (Th), find vm+1 ∈ Pdisc

0 (Th) such that, for every v ∈ Pdisc
0 (Th):

∫
Ω
δtv

m+1v + a
upw
h (β; vm+1, v) = 0. (2.16)

It is well-known (see e.g. [63] and references therein) that (2.16) has a unique solution at least for ∆t

small enough so that the following constraint is satisfied: there is γ > 0 such that

1 +
∆t

2
∇ · β ≥ γ > 0 in Ω. (2.17)
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Hence, if we assume that the scheme (2.16) has a unique solution and since we have shown

positivity of the nonlinear truncated scheme (2.10), then any solution of (2.10) is the unique solution of

(2.16). This argument implies uniqueness of (2.10) and positivity of (2.16).

Corollary 2.3.7 (Linear DG scheme (2.16) preserves positivity). For any vm ∈ Pdisc
0 (Th) with vm ≥ 0

in Ω, the unique solution vm+1 of the linear scheme (2.16) is positive, i.e. vm+1 ≥ 0 in Ω.

Remark 2.3.8. Also, following the steps in Proposition 2.3.9 below, one can show that, if ∇ · β < 0 in

Ω, then all the solutions of (2.16) are positive. Hence, since we have shown that there is at least one

solution of (2.16) and the scheme is linear, this implies that there is a unique solution of (2.16) which, in

addition, is positive.

2.3.3 Linear convection with incompressible velocity and maximum principle

Now let us focus on the particular case of the conservation problem (2.8) where β : Ω → Rd

is continuous and incompressible, i.e. ∇ · β = 0 in Ω. In this case, the solution of the problem (2.8),

satisfies the following maximum principle (it can be proved, for instance, using the characteristics method

as in Remark 2.3.2):

min
Ω
v0 ≤ v ≤ max

Ω
v0 in Ω× (0, T ).

We are going to show that the solution of the linear scheme 2.16 (without truncating v) preserves

this maximum principle. The proof is based on the fact that, as consequence of the divergence theorem,

one has

∫
∂K

β · nK = 0, ∀K ∈ Th. (2.18)

Proposition 2.3.9 (Linear DG (2.16) preserves the maximum principle). For any vm ∈ Pdisc
0 (Th), the

solution vm+1 ∈ Pdisc
0 (Th) of the scheme (2.16) satisfies the maximum principle, that is

min
Ω
vm ≤ vm+1 ≤ max

Ω
vm in Ω.
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Proof. First, we will prove that vm+1 ≥ minΩ v
m. Let us denote vmin = minΩ v

m. Taking the following

test function

v =


(vm+1

K∗ − vmin)⊖ in K∗,

0 out of K∗,

where K∗ is an element of Th such that the value vm+1
K∗ = minK∈Th v

m+1
K , the scheme (2.16) becomes

|K∗|δtvm+1
K∗ (vm+1

K∗ − vmin)⊖ = −aupw
h (β; vm+1,1K∗(vm+1

K∗ − vmin)⊖).

Now, as we have chosen K∗ we can assure that vm+1
L ≥ vm+1

K∗ for all L ∈ Th. Hence, using (2.18), one

has

a
upw
h (β; vm+1,1K∗(vm+1

K∗ − vmin)⊖) =

=
∑

e∈E i
h,e=K∗∩L

∫
e

(
(β · ne)⊕v

m+1
K∗ − (β · ne)⊖v

m+1
L

)
(vm+1

K∗ − vmin)⊖

≤
∑

e∈E i
h,e=K∗∩L

∫
e

(
(β · ne)⊕v

m+1
K∗ − (β · ne)⊖v

m+1
K∗

)
(vm+1

K∗ − vmin)⊖

= vm+1
K∗ (vm+1

K∗ − vmin)⊖
∑

e∈E i
h,e=K∗∩L

∫
e
(β · ne) = 0.

Therefore,

|K∗|δtvm+1
K∗ (vm+1

K∗ − vmin)⊖ ≥ 0.

Moreover,

0 ≤ |K∗|(δtvm+1
K∗ )(vm+1

K∗ − vmin)⊖

=
|K∗|
∆t

(
(vm+1

K∗ − vmin) + (vmin − vmK∗)
)
(vm+1

K∗ − vmin)⊖

=
|K∗|
∆t

(
−(vm+1

K∗ − vmin)
2
⊖ + (vmin − vmK∗)(vm+1

K∗ − vmin)⊖
)
≤ 0,

then we have proved that (vm+1
K∗ − vmin)⊖ = 0. Hence, from the choice of K∗, we can assure vm+1 ≥

minΩ v
m.
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Now, we will prove that vm+1 ≤ maxΩ v
m. Let us denote vmax = maxΩ v

m. Taking the

following test function

v =


(vm+1

K∗ − vmax)⊕ in K∗,

0 out of K∗,

where K∗ is an element of Th such that the value vm+1
K∗ = maxK∈Th v

m+1
K and using similar arguments

to those above, we arrive at

|K∗|δtvm+1
K∗ (vm+1

K∗ − vmax)⊕ ≤ 0.

Moreover,

0 ≤ |K∗|
∆t

(
(vm+1

K∗ − vmax)
2
⊕ + (vmax − vmK∗)(vm+1

K∗ − vmax)⊕
)

=
|K∗|
∆t

(
(vm+1

K∗ − vmax) + (vmax − vmK∗)
)
(vm+1

K∗ − vmax)⊕

= |K∗|δtvm+1
K∗ (vm+1

K∗ − vmax)⊕ ≤ 0,

then we have proved that (vm+1
K∗ − vmax)⊕ = 0. From the choice of K∗, we can assure that vm+1 ≤

maxΩ v
m.

2.4 Cahn-Hilliard with degenerate mobility and incompressible convection

At this point, given v : Ω× (0, T ) −→ Rd a continuous incompressible velocity field satisfying

the slip condition (2.6), we are in position to consider the CCH problem (2.1).

Remark 2.4.1. Any smooth enough solution (u, µ) of the CCH model (2.1) satisfies the maximum

principle 0 ≤ u ≤ 1 in Ω × (0, T ) whenever 0 ≤ u0 ≤ 1 in Ω. The proof of this statement is a

straightforward consequence of Remark 2.3.2.

• To prove that u ≥ 0, it is enough to notice that u is the solution of (2.8) with β := −(1−u)∇µ+v

and to use Remark 2.3.2.

• To check that u ≤ 1 we make the change of variables w := 1− u and, using that ∇ · v = 0, notice

that w is the solution of (2.8) with β := (1− w)(∇µ+ v). Then, we just use Remark 2.3.2.
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Owing to this maximum principle, the following C2(R) truncated potential is considered

F (u) :=
1

4


u2 u < 0,

u2(1− u)2 u ∈ [0, 1],

(u− 1)2 u > 1.

(2.19)

This truncated potential will allow us to define a linear time discrete convex-splitting scheme satisfying

an energy law (where the energy is decreasing in the case v = 0), see Section 2.4.1.

Assume 0 ≤ u0 ≤ 1 in Ω. The weak formulation of problem (2.1) consists of finding (u, µ) such

that, u(t) ∈ H1(Ω), µ(t) ∈ H1(Ω) with ∂tu(t) ∈ H1(Ω)′, M(u(t))∇µ(t) ∈ L2(Ω) a.e. t ∈ (0, T ),

and satisfying the following variational problem a.e. t ∈ (0, T ) for every µ, u ∈ H1(Ω):

⟨∂tu(t), µ⟩ = − (M(u(t))∇µ(t)− u(t)v(t),∇µ) , (2.20a)

(µ(t), u) = ε2 (∇u(t),∇u) +
(
F ′(u(t)), u

)
, (2.20b)

with the initial condition u(0) = u0 in Ω. We denote by ⟨·, ·⟩ the duality product in H1(Ω)′.

Remark 2.4.2. By taking µ = 1 in (2.20a), any solution u of (2.20) conserves the mass, because

d

dt

∫
Ω
u(x, t)dx = 0.

Remark 2.4.3. By taking µ = µ(t) and u = ∂tu(t) in (2.20), and adding the resulting expressions, one

has that any solution (u, µ) of (2.20) satisfies the following energy law

d

dt
E(u(t)) +

∫
Ω
M(u(x, t))|∇µ(x, t)|2dx =

∫
Ω
u(x, t)v(x, t) · ∇µ(x, t)dx, (2.21)

where E : H1(Ω) −→ R is the Helmholtz free energy

E(u) :=

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx. (2.22)
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Indeed, by applying the chain rule we get

d

dt
E(u(t)) = ⟨δE

δu
(u(t)), ∂tu(t)⟩ =

∫
Ω
µ(x, t)∂tu(x, t)dx

= −
∫
Ω
M(u(x, t))|∇µ(x, t)|2dx+

∫
Ω
u(x, t)v(x, t) · ∇µ(x, t)dx.

In particular, in the CH case (v = 0), the energy E(u(t)) is dissipative. Contrarily, to the best knowledge

of the authors, for the CCH problem with v ̸= 0, there is no evidence of the existence of a dissipative

energy.

2.4.1 Convex splitting time discretization

Now we are ready to focus on a convex splitting time discretization (of Eyre’s type [77]) of (2.20).

Specially, we decompose the truncated potential (2.19) as follows:

F (u) = Fi(u) + Fe(u),

where

Fi(u) :=
3

8
u2, Fe(u) :=

1

4


−1

2u
2 u < 0,

u4 − 2u3 − 1
2u

2 u ∈ [0, 1],

1− 2u− 1
2u

2 u > 1.

It can be easily proved that Fi(u) is a convex operator, which will be treated implicitly whereas Fe(u) is

a concave operator that will be treated explicitly. Then we consider the following convex Ei(u(t)) and

concave Ee(u(t)) energy terms:

Ei(u) :=
ε2

2

∫
Ω
|∇u(x)|2dx+

∫
Ω
Fi(u(x))dx,

Ee(u) :=

∫
Ω
Fe(u(x))dx,

such that the free energy (2.22) is split as E(u) = Ei(u) + Ee(u).
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Finally we define the following time discretization of (2.20): find um+1 ∈ H1(Ω) and µm+1 ∈

H1(Ω) such that, for every µ, u ∈ H1(Ω):

(
δtu

m+1, µ
)
= −

(
M(um+1)⊕∇µm+1 − um+1v(tm+1),∇µ

)
, (2.23a)(

µm+1, u
)
= ε2

(
∇um+1,∇u

)
+
(
f(um+1, um), u

)
, (2.23b)

where we denote the convex-implicit and concave-explicit linear approximation of the potential as follows

f(um+1, um) := F ′
i (u

m+1) + F ′
e(u

m) =
3

4
um+1 +

1

4


−um, um ∈ (−∞, 0),

4(um)3 − 6(um)2 − um, um ∈ [0, 1],

− (um + 2) , um ∈ (1,+∞).

(2.24)

Notice that the positive part of the mobilitity has been taken in (2.23a), regarding the Remark 2.4.1, in

order to prevent possible overshoots of the solution um+1 beyond the interval [0, 1].

2.4.1.1 Discrete energy law

By adding (2.23a) and (2.23b) for µ = µm+1 and u = δtu
m+1 in (2.23), we get:

∫
Ω
M(um+1)⊕|∇µm+1|2 + ε2

(
∇um+1, δt∇um+1

)
+
(
f(um+1, um), δtu

m+1
)
=

∫
Ω
um+1v(·, tm+1) · ∇µm+1. (2.25)

Taking into account that

ε2
(
∇um+1, δt∇um+1

)
=
ε2

2
δt

∫
Ω
|∇um+1|2 + kε2

2

∫
Ω
|δt∇um+1|2,

by adding and substracting δt
∫
Ω F (u

m+1) we get the following equality where E(u) is defined in (2.22):

δtE(um+1) +

∫
Ω
M(um+1)⊕|∇µm+1|2 + kε2

2

∫
Ω
|δt∇um+1|2

+
(
f(um+1, um), δtu

m+1
)
− δt

∫
Ω
F (um+1) =

∫
Ω
um+1v(·, tm+1) · ∇µm+1.
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Then, using the Taylor theorem we get

Fi(u
m) = Fi(u

m+1) + F ′
i (u

m+1)(um − um+1) +
F ′′

i (u
m+ξ)

2
(um − um+1)2,

Fe(u
m+1) = Fe(u

m) + F ′
e(u

m)(um+1 − um) +
F ′′

e (u
m+η)

2
(um+1 − um)2,

for certain ξ, η ∈ (0, 1) with um+ξ = ξum+1+(1− ξ)um, um+η = ηum+1+(1−η)um. Hence, adding

these expressions and taking into consideration that F (u) = Fi(u) + Fe(u) for every u ∈ R, we arrive at

F (um+1)− F (um) = f(um+1, um)(um+1 − um)− F ′′
i (u

m+ξ)− F ′′
e (u

m+η)

2
(um+1 − um)2.

Furthermore, as

F ′′
i (u

m+ξ)− F ′′
e (u

m+η)

2k
=


1
2k , um+η ∈ (−∞, 0) ∪ (1,+∞),

3− 12(um+η)2 + 12(um+η) + 1

8k
, um+η ∈ [0, 1],

=


1
2k ≥ 0, um+η ∈ (−∞, 0) ∪ (1,+∞),

1
2k (1− 3um+η(um+η − 1)) ≥ 0, um+η ∈ [0, 1],

we have
F ′′
i (u

m+ξ)− F ′′
e (u

m+η)

2k
≥ 0,

and finally (
f(um+1, um), δtu

m+1
)
−
∫
Ω
δtF (u

m+1) ≥ 0.

Therefore, we arrive at the following result:

Theorem 2.4.4. Any solution of the scheme (2.23) satisfies the following discrete energy law

δtE(um+1) +

∫
Ω
M(um+1)⊕|∇µm+1|2 +

kε2

2

∫
Ω
|δt∇um+1|2 ≤

∫
Ω
um+1v(·, tm+1) · ∇µm+1.

(2.26)

In particular, if v = 0 the time-discrete scheme is unconditionally energy stable, because E(um+1) ≤

E(um).
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2.4.2 Fully discrete scheme

At this point we are going to introduce the key idea for the spatial approximation: to treat

equation (2.1a) as a conservative problem where there are two different fluxes (linear and nonlinear).

In this sense, we propose an upwind DG scheme approximating the nonlinear flux F (u) = M(u)∇µ

properly.

To this aim, we take for values v ∈ R the increasing and decreasing part of M(v)⊕, denoted

respectively by M↑(v) and M↓(v), as follows:

M↑(v) =

∫ v

0
(∂s (M(s)⊕))⊕ ds =

∫ min(v,1)

0
M ′(s)⊕ds =

∫ min(v,1)

0
(1− 2s)⊕ds,

M↓(v) = −
∫ v

0
(∂s (M(s)⊕))⊖ ds = −

∫ min(v,1)

0
M ′(s)⊖ds = −

∫ min(v,1)

0
(1− 2s)⊖ds.

Therefore,

M↑(v) =


M(v)⊕ if v ≤ 1

2 ,

M
(
1
2

)
if v > 1

2 ,

M↓(v) =


0 if v ≤ 1

2 ,

M(v)⊕ −M
(
1
2

)
if v > 1

2 .

(2.28)

Notice that M↑(v) +M↓(v) = M(v)⊕. We define the followig generalized upwind bilinear

form to be applied for the nonlinear flux F (u) =M(u)β where now β can be discontinuous over E i
h (in

fact we will take β = ∇µ):

a
upw
h (β;M(v)⊕, v) := −

∫
Ω
(β · ∇v)M(v)⊕

+
∑

e∈E i
h,e=K∩L

∫
e

(
({{β}} · ne)⊕(M

↑(vK) +M↓(vL))

−({{β}} · ne)⊖(M
↑(vL) +M↓(vK))

)
[[v]] . (2.29)

Remark 2.4.5. We refer to (2.29) as a generalized bilinear form since it generalizes the definition of

(2.11) considering the case where β may be discontinuous. If β is continuous both definitions are

equivalent.

Then, we propose the following fully discrete DG+Eyre scheme (named DG-UPW) for the

model (2.1):
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Find um+1 ∈ Pdisc
0 (Th), with µm+1, wm+1 ∈ Pcont

1 (Th), solving

(
δtu

m+1, u
)
+ a

upw
h (−∇µm+1;M(um+1)⊕, u) + a

upw
h (v(tm+1);u

m+1, u) = 0, (2.30a)(
µm+1, µ

)
= ε2

(
∇wm+1,∇µ

)
+
(
f(um+1, um), µ

)
, (2.30b)(

wm+1, w
)
=
(
um+1, w

)
, (2.30c)

for all u ∈ Pdisc
0 (Th) and µ,w ∈ Pcont

1 (Th). Following the notation of the Section 2.3.2,

a
upw
h (v;u, u) =

∑
e∈E i

h,e=K∩L

∫
e
((v · ne)⊕uK − (v · ne)⊖uL) [[u]] .

In this scheme we have introduced a truncation of the function M(u) taking its positive part

M(u)⊕, which is consistent as the solution of the continuous model (2.1) satisfies 0 ≤ u ≤ 1.

Notice that we have introduced a new continuous variable w ∈ Pcont
1 (Th) in (2.30c). It can be

seen as a regularization of the variable u ∈ Pcont
0 (Th), which is used in the diffusion term in (2.30b)

(which corresponds to the philic term in the energy of the model (2.22)). In fact, both variables wm+1

and um+1 are approximations of u(tm+1).

Remark 2.4.6. We are using the same notation in the fully discrete scheme (2.30) than the one we have

used in the time-discrete scheme (2.23) given in the Section 2.4.1.1, satisfying an energy law.

Nevertheless, in this case we are changing the meaning of the equations since we are treating

(2.30a) as the u-equation and (2.30b) as the µ-equation, contrary to computations done to reach the

energy law. This has been done for the purpose of preserving the maximum principle in the equation

(2.30a) and adequately approximating the laplacian term of the equation (2.30b).

Remark 2.4.7. The boundary condition ∇wm+1 · n = 0 on ∂Ω × (0, T ) is imposed implicitly by the

term
(
∇wm+1,∇µ

)
in (2.30b).

Remark 2.4.8. Since f(·, um) is linear, we have the following equality of the potential term of (2.30b):

(
f(wm+1, um), µ

)
=
(
f(um+1, um), µ

)
.

Remark 2.4.9. The scheme (2.30) is nonlinear, hence we will have to use an iterative procedure, the

Newton’s method, to approach its solution.
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Proposition 2.4.10. The scheme (2.30) conserves the mass of both um+1 and wm+1 variables:

∫
Ω
um+1 =

∫
Ω
um and

∫
Ω
wm+1 =

∫
Ω
wm.

Proof. Just need to take u = 1 in (2.30a) and w = 1 in (2.30c).

Theorem 2.4.11 (DG (2.30) preserves the maximum principle). For any um ∈ Pdisc
0 (Th) with 0 ≤ um ≤ 1

in Ω, then any solution um+1 of (2.30) satisfies 0 ≤ um+1 ≤ 1 in Ω.

Proof. Firstly, we prove that um+1 ≥ 0. Taking the following Pdisc
0 (Th) test function

u =


(um+1

K∗ )⊖ in K∗,

0 out of K∗,

where K∗ is an element of Th such that um+1
K∗ = minK∈Th u

m+1
K , equation (2.30a) becomes

|K∗|δtum+1
K∗ (um+1

K∗ )⊖ = −aupw
h (−∇µm+1;M(um+1)⊕, u) − a

upw
h (v(tm+1);u

m+1, u). (2.31)

Now, since um+1
L ≥ um+1

K∗ for all L ∈ Th, we can assure that

M↑(um+1
L ) ≥M↑(um+1

K∗ ) and M↓(um+1
L ) ≤M↓(um+1

K∗ ).

Then, we can bound as follows:

a
upw
h (−∇µm+1;M(um+1)⊕, u) =

∑
e∈E i

h,e=K∗∩L

∫
e

(
(
{{
−∇µm+1

}}
· ne)⊕(M

↑(um+1
K∗ ) +M↓(um+1

L ))

−(
{{
−∇µm+1

}}
· ne)⊖(M

↑(um+1
L ) +M↓(um+1

K∗ ))
)
(um+1

K∗ )⊖

≤
∑

e∈E i
h,e=K∗∩L

∫
e

(
(
{{
−∇µm+1

}}
· ne)⊕(M

↑(um+1
K∗ ) +M↓(um+1

K∗ ))

−(
{{
−∇µm+1

}}
· ne)⊖(M

↑(um+1
K∗ ) +M↓(um+1

K∗ ))
)
(um+1

K∗ )⊖

=
∑

e∈E i
h,e=K∗∩L

∫
e
(
{{
−∇µm+1

}}
· ne)

(
M(um+1

K∗ )
)
⊕ (um+1

K∗ )⊖ = 0.
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On the other hand, applying the incompressibility of v and proceeding as in Section 2.3.3, one has that

a
upw
h (v(tm+1);u

m+1, u) ≤ 0.

Therefore, from (2.31)

|K∗|δtum+1
K∗ (um+1

K∗ )⊖ ≥ 0.

Consequently, it is satisfied that

0 ≤ |K∗|(δtum+1
K∗ )(um+1

K∗ )⊖ = −|K∗|
∆t

(
(um+1

K∗ )2⊖ + umK∗(um+1
K∗ )⊖

)
≤ 0,

hence, since umK∗ ≥ 0, we prove that (um+1
K∗ )⊖ = 0. Hence um+1 ≥ 0.

Secondly, we prove that um+1 ≤ 1. Taking the following test function

u =


(um+1

K∗ − 1)⊕ in K∗,

0 out of K∗,

whereK∗ is an element of Th such that um+1
K∗ = maxK∈Th u

m+1
K and using similar arguments than above,

we arrive at

|K∗|δtum+1
K∗ (um+1

K∗ − 1)⊕ ≤ 0.

Besides, it is satisfied that

0 ≥ |K∗|δtum+1
K∗ (um+1

K∗ − 1)⊕ =
|K∗|
∆t

(
(um+1

K∗ − 1) + (1− umK∗)
)
(um+1

K∗ − 1)⊕

=
|K∗|
∆t

(
(um+1

K∗ − 1)2⊕ + (1− umK∗)(um+1
K∗ − 1)⊕

)
≥ 0,

hence we deduce that (um+1
K∗ − 1)⊕ = 0 and, therefore, um+1 ≤ 1.

The following result is a direct consequence of Theorem 2.4.11.

Corollary 2.4.12. If we use mass-lumping to compute wm+1 in (2.30c), then 0 ≤ wm+1 ≤ 1 in Ω for

m ≥ 0.

Theorem 2.4.13. There is at least one solution of the scheme (2.30).
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Proof. Given a function z ∈ Pdisc
0 (Th) with 0 ≤ z ≤ 1, we define the map

T : Pdisc
0 (Th)× Pcont

1 (Th)× Pcont
1 (Th) −→ Pdisc

0 (Th)× Pcont
1 (Th)× Pcont

1 (Th)

such that T (û, µ̂, ŵ) = (u, µ,w) ∈ Pdisc
0 (Th) × Pcont

1 (Th) × Pcont
1 (Th) is the unique solution, for every

u ∈ Pdisc
0 (Th), µ,w ∈ Pcont

1 (Th), of the linear (and decoupled) scheme:

1

∆t
(u− z, u) + a

upw
h (v;u, u) = −aupw

h (−∇µ̂;M(û)⊕, u), (2.32a)

(µ, µ) = ε2 (∇w,∇µ) + (f(u, z), µ) , (2.32b)

(w,w) = (u,w) , (2.32c)

To check that T is well defined, one may use the following steps. First, it is easy to prove that

there is a unique solution u of (2.32a) which implies that there is a unique solution w of (2.32c) using,

for instance, the Lax-Milgram theorem. Then, it is straightforward to see that the solution µ of (2.32b) is

unique, which implies its existence as Pcont
1 (Th) is a finite-dimensional space.

It can be proved, using the notion of convergence elementwise, as it was done in Theorem 2.3.5

and taking into consideration that ∇µ̂ ∈
(
Pdisc
0 (Th)

)d, that the operator T is continuous, and, therefore, it

is compact since Pdisc
0 (Th) and Pcont

1 (Th) have finite dimension.

Finally, let us prove that the set

B = {(u, µ,w) ∈ Pdisc
0 (Th)×Pcont

1 (Th)×Pcont
1 (Th) : (u, µ,w) = αT (u, µ,w) for some 0 ≤ α ≤ 1}

is bounded (independent of α). The case α = 0 is trivial so we will assume that α ∈ (0, 1].

If (u, µ,w) ∈ B, then u ∈ Pdisc
0 (Th) is the solution, for every u ∈ Pdisc

0 (Th), of

1

∆t
(u− αz, u) + a

upw
h (v;u, u) = −αaupw

h (−∇µ;M(u)⊕, u). (2.33)

Now, testing (2.33) by u = 1, we get that

∫
Ω
u = α

∫
Ω
z,
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and, since 0 ≤ z ≤ 1, and since it can be proved that 0 ≤ u ≤ 1 using the same arguments than in

Theorem 2.4.11, we get that

∥u∥L1(Ω) ≤ ∥z∥L1(Ω).

Moreover, w ∈ Pcont
1 (Th) is the solution of the equation

(w,w) = (u,w) , ∀w ∈ Pcont
1 (Th). (2.34)

Testing with w = w and using that u ≤ 1 and that the norms are equivalent in Pcont
1 (Th), we obtain

∥w∥2L2(Ω) = (u,w) ≤ ∥w∥L1(Ω) ≤ |Ω|1/2∥w∥L2(Ω),

hence ∥w∥L2(Ω) ≤ |Ω|1/2 holds.

Finally, we will check that µ is bounded. Regarding that, µ ∈ Pcont
1 (Th) is the solution of

(µ, µ) = ε2 (∇w,∇µ) + (f(u, z), µ) , ∀µ ∈ Pcont
1 (Th), (2.35)

by testing by µ = µ we get that

∥µ∥2L2(Ω) ≤ ε2∥∇w∥L2(Ω)d∥∇µ∥L2(Ω)d + ∥f(u, z)∥L2(Ω)∥µ∥L2(Ω)

≤ ε2∥w∥H1(Ω)∥µ∥H1(Ω) + ∥f(u, z)∥L2(Ω)∥µ∥L2(Ω).

The norms are equivalent in the finite-dimensional space Pcont
1 (Th), therefore, there is Ccont ≥ 0 such that

∥µ∥L2(Ω) ≤ ε2Ccont∥w∥L2(Ω) + ∥f(u, z)∥L2(Ω).

Hence, as 0 ≤ u, z ≤ 1, we know that ∥f(u, z)∥L2(Ω) is bounded, and therefore ∥µ∥L2(Ω) is bounded.

Since Pdisc
0 (Th) and Pcont

1 (Th) are finite-dimensional spaces where all the norms are equivalent,

we have proved that B is bounded.

Thus, using the Leray-Schauder fixed point theorem 2.3.6, there is a solution (u, µ,w) of the

scheme (2.30).

Corollary 2.4.14. There is at least one solution of the following (non-truncated) scheme:

31



Find um+1 ∈ Pdisc
0 (Th) with 0 ≤ um+1 ≤ 1 and µm+1, wm+1 ∈ Pcont

1 (Th) with 0 ≤ wm+1 ≤ 1,

solving

(
δtu

m+1, u
)
+ aupw

h (−∇µm+1;M(um+1), u) + aupw
h (v(tm+1);u

m+1, u) = 0, (2.36a)(
µm+1, µ

)
= ε2

(
∇wm+1,∇µ

)
+
(
f(um+1, um), µ

)
, (2.36b)(

wm+1, w
)
=
(
um+1, w

)
. (2.36c)

for all u ∈ Pdisc
0 (Th) and µ,w ∈ Pcont

1 (Th). Here, we have considered M(um+1) instead of M(um+1)⊕.

Proof. By Theorems 2.4.11 and 2.4.13 we know that there is a solution of the scheme (2.30) such that

0 ≤ um ≤ 1 in Ω for every m ≥ 0. Hence, M(um) = M(um)⊕ for every m ≥ 0, and therefore

the solution of (2.30) is also a solution of (2.36), which moreover satisfies the discrete maximum

principle.

2.5 Numerical experiments

We now present several numerical tests in which we explore the behavior of the new upwind DG

scheme presented in this work (DG-UPW) (2.30) and compare it with two other space semidiscretizations

found in the literature: firstly a classical finite element discretization (FE) and secondly the DG scheme

proposed in [81], based on an SIP + (sigmoid upwind) technique, that we call (DG-SIP). We use P1

piecewise polynomials for both schemes unless otherwise specified.

For the DG-UPW scheme, we use mass lumping to compute wm+1 in (2.30c) so that wm+1 ∈

[0, 1] by the Corollary 2.4.12. This wm+1, which is a regularization of the primal variable um+1, is

considered as the main phase-field variable, which is used when showing the results of the numerical

experiments. Moreover, we consider Pe = 1 unless another value is specified.

2.5.1 Qualitative tests and comparisons

Our first numerical tests are devoted to qualitative experiments about our DG-UPW scheme in

rectangular and circular domains with different kinds of velocity fields. We also inspect the discrete

energy and the maximum principle property, confirming that the latter one holds for our scheme but not

for the two aforementioned ones, FE and DG-SIP.
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2.5.1.1 Agreggation of circular regions without convection

First, we consider the Cahn–Hilliard equation without convection (v = 0) in the squared domain

Ω = (0, 1)2 and the following initial condition (two small circles of radius 0.2, see Figure 2.1, left) :

u0 =
1

2

tanh
(
0.2−

√
(x− x1)2 + (y − y1)2

)
√
2ε

+ 1


+

1

2

tanh
(
0.2−

√
(x− x2)2 + (y − y2)2

)
√
2ε

+ 1

 , (2.37)

with centers (x1, y1) = (0.3, 0.5) and (x2, y2) = (0.7, 0.5). We take a structured mesh with h ≈

2.8284 · 10−2 and run time iterations with ∆t = 10−6. Each iteration consists of solving a nonlinear

system for computing (un+1, µn+1, wn+1), for which we use Newton’s method iterations, programmed

on the FEniCS finite element library [14, 142]. For linear systems we used a MPI parallel solver

(GMRES) in the computing cluster of the Universidad de Cádiz.

No convection Convection

Figure 2.1 Left: initial condition in the case v = 0. Right: initial condition in the case v = 100(y,−x)

In Figure 2.2 we show a 3D view of the phase field function at the time step T = 0.001, when

the aggregation process has started. It is interesting to notice that for our upwind DG scheme (2.30) there

are no spurious oscillations meanwhile for the FE and DG-SIP schemes we obtain several numerical

issues (vertical fluctuations in the 3D graphics).
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FE DG-SIP DG-UPW

Figure 2.2 Aggregation of circular regions at T = 0.001 without convection, 3D view (height represents
the value of the phase variable on each point of the squared domain)

Moreover, in the Figure 2.3 we can clearly observe how the maximum principle is preserved by

DG-UPW scheme (and not by the two other ones). Regarding the energy, we obtain a non-increasing

behavior as expected from the continuous model. An analytical proof of this property in the discrete case

is left as future work.

Maximum-Minimum Energy

Figure 2.3 Aggregation of circular phases. On the left, maximum (top) and minimum (bottom) of the
phase field variable over time without convection (v = 0). On the right, energy over time

2.5.1.2 Agreggation of circular regions with convection

Second, we define Ω as the unit ball in R2 and, again, the initial condition (2.37) (two small

circles of radius 0.2), with centers (x1, y1) = (−0.2, 0) and (x2, y2) = (0.2, 0), see Figure 2.1 (right).

Moreover, for testing the effect of convection in our scheme, we take ε = 0.001 and v = 100(y,−x),

so that v · n = 0 on ∂Ω. We take an unstructured mesh with h ≈ 4 · 10−2 and run time iterations

with ∆t = 10−3. Figure 2.4 shows the values of the phase field function at different time steps. We
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can observe that, despite of our election of a highly significant convection term, the results of scheme

DG-UPW are qualitatively correct. Nevertheless, we can observe how the spurious oscillations become

more important and the solution begins to have an unexpected behavior when using both the FE and

DG-SIP schemes.

Concerning the maximum principle, in Figure 2.5 we can see how this property is preserved

by the DG-UPW scheme (2.30), while the phase field variable reaches nonphysical values, very far

from [0, 1], when using the other aforementioned schemes. Moreover, it is interesting to observe the

approximation of the steady state of the schemes, represented by the quantity
∥um+1−um∥L∞(Ω)

∥um∥L∞(Ω)
, which

tends to 0 in the case DG-UPW. This fact indicates that the solution converges to a stationary state, while

for the other schemes it remains in an oscillatory state.

The computational time spent to obtain the results (computed sequentially) with each of these

schemes is 2:32min using DG-UPW, 1:10min using FE and 3:24min using DG-SIP.

For the fairness of comparisons, we redo the tests using both FE and DG-SIP reducing the step

size of the mesh, on the one hand, and using higher order polynomials, on the other hand. First, if we

reduce the mesh size to h/2 ≈ 2 · 10−2 and we use P1 polynomials, the FE scheme does not converge

(the linear solver, GMRES, fails to converge) while the DG-SIP scheme gives us the results shown in

Figure 2.6 (left), requiring 35:20min to complete the computations sequentially. Second, if we keep the

mesh size h ≈ 4 · 10−2 and we use P2 polynomials, the FE scheme does not converge either (Newton’s

method does not converge) while the DG-SIP scheme gives us the results shown in Figure 2.6 (right),

requiring 11min to complete the computations sequentially. Therefore, the FE scheme does not even

converge if we try to improve the results above and, while the DG-SIP scheme does converge, the results

still show spurious oscillations and require a much longer computational time to be completed than those

shown in Figure 2.4 (right) using our DG-UPW scheme.

2.5.1.3 Spinoidal decomposition driven by Stokes cavity flow

We show the results from a spinoidal decomposition test, in which the initial condition is a small

uniformly distributed random perturbation around 0.5, u0(x) ∈ [0.49, 0.51] for x ∈ Ω as shown in Figure

2.7.

As convection vector v, we take the flow resulting from solving a cavity test for the Stokes

equations in the domain Ω = [0, 2] × [0, 1] with Dirichlet boundary conditions given by a parabolic
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t=
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02
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FE DG-SIP DG-UPW
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0.
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0
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07
5

t=
0.

10
0

Figure 2.4 Aggregation of circular regions over time with a strong convection (v = 100(y,−x))
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Maximum-Minimum Dynamics

Figure 2.5 Aggregation of circular phases with strong convection (v = 100(y,−x)). On the left,
maximum and minimum of the phase field variable over time. On the right, we plot
∥um+1−um∥L∞(Ω)

∥um∥L∞(Ω)
to observe the dynamics of the approximations

DG-SIP

Figure 2.6 Aggregation of circular phases with strong convection (v = 100(y,−x)) using the DG-SIP
scheme. On the left, the result obtained with h/2 ≈ 2 · 10−2 and Pdisc

1 (Th). On the right, the
result obtained with h ≈ 4 · 10−2 and Pdisc

2 (Th)
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Random perturbation

Figure 2.7 Random initial perturbation for the spinoidal decomposition test

profile

v(x, y) = (x(2− x), 0), ∀(x, y) ∈ Γtop = {(x, 1) ∈ R2 : x ∈ [0, 2]}.

We used this parabolic profile in order to avoid the discontinuities of the Stokes velocity for a

standard boundary condition v = 1 on Γtop, which produces a non vanishing divergence in the corners

where the discontinuities arise. In fact we have checked that, in this particular case where v = 1 on Γtop,

the scheme DG-UPW does not preserve the upper bound um ≤ 1, although it does preserve the lower

bound 0 ≤ um (recall that, for compressible velocity, positivity is the only property of the solution, see

Remark 2.3.2).

We set ε = 0.005, ∆t = 0.001, h ≈ 0.07 and, in this case, we take Pe = 10 in order to

emphasize the convection effect. We can observe in the Figures 2.8 and 2.9 how the maximum principle

is preserved by our DG-UPW scheme (2.30) while for the other schemes the solution takes values out of

the interval [0, 1] (to notice that, we must take into account the scale of the values shown on the right-hand

side of each picture).

Furthermore, in Figure 2.9 we can also notice that the approximation obtained using the DG-UPW

scheme converges to a stationary state, while it remains in an nonphysical oscillatory state when we use

the other schemes.
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Figure 2.8 Spinoidal decomposition over time with convection vector obtained from a cavity test
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Maximum-Minimum Dynamics

Figure 2.9 Spinoidal decomposition with convection vector obtained from a cavity test. On the left,
maximum and minimum of the phase field variable over time. On the right, we plot
∥um+1−um∥L∞(Ω)

∥um∥L∞(Ω)
to observe the dynamics of the approximations

2.5.2 Error order test

We now introduce the results of a numerical test in which we study the convergence order of

our numerical scheme DG-UPW, verifying experimentally that the expected order is obtained. For the

sake of completeness, we also compare the convergence orders of the two others aforementioned space

semidiscretizations: FE, DG-SIP. We consider again the same initial conditions than in Section 2.5.1.1

with ε = 0.01, see Figure 2.1.

First, in the nonconvective case, errors and convergence order are compared with respect to an

approximate solution which is computed using the FE scheme in a very fine mesh of size h = 1.414 ·10−3

and a time step ∆t = 10−6 (which is taken as the “exact solution”). In this case we have used conforming

structured meshes for the space discretization. The results for the DG-UPW scheme, which are shown

in the first row of Table 2.1, confirm order 1 (in fact, slightly over 1) in norm ∥ · ∥L2(Ω). These results

match our expectations for the P0 approximation of um+1, with the upwind discretization of the nonlinear

second-order term. It is interesting to emphasize that, unexpectedly, the scheme produces kind results in

∥ · ∥H1(Ω), reaching order 1. On the other hand, the FE and DG-SIP schemes reach order 2 in L2 and

order 1 in H1 norms, as expected (see also Table 2.1).

Next, we focus on the case with convection, where we take v = (y,−x) in the unit ball. The

resulting errors and convergence orders computed using the three different schemes over a conforming
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Table 2.1 Errors and convergence orders in T = 0.001 without convection (v = 0)

Scheme Norm
h ≈ 2.83 · 10−2 h/2 ≈ 1.41 · 10−2 h/3 ≈ 9.43 · 10−3 h/4 ≈ 7.07 · 10−3

Error Error Order Error Order Error Order

DG-UPW ∥ · ∥L2 8.53 · 10−3 3.09 · 10−3 1.46 1.76 · 10−3 1.38 1.21 · 10−3 1.30
∥ · ∥H1 8.00 · 10−1 4.02 · 10−1 0.99 2.61 · 10−1 1.07 1.88 · 10−1 1.13

FE
∥ · ∥L2 5.32 · 10−3 1.57 · 10−3 1.76 6.99 · 10−4 1.99 4.02 · 10−4 1.93
∥ · ∥H1 9.00 · 10−1 4.10 · 10−1 1.13 2.53 · 10−1 1.2 1.78 · 10−1 1.22

DG-SIP
∥ · ∥L2 4.65 · 10−3 1.30 · 10−3 1.84 5.89 · 10−4 1.96 3.27 · 10−4 2.05
∥ · ∥H1 1.18 5.83 · 10−1 1.01 3.63 · 10−1 1.17 2.60 · 10−1 1.15

unstructured mesh are shown in Table 2.2. In this case, the errors are computed with respect to the

solution obtained for the FE scheme in a mesh of size h = 4 · 10−3.

In this case, it is interesting to notice that the error order in ∥ · ∥L2(Ω) of the DG-UPW scheme is

improved and it approaches the order 2 of the other schemes, while order in ∥ · ∥H1(Ω) slightly beats the

other schemes.

As a technical comment, notice that, in order to compute the errors, we projected on a Pcont
1 space

both the exact and the DG solution obtained when using the DG-SIP. In the case of the DG-UPW scheme

we have taken w as the continuous solution.

Table 2.2 Errors and convergence orders in T = 0.001 with convection (v = (y,−x))

Scheme Norm
h ≈ 4 · 10−2 h/2 ≈ 2 · 10−2 h/3 ≈ 1.33 · 10−2 h/4 ≈ 1 · 10−2

Error Error Order Error Order Error Order

DG-UPW ∥ · ∥L2 1.73 · 10−2 6.94 · 10−3 1.32 3.31 · 10−3 1.83 2.06 · 10−3 1.65
∥ · ∥H1 1.45 6.03 · 10−1 1.27 3.02 · 10−1 1.71 2.03 · 10−1 1.38

FE
∥ · ∥L2 6.83 · 10−3 2.12 · 10−3 1.69 9.77 · 10−4 1.91 5.39 · 10−4 2.07
∥ · ∥H1 8.31 · 10−1 3.81 · 10−1 1.13 2.19 · 10−1 1.36 1.50 · 10−1 1.32

DG-SIP
∥ · ∥L2 6.52 · 10−3 1.96 · 10−3 1.74 8.95 · 10−4 1.93 5.03 · 10−4 2.00
∥ · ∥H1 1.20 6.16 · 10−1 0.96 3.85 · 10−1 1.16 2.74 · 10−1 1.17
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CHAPTER 3

AN UNCONDITIONALLY ENERGY STABLE AND POSITIVE UPWIND DG SCHEME FOR THE

KELLER–SEGEL MODEL

3.1 Abstract

The well-suited discretization of the Keller-Segel equations for chemotaxis has become a very

challenging problem due to the convective nature inherent to them. This chapter aims to introduce

a new upwind, mass-conservative, positive and energy-dissipative discontinuous Galerkin scheme for

the Keller-Segel model. This approach is based on the gradient-flow structure of the equations. In

addition, we show some numerical experiments in accordance with the aforementioned properties of the

discretization. The numerical results obtained emphasize the really good behavior of the approximation

in the case of chemotactic collapse, where very steep gradients appear. The results of this chapter have

been already published in [3].

3.2 Introduction

Since the introduction in the 70’s of the biological Keller–Segel model for chemotaxis phenomena

[125, 126], it and many related variants have attracted a great deal of interest in the mathematical

community. Chemotaxis, a biological process through which organisms (e.g. cells) migrate in response

to a chemical stimulus, is modelled by means of nonlinear systems of partial differential equations (PDE).

The classical one can be written as follows: find two real valued functions, u = u(x, t) and v = v(x, t),

defined in Ω× [0, T ] such that:

∂tu = k0∆u− k1∇ · (u∇v), in Ω× (0, T ), (3.1a)

τ∂tv = k2∆v − k3v + k4u, in Ω× (0, T ), (3.1b)

∂nu := ∇u · n = 0, ∂nv = 0, on ∂Ω× (0, T ), (3.1c)

u(0) = u0, v(0) = v0 if τ > 0, in Ω. (3.1d)
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Herein the parameters are ki > 0 for i ∈ {0, 1, 2, 3, 4}. The mathematical formulation of (3.1) can

be interpreted in biological terms as follows: u denotes a certain cell distribution (or population of

organisms, in general) at the position x ∈ Ω and time t ∈ [0, T ], whereas v stands for the concentration

of chemoattractant (i.e. a chemical signal towards which cells are induced to migrate). Both cells and

chemoattractant experiment some diffusion in the spatial domain.

This auto-diffusion phenomena (experimented by cells and chemoattractant) are designed by the

terms −k0∆u and −k2∆v, while the migration mechanism is modeled by the nonlinear cross-diffusion

term −k1∇ · (u∇v). This term is the major difficulty for theoretical analysis and also for numerical

modelling of system 3.1. Further, the degradation and production of chemoattractant are associated with

the terms −k3v and k4u, respectively. Note that the production of chemoattractant by the cells, to which

cells are attracted, may eventually result in a chemotactic collapse, a phenomenon in which uncontrolled

aggregation for u give rise to blowing up or exploding in finite time. This feature is well known and

constitutes one of the outstanding characteristics of classical Keller-Segel model, and also one of its main

challenges, specifically for numerical methods. Finally, the coefficient τ ∈ {0, 1} is considered to write

at the same time the parabolic system when τ = 1, or the parabolic-elliptic for τ = 0.

Regarding the mathematical analysis for the system (3.1): some results on sufficient conditions

to ensure global existence and boundedness of solutions along time can be shown (see e.g. the review

of Bellomo et al [28] and the references therein). They are based on mass conservation for u and on

an energy dissipation law for this model (see Section 3.3). For dimension d ≥ 2, these results require

the initial density of cells,
∫
Ω u0, to be bigger than certain threshold. On the other hand, considerable

research has been done in the direction of finding cases where chemotactic collapse arise. Among them,

it is worth mentioning the first result in this direction, due to Herrero and Velázquez [114], where radially

symmetric two-dimensional solutions which finite-time blow up are found. Other authors shed light

on more general cases, for instance Horstmann and Wang [116] (non symmetric blow-up solutions) or

Winkler [186] (higher dimensional case).

In the last decades, a lot of papers have been published dealing with these kinds of theoretical

issues both for the classical model (3.1) and for other models based on some extensions or generalizations.

In general, they start from the Keller–Segel classical equations and modify them with the purpose

of avoiding the non-physical blow up of solutions, producing solutions which are closer to the “real

chemotaxis” phenomena observed in biology. Models include logistic, non-linear diffusion or production
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terms, chemo-repulsion effects or coupling with fluid equations [39, 83, 177, 178, 188]. See e.g. [21, 28]

for more examples. Thus, it is hoped that understanding the classical Keller–Segel equations may open

new insights for dealing in depth with those other chemotaxis models.

On the other hand, taking into account the considerable efforts of the mathematical community in

the theoretical analysis of Keller-Segel models, the number of papers dedicated to numerical analysis and

simulation of chemotaxis equations is much lower, in relative terms. The main difficulty is the numerical

approximation of the cross-diffusion term. Not only for its non-linearity, but due to its convective nature,

which makes particularly difficult to deal with using the finite element (FE) method (see, for instance, [34,

74] for more details about this method). This difficulty is specifically significant in steep-gradient regions

for v, which are precisely relevant in blow-up settings. Furthermore, preserving the physical properties of

the continuous model (mass conservation, positivity and energy dissipation) in the discrete case adds an

extra level of complication when it comes to designing a well-suited approximation.

Despite that, many interesting works have been published on numerical simulation of chemotaxis

equations using different kinds of approaches. For instance, the work by Saito [165] uses FE with upwind

stabilization for the parabolic-elliptic Keller–Segel model (τ = 0 in (3.1)) showing mass conservation,

positivity and error estimates. Also, Gutiérrez-Santacreu and Rodrı́guez-Galván demonstrate positivity, an

energy law and a priori bounds for their FE scheme on acute meshes in [111]. Recently, Guillén-González

and Tierra have presented an energy-stable and approximately positive FE scheme for a chemoattraction

and consumption variant of (3.1) in [104]. In addition, other sophisticated techniques have been applied

to this problem. This is the case of the finite volume (FV) method (we recommend [132] on this topic)

which has become a very popular and successful approach as we can observe in papers like [45] by

Chertock and Kurganov in which the authors devised positive preserving methods for the parabolic-

parabolic formulation (τ = 1 in (3.1)), with demonstrated high accuracy and robustness, specifically on

chemotactic collapse. It might also be pointed out the works of Saad and others, for instance in [120],

where a volume finite element scheme for the capture of spatial patterns for a volume-filling chemotaxis

is analyzed.

In this sense, it is also worth mentioning the very recent works [23, 41, 117, 168] that show

and analyze different techniques to approximate the solution of (3.1) while achieving mass conservation,

positivity and energy-dissipation for a strictly positive initial cell condition. In the paper by Badı́a et

al. [23] a discrete scheme using stabilized FE with a graph-Laplacian operator and a shock detector is
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proposed. This discretization satisfies, in general, both the mass conservation and positivity properties,

and, in the case of acute meshes, it is also energy-dissipative. Otherwise, Huang and Shen develop in

[117] a time-discrete approximation, admitting any spatial discretization, that preserves the positivity for

the cell distribution u and is energy stable for a modified energy. This latest approach uses a suitable

transformation of the solution for the positivity and the scalar auxiliary variable (SAV) technique for the

energy stability. Alternatively, Shen and Xu introduced in [168] another general, positive (for the cell

distribution u) and energy-dissipative, time-discrete scheme based on the gradient flow structure of the

continuous model that admits different kinds of spatial discretization such as FE, spectral methods or

even finite-differences. The order of the latest approach and the blow-up phenomenon of the discrete

solution, under a CFL condition, is studied in [41] by Chen et al.

Furthermore, discontinuous Galerkin (DG) methods (we refer the reader to [63, 66, 163] for a

further insight) aroused the interest of researchers in recent years due to their flexibility for approximating,

using standard meshes and computer libraries, different types of PDEs: elliptic, parabolic, hyperbolic. In

the chemotaxis context, it is worth mentioning the paper of Y. Epshteyn and A. Kurganov [73], where the

FV scheme given in [45] for the 2D Keller-Segel model (3.1) is extended to a DG scheme on cartesian

meshes, obtaining good approximations even on blow-up regimes. Y. Epshteyn introduced two other

related schemes in [72]. In all cases, different discontinuous Interior Penalty (IP) methods and upwinding

techniques were considered for defining DG approximations. The schemes are even applied to the

simulation of an haptotaxis model of tumor invasion into healthy tissue. Error estimates are shown but

no energy property or maximum principle for the schemes is proven. In fact, spurious oscillations and

negative values in the solution are reported.

More recent works make further progress in this direction, for instance in [195], where the

classical equations (3.1) are approximated by a positivity-preserving DG method with strong stability

preserving (SSP) high order time discretizations. Error order estimates as well as positivity are shown in

this work. Finally, in [108, 136], the local discontinuous Galerkin method is applied, showing respectively

positivity and energy dissipation.

In this work, we propose a new upwind DG scheme for the Keller-Segel model (3.1) that

preserves the mass-conservation, positivity and energy stability properties of the continuous problem. As

in [168], the proposed discretization takes advantage of the gradient flow structure of the model. First,

in Section 3.3 we discuss the physical properties of the continuous model. Section 3.4 is the main part
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of the chapter, in which we introduce the upwind DG scheme (3.8). In particular, in Section 3.4.1, we

define the upwind approximation based on the ideas introduced in Chapter 2 along with some geometrical

considerations for the mesh family Th, and we discuss the properties of the scheme in Section 3.4.2.

Finally, in Section 3.5, we show several numerical tests in which we reproduce some blow-up results

shown in the literature with one steady peak, [45], and a peak moving towards the corner of the domain,

[165], as well as pattern formation results with several peaks, [18, 38, 78, 181]. These numerical

experiments endorse the good behavior of the approximation obtained with the new scheme, which allows

us to capture peaks reaching values up to the order of 107. These kinds of numerical results are rare in

the literature due to the steep-gradients inherent to such sort of tests.

The results of this chapter have been already published in [3].

3.3 Keller-Segel model

Let us consider the Keller-Segel system (3.1).

Remark 3.3.1. There is a classical solution of the Keller-Segel problem (3.1) at least local in time which

is positive, i.e., u, v ≥ 0 in Ω× (0, T ) whenever u0 ≥ 0 and v0 ≥ 0 in Ω. See, for instance, [28, 64].

To our best knowledge, the existence of global solutions in time is still not clear in the literature.

Assume u0, v0 ≥ 0 in Ω. The weak formulation of the problem (3.1) consists of finding

(u, v) : [0, T ]× Ω → R+ × R+ regular enough, i.e. u(t), v(t) ∈ V for a certain regular Sobolev space

V (for instance, V = W 1,∞(Ω)), with ∂tu(t), τ∂tv(t) ∈ V ′ a.e. t ∈ (0, T ), satisfying the following

variational problem a.e. t ∈ (0, T ):

⟨∂tu(t), u⟩ = −k0 (∇u(t),∇u) + k1 (u(t)∇v(t),∇u) , ∀u ∈ V, (3.2a)

⟨τ∂tv(t), v⟩ = −k2 (∇v(t),∇v)− k3 (v(t), v) + k4 (u(t), v) , ∀v ∈ V, (3.2b)

and the initial conditions u(0) = u0, v(0) = v0 in Ω. Hereafter, ⟨·, ·⟩ denotes the duality product in V ′.

By taking, formally, the chemical potential of u,

µ = k0 log(u)− k1v, (3.3)
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we can rewrite (3.2) as a gradient flow system where the flux direction is given by −∇µ containing the

effect of both the diffusion and the chemotaxis terms (see, for instance, [30]). This variational formulation

consists of finding (u, µ, v) : [0, T ] × Ω → R+ × R × R+ regular enough, i.e. u(t), µ(t), v(t) ∈ V

for a certain regular Sobolev space V (for instance, V = W 1,∞(Ω)), with ∂tu(t), τ∂tv(t) ∈ V ′ a.e.

t ∈ (0, T ), satisfying the following variational problem a.e. t ∈ (0, T ):

⟨∂tu(t), u⟩ = − (u(t)∇µ(t),∇u) , ∀u ∈ V, (3.4a)

(µ(t), µ) = (k0 log(u(t))− k1v(t), µ) , ∀µ ∈ V, (3.4b)

⟨τ∂tv(t), v⟩ = −k2 (∇v(t),∇v)− k3 (v(t), v) + k4 (u(t), v) , ∀v ∈ V, (3.4c)

and the initial conditions u(0) = u0, v(0) = v0 in Ω.

Remark 3.3.2. By taking u = 1 in (3.2a) (or (3.4a)), any solution u conserves the mass, because

d

dt

∫
Ω
u(x, t)dx = 0.

Remark 3.3.3. By taking (formally) u = µ(t), µ = ∂tu(t) and v = (k1/k4)∂tv(t) in (3.4), and adding

the resulting expressions, one has that any solution (u, v) satisfies the following energy law

d

dt
E(u(t), v(t)) + τ

k1
k4

∫
Ω
|∂tv(t)|2dx+

∫
Ω
u(t) |∇(µ(t))|2 dx = 0, (3.5)

where E : H1(Ω)+ ×H1(Ω) −→ R is the energy functional, defined as follows

E(u, v) :=

∫
Ω

(
k0u log(u)− k1uv +

k1k2
2k4

|∇v|2 + k1k3
2k4

v2
)
, (3.6)

and H1(Ω)+ = {u ∈ H1(Ω): u ≥ 0}.

3.4 Fully discrete scheme

First, we regularize the chemical potential of u, defined in (3.3), by

µε = k0 log(u+ ε)− k1v, (3.7)
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for some ε > 0. Note that ε is a regularization parameter since log(u+ ε) is regular for all u ≥ 0. We

will take ε = ε(h,∆t) such that ε(h,∆t) → 0 if (h,∆t) → 0, being h > 0 the mesh size and ∆t > 0

the time step.

Then, we propose the following decoupled fully discrete first order in time and upwind DG in

space scheme for the model (3.1):

Let vm ∈ Pcont
1 (Th) and um ∈ Pdisc

0 (Th) such that vm ≥ 0 in the case τ > 0 and um ≥ 0 be

given.

Step 1: Find vm+1 ∈ Pcont
1 (Th) solving

τ
(
δtv

m+1, v
)
h
+ k2

(
∇vm+1,∇v

)
+ k3

(
vm+1, v

)
h
− k4 (u

m, v) = 0, (3.8a)

for all v ∈ Pcont
1 (Th).

Step 2: Find (um+1, µm+1) ∈ Pdisc
0 (Th)×Pdisc

0 (Th) with um+1 ≥ 0 solving the coupled problem

(
δtu

m+1, u
)
+ a

upw
h (µm+1;um+1, u) = 0, (3.8b)(

µm+1, µ
)
− k0

(
log(um+1 + ε), µ

)
+ k1

(
vm+1, µ

)
= 0, (3.8c)

for all u, µ ∈ Pdisc
0 (Th), where aupw

h (·; ·, ·) will be defined below in Section 3.4.1.

Notice that 3.8a is a linear problem for vm+1 and that (3.8b)–(3.8c) is a coupled nonlinear problem

for (um+1, µm+1). In fact, we are going to use Newton’s method as iterative procedure approximating

the scheme (3.8b)–(3.8c).

In order to preserve the positivity of vm+1, we have done mass lumping in the terms
(
∂tv

m+1, v
)
h

and k3
(
vm+1, v

)
h

in (3.8a).

In Section 3.4.2, we will provide a way of computing the solution of (3.8) enforcing the nonnega-

tivity restriction um+1 ≥ 0.

3.4.1 Definition of upwind bilinear form aupw
h (·; ·, ·)

Now, we are going to define the upwind bilinear form a
upw
h (·; ·, ·), introduced in the scheme (3.8).
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In order to achieve the energy stability with the scheme (3.8), we must consider the following

hypothesis that will let us approximate the flux −∇µ accordingly:

Hypothesis 3.4.1. The mesh Th of Ω is structured in the sense that the line between the barycenters of

the triangles K and L is orthogonal to the interface e = K ∩ L ∈ E i
h.

Then, we define the following upwind bilinear form to be applied to the flux −∇µ which may be

discontinuous over E i
h:

a
upw
h (µ;u, u) :=

∫
Ω
(∇µ · ∇u)u+

∑
e∈Ei

h,e=K∩L

∫
e

((
−∇0

ne
µ
)
⊕ uK − (−∇0

ne
µ)⊖uL

)
[[u]] , (3.9)

where, for every e ∈ E i
h with e = K ∩ L,

∇0
ne
µ =

− [[Π0µ]]

De(Th)
=

Π0µL −Π0µK
De(Th)

, (3.10)

with Π0 being the projection on Pdisc
0 (Th) and De(Th) the distance between the barycenters of the triangles

K and L of the mesh Th that share e ∈ E i
h, denoted by CK and CL, respectively. This way, we can

rewrite (3.9) as

a
upw
h (µ;u, u) :=

∫
Ω
(∇µ · ∇u)u+

∑
e∈Ei

h,e=K∩L

1

De(Th)

∫
e

(
([[Π0µ]])⊕ uK − ([[Π0µ]])⊖uL

)
[[u]] . (3.11)

Remark 3.4.2. Since the quadrature formula of the barycenter (or centroid) is exact for polynomials of

order 1, if µ ∈ Pdisc
1 (Th), we have that

Π0µ|K =

∮
K
µ =

1

|K|

∫
K
µ = µ(CK),

where CK is the barycenter of K ∈ Th.

Hence, if µ ∈ Pdisc
1 (Th), the expression (3.10) is the slope of the line between the points

(CK , µ(CK)) and (CL, µ(CL)), which, under the Hypothesis 3.4.1, this line is parallel to the vector ne,

with e = K ∩ L ∈ E i
h. This expression is considered as an approximation of the discontinuous numerical

normal flux ∇µ · ne for µ ∈ Pdisc
1 (Th).

In addition, observe that, since the barycenters are located 1/3 of the median from the side and

2/3 of the median from the vertex of the triangle, the expression (3.10) does not degenerate when h→ 0,
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i.e., De(Th) > 0 for every e ∈ E i
h and h > 0. A visual representation of the regular polygonal structure

given by the lines between the adjacent barycenters is given in Figure 3.1.

Figure 3.1 Polygonal structure between adjacent barycenters

Furthermore, in order to preserve the positivity of the variable v in our fully discrete scheme, we

assume the following hypothesis.

Hypothesis 3.4.3. The mesh Th is acute, i.e., the angles of the triangles of Th are less than or equal to

π/2.

We give some examples, the meshes represented in Figure 3.2, which satisfy both Hypothe-

ses 3.4.1 and 3.4.3.

Theorem 3.4.4. Given the meshes represented in Figure 3.2 we can define De(Th) for these meshes as

follows

a) Mesh 1: De(Th) =
2l2

3|e|
, b) Mesh 2: De(Th) =

l2

3|e|
,

where l is the length of the side of the highlighted squares of the mesh.

Proof. We will only prove the case a) Mesh 1 since the case b) Mesh 2 is analogous.

Observe Mesh 1 in Figure 3.2. The barycenter of the triangles △OAB, △OBC and △OCD

are, respectively O+A+B
3 , O+B+C

3 and O+C+D
3 . Hence, if we denote by e1 the edge between △OAB

and △OBC and by e2 the edge between △OBC and △OCD, then

De1(Th) =
|C −A|

3
=

2l

3
, De2(Th) =

|D −B|
3

=

√
2l

3

50



O

A B C

D

l

De1(Th) D
e
2 (T

h )

(a) Mesh 1
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(b) Mesh 2

Figure 3.2 Representation of De(Th)

Now, since l/|e1| = 1 and l/|e2| = 1/
√
2, we can define De(Th) for any e ∈ E i

h as

De(Th) =
2l

3
· l

|e|
=

2l2

3|e|
.

3.4.2 Properties of the scheme

Finally, we discuss the different properties of the scheme (3.8) with the upwind bilinear form

defined in (3.9) on meshes under the Hypotheses 3.4.1 and 3.4.3.

With the purpose of proving the existence of solution of the scheme (3.8) and providing a way

of computing it enforcing the restriction um+1 ≥ 0, we define the following auxiliary scheme where a

cut-off operator is introduced in (3.8b):

Step 1: Given vm ∈ Pcont
1 (Th) such that vm ≥ 0 in the case τ > 0, find vm+1 ∈ Pcont

1 (Th)

solving

τ
(
δtv

m+1, v
)
h
+ k2

(
∇vm+1,∇v

)
+ k3

(
vm+1, v

)
h
− k4 (u

m, v) = 0, (3.12a)

for all v ∈ Pcont
1 (Th).
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Step 2: Given um, µm ∈ Pdisc
0 (Th) such that um ≥ 0, find um+1, µm+1 ∈ Pdisc

0 (Th) solving

(
δtu

m+1, v
)
+ a

upw
h (µm+1; (um+1)⊕, u) = 0, (3.12b)(

µm+1, µ
)
− k0

(
log(um+1 + ε), µ

)
+ k1

(
vm+1, µ

)
= 0, (3.12c)

for all u, µ ∈ Pdisc
0 (Th).

Remark 3.4.5. In order to preserve the positivity of the solution um+1 of (3.12), we have introduced

a truncation of this function taking its positive part (um+1)⊕ in the upwind part of (3.12b), which is

consistent as the solution of the continuous model (3.1) satisfies u ≥ 0.

Since Theorem 3.4.7 below will guarantee that um+1 ≥ 0, then
(
log(um+1 + ε), µ

)
in (3.12b)

is well-defined.

Proposition 3.4.6. The schemes (3.8) and (3.12) conserve the mass of u:

∫
Ω
um+1 =

∫
Ω
um.

Proof. Just need to take u = 1 in (3.8b) and (3.12b).

Theorem 3.4.7 (Positivity). If we assume that um ≥ 0 and, in the case τ > 0, vm ≥ 0 in Ω, then any

solution of (3.12) satisfies that um+1, vm+1 ≥ 0 in Ω.

Proof. Proving that if um ≥ 0 and vm ≥ 0 (when τ > 0) then vm+1 ≥ 0 using that the mesh is acute is

a classic result which can be found, for example, in [47, 80].

Moreover, if um ≥ 0 and vm ≥ 0 (when τ > 0) it follows from the equation (3.12b) that

um+1 ≥ 0 using the same arguments that are shown to prove the positivity result in Theorem 2.3.4 since

the proof is independent of the flux ∇µm+1.

Proposition 3.4.8. There is a unique solution vm+1 of the linear equation (3.12a).

Proof. Since we are dealing with a discrete linear problem, existence and unicity of the solution are

equivalent. Hence, we just need to assume that there are two solutions of (3.8a), v1 and v2, substract

the expressions resulting of evaluating both solutions and test with v1 − v2 to prove unicity of the

solution.
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Proposition 3.4.9. There is at least one solution of (3.12b)–(3.12c).

Proof. The idea of this proof is to apply the Leray-Schauder fixed point theorem 2.3.6.

Given um ∈ Pdisc
0 (Th) with um ≥ 0 and the unique solution vm+1 of (3.12a), we define the map

T : Pdisc
0 (Th)× Pdisc

0 (Th) −→ Pdisc
0 (Th)× Pdisc

0 (Th)

such that T (û, µ̂) = (u, µ) ∈ Pdisc
0 (Th)× Pdisc

0 (Th) is the unique solution of the linear (and decoupled)

problem:

1

∆t
(u− um, u) = −aupw

h (µ̂; û⊕, u), ∀u ∈ Pdisc
0 (Th), (3.13a)

(µ, µ) = k0 (log((û)⊕ + ε), µ)− k1
(
vm+1, µ

)
, ∀µ ∈ Pdisc

0 (Th). (3.13b)

To check that T is well defined, it is straightforward to see that the solutions u of (3.13a) and µ

of (3.13b) are unique, which involves their existence as Pdisc
0 (Th) is a finite-dimensional space.

Secondly, we will check that T is continuous. Let {ûj}j∈N, {µ̂j}j∈N ⊂ Pdisc
0 (Th) be sequences

such that limj→∞ ûj = û and limj→∞ µ̂j = µ̂. Taking into account that all norms are equivalent in

Pdisc
0 (Th) since it is a finite-dimensional space, the convergences ûj → û and µ̂j → µ̂ are equivalent to

the elementwise convergences (ûj)K → ûK and (µ̂j)K → µ̂K for every K ∈ Th (this may be seen, for

instance, by using the norm ∥ · ∥L∞(Ω)). Taking limits when j → ∞ in (3.13) (with û := ûj , µ̂ := µ̂j

and (u, µ) := T (ûj , µ̂j)), using the notion of elementwise convergence and the fact that log((û)⊕ + ε) is

continuous, we get that

lim
j→∞

T (ûj , µ̂j) = T (û, µ̂) = T

(
lim
j→∞

(ûj , µ̂j)

)
,

hence T is continuous. In addition, T is compact since Pdisc
0 (Th) have finite dimension.

Finally, let us prove that the set

B = {(u, µ) ∈ Pdisc
0 (Th)× Pdisc

0 (Th) : (u, µ) = αT (u, µ) for some 0 ≤ α ≤ 1}

is bounded (independent of α). The case α = 0 is trivial so we will assume that α ∈ (0, 1].

53



If (u, µ) ∈ B, then u ∈ Pdisc
0 (Th) is the solution of

1

∆t
(u− αum, u) = −αaupw

h (µ;u⊕, u), ∀u ∈ Pdisc
0 (Th). (3.14)

Now, testing (3.14) with u = 1, we get that

∫
Ω
u = α

∫
Ω
um,

and, as um ≥ 0 and it can be proved that u ≥ 0 using the same arguments than in Theorem 3.4.7, we get

that

∥u∥L1(Ω) ≤ ∥um∥L1(Ω).

Moreover, since u ≥ 0, µ ∈ Pdisc
0 (Th) is the solution of the equation

(µ, µ) = αk0 (log(u+ ε), µ)− αk1
(
vm+1, µ

)
, ∀µ ∈ Pdisc

0 (Th). (3.15)

Hence,

µ = αk0 log(u+ ε)− αk1Π0v
m+1, in Pdisc

0 (Th).

Thus, taking into account that u is bounded in Pdisc
0 (Th), we conclude that µ is bounded in Pdisc

0 (Th).

Since Pdisc
0 (Th) is a finite-dimensional space where all the norms are equivalent, we have proved

that B is bounded.

Finally, we can apply the Leray-Schauder fixed point theorem 2.3.6 to prove the existence

of a fixed point of (3.13a)–(3.13b) and, consequently, the existence of a solution (um+1, µm+1) of

(3.12b)–(3.12c).

Since every solution of (3.12) is positive according to Theorem 3.4.7, the schemes (3.12) and

(3.8) are equivalent in the sense that any solution of (3.12) is solution of (3.8) and vice versa. Therefore,

using Propositions 3.4.8 and 3.4.9 the following result holds.

Corollary 3.4.10. There is at least one solution of the decoupled non-truncated scheme (3.8). Moreover,

vm+1 is nonnegative and unique.

54



Remark 3.4.11. Obtaining the nonnegative solutions of (3.8) can be enforced by solving the scheme

(3.12) including the cut-off operator (3.12b). In practice, the same solution was found in our numerical

experiments using either the auxiliary truncated scheme (3.12) or the non-truncated scheme (3.8) without

explicitly imposing the nonnegativity restriction um+1 ≥ 0 (see Remark 3.5.2).

Remark 3.4.12. Showing uniqueness of solution of (3.8) is not straightforward and it might require

using inverse inequalities that would probably involve some kind of restriction on the time step and mesh

size, and this is left to a future work.

Theorem 3.4.13. Any solution of the scheme (3.8) satisfies the following discrete energy law at the time

step m+ 1:

δtEε(u
m+1, vm+1) + ∆t

k1k3
2k4

∫
Ω
(δtv

m+1)2 +∆t
k1k2
2k4

∫
Ω
|δt∇vm+1|2 (3.16)

+ τ
k1
k4

∫
Ω
(δtv

m+1)2 + aupw
h (µm+1;um+1, µm+1) ≤ 0, (3.17)

where

Eε(u, v) :=

∫
Ω

(
k0(u+ ε) log(u+ ε)− k1uv +

k1k2
2k4

|∇v|2 + k1k3
2k4

v2
)
. (3.18)

Proof. Take u = µm+1, µ = δtu
m+1, v = (k1/k4)δtv

m+1 in (3.8) and consider the equalities

δt(u
m+1vm+1) = umδt(v

m+1) + δt(u
m+1)vm+1,

δt(v
m+1)vm+1 =

1

2
δt(v

m+1)2 +
∆t

2
(δtv

m+1)2.
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Then, adding the resulting expressions for (3.8a) and (3.8c) and substracting (3.8b), we obtain

0 = a
upw
h (µm+1;um+1, µm+1) + k0

∫
Ω
δt(u

m+1) log(um+1 + ε)

− k1

∫
Ω
δt(u

m+1)vm+1 − k1

∫
Ω
umδt(v

m+1) +
k1
k4

∫
Ω
(δtv

m+1)2

+
k1k2
k4

∫
Ω
∇vm+1 · ∇(δtv

m+1) +
k1k3
k4

∫
Ω
vm+1δt(v

m+1)

= a
upw
h (µm+1;um+1, µm+1) + k0

∫
Ω
δt(u

m+1) log(um+1 + ε)

− k1δt

∫
Ω
um+1vm+1 +

k1k2
2k4

δt

∫
Ω
|∇vm+1|2 + ∆tk1k2

2k4

∫
Ω
|δt∇vm+1|2

+
k1k3
2k4

δt

∫
Ω
(vm+1)2 +

(
k1
k4

+
∆tk1k3
2k4

)∫
Ω
(δtv

m+1)2. (3.19)

Now, using that δt(um+1)F ′(um+1) ≥ δt(F (u
m+1)) for F ′(um+1) = log(um+1 + ε) (owing to

the fact that F (u) is convex) we have that

δt(u
m+1) log(um+1 + ε) ≥ δt

(
(um+1 + ε) log(um+1 + ε)

)
− δt(u

m+1 + ε).

Hence, using Proposition 3.4.6,

∫
Ω
δt(u

m+1) log(um+1 + ε) ≥ δt

(∫
Ω

(
(um+1 + ε) log(um+1 + ε)

))
. (3.20)

Thus, taking into account (3.19) and (3.20), we obtain the discrete energy law (3.16).

Corollary 3.4.14. Given a solution of the scheme (3.8), the upwind bilinear form defined in (3.9) satisfies

aupw
h (µm+1;um+1, µm+1) ≥ 0.

In consequence, the scheme (3.8) is unconditionally energy stable with respect to the approxi-

mated energy Eε, that is

Eε(u
m+1, vm+1) ≤ Eε(u

m, vm).

Proof. Since we know that the discrete energy satisfies (3.16), to show δtEε(u
m+1, vm+1) ≤ 0 it suffices

to prove that

a
upw
h (µm+1;um+1, µm+1) ≥ 0.
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Now, take u = µm+1 and use the definition (3.11) of the upwind bilinear form to get the

following:

a
upw
h (µm+1;(um+1)⊕, µ

m+1) =

=
∑

e∈Ei
h,e=K∩L

1

De(Th)

∫
e

(([[
µm+1

]])
⊕ u

m+1
K − (

[[
µm+1

]]
)⊖u

m+1
L

) [[
µm+1

]]
=

∑
e∈Ei

h,e=K∩L

1

De(Th)

∫
e

(( [[
µm+1

]] )2
⊕
um+1
K +

( [[
µm+1

]] )2
⊖
um+1
L

)
≥ 0.

Remark 3.4.15. Notice that the energy stability of the scheme (3.8) is obtained thanks to the approxi-

mation of the flux −∇µ made in the upwind bilinear form aupw
h (·; ·, ·). In addition, the approximation

−∇0
ne
µ on the edges e ∈ E i

h requires the assumption of the Hypothesis 3.4.1 for the mesh Th as discussed

in the Remark 3.4.2.

3.5 Numerical experiments

In this section we show some numerical tests whose results are according to the results shown

above for the scheme (3.8). For these tests we consider the parameters ki = 1 for i ∈ {0, 1, . . . , 4},

τ = 1, ε = 10−10 and the domain Ω = [−1/2, 1/2]× [−1/2, 1/2] unless otherwise specified. Also, the

Mesh 3.2a in Figure 3.2 is used to discretize the domain.

In the test 3.5.1 we reproduce the first numerical experiment shown in the paper [45] by A.

Chertock and A. Kurganov. In this paper, they use a scheme that preserves the positivity of both variables

u and v, although they do not show any energy related result. Hence, in our case, we can improve the

results shown in the aforementioned paper assuring that our scheme preserves the energy law of the

continuous Keller-Segel model.

Then, in the test 3.5.2 we simulate the qualitative behavior of the solution in the numerical

experiment made by N. Saito in [165]. However, since the initial conditions used for the experiment in

[165] are not specified we cannot reproduce the exact same test shown in this paper. In the case of our

numerical test, the qualitative behavior of the solution is similar to the one in [165] until the mesh is

refined enough so that we capture the blow-up phenomenon.
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Finally, in the test 3.5.3 we reproduce the qualitative behavior of the results in [18, 38, 181] for

different variations of chemotaxis equations and in [78] for the Keller-Segel equations, where pattern

formations with multiple peaks are shown.

Remark 3.5.1. The scheme (3.8) preserves the positivity and conserves the mass of um+1 which implies

um+1 ∈ L1(Ω). Therefore, we cannot expect an actual blow-up in the discrete case as it occurs in

the continuous model. However, we observe in the numerical tests how the mass accumulates in some

elements of Th leading to the formation of peaks.

In fact, we are able to capture peaks that reach values up to the order of 107 using the approxima-

tion shown in (3.8). These kinds of numerical results are not usual in the literature due to the difficulties

when approximating the steep gradients that this process involved.

The numerical results shown in this chapter have been obtained using the Python library FEniCS,

[14]. In order to improve the efficiency of the code, these have been run in parallel using several CPUs.

For the sake of a better visualization of the results, a Pcont
1 -projection of u is represented in 3D

using Paraview, [10].

Remark 3.5.2. All the tests were carried out using both the non-truncated equation (3.8b) without the

restriction um+1 ≥ 0 and the truncated version (3.12b) to enforce the nonnegativity. The approximations

of u and v obtained in every case using both versions of the scheme were identical in all the degrees of

freedom.

3.5.1 One bulge of cells

First, we reproduce the results shown in [45]. For this purpose, we consider the radially symmetric

initial conditions

u0 = 1000e−100(x2+y2), v0 = 500e−50(x2+y2),

which are plotted in Figure 3.3.

As stated in [45], the u and v components of the solution are expected to blow up in a finite time

due to the initial conditions chosen. The result of the test using the scheme (3.8) with h ≈ 1.41 · 10−3

and ∆t = 10−6 is shown in Figures 3.4 and 3.5. In fact, we observe a blow-up phenomenon for a certain

finite time in the range conjectured by A. Chertock and A. Kurganov in [45], t∗ ∈ (4.4 · 10−5, 10−4), as

our discrete approximation reaches values of order 106 in this time interval.
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u0 v0

Figure 3.3 Initial conditions for blow-up as in [45] (different scales are used for u and v)

u

Figure 3.4 Blow-up of u as in [45]
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v

Figure 3.5 Aggregation of v in the test in [45]

u v

Figure 3.6 Minimum and maximum of u and v over time in the case shown in [45]
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Moreover, the positivity is preserved for both u and v as stated in Theorem 3.4.7 and, unlike the

scheme presented in [45], we are certain that the discrete energy decreases (both for E(·, ·) and E(·, ·))

using the scheme (3.8) as proved in Theorem 3.4.13. See Figures 3.6 and 3.7.

Figure 3.7 Discrete energy over time in the case shown in [45]

Remark 3.5.3. This test have been computed with greater and lower values of ε including the limiting

case ε = 0. The difference in norms L2 and L∞ are shown in Table 3.1. From a qualitative point of view,

the solutions are indistinguishable.

In this case, the numerical approximation works with ε = 0 since the minimum of u remains

strictly positive and does not tend to 0, it takes values around 10−19 during all the iterations computed.

Below, in Remark 3.5.4, we show a different test where we do have to take ε > 0 to ensure convergence of

the scheme.

Table 3.1 Difference between approximations of the test in Section 3.5.1 at t = 5 · 10−5 with respect to
the solution with ε = 0

ε
∥ · ∥L2(Ω) ∥ · ∥L∞(Ω)

u v u v

10−6 4.81 · 10−8 1.01 · 10−12 3.52 · 10−6 2.90 · 10−11

10−10 1.10 · 10−10 3.87 · 10−13 1.71 · 10−8 2.73 · 10−12

10−14 8.75 · 10−11 6.85 · 10−14 1.59 · 10−8 8.53 · 10−13
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An accuracy test in space (with ε = 10−10) has been also carried out where the solution obtained

with h ≈ 7.071 · 10−4 and ∆t = 10−6 has been taken as reference solution. The results shown in

Tables 3.2 and 3.3 suggest first order of convergence in space in norm L2 both for u and v.

Table 3.2 Accuracy test in norm L2 for u (test in Section 3.5.1)

t
h ≈ 1.41 · 10−2 5h/7 ≈ 1.01 · 10−2 5h/9 ≈ 7.86 · 10−3 5h/11 ≈ 6.43 · 10−3

Error Error Order Error Order Error Order
10−5 7.01 5.08 1.00 4.13 0.83 3.41 0.95

2 · 10−5 2.38 · 10 1.70 · 10 0.99 1.42 · 10 0.71 1.09 · 10 1.33

5 · 10−5 3.15 · 102 2.31 · 102 0.92 1.84 · 102 0.92 1.28 · 102 1.81

Table 3.3 Accuracy test in norm L2 for v (test in Section 3.5.1)

t
h ≈ 1.41 · 10−2 5h/7 ≈ 1.01 · 10−2 5h/9 ≈ 7.86 · 10−3 5h/11 ≈ 6.43 · 10−3

Error Error Order Error Order Error Order
10−5 1.43 · 10−2 1.04 · 10−2 0.95 7.36 · 10−3 1.36 5.63 · 10−3 1.33

2 · 10−5 2.04 · 10−2 1.27 · 10−2 1.40 8.82 · 10−3 1.46 6.76 · 10−3 1.32

5 · 10−5 2.54 · 10−2 1.51 · 10−2 1.55 1.27 · 10−2 0.68 9.94 · 10−3 1.22

It is remarkable to notice that, although the L2 errors of the approximation of u may seem huge

at first, particularly as it approaches the blow-up time, they are not that big in relative terms. As it can be

observed in Figure 3.4, the maximum value reached by u is around 103 bigger than the L2 errors shown

in Table 3.2 at each time step. These errors will tend to vanish as the mesh is refined so that the spiky

bulge in the middle of the domain is more accurately approximated.

Also, we would like to emphasize the difficulty of achieving such results as obtaining a reference

solution in a blow-up situation where the exact solution tends to degenerate and huge gradients appear

require a significant computational effort. In this regard, the reference solution has been computed in

parallel using a domain decomposition technique.

3.5.2 Three bulges of cells

Now, we show the results for a similar test to the one that appears in [165]. In this case, we

take the parabolic-elliptic case (τ = 0) so that the characteristic speed of v is much faster than the
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characteristic speed of u. Moreover, we consider the initial condition

u0 = 900e−100((x−0.2)2+y2) + 800e−100(x2+(y−0.2)2) + 1000e−100((x−0.3)2+(y−0.3)2),

which is plotted in Figure 3.8. As stated in [165] and the references therein, since ∥u0∥L1(Ω) > 8π, the

solution is expected to blow-up in finite time.

u0

Figure 3.8 Initial condition with three cell bulges (similar to the one in [45])

In Figures 3.9 and 3.10 we can observe the result of the test with h ≈ 2.83 ·10−2 and ∆t = 10−5.

In this case, the qualitative behavior of the solution is similar to the one shown in [165], with the peak of

cells moving towards a corner of the domain. However, the qualitative behavior of the solution is different

if we take h ≈ 7.07 · 10−3 and ∆t = 10−5. Now, as represented in Figures 3.11 and 3.12, a blow-up

phenomenon seems to occur in finite time and the peak of cells remains motionless far away from the

corners of the domain.

In both cases, the positivity is preserved and the energy decreases in the discrete case. See

Figures 3.13 and 3.15 (left) for the case h ≈ 2.83 · 10−2 and Figures 3.14 and 3.15 (right) for the case

h ≈ 7.07 · 10−3.

3.5.3 Pattern formation with multiple peaks

Finally, we show the results for a test in which we obtain a numerical solution describing a

pattern with multiple peaks as it occurs, for instance, in the cases that appear in [18, 38, 181] for different

variations of chemotaxis equations and in [78] for the Keller-Segel equations. For this purpose, we
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u

Figure 3.9 Aggregation of three cell bulges with h ≈ 2.83 · 10−2
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v

Figure 3.10 Chemoattractant in the case of three cell bulges with h ≈ 2.83 · 10−2
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u

Figure 3.11 Aggregation of three cell bulges with h ≈ 7.07 · 10−3
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v

Figure 3.12 Chemoattractant in the case of three cell bulges with h ≈ 7.07 · 10−3
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u v

Figure 3.13 Minimum and maximum of u and v in the case of aggregation of three cell bulges with
h ≈ 2.83 · 10−2

u v

Figure 3.14 Minimum and maximum of u and v in the case of aggregation of three cell bulges with
h ≈ 7.07 · 10−3
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Figure 3.15 Discrete energy over time in the case of aggregation of three cell bulges. On the left,
h ≈ 2.83 · 10−2. On the right, h ≈ 7.07 · 10−3

consider the initial conditions

u0 = 1000(cos(2πx) cos(2πy) + 1), v0 = 500(sin(3πx) sin(3πy) + 1),

which are plotted in Figure 3.16.

u0 v0

Figure 3.16 Initial conditions for the pattern formation with multiple peaks (different scales are used
for u and v)

In Figures 3.17 and 3.18 we can observe the result of the test with h ≈ 3.54·10−3 and ∆t = 10−7.

Notice that we obtain 8 peaks of cells that reach very high values (up to values of order 107), which may

be due to a blow-up phenomenon occurring at a certain finite time t∗ close to 10−4.
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u

Figure 3.17 Pattern formation of u with multiple peaks

v

Figure 3.18 Pattern formation of v with multiple peaks
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Again, the positivity is preserved as shown in Figure 3.19 and the energy decreases in the discrete

case as in Figure 3.20.

u v

Figure 3.19 Minimum and maximum of u and v in the case of multiple peaks

Figure 3.20 Discrete energy over time in the case of multiple peaks

Remark 3.5.4. This test was also computed with h ≈ 2.828 · 10−2, ∆t = 2.5 · 10−6 and values of

ε lower than 10−10. In this case, the minimum value of u tends to 0 (see Figure 3.19), hence (3.8) is

not well suited for too small values of ε and the convergence of Newton’s method (or other iterative

methods) to approximate the solution of the nonlinear schemes is not guaranteed as limu→0 log(u) = ∞.

Therefore, regularizing the chemical potential of u eases the convergence of the numerical method while

only introducing a small error as shown by the results in Table 3.4.
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In this table, the difference in L2 and L∞ norms between the approximation with ε = 0 and

the approximations with greater values of ε at t = 2.5 · 10−4 and t = 5.25 · 10−4 (last time step before

Newton’s method stop converging with ε = 0) are shown. In the range of values for ε taken, ε = 10−12 is

the lowest value for which Newton’s method converges during the 4000 time iterations computed. The

minimum value of u achieved at t = 0.01, the last time step computed, with ε = 10−12 is of order 10−167.

Newton’s method stops converging with ε = 10−14 at t = 8.275 · 10−4 and at t = 5.525 · 10−4 with

ε = 10−16 (same time step than with smaller ε values including ε = 0).

Table 3.4 Difference between approximations of the test in Section 3.5.3 (h ≈ 2.828 · 10−2, ∆t =
2.5 · 10−6) with respect to the solution with ε = 0

t ε
∥ · ∥L2(Ω) ∥ · ∥L∞(Ω)

u v u v

2.5 · 10−4

10−10 7.41 · 10−11 1.87 · 10−13 2.71 · 10−9 1.14 · 10−12

10−12 3.56 · 10−12 0.0 2.33 · 10−10 0.0
10−14 8.24 · 10−13 0.0 5.82e · 10−11 0.0
10−16 2.59 · 10−14 0.0 1.82e · 10−12 0.0

5.25 · 10−4

10−10 2.14 · 10−10 6.18 · 10−13 7.30 · 10−9 3.75 · 10−12

10−12 5.44 · 10−12 2.55 · 10−13 2.33 · 10−10 1.71 · 10−12

10−14 1.16 · 10−12 0.0 5.82 · 10−11 0.0
10−16 6.70 · 10−15 0.0 4.55 · 10−13 0.0

72



CHAPTER 4

EXTENSIONS OF THE POSITIVE UPWIND DG SCHEME TO OTHER BIOLOGICAL MODELS

4.1 Abstract

In this chapter, we extend the ideas introduced in Sections 2.3.2 and 3.4 to develop a well-suited

approximation of two different models related to chemotaxis. On the one hand, we consider generalized

versions of the classical Keller-Segel model. First, we state results concerning the existence and regularity

of their solutions under certain conditions. Then, we develop a positive approximation of these models

and include computational examples which support the analytical results and shed light on the cases

where the aforementioned conditions do not hold. On the other hand, we present a model of the neuroblast

migration process to the olfactory bulb in rodents’ brains. In this regard, we develop and implement a

positive approximation of its solution and compare the qualitative results to an image generated using

real data. The results of the first part of this chapter will appear in [134] and those of the second part have

been made available online as a preprint in [6].

4.2 Introduction

As discussed in Section 3.2, chemotaxis models have become a problem of increasing interest

among the scientific community both for their applications and for the mathematical difficulties that they

present. In this sense, using the ideas that have been previously introduced in Chapters 2 and 3, we would

like to provide some insight on this kind of models in two different directions: the mathematical analysis

of generalized chemotaxis models and the modeling and computational simulation of real-life processes

involving chemotaxis.

4.3 Generalized chemotaxis models for population dynamics

Since the early work of E. Keller and L. Segel [125, 126] were published, many different

alternatives have been proposed trying to extend their ideas. While this early work was intended to model

the movement of cells towards high concentration of a chemical signal, other authors have applied this
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system to modeling population dynamics where the predators are attracted by high concentrations of

preys, [123].

These models of population dynamics typically include terms describing population growth or

decay in terms of the population size (or density) such as logistic growth terms [11, 148]. In addition, some

works suggest that the population of predators can decrease due to accidental deaths as a consequence of

their displacements in the chase of their preys, which increase their risk to be decimated by other species

that can react to their motion (see [12, 97, 183]). This accidental deaths have been modeled in terms of

the gradient of the predators’ population density, [174].

All the aforementioned effects have been collected in the model presented in [121], where the

authors are more interested in the mathematical analysis of its solution than in its biological interest. As

mentioned in Chapter 3, the existence and regularity of solutions in chemotaxis models are not clear as,

under certain conditions, the so called chemotaxis collapse can occur (see [28] and the references therein).

In this regard, conditions involving the logistic growth and the gradient nonlinearity terms are studied in

[121] to ensure the existence of a global, in time, and bounded solution and, therefore, the absence of

blow-up.

In Section 4.3.1 we present an even more general version of the model in [121] that additionally

includes possibly nonlinear diffusion, chemoattraction and chemorepulsion, see (4.1). Also, a similar

model including nonlocal effects of the cell density into the chemosensitivities can be considered, see

(4.2). Results regarding the local and global in time existence and regularity of the solutions of both the

local and nonlocal models under certain constraints on the parameters are stated in Section 4.3.2 without

proofs, as they are not object of this work and we have not contributed to them. Then, in Section 4.3.3 we

present and analyze the properties of a linear discrete approximation of the models using the upwind DG

ideas previously introduced in Sections 2.3.2 and 3.4. Finally, we implement this scheme in the computer

and carry out some tests whose results, included in Section 4.3.4, are in accordance with the previous

theoretical analysis. In addition we show that suppression of some of the analytical conditions on the

parameters (and in particular those associated to the gradient nonlinearities) that ensure global in time

existence of the solution may lead to only local solution that exhibit finite time blow-up.

A more detailed discussion on these models and, in particular, the analytical properties of its

solution alongside with the proofs of the results presented in Section 4.3.2 will appear in [134].
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4.3.1 Chemotaxis models with dampening gradient nonlinearities

First, in this section we consider a more general version of the Keller-Segel model (3.1) which

introduces nonlinear diffusion, attraction and repulsion, logistic growth and dampening gradient non-

linearities. In particular, this model extends the one in [121] and consists of finding three real valued

functions: u = u(x, t), the cell density, v = v(x, t), the chemoattractant signal, and w = w(x, t), the

chemorepulsive signal, defined in Ω× [0, T ] satisfying the local model

ut = ∇ ·
(
(u+ 1)n1−1∇u− χu(u+ 1)n2−1∇v + ξu(u+ 1)n3−1∇w

)
+ λuρ − µuk − c|∇u|γ in Ω× (0, T ), (4.1a)

τvt = ∆v − av + f1(u) in Ω× (0, T ), (4.1b)

τwt = ∆w − dw + f2(u) in Ω× (0, T ), (4.1c)

0 = ∇u · n = ∇v · n = ∇w · n on ∂Ω× (0, T ), (4.1d)

u(0) = u0(x), τv(0) = τv0(x), τw(0) = τw0(x) in Ω. (4.1e)

Moreover, we consider a nonlocal model where the aforementioned variables satisfy

ut = ∇ ·
(
(u+ 1)n1−1∇u− χu(u+ 1)n2−1∇v + ξu(u+ 1)n3−1∇w

)
+ λuρ − µuk − c|∇u|γ in Ω× (0, T ), (4.2a)

0 = ∆v − 1

|Ω|

∫
Ω
f1(u) + f1(u) in Ω× (0, T ), (4.2b)

0 = ∆w − 1

|Ω|

∫
Ω
f2(u) + f2(u) in Ω× (0, T ), (4.2c)

0 = ∇u · n = ∇v · n = ∇w · n on ∂Ω× (0, T ), (4.2d)

u(0) = u0(x) in Ω, (4.2e)

0 =

∫
Ω
v(x, t)dx =

∫
Ω
w(x, t)dx in (0, T ). (4.2f)

Here, τ ∈ {0, 1}, χ, ξ, λ, µ, c ≥ 0, n1, n2, n3 ∈ R and ρ, k, γ ≥ 1.

Notice that the local model (4.1) is a direct generalization of the classical Keller–Segel model

(3.1) where v = v(x, t) represents the chemoattractant density and a new variable concerning the

chemorepulsion density, w = w(x, t), has been considered. In particular, equations (4.1a) or (4.2a)

coincide with the equation (3.1a) for n1 = n2 = 1 and ξ = λ = µ = c = 0. In this sense, equations
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(4.1a) or (4.2a) include possibly nonlinear diffusion and chemoattraction, in the case n1, n2 ̸= 1, and

chemorepulsion if ξ ̸= 0. In addition, a logistic growth term λuρ − µuk and a dampening gradient term

−c|∇u|γ have been added to equations (4.1a) and (4.2a).

In the considered nonlocal model (4.2), the unknown v = v(x, t) represents the chemoattractant

deviation and not its density as in the local model (4.1) or in the classical Keller-Segel model (3.1). In

particular, since the deviation measures the difference between the observed value of a specific variable

and its mean, we have that v changes sign, contrarily to what occurs to the cell and signal densities

(which are nonnegative). Subsequently, the mean of v is zero, exactly as imposed in the equation (4.2f).

Naturally, the chemical repellent w behaves similarly. In this sense, we do not make use of a different

symbolism for the deviations, since from the context it is clear to which quantity we are referring to.

Remark 4.3.1. Notice that we assume ρ, k, γ ≥ 1 so that the terms involving these parameters in (4.1a)

or in (4.2a) are regular when u = 0 or |∇u| = 0.

In this section, given δ ∈ (0, 1), we denote by Ck+δ(Ω) the set of functions that are k-times, with

k ∈ N∪{0}, continuously differentiable and whose k-th derivative satisfies a Hölder condition with index

δ (see e.g. [76]). Moreover, Ck+δ,m+η(Ω× [0, T ]) is defined for certain δ, η ∈ (0, 1), k,m ∈ N ∪ {0},

by functions u(x, t) which satisfy u(·, t) ∈ Ck+δ(Ω) and u(x, ·) ∈ Cm+η([0, T ]) for every t ∈ [0, T ]

and x ∈ Ω.

Hypothesis 4.3.2. Here, we assume that Ω is an open bounded domain of class C2+δ for some δ ∈ (0, 1)

(see [76] for details), the sources f1, f2 are such that f1, f2 : [0,∞) → R+, with f1, f2 ∈ C1([0,∞))

and the initial data u0 = u0(x), τv0 = τv0(x) and τw0 = τw0(x) satisfy u0, v0, w0 : Ω → R+, with

u0, v0, w0 ∈ {ψ ∈ C2+δ(Ω) : ∇ψ · n = 0 on ∂Ω}.

Hypothesis 4.3.3. We might suppose that for proper α, β > 0,

f1(s) ≤ k1(s+ 1)α and k2(s+ 1)β ≤ f2(s) ≤ k3(s+ 1)β, (4.3)

where k1, k2, k3 > 0 are positive constants.
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Remark 4.3.4. The bounds on f1 and f2 in Hypothesis 4.3.3 are required for technical reasons in the

proofs of Theorems 4.3.8 and 4.3.9. In fact, these bounds can be relaxed to the following:

f1(s) ≤ k1(s+ η)α and k2(s+ η)β ≤ f2(s) ≤ k3(s+ η)β.

for η > 0. Notice that we avoid the case η = 0 to move away from a possible singularity at s = 0 of the

functions f1(s) = sα and f2(s) = sβ as they have to be in C1([0,∞)).

4.3.2 Existence and regularity of solutions

Now, we state the conditions that ensure us the global boundedness of the solutions. In particular,

we want to bound solutions which blow up by adding the gradient term −c|∇u|γ to the logistic and,

therefore, we do not focus on the bounding effect that the diffusive term ∇·
(
(u+ 1)n1−1∇u

)
has. In order

to do that, we establish the following relation involving the parameters in the local and the nonlocal models,

(4.1) and (4.2), respectively: for any d ∈ N, τ ∈ {0, 1}, n1, n2, n3 ∈ R and α, β, χ, ξ, λ, µ, c > 0,

1 ≤ ρ < k and γ ∈ [1, 2] we fix

max

{
1,

d

d+ 1
(n2 + α), τ

d

d+ 1
(n3 + β)

}
< γ ≤ 2. (4.4)

Remark 4.3.5. Here, in condition (4.4), we have assumed that 1 ≤ ρ < k and γ ∈ [1, 2]. These two

assumptions are required for the statements in Theorems 4.3.8 and 4.3.9.

On the one hand, 1 ≤ ρ < k implies that λuρ − µuk in (4.1a) or (4.2a) is a logistic term so

that the decay becomes stronger than the production when u increases. This assumption, along with the

negative sign of the term −c|∇u|γ , allows us to have a bound on the mass of u as in Proposition 4.3.6.

On the other hand, we assume γ ∈ [1, 2] for technical reasons concerning the results in Theo-

rems 4.3.8 and 4.3.9 when c > 0. Intuitively, the idea of this assumption is that, if γ > 2, the solution

might not be global in time due to ∥∇u∥L∞(Ω)d not being bounded in finite time even though ∥u∥L∞(Ω)

is bounded. However, if γ ∈ [1, 2], the previous case cannot occur and if the solution is only local in

time, i.e, it exists up to some finite time T , then necessarily ∥u∥L∞(Ω) blows up at T . More details can be

consulted in [121, 134] and the references therein.

The succeeding theorems are stated without proofs as we have not contributed to them. The full

discussion and proofs of these results will be available in [134].
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Proposition 4.3.6. Let µ > 0 and 1 ≤ ρ < k. The mass of the cell density u in (4.1) or (4.2) is bounded

as follows: ∫
Ω
u ≤ max

{∫
Ω
u0,

(
λ

µ
|Ω|k−ρ

) 1
k−ρ

}
, ∀t ∈ (0, T ), (4.5)

where T is the upper bound of the time interval where the function u is defined, with T ≤ ∞.

Theorem 4.3.7 (Local classical solution of (4.1) and (4.2)). For τ ∈ {0, 1} and δ ∈ (0, 1), let Ω,

f1, f2, u0, τv0, τw0 comply with Hypothesis 4.3.2. Additionally, let χ, ξ, λ, µ > 0, n1, n2, n3 ∈ R,

k, ρ, γ ≥ 1. Then there exist T > 0 and a unique triple of functions (u, v, w), with

(u, v, w) ∈ C2+δ,1+ δ
2 (Ω× [0, T ])× C2+δ,τ+ δ

2 (Ω× [0, T ])× C2+δ,τ+ δ
2 (Ω× [0, T ]),

solving problems (4.1) and (4.2), where u ≥ 0 in Ω× [0, T ] and, in the case (4.1), v, w ≥ 0 in Ω× [0, T ].

Theorem 4.3.8 (Global and bounded classical solution of (4.1)). For τ ∈ {0, 1}, δ ∈ (0, 1) and

α, β > 0, let Ω, f1, f2, u0 comply with Hypotheses 4.3.2 and 4.3.3. Additionally, let χ, ξ, λ, µ, c > 0,

n1, n2, n3 ∈ R, 1 ≤ ρ < k and condition (4.4) hold true. Then problem (4.1) admits a unique solution

(u, v, w) ∈ C2+δ,1+ δ
2 (Ω× [0,∞))× C2+δ,τ+ δ

2 (Ω× [0,∞))× C2+δ,τ+ δ
2 (Ω× [0,∞))

such that u, v, w ≥ 0 in Ω× [0,∞) and u, v, w ∈ L∞(Ω× (0,∞)).

Theorem 4.3.9 (Global and bounded classical solution of (4.2)). For δ ∈ (0, 1) and α, β > 0,let Ω,

f1, f2, u0 comply with Hypotheses 4.3.2 and 4.3.3. Additionally, let α, β, χ, ξ, λ, µ, c > 0, n1, n2, n3 ∈ R,

1 ≤ ρ < k and condition (4.4) hold true. Then problem (4.2) admits a unique solution

(u, v, w) ∈ C2+δ,1+ δ
2 (Ω× [0,∞))× C2+δ, δ

2 (Ω× [0,∞))× C2+δ, δ
2 (Ω× [0,∞))

such that u ≥ 0 in Ω× [0,∞) and u, v, w ∈ L∞(Ω× (0,∞)).

Remark 4.3.10. Notice that the values in the condition (4.4) are not critical. In fact, the influence of n1

in this condition has not been taken into consideration in this work. In this sense, it has been studied in

previous works (see, for instance, [55, 56, 135]) how the diffusive term ∇ ·
(
(u+ 1)n1−1∇u

)
in (4.1a)

or in (4.2a) affects the global in time existence of solution of similar models.
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4.3.3 Fully discrete scheme

We propose a linear, computationally efficient numerical scheme to approximate the local and the

nonlocal models, (4.1) and (4.2), that provides a physically meaningful approximation of every variable.

In each time step m + 1, we decouple the equations for the chemical signals (4.1b)–(4.1c) or

(4.2b)–(4.2c) from the equations for the cell density, (4.1a) or (4.2a), respectively. In this way, we first

compute an approximation of v and w treating u explicitly in (4.1b)–(4.1c) or in (4.2b)–(4.2c), where

um ≥ 0 as shown in Section 4.3.3.1. In fact, we can obtain a linear finite element scheme with a unique

nonnegative solution that approximates v and w in (4.1) assuming Hypothesis 3.4.3 and using the same

ideas than in Section 3.4. On the other hand, we can compute an approximation of v and w in (4.2)

using standard finite elements where the constraint (4.2f) can be enforced by postprocessing. Therefore,

hereafter, we will only focus on the approximation of the cell density u.

Next, with the approximations that we have obtained for v and w, with vm+1, wm+1 ≥ 0 in

the case (4.1) or
∫
Ω v

m+1 =
∫
Ωw

m+1 = 0 in the case (4.2), we compute an approximation of u in the

current time step m+ 1. Our aim is to develop a linear positive approximation of u using the ideas of

Section 3.4 where the equation of the cell density is rewritten as gradient flux using the chemical potential

for the particular case of the classical Keller-Segel model. However, although this is no longer possible

for this chemotaxis variant, notice that, formally,

∇ log(u) =
1

u
∇u,

so that we can rewrite, for u ≥ 0,

∇ · ((u+ 1)n1−1∇u) = ∇ · (u(u+ 1)n1−1∇ log(u)) and |∇u| = u|∇ log(u)|.

Hence, regularizing the term log(u) by adding a small parameter ε > 0 and projecting it into the space

Pcont
1 (Th) by means of the projection operator Π1, we propose the following implicit-explicit linear

discrete scheme:
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Given um ∈ Pdisc
0 (Th) with um ≥ 0 and vm+1, wm+1 ∈ Pcont

1 (Th), find um+1 ∈ Pdisc
0 (Th) with

um+1 ≥ 0 solving the problem

(
δtu

m+1, u
)
+ a

upw
h (−(um + 1)n1−1∇Π1(log(u

m + ε));um+1, u)

+ a
upw
h ((um + 1)n2−1∇vm+1;um+1, u) + a

upw
h (−(um + 1)n3−1∇wm+1;um+1, u)

− λ ((um)ρ, u) + µ
(
um+1(um)k−1, u

)
+ c

(
um+1(um)γ−1|∇Π1 log(u

m + ε)|γ , u
)
= 0, (4.6)

for all u ∈ Pdisc
0 (Th), where

a
upw
h (β;u, u) :=

∑
e∈Ei

h,e=K∩L

∫
e

(
({{β}} · ne)⊕ uK − ({{β}} · ne)⊖uL

)
[[u]] , (4.7)

which extends the definition in (2.11) for any vector β which can be discontinuous.

The scheme (4.6) is only a first possible linear approach to obtain a positive approximation of the

cell density as shown in the next Section 4.3.3.1. However, other smart modifications of the proposed

approach might be considered to preserve other properties of the continuous models such as the mass

bound (4.5).

In Section 4.3.3.1 we will provide a way of computing the solution of (4.6) enforcing um+1 ≥ 0.

4.3.3.1 Properties of the scheme

Consider the following auxiliary truncated scheme:

Given um ∈ Pdisc
0 (Th) with um ≥ 0 and vm+1, wn+1 ∈ Pcont

1 (Th), find um+1 ∈ Pdisc
0 (Th)

solving the problem

(
δtu

m+1, u
)
+ a

upw
h (−(um + 1)n1−1∇Π1(log(u

m + ε));um+1
⊕ , u)

+ a
upw
h ((um + 1)n2−1∇vm+1;um+1

⊕ , u) + a
upw
h (−(um + 1)n3−1∇wm+1;um+1

⊕ , u)

− λ ((um)ρ, u) + µ
(
um+1
⊕ (um)k−1, u

)
+ c

(
um+1
⊕ (um)γ−1|∇Π1 log(u

m + ε)|γ , u
)
= 0, (4.8)

for all u ∈ Pdisc
0 (Th).
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Lemma 4.3.11 (Local mass bounds). The solution um+1 of (4.8) satisfies

∫
Ω
um+1 ≤

∫
Ω
um +∆tλ

∫
Ω
(um)ρ. (4.9)

Proof. Just test (4.8) by u = 1.

Notice that the bound of the mass of the discrete solution (4.9) is consistent with the bound on

the mass of the continuous solution (4.5).

Theorem 4.3.12 (DG scheme (4.8) preserves positivity). If we assume that um ≥ 0 then any solution of

(4.8) satisfies that um+1 ≥ 0 in Ω.

Proof. To prove that if um ≥ 0 then um+1 ≥ 0 just take the following test function in (4.8):

u =


(um+1

K∗ )⊖ in K∗ ∈ Th,

0 otherwise,

where K∗ = argminK∈Th u
m+1
K .

Therefore, we arrive at

(
δtu

m+1, u
)
+ a

upw
h (−(um + 1)n1−1∇Π1(log(u

m + ε));um+1
⊕ , u)

+ a
upw
h ((um + 1)n2−1∇vm+1;um+1

⊕ , u) + a
upw
h (−(um + 1)n3−1∇wm+1;um+1

⊕ , u)

= λ ((um)ρ, u) ≥ 0,

and we can proceed as in Theorem 2.3.4 in the case of the linear convection equation to show that

(um+1
K∗ )⊖ = 0. Therefore, um+1 ≥ 0.

Proposition 4.3.13. There is at least one solution of (4.8).

Proof. The idea of this proof is to apply the Leray-Schauder fixed point theorem 2.3.6.

Given um ∈ Pdisc
0 (Th) with um ≥ 0 and and vm+1, wm+1 ∈ Pcont

1 (Th), we define the map

T : Pdisc
0 (Th) −→ Pdisc

0 (Th)

81



such that T (û) = u ∈ Pdisc
0 (Th) is the unique solution of the linear problem:

1

∆t
(u− um, u) = −aupw

h (−(um + 1)n2−1∇Π1 log(u
m + ε); û⊕, u)

− a
upw
h ((um + 1)n2−1∇vm+1; û⊕, u)− a

upw
h (−(um + 1)n3−1∇wm+1; û⊕, u)

+ λ ((um)ρ, u)− µ
(
û⊕(u

m)k−1, u
)

− c
(
û⊕(u

m)γ−1|∇Π1 log(u
m + ε)|γ , u

)
, (4.10)

for every u ∈ Pdisc
0 (Th).

It is straightforward to check that there is a unique solution u of (4.10) so T is well defined.

Secondly, we will check that T is continuous. Let {ûj}j∈N ⊂ Pdisc
0 (Th) be a sequence such

that limj→∞ ûj = û. Taking into account that all norms are equivalent in Pdisc
0 (Th) since it is a finite-

dimensional space, the convergence ûj → û is equivalent to the elementwise convergence (ûj)K → ûK

for every K ∈ Th (this may be seen, for instance, by using the norm ∥ · ∥L∞(Ω)). Taking limits when

j → ∞ in (4.10) (with û := ûj and u := T (ûj)), using the notion of elementwise convergence, we get

that

lim
j→∞

T (ûj) = T (û) = T

(
lim
j→∞

ûj

)
,

hence T is continuous. In addition, T is compact since Pdisc
0 (Th) has finite dimension.

Finally, let us prove that the set

B = {u ∈ Pdisc
0 (Th) : u = αT (u) for some 0 ≤ α ≤ 1}

is bounded (uniformly with respect to α). The case α = 0 is trivial so we will assume that α ∈ (0, 1].

If u ∈ B, then u ∈ Pdisc
0 (Th) is the solution of

1

∆t
(u− αum, u) = −αaupw

h (−(um + 1)n2−1∇Π1 log(u
m + ε);u⊕, u)

− αa
upw
h ((um + 1)n2−1∇vm+1;u⊕, u)− αa

upw
h (−(um + 1)n3−1∇wm+1;u⊕, u)

+ αλ ((um)ρ, u)− αµ
(
u⊕(u

m)k−1, u
)

− αc
(
u⊕(u

m)γ−1|∇Π1 log(u
m + ε)|γ , u

)
, (4.11)
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Now, testing (4.11) with u = 1, we get that

∫
Ω
u ≤ α(1 + ∆tλ)

∫
Ω
um,

and, as um ≥ 0 and it can be proved that u ≥ 0 using the same arguments than in Theorem 4.3.12, we

get that

∥u∥L1(Ω) ≤
∫
Ω
um +∆tλ

∫
Ω
(um)ρ.

Since Pdisc
0 (Th) is a finite-dimensional space where all the norms are equivalent, we have proved

that B is bounded.

Thus, using the Leray-Schauder fixed point theorem 2.3.6, there is a fixed point of (4.10),

therefore, we can conclude that there is a solution um+1 of (4.8).

Since every nonnegative solution of (4.8) is a solution of (4.6), the following result is straightfor-

ward.

Corollary 4.3.14. There is at least one solution um+1 of (4.6) satisfying um+1 ≥ 0 and

∫
Ω
um+1 ≤

∫
Ω
um +∆tλ

∫
Ω
(um)ρ.

Again, as in Section 3.4, obtaining a nonnegative solution of the linear scheme (4.6) can be

enforced by solving the truncated nonlinear scheme (4.8). However, in practice, the linear scheme (4.6)

has provided a nonnegative approximation of the cell density in every numerical experiment that we have

carried out without explicitly enforcing the nonnegativity constraint um+1 ≥ 0, as shown in Section 4.3.4.

Remark 4.3.15. Showing uniqueness of solution of the linear scheme (4.6) would imply that, as observed

in the numerical tests, its solution is nonnegative without explicitly imposing the nonnegativity restriction

um+1 ≥ 0. However, this is not straightforward and it might require using inverse and trace inequalities

that would probably involve some kind of restriction on the time step and mesh size, and this is left to a

future work.

In fact, one could probably derive some sort of constraint, similarly to that in (2.17), that

guarantees uniqueness of solution for small enough ∆t. However, in this case it would not be easy to

ensure that condition in practice.

83



4.3.4 Numerical experiments

We confine our numerical studies to the parabolic-elliptic-elliptic version (τ = 0) of the problem

(4.1), since we expect the results to be similar when τ = 1 and for model (4.2). Some tests in similar

attraction-repulsion contexts for the case τ = 1 can be found, for instance, in [84], where an algebraic

flux correction technique is used for the spatial approximation.

In this sense, we provide numerical examples in accordance to the results in Section 4.3.2.

Moreover, we show that suppression of some of the above conditions (and in particular those associated

to the gradient nonlinearities), seems to lead to only local solution (i.e., T finite) that blows up at T .

Here, we define f1(u) = uα, f2(u) = uβ and we assume that all the parameters are set to 1, but

k = 1.1, unless otherwise specified. For the sake of clarity, we also indicate in the figures any different

value of the parameters with respect to those already fixed.

Remark 4.3.16. Notice that the functions f1(u) = uα, f2(u) = uβ do not necessarily satisfy Hypothe-

ses 4.3.2 and 4.3.3 for every α, β > 0. However, these functions are more physically meaningful than

other similar choices of the type f1(u) = (u + η)α, f2(u) = (u + η)β for η > 0 and, ultimately, we

expect the behavior of the solution to be similar to the case η > 0 very small.

As in Section 3.5, following Remark 3.5.1, we cannot expect an actual blow-up in the discrete

case as it occurs in the continuous model. In this sense, since an accurate discrete solution idealizing

such blow-up scenario will exhibit a mass accumulation in small regions of the domain, we establish that

blow-up occurs when, after that, the norm ∥ · ∥L∞(Ω) of the approximated solutions stabilizes over time

(as in Section 3.5 and [23, 168]).

In order to compute the numerical tests, we have used the Python interface of the open source

library FEniCSx [13, 166, 167] and the open source libraries PyVista [175] and Matplotlib [119]

to generate the plots.

In practice, in each time step, we have first computed a Pcont
1 (Th) approximation of the chemical

signals v and w following the ideas in Section 4.3.3. Then, we have used the linear scheme (4.6) without

explicitly enforcing the nonnegativity constraint um+1 ≥ 0, obtaining a positive approximation of the

cell density, um+1, for every case below without needing any constraint on the time step or the mesh size.

This strategy has allowed us to carry out the computationally demanding three-dimensional tests shown

in the following section with not much computational effort.

84



4.3.4.1 Linear and only attraction model with linear production

In this first example, we consider a three-dimensional version (d = 3) of model (4.1) defined in

the spatial domain Ω = {(x, y, z) ∈ R3 : x2 + y2 + z2 < 1} with the following initial condition

u0(x, y, z) := 500e−35(x2+y2+z2),

plotted in Figure 4.1a. Moreover, we take χ = 5 and ξ = 0 (no repulsion) and we use a mesh of size

h ≈ 4.4 · 10−2 and a time step ∆t = 10−5.

(a) t = 0 (b) t = 5 · 10−4

(c) t = 10−3 (d) t = 3 · 10−3

Figure 4.1 Approximation of the solution u at different time steps (c = 0, χ = 5, ξ = 0)

In Figure 4.1 the approximation obtained with c = 0 is plotted at different time steps. We can

observe that a blow-up phenomenon seems to appear, according with the analytical results given in [187].
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Notice that k = 1.1 < 7/6 ≈ 1.167 so the condition

k <


7
6 , if d ∈ {3, 4},

1 + 1
2(d−1) , if d ≥ 5,

in [187, Theorem 1.1] is satisfied.

This blow-up phenomenon can be prevented using the dampening gradient as shown in Theo-

rem 4.3.8. In this sense, we show in Figure 4.2 the evolution of the maximum of the approximations for

different choices of c and γ. As expected, the blow up is prevented for whatever choice of c > 0 (even

for small values like c = 10−3) if γ satisfies the bound 4.4, i.e., 1.5 < γ ≤ 2 (see Figure 4.2a). However,

in case that γ does not comply with 4.4, we may require a big enough value of c to prevent the blow-up.

This value of c apparently preventing the chemotactic collapse increases as long as γ moves away from

the critical value γ∗ = 1.5 for which the equality holds in 4.4 (see Figures 4.2b and 4.2c).

4.3.4.2 Fully nonlinear attraction-repulsion model

Motivated by [55], let us analyze model (4.1) under the assumption that

n2 = n3, n1 ∈ R, α > β and


n2 + α > max

{
n1 +

2
dk, k

}
if n1 ≥ 0,

n2 + α > max
{
2
dk, k

}
if n1 < 0.

(4.12)

In particular, we focus on the 2D case (n = 2) in the domain Ω = {(x, y) : x2+y2 < 1}. We set α = 1.5

(in this case ξ = χ = 1) and define the following initial condition

u0(x, y) := 500e−35(x2+y2),

plotted in Figure 4.3a. Also, we take a spatial and a temporal partition of sizes h ≈ 1.37 · 10−2 and

∆t = 10−6, respectively.

First, in Figure 4.3 we plot the evolution of u over time without the dampening gradient term, i.e.

c = 0. We observe that due to the choice of the parameters and the initial condition, it seems to occur a

blow-up phenomenon, in accordance with the results in [55, Theorem 3] under the restriction (4.12).

86



(a) γ = 1.75

(b) γ = 1.4

(c) γ = 1.1

Figure 4.2 Maximum of the approximation of u over time for different values of c and γ (χ = 5, ξ = 0)
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(a) t = 0 (b) t = 5 · 10−5

(c) t = 10−4 (d) t = 3 · 10−4

Figure 4.3 Approximation of the solution u at different time steps (n1 = 1, c = 0, α = 1.5)

In fact, if we use a nonlinear diffusion term moving the value of n1 we can observe in Figure 4.4

that we still obtain a chemotactic collapse but with different blow-up times. As expected, one may notice

that the blow-up time increases with n1.

Moreover, as it occurred with the previous example, if we introduce the dampening gradient

nonlinearities using a strictly positive small value for c, such as c = 10−3, the blow-up phenomenon is

avoided if we stick to the bounds on γ given in 4.4, i.e. 1.67 ≈ 5/3 < γ ≤ 2, as stated in Theorem 4.3.8.

However, this singularity seems to remain for a small enough value of c if γ does not satisfy 4.4. See

Figure 4.5.

4.4 Chemotactic processes in neuroblast migration

New neurons are generated in the adult rodent brain in specialized regions in which neural stem

cells (NSC) are activated to produce neurons in a hierarchical process named neurogenesis. One of

these regions is the subventricular zone (SVZ) [155]. Activation of NSC induce their cell cycle entrance

88



Figure 4.4 Maximum of the approximation of u for different values of n1 (c = 0, α = 1.5)

Figure 4.5 Maximum of the approximation of u for different values of γ (n1 = 1, c = 10−3, α = 1.5)

and posterior division to produce transit amplifying actively dividing progenitors that will give rise to

neuronal progenitors or neuroblasts [50]. Newly generated neuroblasts migrate from the SVZ toward the

olfactory bulb (OB) through the rostral migratory stream (RMS) while still dividing [159] contributing

to the continuous neuronal replacement in the OB. Neurons produced in this homeostatic mechanisms

integrate into existing circuits and participate in olfaction [130].

Tens of thousands of neuroblasts migrate daily through the RMS travelling long distances toward

the OB, where they integrate as inhibitory interneurons [15, 37, 143, 152]. These cells display an

exploratory pattern while moving long distances [153]. On this way along the adult RMS, neuroblasts

border the corpus callosum (CC), a bundle of nerve fibers located between the left and right cerebral
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hemispheres, where the movement of neuroblasts is hindered due to the presence of a glial sheath

deliniating the RMS and the low density of blood vessels in the CC, which they use as scaffold [131].

The importance of the homeostatic migration of neuroblasts toward the OB in the adult brain

is highlighted by the fact that in models of brain damage an altered migration pattern is found. Several

models of brain damage show an altered migration of SVZ neuroblasts that are different depending on

the type of damage. Thus, in a murine model of Alzheimer’s disease the proportion of migrating cells in

the RMS is lower than in healthy mice [75]. In other models, such as murine models of Huntington’s

disease, migration toward the OB is reduced as well accompanied by an altered pattern of migration that

direct neuroblasts toward the striatum avoiding the OB pathway [122, 129]. Alterations of neuroblast

migration are also observed in cortical injuries generated by ischemic lesions, in which SVZ neurogenesis

is stimulated in response to the injury and in some cases chains of neuroblast can be seen migrating

toward the injured region [146].

All these reports suggest that stimulating neurogenesis in the SVZ and conducting neuroblasts

toward the injured region may be of use at designing strategies to regenerate damaged brain regions.

Notwithstanding, although neurogenesis and neuroblast migration in the adult brain of mammals has

been studied in depth over the past two decades from an anatomical and physiological point of view, and

despite the considerable amount of data available over the years, up to our knowledge no mathematical or

computational model has been published to date describing the neuroblast migration toward the OB. This

type of models could be of great value as a first approximation to describe more complex phenomena,

such as the movement of neuroblasts towards brain lesions.

In Section 4.4.1 we present a mathematical model of neuroblast migration to the olfactory bulb,

based on the following hypothesis: the movement of neuroblasts is due to a transport phenomenon exerted

by certain attraction or chemotaxis velocity towards the OB. Altough technically not of chemotaxis type,

our model is inspired by chemotactic biological processes through which a population of organisms

(or cells) migrate in response to a chemical stimulus. More specifically, we suppose that there exists a

function to be identified whose gradient drive the transport of neuroblasts. The PDE is supplemented with

some extra reaction terms described below, modelling the birth of neuroblasts and their disappearance,

for instance, due to their evolution into mature neurons.

Moreover, in Section 4.4.2 we have developed a discrete approximation of the proposed mathe-

matical model of neuroblast migration in the mammalian brain using the ideas of the discrete upwind DG
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Figure 4.6 Original image (provided by the research group INIBICA INCO-5), obtained from real data,
showing neuroblast distribution in a rodent brain

schemes in Section 2.3.2. Finally, we show several numerical simulations of the migration process in

Section 4.4.3 where the model has been calibrated and validated using real data experimentally obtained

by the research group INIBICA INCO-5 led by Dr. Carmen Castro-González (the details can be consulted

in [6]). The computational results match qualitatively the real neuroblasts distribution identified in

experimental images of the rodent brain as the red spots in Figure 4.6. which are neuroblasts marked with

the bromodeoxyuridine (BrdU).

A further discussion of the model, the results and the preliminary parameter fitting using real

data can be read in [6].

4.4.1 Neuroblasts migration model

In this section, we present a model for migration of neuroblasts towards the OB along the RMS,

starting from the SVZ and rounding the CC. Here we assume that the shape of this RMS path can be

modeled by means of an attraction function which has been previously designed.

Let us fix a space-time domain Ω× (0, T ), where Ω ⊂ R2, is an open set representing a rodent

brain, with boundary ∂Ω. We consider the following PDE for u = u(x, t) ≥ 0 the density of neuroblasts,

τut + χ∇ · (u∇O) + αu− γ u1NZ = β 1SVZ in Ω× (0, T ), (4.13)

where O = O(x) ∈ R is a potential function such that its gradient ∇O models the attraction exerted by

the olfactory bulb. Since we consider that neuroblasts cannot cross the brain boundary, we must choice O
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such that there is not entrance boundary, which mathematically means

∇O · n ≥ 0 on ∂Ω.

The precise definition of this function O, reflecting the heterogeneity of the brain with respect to the

neuroblast migration, is detailed in [6]. In any case, O depends on a parameter σ > 0, related to the

spread of neuroblasts along the domain.

On the other hand, the parameter χ > 0 is the amplitude of this attraction, α > 0 is the death

rate along the domain and β > 0 is related to the amount of neuroblasts which are generated in the SVZ.

Also a source term, with coefficient γ > 0, has been added intended to model a narrowing zone (NZ)

in the brain, where some neuroblast contribution occurs in our 2d domain arising from other regions in

the real three-dimensional domain. Finally, the parameter τ ∈ {0, 1} distinguishes the stationary and

evolutive cases, respectively.

The system (4.13) is supplemented with the initial condition

u(0) = u0 in Ω, (4.14)

where u0 is the initial density of neuroblasts obtained as a steady state solution of the proposed model for

certain experimentally chosen parameters.

4.4.2 Numerical solution of the neuroblasts model

Now, we introduce the discrete scheme which has been used to approximate the neuroblasts

migration model (4.13), Again, here we will use the upwind discontinuous Galerkin method introduced

in Section 2.3.2.

Assume that we have:

• An approximation of the initial condition u0 ∈ Pdisc
0 (Th), computed for a certain set of parameters

as detailed in [6].

• A chemoattractant function O ∈ Pdisc
1 (Th), defined as the solution to the olfactory bulb problem

that can be found in [6] and which depends on the parameter σ.
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We approximate the solution of the evolution (τ = 1) system (4.13)–(4.14) using an implicit Euler time

scheme and an upwind DG space discretization as follows. For each m ∈ N and um ∈ Pdisc
0 (Th) with

um ≥ 0, find um+1 ∈ Pdisc
0 (Th) such that, for every u ∈ Pdisc

0 (Th),

τ
(
δtu

m+1, u
)
+ χa

upw
h (∇O;um+1, u) + α

(
um+1, u

)
= β (1SVZ, u) + γ (1NZu

m, u) , (4.15)

where aupw
h (·; ·, ·) is the bilinear form defined in (4.7). In practice, we are going to take β = 0, that is no

new neuroblasts are generated in the SVZ. The reason is that the unknown um represents the density of

those neuroblasts which, at the initial time, were marked with BrdU. And no new marked neuroblasts

appear in later times.

The proof of the following theorem easily follows using the same techniques that have been

previously introduced in Sections 2.3.2, 3.4 and 4.3.3.

Theorem 4.4.1. There is a solution of the scheme (4.15) which satisfies um+1 ≥ 0 and

∫
Ω
um+1 ≤ 1

τ + α∆t

(
τ

∫
Ω
um + β∆t|ΩSVZ|+ γ∆t

∫
ΩNZ

um
)
.

In fact, again one can use a truncated scheme to enforce the positivity of the approximation

in (4.15). However, in practice, like (4.6), the scheme (4.15) has been able to provide a positive

approximation without heeding a specific restriction on the time step or the mesh size to enforce

uniqueness of solution.

4.4.3 Numerical tests

The numerical scheme (4.15) described above has been applied to develop computer programs

that allow solving the PDE model for simulation of migration of neuroblasts in the brain, yielding concrete

data and comparing it to experimental data obtained from real rodent brains, see [6]. The final target is

calibrating the model parameters so that its output is matched as closely as possible to the real data.

In this section, since the parameter fitting is beyond the scope of this work, we will just focus on

the numerical approximation of the model (4.13).

We would like to thank and give credit to Noelia Ortega-Román for the parameter fitting,

computing the numerical results and generating all the images shown in this section, in Figures 4.7, 4.8,

4.9, 4.10 and 4.11. These results and graphs can be also found in [6].
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4.4.3.1 Computer implementation in a realistic domain

As to the computer implementation of the scheme (4.15), we have defined a mesh of a virtual

rodent brain, see Figure 4.7. In this mesh, the triangles that are located in the CC have been identified

(colored in black) and also those triangles laying in the SVZ and in the NZ (shown in red and green,

respectively).

Figure 4.7 Right: mesh of a virtual rodent brain. Left: zoom around the RMS. Triangles defining the
CC, SVZ and NZ are shown in black, red and green color, respectively

It is worth noting that the mesh shown in Figure 4.7 is actually the one resulting from refining

and saving a coarser mesh that was initially built. Specifically, we build an initial mesh of the brain

domain and then we refine it in the area where the RMS is expected to be located. We identify this area by

a preliminar calculus of the initial condition u0, obtained as a solution of the stationary (τ = 0) equation

(4.13), then we refine those triangles where u0 > ε, where ε is a prescribed small constant. Using this

refined mesh allows us to compute a more accurate solution for neuroblasts distribution in the region of

interest, without significantly increasing the computational effort.

The final mesh we are using in our numerical tests, Th, is made of 2003 triangles with size

h ∈ [3.313 · 10−3, 4.814 · 10−2]. For the time discretization, we define an uniform partition t0 < . . . <

tm < . . . < tM of the time interval [0, T ] with T = 4 days and constant size k = tm − tm−1 = 0.04.

We use the library FEniCS [14] to load the mesh and code the scheme (4.15).

4.4.3.2 Computational results

More in detail, we follow the next steps in order to provide an approximation of the neuroblast

migration process to the olfactory bulb:
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1. For each olfactory bulb shape parameter σ, we compute a Pcont
1 (Th) approximation of O as detailed

in [6]. This olfactory bulb function O is one of the keys in our model and will determine the

migration of neuroblasts, driven by ∇O and thus orthogonal to the isolines of O (see Figure 4.8).

2. Given an attraction function O depending on parameter σ and given the positive parameters α, β,

γ, χ an initial condition u0 ∈ Pdisc
0 (Th) can be computed solving problem (4.15) with τ = 0.

3. Then, for the same or different parameters, we can compute the neuroblast distribution um+1 ∈

Pdisc
0 (Th) solving (4.15) with τ = 1 at each time step in tm+1.

Figure 4.8 Isolines of the olfactory bulb function, O, obtained from parameter optimization

Therefore, after a preliminary adjustment of the parameters and the computation of the suitable

olfactory bulb attraction function in Figure 4.8 (see [6] for details) we obtain a satisfactory approximation

of the initial condition shown in Figures 4.9, which agree with the real phenomena from Figure 4.10.

This approximation of the initial distribution of neuroblasts not only qualitatively matches the behavior in

the real picture of the brain but also quantitatively. The quantitative comparison between the model and

the real data is shown in [6].

Then, starting from the initial solution u0 that has been already computed and adjusting the

parameters again so as to fit the real data, we can derive an approximation of the evolution of the

neuroblasts migration process to the olfactory bulb. This process is shown in Figure 4.11.
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Figure 4.9 Steady neuroblast density (approximation of u0)

Figure 4.10 Real steady neuroblast density
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Figure 4.11 Evolution of neuroblast density after two days (top) and four days (bottom)
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CHAPTER 5

A STRUCTURE-PRESERVING UPWIND DG SCHEME FOR A DEGENERATE PHASE-FIELD

TUMOR MODEL

5.1 Abstract

In this chapter, we present a modification of the phase-field tumor growth model given in [113]

that leads to bounded, more physically meaningful, volume fraction variables. In addition, we develop

an upwind discontinuous Galerkin (DG) scheme preserving the mass conservation, pointwise bounds

and energy stability of the continuous model. Finally, some computational tests in accordance with the

theoretical results are introduced. In the first test, we compare our DG scheme with the finite element

(FE) scheme related to the same time approximation. The DG scheme shows a well-behavior even for

strong cross-diffusion effects in contrast with FE where numerical spurious oscillations appear. Moreover,

the second test exhibits the behavior of the tumor-growth model under different choices of parameters

and also of mobility and proliferation functions. The results of this chapter have been already published

in [2].

5.2 Introduction

Lately, significant work on the mathematical modeling of tumor growth has been carried out. As

a result, many different models have arisen, some of which have even been applied to predict the response

of the tumor to its surrounding environment and possible medical treatments. Most of these models can

be classified into micro-scale discrete models, macro-scale continuum models or hybrid models, [57,

145]. Regarding the continuum models, different approaches has been developed among which we can

find models using both ODE, for instance, [46, 147], and PDE, for example, [79, 164].

In this sense, phase-field models such as the Cahn-Hilliard (CH) equation have become a very

popular tool. This model describes the evolution of a thin, diffuse, interface between two different phases

or states of a process [36, 154] through a so-called phase-field variable, which minimizes an adequate
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free energy. Sometimes, this CH model is coupled with a degenerate mobility to impose phase-related

pointwise bounds on this variable.

In particular, in the context of tumor modeling, the phase-field variable u is usually interpreted as

a tumor volume-fraction (with 0 ≤ u ≤ 1) and this model is coupled with other equations describing

the interaction between the tumor and the surrounding environment. Some examples of these tumor

models can be found in [19, 85, 88, 91, 113, 173, 189] and the references therein. Often, certain physical

properties, inherited from the Cahn-Hilliard equation, are inherent to the solution of these models such as

mass-conservation of a biological substance, pointwise bounds on some of the variables and some sort of

energy-dissipation.

In this chapter, we consider the model (5.1) carefully derived from mixture theory by Hawkins-

Daarud et al. in [113], which describes the interaction between a tumor and the nutrients in the extracellular

water. To this aim, the CH equation for u is coupled with a diffusion equation for the nutrients n by

means of some reaction and cross-diffusion terms. Although this model does not take into account some

of the complex processes involved in the surrounding environment of the tumor, it allowed the authors

to capture some irregular growth patterns that are typically associated with these processes. However,

while this model is mass-conservative and energy-dissipative, it does not implicitly impose the necessary

pointwise bounds on the volume fraction variables.

Therefore, we propose a modification of the aforementioned tumor model, see (5.3) below, in

accordance with its physical interpretation. As a result of this modification, we obtain pointwise bounds

on the tumor and the nutrient volume fractions (0 ≤ u, n ≤ 1) which are consistent with the physical

meaning of the variables. This modification may help to a future application of this model (or a variant of

it) for real tumor growth prediction.

This phase-field tumor model (5.3) consist of a system of coupled nonlinear equations where

reaction and cross diffusion effects appear. Thus, dealing with this model is really challenging both from

a theoretical and the computational point of view.

In the case of the Cahn-Hilliard equation itself, several advances have been published regarding

the existence and regularity of solution, most of which can be found in [150] and the references therein.

Also, one can find several results regarding the existence, regularity and long-time behavior of the solution

of the tumor model (5.1) and variants in the literature in the case without cross-diffusion, see [51, 52,
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53, 87]. Recently, the well-posedness and the long-time behavior of the model (5.1) with cross-diffusion

have been addressed in the work by H. Garcke and S. Yayla, [96].

Regarding the numerical approximation of these equations, significant advances have been done

both with respect to the time and the spatial discretizations.

On the one hand, the classical approach for the time discretization of the phase-field models is

the convex-splitting decomposition introduced in [77] which preserves the energy stability. Nonetheless,

other time-discrete schemes have been introduced in the literature (see, for instance, [105, 106, 180]).

Among these time approximations we find the idea of introducing a Lagrange multiplier in the potential

term in [24] which was extended in [105, 106, 180]. This idea led to the popular energy quadratization

(EQ) schemes [192, 193, 194], later extended to the scalar auxiliary variable (SAV) approach [169].

On the other hand, in the case of the Cahn-Hilliard equation with degenerate mobility, designing a

suitable spatial discretization consistent with the physical properties of the model, specially the pointwise

bounds, is a difficult task and only a few works have been published in this regard. Among the currently

available structure-preserving schemes we can find some schemes based on finite volumes, [25, 118],

and on finite elements, [27, 103]. Moreover, we have developed in Chapter 2 a numerical scheme

where the pointwise bounds of the CH model in the case with convection are preserved using an upwind

discontinuous Galerkin (DG) approximation. To our best knowledge, no previous work has been published

defining a fully discrete DG scheme preserving the mass conservation, pointwise bounds and energy

stability of the CH model with degenerate mobility.

The difficulties of the discretization are emphasized in the case of phase-field tumor models. In

particular, in [113] an energy-stable finite element scheme with a first-order convex-splitting scheme in

time is proposed for (5.1) and extended in [190] to a second-order time discretization. Other types of

approximations of this model (5.1) using meshless collocation methods, [62], stabilized element-free

Galerkin method, [151], and SAV Fourier-spectral method, [171], can be found in the literature. However,

no bounds are imposed on the discrete variables whatsoever.

In this sense, we introduce a well-suited convex-splitting DG scheme of the proposed model (5.3),

based on [120] and the previous work in Chapters 2 and 3. This approximation preserves the physical

properties of the phase-field tumor model (mass conservation, pointwise bounds and energy stability) and

prevent numerical spurious oscillations. This scheme can be applied, in particular, to the more simple CH

model with degenerate mobility itself preserving all of the aforementioned properties.
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This chapter is organized as follows: in Section 5.3 we discuss the tumor model (5.1), which

was derived in [113], and we introduce our modified version of this model, (5.3), showing its physical

properties. In Section 5.4 we develop our numerical approximation of the tumor model (5.3). We

introduce the convex-splitting time-discrete scheme (5.12) in Section 5.4.1. Moreover, we present the

DG space approximation, (5.17), in Section 5.4.2, defining the upwind form (5.21) in Section 5.4.2.1.

Then, we analyze the properties of the fully discrete scheme in Section 5.4.2.2. Finally, we compute a

couple of numerical experiments in Section 5.5. Specifically, in Section (5.5.1), we present a numerical

comparison between the robust DG scheme (5.17) and a FE discretization of (5.12), the latter of which

fails in the case of strong cross-diffusion. In Section 5.5.2, we show the behavior of the model (5.3) under

different choices of parameters and mobility/proliferation functions.

The results of this chapter have already been published in [2].

5.3 Modified tumor model

The following tumor-growth model was introduced in [113] and further studied in [190]:

∂tu = ∇ · (Mu∇µu) + δP (u)(µn − µu) in Ω× (0, T ), (5.1a)

µu = F ′(u)− ε2∆u− χ0n in Ω× (0, T ), (5.1b)

∂tn = ∇ · (Mn∇µn)− δP (u)(µn − µu) in Ω× (0, T ), (5.1c)

∇u · n = (Mn∇µn) · n = (Mu∇µu) · n = 0 on ∂Ω× (0, T ), (5.1d)

u(0) = u0, n(0) = n0 in Ω, (5.1e)

where

µn =
1

δ
n− χ0u in Ω× (0, T ) (5.2)

and u0, n0 ∈ L2(Ω). In this model, u and n represent the tumor cells and the nutrient-rich extracellular

water volume fractions, respectively. Therefore, these variables are assumed to be bounded in [0, 1].

Moreover, µu and µn are the (chemical) potentials of u and n, respectively.

The behavior of the cells is modeled using a Cahn-Hilliard equation, where

F (u) =
1

4
u2(1− u)2
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is the Ginzburg-Landau double well potential and Mu is the mobility of the tumor, which is taken either

as constant or degenerated at u = 0, for instance, Mu(u) = M̂u2 with M̂ > 0. The parameter ε ≥ 0

is related to the thickness of the interface between the tumor phases u = 1 (fully saturated) and u = 0

(fully unsaturated).

On the other hand, the nutrients are modeled using a diffusion equation where the function Mn is

the mobility of the nutrients, which is taken as constant in practice.

These equations are coupled by cross diffusion terms (multiplied by the coefficient χ0 ≥ 0)

introduced in (5.1b) and (5.2) that model the attraction between tumor cells and nutrients. In addition,

reaction terms modeling the consumption of nutrients by the tumor cells appear in (5.1a) and (5.1c),

where P (u) is a proliferation term that vanishes when u ≤ 0 in [113] or when u ̸∈ (0, 1) in [190]. These

reaction terms depend on the difference between the potentials, which is assumed to be positive as the

parameter δ > 0 is very small, because one has the approximation

δP (u)(µn − µu) = P (u)(n− δ(χ0u− µu)) ≃ P (u)n if δ ≈ 0.

The well-posedness and long-time behavior of the model (5.1) and some variants have been

considered in the case without cross-diffusion (χ0 = 0), see [51, 52, 53, 87], and only recently in the

case with cross diffusion (χ0 > 0) in [96].

In this work, taking into account the previous considerations, we introduce the following modified

phase-field tumor model

∂tu = Cu∇ · (M(u)∇µu) + δP0P (u, n)(µn − µu)⊕ in Ω× (0, T ), (5.3a)

µu = F ′(u)− ε2∆u− χ0n in Ω× (0, T ), (5.3b)

∂tn = Cn∇ · (M(n)∇µn)− δP0P (u, n)(µn − µu)⊕ in Ω× (0, T ), (5.3c)

∇u · n = (M(n)∇µn) · n = (M(u)∇µu) · n = 0 on ∂Ω× (0, T ), (5.3d)

u(0) = u0, n(0) = n0 in Ω, (5.3e)

where

µn =
1

δ
n− χ0u in Ω× (0, T ), (5.4)
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u0, n0 ∈ L2(Ω), F (u) = 1
4u

2(1− u)2 and all the parameters above are nonnegative with δ, Cu, Cn > 0

and ε, χ0, P0 ≥ 0. Also, we define the following family of degenerate mobilities

M(v) := hp,q(v), (5.5)

for certain p, q ∈ N where

hp,q(v) := Kp,qv
p
⊕(1− v)q⊕ =


Kp,qv

p(1− v)q, v ∈ [0, 1],

0, elsewhere,

with Kp,q > 0 a constant so that maxx∈R hp,q(v) = 1, hence M(v) is a degenerate and normalized

mobility. In addition, we define the proliferation function depending on both cells and nutrients as

P (u, n) := hr,s(u)n⊕, (5.6)

for certain r, s ∈ N.

Notice that the mobility functions, defined in (5.5), for the tumor and for the nutrients do not

necessarily need to be identical. One may consider the tumor mobility as Mu(u) = hp,q(u) with p, q ∈ N

and the nutrients mobility as Mn(n) = hp′,q′(n) with p′, q′ ∈ N and all the results below equally hold.

However, for simplicity, we will assume that Mu =Mn and denote the mobility function as M .

Remark 5.3.1. This model introduces several changes with respect to the previous model (5.1) studied in

[113, 190]. These modifications, described next, involve significant improvements. But also they lead

to a more complex model, with degenerate mobility and proliferation functions and major difficulties

regarding the analysis of the existence, regularity and long time behavior of solutions.

Specifically:

• The difference between the potentials, µn − µu is assumed to be positive since δ is set to be a very

small parameter. This difference could possible be negative in the regions where n ≃ 0 but, in this

case, the reaction terms vanish due to the proliferation function P (u, n) defined in (5.6). Therefore,

the positive part of (µn − µu) is taken in (5.3a) and (5.3c).
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• When δ → 0, the reaction terms in equations (5.3a) and (5.3c) are assumed to grow with the square

of the nutrients volume fraction. In fact

δP0P (u, n)(µn − µu)⊕ = P0P (u, n)(n− δ(χ0u− µu))⊕ ≃ P0P (u, n)n = P0hr,s(u)(n⊕)
2.

• A degenerate mobility, (5.5), is considered for both the phase-field function u and the volume

fraction of nutrients n.

• The aforementioned modifications imply that u and n must be bounded in the interval [0, 1] (see

Theorem 5.3.3), what matches the physical assumptions of the model since u and n are assumed

to be volume fractions. This is a clear improvement over previous approaches, such us the ones

considered in [113, 190], where the solution does not necessarily satisfy these bounds.

Remark 5.3.2. In practice, Cn = δD with D > 0 so that, when δ → 0, the n-equation is approached by

∂tn ≃ D∇ · (M(n)∇n)− P0P (u, n)n.

Considering that µn is explicitly determined by (5.4), we can reduce the number of unknowns

and define the weak formulation of (5.3) as: find (u, µu, n) with u, n ∈ L2(0, T ;H1(Ω)), ∂tu, ∂tn ∈

L2(0, T ;H1(Ω)′) and µu ∈ L2(0, T ;H1(Ω)), which satisfies the following variational problem a.e.

t ∈ (0, T )

⟨∂tu(t), u⟩ = −Cu (M(u(t))∇µu(t),∇u)

+ δP0 (P (u(t), n(t))(µn(t)− µu(t))⊕, u) , ∀u ∈ H1(Ω), (5.7a)

(µu(t), µu) = ε2 (∇u(t),∇µu) +
(
F ′(u(t))− χ0n(t), µu

)
, ∀µu ∈ H1(Ω), (5.7b)

⟨∂tn(t), n⟩ = −Cn (M(n(t))∇µn(t),∇n)

− δP0 (P (u(t), n(t))(µn(t)− µu(t))⊕, n) , ∀n ∈ H1(Ω), (5.7c)

where

µn(t) =
1

δ
n(t)− χ0u(t), (5.8)

u(0) = u0, n(0) = n0 and ⟨·, ·⟩ denotes the dual product over H1(Ω).
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Since u, n ∈ L2(0, T,H1(Ω)) with ∂tu, ∂tn ∈ L2(0, T,H1(Ω)′), it is known, see for instance

[61, 74], that u, n ∈ C0([0, T ], L2(Ω)) and that ⟨∂tu(t), u⟩ = d
dt (u(t), u), ⟨∂tn(t), n⟩ =

d
dt (n(t), n) for

a.e. t ∈ (0, T ) and every u, n ∈ H1(Ω).

Proposition 5.3.3. Given u0, v0 ∈ [0, 1], any solution (u, µu, n) of the model (5.7) satisfies that u(t) and

n(t) are bounded in [0, 1] for a.e. t ∈ (0, T ).

Proof. Let (u, µu, n) be a solution of the model (5.7) and u0, v0 ∈ [0, 1].

• First, we prove that u, n ≥ 0. Notice that u⊖ ∈ L2(0, T,H1(Ω)) and take u = u(t)⊖ for a.e. t ∈

(0, T ) in (5.7a). We arrive at 1
2

d
dt∥u(t)⊖∥

2
L2(Ω) = 0, hence ∥u(t)⊖∥L2(Ω) = ∥u(0)⊖∥L2(Ω) = 0.

Similarly, ∥n(t)⊖∥L2(Ω) = 0 for a.e. t ∈ (0, T ).

• Now, we prove that u, n ≤ 1. Notice that (1− u)⊖ ∈ L2(0, T,H1(Ω)), ∂tu = ∂t(u− 1) and take

u = (u(t) − 1)⊕ for a.e. t ∈ (0, T ) in (5.7a). We arrive at 1
2

d
dt∥(u(t) − 1)⊕∥2L2(Ω) = 0, hence

∥(u(t) − 1)⊕∥L2(Ω) = ∥(u(0) − 1)⊕∥L2(Ω) = 0. Similarly, 1
2

d
dt∥(n(t) − 1)⊕∥2L2(Ω) ≤ 0 what

implies ∥(n(t)− 1)⊕∥L2(Ω) ≤ ∥(n(0)− 1)⊕∥L2(Ω) = 0 for a.e. t ∈ (0, T ).

Proposition 5.3.4. Let (u, µu, n) be a solution of the problem (5.7). Then, this solution conserves the

total mass of tumor cells and nutrients in the sense of

d

dt

∫
Ω
(u(x, t) + n(x, t))dx = 0.

Proof. It is enough to take u = n = 1 in (5.7a) and (5.7c) and add the resulting expressions.

Proposition 5.3.5. If (u, µu, n) is a solution of the problem (5.7) with ∂tu ∈ L2(0, T,H1(Ω)), then it

satisfies the following energy law

dE(u(t), n(t))

dt
+ Cu

∫
Ω
M(u(x, t))|∇µu(x, t)|2dx+ Cn

∫
Ω
M(n(x, t))|∇µn(x, t)|2dx

+ δP0

∫
Ω
P (u(x, t), n(x, t))(µu(x, t)− µn(x, t))

2
⊕dx = 0, (5.9)

where the energy functional is defined by

E(u, n) :=

∫
Ω

(
ε2

2
|∇u|2 + F (u)− χ0un+

1

2δ
n2
)
. (5.10)
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Therefore, the solution is energy stable in the sense

d

dt
E(u(t), n(t)) ≤ 0.

Proof. Take u = µu(t), µu = ∂tu(t), n = µn(t) in (5.7a)–(5.7c) and test (5.8) with ∂tn(t). Adding the

resulting expressions we arrive at

ε2 (∇u(t),∇(∂tu(t))) +
(
F ′(u(t)), ∂tu(t)

)
− χ0 [(n(t), ∂tu(t)) + (u(t), ∂tn(t))] +

1

δ
(n(t), ∂tn(t))

+ Cu

∫
Ω
M(u(x, t))|∇µu(t)|2dx+ Cn

∫
Ω
M(n(x, t))|∇µn(t)|2dx

+ δP0

∫
Ω
P (u(x, t), n(x, t))(µu(x, t)− µn(x, t))⊕(µu(x, t)− µn(x, t))dx = 0.

Therefore, it is straightforward to check that (5.9) holds.

5.4 Numerical approximation

In this section we will develop a well suited approximation of the tumor model (5.3) which

preserves the physical properties presented in the previous section.

5.4.1 Time-discrete scheme

Now, we define a convex splitting of the double well potential F (u) as follows:

F (u) := Fi(u) + Fe(u), Fi(u) :=
3

8
u2, Fe(u) :=

1

4
u4 − 1

2
u3 − 1

8
u2, u ∈ [0, 1],

where we are going to treat the convex term, Fi(u), implicitly and the concave term, Fe(u), explicitly

(see Section 2.4.1 and, for instance, [77, 105], for more details). For this, we define

f(um+1, um) := F ′
i (u

m+1) + F ′
e(u

m) =
1

4

(
3um+1 + 4(um)3 − 6(um)2 − um

)
. (5.11)
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We propose the following time-discrete scheme: given (um, µmu , n
m) ∈ H1(Ω)3 with um, nm ∈

[0, 1] in Ω, find (um+1, µm+1
u , nm+1) ∈ H1(Ω)3 such that

(
δtu

m+1, u
)
= −Cu

(
M(um+1)∇µm+1

u ,∇u
)

+ δP0

(
P (um+1, nm+1)(µm+1

n − µm+1
u )⊕, u

)
, ∀u ∈ H1(Ω), (5.12a)(

µm+1
u , µu

)
= ε2

(
∇um+1,∇µu

)
+
(
f(um+1, um)− χ0n

m+1, µu
)
, ∀µu ∈ H1(Ω), (5.12b)(

δtn
m+1, n

)
= −Cn

(
M(nm+1)∇µm+1

n ,∇n
)

− δP0

(
P (um+1, nm+1)(µm+1

n − µm+1
u )⊕, n

)
, ∀n ∈ H1(Ω), (5.12c)

where

µm+1
n =

1

δ
nm+1 − χ0u

m (5.13)

and u0 = u0, n0 = n0 in Ω.

Notice that the proposed scheme (5.12) is just a variation of backward Euler’s method where we

have treated explicitly the concave part of the splitting of F (u) in (5.12b) and a part of the cross diffusion

in (5.13).

The following results are the discrete in time versions of the Propositions 5.3.3, 5.3.4 and 5.3.5.

We skip the proofs, because the same properties will be proved for the fully discrete scheme given in

Section 5.4.2.

Proposition 5.4.1. Any solution (um+1, µm+1
u , nm+1) of the time-discrete scheme (5.12) satisfies that

um+1, nm+1 ∈ [0, 1] in Ω.

Proposition 5.4.2. Any solution (um+1, µm+1
u , nm+1) of the time-discrete scheme (5.12) conserves the

total mass of tumor cells and nutrients in the sense of

δt

∫
Ω
(um+1(x) + nm+1(x))dx = 0.
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Proposition 5.4.3. Any solution (um+1, µm+1
u , nm+1) of the time-discrete scheme (5.12) satisfies the

following discrete energy law

δtE(um+1, nm+1) + Cu

∫
Ω
M(um+1)|∇µm+1

u |2 + Cn

∫
Ω
M(nm+1)|∇µm+1

n |2

+
∆t ε2

2

∫
Ω
|δt∇um+1|2 + ∆t

2δ

∫
Ω
|δtnm+1|2

+ δ P0

∫
Ω
P (um+1, nm+1)(µm+1

u − µm+1
n )2⊕ ≤ 0, (5.14)

where E(u, n) is defined in (5.10).

Therefore, the solution is energy stable in the sense

E(um+1, nm+1) ≤ E(um, nm), ∀m ≥ 0.

Remark 5.4.4. This first order nonlinear time-discrete scheme (5.12) preserves the properties of the

continuous models, namely the conservation
∫
Ω(u

m+1 + nm+1) =
∫
Ω(u

m + nm), the point-wise bounds

um+1, nm+1 ∈ [0, 1] in Ω and the energy dissipation E(um+1, nm+1) ≤ E(um, nm). In particular, the

convex-splitting technique used in (5.11) allows us to guarantee the dissipation of the discrete version of

the exact energy of the model (5.10).

There exist other widely used techniques such as the SAV approach which does rely on the

dissipation of a modified energy via an auxiliary variable that must be introduced in the scheme. An

advantage of the SAV approach is that it usually leads, in more simple models, to linear schemes with

decreasing modified energy but, in this case, since we want to preserve the pointwise bounds, we require

anyway a nonlinear discretization as shown in (5.12).

Therefore, in this context, we prefer the convex-splitting technique against the SAV approach.

However, it would be interesting to explore whether it is possible to extend the ideas of this work to design

a second-order in time approximation, which is not straightforward and may require a different approach

such as a SAV-type discretization.

5.4.2 Fully discrete scheme

We assume, as in Section 3.4, the Hypothesis 3.4.1, i.e., the line between the barycenters of any

adjacent triangles K and L is orthogonal to the interface e = K ∩ L ∈ E i
h. One example of a mesh
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satisfying Hypothesis 3.4.1 is plotted in Figure 5.1. For other examples and a further insight on this

property we refer the reader to Section 3.4.

In addition, we define the projection Π0 : L
1(Ω) → Pdisc

0 (Th) and the regularization Πh
1 : L

1(Ω) →

Pcont
1 (Th) of a function g ∈ L1(Ω) as the function satisfying the following:

(g, w) = (Π0g, w) , ∀w ∈ Pdisc
0 (Th), (5.15)(

g, ϕ
)
=
(
Πh

1g, ϕ
)
h
, ∀ϕ ∈ Pcont

1 (Th), (5.16)

where (·, ·)h is the mass-lumping scalar product in Pcont
1 (Th). In fact, (Π0g)|K = (

∫
K g)/|K| for all

K ∈ Th, and (Πh
1g)(aj) = (

∑
K∈Sop(aj)

∫
K g φj)/(

∑
K∈Sop(aj) |K|/(d+ 1)) for all vertex aj with φj

the canonical basis of Pcont
1 (Th).

We propose the following fully discrete scheme for the model (5.3): given um, nm ∈ Pdisc
0 (Th)

with um, nm ∈ [0, 1] and µmu ∈ Pcont
1 (Th), find um+1, nm+1 ∈ Pdisc

0 (Th) and µm+1
u ∈ Pcont

1 (Th), such

that

(
δtu

m+1, u
)
= −Cua

upw
h (Π0µ

m+1
u ;M(um+1), u)

+ δP0

(
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )⊕, u

)
, ∀u ∈ Pdisc

0 (Th), (5.17a)(
µm+1
u , µu

)
h
= ε2

(
∇Πh

1u
m+1,∇µu

)
+
(
f(Πh

1u
m+1,Πh

1u
m), µu

)
− χ0

(
nm+1, µu

)
, ∀µu ∈ Pcont

1 (Th), (5.17b)(
δtn

m+1, n
)
= −Cna

upw
h (µm+1

n ;M(nm+1), n)

− δP0

(
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )⊕, n

)
, ∀n ∈ Pdisc

0 (Th), (5.17c)

where

µm+1
n =

1

δ
nm+1 − χ0Π0(Π

h
1u

m), (5.18)

u0 = u0, n0 = n0 and aupw
h (·; ·, ·) is an upwind form defined in Section 5.4.2.1 below. Note that,

(Πh
1u

m)(aj) =

∑
L∈Sop(aj) |L|u

m
L∑

L∈Sop(aj) |L|
, ∀ aj , (5.19)
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and

Π0(Π
h
1u

m)|K =
1

d+ 1

∑
aj∈K

(Πh
1u

m)(aj), ∀K ∈ Th. (5.20)

To ease the notation, we denote the solution of this fully discrete scheme in the same way than

the time discrete scheme (5.12). From now on we will refer to the solution of the fully discrete scheme

unless otherwise specified.

Notice that we have introduced the regularization of um+1, Πh
1u

m+1 to preserve the diffusion

term in (5.17b). In fact, this regularized variable will be regarded as our approximation of the tumor cells

volume fraction as, according to the results in Section 5.4.2.2, it preserves the maximum principle and

satisfies a discrete energy law. Moreover, in order to preserve the maximum principle and the dissipation

of the energy, we consider mass lumping in the term
(
µm+1
u , µ

)
h
.

Remark 5.4.5. The homogeneous Neumann boundary conditions on um and nm have been implicitly

imposed in the definition of aupw
h (·; ·, ·), see (5.21). In addition, the boundary condition ∇Πh

1u
m · n = 0

on ∂Ω× (0, T ) is imposed implicitly by the term
(
∇Πh

1u
m,∇µ

)
in (5.17b).

Remark 5.4.6. The scheme (5.17) is nonlinear so we will have to use an iterative procedure, such as

Newton’s method, to approach its solution.

5.4.2.1 Definition of aupw
h (·; ·, ·)

First of all, following the ideas in Section 2.4.2, in order to preserve the maximum principle

using an upwind approximation we will split the mobility function into its increasing and its decreasing

part as follows:

M↑(v) =


M(v), v ≤ v∗,

M(v∗), v > v∗,

M↓(v) =


0, v ≤ v∗,

M(v)−M(v∗), v > v∗,

where v∗ ∈ R is the point where the maximum of M(v) is attained, which can be obtained by simple

algebraic computations. Note that M(v) =M↑(v) +M↓(v).
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Now, we define the following upwind form for v, v, µ ∈ P0(Th):

a
upw
h (µ;M(v), v) :=∑

e∈Ei
h,e=K∩L

∫
e

((
−∇0

ne
µ
)
⊕

(
M↑(vK) +M↓(vL)

)
⊕
− (−∇0

ne
µ)⊖

(
M↑(vL) +M↓(vK)

)
⊕

)
[[v]]

(5.21)

with

∇0
ne
µ =

− [[µ]]

De(Th)
=
µL − µK
De(Th)

, (5.22)

a reconstruction of the normal gradient using P0(Th) functions for every e ∈ E i
h with e = K ∩ L (see

Section 3.4 for more details). We have denoted De(Th) the distance between the barycenters of the

triangles K and L of the mesh Th that share e ∈ E i
h. This way, we can rewrite (5.21) as

a
upw
h (µ;M(v), v) :=∑

e∈Ei
h,e=K∩L

1

De(Th)

∫
e

(
[[µ]]⊕

(
M↑(vK) +M↓(vL)

)
⊕
− [[µ]]⊖

(
M↑(vL) +M↓(vK)

)
⊕

)
[[v]] .

(5.23)

Remark 5.4.7. The form aupw
h (µ;M(v), v) is an upwind approximation of the convective term

− (M(v)∇µ,∇v) , v ∈ H1(Ω),

taking into consideration that the orientation of the flux is determined by both the orientation of ∇µ and

the sign of M ′(v) as follows:

∇ · (M(v)∇µ) =M ′(v)∇v∇µ+M(v)∆µ.

In order to develop this approximation we have followed the ideas of [120] and Sections 2.4.2 and 3.4,

and we have considered an approximation of M(v) in (5.21) by means of its increasing and decreasing

parts, M↑(v) and M↓(v), whose derivatives are positive and negative, respectively. However, unlike in

Section 2.4.2, we have also truncated the mobility M(v) to avoid negative approximations of M(v) that

may lead to a loss of energy stability.
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5.4.2.2 Properties of the fully discrete scheme

Proposition 5.4.8 (Conservation). The scheme (5.17) conserves the total mass of cells and nutrients in

the following sense: for all m ≥ 0,

∫
Ω
(um+1 + nm+1) =

∫
Ω
(um + nm) and

∫
Ω
(Πh

1u
m+1 + nm+1) =

∫
Ω
(Πh

1u
m + nm).

Proof. Just need to take u = 1 in (5.17a) and n = 1 in (5.17c) and add both expressions to obtain:

∫
Ω
(um+1 + nm+1) =

∫
Ω
(um + nm).

Moreover, due to the definition of the regularization Πh
1 , we have that

∫
Ω u

m+1 =
∫
ΩΠh

1u
m+1 and∫

Ω u
m =

∫
ΩΠh

1u
m, what yields

∫
Ω
(Πh

1u
m+1 + nm+1) =

∫
Ω
(Πh

1u
m + nm).

Theorem 5.4.9 (Pointwise bounds). Let (um+1, µm+1
u , nm+1) be a solution of the scheme (5.17), then

um+1, nm+1 ∈ [0, 1] in Ω provided um, nm ∈ [0, 1] in Ω.

Proof. Firstly, we prove that um+1, nm+1 ≥ 0 in Ω.

To prove that um+1 ≥ 0 we may take the following Pdisc
0 (Th) test function

u∗ =


(um+1

K∗ )⊖ in K∗

0 out of K∗
,

where K∗ is an element of Th such that um+1
K∗ = minK∈Th u

m+1
K . Then, by definition of P (u, n) in (5.6),

δP0

(
P (um+1, nm+1)(µm+1

n − µm+1
u )⊕, u

∗) = 0,

equation (5.17a) becomes

|K∗|δtum+1
K∗ (um+1

K∗ )⊖ = −Cua
upw
h (Π0µ

m+1
u ;M(um+1)⊕, u

∗). (5.24)
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Now, since um+1
L ≥ um+1

K∗ we can assure that

M↑(um+1
L ) ≥M↑(um+1

K∗ ) and M↓(um+1
L ) ≤M↓(um+1

K∗ ).

Hence, using that the positive part is an increasing function, we obtain

a
upw
h (Π0µ

m+1
u ;M(um+1), u∗) ≤ 0,

which yields |K∗|δtum+1
K∗ (um+1

K∗ )⊖ ≥ 0.

Consequently,

0 ≤ |K∗|(δtum+1
K∗ )(um+1

K∗ )⊖ = −|K∗|
∆t

(
(um+1

K∗ )2⊖ + umK∗(um+1
K∗ )⊖

)
≤ 0,

which implies, since umK∗ ≥ 0, that (um+1
K∗ )⊖ = 0. Hence um+1 ≥ 0 in Ω.

Similarly, taking the following Pdisc
0 (Th) test function in (5.17c),

n∗ =


(nm+1

K∗ )⊖ in K∗

0 out of K∗

where K∗ is an element of Th such that nm+1
K∗ = minK∈Th n

m+1
K we get nm+1 ≥ 0 in Ω.

Secondly, we prove that um+1, nm+1 ≤ 1 in Ω.

To prove that um+1 ≤ 1, taking the following test function in (5.17a),

u∗ =


(um+1

K∗ − 1)⊕ in K∗

0 out of K∗
,

whereK∗ is an element of Th such that um+1
K∗ = maxK∈Th u

m+1
K and using similar arguments than above,

we arrive at

|K∗|δtum+1
K∗ (um+1

K∗ − 1)⊕ ≤ 0.
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Therefore, it is satisfied that

0 ≥ |K∗|δtum+1
K∗ (um+1

K∗ − 1)⊕ =
|K∗|
∆t

(
(um+1

K∗ − 1) + (1− umK∗)
)
(um+1

K∗ − 1)⊕

=
|K∗|
∆t

(
(um+1

K∗ − 1)2⊕ + (1− umK∗)(um+1
K∗ − 1)⊕

)
≥ 0,

what yields (um+1
K∗ − 1)⊕ = 0 and, therefore, um+1 ≤ 1 in Ω.

Finally, taking the test function in (5.17c)

n∗ =


(nm+1

K∗ − 1)⊕ in K∗

0 out of K∗

where K∗ is an element of Th such that nm+1
K∗ = maxK∈Th n

m+1
K we obtain, similarly, that nm+1 ≤ 1 in

Ω.

The following result is a direct consequence of the previous Theorem 5.4.9 and the equality

(5.19) of the regularization Πh
1 .

Corollary 5.4.10. It satisfies Πh
1u

m+1 ∈ [0, 1] in Ω provided um+1 ∈ [0, 1] in Ω.

Theorem 5.4.11 (Energy law). Any solution of the scheme (5.17) satisfies the following discrete energy

law

δtE(Πh
1u

m+1, nm+1) + Cua
upw
h (Π0µ

m+1
u ;M(um+1),Π0µ

m+1
u ) + Cna

upw
h (µm+1

n ;M(nm+1), µm+1
n )

+
∆t ε2

2

∫
Ω
|δt∇Πh

1u
m+1|2 + ∆t

2δ

∫
Ω
|δtnm+1|2

+ δP0

∫
Ω
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )2⊕ ≤ 0, (5.25)

where the energy E(Πh
1u, n) is defined in (5.10).
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Proof. By taking u = Π0µ
m+1
u , µu = δtΠ

h
1u

m+1, n = µm+1
n in (5.17a)–(5.17c) and testing (5.18) by

δtn
m+1 we arrive at

(
δtu

m+1,Π0µ
m+1
u

)
+ Cua

upw
h (Π0µ

m+1
u ;M(um+1),Π0µ

m+1
u )

= δP0

(
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )⊕,Π0µ

m+1
u

)
, (5.26a)(

µm+1
u , δtΠ

h
1u

m+1
)
= ε2

(
∇Πh

1u
m+1, δt∇Πh

1u
m+1

)
+
(
f(Πh

1u
m+1,Πh

1u
m), δtΠ

h
1u

m+1
)

− χ0

(
nm+1, δtΠ

h
1u

m+1
)
, (5.26b)(

δtn
m+1, µm+1

n

)
+ Cna

upw
h (µm+1

n ;M(nm+1), µm+1
n )

= −δP0

(
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )⊕, µ

m+1
n

)
, (5.26c)(

µm+1
n , δtn

m+1
)
=

1

δ

(
nm+1, δtn

m+1
)
− χ0

(
Πh

1u
m, δtn

m+1
)
, (5.26d)

Observe that, by (5.15)–(5.16),

(
δtΠ

h
1u

m+1, µm+1
u

)
=
(
δtu

m+1, µm+1
u

)
,(

δtu
m+1, µm+1

u

)
=
(
δtu

m+1,Π0µ
m+1
u

)
,

hence in particular

(δtu
m+1,Π0µ

m+1
u ) = (δtΠ

h
1u

m+1, µm+1
u ).

Then, by adding (5.26a)–(5.26d), the previous terms cancel, remaining

Cua
upw
h (Π0µ

m+1
u ;M(um+1),Π0µ

m+1
u ) + Cna

upw
h (µm+1

n ;M(nm+1), µm+1
n )

+ ε2
(
∇Πh

1u
m+1, δt∇Πh

1u
m+1

)
+
(
f(Πh

1u
m+1,Πh

1u
m), δtΠ

h
1u

m+1
)

+ δP0

(
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )⊕, µ

m+1
n −Π0µ

m+1
u

)
+

1

δ

(
nm+1, δtn

m+1
)
− χ0

(
nm+1, δtΠ

h
1u

m+1
)
− χ0

(
Πh

1u
m, δtn

m+1
)
= 0.
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Taking into account that

ε2
(
∇Πh

1u
m+1, δt∇Πh

1u
m+1

)
=
ε2

2
δt

∫
Ω
|∇Πh

1u
m+1|2 + ∆t ε2

2

∫
Ω
|δt∇Πh

1u
m+1|2,

1

δ

(
nm+1, δtn

m+1
)
=

1

2δ
δt

∫
Ω
|nm+1|2 + ∆t

2δ

∫
Ω
|δtnm+1|2,

χ0δt

∫
Ω
um+1nm+1 = χ0

(
nm, δtΠ

h
1u

m+1
)
+ χ0

(
Πh

1u
m+1, δtn

m+1
)
,∫

Ω
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )2⊕ =

(
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )⊕, µ

m+1
n −Π0µ

m+1
u

)
,

and by adding and subtracting δt
∫
Ω F (Π

h
1u

m+1), we get the following equality

δtE(Πh
1u

m+1, nm+1) + Cua
upw
h (Π0µ

m+1
u ;M(um+1),Π0µ

m+1
u ) + Cna

upw
h (µm+1

n ;M(nm+1), µm+1
n )

+
∆t ε2

2

∫
Ω
|δt∇Πh

1u
m+1|2 + ∆t

2δ

∫
Ω
|δtnm+1|2

+ δP0

∫
Ω
P (um+1, nm+1)(µm+1

n −Π0µ
m+1
u )2⊕

= δt

∫
Ω
F (Πh

1u
m+1)−

(
f(Πh

1u
m+1,Πh

1u
m), δtΠ

h
1u

m+1
)
.

Finally, from the convex-splitting approximation (5.11) (see Section 2.4.1 and [77, 105]), one

has that ∫
Ω
δtF (Π

h
1u

m+1)−
(
f(Πh

1u
m+1,Πh

1u
m), δt(Π

h
1u

m+1)
)
≤ 0,

which implies (5.25).

Corollary 5.4.12. The scheme (5.17) is unconditionally energy stable in the sense

E(Πh
1u

m+1, nm+1) ≤ E(Πh
1u

m, nm), ∀m ≥ 0.

Proof. It is straightforward to check (see Corollary 3.4.14) that

a
upw
h (Π0µu;M(um+1),Π0µ

m+1
u ) ≥ 0 and a

upw
h (µm+1

n ;M(nm+1), µm+1
n ) ≥ 0.

Hence, using (5.25) we conclude that δtE(Πh
1u

m+1, nm+1) ≤ 0.
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Now, we focus on the existence of the scheme (5.17) for which we will use the Leray-Schauder

fixed point theorem 2.3.6.

Theorem 5.4.13 (Existence). There is at least one solution of the scheme (5.17).

Proof. Given two functions zu, zn ∈ Pdisc
0 (Th) with 0 ≤ zu, zn ≤ 1, we define the map

T : Pdisc
0 × Pcont

1 × Pdisc
0 −→ Pdisc

0 × Pcont
1 × Pdisc

0

such that

T (û, µ̂u, n̂) = (u, µu, n) ∈ Pdisc
0 (Th)× Pcont

1 (Th)× Pdisc
0 (Th)

is the unique solution of the linear (and decoupled, computing first µn, next n and u, and finally µu)

scheme:

1

∆t
(u− zu, u) = −Cua

upw
h (Π0µ̂;M(û), u)

+ δP0 (P (û, n̂)(µn −Π0µ̂u)⊕, u) , ∀u ∈ Pdisc
0 (Th), (5.27a)

(µu, µu)h = ε2
(
∇Πh

1u,∇µu
)
+
(
f(Πh

1u,Π
h
1zu), µu

)
− χ0 (n, µu) , ∀µu ∈ Pcont

1 (Th), (5.27b)

1

∆t
(n− zn, n) = −Cna

upw
h (µn;M(n̂), n)

− δP0 (P (û, n̂)(µn −Π0µ̂u)⊕, n) , ∀n ∈ Pdisc
0 (Th), (5.27c)

where

µn =
1

δ
n̂− χ0Π0(Π

1
hzu). (5.28)

It is straightforward to check that, for any given (û, µ̂u, n̂) ∈ Pdisc
0 (Th)× Pcont

1 (Th)× Pdisc
0 (Th),

there is a unique solution (u, µu, n) ∈ Pdisc
0 (Th) × Pcont

1 (Th) × Pdisc
0 (Th). Therefore, the operator T is

well defined.

Now we will prove that T is under the hypotheses of the Leray-Schauder fixed-point theorem

2.3.6.

First, we check that T is continuous. Let {(ûj , µ̂uj , n̂j)}j∈N ⊂ Pdisc
0 (Th)×Pcont

1 (Th)×Pdisc
0 (Th)

be a sequence such that limj→∞(ûj , µ̂uj , n̂j) = (û, µ̂u, n̂). Taking into account that all norms are

equivalent in Pdisc
0 (Th) since it is a finite-dimensional space, the convergences ûj → û and n̂j → n̂
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are equivalent to the convergences elementwise (ûj)K → n̂K and (n̂j)K → n̂K for every K ∈ Th

(this may be seen, for instance, by using the norm ∥ · ∥L∞(Ω)). Moreover, since Π0 is continuous and

Π0µ̂u ∈ Pdisc
0 (Th), the convergence Π0µ̂uj → Π0µ̂u is also equivalent to the convergence elementwise

(Π0µ̂uj )K → (Π0µ̂u)K for every K ∈ Th. Finally, taking limits when j → ∞ in (5.27) (with û :=

ûj , µ̂u := µ̂uj , n̂ := n̂j and (uj , µuj , nj) := T (ûj , µ̂uj , n̂j)), and using the notion of convergence

elementwise, we get that

lim
j→∞

T (ûj , µ̂j , n̂j) = T (û, µ̂, n̂) = T

(
lim
j→∞

(ûj , µ̂j , n̂j)

)
,

hence T is continuous. Therefore, T is also compact since Pdisc
0 (Th) and Pcont

1 (Th) have finite dimension.

Finally, let us prove that the set

B = {(u, µu, n) ∈ Pdisc
0 × Pcont

1 × Pdisc
0 : (u, µu, n) = αT (u, µu, n) for some 0 ≤ α ≤ 1}

is bounded (independent of α). The case α = 0 is trivial so we will assume that α ∈ (0, 1].

If (u, µu, n) ∈ B, then (u, µu, n) ∈ Pdisc
0 (Th)× Pcont

1 (Th)× Pdisc
0 (Th) is the solution of

1

∆t
(u− αzu, u) = −αCu a

upw
h (Π0µu;M(u), u)

+ α δP0 (P (u, n)(µn −Π0µu)⊕, u) , ∀u ∈ Pdisc
0 (Th), (5.29)

(µu, µu)h = ε2
(
∇Πh

1u,∇µu
)
+
(
f(Πh

1u,Π
h
1zu), µu

)
− χ0 (n, µu) , ∀µu ∈ Pcont

1 (Th), (5.30)

1

∆t
(n− αzn, n) = −αCn a

upw
h (µn;M(n), n)

− α δP0 (P (u, n)(µn −Π0µu)⊕, n) , ∀n ∈ Pdisc
0 (Th) (5.31)

where

µn =
1

δ
n− χ0Π0(Π

1
hzu). (5.32)

Now, testing (5.29) by u = 1 and (5.31) by n = 1, we obtain

∫
Ω
(u+ n) = α

∫
Ω
(zu + zn).
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Moreover, since 0 ≤ zu, zn ≤ 1, it can be proved that 0 ≤ u, n ≤ 1 using the same arguments than in

Theorem 5.4.9. Therefore, we arrive at

∥u∥L1(Ω) + ∥n∥L1(Ω) ≤ ∥zu∥L1(Ω) + ∥zn∥L1(Ω).

Hence, using properties of Πh
1u ∈ Pcont

1 (Th), since 0 ≤ u ≤ 1 then 0 ≤ Πh
1u ≤ 1, and

∥Πh
1u∥L1(Ω) = ∥u∥L1(Ω) ≤ ∥zu∥L1(Ω) + ∥zn∥L1(Ω).

Now, we will check that µu is bounded. Testing (5.30) with µu = µu we obtain that

∥µu∥2L2(Ω) ≤ ε2∥Πh
1u∥H1(Ω)∥µu∥H1(Ω) + ∥f(Πh

1u,Π
h
1zu)∥L2(Ω)∥µu∥L2(Ω) + ∥n∥L2(Ω)∥µu∥L2(Ω).

The norms are equivalent in the finite-dimensional space Pcont
1 (Th), therefore, there are K1,K2 ≥ 0 such

that

∥µu∥L2(Ω) ≤ ε2K1∥Πh
1u∥L1(Ω) + ∥f(Πh

1u,Π
h
1zu)∥L2(Ω) +K2∥n∥L1(Ω).

Consequently, since ∥f(Πh
1u,Π

h
1zu)∥L2(Ω) is bounded due to 0 ≤ Πh

1u,Π
h
1zu ≤ 1 and ∥Πh

1u∥L1(Ω) and

∥n∥L1(Ω) are also bounded, we conclude that ∥µu∥L2(Ω) is bounded.

Since Pdisc
0 (Th) and Pcont

1 (Th) are finite-dimensional spaces where all the norms are equivalent,

we have proved that B is bounded.

Thus, using the Leray-Schauder fixed point theorem 2.3.6, there is a solution (u, µu, n) of the

scheme (5.17).

5.5 Numerical experiments

Now, we will present several numerical experiments that match the results presented in the

previous section. We assume that Ω = [−10, 10]2, ε = 0.1, δ = 0.01 and we consider the mesh is shown

in Figure 5.1 which satisfies the Hypothesis 3.4.1. The nonlinear coupled scheme (5.17) is approximated

by Newton’s method.

These results have been computed using the Python interface of the library FEniCSx, [13, 166,

167], and the figures have been plotted using PyVista, [175].
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Figure 5.1 Mesh used for domain discretization

Notice that, as mentioned in Section 5.4.2, Πh
1u

m is considered the approximation of the phase-

field variable u by the scheme (5.17). Therefore, all the results shown in this section correspond with this

approximation. On the other hand, although nm is taken as the approximation of the nutrients variable n,

for the ease of visualization, Πh
1n

m has been plotted in Figures 5.2, 5.3, 5.4, 5.8 and 5.9.

5.5.1 Three tumors aggregation

We define the following initial conditions which are of the same type than those in [190]:

u0 =
1

2

[
tanh

(
1−

√
(x− 2)2 + (y − 2)2√

2ε

)
+ tanh

(
1−

√
(x− 3)2 + (y + 5)2√

2ε

)

+tanh

(
1.73−

√
(x+ 1.5)2 + (y + 1.5)2√

2ε

)
+ 3

]
,

n0 = 1.0− u0.

These initial conditions are shown in Figure 5.2. As one may observe, we assume that, at the beginning,

the nutrients are fully consumed in the area occupied by the initial tumor.

Moreover, we set Cu = 100, Cn = 100 · 10−4, P0 = 125 h ≈ 0.14 and we use the following

symmetric mobility and proliferation functions:

M(v) = h1,1(v), P (u, n) = h1,1(u)n⊕. (5.33)

We are going to compare the upwind DG scheme (5.17) and the Pcont
1 (Th)-FE approximation of the time

discrete scheme (5.12). We consider two different cases: χ0 = 0 and χ0 = 10, i.e. without and with

cross-diffusion, respectively.

120



u0 n0

Figure 5.2 Initial conditions for test 5.5.1 (u0 left, n0 right)

On the one hand, the experiment without cross-diffusion (χ0 = 0 and ∆t = 10−5) is plotted

in Figure 5.3. As one may notice, both schemes provide a similar approximation. The approximations

preserve, approximately in the case of FE, the pointwise bounds of the variables u and n and the energy

stability, see Figures 5.5 and 5.7 (left).

On the other hand, the test with cross-diffusion (χ0 = 10 and ∆t = 5 · 10−6) is plotted in

Figures 5.4. In this case, one may notice that, while DG scheme provides a good approximation of the

solution, FE solution shows a lot of spurious oscillations. These numerical instabilities lead to a loss

of the maximum principle while it is preserved by the DG scheme, see Figure 5.6. In both cases, the

schemes preserve the energy stability of the model as expected, see Figure 5.7 (right).

Furthermore, it is remarkable to emphasize that the convergence of Newton’s method for the FE

scheme requires a very small time step. In this sense, the previous tests where shown for a small enough

time step so that Newton’s method converges for both schemes. Conversely, the upwind DG scheme

(5.17) does converge for larger time steps. In practice, we have been able to compute the approximation

given by the DG scheme for this test with time steps up to ∆t = 10−4.

5.5.2 Irregular tumor growth

In this test, we show the irregular growth of a tumor due to the irregular distribution of the

nutrients over the domain. It is important to notice the well behavior of the scheme (5.17) which allow us

to capture different irregular growth processes even in the cases with important cross-diffusion in which

we cannot expect FE to work as shown in Section 5.5.1.
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t = 2.5 · 10−2 t = 5.0 · 10−2 t = 7.5 · 10−2

u

D
G

FE

n

D
G

FE

Figure 5.3 Tumor and nutrients for test (5.5.1) with χ0 = 0 at different time steps
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t = 7.5 · 10−3 t = 1.5 · 10−2 t = 4 · 10−2

u

D
G

FE

n

D
G

FE

Figure 5.4 Tumor and nutrients for test (5.5.1) with χ0 = 10 at different time steps
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u n

Figure 5.5 Pointwise bounds of the approximations for test 5.5.1 with χ0 = 0 (u left, n right)

u n

Figure 5.6 Pointwise bounds of the approximations for test 5.5.1 with χ0 = 10 (u left, n right)

Energy

Figure 5.7 E(Πh
1u

m, nm) for test 5.5.1 with χ0 = 0 (left) and with χ0 = 10 (right)
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In particular, we consider the following initial conditions for tumor cells and nutrients:

u0 =
1

2

[
tanh

(
1.75−

√
x2 + y2√
2ε

)
+ 1

]
,

n0 =
1

2
(1− u0) +

1

4

[
tanh

(
1−

√
(x− 2.45)2 + (y − 1.45)2√

2ε

)

+tanh

(
1.75−

√
(x+ 3.75)2 + (y − 1)2√

2ε

)
+ tanh

(
2.5−

√
x2 + (y + 5)2√

2ε

)
+ 3

]
,

which are shown in Figure 5.8.

u0 n0

Figure 5.8 Initial conditions for test 5.5.2 (u0 left, n0 right)

We represent the behavior of the solution of the model under different set of parameters, see

Figures 5.9–5.15. We set Cu = 2.8, Cn = 2.8 · 10−4, h ≈ 0.28 for every experiment and we vary the

rest of the parameters with respect to the reference test in Figure 5.9 (P0 = 0.5, χ0 = 0.1 and ∆t = 0.1).

For the sake of brevity, we only show the nutrients variable for the reference test.

In fact, we have considered two different types of mobility and proliferation functions. On

the one hand, the typical symmetric functions used in the previous experiment (5.33) have been used

(see the top rows of Figures 5.9–5.15). However, on the other hand, we have considered the following

non-symmetric choice of the mobility and proliferation functions

M(v) = h5,1(v), P (u, n) = h1,3(u)n⊕, (5.34)

whose associated results are plotted in the bottom row of Figures 5.9–5.15.
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The proliferation function in (5.34) has been chosen to model a very quick tumor growth and

nutrient consumption at the non-saturated state (u ≃ 0) that decays until the tumor is fully saturated

(u ≃ 1). Moreover, the choice of the mobility function in (5.34) is thought to prevent the dissemination

of the tumor and the nutrients in a non-saturated state (u, n ≃ 0) leading to a more local tumor/nutrient

interaction due to the proliferation term.

Of course, the choice of these functions does not limit to those in (5.34) and other degenerated

mobility and proliferation functions can be considered. In this sense, we would like to emphasize that

the choice of these functions may be motivated by different types of tumor which might show particular

growth and interaction with nutrients behaviors.

Indeed, we can observe the different expected behaviors of the solution for both choices of

mobilities and proliferation functions in Figures 5.9–5.15. On the one hand, we may notice a local growth

of the tumor where a proliferation area appears around the fully saturated tumor due to (5.34). Conversely,

we can observe an eventual dissemination of the tumor all over the domain using (5.33) in the cases

where the proliferation term is more significant than the cross-diffusion allowing the tumor to grow by

consuming nutrients.
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Figure 5.9 Tumor and nutrients for test (5.5.2) (P0 = 0.5, χ0 = 0.1, ∆t = 0.1) at different time steps
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Figure 5.10 Tumor for test (5.5.2) (P0 = 0.001, χ0 = 0.1, ∆t = 0.1) at different time steps
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Figure 5.11 Tumor for test (5.5.2) (P0 = 0.05, χ0 = 0.1, ∆t = 0.1) at different time steps
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Figure 5.12 Tumor for test (5.5.2) (P0 = 2, χ0 = 0.1, ∆t = 0.025) at different time steps
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Figure 5.13 Tumor for test (5.5.2) (P0 = 0.5, χ0 = 0.01, ∆t = 0.1) at different time steps
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Figure 5.14 Tumor for test (5.5.2) (P0 = 0.5, χ0 = 0.5, ∆t = 0.01) at different time steps
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Figure 5.15 Tumor for test (5.5.2) (P0 = 0.5, χ0 = 1, ∆t = 0.01) at different time steps
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CHAPTER 6

PROPERTY-PRESERVING NUMERICAL APPROXIMATIONS OF A

CAHN–HILLIARD–NAVIER–STOKES MODEL WITH VARIABLE DENSITIES AND

DEGENERATE MOBILITY

6.1 Abstract

In this chapter, we present a new computational framework using coupled and decoupled approx-

imations for a Cahn–Hilliard–Navier–Stokes model with variable densities and degenerate mobility. In

this sense, the coupled approximation is shown to conserve the mass of the fluid, preserve the pointwise

bounds of the density and decrease an energy functional. In contrast, the decoupled scheme is presented

as a more computationally efficient alternative but the discrete energy-decreasing property can not be

assured. Both schemes are based on a finite element approximation for the Navier–Stokes fluid flow with

discontinuous pressure and an upwind discontinuous Galerkin scheme for the Cahn–Hilliard part. Finally,

several numerical experiments contrasting both approaches are conducted. In particular, results for a

convergence test, a simple qualitative comparison and some well-known benchmark problems are shown.

The results of this chapter have been already made available online as a preprint in [5].

6.2 Introduction

Hydrodynamics has been considered a research field of increasing interest among the scientific

community during the last few decades. In this sense, diffuse interface models were proposed as a

successful alternative to model fluid-solid interaction after van der Waals introduced the foundations in

the pioneering paper [182]. Afterwards, these ideas were extended to fluid mixture and several works

were published in this regard. In particular, both Hohelberg and Halpering, [115], and Gurtin et al., [110],

arrived by different approaches to the same model, the well-known Model H, which would lead to the

Cahn–Hilliard–Navier–Stokes (CHNS) system.

Since then, many different CHNS models have been developed using different techniques and

extended to the case of fluids with different densities, see the model by Boyer [32] or by Ding et al. [65].
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Moreover, several of these recent models satisfy some laws of thermodynamics. This is the case for

the model by Lowengrub and Truskinovsky, [144], or the one by Abels et al., [1], which introduces an

extra convective term in the momentum equation due to the different densities of the fluids. In [128]

a careful revision of several CHNS models and their applications is provided. Also, recently, a very

interesting survey has been published, [179], in which the authors, Eikelder et al., discuss different

existing well-known CHNS models analyzing their advantages and disadvantages from a physical point

of view. In fact, the authors of [179] provide some notions on properties a CHNS model has to satisfy in

order to be physically consistent.

One characteristic that many of these models share is that the density of the mixture is usually

interpolated as a linear function of the phase-field function. Hence, ensuring the pointwise bounds for

this phase-field function in the Cahn-Hilliard equation, for instance, by using a degenerate mobility (see

Chapter 2) is crucial to ensure a physically consistent model. Also, CHNS models conserve the total

mass of the fluid and, as mentioned above, they tend to be thermodynamically consistent in the sense that

the solutions of these models usually minimize an underlying energy law. Therefore, as these properties

are extremely important for the physical meaning of the models it is likewise important to preserve them

when approximating their solutions.

However, the transport of the diffuse interface by the velocity of the fluid is typically modeled

by means of a convective term that is introduced into the Cahn-Hilliard equation and, as shown in

Section 2.5, this term may lead to numerical instabilities in highly convective regimes if it is not treated

carefully. The instabilities result in nonphysical spurious oscillations that make the approximation of

the phase-field variable lose the pointwise bounds. In this regard, removing the numerical instabilities

in the case of the convective Cahn-Hilliard model has been an object of study in recent works such as

[81] or in Section 2.4.2, where we enforce the pointwise bounds by means of a discontinuous Galerkin

(DG) upwind technique. Different ideas such as the use of limiters have been used in the case of the

CHNS systems. For instance, in [140], the authors developed, by means of flux and slope limiters, a

bound-preserving decoupled approximation of a CHNS simplified system with constant mobility. Later,

the same model was approximated by high order polynomials using a decoupled scheme and a convex

optimization technique with a scaling limiter to ensure the pointwise bounds, see [139].

In addition, designing an approximation that satisfies a discrete version of the continuous energy

in the diffuse-interface models is not straightforward and usually requires the use of specific time-discrete
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approximations such as the standard convex-splitting technique, [77], or the more recently developed

SAV approach, [169]. In this sense, several advancements have been made towards the approximation of

the CHNS models preserving the energy-stability constraint. For instance, we can find the work [107]

where the authors propose an approximation of the model in [1] that decouples the phase-field equations

from the fluid equations through a modified velocity. This approach was further studied in [100] and

extended to a fully decoupled approximation that uses a pressure correction approach, [170].

Nevertheless, although it has been achieved in the case of a CHNS with a Flory-Huggins

logarithmic potential (see [40]), to our best knowledge there is no published work on an approximation of

a CHNS model with a Ginzburg-Landau polynomial potential and degenerate mobility that ensures both

the mass-conservation, pointwise bounds and energy-stability properties.

To address this challenge, in this work, we provide an upwind DG approximation of the model by

Abels et al. [1] where all the mass-conservation, the pointwise bounds and the energy-stability properties

are preserved. Moreover, using similar ideas, a decoupled approximation of this model is developed. This

decoupled approximation lacks the energy-stability property but is much more computationally efficient

than the coupled counterpart.

Firstly, in Section 6.3 we introduce the CHNS model that we are going to consider and we

present its properties. Then, in Section 6.4 we develop the coupled structure-preserving approximation

of the aforementioned model, showing that it satisfies all the mass-conservation, pointwise bounds

and energy-stability properties. On the other hand, in Section 6.5 we introduce the decoupled scheme

as a computationally efficient alternative of the coupled counterpart showing that it satisfies both the

mass-conservation and the pointwise bounds properties. Finally, in Section 6.6 we conduct several

numerical experiments in which we compare both the coupled and the decoupled approaches. First, we

compute a preliminary accuracy test in Section 6.6.1 that suggests that both schemes may have similar

convergence order for all the variables in both L2(Ω) and H1(Ω) norms. Then, we provide a simple test

where two bubbles are mixed in Section 6.6.2 to qualitatively compare both approaches. The results

are in accordance with the previous theoretical analysis. Also, this test provides an example where

the decoupled scheme becomes completely unstable due to the lack of the energy-stability property

whereas the coupled counterpart provides a much more trustworthy, energy-decreasing solution. Finally,

in Sections 6.6.3 and 6.6.4 we couple the CHNS system with a term modeling the action of gravitational
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forces and conduct two benchmark tests: a heavier bubble in a lighter medium and the Rayleigh-Taylor

instability.

The results of this chapter have been already made available online as a preprint in [5].

6.3 Cahn–Hilliard–Navier–Stokes model

We consider a mixture of two fluids with different densities 0 < ρ1 < ρ2 and introduce a phase-

field function ϕ = ϕ(t, x) ∈ [−1, 1] such that ϕ = −1 corresponds with fluid of density ρ1, ϕ = 1 with

fluid of density ρ2 and ϕ ∈ (−1, 1) in the interface between the two fluids. Then, the diffuse-interface

Cahn–Hilliard–Navier–Stokes model proposed by Abels et al. in [1] and further numerically studied in

[100, 107, 170], can be written as follows:

ρ(ϕ)ut + ((ρ(ϕ)u− J) · ∇)u−∇ · (2η(ϕ)Du) +∇p+ ϕ∇µ = 0 in Ω× (0, T ), (6.1a)

∇ · u = 0 in Ω× (0, T ), (6.1b)

ϕt +∇ · (ϕu)−∇ · (M(ϕ)∇µ) = 0 in Ω× (0, T ), (6.1c)

−λε∆ϕ+
λ

ε
f(ϕ) = µ in Ω× (0, T ), (6.1d)

u(0) = u0, ϕ(0) = ϕ0 in Ω, (6.1e)

u = 0, ∇ϕ · n = 0, M(ϕ)∇µ · n = 0 on ∂Ω. (6.1f)

Here, u and p are the mean velocity and the pressure of the fluid respectively, and µ is the chemical

potential related to the phase-field function ϕ. Also, Du = 1
2(∇u+∇ut) is the strain tensor, f(ϕ) is

the derivative of the Ginzburg-Landau double well potential F (ϕ) = 1
4(ϕ

2 − 1)2, i.e. f(ϕ) = F ′(ϕ) =

(ϕ2 − 1)ϕ, M(ϕ) = (1− ϕ2)⊕ is the degenerate (truncated) mobility function and

J =
ρ2 − ρ1

2
M(ϕ)∇µ

is the extra-convective term due to different densities. Moreover, the density of the mixture ρ = ρ(ϕ)

depending on the phase-field variable ϕ, can be defined either as the solution of the mass balance equation

(∂tρ, ρ)− (ρu− J ,∇ρ) = 0, ∀ρ ∈ H1(Ω), in (0, T ), (6.2)
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or, by taking into account the equation (6.1c), as the explicit relation

ρ(ϕ) =
ρ1 + ρ2

2
+
ρ2 − ρ1

2
ϕ := ρavg + ρdifϕ. (6.3)

Remark 6.3.1. We have written the equation (6.2) in its more general variational formulation since

J does not necessarily belong to H1(Ω)d. It is clear from (6.3) that ρ1 ≤ ρ(ϕ) ≤ ρ2 in Ω × (0, T )

is equivalent to −1 ≤ ϕ ≤ 1 in Ω × (0, T ). Consequently, it is important the constraint ϕ ∈ [−1, 1]

to preserve the physical meaning of the model because the density of the mixture ρ(ϕ) must satisfy

ρ(ϕ) ∈ [ρ1, ρ2].

Finally, η ∈ C([−1, 1]) with η(ϕ) ≥ C for certain C > 0 and for all ϕ ∈ [−1, 1] is the viscosity

of the mixture, λ > 0 is a constant related to the energy density and ε > 0 is a small parameter related to

the thickness of the interface between the two fluids.

Since if p is a pressure function solution of (6.1) then p+ C is also solution for any constant C,

it is usual to consider the zero mean-value pressure constraint
∫
Ω p = 0.

We can consider the following variational formulation of problem (6.1): Find (u, p, ϕ, µ)

such that u ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;H1
0 (Ω)

d), p ∈ W−1,∞(0, T ;L2(Ω)) with
∫
Ω p = 0,

ϕ ∈ L∞(0, T ;H1(Ω)) with −1 ≤ ϕ ≤ 1 a.e. in Ω × (0, T ), µ : Ω × (0, T ) → R with
√
M(ϕ)∇µ ∈

L2(0, T ;L2(Ω)), satisfying

⟨ρ(ϕ)ut,u⟩+ ([(ρ(ϕ)u− ρdifM(ϕ)∇µ) · ∇]u,u)

+2 (η(ϕ)Du,Du)− (p,∇ · u)− (µ,∇ · (ϕu)) = 0, (6.4a)

(∇ · u, p) = 0, (6.4b)

⟨ϕt, ϕ⟩+
(
∇ · (ϕu), ϕ

)
+
(
M(ϕ)∇µ,∇ϕ

)
= 0, (6.4c)

λε (∇ϕ,∇µ) + λ

ε
(f(ϕ), µ)− (µ, µ) = 0, (6.4d)

for each (u, p, µ, ϕ) ∈ (H1
0 (Ω) ∩ L∞(Ω))d × L2(Ω)×H1(Ω)×H1(Ω). Above,

(η(ϕ)Du,Du) =

∫
Ω
η(ϕ)Du : Du,

where : denotes the Frobenius inner product.
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Proposition 6.3.2. The mass of the phase-field variable is conserved, because it holds

d

dt

∫
Ω
ϕ(t, x)dx = 0.

In particular, the mass of the fluid is conserved, because using (6.3),

∫
Ω
ρ(ϕ(t, x))dx = |Ω|ρavg + ρdif

∫
Ω
ϕ(t, x)dx = |Ω|ρavg + ρdif

∫
Ω
ϕ0(x)dx =

∫
Ω
ρ(ϕ0(x))dx.

Proof. Just test (6.4c) by ϕ = 1.

Proposition 6.3.3. Assuming a sufficiently regular solution of (6.4a)-(6.4d), the following energy law

holds:
d

dt
E(u, ϕ) + 2

∫
Ω
η(ϕ)|Du|2 +

∫
Ω
M(ϕ)|∇µ|2 = 0, (6.5)

where |Du|2 =
∑d

i=1 |Dui|2, with Dui denoting the i-th row of the stress tensor Du, and

E(u, ϕ) :=

∫
Ω
ρ(ϕ)

|u|2

2
+
λε

2

∫
Ω
|∇ϕ|2 + λ

ε

∫
Ω
F (ϕ), (6.6)

where the first term is associated to the kinetic energy and the others to the potential energy. In particular,

the energy E(u, ϕ) is time decreasing because

d

dt
E(u, ϕ) ≤ 0.

Proof. We argue formally, by considering that all the functions that appear below are regular enough

so that the expressions are true. Moreover, they are regarded as functions to be evaluated at t ∈ (0, T ),

although, for clarity, we will omit it.

If we test (6.4a)–(6.4d) by u = u, p = p, ϕ = µ and µ = ϕt and we add up the expressions, we

obtain:

(ρ(ϕ)ut,u) + λε (∇ϕ,∇ϕt) +
λ

ε

(
F ′(ϕ), ϕt

)
+ ([(ρ(ϕ)u− J) · ∇]u,u) + 2

∫
Ω
η(ϕ)|Du|2 +

∫
Ω
M(ϕ)|∇µ|2 = 0.
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Now, testing (6.2) by ρ = |u|2/2, we have

(
∂tρ(ϕ),

|u|2

2

)
− ([(ρ(ϕ)u− J) · ∇]u,u) = 0.

By adding the two previous expressions, the convective term ([(ρ(ϕ)u− J) · ∇]u,u) cancels. Hence,

taking into account that

d

dt

∫
Ω
ρ(ϕ)

|u|2

2
= (ρ(ϕ)ut,u) +

(
∂tρ(ϕ),

|u|2

2

)
,

1

2

d

dt

∫
Ω
|∇ϕ|2 = (∇ϕ,∇ϕt) ,

d

dt

∫
Ω
F (ϕ) =

(
F ′(ϕ), ϕt

)
,

we can conclude that the energy law (6.5) holds.

6.4 Coupled structure-preserving scheme

In this section we develop a fully coupled discretization of the model (6.1) that preserves all

properties at the discrete level, including the mass conservation, pointwise bounds of the phase-field and

density of the mixture variables, and the decreasing of the energy (also called energy-stability).

6.4.1 Discrete scheme

Following the ideas of Sections 2.4.2, 3.4 and 5.4.2 we define the projections Π0 : L
1(Ω) −→

Pdisc
0 (Th), Π1 : L

1(Ω) −→ Pcont
1 (Th) and Πh

1 : L
1(Ω) −→ Pcont

1 (Th) as follows:

(Π0g, w) = (g, w) , ∀w ∈ Pdisc
0 (Th) (6.7)

(Π1g, v) = (g, v) , ∀ v ∈ Pcont
1 (Th), (6.8)(

Πh
1g, v

)
h
= (g, v) , ∀ v ∈ Pcont

1 (Th), (6.9)

where (·, ·) and (·, ·)h denote the usual scalar product in L2(Ω) and the mass-lumping scalar product in

Pcont
1 (Th), respectively.

137



We propose the following numerical scheme: find um+1 ∈ Uh, pm+1 ∈ Ph with
∫
Ω p

m+1 = 0,

ϕm+1 ∈ Pdisc
0 (Th) and µm+1 ∈ Pcont

1 (Th) such that

(
ρ(Πh

1ϕ
m)δtu

m+1,u
)
+
([(

ρ(Πh
1ϕ

m)um − Jm
h

)
· ∇
]
um+1,u

)
+2
(
η(ϕm)Dum+1,Du

)
−
(
pm+1,∇ · u

)
+ ch(ϕ

m+1,Π0µ
m+1,u)

+s1h(u
m+1,um,Πh

1ϕ
m+1,Πh

1ϕ
m, µm,u) + s2h(u

m+1, ϕm+1,Π0µ
m+1,u) = 0, (6.10a)(

∇ · um+1, p
)
= 0, (6.10b)(

δtϕ
m+1, ϕ

)
+ a

upw
h (um+1;ϕm+1, ϕ) + b

upw
h (∇0

nµ
m+1;M(ϕm+1), ϕ) = 0, (6.10c)

λε
(
∇(Πh

1ϕ
m+1),∇µ

)
+
λ

ε

(
f(Πh

1ϕ
m+1,Πh

1ϕ
m), µ

)
−
(
µm+1, µ

)
h
= 0, (6.10d)

for each u ∈ Uh, p ∈ Ph, ϕ ∈ Pdisc
0 (Th), µ ∈ Pcont

1 (Th), where

Jm
h = ρdifM(Πh

1ϕ
m)Π1(∇µm),

and

f(ϕ1, ϕ0) := F ′
i (ϕ1) + F ′

e(ϕ0) with Fi(ϕ) := ϕ2 +
1

4
, Fe(ϕ) :=

1

4
ϕ4 − 3

2
ϕ2 (6.11)

such that F (ϕ) = Fi(ϕ) + Fe(ϕ) is a convex splitting discretization of the Ginzburg-Landau double well

potential F (ϕ) for any ϕ ∈ [−1, 1].

Also, (Uh,Ph) is a compatible “inf-sup” pair of finite-dimensional spaces satisfying that Uh ⊂

(C0(Ω) ∩ H1
0 (Ω))

d and Pdisc
0 (Th) ⊂ Ph. In fact, the restriction Pdisc

0 (Th) ⊂ Ph is needed in order to

guarantee the local incompressibility of um+1 in the following sense:

∑
e∈E i

h

∫
e
(um+1 · ne) [[p]] = 0, ∀ p ∈ Pdisc

0 (Th), (6.12)

which can be derived integrating by parts in (6.10b). This constraint will allow us to preserve the

pointwise bounds of ϕm+1, see Theorem 6.4.5 below. Notice that the discretization of the pressure and

the divergence term (6.10b) is the standard Stokes DG approach [63, 163] for continuous velocity and

discontinuous pressure.

Remark 6.4.1. Some possible choices of compatible spaces (Uh,Ph) are the following (see [31, 74] for

the details):
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• (Uh,Ph) = ((Pcont
2 (Th) ∩H1

0 (Ω))
d,Pdisc

0 (Th)) which is stable for d = 2 but not for d = 3.

• (Uh,Ph) = ((Pbubble
2 (Th) ∩H1

0 (Ω))
d,Pdisc

1 (Th)) which is stable for d = 2, 3 but requires a higher

computational effort. Here, Pbubble
2 (Th) denotes the Pcont

2 (Th) space enriched with a bubble of

order 3.

Notice that, for any choice of this pair (Uh,Ph), the error bounds are expected to be determined

by the lowest accuracy approximation of the phase-field function by Pdisc
0 (Th).

Moreover, ch(ϕ, µ,u) is a centered discretization of the term (ϕ∇µ,u) = − (µ,∇ · (ϕu)) in

(6.4a) defined as

ch(ϕ, µ,u) := −
∫
Ω
∇ · (ϕu)µ−

∑
e∈E i

h

∫
e
(u · ne) {{ϕ}} [[µ]] , (6.13)

where the second term is a consistent stabilization term depending on the jumps of µ on the interior edges

of the mesh Th.

In (6.10c) we have considered two different upwind formulas, the classical upwind

a
upw
h (u;ϕ, ϕ) :=

∑
e∈E i

h,e=K∩L

∫
e
((u · ne)⊕ϕK − (u · ne)⊖ϕL)

[[
ϕ
]]

(6.14)

whose properties were discussed in Section 2.3, and

b
upw
h (∇0

nµ;M(ϕ), ϕ),

which follows the ideas introduced in Sections 3.4 and 5.4.2, and which will be detailed in the Sec-

tion 6.4.1.1.

Finally, we have introduced in (6.10a) two consistent stabilizations terms:

s1h(u1,u0, ϕ1, ϕ0, µ,u) :=
1

2

{
(δtρ(ϕ1),u1 · u)− (ρ(ϕ0)u0 − ρdifM(ϕ0)Π1(∇µ),∇(u1 · u))

}
,

(6.15)

which, following the ideas of [107], can be interpreted as a residual to the equation (6.2); and

s2h(u, ϕ, µ,u) := −1

2

∑
e∈E i

h

∫
e
(u · ne) sign(u · ne) [[ϕ]] [[µ]] , (6.16)
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which is introduced to control the influence of the upwind term a
upw
h (um+1;ϕm+1, ϕ) in (6.10c). This

latter stabilization together with the centered approximation ch(ϕm+1,Π0µ
m+1,u) of the phase-field

force in the momentum equation (6.10a), cancel the effect of the transport of the phase-field function by

the mean velocity um+1 and allow us to obtain a discrete energy inequality, see Lemma 6.4.7 below.

To start the algorithm we take ϕ0 = Π0ϕ0 where ϕ0 is the continuous initial data, which satisfies

ϕ0 ∈ [−1, 1]. Notice that, one also has ϕ0 ∈ [−1, 1].

Remark 6.4.2. Observe that the 0-mean value constraint on the pressure has been removed from the

discrete formulation (6.10). This constraint will be enforced in practice by using an additional penalty

term, see Section 6.6 below.

6.4.1.1 Definition of the upwind form b
upw
h (·; ·, ·)

In order to define the upwind form b
upw
h (·; ·, ·) we follow the ideas of Sections 3.4 and 5.4.2.

First, we split the mobility function M(z) for z ∈ R into its increasing and decreasing parts,

denoted respectively by M↑(z) and M↓(z), as follows:

M↑(z) =

∫ min(z,1)

−1
M ′(s)⊕ds =

∫ min(z,1)

−1
(−2s)⊕ds,

M↓(z) = −
∫ min(z,1)

−1
M ′(s)⊖ds = −

∫ min(z,1)

−1
(−2s)⊖ds

Therefore,

M↑(z) =


M(z) if z ≤ 0

M(0) if z > 0

, M↓(z) =


0 if z ≤ 0

M(z)−M(0) if z > 0

. (6.18)

Notice that M↑(z) +M↓(z) =M(z).
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Following the work in Section 2.4.2, we can define the following upwind form for any ϕ, ϕ ∈

Pdisc
0 (Th) and µ ∈ Pcont

1 (Th):

b
upw
h (−∇nµ;M(ϕ), ϕ) :=∑
e∈E i

h,e=K∩L

∫
e

(
(−∇nµ)⊕(M

↑(ϕK) +M↓(ϕL))⊕ − (−∇nµ)⊖(M
↑(ϕL) +M↓(ϕK))⊕

) [[
ϕ
]]
,

(6.19)

where ∇nµ := {{∇µ}} · ne on every e ∈ Eh.

Nonetheless, if we want to ensure a discrete energy law, as was done in Sections 3.4 and 5.4.2,

we need to assume again Hypothesis 3.4.1.

Under this hypothesis, we can consider the following consistent approximation on every e ∈ E i
h,

as done in Sections 3.4 and 5.4.2:

∇µ · ne ≃
− [[Π0µ]]

De(Th)
:= ∇0

nµ|e, (6.20)

where De(Th) is the distance between the barycenters of the triangles of the mesh Th that share e ∈ E i
h.

Therefore, we can extend the definition of the upwind form (6.19) as follows:

b
upw
h (−∇0

nµ;M(ϕ), ϕ) =
∑

e∈E i
h,e=K∩L

1

De(Th)

∫
e

(
([[Π0µ]])⊕(M

↑(ϕK) +M↓(ϕL))⊕

− ([[Π0µ]])⊖(M
↑(ϕL) +M↓(ϕK))⊕

) [[
ϕ
]]
. (6.21)

This upwind approximation allows us to obtain both a discrete maximum principle and an energy-stability

property as shown in Section 5.4.2 for a tumor model based on the Cahn-Hilliard equation with degenerate

mobility.

Remark 6.4.3. Notice that the upwind bilinear form aupw
h (u;ϕ, ϕ) given in (6.14), can be seen as a

particular case of bupw
h (·; ·, ·) given in (6.19), changing M(ϕ) by ϕ, but now we have not truncated the

transported variable ϕ. In fact, it is not necessary to truncate ϕ in aupw
h (u;ϕ, ϕ) to preserve the pointwise

bounds of ϕ due to the local incompressibility of u (see Chapter 2 for a more detailed explanation).
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6.4.1.2 Properties of the scheme (6.10)

Proposition 6.4.4 (Mass conservation). The mass of the phase-field variable and its regularization are

conserved. In fact, one has

∫
Ω
ϕm+1 =

∫
Ω
ϕm,

∫
Ω
Πh

1ϕ
m+1 =

∫
Ω
Πh

1ϕ
m.

As a consequence, since ρ(ϕ) is linear with respect to ϕ, the mass of the fluid is also conserved,

∫
Ω
ρ(ϕm+1) =

∫
Ω
ρ(ϕm),

∫
Ω
ρ(Πh

1ϕ
m+1) =

∫
Ω
ρ(Πh

1ϕ
m).

Proof. Just need to take ϕ = 1 in (6.10c) and consider the definitions of the regularization Πh
1 given in

(6.9), and the density of the mixture ρ(ϕ) given in (6.3).

Theorem 6.4.5 (pointwise bounds of the phase-field variable). Provided that ϕm ∈ [−1, 1] in Ω, any

solution ϕm+1 of (6.10) and Πh
1ϕ

m+1 satisfy: ϕm+1,Πh
1ϕ

m+1 ∈ [−1, 1] in Ω.

Proof. To prove that ϕm+1 ≥ −1 in Ω we may take the following Pdisc
0 (Th) test function

ϕ
∗
=


(ϕm+1

K∗ + 1)⊖ in K∗

0 out of K∗
,

where K∗ is an element of Th such that ϕm+1
K∗ = minK∈Th ϕ

m+1
K . We denote nK∗ the normal vector

exterior to K∗. Then, since ϕm+1
L ≥ ϕm+1

K∗ we can assure, using the local incompressibility constraint

(6.12), that

a
upw
h (um+1;ϕm+1, ϕ

∗
) =

=
∑
e∈E i

h

∫
e

(
(um+1 · ne)⊕ϕ

m+1
K − (um+1 · ne)⊖ϕ

m+1
L

) [[
ϕ
∗
]]

=
∑

e∈E i
h,e=K∗∩L

∫
e

(
(um+1 · nK∗)⊕ϕ

m+1
K∗ − (um+1 · nK∗)⊖ϕ

m+1
L

)
(ϕm+1

K∗ + 1)⊖

≤
∑

e∈Ei
h,e⊂K∗

∫
e
(um+1 · nK∗)ϕm+1

K∗ (ϕm+1
K∗ + 1)⊖ =

∑
e∈Ei

h

∫
e
(um+1 · ne)

[[
ϕm+1ϕ

∗
]]

= 0.
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On the other hand, using that the positive part is an increasing function and that

M↑(ϕm+1
L ) ≥M↑(ϕm+1

K∗ ) and M↓(ϕm+1
L ) ≤M↓(ϕm+1

K∗ ),

we can obtain (see Theorems 2.4.11 and 5.4.9)

b
upw
h (∇0

nµ
m+1;M(ϕm+1), ϕ

∗
) ≤ 0.

Consequently, |K∗|δtum+1
K∗ (um+1

K∗ + 1)⊖ ≥ 0. Therefore,

0 ≤ |K∗|(δt(ϕm+1
K∗ + 1))(ϕm+1

K∗ + 1)⊖ = −|K∗|
∆t

(
(ϕm+1

K∗ + 1)2⊖ + (ϕmK∗ + 1)(ϕm+1
K∗ + 1)⊖

)
≤ 0,

which implies, since ϕmK∗ ≥ −1, that (ϕm+1
K∗ + 1)⊖ = 0. Hence, ϕm+1 ≥ −1 in Ω.

Similarly, taking the following Pdisc
0 (Th) test function

ϕ
∗
=


(ϕm+1

K∗ − 1)⊕ in K∗

0 out of K∗
,

where K∗ is an element of Th such that ϕm+1
K∗ = maxK∈Th ϕ

m+1
K , we can arrive at ϕm+1 ≤ 1 in Ω.

Finally, Πh
1ϕ

m+1 ∈ [−1, 1] in Ω is a direct consequence of the definition of the projection Πh
1

given in (6.9).

The next Corollary is a direct consequence of the previous result.

Corollary 6.4.6 (pointwise bounds of the fluid density). Provided that ρ(ϕm) ∈ [ρ1, ρ2] in Ω, the density

of the mixture satisfies ρ(ϕm+1), ρ(Πh
1ϕ

m+1) ∈ [ρ1, ρ2] in Ω.

The following Lemma is a technical result that we are going to use when computing the discrete

energy law.

Lemma 6.4.7. The following expression holds

aupw
h (um+1;ϕm+1,Π0µ

m+1) + ch(ϕ
m+1,Π0µ

m+1,um+1) + s2h(u
m+1, ϕm+1,Π0µ

m+1,um+1) = 0.

(6.22)
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Proof. First, notice that we can rewrite the term a
upw
h (um+1;ϕm+1,Π0µ

m+1) as follows

a
upw
h (um+1;ϕm+1,Π0µ

m+1) =
∑
e∈Eh

∫
e
(um+1 · ne)

{{
ϕm+1

}} [[
Π0µ

m+1
]]

+
1

2

∑
e∈E i

h

∫
e
|um+1 · ne|

[[
ϕm+1

]] [[
Π0µ

m+1
]]
.

Then, by definition and due to ϕm+1 ∈ Pdisc
0 (Th),

ch(ϕ
m+1,Π0µ

m+1,um+1) = −
∫
Ω
(∇ · um+1)ϕm+1Π0µ

m+1

−
∑
e∈Eh

∫
e
(um+1 · ne)

{{
ϕm+1

}} [[
Π0µ

m+1
]]
,

s2h(u
m+1, ϕm+1,Π0µ

m+1,um+1) = −1

2

∑
e∈E i

h

∫
e
|um+1 · ne|

[[
ϕm+1

]] [[
Π0µ

m+1
]]
.

Finally, using (6.10b),

ch(ϕ
m+1,Π0µ

m+1,um+1) = −
∑
e∈Eh

∫
e
(um+1 · ne)

{{
ϕm+1

}} [[
Π0µ

m+1
]]
,

what yields (6.22).

Theorem 6.4.8 (Discrete energy law). The following discrete energy law holds:

δtE(um+1,Πh
1ϕ

m+1) + 2
(
η(ϕm+1)Dum+1,Dum+1

)
+ bupw

h (−∇0
nµ

m+1;M(ϕm+1),Π0µ
m+1)

+
∆t

2

∫
Ω
ρ(Πh

1ϕ
m)|δtum+1|2 + ∆tλε

2

∫
Ω
|δt∇Πh

1ϕ
m+1|2

+
λ

ε

∫
Ω

(
f(Πh

1ϕ
m+1,Πh

1ϕ
m)δtΠ

h
1ϕ

m+1 − F (Πh
1ϕ

m+1)
)
= 0, (6.23)

where the energy functional E(u, ϕ) is defined in (6.6).

Proof. First, take u = um+1 and p = pm+1 in (6.10a)–(6.10b). Consider that

(
ρ(Πh

1ϕ
m)δtu

m+1,um+1
)
=

1

2

∫
Ω
ρ(Πh

1ϕ
m)δt|um+1|2 + ∆t

2

∫
Ω
ρ(Πh

1ϕ
m)|δtum+1|2, (6.24)
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and, by definition of s1h(·, ·, ·, ·, ·, ·) given in (6.15),

1

2

∫
Ω
δt

(
ρ(Πh

1ϕ
m+1)

)
|um+1|2 =

([(
ρ(Πh

1ϕ
m)um − Jm

h

)
· ∇
]
um+1,um+1

)
+ s1h(u

m+1,um,Πh
1ϕ

m+1,Πh
1ϕ

m, µm,um+1). (6.25)

Then, using (6.24) and (6.25) we can arrive at the following expression

δt

∫
Ω
ρ(Πh

1ϕ
m+1)

|um+1|2

2
+

∆t

2

∫
Ω
ρ(Πh

1ϕ
m)|δtum+1|2 + 2

(
η(ϕm+1)Dum+1,Dum+1

)
+ ch(ϕ

m+1,Π0µ
m+1,um+1) + s2h(u

m+1, ϕm+1,Π0µ
m+1,um+1) = 0. (6.26)

Now, if we test (6.10c)–(6.10d) with ϕ = Π0µ
m+1 and µ = δtΠ

h
1ϕ

m+1 and we add the resulting

expressions and (6.26), we obtain, using (6.22),

δt

∫
Ω
ρ(Πh

1ϕ
m+1)

|um+1|2

2
+

∆t

2

∫
Ω
ρ(Πh

1ϕ
m)|δtum+1|2 + 2

(
η(ϕm+1)Dum+1,Dum+1

)
+
(
δtϕ

m+1,Π0µ
m+1

)
+ b

upw
h (−∇0

nµ
m+1;M(ϕm+1),Π0µ

m+1) + λε
(
∇Πh

1ϕ
m+1, δt∇Πh

1ϕ
m+1

)
+
λ

ε

(
f(Πh

1ϕ
m+1,Πh

1ϕ
m), δtΠ

h
1ϕ

m+1
)
−
(
µm+1, δtΠ

h
1ϕ

m+1
)
h
= 0.

Finally, the following equalities

(
δtϕ

m+1,Π0µ
m+1

)
=
(
δtϕ

m+1, µm+1
)
=
(
δtΠ

h
1ϕ

m+1, µm+1
)
h
,

λε
(
∇Πh

1ϕ
m+1, δt∇Πh

1ϕ
m+1

)
=
λε

2
δt

∫
Ω
|∇Πh

1ϕ
m+1|2 + ∆tλε

2

∫
Ω
|δt∇Πh

1ϕ
m+1|2,

yield (6.23).

Using the definition of the upwind form b
upw
h (·; ·, ·) and the standard procedure for the convex-

splitting technique (see e.g. [77, 105]), one can show the following Lemma.

Lemma 6.4.9. The following two inequalities hold:

bupw
h (−∇0

nµ
m+1;M(ϕm+1),Π0µ

m+1) ≥ 0, (6.27)∫
Ω

(
f(Πh

1ϕ
m+1,Πh

1ϕ
m)δtΠ

h
1ϕ

m+1 − δtF (Π
h
1ϕ

m+1)
)
≥ 0. (6.28)
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The following result is a direct consequence of Theorem 6.4.8 and Lemma 6.4.9.

Corollary 6.4.10 (Discrete energy stability). The scheme (6.10) satisfies

δtE(um+1,Πh
1ϕ

m+1) + 2
(
η(ϕm+1)Dum+1,Dum+1

)
+ bupw

h (−∇0
nµ

m+1;M(ϕm+1),Π0µ
m+1) ≤ 0.

(6.29)

In particular, scheme (6.10) is unconditionally energy stable, i.e., δtE(um+1,Πh
1ϕ

m+1) ≤ 0.

The scheme (6.10) is nonlinear so we will need to approximate its solution by means of an

iterative procedure such as the nonsmooth Newton’s method (see [49]).

However, the function sign(ϕ) that appears in the stabilization term s2h(·, ·, ·, ·) is not subdifferen-

tiable at ϕ = 0 and, although it is rare in practice that ϕ = 0 holds exactly due to round-off errors, one

might eventually find convergence issues.

In this case, several approaches can be carried out to improve the convergence of the algorithm.

For instance, one may use an iterative procedure that does not rely on the Jacobian of the whole system

such as a fixed point algorithm. Conversely, if we want to use a higher order procedure depending on the

Jacobian like the nonsmooth Newton’s method, one may avoid the use of the sign(·) function regularizing

the term s2h(·, ·, ·, ·) as follows

s2,δh (u, ϕ, µ,u) :=
1

2

∑
e∈E i

h

∫
e
(u · ne)

u · ne

|u · ne|+ δ
[[Π0µ]] [[ϕ]] , (6.30)

for δ > 0 small. This modification preserves the mass conservation and the pointwise bounds but

introduces a modification in the discrete energy law, see Theorem 6.4.11.

The following result can be proved using the same procedure in Theorem 6.4.8 and Corol-

lary 6.4.10.

Theorem 6.4.11. If we regularize the stabilization term s2h(·, ·, ·, ·) in the equation (6.10a), using

s2,δh (·, ·, ·, ·) defined in (6.30) for a certain δ > 0, the following discrete energy law holds:

δtE(um+1,Πh
1ϕ

m+1) + 2
(
η(ϕm+1)Dum+1,Dum+1

)
+ bupw

h (−∇0
nµ

m+1;M(ϕm+1),Π0µ
m+1)

≤ −δ
2

∑
e∈E i

h

∫
e

|um+1 · ne|
|um+1 · ne|+ δ

[[
Π0µ

m+1
]] [[

ϕm+1
]]
. (6.31)
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6.5 Decoupled bound-preserving scheme

Now, we develop a decoupled approximation of the model (6.1) that reduces significantly the

computational effort with respect to the previous coupled approach (6.10), while still preserving the mass

conservation and the pointwise bounds.

Nonetheless, it is not clear whether a discrete energy law directly holds even for the time

semidiscrete scheme (6.32) given below. Hence, we will not focus on the energy stability of the decoupled

fully discrete scheme and we leave this study for a future work.

6.5.1 Time discrete scheme

For clarity in the exposition, we are going to introduce first the time semidiscretization used to

decouple the equations. In particular, we apply a rotational pressure-correction method based on the work

in [140] to decouple the fluid equations.

Consider the following steps:

Step 1: given (ϕm, µm,um, pm) compute vm+1 satisfying

ρ(ϕm)
vm+1 − um

∆t
+ [(ρ(ϕm)vm − ρdifM(ϕm)∇µm) · ∇]vm+1

−2∇ · (η(ϕm)Dvm+1) +∇pm + ϕm∇µm = 0 in Ω, (6.32a)

vm+1 = 0 on ∂Ω. (6.32b)

Step 2: given (ϕm,vm+1) compute τm+1, with
∫
Ω τ

m+1 = 0 and satisfying

−∇ ·
(

1

ρ(ϕm)
∇τm+1

)
= − 1

∆t
∇ · vm+1, in Ω, (6.32c)

∇τm+1 · n = 0, on ∂Ω. (6.32d)

Step 3: given (ϕm, τm+1,vm+1, pm) compute (pm+1,um+1) satisfying

pm+1 = pm + τm+1 − 2η(ϕm)∇ · vm+1, (6.32e)

um+1 = vm+1 − ∆t

ρ(ϕm)
∇τm+1, (6.32f)

where pm+1 is post-processed to ensure the 0-mean constraint.
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Step 4: given (ϕm,um+1), compute (ϕm+1, µm+1) satisfying:

δtϕ
m+1 +∇ · (ϕm+1um+1)−∇ · (M(ϕm+1)∇µm+1) = 0 in Ω, (6.32g)

−λε∆ϕm+1 +
λ

ε
f(ϕm+1, ϕm)− µm+1 = 0 in Ω, (6.32h)

∇ϕm+1 · n =M(ϕm+1)∇µm+1 · n = 0 on ∂Ω, (6.32i)

where f(·, ·) is defined in (6.11).

Notice that this projection method only leads to an inaccurate boundary condition on the velocity

variable um+1 in the tangential direction due to the terms depending on ∇τm+1 in (6.32f), in fact, one

only has the so-called slip boundary condition um+1 · n = 0 on ∂Ω. For further insight on this issue

with projection methods, see, for instance, [101].

6.5.2 Fully discrete scheme

We will use the well known SIP method (see [63, 163]) to discretize the term −∇ · (κ∇τ) in

(6.32c), where κ = κ(x) ∈ L∞(Ω) with κ ≥ C > 0 in Ω, by means of the bilinear form

a
sip,σ
h (κ; τ, τ) :=

∫
Ω
κ∇τ · ∇τ −

∑
e∈E i

h

∫
e
{{κ∇τ}} · ne [[τ ]] +

∑
e∈E i

h

∫
e
{{κ∇τ}} · ne [[τ ]]


+
∑
e∈E i

h

∫
e

σ

|e|
[[τ ]] [[τ ]] , (6.33)

where σ > 0 is a parameter large enough to ensure the coercivity of the bilinear form a
sip,σ
h (κ; ·, ·).

Then, we propose the following decoupled fully discrete scheme based on the previous time-

discrete approach. In order to simplify the notation, we will denote the fully discrete functions the same

way as the time-semidiscrete functions in (6.32).

Step 1: given (ϕm, µm,um, pm) ∈ Pdisc
0 (Th) × Pcont

1 (Th) × Uh × Ph compute vm+1 ∈ Vh

satisfying

(
ρ(ϕm)

vm+1 − um

∆t
,v

)
+
(
[(ρ(ϕm)vm − ρdifM(ϕm)∇µm) · ∇]vm+1,v

)
+
(
2η(ϕm)Dvm+1,Dv

)
− (pm,∇ · v) + (ϕm∇µm,v) = 0, ∀v ∈ Vh, (6.34a)
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with vm+1 = 0 on Eb
h.

Step 2: given (ϕm,vm+1) ∈ Pdisc
0 (Th)× Vh compute τm+1 ∈ Pdisc

1 (Th) satisfying

a
sip,σ
h (1/ρ(ϕm); τm+1, τ) = − 1

∆t

(
∇ · vm+1, τ

)
, ∀τ ∈ Pdisc

1 (Th). (6.34b)

Step 3: given (ϕm, τm+1,vm+1, pm) ∈ Pdisc
0 (Th)× Pdisc

1 (Th)× Vh × Ph compute um+1 ∈ Uh

and pm+1 ∈ Ph as follows

(
pm+1, p

)
= (pm, p) +

(
τm+1, p

)
− 2

(
η(ϕm)∇ · vm+1, p

)
∀p ∈ Ph, (6.34c)

um+1 = vm+1 − ∆t

ρ(ϕm)
∇τm+1. (6.34d)

Step 4: given (ϕm,um+1) ∈ Pdisc
0 (Th) × Uh compute (ϕm+1, µm+1) ∈ Pdisc

0 (Th) × Pcont
1 (Th)

satisfying:

(
δtϕ

m+1, ϕ
)
+ a

upw
h (ũm+1;ϕm+1, ϕ) + b

upw
h (−∇nµ

m+1;M(ϕm+1), ϕ) = 0, ∀ϕ ∈ Pdisc
0 (Th),

(6.34e)

λε
(
∇(Πhϕm+1),∇µ

)
+
λ

ε

(
f(ϕm+1, ϕm), µ

)
−
(
µm+1, µ

)
= 0, ∀µ ∈ Pcont

1 (Th),

(6.34f)

where the velocity ũm+1 in (6.34e) is defined on every e ∈ E i
h as follows

ũm+1
|e · ne :=

{{
um+1

}}
· ne +∆t

σ

|e|
[[
τm+1

]]
, (6.34g)

and then this modified velocity ũm+1 is locally incompressible. Hence, ϕm+1,Πhϕm+1 ∈ [−1, 1] can be

preserved, see Proposition 6.5.3 and Theorem 6.5.5 below. Note that, for every e ∈ E i
h, the stabilization

term ∆t(σ/|e|)
[[
τm+1

]]
is consistent and vanishes as ∆t, h→ 0. The upwind forms aupw

h (u;ϕ, ϕ) and

b
upw
h (−∇nµ;M(ϕ), ϕ) have been already defined in (6.14) and (6.19), respectively.

We have denoted (Vh,Uh,Ph) to any triple of discrete spaces such that Uh = Vh + Pdisc
0 (Th)d

with Vh ⊂ (C0(Ω) ∩H1
0 (Ω))

d.
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In this case, the triple (Vh,Uh,Ph) needs to satisfy Vh ⊂ (C0(Ω)∩H1
0 (Ω))

d in order to strongly

impose the no-slip boundary condition on vm+1 and Uh = Vh+Pdisc
0 (Th), directly derived from equation

(6.34d), to preserve the local incompressibility of the variable um+1 (see Lemma 6.5.2).

Although we do not know if the solution of this decoupled scheme (6.34) satisfies any discrete

energy law, in case that we achieve estimates for the velocity um+1, it is preferable to choose an inf-sup

compatible pair of spaces (Vh,Ph) as was mentioned in Section 6.4. For more information on the inf-sup

condition for projection methods we refer the reader to [101, 102].

Again, as in the fully coupled approximation scheme (6.10), the error bounds are expected to be

determined by the lowest accuracy approximation of the phase-field function given by Pdisc
0 (Th).

To start the algorithm we take again ϕ0 = Π0ϕ0 hence ϕ0 ∈ [−1, 1]. Also, we take u0 as the

projection of u0 on Vh and p0 = 0.

Remark 6.5.1. Notice that in step 4 of (6.34) we do not need to solve any linear system of equations for

um+1. Instead, this function can be directly computed by adjusting the degrees of freedom of the resulting

polynomial on the right hand side of (6.34d). In fact, the computation of um+1 can be avoided, and in

(6.34a) take um = vm −∆t/ρ(ϕm−1)∇τm for m > 1, given for instance τ0 = 0 as initialization.

Since we are not certain about if an energy law can be derived for the solution of the semidiscrete

scheme (6.32), we have omitted in this case the constraints and stabilization terms needed for the fully

coupled scheme (6.10) to be energy-stable. Indeed, we have not used the approximation of the normal

derivative of the chemical potential (6.20) in (6.34e) and, consequently, we can omit Hypothesis 3.4.1 for

the decoupled scheme (6.34). Therefore, the approximation given by the decoupled scheme (6.34) can be

computed in more general meshes than its coupled counterpart (6.10).

Moreover, since only the equation (6.34e) is nonlinear in the decoupled fully discrete scheme

(6.34), we will only need to use an iterative procedure such as Newton’s method to approximate the

solution in Step 1. This improvement reduces significantly the computational cost with respect to the

fully coupled scheme (6.10) which requires an iterative procedure to be carried out for the whole system.

6.5.2.1 Properties of the scheme (6.34)

In this section, we will only show the proof of the local incompressibility of um+1 and we will

just state the other results as they are analogous to the ones in Section 6.4.1.2.
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Lemma 6.5.2 (Approximated local incompressibility). The velocity variable um+1 computed from

(6.34d) is approximately locally incompressible in the following sense:

∑
e∈E i

h

∫
e

{{
um+1

}}
· ne [[φ]] = −∆t

∑
e∈E i

h

∫
e

σ

|e|
[[
τm+1

]]
[[φ]] , ∀φ ∈ Pdisc

0 (Th), (6.35)

where the right hand side of (6.35) tends to 0 as ∆t, h→ 0.

Proof. Let φ ∈ Pdisc
0 (Th). Taking the (broken) divergence of (6.34d) and testing by φ we arrive at

(
∇ · um+1, φ

)
=
(
∇ · vm+1, φ

)
−
(
∇ ·
(

∆t

ρ(ϕm)
∇τm+1

)
, φ

)
. (6.36)

Now, substituting (6.34b) into (6.36),

(
∇ · um+1, φ

)
= −∆t

[
a

sip,σ
h (1/ρ(ϕm); τm+1, φ) +

(
∇ ·
(

1

ρ(ϕm)
∇τm+1

)
, φ

)]
. (6.37)

Since φ is piecewise constant in Th,

a
sip,σ
h (1/ρ(ϕm); τm+1, φ) = −

∑
e∈E i

h

∫
e

{{
(1/ρ(ϕm))∇τm+1

}}
· ne [[φ]] +

∑
e∈E i

h

∫
e

σ

|e|
[[
τm+1

]]
[[φ]] ,

integrating by parts, we obtain

(
∇ ·
(

1

ρ(ϕm)
∇τm+1

)
, φ

)
=
∑
e∈Eh

∫
e

{{
(1/ρ(ϕm))∇τm+1

}}
· ne [[φ]]

+
∑
e∈Eh

∫
e

[[
(1/ρ(ϕm))∇τm+1

]]
· ne {{φ}} .
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Hence, returning to (6.37) and using (6.34d) and that
[[
vm+1

]]
= 0 on Eh due to the choice of Vh, we

have

(
∇ · um+1, φ

)
= −∆t

∑
e∈Eh

∫
e

[[
(1/ρ(ϕm))∇τm+1

]]
· ne {{φ}} −∆t

∑
e∈Eb

h

∫
e
(1/ρ(ϕm))(∇τm+1 · ne)φ

−∆t
∑
e∈E i

h

∫
e

σ

|e|
[[
τm+1

]]
[[φ]]

=
∑
e∈Eh

∫
e

[[
um+1

]]
· ne {{φ}} −∆t

∑
e∈Eb

h

∫
e
(1/ρ(ϕm))(∇τm+1 · ne)φ

−∆t
∑
e∈E i

h

∫
e

σ

|e|
[[
τm+1

]]
[[φ]]

=
∑
e∈Eh

∫
e

[[
um+1

]]
· ne {{φ}}+

∑
e∈Eb

h

(um+1 · ne)φ−∆t
∑
e∈E i

h

∫
e

σ

|e|
[[
τm+1

]]
[[φ]] .

(6.38)

Now, integrate by parts the left-hand side of (6.38),

(
∇ · um+1, φ

)
=
∑
e∈Eh

∫
e

{{
um+1

}}
· ne [[φ]] +

∑
e∈Eh

∫
e

[[
um+1

]]
· ne {{φ}} . (6.39)

Consequently, due to (6.38) and (6.39), we arrive at (6.35).

The following result is a direct consequence of the previous lemma.

Proposition 6.5.3 (Local incompressibility). The modified velocity ũm+1 defined in (6.34g) is locally

incompressible in the sense that

∑
e∈E i

h

∫
e
ũm+1 · ne [[φ]] = 0, ∀φ ∈ Pdisc

0 (Th). (6.40)

Proposition 6.5.4 (Mass conservation). The mass of the phase-field variable and its regularization are

conserved, i.e., ∫
Ω
ϕm+1 =

∫
Ω
ϕm,

∫
Ω
Πh

1ϕ
m+1 =

∫
Ω
Πh

1ϕ
m.

As a consequence, since ρ(ϕ) is linear with respect to ϕ, the mass of the fluid is also conserved,

∫
Ω
ρ(ϕm+1) =

∫
Ω
ρ(ϕm),

∫
Ω
ρ(Πh

1ϕ
m+1) =

∫
Ω
ρ(Πh

1ϕ
m).
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Theorem 6.5.5 (Bounds of the phase-field variable). Provided that ϕm ∈ [−1, 1] in Ω, any solution

ϕm+1 and its Pcont
1 (Th)-regularization Πh

1ϕ
m+1 in (6.34e) satisfy ϕm+1,Πh

1ϕ
m+1 ∈ [−1, 1] in Ω.

Corollary 6.5.6 (Bounds of the fluid density). Provided that ρ(ϕm) ∈ [ρ1, ρ2] in Ω, the density of the

mixture ρ(ϕm+1) or ρ(Πh
1ϕ

m+1) in (6.34) satisfy ρ(ϕm+1), ρ(Πh
1ϕ

m+1) ∈ [ρ1, ρ2] in Ω.

6.6 Numerical experiments

We have carried out the following numerical experiments in the spatial domain Ω = [−0.5, 0.5]2.

Moreover, we have set the following values of the parameters ε = 0.01, λ = 0.01, ρ1 = 1 and ρ2 = 100,

unless otherwise specified. Also, the penalty parameter σ has been chosen as σ = 4 in (6.34), although

other choices might have been possible.

Following the Remark 6.4.1, we have chosen the pair of “inf-sup” stable spaces (Uh,Ph) =

((Pbubble
2 (Th) ∩ H1

0 (Ω))
d,Pdisc

1 (Th)) for the coupled scheme (6.10) and (Vh,Ph) = ((Pbubble
2 (Th) ∩

H1
0 (Ω))

d,Pdisc
1 (Th)) regarding the decoupled approach (6.34), where Uh = (Pbubble

2 (Th) ∩H1
0 (Ω))

d +

Pdisc
0 (Th)d.

To compute the approximations we have used the finite element library FEniCSx (see [13, 166,

167]) coupled with PyVista for the visualization of the results (see [175]).

On the one hand, an iterative Newton solver has been used to approximate the nonlinear problem.

In this sense, the modified stabilization term s2,δh (·, ·, ·, ·) with δ = 10−6 has been used in the coupled

scheme (6.10) to avoid convergence issues.

On the other hand, we have used the default iterative linear solver, GMRES (generalized minimal

residual method), and preconditioner, computed using an incomplete LU factorization (ILU), of PETSc

(see [26, 60]) for solving the resulting linear systems except (6.34a). In the case of (6.34a), this

combination provided some instabilities in several examples. Therefore, we opted for a different approach

and used an LU parallel solver implemented in MUMPS, [16, 17], for (6.34a), which provided much more

accurate results shown in the figures below.

Remark 6.6.1. In the case of the decoupled approach (6.34), enforcing the 0-mean constraint on the

approximation of the potential τ is rather straightforward as the linear Krylov solvers can handle singular

matrices and provide a solution of the linear system. Therefore, we compute a solution of the linear

system and then post-process it so that it satisfies the constraint.
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However, we must be careful when dealing with an ill-posed nonlinear problem if we want

Newton’s method to converge. To overcome this issue in the case of the coupled approximation (6.10),

we have added a penalty term ξ
(
pm+1, p

)
to the LHS of (6.10b) with ξ very small (in practice, we

have chosen ξ = 10−10). In this way, we enforce the 0-mean constraint on the approximation of p and

Newton’s method does converge. In fact, a posteriori, we can check that this additional term has not

severely affected the approximation obtained in two different manners. On the one hand, taking into

account the ∥ · ∥L∞(Ω) of the approximation of p we observe that the term ξp has been at most of order

10−5. On the other hand, the pointwise bounds have been preserved despite the crucial role that the local

incompressibility constraint (6.12) plays in Theorem 6.4.5.

Certainly, many other ways of enforcing the 0-mean pressure constraint in the coupled nonlinear

system can be explored.

In all the figures shown in this section, we plot both the phase field variable (in red/blue) and the

following scaled vector field (in white)

um+1
s =


5·10−2

∥um+1∥L∞(Ω)
um+1, if ∥um+1∥L∞(Ω) ≥ 5 · 10−2,

um+1, otherwise.

6.6.1 Accuracy test

In this case, we define the following initial conditions

ϕ0(x, y) = 2 tanh

(
(0.25−

√
(x− 0.1)2 + (y − 0.1)2)⊕√

2ε

+
(0.15−

√
(x+ 0.15)2 + (y + 0.15)2)⊕√

2ε

)
− 1.0,

u0(x, y) = χ(y(0.16− (x2 + y2))⊕,−x(0.16− (x2 + y2))⊕),

with χ = 1, which are plotted in Figure 6.1.

We conduct a preliminary convergence test in which we compare a reference solution given by

each of the coupled, (6.10), and decoupled, (6.34), approaches in a very refined mesh (h ≈ 7 · 10−3)

with the approximation given by the same approach in a less refined mesh. In this way, with ∆t = 10−5

fixed, we can remove the error introduced by the time discretization in each of the different schemes. In

154



Figure 6.1 Initial condition of tests 6.6.1 and 6.6.2

any case, we would like to emphasize that such a test for these sophisticated schemes involving several

different discrete spaces and projection operators is nontrivial and the results obtained only provide an

estimation of the possible order of convergence of the proposed approximations.

The results of the test at T = 5 · 10−4 are shown in Tables 6.1 and 6.2, where similar orders

of convergence have been achieved for both schemes (6.10) and (6.34). It is worth mentioning that, as

in Section 2.5 for the convective Cahn-Hilliard model, order 2 in ∥ · ∥L2(Ω) and order 1 in ∥ · ∥H1(Ω)

for the approximation of the variable Πh
1ϕ have been approached. On the other hand, order around 2 in

∥ · ∥L2(Ω) has been obtained for the approximations of p and u, the latter probably affected by the order

of convergence in the approximation of Πh
1ϕ. Finally, order around 2 in ∥ · ∥H1(Ω) seems to have been

achieved by the approximation of u.

Table 6.1 Errors and convergence orders at T = 5 · 10−4 in ∥ · ∥L2(Ω)

Variable Scheme
h ≈ 2.36 · 10−2 3h/4 ≈ 1.77 · 10−2 4h/7 ≈ 1.35 · 10−2 h/2 ≈ 1.18 · 10−2

Error Error Order Error Order Error Order

Πh
1ϕ

Coupled 8.48e− 03 5.40e− 03 1.57 3.38e− 03 1.73 2.62e− 03 1.89
Decoupled 8.80e− 03 5.59e− 03 1.58 3.21e− 03 2.05 2.54e− 03 1.74

u
Coupled 5.91e− 04 4.89e− 04 0.66 3.31e− 04 1.44 2.43e− 04 2.30

Decoupled 2.57e− 04 6.98e− 05 4.53 3.09e− 05 3.01 2.46e− 05 1.69

p
Coupled 2.24e− 01 1.14e− 01 2.35 5.47e− 02 2.71 4.37e− 02 1.67

Decoupled 9.26e− 02 1.90e− 02 5.51 1.14e− 02 1.89 8.87e− 03 1.86

6.6.2 Mixing bubbles

For this test we keep the same initial conditions as in the previous test but with χ = 100. Again,

this initial condition can be seen in Figure 6.1.

In Figure 6.2 we have plotted the evolution in time of the approximation obtained using both the

coupled and the decoupled schemes, (6.10) and (6.34), respectively, with h ≈ 1.41 ·10−2 and ∆t = 10−3.
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On the other hand, in Figure 6.3 (left) we can observe how the bounds are preserved as predicted by the

previous analytical results. In addition, in Figure 6.3 (right) one may observe how the energy decreases

both using the coupled approximation, as predicted by the theory above, and the decoupled approximation.

In this case, the decoupled scheme is around 73% faster than the coupled scheme when run in series

(using 8 threads to solve the linear systems) in the same computer.

Table 6.2 Errors and convergence orders at T = 5 · 10−4 in ∥ · ∥H1(Ω)

Variable Scheme
h ≈ 2.36 · 10−2 3h/4 ≈ 1.77 · 10−2 3h/5 ≈ 1.41 · 10−2 h/2 ≈ 1.18 · 10−2

Error Error Order Error Order Error Order

Πh
1ϕ

Coupled 1.22e+ 00 1.17e+ 00 0.15 9.12e− 01 0.92 8.09e− 01 0.89
Decoupled 1.34e+ 00 1.25e+ 00 0.24 9.43e− 01 1.04 8.31e− 01 0.94

u
Coupled 9.61e− 02 7.98e− 02 0.65 4.90e− 02 1.80 3.75e− 02 1.99

Decoupled 2.06e− 02 8.82e− 03 2.95 4.03e− 03 2.89 3.30e− 03 1.48

t = 2 · 10−2 t = 5 · 10−2 t = 10−1

C
ou

pl
ed

D
ec

ou
pl

ed

Figure 6.2 Evolution of Πhϕ over time in test 6.6.2 (ρ1 = 1, ρ2 = 100)

We would like to highlight that even with this simple test one can find situations where the

discrete energy of the decoupled scheme (6.34) increases exponentially while the approximation becomes

completely unstable. In particular, in the case of two fluids with very different densities, for instance

ρ1 = 1 and ρ2 = 1000, the approximation given by the decoupled scheme is totally nonphysical (see

Figure 6.4) as its energy grows to infinity (see Figure 6.5, left) until the nonlinear solver is not able

to converge to an approximation. Conversely, the energy stability property of the coupled scheme
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Figure 6.3 Left, maximum and minimum of Πhϕ. Right, discrete energy. Test 6.6.2 (ρ1 = 1, ρ2 = 100)

t = 4 · 10−3 t = 5 · 10−3 t = 6 · 10−3

D
ec

ou
pl

ed

Figure 6.4 Evolution of Πhϕ over time in test 6.6.2 for the decoupled scheme (ρ1 = 1, ρ2 = 1000)

Figure 6.5 Left, discrete energy of the decoupled scheme. Right, discrete energy of the coupled scheme.
Test 6.6.2 (ρ1 = 1, ρ2 = 1000)
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(6.10) makes it much more robust and, in this case, this approach is capable of providing a physical

approximation where the energy does decrease over time as predicted by the theoretical results (see

Figure 6.5, right). We omit the figures of the solution given by the coupled scheme as it is barely

distinguishable from those shown in Figure 6.2.

6.6.3 A heavier bubble falling in a lighter medium

Now, we perform a test in which we define the following initial condition: u0 = 0 and

ϕ0(x, y) = tanh

(
0.2−

√
x2 + y2√
2ε

)
,

a bubble of density ρ2 = 100 in a lighter medium of density ρ1 = 1, plotted in Figure 6.6. Moreover, we

have added a term −ρ(ϕ)g on the right-hand side of equation (6.1a) acting as the gravitational forces

pushing the heavier bubble down to the bottom of the domain Ω. In our case, we have chosen g = (0, 1)

and we have treated this term implicitly in (6.10) and explicitly in (6.34).

Figure 6.6 Initial condition of test 6.6.3

In this case, we have shown in Figure 6.7 the evolution in time of the solution using (6.10) and

(6.34) with h ≈ 1.41 · 10−2 and ∆t = 10−4. The result is qualitatively similar to the ones shown in

previous studies such as [107]. Also, the bounds are preserved as shown in Figure 6.8 (left). In this

case, the energy does not necessarily decrease due to the gravitational forces but, as one may observe in

Figure 6.8 (right), the behavior of the energy is similar using both approaches.

We have noticed that the decoupled scheme is around 75% faster than the coupled approach in

this test.
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Figure 6.7 Evolution of Πhϕ over time in test 6.6.3
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Figure 6.8 Left, maximum and minimum of Πhϕ. Right, discrete energy. Test 6.6.3

6.6.4 Rayleigh-Taylor instability

Finally, we carry out the benchmark Rayleigh-Taylor instability test for which we define the

following initial condition: u0 = 0 and

ϕ0(x, y) = tanh

(
y − (0.1 exp(−(x+ 0.2)2/0.1))√

2ε

)
,

plotted in Figure 6.9. Again, we add the gravity term −ρ(ϕ)g with g = (0, 1) in the RHS of equation

(6.1a).

Figure 6.9 Initial condition of test 6.6.4

The evolution in time of the solution using (6.10) and (6.34) with h ≈ 1.41·10−2 and ∆t = 10−4

can be seen in Figure 6.11. Again, despite the difficulty of this test due to the fast dynamics involved,

the results are qualitatively similar to the ones shown in previous works such as [107]. In Figure 6.10

(left) we plot the evolution of the maximum and minimum of the regularized phase-field function, where
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we can observe that the bounds are indeed preserved as predicted by the theory. In addition, one may

observe in Figure 6.10 (right), the behavior of the energy is similar using both approaches.

Figure 6.10 Left, maximum and minimum of Πhϕ. Right, discrete energy. Test 6.6.4

The decoupled scheme is around 39% faster than the coupled scheme in this test.
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Figure 6.11 Evolution of Πhϕ over time in test 6.6.4
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CHAPTER 7

POSSIBLE EXTENSION OF THE STRUCTURE-PRESERVING UPWIND DG SCHEME TO A

CAHN–HILLIARD–DARCY MODEL OF TUMOR GROWTH

7.1 Abstract

In this chapter, we present an ongoing work where we aim to extend the ideas in Chapter 5 to a

diffuse-interface tumor model including the effects of the surrounding fluid on the cells and nutrients. To

this end, in Section 7.3, we develop a particular Cahn–Hilliard–Darcy model from the general framework

proposed in [95] that extends the tumor model shown in Section 5.3 including the nonsymmetric mobility

and proliferation functions. The proposed model is mass-conservative, pointwise-bounded and energy-

stable and seems perfectly suitable to be approximated combining the ideas in Sections 5.4.2 and 6.4.

7.2 Introduction

Diffuse-interface models have recently been appointed as a successful alternative for tumor

growth modeling. In this sense, considerable effort has been made in describing a general framework

for the correct modeling and calibration of the diffuse-interface models of tumor growth, oriented to

their possible physical application, as summarized in [88, 112, 156, 157] and the references therein. So

far, there are several examples of success in this direction as different approaches have been capable of

providing accurate enough results to be compared with real clinical data. Among these celebrated models

we can find the work by Pozzi et al. [160] where a Cahn–Hilliard equation is coupled with a Keller–

Segel system; the works by Agosti et al. [7, 8, 9] where a Cahn-Hilliard equation for the tumor with

nonsymmetric degenerate mobility (as the one shown in Chapter 5) is coupled with a diffusion-reaction

equation for the nutrients; or the works of Lima et al. [137, 138] where phase-field models are compared

against reaction-diffusion models regarding data prediction.

The complexity of these models vary depending on their constitutive assumptions and intrinsic

limitations, but most of them are based on multicomponent mixture theory, where the phase-field variable

is assumed to be a pointwise-bounded tumor volume fraction, and which accounts for the mass, momentum
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and energy balances for each of the constituents. One can trace back these kind of thermodynamically

consistent mixture models to the work of Wise et al., [189] and the references therein. As a consequence

of this pioneering work, many other models have arisen taking into account different kind of processes

and proposing simplifications. For instance, we can find [85] where the model in [189] is extended

to describe angiogenesis and tumor invasion, the work by [113] where the nutrients are included as a

component of the mixture, or the more recent model in [94] where mechanical effects are also taken into

account, just to mention a few.

Among the existing literature, one can find different works which have tried to model the tumor

tissue immersed in a fluid that transports the mixture of cells and nutrients. On the one hand, as initially

proposed in [189], some authors have derived models relying on the Cahn–Hilliard–Darcy equations,

[86, 92, 93, 95], where the tissue is assumed to behave as a porous medium. On the other hand, some

alternatives have arisen for the cases where the tissue cannot be modeled as porous medium, for instance,

a Cahn–Hilliard–Brinkman model [54, 67, 68] and, very recently, a Cahn–Hilliard–Navier–Stokes system

[69]. In this sense, even more general models have been proposed where the previous approaches have

been generalized to satisfy the Darcy–Forchheimer–Brinkman law, [89], or to introduce viscoelastic

effects, [91].

However, increasing the complexity of the model leads to more challenging mathematical

problem. As a consequence, not many works have been able to provide a successful, unconditionally

physically meaningful approximation of these kind of models involving tumor-nutrient interactions and

fluid flows. In this regard, the works [68, 93, 95] propose a finite element bound-preserving discretization

that involves solving a discrete variational inequality following the ideas in [27] whereas [91] introduce

a finite element approximation that mimic some entropies of the model at the discrete level. On the

contrary, in [69], a combination of a suitable phase-field variable transformation, the time-discrete SAV

approach and an upwind finite volume spatial discretization is used to preserve the pointwise bounds and

the energy-stability in their approximations, although a CFL condition that is difficult to check beforehand

is required.

In this chapter, we introduce a possible extension of the results presented in Sections 5.4.2 and

6.4 with the purpose of developing a physically meaningful approximation for a tumor system coupled

with a fluid equation. In this sense, we derive a mass-conservative, pointwise-bounded and energy-stable

Cahn–Hilliard–Darcy model from the more general model introduced by Garcke et al. in [95] under
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certain constitutive assumptions by means of the non-symmetric mobility and proliferation functions

used in Chapter 5 to modify the tumor model in [113]. The resulting model lies in the framework of

the previous tumor model studied in Chapter 5 and the CHNS studied in Chapter 6, hence a successful

approximation using the upwind DG ideas developed throughout this work is likely to be obtained.

7.3 Cahn–Hilliard–Darcy model

In this section we derive a particular continuous Cahn–Hilliard–Darcy model from the general

equations proposed in [95] using the ideas that we presented in Section 5.3 to modify the tumor model

introduced in [113]. Moreover, we present the physical properties of the resulting model.

7.3.1 General model

H. Garcke et al. introduced in [95] the following diffuse interface model of tumor growth:

v = −K(∇p+ u∇µu + n∇∂nN(u, n)) in Ω× (0, T ), (7.1a)

∇ · v = Γv in Ω× (0, T ), (7.1b)

∂tu+∇ · (uv) = ∇ · (Mu∇µu) +
Γu

2
in Ω× (0, T ), (7.1c)

µu = AF ′(u)−B∆u+ ∂uN(u, n) in Ω× (0, T ), (7.1d)

∂tn+∇ · (nv) = ∇ · (Mn∇∂nN(u, n))− S in Ω× (0, T ), (7.1e)

v · n = g on ∂Ω× (0, T ), (7.1f)

∇u · n = (Mu∇µu) · n = 0 on ∂Ω× (0, T ), (7.1g)

(Mn∇∂nN(u, n)) · n = c(n∞ − n) on ∂Ω× (0, T ), (7.1h)

u(0) = u0, n(0) = n0 in Ω, (7.1i)

where a change of variables have been made so that u is a phase-field function whose domain lies in

[0, 1].

Here, v is the volume-averaged velocity; p represents the pressure; u is a phase-field variable

that represents the volume fraction of tumor cells, where the region {x ∈ Ω: u(x) = 1} represents the

unmixed tumor and {x ∈ Ω: u(x) = 0}, the pure healthy cells; n is the concentration of chemicals that

supply nutrients to the tumor; and µu is the chemical potential of u.
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On the other hand, u0, n0 ∈ L2(Ω) are the initial conditions of the tumor and the nutrients and

the boundary condition (7.1h) with c ≥ 0 and the given supply at the boundary n∞ allows the entrance of

nutrients through the boundary. Therefore, if c = 0 we obtain the zero flux boundary condition and as

long as c→ ∞ we approach the Dirichlet boundary condition n = n∞ on ∂Ω.

Moreover, F (u) is the potential of the phase-field equation, typically the Ginzburg-Landau

double well potential, i.e F (u) = 1
4u

2(1 − u)2, although other choices are possible (see [95]). Also,

N(u, n) models the contribution to the energy of the system of the interaction between the tumor tissue

and the nutrients due to different phenomena such as chemotaxis (tumor cells are attracted by nutrients)

or active transport of the nutrients (mechanism by which the nutrients are attracted by the tumors).

The terms Γv and Γu are related to the densities of the healthy and the tumor tissues, ρ1 and ρ2,

respectively, as follows

Γv = ρ−1
1 Γ1 + ρ−1

2 Γ2, Γu = ρ−1
2 Γ2 − ρ−1

1 Γ1.

Here, Γ1 and Γ2 are the source terms of the mass balance equations for each of the components of the

mixture, healthy and tumor cells, respectively. On the other hand, S is a source/sink term for the nutrients.

The density of the mixture ρ satisfies the mass balance equation

∂tρ+∇ · (v − J) = Γ1 + Γ2, (7.2)

where J = ρdifMu∇µu, and it can be explicitly determined as

ρ(u) = ρ1 + (ρ2 − ρ1)u. (7.3)

In addition, K, permeability tensor of the tissue, and A,B are constants with K > 0, A,B ≥ 0.

Notice that the natural Dirichlet boundary condition in the normal direction (7.1f) implies the

compatibility restriction ∫
∂Ω
g =

∫
Ω
Γv, (7.4)

due to (7.10b).
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Remark 7.3.1. Notice that we can regard the equations (7.10a)–(7.10b) as an elliptic problem for the

pressure variable. In fact, if we take the divergence of (7.10a) we obtain, using (7.10b), that

Γv = −K(∆p+∇ · (u∇µu) +∇ · (n∇∂nN(u, n))) in Ω× (0, T ).

7.3.2 Constitutive assumptions

From now on we will make several considerations that will lead us to a generalized version of

the model in Chapter 5. We refer the reader to [95] to explore other possibilities.

First, we assume that the total mass of the mixture may vary depending on the relation between

the densities of each of the states (tumor and healthy cells) as Γ1 = −ρ1
ρ2
Γ, where Γ := Γ2 so that (7.2)

becomes

∂tρ+∇(v − J) =

(
1− ρ1

ρ2

)
Γ,

and the terms Γv and Γu satisfy

Γv = 0, Γu =
2

ρ2
Γ.

Then, following the ideas in Section 5.3, we define the following family of degenerate and

normalized mobilities

M(v) := hp,q(v), (7.5)

for certain p, q ∈ N where

hp,q(v) := Kp,qv
p
⊕(1− v)q⊕ =


Kp,qv

p(1− v)q, v ∈ [0, 1],

0, elsewhere,

with Kp,q > 0 a constant so that maxx∈R hp,q(v) = 1. Although one may consider the tumor mobility as

Mu(u) = hp,q(u) with p, q ∈ N and the nutrients mobility as Mn(n) = hp′,q′(n) with p′, q′ ∈ N and all

the results below equally hold, for simplicity, we will assume that Mu = Mn and denote the mobility

function as M . In addition, we define the proliferation function

P (u, n) := hr,s(u)n⊕, (7.6)
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for certain r, s ∈ N, which depends on both cells and nutrients, and take

S = δP0P (u, n)(µn − µu)⊕, (7.7)

Γ = ρ2S, (7.8)

which leads to Γu = 2S. Following this choice of the mobility and proliferation functions, we restrict

both the variables u and n to interval [0, 1] as they represent the volume fraction of tumors and nutrients,

respectively.

Moreover, following the previous work [113] we take

N(u, n) =
1

2δ
n2 − χ0un

for certain small parameter δ > 0 and χ0 ≥ 0. To abbreviate the notation, we define the nutrients

chemical potential as

µn := ∂nN(u, n) =
1

δ
n− χ0u. (7.9)

As we expect δ to be small, we assume that the active transport of the nutrients towards the tumor is

barely negligible with respect to the diffusion of the nutrients in the medium Ω (see [113] and Section 5.3

for more details).

Finally, with a proper choice of the remaining parameters, we can arrive at the following model,

which is a extension of the work in Chapter 5:

v = −K(∇p+ u∇µu + n∇µn) in Ω× (0, T ), (7.10a)

∇ · v = 0 in Ω× (0, T ), (7.10b)

∂tu+∇ · (uv) = Cu∇ · (M(u)∇µu) + δP0P (u, n)(µn − µu)⊕ in Ω× (0, T ), (7.10c)

µu = F ′(u)− ε2∆u− χ0n in Ω× (0, T ), (7.10d)

∂tn+∇ · (nv) = Cn∇ · (M(n)∇µn)− δP0P (u, n)(µn − µu)⊕ in Ω× (0, T ), (7.10e)

v · n = ∇u · n = (Mn∇µn) · n = (Mu∇µu) · n = 0 on ∂Ω× (0, T ), (7.10f)

u(0) = u0, n(0) = n0 in Ω, (7.10g)
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where u, n ∈ [0, 1] in Ω, u0, n0 ∈ L2(Ω) with u0, n0 ∈ [0, 1] in Ω, µn is defined in (7.9) and all the

parameters above are nonnegative with δ, Cu, Cn,K > 0 and ε, χ0, P0 ≥ 0.

Notice that we have imposed the boundary condition v · n = 0 on ∂Ω in (7.10f) which now

satisfies the compatibility condition (7.4).

Furthermore, the density of the mixture ρ, defined in (7.3), satisfies the equation

∂tρ+∇(v − J) = (ρ2 − ρ1)δP0P (u, n)(µn − µu)⊕, (7.11)

which implies that the variation of mass of the mixture follows

∂t

∫
Ω
ρ =

(
1− ρ1

ρ2

)∫
Ω
Γ = (ρ2 − ρ1)δP0

∫
Ω
P (u, n)(µn − µu)⊕ = (ρ2 − ρ1)∂t

∫
Ω
u.

Therefore, since Γ ≥ 0 if u, n ∈ [0, 1], only the tumor cells proliferate by consuming nutrients, we can

observe that the tissue will gain mass if the density of the tumor cells is bigger than the density of the

healthy cells, ρ1 < ρ2, and will lose mass in the opposite case, ρ1 > ρ2. In the case of matching densities,

ρ1 = ρ2, we assume that the tissue will gain no mass during the process.

7.3.3 Variational formulation and properties

We define the weak formulation of (7.10) as follows: find (v, p, u, µu, n) such that v ∈

L2(0, T ;L2(Ω)d); p ∈ L2(0, T ;H1(Ω)) with
∫
Ω p = 0; u, n ∈ L2(0, T ;H1(Ω)) with 0 ≤ u, n ≤ 1 in

Ω× (0, T ) and ∂tu, ∂tn ∈ L2(0, T ;H1(Ω)′); and µu ∈ L2(0, T ;H1(Ω)); which satisfies the following

variational problem a.e. t ∈ (0, T )

(v,v) = −K ((∇p,v) + (u∇µu + n∇µn,v)) ∀v ∈ L2(Ω)d, (7.12a)

(v,∇p) = 0 ∀p ∈ H1(Ω), (7.12b)

⟨∂tu(t), u⟩ = (uv,∇u)− Cu (M(u(t))∇µu(t),∇u)

+ δP0 (P (u(t), n(t))(µn(t)− µu(t))⊕, u) , ∀u ∈ H1(Ω), (7.12c)

(µu(t), µu) = ε2 (∇u(t),∇µu) +
(
F ′(u(t)), µu

)
− χ0 (n(t), µu) , ∀µu ∈ H1(Ω), (7.12d)

⟨∂tn(t), n⟩ = (nv,∇n)− Cn (M(n(t))∇µn(t),∇n)

− δP0 (P (u(t), n(t))(µn(t)− µu(t))⊕, n) , ∀n ∈ H1(Ω), (7.12e)
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where

µn(t) =
1

δ
n(t)− χ0u(t), (7.13)

u(0) = u0, n(0) = n0 and ⟨·, ·⟩ denotes the dual product over H1(Ω).

For the next results we are going to assume that the solution of (7.12) is regular enough so that

the expressions that appear below hold.

Proposition 7.3.2. Let (v, p, u, µu, n) be a solution of the problem (7.12). Then, this solution conserves

the total mass of tumor cells and nutrients in the sense of

d

dt

∫
Ω
(u(x, t) + n(x, t))dx = 0.

Proof. It is enough to take u = n = 1 in (7.12c) and (7.12e) and add the resulting expressions.

Proposition 7.3.3. Let (v, p, u, µu, n) be a solution of the problem (7.12). Then, it satisfies the following

energy law

dE(u(t), n(t))

dt
+ Cu

∫
Ω
M(u(x, t))|∇µu(x, t)|2dx+ Cn

∫
Ω
M(n(x, t))|∇µn(x, t)|2dx

+ δP0

∫
Ω
P (u(x, t), n(x, t))(µu(x, t)− µn(x, t))

2
⊕dx+

1

K

∫
Ω
|v(x, t)|2dx = 0,

(7.14)

where the energy functional is defined by

E(u, n) :=

∫
Ω

(
ε2

2
|∇u|2 + F (u)− χ0un+

1

2δ
n2
)
. (7.15)

Therefore, the solution is energy stable in the sense

d

dt
E(u(t), n(t)) ≤ 0.
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Proof. Take v = 1
Kv, p = p, u = µu(t), µu = ∂tu(t), n = µn(t) in (7.12a)–(7.12e) and test (7.13)

with ∂tn(t). Adding the resulting expressions we arrive at

0 =ε2 (∇u(t),∇(∂tu(t))) +
(
F ′(u(t)), ∂tu(t)

)
− χ0 [(n(t), ∂tu(t)) + (u(t), ∂tn(t))] +

1

δ
(n(t), ∂tn(t))

+ Cu

∫
Ω
M(u(x, t))|∇µu(x, t)|2dx+ Cn

∫
Ω
M(n(x, t))|∇µn(x, t)|2dx

+ δP0

∫
Ω
P (u(x, t), n(x, t))(µu(x, t)− µn(x, t))⊕(µu(x, t)− µn(x, t))dx+

1

K

∫
Ω
|v(x, t)|2dx.

Therefore, it is straightforward to check that (7.14) holds.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation we have addressed the development of physically meaningful and property-

preserving numerical approximations of diffuse-interface tumor models that can lead to a successful

application of the results in order to predict how tumors behave in real life.

To this purpose, we have divided this goal in several smaller steps in which we have dealt with

more affordable problems that have been introduced in the different chapters of this work. The results

obtained for each of these steps served as the starting point to address more difficult tasks and, ultimately,

to achieve the proposed objective.

First, in Chapter 2 we have addressed the problem of designing a numerical approximation of

the convective Cahn–Hilliard (CCH) equation (2.1) that avoids the nonphysical spurious oscillations

in the convection-dominated regimes. This approximation was based on a piecewise constant upwind

discontinuous Galerkin approach that conserves the mass and preserves the pointwise bounds for the

simple linear transport equation (Sections 2.3.2 and 2.3.3). Then, these ideas were extended to the CCH

equation with degenerate mobility in Section 2.4 and again proved to preserve the pointwise bounds.

Finally, several numerical tests comparing the proposed approximation of the CCH with other approaches

in the literature were presented in Section 2.5 showing the improvements introduced by the new technique.

After, in Chapter 3 we studied the classical Keller–Segel equations for chemotaxis. Using the

ideas in Chapter 2 we were able to develop a numerical approximation of this system rewritten as a

gradient flow problem in Section 3.4 which not only conserves the mass and preserves the positivity but

also guarantees a discrete energy-stability property under certain restriction on the mesh. This scheme was

tested in practice in Section 3.5 in different computationally demanding blow-up and pattern formation

situations where it was shown to be successful in capturing very high peaks involving very steep gradients.

In addition, these ideas were extended to other models related to chemotaxis in Chapter 4, providing really

good numerical results. On the one hand, the results obtained for a generalization of the Keller–Segel

equations in Section 4.3 are in complete accordance with the previously described theoretical analysis
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and, on the other hand, the simulations of a neuroblast migration process shown in Section 4.4 could

be fit using real data so that they are qualitatively and quantitatively comparable to the experimental

results. The latter experience, in collaboration to neuroscientists, is important because it suggests that

more complex models, including our tumor ones, might become a valuable tool for biomedical research

in a not far future.

Then, in Chapter 5 we studied a diffuse-interface tumor model. First, in Section 5.3, we proposed

a modification of an existing model in the literature by means of nonsymmetric degenerate mobility and

proliferation functions that leads to bounded, more physically meaningful solutions. Then, in Section 5.4

we discretized this model using the techniques developed in Chapters 2 and 3 which allowed us to obtain a

mass-conservative, pointwise-bounded and energy-stable numerical approximation of the system. Finally,

we carried out several numerical experiments in Section 5.5 comparing the results with those obtained

using the standard finite element discretization and showing the qualitative behavior of the model under

different choices of mobility and proliferation functions. Among these tests we explored scenarios where

the cross-diffusion is dominant, what would be prohibitive for other more standard approximations as

indicated in Section 5.5.1.

Afterwards, we wanted to address the problem of generalizing the aforementioned tumor model

considering the effects of the flow driven by the fluid that surrounds the tumor tissue. In this regard,

we first analyzed and designed two different numerical schemes of a Cahn–Hilliard–Navier–Stokes

(CHNS) model in Chapter 6, using again the ideas in Chapters 2 and Chapter 3. On the one hand, we

presented a fully-coupled approximation in Section 6.4 that is mass-conservative, pointwise bounded

and energy stable and, on the other hand, we proposed a decoupled approximation in Section 6.5 as a

more computationally-efficient alternative but for which an energy-dissipation property is not known.

These two approaches were compared through different benchmark tests and by means of a preliminary

accuracy test in Section 6.6. Finally, in Chapter 7 we introduced an extension of the tumor model studied

in Chapter 5 where we incorporate the fluid effects by means of a Cahn–Hilliard–Darcy system. The

resulting framework might be seen as to be a natural step where the results derived in Chapters 5 and

6 are likely to be applied to derive a numerical scheme that guarantees mass-conservation, pointwise

bounds and energy-stability properties.

In conclusion, this dissertation presents several advances towards the numerical approximation

of diffuse-interface tumor growth models as well as other closely connected topics. However, the work
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in this field is far from been completed and the natural question that arises is: what comes next? In this

sense, the aforementioned results and discussion motivates the following lines of research that we would

like to address in the near future.

• First, we are currently working on the project presented in Chapter 7, where the ultimate objective

is to propose a structure-preserving approximation of the Cahn–Hilliard–Darcy model (7.10).

Furthermore, we would like to compare the computational results obtained in Section 5.5 for the

model (5.3) with the results for the model (7.10) that incorporates the effects of the fluid flow via

the Darcy system.

• Can the condition (2.17) presented in Section 2.3.2 to ensure uniqueness of solution of the upwind

DG approximation of the linear convection equation (2.16) be weakened? Removing this condition

would mean that one may use the linear scheme (2.16) ensuring a positive approximation. Analo-

gously, uniqueness of solution in the case of the linear scheme (4.6) presented in Section 4.3.3 to

discretize the generalized Keller–Segel models (4.1) or (4.2), would ensure that the approximation

obtained is always positive as observed in the numerical experiments in Section 4.3.4.

• In this work we have addressed the tumor models and related problems mostly from a purely

numerical point of view. However, if we want to explore whether the results obtained can be

applied to describing real phenomena, we need to use data, as it is done in previous works as [7, 8,

9, 137, 138, 160]. Unfortunately, fitting the models and the discrete approximations to real data is

not simple and specifically developed techniques are required in order to obtain good results. In

fact, even obtaining the specific real data needed to adjust the models is rather difficult. In our case,

we have started exploring how to introduce the information obtained from real data, provided by the

group of neuroscientists INIBICA INCO-5, led by Dr. Carmen Castro-González, with which there

is already a strong collaboration, into a more simple chemotaxis model in [6]. However, this is

still an ongoing work to be further studied in another PhD dissertation which is under development

in our group. In this regard, we would like to work closely with the aforementioned group of

neuroscientists in order to explore how real data of glioblastomas, a common type of brain cancer

where they have previous experience (see, e.g. [98]), can be incorporated into the diffuse-interface

tumor models that we have studied. Moreover, we believe that recently developed tools such as

Neural Networks (NNs), see e.g. [99], or, more specifically, Physics Informed Neural Network
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(PINNs), see [59, 162], that we are currently studying, can be of really good help to adjust the

parameters of the models to real data.

• The techniques presented throughout the dissertation are based on a piecewise constant approxima-

tion of the pointwise bounded variable. This approximation plays a a crucial role in the proof of the

pointwise bounds of the approximation. Extending these ideas to higher order approximations and

therefore improving the computational efficiency of the algorithms is one of our next goals. In this

sense, we would like to explore whether the ideas introduced in [196] by X. Zhang and C.-W. Shu

and further developed in [161, 172, 197, 198] and the references therein, where a limiter is used to

reconstruct high-order pointwise bounded approximations from cell-averaged pointwise bounded

approximations under a CFL condition, can be combined with the ideas that we have presented.

• Moreover, in order to ensure the energy stability property we have used an approximation of

the flow using the barycenters of the meshes that satisfy the geometrical constraint given in

Hypothesis 3.4.3. We would like to study if this restriction can be weakened or removed by means

of a more sophisticated approximation of the flow as shown in [63, Section 5.4].

• Regarding the decoupled scheme (6.34) presented in Chapter 6 to approximate the Cahn–Hilliard–

Navier–Stokes model (6.1), we would like to explore whether this approximation can be improved

by ensuring a discrete energy-stability property as it was done with the coupled counterpart (6.10).

In this sense, the decoupled energy-stable schemes for a CHNS model with degenerate mobility

found in the existing literature, such as the ones in [100, 107, 170], impose several restrictions that

make them unlikely to be extended and combined with the ideas presented in this dissertation in

order to preserve the pointwise bounds. Therefore, since we have not found any ideas that could

lead, at least in a straightforward manner, to decoupled, pointwise-bounded and energy-stable

schemes for the CHNS model (6.1), we believe this is a rather challenging task.

8.1 Scientific production directly connected to the dissertation

Finally, we present the publications, preprints and finished works that we have already developed

in relation to this dissertation.

• Published:
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– D. Acosta-Soba, F. Guillén-González, and J. R. Rodrı́guez-Galván. An upwind DG scheme

preserving the maximum principle for the convective Cahn–Hilliard model. Numerical

Algorithms, 92(3):1589–1619, 2022. DOI: 10.1007/s11075-022-01355-2.

JCR category: Mathematics, Applied | Year: 2022 | Rank: 59/267 (Q1)

– D. Acosta-Soba, F. Guillén-González, and J. R. Rodrı́guez-Galván. An Unconditionally

Energy Stable and Positive Upwind DG Scheme for the Keller–Segel Model. Journal of

Scientific Computing, 97(1):18, 2023. DOI: 10.1007/s10915-023-02320-4.

JCR category: Mathematics, Applied | Year: 2022 | Rank: 42/267 (Q1)

– D. Acosta-Soba, F. Guillén-González, and J. R. Rodrı́guez-Galván. A structure-preserving

upwind DG scheme for a degenerate phase-field tumor model. Computers & Mathematics

with Applications, 152:317–333, 2023. DOI: 10.1016/j.camwa.2023.10.028.

JCR category: Mathematics, Applied | Year: 2022 | Rank: 29/267 (Q1)

• Submitted:

– D. Acosta-Soba, F. Guillén-González, J. R. Rodrı́guez-Galván, and J. Wang. Property-

preserving numerical approximations of a Cahn–Hilliard–Navier–Stokes model with variable

densities and degenerate mobility. Submitted, arXiv preprint, 2023. DOI: 10.48550/arXi

v.2310.01522.

• To be submitted:

– D. Acosta-Soba, C. González-Castro, N. Geribaldi-Doldán, F. Guillén-González, P. Núnez-

Abades, N. Ortega-Román, P. Pérez-Garcı́a, and J. R. Rodrı́guez-Galván. Mathematical

Modelling of Neuroblast Migration towards the Olfactory Bulb. To be submitted, arXiv

preprint, 2022. DOI: 10.48550/arXiv.2211.06166.

– T. Li, D. Acosta-Soba, A. Columbu, and G. Viglialoro. Dampening gradient nonlinearities

prevent δ-formations in attraction-repulsion chemotaxis models. To be submitted, 2023.
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CONCLUSIONES Y TRABAJOS FUTUROS

En esta tesis hemos abordado el desarrollo de aproximaciones numéricas fı́sicamente significati-

vas y que preservan las propiedades de los modelos tumorales de interfaz difusa que pueden conducir a

una aplicación exitosa de los resultados para predecir cómo se comportan los tumores en la vida real.

Para ello, hemos dividido este objetivo en varios pasos más pequeños en los que hemos abordado

problemas más asequibles que se han ido introduciendo en los diferentes capı́tulos de este trabajo. Los

resultados obtenidos en cada uno de estos pasos han servido como punto de partida para abordar tareas

más difı́ciles y, en última instancia, para conseguir del objetivo propuesto.

En primer lugar, en el Capı́tulo 2 hemos abordado el problema de diseñar una aproximación

numérica de la ecuación de Cahn–Hilliard con convección (CCH), (2.1), que evite las oscilaciones espurias

no fı́sicas en situaciones de convección dominante. Esta aproximación se basa en una discretización

de la ecuación, más simple, de transporte lineal (Secciones 2.3.2 y 2.3.3) de tipo Galerkin discontinuo

aguas arriba con funciones constantes a trozos que conserva la masa y preserva las cotas puntuales.

A continuación, estas ideas fueron extendidas a la ecuación CCH con movilidad degenerada en la

Sección 2.4 y se demostró de nuevo que se preservan las cotas puntuales. Por último, mostramos varios

experimentos numéricos en la Sección 2.5 en los que se compara la aproximación propuesta de CCH con

otras posibilidades presentes en la literatura poniendo de manifiesto las mejoras introducidas por la nueva

técnica.

Tras esto, en el Capı́tulo 3 estudiamos las ecuaciones clásicas de Keller–Segel para la quimiotaxis.

Utilizando las ideas del Capı́tulo 2 pudimos desarrollar una aproximación numérica de este sistema

reescrito como un problema de flujo gradiente en la Sección 3.4, la cual no sólo conserva la masa y

preserva la positividad, sino que también garantiza una propiedad de estabilidad de energı́a discreta

bajo cierta restricción en la malla. Este esquema se probó en la práctica en la Sección 3.5 en diferentes

situaciones computacionalmente exigentes de explosión y formación de patrones, donde se mostró que

es capaz de capturar de picos muy altos que implican gradientes muy pronunciados. Además, estas

ideas se extendieron a otros modelos relacionados con la quimiotaxis en el Capı́tulo 4, proporcionando
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resultados numéricos realmente buenos. Por un lado, los resultados obtenidos en la Sección 4.3 para

una generalización de las ecuaciones de Keller–Segel están en total consonancia con el análisis teórico

descrito anteriormente y, por otro, las simulaciones de un proceso de migración de neuroblastos mostradas

en la Sección 4.4 pudieron ajustarse utilizando datos reales de forma que sean cualitativa y cuantita-

tivamente comparables a los resultados experimentales. Esta última experiencia, en colaboración con

neurocientı́ficos, es importante porque sugiere que los modelos más complejos, incluidos nuestros mode-

los de tumores, podrı́an convertirse en una herramienta valiosa para la investigación biomédica en un

futuro no muy lejano.

Luego, en el Capı́tulo 5 estudiamos un modelo de tumor con interfaz difusa. En primer lugar, en

la Sección 5.3, proponemos una modificación de un modelo existente en la literatura mediante funciones

de movilidad y proliferación degeneradas y no simétricas que conducen a soluciones acotadas y más

significativas desde el punto de vista fı́sico. Después, en la Sección 5.4 discretizamos este modelo

utilizando las técnicas desarrolladas en los Capı́tulos 2 y 3 que nos permiten obtener una aproximación

numérica del sistema que conserva la masa, está acotada puntualmente y es estable energéticamente.

Finalmente, realizamos varios experimentos numéricos en la Sección 5.5 comparando los resultados con

los obtenidos utilizando la discretización de elementos finitos estándar y mostrando el comportamiento

cualitativo del modelo con diferentes elecciones de funciones de movilidad y proliferación. En estos

tests exploramos escenarios donde la difusión cruzada es dominante, lo que serı́a prohibitivo para otras

aproximaciones más estándar como se indica en la Sección 5.5.1.

Posteriormente, quisimos abordar el problema de generalizar el modelo de tumor anterior

considerando los efectos del flujo impulsado por el fluido que rodea al tejido tumoral. En este sentido,

primero analizamos y diseñamos dos esquemas numéricos diferentes de un modelo Cahn–Hilliard–

Navier–Stokes (CHNS) en el Capı́tulo 6, utilizando de nuevo las ideas de los Capı́tulos 2 y 3. Por un lado

presentamos una aproximación totalmente acoplada en la Sección 6.4 que conserva la masa, está acotada

puntualmente y es estable energéticamente y, por otro lado, propusimos una aproximación desacoplada

en la Sección 6.5 como una alternativa más eficiente desde el punto de vista computacional, pero para

la cual no se conoce una propiedad de disipación de energı́a. Estas dos aproximaciones se comparan

en diferentes tests de referencia y mediante un test preliminar de convergencia en la Sección 6.6. Por

último, en el Capı́tulo 7 presentamos una extensión del modelo de tumor estudiado en el Capı́tulo 5 donde

incorporamos los efectos del fluido mediante un sistema Cahn–Hilliard–Darcy. El problema resultante se

178



puede ver como un paso natural en el que parece que los resultados obtenidos en los Capı́tulos 5 y 6 se

pueden aplicar para desarrollar un esquema numérico que garantice las propiedades de conservación de

la masa, cotas puntuales y estabilidad de energı́a.

En conclusión, esta tesis presenta varios avances en relación a la aproximación numérica de los

modelos de crecimiento tumoral de interfaz difusa, ası́ como en otros temas estrechamente relacionados.

Sin embargo, el trabajo en este campo está lejos de estar concluido y la pregunta natural que surge es:

¿qué viene después? En este sentido, los resultados y la discusión anteriores motivan las siguientes lı́neas

de investigación que nos gustarı́a abordar en un futuro próximo.

• En primer lugar, actualmente estamos trabajando en el proyecto presentado en el Capı́tulo 7,

donde el objetivo final es proponer una aproximación que preserve las propiedades del modelo

de Cahn–Hilliard–Darcy (7.10). Además, nos gustarı́a comparar los resultados computacionales

obtenidos en la Sección 5.5 para el modelo (5.3) con los resultados para el modelo (7.10) que

incorpora los efectos del flujo del fluido a través del sistema de Darcy.

• ¿Puede debilitarse la condición (2.17) presentada en la Sección 2.3.2 para garantizar la unicidad

de solución de la aproximación DG de la ecuación de convección lineal (2.16)? La eliminación

de esta condición significarı́a que se puede utilizar el esquema lineal (2.16) garantizando una

aproximación positiva. Análogamente, la unicidad de la solución en el caso del esquema lineal

(4.6) presentado en la Sección 4.3.3 para discretizar los modelos generalizados de Keller–Segel

(4.1) o (4.2), garantizarı́a que la aproximación obtenida es siempre positiva como se observa en los

experimentos numéricos de la Sección 4.3.4.

• En este trabajo hemos abordado los modelos de tumores y los problemas relacionados principal-

mente desde un punto de vista puramente numérico. Sin embargo, si queremos explorar si los

resultados obtenidos pueden aplicarse a la descripción de fenómenos reales, necesitamos utilizar

datos, como se hace en trabajos anteriores como [7, 8, 9, 137, 138, 160]. Desafortunadamente,

ajustar los modelos y las aproximaciones discretas a datos reales no es sencillo y se requieren

técnicas especı́ficamente desarrolladas para obtener buenos resultados. De hecho, incluso obtener

los datos reales especı́ficos necesarios para ajustar los modelos es bastante difı́cil. En nuestro caso,

hemos empezado a explorar cómo introducir la información obtenida de datos reales, proporcionada

por el grupo de neurocientı́ficos INIBICA INCO-5, dirigido por la Dra. Carmen Castro-González,
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con el que ya existe una fuerte colaboración, en un modelo de quimiotaxis más simple en [6].

Sin embargo, este trabajo está todavı́a en desarrollo y se estudiará con más profundidad en otra

tesis doctoral que se está desarrollando en nuestro grupo. En este sentido, nos gustarı́a colaborar

estrechamente con el grupo de neurocientı́ficos mencionado anteriormente para explorar cómo los

datos reales de glioblastomas, un tipo común de cáncer cerebral en el que ellos tienen experiencia

previa (véase, por ejemplo, [98]), pueden incorporarse a los modelos tumorales de interfaz difusa

que hemos estudiado. Además, creemos que las herramientas desarrolladas recientemente, como

las redes neuronales (NNs), véase por ejemplo [99], o, más especı́ficamente, las redes neuronales

fı́sicamente informadas (PINNs), véase [59, 162], que estamos estudiando actualmente, pueden ser

de gran ayuda para ajustar los parámetros de los modelos a los datos reales.

• Las técnicas presentadas a lo largo de la tesis se basan en una aproximación con funciones constantes

a trozos de la variable acotada puntualmente. Esta aproximación desempeña un papel crucial en

la demostración de los cotas puntuales de la aproximación. Uno de nuestros próximos objetivos

es extender estas ideas a aproximaciones de orden superior y, por tanto, mejorar la eficiencia

computacional de los algoritmos. En este sentido, nos gustarı́a explorar si las ideas introducidas

en [196] por X. Zhang y C.-W. Shu y desarrolladas posteriormente en [161, 172, 197, 198] y

las referencias allı́ mencionadas, donde se utiliza un limitador para reconstruir aproximaciones

acotadas puntualmente de orden alto a partir de aproximaciones con cotas puntuales en la media de

las celdas bajo una condición CFL, pueden combinarse con las ideas que hemos presentado.

• Además, para asegurar la propiedad de estabilidad de energı́a hemos utilizado una aproximación

del flujo utilizando los baricentros de las mallas que satisfacen la restricción geométrica dada en la

Hipótesis 3.4.3. Nos gustarı́a estudiar si esta restricción puede debilitarse o eliminarse mediante

una aproximación más sofisticada del flujo como se muestra en [63, Sección 5.4].

• Con respecto al esquema desacoplado (6.34) presentado en el Capı́tulo 6 para aproximar el modelo

de Cahn–Hilliard–Navier–Stokes (6.1), nos gustarı́a explorar si esta aproximación puede mejorarse

asegurando una propiedad de estabilidad de energı́a discreta como se hizo con el esquema acoplado

(6.10). En este sentido, los esquemas desacoplados estables energéticamente para un modelo

CHNS con movilidad degenerada encontrados en la literatura existente, como los de [100, 107,

170], imponen varias restricciones que hacen improbable que se puedan generalizar y combinar
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con las ideas presentadas en esta tesis para preservar las cotas puntuales. Por lo tanto, dado que

no hemos encontrado ninguna idea que pueda conducir, al menos de forma directa, a esquemas

desacoplados, con cotas puntuales y estables energéticamente para el modelo CHNS (6.1), creemos

que se trata de una tarea bastante difı́cil.

Producción cientı́fica directamente relacionada con la tesis

Finalmente, presentamos las publicaciones, preprints y trabajos terminados que hemos desarrol-

lado en relación con esta tesis.

• Publicados:

– D. Acosta-Soba, F. Guillén-González, and J. R. Rodrı́guez-Galván. An upwind DG scheme

preserving the maximum principle for the convective Cahn–Hilliard model. Numerical

Algorithms, 92(3):1589–1619, 2022. DOI: 10.1007/s11075-022-01355-2.

Categorı́a JCR: “Mathematics, Applied” | Año: 2022 | Rango: 59/267 (Q1)

– D. Acosta-Soba, F. Guillén-González, and J. R. Rodrı́guez-Galván. An Unconditionally

Energy Stable and Positive Upwind DG Scheme for the Keller–Segel Model. Journal of

Scientific Computing, 97(1):18, 2023. DOI: 10.1007/s10915-023-02320-4.

Categorı́a JCR: “Mathematics, Applied” | Año: 2022 | Rango: 42/267 (Q1)

– D. Acosta-Soba, F. Guillén-González, and J. R. Rodrı́guez-Galván. A structure-preserving

upwind DG scheme for a degenerate phase-field tumor model. Computers & Mathematics

with Applications, 152:317–333, 2023. DOI: 10.1016/j.camwa.2023.10.028.

Categorı́a JCR: “Mathematics, Applied” | Año: 2022 | Rango: 29/267 (Q1)

• Enviados:

– D. Acosta-Soba, F. Guillén-González, J. R. Rodrı́guez-Galván, and J. Wang. Property-

preserving numerical approximations of a Cahn–Hilliard–Navier–Stokes model with variable

densities and degenerate mobility. Submitted, arXiv preprint, 2023. DOI: 10.48550/arXi

v.2310.01522.

• Por enviar:
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– D. Acosta-Soba, C. González-Castro, N. Geribaldi-Doldán, F. Guillén-González, P. Núnez-

Abades, N. Ortega-Román, P. Pérez-Garcı́a, and J. R. Rodrı́guez-Galván. Mathematical

Modelling of Neuroblast Migration towards the Olfactory Bulb. To be submitted, arXiv

preprint, 2022. DOI: 10.48550/arXiv.2211.06166.

– T. Li, D. Acosta-Soba, A. Columbu, and G. Viglialoro. Dampening gradient nonlinearities

prevent δ-formations in attraction-repulsion chemotaxis models. To be submitted, 2023.
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including chemotaxis and vasculature. ESAIM: Mathematical Modelling and Numerical Analysis,
56(2):407–431, 2022. DOI: 10.1051/m2an/2022012.

[80] A. Fernández-Romero, F. Guillén-González, and A. Suárez. Theoretical and numerical analysis
for a hybrid tumor model with diffusion depending on vasculature. Journal of Mathematical
Analysis and Applications, 503(2):125325, 2021. DOI: 10.1016/j.jmaa.2021.125325.

[81] F. Frank, C. Liu, F. O. Alpak, and B. Riviere. A finite volume / discontinuous Galerkin method
for the advective Cahn–Hilliard equation with degenerate mobility on porous domains stemming
from micro-CT imaging. Computational Geosciences, 22(2):543–563, 2018. DOI: 10.1007/s
10596-017-9709-1.

[82] F. Frank, A. Rupp, and D. Kuzmin. Bound-preserving flux limiting schemes for DG discretizations
of conservation laws with applications to the Cahn–Hilliard equation. Computer Methods in
Applied Mechanics and Engineering, 359:112665, 2020. DOI: 10.1016/j.cma.2019.1126
65.

[83] S. Frassu, T. Li, and G. Viglialoro. Improvements and generalizations of results concern-
ing attraction-repulsion chemotaxis models. Mathematical Methods in the Applied Sciences,
45(17):11067–11078, 2022. DOI: 10.1002/mma.8437.

[84] S. Frassu, R. Rodrı́guez Galván, and G. Viglialoro. Uniform in timeL∞-estimates for an attraction-
repulsion chemotaxis system with double saturation. Discrete and Continuous Dynamical Systems
- Series B, 28(3):1886–1904, 2023. DOI: 10.3934/dcdsb.2022151.

[85] H. Frieboes et al. Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion
and angiogenesis. Journal of Theoretical Biology, 264(4):1254–1278, 2010. DOI: 10.1016/j
.jtbi.2010.02.036.

[86] S Frigeri, K. Lam, E Rocca, G Schimperna, et al. On a multi-species Cahn-Hilliard-Darcy tumor
growth model with singular potentials. Communications in Mathematical Sciences, 16(3):821–
856, 2018. DOI: 10.4310/CMS.2018.v16.n3.a11.

189

https://doi.org/10.1007/s12035-021-02620-6
https://doi.org/10.1007/s12035-021-02620-6
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4f016a98fe25bfc06b9bcab3d85eeaa47d3ad3ca
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4f016a98fe25bfc06b9bcab3d85eeaa47d3ad3ca
https://doi.org/10.1088/0951-7715/26/1/81
https://doi.org/10.1051/m2an/2022012
https://doi.org/10.1016/j.jmaa.2021.125325
https://doi.org/10.1007/s10596-017-9709-1
https://doi.org/10.1007/s10596-017-9709-1
https://doi.org/10.1016/j.cma.2019.112665
https://doi.org/10.1016/j.cma.2019.112665
https://doi.org/10.1002/mma.8437
https://doi.org/10.3934/dcdsb.2022151
https://doi.org/10.1016/j.jtbi.2010.02.036
https://doi.org/10.1016/j.jtbi.2010.02.036
https://doi.org/10.4310/CMS.2018.v16.n3.a11


[87] S. Frigeri, M. Grasselli, and E. Rocca. On a diffuse interface model of tumour growth. European
Journal of Applied Mathematics, 26(2):215–243, 2015. DOI: 10.1017/S09567925140004
36.

[88] M. Fritz. Tumor evolution models of phase-field type with nonlocal effects and angiogenesis.
Bulletin of Mathematical Biology, 85(6):44, 2023. DOI: 10.1007/s11538-023-01151-6.

[89] M. Fritz, E. A. Lima, J Tinsley Oden, and B. Wohlmuth. On the unsteady Darcy–Forchheimer–
Brinkman equation in local and nonlocal tumor growth models. Mathematical Models and
Methods in Applied Sciences, 29(09):1691–1731, 2019. DOI: 10.1142/S02182025195003
25.

[90] D. Furihata. A stable and conservative finite difference scheme for the Cahn–Hilliard equation.
Numerische Mathematik, 87(4):675–699, 2001. DOI: 10.1007/PL00005429.
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[103] F. Guillén-González and G. Tierra. Energy-stable and boundedness preserving numerical schemes
for the Cahn-Hilliard equation with degenerate mobility. Applied Numerical Mathematics, 196:62–
82, 2024. DOI: 10.1016/j.apnum.2023.10.006.
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UCA in 2020, in the series “Advanced Modeling and Simulation Thrust Seminar” of the SimCenter at

the UTC in 2021 and in the series sponsored by the research project “Analysis of PDEs in connection
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